Fitrix
Visual Development Tool (VDT)
Screens And Menus

Course Workbook
4.12

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause at DFARS252 227-7013 Fourth Generation Software Solutions,
2814 Spring Rd , Suite 300, Atlanta, GA 30039

Copyright

Copyright (c) 1988-2002 Fourth Generation Software Solutions All rights reserved No part of this publication may be
reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form by any means
without the written permission of Fourth Generation Software Solutions

Software License Notice

Your license agreement with Fourth Generation Software Solutions, which is included with the product, specifies the per-
mitted and prohibited uses of the product Any unauthorized duplication or use of Fitrix, in whole or in part, in print, or in
any other storage and retrieval system is forbidden

Licenses and Trademarks

Fitrix is a registered trademark of Fourth Generation Software Solutions *
Informix is a registered trademark of Informix Software, Inc
UNIX is a registered trademark of AT&T .

FITRIX MANUALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, FURTHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE FITRIX MANUALS IS WITH YOU SHOULD THE FITRIX MANUALS PROVE DEFECTIVE, YOU (AND
NOT FOURTH GENERATION SOFTWARE OR ANY AUTHORIZED REPRESENTATIVE OF FOURTH GENERA-
TION SOFTWARE) ASSUME THE ENTIRE COST OF ALL NECESSARY SERVICING, REPAIR, OR CORRECTION
IN NO EVENT WILL FOURTH GENERATION BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING ANY
LOST PROFITS, LOST SAVINGS, OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OF OR INABILITY TO USE SUCH FITRIX MANUALS, EVEN IF FOURTH GENERATION OR AN
AUTHORIZED REPRESENTATIVE OF FOURTH GENERATION HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY IN ADDITION, FOURTH GENERATION
SHALL NOT BE LIABLE FOR ANY CLAIM ARISING OUT OF THE USE OF OR INABILITY TO USE SUCH
FOURTH GENERATION SOFTWARE OR MANUALS BASED UPON STRICT LIABILITY OR FOURTH GENERA -
TION'S NEGLIGENCE SOME STATES DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THE
ABOVE EXCLUSION MAY NOT APPLY TO YOU THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS
AND YOU MAY ALSO HAVE OTHER RIGHTS, WHICH VARY FROM STATE TO STATE

Fourth Generation Software Solutions Corporate: (770) 432-7623
2814 Spring Road, Suite 300 Fax: (770) 432-3448
Atlanta, GA 30339 E-mail: info@fitrix com
Copyright

Copyright (c) 1988-2002 - Fourth Generation Software Solutions Corporation - All rights reserved

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system or translated

Welcome to the Fitrix , Visual Development Tool (VDT) Screen and Menu Course Workbook.
This manual is designed for use in the Fitrix VDT Training class. We hope that you find all of this
information clear and useful. Although the pictures in this manual are all of character based
screens, please keep in mind that any program created by the Visual Development Tool offers the
option of being viewed in a graphic based Windows screen.

The Visual Development Tool itself runs only in character mode, but any program created with
VDT can be viewed in graphical mode using MS windows as well as character.

Examples of graphic based product viewing modes are shown below in Example 1 and Example 2.

33@5&2%&; c w

‘mﬁﬁmﬁﬁcmmm&s r W =
1 S Ty g e B ¢ pom Genersl ownsl Ustie fxsct §il Accenmte © Besiess Zsflwarse

— B P Ty 7 Muti @ o Post Generat Joumal
w7 M) g Adm G 2 pdate Batch Maintensnce

SockB132147 160 103/20021

Example 1- Menu Graphical Windows Mode

Here is another example.

pare:

Descriotdon:
OB meverselyd:
. source: Daceoy
Atcount Group: ERSRE
... .

“ACCOURT o DERT.Descrigtion - . R
AGO000G00 ~ 300 [CAsH AcCOUNT 186,66, Tl ¢ CASH SALES ™S i
420000000 20 IRETURNS AND ALLOWANCES 5. 00 -
00000000 »iggg Sars Sacks i 100.00 , e seiened
4010000007 00C) STEREO SALES , 200.00 206,00

AUEC00000
404000000 7

250,000
100,00

Example 2: Data Entry Screen in Graphical Windows Mode

Displaying our products in graphic mode, as shown in Example 1 and Example 2, is customary
for many Fourth Generation product users. However, your viewing mode is a user preference.
Changing from character based to graphical based is a user specific procedure, so if you wish to
view some applications in character mode, and some in graphical mode, that can be done as well.

If you have any questions about how to view your products in graphical mode, please consult your
Installation Instructions or contact the Fitrix help desk at 1(800)374-6157. You can also contact us
by email support@fitrix.com. Please be prepared to offer your name, your company, telephone
number, the product you are using, your Fitrix serial number and your exact question.

We hope you enjoy using our products and look forward to serving you in the future!

CASE Tools Training Course Workbook

Table of Contents

Section 1: Using a Generated Input Program

Setting Environment Variables..........ccccoeiueereeeeveeieneeeseceneneeereneereeresnneesenneenne 122
Using a Generated Input Programccccceeceeenveeeeeeeiececieceieeeeeceveceveevienens 1-3
Using the Ring Menu Commands..........cecueeeveenreereeereeeneeenecereneeeneeeveceneevveenne 1-4
ACCESSING ZOOMSucorveveueeeneenieeeaeneersseessesessessessessasssessassesssssessesnessssseenns 1= 11
USIng AULOZOOIMIScueeiiuivueerieenreeneeeeseensessesesneessassassssassnsesssssessessssessares 1713
USINg LOOKUPSc.ocuviiiieieiiiiiiitice e stcte st s sts e sesensnsssvsenesesssneesenes 1= 14
SECtion SUMMATYcocceuireerierirreirerienriestessesnesessesssessessasseasessessessessersseneens 1=13
EXEICISE LA ..ottt sttt et stestesese e stneesas e essnesnsenessenneennennes 1710
EXErcise 1Bcocuiiuiiiiiiiiiiiciece ettt sesee e e e eee e evnessaesesrnesnnesrneennees 118
EXErCise 1C ...ttt cttrstve st ste e svesrneenseernessse e ssnessnesssensnees 1=20
EXEICise 1Dcouiiiiiiiiiiiienieee ettt e ee s e enesvnessse e srneennesssenseees 1723

Section 2: Getting Started with the Form Painter

Form Painter OVETVIEW......cccciiiiciieceeerrerreecreeesrieseesesnssessessssssesesssessansessanes 2=2
Starting the Form Painter.........cccccoeviviiiiiieeieieieceiecreee e e 273
Using the Form Painter Pull-Down Menus...........cccccoevierereeeeneececeneseseennnen 2-4
Creating a FOrm IMagecccovivieveieniniinniniiese ettt seevae e sreeeees 22
Converting Forms into Input Programsccceeeeveeeceeevenieceieseervesvesnennn. 2-11
SeCtion SUMIMATYcccoeviiiieirirreeeeerecrenearieseesessiesesressessessssessessssessssssassenss 2= 12
EXEICISE 2ZA ..ottt sttt ce e seeesteer e ss e srse s s s ersesbae s s e s nranaeen 2-13
EXEICISE 2B ...cviniiieiiit ettt sttt e sre e sr e st sn e e srnenses 271D
EXEICISE 2C ...uiiiiiiiiitiiccieceieste st e s st te st s e snsavese s e ersesasrsessassessessessennessse 2 1O
EXEICiSe 2D ..ottt st s sn e seanes 2723
EXEICISE 2E ...ttt st enn et sr e sesesn e enes 272D

CASE Tools Training Course Workbook

Section 3: Working with the Database

Displaying the Table Information Windowc.ccoveveeeerereeeenereiieeeneenenns 3-2
Changing Database Valuesc.cccccuvveenerienieneniecieieee e cecve e svcneene 323
Using the AutoForm OPHONcccceeiveercenieee ettt er et sres e s casone 3-4
SECtioN SUMMALYo.oovivuiiemiiiieneneeieieesesteriessaraeseseessssesesessesesessesesessssrsesens 39
EXEICISE 3.ttt ettt sttt et eanessrve et b s v se e senees 3O

Section 4: Creating Zooms

Z0OM SCTEEN OVETVIEWeovurruiruieinrierentieeeereesreesaeesaenecsresssssessosessssessssssssenes 4-2
Painting a Zoom IMage........ccccoceevvrmenincneeientiece e ee e sveavene 423
Attaching the Zoom SCIEENcccvevcinierinienieereenr e sesesennes 46
SeCtion SUMMALYc.cocvvuerreieererereeeeieeesesresenssraessssesssesesssessssssorsssssssssensss 48
EXEICISE A ..ottt sttt stae s se s e et es e ses e srsnsesssasssesesnsesnes D=9
EXEICISE 4B ..ottt sttt et stte s sreer s srersenssnsnnennes D212

Section 5: Creating Lookups

LOOKUD OVEIVIEWeeiiiiiititicniceiese st ereesreeseeta e vt seetsesesseseseon s sessnsessssenens 5-2
Attaching a Lookup t0 @ Fieldccceviiievvniinnniieceeeeeeeeerr e 34
SECHION SUMIMATYcouervriiirnirineenieneneriaeneneeaesraiessaeeesssessesesssssssesssssssssossseens 30
EXETCISE SA ..ottt ettt st sesvee e s svse s ess et svss e seennens O= T
EXErcise 5Buiviiiiiiiciietcecteent ettt sttt et ens e 5-10

Section 6: Input Areas and Specification Files

Input Areas OVETVIEWcoccviiieevereeriennnrereentaenteecessssessepessessesesessssssenessonse O-2
Creating Form Specification (*.per) Filesccocvvvvivreneieneiieeeereeie e 6-4
SECHION SUMIMATYcoviiriiiiiiniieiterenteieeseerteseeaessasessastesseressensesessessnsasessssenns 6-8
EXETCISE O...ovoniinniiniiciiiiiest ittt et se et se et e se s te s erenssa s sesssrssen s sssnvess OO

CASE Tools Training Course Workbook

Section 7: Working with the User Control Libraries

User Control Library OVEIVIEWcccuieeeeieciererceieeceveeecvveeesveneeveeresvssseosvess -2
Creating @ TO-Do LiSt.......cooeeieriiroiieiinieiectieceetee et ee et sr e snnens 7-3
Adding Freeform NOTEScccoeveeeeiniririenteeieeeie et eetere e vt e se v s erseseeeaes 7-4
Entering EITOr MESSAES.ccveeverevrirriereneeienreriecenserveeesersesesersssesesesssenesnns 1=
AdAIng HElIP TEXLcecovevemiirerenrererieisieieveeeeeeereresss s sesssesesssrssessnne S)
Setting Up HOt KEYSoiuiiiiiiiiciieciece ettt es e crae e 7-7
Defining Navigation EVENtS........ccccceveieienieerieeecieecreee et evveesevesesnnees 1-8
Mapping Hot Keys to Navigation Events...........c.couceveeeeeeienviveeeceveecvennnn, 7-10
Logging Online Feature ReqUeStS.cccccueereeerervenreereeeerieeeesreeeenvene e e 7-11
Creating User-Defined Fieldscccooonieeieeceireeeeeeececeeee et evvenee 7-12
SECHION SUMIMATY ...cueoiitiiiitieceeniestee s eraeeeereassesseseessesessessssassessesensssensonnens 7-13
EXEICISE TA .ovvvvoeveen e e ee e seveeseeeessse e ssveemsessess e sese s sseees e resemssess e 7-14
EXEICISE TB ...ttt sttt e eree st s e seer e st es e ssenbese e st eone 7-17
EXEICISE TC ...ttt sree et evae st sr s e es s s er e st sn e eseabenssrnmsenne 7-19

Section 8: Using the Screen Code Generator

Screen Code GENErator OVEIVIEW........cccueriieiinnienreceereeieeeeenesreseereeseennnessnens 8-2
Understanding Library Code and Local Codeoovevererereenneireneeeseiencenne 8-5
Classifying Functionsccccecceeveercennieneevenncrnnnn. serrese e st s satesaasnne 8-6
Starting the Tools from the Command Linec.ooveveeveeeecerenererenevreenenns 8-8
Using the Hypertext Featureocoioveeveceeeeceieeciecectee et 8-10
SECHION SUMIMATYcoviiiiruiiirceeererrieerirentessesresensesessesessssssesssssesssssesssssessansess 812
EXETCISE BA ...ttt st st anne e sr e sser s e erarneen e 8713
EXErcise 8B ...ttt ettt er s srse e sn s e snns 3= 16
EXEICISE 8C ...ttt sttt sttt er e ee vt ss et s esne e esaeseernseenne 818

: CASE Tools Training Course Workbook

Section 9: Creating Triggers

Trigger Overview........ccceveueereenenne. sestesssiet st se st nete s er e se e s sn et sa et erre s enenes 9-2
Understanding the Trigger Concept.................. .93
Creating Triggerscccoveveevueerevresrnnne. 9-4
Merging Triggers int0 COAEuoeeerveeeveeeieieeceieet et ee et e seeeev s 9-7
SECtION SUMIMATYoucoivieieieieietecmeeesceee e eeassesene e e eeessesstes e s sees et suenesemnasennsans 9-8
Exercise 9.......cccvevnevnnrecanns .9-9
Section 10: Managing Screen to Table Flow

Understanding Program Data Flow ceverneenn 10-2
FourGen I/O Triggerscccceevemvevennennenane. veeeeennees 10-6
Referencing Input Fields in Triggers.................... ... 10-7
Common Global Variables................ ..10-8
Using the Scratch Variable veree 10-9
Section Summary10-10
Exercise 10A.....ccccvvvenrinnene ... 10-11
Exercise 10B...........c.ccuu.u. ... 10-17

Exercise 10Cuueeveeceennnnnn.

weeeenn 10-21

Section 11: Screen Handling and Add-on Headers

Using Different Screen Types.................

Designing Add-On Header Screens.......................
Section Summary
Exercise 11A..................

Exercise 11B..............

e 1122
The socketManager FUNCHON........c.coueveveuivieriecceiiee et ee et ee e e seeeans

CASE Tools Training Course Workbook

Section 12: Working with Switchboxes

Switchbox Overview...........

How Screens Get Into Switchbox......
The switchbox_items Trigger.........
Section Summary............

Exercise 12..........uc.......

Section 13: Working with Program Events

Program Event Overview...
Program Event and Hot Key Tables ..

The on_event Trigger......c..ccccouenenne.

The at_eof TIIZZET ..oucevvirieeeeeereer ettt ettt et e er e v e seeneaen

Section Summary................
Exercise 13A.......

EXEICISE 13B ...ttt e aeeee e ene e aesassenasse e sesnseresns
EXEICISE 13C ...ttt et aeeee e er s s eesessenasae e sesnneresnns

Section 14: Creating Pop-Up Menus

Pop-Up Menu Overview... BRSO
Assigning Pop-Up Menus to Program Events ..

Initiating Secondary Screens from Pop-Up Menusccocoeuunnen.

Section SUMMArYc.cccceeeverererervenuenne

Exercise 14.....uuuueeevuennnnn.

e 12-2
v 12-5
.. 12-6
e 12-7
coreeenne 12-8

veevenns 14-2
veerenns 14-4
weree 14-5
e 14-9

.. 14-10

-CASE Tools Training Course Workbook

Section 15: Creating Extension Screens

Extension Screen OVEIVIEWcccciieeviniirinseneennenesreseeeessseneevsvsesesennsnes 15-2
Attaching Extension Screens to Main Screensc.co.ooveeevevvcrenecevsneneenns 15-3
SECION SUIMMATYcouuiiviiiiriereerent e eaee et e se s e eres e v s saaesesnmssonensonnae 15-6
EXEICISE 15ttt st evsebe e vt v enne e snensssssenesnss 15=T

Section 16: Version Control and Conventions
The FourGen Directory StrUCHULEc.eeevveeseereereerieneereeieecneseesneerersessennes 16-2

Version Control OVEIVIEWccccccerieuirieventrerrenenreieieeeerceevessese v ssnsveseenees 1023
Building Custom VerSions..........cccceeeriruivrerenereeenenssreseeeeseesrsssssesssvsscsnsnnss 10-4
Table Naming CONVENtIONSccceeerenvrrieenrnreriererenrieeeseeeeresesesssesessssssssnsnens 160-3
Section SUIMMATYcocvieniiiritiriencrinieneeeeecesree e eee s essessevesess e sesssenesessseness 10-0
EXEICISE 16...coniiiiiiieiiiicietec ettt et eteeaeer et e steesr e sesame e snsmsenese 16-7

Section 17: Compiling Generated Code

Compiling Generated Codeccoeoeverirenreirererieceneieeeeceee e cvineevevsenenee 172
The MaKefile.....c.ooviiiniieiiiicecieertee ettt ceevee e ee e sressnneesees 174
Library OVEIVIEW.......ccuiciereciienienierenteeieceseetesteeie et sesssesenesvssssssssosessones 1723
Creating Custom Libraries........cccocvuvvnieniienieeeereceeeee v e svesecsveseenns 17-6
Using a Custom Librarycocoueeveveneimnrinneceneeieceeeree e evessnenees 177
SECtiON SUMMATYvooviviiiirieriitireserentereeesesrenssesessessesessesssessessesesssnssssssess 17-8
EXEICISE 1TA ..ottt ettt st e v res e ss s sessnssesesssnes 17-9
EXEICISE 17B uuiiniiiiiiitiiiiiciitceeseetete et setesesvae e eree e sveveesessessensessenssnssees 17212

Section 18: Using the Featurizer

FeaturiZer OVEIVIEW.......euveiviveeiie e eeeeeeeeesesessesseessssssessnsessessssssssnsssssnnes 182
BlOCK COMMIANAS ... vvvvirnrieiiie i eeeeeeeeeeeeeeeeeeeseesesessmsaseessss e s seessnneessessssos 18-3

vi

CASE Tools Training Course Workbook

Pluggable Feature Sets........c.cccvererierirnenenriineeierere e ceseenesse e s e enesenrene 18-5
SECtiON SUMIMATYovviiiireeeriereneeirentereseasesreressesnneeesssnssessesessessssssssessenns 18-0
EXErcise I18A ... cttreecce ettt se sttt sesven e seeresse s s s esseessrneneenne 187
EXercise 18B......oiiiiiiiicciiecciiectcneeecrtesresie e sreaeeeesseseesssesesnseessesesnnenees 18-11
EXErcise 18C ...ttt nttentee s sre st se v s eveseersesnseseenensens 18-12

Section 19: Getting Started with Menus

Benefits of MENUS....c.oiiiiiitiectiecniretete st et ee e sr e e e s e s e enae 19-2
Files Used by TMENUS ..t 19-3

Menus Directory StruCtureccceveeeeieresrerueseereecenseeereraessenesens 19-6
Starting a Menus Programc.cccecerenienrieveevenenrnesenecieseeiesesvessarseesesnees 19-8
SECtiON SUMIMATYcoouiiriereerreeienaeirieereaecreeessesseseereesssssesseesssssessasessessesesrss 19-9
EXEICISE 19..uuiiiiiiiic ettt st et svss s essesesssesesnseensnnens. 19-10

Section 20: Building a Menuing System

Linking Input Programs to Menuscccueeveveevesereceneereeseeeneseerneereenennenns 20-2
Setting the $ifxproject Variable...........ccccveeveeeveeieeceirenene. oo 20-3
Creating Menu Security Filescccoeievevoeeenececicereviececeneeer e erennneo 20-4
Using Menus with Version Controlcccceoveeeveneernicecenereesesreesesnennenens 205
SeCtion SUMIMATYcc.coveveneererererrrerinrieneereeriesseseerssreresnesecsresessersesssessessnsess 20-0
EXercise 20A ...t siesrest e srse e eraessetae s s sesransnenenns 207
EXErcise 20Bcoiiiiiiiiicccctee ettt st s e sn e se s et s n st snnens 20-10

Section 21: Security

SECUTILY OVETVIEWccciimiiiriieiirientiesreienrerstaesssessssessessessesssssssessssssessessersens 21-2
The Security Programs........c..ceoceviieiieceeiineieseece et ereveessseseessesvaeseessanens 21-6
SECtion SUMMATYcuoceeievereerereienteenseriesreesseesessesserssseseessessossrsessassnssesnense 21-19
EXEICISE 2] ittt crtesresse st snense e sre e enenseer s e snsenens 2120

vii

CASE Tools Training Course Workbook

viii

Using a Generated
Input Program

Main topics:

Setting Environment Variables
Using a Generated Input Program
Using the Ring Menu Commands
Accessing Zooms

Using AutoZooms

Using Lookups

1-1

- CASE Tools Training Course Workbook

Setting Environment Variables

1-2

In order to create and run programs with Screen, you must
set certain UNIX environment variables and export them.

1.

The $£g variable should point to the directory where your
Screen product is installed. For example, the following com-
mand sets $£g to the /usr/ directory:

fg=/usr/ . export £g

The $INFORMIXDIR variable should point to your informix
directory. For example, the following command sets $ INFOR-
MIXDIR to the /usr/informix directory:

INFORMIXDIR=/usr/informix; export INFORMIXDIR

The $PATH variable should include both $fg/bin and
SINFORMIXDIR/bin directories:

$fg/bin
$INFORMIXDIR/bin

The $DBPATH variable must include two additional $ £g directo-
ries:

$fg/lib/forms

$fg/codegen/data

Using a Generated Input Program

v+ .-+ CASE Tools Training Course Workbook

Using a Generated Input Program

You can create fAction:f] Update Delete Find Browse Nxt Prv Tab Options Quit
sophisticated Create a new document
input programs (Notes)
. Order Form
with FourGen Customer No.: 101 Contact Name: alohag cathys
Screen. Company Name: All Sports Supplies
Address: 213 Erstwild Court
City/St/Zip: Sunnyvale CA 94086 Telephone: 408-789-8075
Order Date: 06/01/86 PO Number: 9037 Order No: 1002
Shipping Instructions: po on box: deliver back door only
Item Description Manufacturer Qty. Price Extension
3 baseball bat HSK Husky 3 $240.00 $720.00
4 football HRO Hero] $480.00 $1920.00
Order weight: 50.60 Freight: $15.30
Order Total: $2655.30
1 of 200

FourGen Screen lets you create sophisticated input programs. The fol-
lowing figure illustrates an input program built by FourGen Screen.

All input programs contain a ring menu interface located at the top of

the screen.

Using a Generated Input Program

1-3

CASE Tools Training Course Workbook

Using the Ring Menu Commands

The ring menu consists of 10 commands. You can activate a command
by highlighting the command and pressing [ENTER] or by typing the
first letter of the command name.

The ring menu
consists of 10
ring menu
commands.

Action:|] [EEEN Update Delete Find Browse Nxt Prv Tab Options Quit
Create a new document

The Add Command

The Add command lets you add a record (or document). Use Add
when you want to create a new entry in your input program. When
you select Add, your cursor moves to the first input field on the form.

The Add Add: [ESCI to Store. LDEL] to Cancel. LTABI Next Hindow Help:
command lets Enter changes into form ECTRLI-Lw]
(Zoom)==
you add a Order Form
record. Customer No.: [Contact Name:
Company Name:
Address:
City/St/Zip: Telephone:
Order Date: 12/09/93 PO Number: Order No:

Shipping Instructions:

Item Description Manufacturer Qty. Price Extension

Order weight: Freight:
Order Total:
Enter the customer code.

1-4 Using a Generated Input Program

CASE Tools Training Course Workbook

The Update Command

The Update command lets you change a value in an existing docu-
ment. Use Update when you want to alter or correct an input field
value. Before you can update a document, you must use the Find
command to select it (see "The Find Command" on page 1-6).

The Update Update: [ESC] to Store, [DEL] to Cancel. [TABI Mext Hindow Help:
command lets Enter changes into form [CTRLI-[w]
(Notes)==(Zoom) ==
you Chan.ge a Order Form
value in an Customer No.: Contact Name: alohag cathys
existing Company Name: All Sports Supplies
d t Address: 213 Erstwild Court
ocument. City/St/Zip: Sunnyvale CA 94086 Telephone: 408-789-8075
Order Date: 06/01/86 PO Number: 9037 Order No: 1002

Shipping Instructions: po on box: deliver back door only

Item Description Manufacturer Qty. Price Extension
3 baseball bat HSK Husky 3 $240.00 $720.00
4 football HRO Hero 4 $480.00 $1920.00

Order weight: 50.60 Freight: $15.30
Order Total: $2655.30
Enter the customer code.

Using the Ring Menu Commands 1-5

CASE Tools Training Course Workbook

The Delete Command

The Delete command lets you remove an existing document. Use
Delete to erase a document. Before a document is deleted, a prompt
appears to confirm the deletion.

The Delete Delete: Verify document deletion
command lets Erase this document? (Y/N) |}
(Notes)
you remO\l/e.an Order Form
existing Customer No.: 101 Contact Name: alohag cathys
document. Company Name: All Sports Supplies
Address: 213 Erstwild Court
City/St/Zip: Sunnyvale CA 94086 Telephone: 408-789-8075
Order Date: 06/01/86 PO Number: 9037 Order No: 1002

Shipping Instructions: po on box: deliver back door only

Item Description Manufacturer dty. Price Extension
3 baseball bat HSK Husky 3 $240.00 $720.00

4 football HRO Hero 4 $480.00 $1920.00
Order weight: 50.60 Freight: $15.30

Order Total: $2655.30

1 of 1)

The Find Command

The Find command lets you select a single document or a group of
documents. Use Find to retrieve a document that you want to update
or delete. When you select Find, the cursor moves to the first field of a
blank form. To specify which document you want to select, you can
enter selection criteria into the fields on the blank form. This ability is
known as Query-By-Example (QBE). -

1-6 Using a Generated Input Program

CASE Tools Training Course Workbook

The Find
command lets
you selecta
single
documentora
group of
documents.
When you select
Find, you
initiate a Query-
By-Example
search.

For example, to select all the documents with values in the Customer
No. field greater than 110, enter: '

Find: [ESC] to Find. [DEL] to Cancel
Enter selection criteria into form

(Noteg)=—z========
Order Form
Customer No.: >110f] Contact Name:
Company Name:
Address:

City/St/Zip: Telephone:

Order Date: PO Number: Order No:
Shipping Instructions:
Item Description Manufacturer Qty. Price Extension

Order weight: Freight:
Order Total:
Enter the customer code.

The Browse Command

The Browse command lets you view selected documents in a line-by-
line format. Use Browse to get an overall view of the documents you
have selected with the Find command (see "The Find Command” on
page 1-6). Browse is useful because, although Find lets you select a
group of documents, only one document is visible (or current) on the
form at a time. Browse lets you see all the selected documents.

Using the Ring Menu Commands 1-7

CASE Tools Training Course Workbook

When you select Browse, a pop-up window appears showing all the
selected documents in a line-by-line format.

The Browse Action: Add Update Delete Find Browse Nxt Prv Tab Options OQuit
command lets Select a group of documents
youview Brouse] Prev Up Dowun Top Bottom Select ... [--—-—-
selected Custo| Move to next document
documentsina Compa e :
line-by-line City rder No. Company PO No. Order Date
format. Pooh 12704750
Ord 1006 Runners & Others 013557 09/19/86 005
1007 Kids Korner 278693 03/25/86
Shipp 1010 Gold Medal Sports 429Q 05/29/86
------ 1012 Kids Korner 278701 06/05/86 -
Item 1020 Sports Center 99881122 09/30/93 nsion
1023 petrosoft 10713793
1025 petrofost 10/14/93
(1 of 8 ====—=
16.20
Order Total: $16.20
1 of 8

The Nxt and Prv Commands

The Nxt and Prv commands let you page through a group of selected
documents. Before you can use Nxt or Prv, you must use Find to
select a group of documents (see "The Find Command" on page 1-6).

1-8 Using a Generated Input Program

CASE Tools Training Course Workbook

The Tab Command

The Tab
command lets
you view lines

on the scrolling
portion of the
form.

The Tab command lets you view lines on the scrolling portion of a
form. Tab is for viewing only—you cannot add or update lines. When
you select Tab, your cursor moves to the first line of the scrolling sec-
tion. You must use Find to select a document before you can use the
Tab command (see "The Find Command" on page 1-6).

Scroll: [TAB1, [DEL], or [ESC] to Quit
ARROH KEYS to Scroll, [F31 or [F4] to Page

Order Form
Customer No.: 112 Contact Name: Wargaret Lawson
Company Nawe: Runners & Others

Address: 234 Wyandotte Way
City/St/Zip: Los Altos CA 94022 Telephone: 415-887-7235

Order Date: 09/19/86 PO Nuwber: Q13557 Order No: 1006

Shipping Instructions: after 10 am

Item Description Manufacturer Qty. Price Extension
5 tennis racquet SMT Smith 5 $25.00 $125.00
5 tennis racquet NRG Norge 5 $28.00 $140.00

5 tennis racquet ANZ Anza 5 $19.80 $99.00

6 tennis ball SHWT Smith 1 $36.00 $36.00
Order weight: 706.80 Freight: $14.20

Order Total: $462.20
6 of 19

The scrolling section is also called the detail section of the form. It rep-
resents the many side of a one-to-many table relationship. You can use
the arrow keys or [F3] and [F4] to scroll through the detail lines.

The non-scrolling section of the screen is known as the header section.
It represents the one side of a one-to-many table relationship. Typi-
cally, the header section is on the upper half of the input program and
the detail section is on the lower half.

Using the Ring Menu Commands 1-9

CASE Tools Training Course Workbook

The Options Command

The Options command gives you a place to add your own custom
ring menu commands. Use Options for custom ring menu items. For
example, under Options, you could add a command that initiates
your E-mail program. When you select Options, the ring menu clears
and displays your custom ring menu items.

The Options Options:f]
command gives Return to the main menu
you a place to Order. Form
add your own Customer No.: 112 Contact Name: Margaret Lawson
custom ring Company Name: Runners & Others
n Address: 234 Hyandotte MHay
menu City/St/Zip: Los Altos CA 94022 Telephone: 415-887-7235
commands.
Order Date: 09/19/86 PO Number: Q13557 Order No: 1006

Shipping Instructions: after 10 am

Item Description Manufacturer Qty. Price Extension
5 tennis racquet SMT Samith 5 $25.00 $125.00

5 tennis racquet NRG Norge 5 $28.00 $140.00

5 tennis racquet ANZ Anza 5 $19.80 $99.00

6 tennis ball SMT Smith 1 $36.00 $36.00
Order weight: 70,80 Freight: $14.20

Order Total: $462.20
6 of 19

By default, Options always contains a Quit command that returns
you to the main ring menu.

The Quit Command

The Quit command exits the program. Use Quit when you are fin-
ished using the input program. When you select Quit, the program
stops and you are returned to the point at which you began the pro-
gram.

The Quit Action:] Add Update Delete Find Browse Nxt Prv Tab Options
command exits End the program

the program.

1-10 Using a Generated Input Program

CASE Tools Training Course Workbook

Accessing Zooms

Zoom screens help the user enter data. When entering values in
fields, the user can Zoom into a list of valid values for that field and
select one. Users invoke Zooms by pressing [CTRL]-[z] in a field. Not
all fields have Zooms attached to them.

Zoom screens Add: [ESC] to Store. [DELI to Cancel. [TAB] Next Windou Help:
help users enter Enter changes into form [CTRLI-Lw]
- ===z)==
valid values. ———| Zoom: [ESCI to Select. CTABI for Menu Help: -
Cus| [F31 or [F4] to Page, [DEL] to Quit [CTRLI-Lwl
Com
in this example, CustNum FirstName LastName Company
Ci
. theuser B 110 Roy Jaeger AR Athletics
initiates a Zoom 0 101 Ludwig Pauli All Sports Supplies
from the 107 Charles Ream Athletic Supplies
Shi 118 Dick Baxter Blue Ribbon Sports
Customer No. - 115 Alfred Grant Gold Medal Sports -
field. Tte 117 Arnold Sipes Kids Korner on
(18 rous selected)
Order weight: Freight:
Order Total:
Enter the customer code.

Accessing Zooms 1-11

- CASE Tools Training Course Workbook

Zoom:s also use filters before returning values. If there are many valid
values that can go into a field, Zooms, by default, first display a selec-
tion criteria screen. The selection criteria screen allows users to limit
which values the Zoom returns.

Zooms can filter fdd: [ESC] to Store, [DEL] to Cancel. [TABI Next Hindow Help:
values before Enter changes into form [CTRLI-Lw]
they are Find: [ESC] to Find, [DEL] to Cancel —
returned. Cus| Enter selection criteria into form
Com
CustNum FirstName LastName Company
. Ci
In this example, asfl
the user wants 0
to see a list of .
A Shi.
companies that J— —
begin with the Tte on

letter A.

Order weight: Freight:
Order Total:
Enter the customer code.

1-12 Using a Generated Input Program

CASE Tools Training Course Workbook

Using AutoZooms

You can also invoke a Zoom without pressing [CTRL]-[z]. If you place
an asterisk in a field and press [ENTER], the Zoom is performed for
you. You can combine the asterisk with letters to filter the Zoom.

AutoZooms let Add: [ESCI to Store. [DEL] to Cancel, LTABI Next Hindow Help:
you enter Enter changes into form [CTRLI-[w]
ion @ |F=TEsss=s== om)==
3 .sel.ectlon ——————————— Zoom: [ESC] to Select, LTAB] for Menu Help: [——
criteria directly Customer N| [F31 or [F4] to Page. [DEL] to Quit [CTRLI-Cw]
into a field. Company Na
Addre| Stk# Manufacturer Price Unit UnitDescription
City/St/2
. § 2 HRO Hero $126.00 case 24/case
In this example, Order Da 3 HSK Husky $240.00 case 12/case
the AutoZoom 1 HRO Hero $250.00 case 10 gloves/case
Shipping I (7 rous selected)
retumns valves |-~ * - 00000 o 0000000000000 .
that begin with Item Bescription Hanufacturer Qty. Price Extension
H
Order weight: Freight:

Order Total:
Enter the manufacturers code for this stock number.

Using AutoZooms 1-13

CASE Tools Training Course Workbook

Using Lookups

When a user enters a value in a field, Lookups can be defined to pull
related data into adjacent fields. Lookups also ensure that the user
only enters valid values into a field.

Lookups pull
related data into
adjacent fields.

In this example,
the Lookup
pulled in values
for the Contact
Name,
Company
Name, Address,
City/St./Zip, and
Telephone
fields. This
Lookup is
based on the
Customer No.
field.

1-14

Add: [ESC] to Store, LDEL] to Cancel, [TABI Next Window Help:
Enter changes into form CCTRLI-Lw]

Order Form

Customer No.: 102

Company Name: Sports Spot
Address: 785 Geary St

City/St/Zip: San Francisco CA 94117 Telephone: 415-822-1289

Contact Name: Carole Sadler

Order Date: 1¥FIYER PO Number: Order No:
Shipping Instructions:
Item Description Manufacturer Qty. Price Extension
Order weight: Freight:

Order Total:
Enter the order date.

Using a Generated Input Program

CASE Tools Training Course Workbook

Section Summary

In order to create and run Screen programs, you must
set certain UNIX environment variables and export them.

Using Screen, you can create sophisticated input pro-
grams.

The topmost portion of an input program is known as the ring
menu. The ring menu contains 10 ring menu commands.

Most input programs use zoom screens to assist in data entry.
Zooms perform data selection and validation tasks.

You can access a Zoom by pressing [CTRL]-[z].

AutoZooms let you place selection criteria directly into an input
field.

Lookups pull related data into adjacent fields. For example, when
a user enters a number into the Customer No. field, the Contact
Name, Company Name, Address, City/St./Zip, and Telephone
fields get filled automatically.

Section Summary 1-15

. - CASE Tools Training Course Workbook

Exercise 1A

Objective: To set up your development environment.

Use the Bourne Shell

For all the exercises in this book, you should be using the UNIX
Bourne shell. Other shells, such as the C and Korn shells, use a differ-
ent method for setting variables. If you are not using the Bourne shell,
you should switch to it now.

e At the UNIX prompt, enter:
/bin/sh

A dollar sign ($) prompt appears. This prompt indicates that you
are in the Bourne shell.

Check Your Current Environment Variable Settings

1-16

The env command displays current environment variable settings.
¢ Atthe UNIX prompt, enter:

env

Use the env command to see what values the following environment
variables contain:

fg
INFORMIXDIR
PATH

DBPATH

You must set the above environment variables to the appropriate val-
ues prior to using Screen.

To show the value in a single environment variable, you can use the
echo command. '

¢ Atthe UNIX prompt, type:

echo $fg

Using a Generated Input Program

CASE Tools Training Course Workbook

Set Your Environment

Each of the environment variables shown on the previous page must
point to a specific directory, depending upon how your system is set
up. Here is a rundown of the correct variable settings:

fg

INFORMIXDIR

PATH

DBPATH

This variable should point to the directory
where the Screen product is installed. For
example, $fg=/usr/fourgen.

This variable should point to the directory
where your Informix product is installed. For
example, $INFORMIXDIR=/usr/informix.

This variable should contain both the
$fg/bin and $INFORMIXDIR/bin
directories.

This variable should contain
$fg/lib/forms and $fg/codegen/data.

Note

The dollar sign ($) before the environment variable indicates that
you want to display the value contained within the variable.

You must issue two commands to set an environment variable. First
enter the variable name followed by an equals sign and the value the
variable should contain. Second, "export" the variable. For example,
to set the $ fg variable.

s At the UNIX prompt, type:

fg=/usr/

; export £fg

Use the echo command again to check the variable:

* Atthe prompt, type:

echo $fg

Exercise 1A 117

CASE Tools Training Course Workbook

Exercise 1B

Objective: To become familiar with the screen demo programs.

List the Screen Demonstration Programs

¢ Atthe UNIX prompt, type:

scr_demo
The following list appears:
syntax: /usr/ /work/bin/scr_demo [12356789]

1 - Header only screen demo

- Header/Detail screen demo

- Header/Detail demo with zoom, lookup, math, etc
- Header/Detail demo with Add-On Header
Featurizer demo with Add-On Header

- Header/Detail demo with Extension Screens

- Header with Add-On Detail

- Header with View-Detail, View-Header, and Query

W o~ oUW
I

Start scr_ demo 5

¢ At the UNIX prompt, type:
scr_demo 5

When you start scr_demo 5, the following message appears:

Please wait...preparing Screen Demo 5

You have been placed into:
fusr2/ /codegen/demo.4gm/screen5.4gs.

Directory listing:
browse.per cust .trg order.per screen5.bak stockzm.per

cust..per cust_zm.per order.trg stk_mnu.per

A new shell has been opened.
To exit the demo, type [CTRL]-[d]

In addition, your prompt changes to reflect the demo program:

Screen Demo 5 -»>

1-18 Using a Generated Input Program

CASE Tools Training Course Workbook

The screen demonstration programs give you a fresh set of form spec-
ification (*.per), trigger (*.trg) extension (*.ext), and feature set (*.set)
files. These files supply the Screen Code Generator with instructions
for building an input program.

Note

Some screen demonstrations contain all of these files while others
only contain form specification (*.per) files. At this point, you do not
have to know or understand what these files do. Just realize that
they are used by FourGen Screen to create an input program.

Also realize that each time you run a screen demonstration program,
you receive a fresh set of files. Because of this fact, do not be afraid to
"break" the screen demonstration. If a file is corrupted, just start over.

Once you receive the Screen Demo prompt, you can use
Screen to build and run an input program. In general, the following
steps are required:

1. Runthe Screen Code Generator to create source code.

2. Run fg.make, the compilation program to compile the
source code and build a runnable program file.

3. Run the resulting program file.

Exercise 1B 1-19

-CASE Tools Training Course Workbook

Exercise 1C

Objective: To convert the initial scr_demo 5 files into a program.

Start the Screen Code Generator

* Atthe Screen Demo prompt, enter:

fg.screen

This command starts the Screen Code Generator, which reads the
form specification (*.per) files in the demo directory and creates 4GL
source code based on these files. As the Screen Code Generator works
multiple lines of code scroll past your screen.

4

List the Generated Files

When the Screen Code Generator finishes creating code, the Screen
Demo prompt reappears. You can use the 1s command to see a listing
of the files the Screen Code Generator creates.

* Atthe Screen Demo prompt, type:
1s -C

The following list of files appears:

Makefile cust.per errlog midlevel.4gl stk_mnu.per
Makefile.org cust.trg globals. 4gl midlevel.org stockzm.4gl
browse.4gl cust_zm.4gl globals.org order .per stockzm. org
browse.org cust_zm.org header.49gl order.trg stockzm.per
browse.per cust_zm.per header .org screen5.bak
cust.4gl detail.4gl main.4gl stk_mnu.4gl
cust.org detail.org main.org stk_mnu.org

As you can see the Screen Code Generator creates several source code
(*.4gl) files. From these files, the compilation utility
(fg.make) builds a runnable program file.

1-20 Using a Generated Input Program

CASE Tools Training Course Workbook

After you use the Screen Code Generator to create 4GL source code,
you can use the fg.make command to compile the source code and
build a runnable program file. The £g.make command automatically
determines the type of Informix development system you are using
(either the 4GL or RD) and creates the appropriate program file.

Note If you are using the INFORMIX-4GL, fg.make creates a program
file with a *.4ge extension. If you are using INFORMIX-RDS,
fg.make creates a pseudo-code file with a *.4gi extension is created.

Start the Compilation Utility

¢ At the Screen Demo prompt, enter:

fg.make

This command performs several tasks, most of which are
described in later chapters. For now, you should simply realize
that it builds a runnable program file.

List Your Program File

When the fg.make command finishes, the Screen Demo prompt
reappears. Again, you can use the 1s command to display the files
created by £g.make. Depending on your development system, you
should see either a *.4ge or *.4gi program file.

¢ At the Screen Demo prompt, type:
1s -c¢

In the file listing, you should either have a screen5.4geora
screenb.4gi file.

Start the Input Program

There are two methods for starting an input program. Once again you
must choose the method appropriate for your development system.

¢ Start the program:

Exercise 1C 1-21

CASE Tools Training Course Workbook

fglgo screenb5.4gi

Once you issue the appropriate command, the screen demo 5 input

program begins:
Once you issue fAction:[] Update Delete Find Browse Nxt Prv Tab Options Quit
the appropriate Create a new document
command, the {Notes)
’ Order Form
demonstration Customer No.: 104 Contact Name: finthony Higgins
program begins. Company Name: Play Ball!

Address: East Shopping Cntr. 422 Bay Road
City/St/Zip: Redwood City CA 94026 Telephone: 415-368-1100

This figure Order Date: 01/20/86 PO Number: B77836 Order No: 1001
shows the main Shipping Instructions: ups
screen of
scr demo 5. Item Description Manufacturer Qty. Price Extension
- 1 baseball gloves HSK Husky 2 $800.00 $1600.00
2 baseball HRO Hero 3 $126.00 $378.00
3 baseball bat HSK Husky 3 $240.00 $720.00
3 $0.00
Order weight: 20.60 Freight: $20.00

Order Total: $2718.00
(1 of 16)

1-22 Using a Generated Input Program

CASE Tools Training Course Workbook

Exercise 1D

Objective: To become familiar with the input program functionality.

Add a Record

1. Select Add from the ring menu.

A new record is created and your cursor moves to the first field:

Add: [ESC] to Store. IDEL] to Cancel. LTAB] Next Window Help:
Enter changes into form LCTRL}-Lw]
(Zoom)==

Order Form
Customer No.: [N Contact Name:
Company Name:

Address:
City/St/Zip: Telephone:

Order Date: 01/12/94 PO Number: Order No:

Shipping Instructions:

Order weight: Freight:
Order Total:
Enter the customer code.

Item Description Manufacturer Qty. Price Extension

On some fields, the (Zoom) lamp appears. It indicates that a refer-
ence table exists for the field. You can press [CTRL]-[z] to open

the reference table and select a value for the field.
2. Fillin the input fields.
3. Press [ESC] to store the record.

Exercise 1D

1-23

CASE Tools Training Course Workbook

Find a Record

The Find ring menu command lets you select a single record, a group
of related records, or all the available records.

1. Select Find from the ring menu.

A blank record appears and your cursor moves to the first field:

Find: [ESC] to Find, [DEL] to Cancel
Enter selection criteria into form
(Notes)
Order Form
Customer No.:] Contact Name:
Company Name:
Address:
City/St/Zip: Telephone:
Order Date: PO Number: Order No:
Shipping Instructions:
Item Description Manufacturer Qty. Price Extension
Order weight: Freight:
Order Total:
Enter the customer code.

2. Press [ESC].

All the records in your database table get returned. The first
record appears in your main screen. You can use Nxt and Prv
commands to scroll through the entire list.

To limit a Find to a single record or a group of related records, you
can enter selection criteria in the fields. This ability is know as Query-
By-Example (QBE). For instance, to select all the records that have
order dates greater than 04/1/86:

1. Select Find from the ring menu.
2. Move your cursor to the Order Date field and enter:

> 04/01/86

1-24 Using a Generated Input Program

CASE Tools Training Course Workbook

Since this value is larger than the input field, the selection criteria
is displayed at the bottom of the screen:

Find: [ESC] to Find. [DEL] to Cancel
Enter selection criteria into form

Order Form

Customer No.: Contact Name:
Company Name:
Address:
City/St/Zip: Telephone:
Order Date: > 04/01/ PO Number: Order No:

Shipping Instructions:

Ttem Description Manufacturer Qty. Price Extension

Order weight: Freight:
Order Total:

> 04/01/86[]

3. Press [ESC].

All the records older than 04/01/86 are returned. Again you can
use Nxt and Prv to scroll through the list of records.

Exercise 1D 1-25

: CASE Tools Training Course Workbook

Update a Record
The Update command lets you alter the values in a record.
1. Use Find to select the record you want to update.
2. Select Update.

Your cursor moves to the first input field.

Update: [ESCI to Store. [DEL] to Cancel. LTAB] Next Mindow Help:
Enter changes into form L[CTRLI-[w]
(Notes)==(Zoom)==

Order Form
Customer No.: Contact Name:
Company Name:

fiddress:
City/St/Zip: Telephone:

Order Date: 06/01/36 PO Number: 9270 Order No: 1002

Shipping Instructions: po on box: deliver back door only

Item Description Manufacturer Qty. Price Extension
4 football HSK Husky 1 $960.00 $960.00
3 baseball bat HSK Husky 1 $240.00 $240.00

Order weight: 50.60 Freight: $15.30

Order Total: $1215.30
Enter the customer code.

3. Move to the field that you want to change and change its value.

4. Press [ESC] to store your change.

1-26 Using a Generated Input Program

CASE Tools Training Course Workbook

Browse a List of Records

The Browse command lets you view a list of selected records in line-

by-line format.

1. Use the Find command to select a group of records.

2. Select the Browse command from the ring menu.

A secondary window appears showing the selected records in a
line-by-line format:

Action: Add Update Delete Find Browse Nxt Prv Tab Options Quit
Change this document
—————— Brouse] Prev Up Down Top Bottom Select I
Custo| Move to next document
Compa (Notes)==========
Order No. Company PO No. Order Date
City
9270 06/01/86
Ord 1003 Play Ball! B77890 10/12/86 002
1004 MWatson & Son 8006 04/12/86
Shipp 1005 Olympic City 2865 12/04/86
—————— 1006 Runners & Others Q13557 09/19/86 -
Item 1008 AN Athletics L2230 11/17/86 nsion
4 1010 4290 05/29/86 60.00
3 1012 278701 06/05/86 40.00
1013 Play Ball! B77930 09/01/86
1014 Watson & Son 8052 05/01/86
(1 of 12) ======
15.30
Order Total: $1215.30
1 of 12)

3. Use the ring menu commands on the browse window to scroll
and select a record.

Quit the Input Program and Screen Demo

Once you are done exploring the input program, select Quit from the
ring menu. The Quit command returns you to the Screen Demo

prompt.

¢ Atthe Screen Demo prompt, type [CTRL]-[d] or enter:

exit

Exercise 1D 1-27

CASE Tools Training Course Workbook

1-28 Using a Generated Input Program

2

Getting Started with the
Form Painter

Main topics:

Form Painter Overview

Starting the Form Painter

Using the Form Painter Pull-Down Menus
Creating a Form Image

Converting Forms into Input Programs

21

.+ CASE Tools Training Course Workbook

Form Painter Overview

22

The Form Painter lets you develop complete data-entry programs
written in INFORMIX-4GL. It is an interactive visual front end featur-
ing a full screen editor, a database administration facility, and a
screen enhancement builder. The Form Painter acts as the control cen-
ter for running the Screen Code Generator and compilation
utility. From within the Form Painter you can:

Paint a form image, which can be directly converted into an input
program.

Access the database to add, delete, and update tables and col-
umns.

Store form image information in ASCII files (form specification
*.per files), which are compliant with Informix’s Perform format
and easily moved to other systems.

Create custom program events that are called from logical trigger
points within the generated code.

Copy and move any element of the form image.
Store form image blocks on a Clipboard.

Define data-entry areas and how they join with other data entry
areas.

Define how forms work with other forms.
Specify the order in which input fields are processed on the form.
Generate default form images with the AutoForm feature.

Access other programs and tools on the system without leaving
the Form Painter.

Getting Started with the Form Painter

CASE Tools Training Course Workbook

Starting the Form Painter

The Form
Painter consists
of two sections:

the pull-down
menus and the
Form Editor.

You can start the Form Painter using the fg.form command. This com-
mand has the following syntax:

fg.form -dbname database -
Where database is the name of the database you want to use.

After you type this command, the Form Painter loads and displays
the following window to your screen:

Edit Define Run Help

====z==(standard)

You should always start the Form Painter from the directory in which
you want to read and write form specification (*.per) files.

Analogous to generated input programs, the Form Painter consists of
two sections: the pull-down menus and the Form Editor.

Starting the Form Painter 2-3

CASE Tools Training Course Workbook

Using the Form Painter Pull-Down

Menus

The Form
Painter contains
five pull-down
menus.

You can open a
pull-down menu
by highlighting it
and pressing
[ENTER]. You
can also open a
puil-down menu
by typing the
first character of
the menu name
(e.g., typeF to
open the File
pull-down
menu).

2-4

The Form Painter contains five pull-down menus.

Define Run Help

‘ Edit

=======(standard)

You can open a pull-down menu by highlighting it and pressing
[ENTER]. You can also open a pull-down menu by typing the first
character of the menu name (e.g., type F to open the File pull-down
menu). Each pull-down menu contains a number of menu options.
You select a menu option by highlighting it and pressing [ENTER]

Edit Define Run

Help

New. ..
10pen >>

{Save Form

ISave fs...

1Save Trg File
IClose

IDelete Form >>
IDelete Trg File >>

Database...
Info >>
IPrint >>
Exit

Options preceded by an exclamation point (!) are not available.
Options followed by greater-than signs (>>) open another menu with
additional options. Options followed by an ellipsis (...) open a subse-
quent window.

Geilting Started with the Form Painter

CASE Tools Training Course Workbook

Creating a Form Image

The Form Painter lets you paint form images. You can use the Form

Painter to create a new form image or you can open existing form
images. A form image graphically represents how your form will
look and work once it is built. You paint and edit form images from
within the Form Editor. The general steps for creating a new form

image are as follows:

1. Select New from the File pull-down menu.

2. Enter a name for the new form.

3. Select the screen type you want to use.

In all there are ten screen types you can build. Your main screen is
either a header or header/detail screen. The other screens act as sec-
ondary screens, some of which you can connect to the main screen
(see "Using Different Screen Types" on page 11-2).

Screen Type
header
header/detail

add-on header

add-on detail

extension

Zoom
browse

query
view-header

view-detail

Function
Writes to a single database table.
Writes to a header table and a detail table.

Writes to a peripheral table from the main
screen.

Writes to an additional scrolling detail table
from the main screen.

Writes to additional columns within the main
header table.

Selects valid values for an input field.
Lists documents in a line-by-line format.

Generates a selection prompt for use with
report programs.

Allows you to view data from a peripheral
header table.

Allows you to view data from a subsequent
scrolling detail table.

Creating a Form Image 2-5

- . CASE Tools Training Course Workbook

Painting the Form Image

2-6

Once you load a form into the Form Editor, you can start painting the
form image. Form images contain both text and input field defini-
tions. The Form Editor provides several editing keys.

Keystroke
[CTRL]-[a]
[CTRL}-[x]
[CTRL}-[d]
[CTRL]-[u]
[CTRL}-[v]

[CTRL]-[t]

[CTRL}-[p]
[F1]

[F2]
[ENTER]
[HOME]

[

1
[ESC]

[DEL]

Use

Toggles between insert and overstrike mode.
Deletes a character.

Deletes to the end of a line.

Undoes an edit.

Marks and cuts a text block to the Clipboard
(see "Using the Clipboard" on page 2-10).

Cuts a text block and places it on the
Clipboard.

Pastes a text block.

Inserts a blank line above current line.
Deletes current line.

Moves cursor to start of next line.
Moves cursor to top left corner of form.
Defines a new field.

Lengthens an existing field.

Toggles between pull-down menus and Form
Editor.

Returns to pull-down menus.

Getting Started with the Form Painter

CASE Tools Training Course Workbook

Defining Fields

You define
fields and set
field attributes
in the Define
Fields window.
When you press
the left bracket
key () from
within the Form
Editor, the
Define Fields
window
appears.

When painting the form image, you enter field labels and field
attributes. You define a field in the Form Editor by pressing the left
bracket ([) key. This causes the Define Fields window to appear.

Form Editor: [ESC] or IDEL] Command Line LCTRLI-Cw] Help
Press [CTRLI-[z] to update definition for field “customer_num”
= 30)===
Update: L[ESC] to Store, L[DEL] to Cancel Help:
----- Enter changes into form C[CTRLI-Tw] |———-—-
(Zoom)==
Define Fields
Table Name : SN Input Area @ 1
Column Name: customer_num Entry ? HE |
Field Type : serial not null Autonext ? :
Message : Downshift ?:]
Picture : Upshift ?
Display Fmt: Verify ?
Validate : Required ? :
Default : Skip ?
Translate
Enter table name (or "formonly~).

In the Define Fields window you specify the attributes of the field.
The attributes are arranged in the window so that the most important
and least modified values are supplied first.

Most important are the Table Name and Column Name fields. You
can enter values into these two fields directly or use Zoom to select
from a list of available values.

The Field Type column is automatically filled in when you enter a
valid column name in the Column Name field. You cannot modify
the Field Type field because it relates to the column as defined in the
database. If you specify Table Name as formonly, you are able to spec-
ify a value in the Field Type column.

The Input Area field specifies whether the field is on the header (1) or
detail (2) part of the form.

The Entry? field isa Y/N field that determines whether the field is for
display purposes only or if it accepts input from the user.

Creating a Form Image 2-7

- CASE Tools Training Course Workbook

The Message field stores a descriptive line that is displayed when the
user positions the cursor in the field.

In the Picture field, you can add a character pattern for displaying the
data. For example, area code and phone number fields might display
use (###) #H-#HH as their character pattern.

The Display Fmt field serves as a hybrid attribute for Informix FOR-
MAT and DISPLAY LIKE attributes, which are mutually exclusive.
Refer to your Informix reference manuals for more information on
these attributes.

The Validate field is similar to Display Fmt. It covers the INCLUDE
and VALIDATE LIKE Informix attributes. These attributes are also
mutually exclusive. Again, refer to your Informix manuals for more
information on these attributes.

The Default field lets you set a default value to appear in the field.
The user can change default field values.

The Translate field lets you indicate which language you want to use
to display data for this field. If specified, translation logic is generated
for this field.

The remaining fields are Y/N fields. You can experiment with these
fields to see how they affect your input field.

Marking, Copying, and Pasting

2-8

When painting your form image, you can cut and paste fields and
text. Copying consists of marking a block of text using the arrow keys
and selecting the Copy option from the Edit pull-down menu. Once
copied, you can paste the text block anywhere in your form image.

Getting Started with the Form Painter

CASE Tools Training Course Workbook

To mark and copy a text block:

1.

Position the cursor at one corner of the block of text you want to
cut.

Press [CTRL]-[v] to start the Mark feature.

Use the arrow keys to highlight the entire block of text you
want to mark.

As you move the cursor, the text you mark appears in reverse
video.

When you finish marking the entire block, press [CTRL]-[v] to
copy the text block to the Clipboard.

To paste a text block back onto your form image:

1.

4,

Position the cursor on the form image where you want the
block to appear.

Press [CTRL]-[p] to paste the block from the Clipboard to the
form image.

Use the arrow keys to adjust where you want the block to stick.

You can move the entire text block to any location on your form
image before you stick it to the image.

Press [ESC] to stick the block to your form image.

In a similar fashion, you can cut a block of text from your form image.
Mark the block you want to cut as described above. Once you mark
the text block, press [CTRL]-[t] to cut it. You can also paste a cut block
back onto your form image in the same manner as described above.

Crealing a Form Image 2-9

: CASE Tools Training Course Workbook

Using the Clipboard

The Clipboard acts as a temporary storage place for text blocks. You
can place anything onto the Clipboard and retrieve it. All the text you
cut or copy gets placed on the Clipboard. Any text that you overwrite
when you paste a block onto your form image gets stored to the Clip-
board. You can access the Clipboard from the Edit pull-down menu.

The Clipboard Clipboard:[} [[BEEN Delete Browse MNext Prev Select Quit

actsas a Change block title
temporary =z=====(standard)
storage place for Company :[A3 1
text blocks.

Saving a Form Image

After you paint your form image, you must save it with the Save
Form option on the File pull-down menu.

Use the Save New. ..
Form option to Open >>

save a form

image. Save fs...

{Save Trg File
Close

Delete Form >>
IDelete Trg File >>

Database...
Info >>
Print >>
Exit

2-10 Getting Started with the Form Painter

CASE Tools Training Course Workbook

Converting Forms into Input Programs

The Run pull-
down menu
contains all the
options
necessary to
convert your
form into an
input program.

Once you create a form image and save it, you can run the

Screen Code Generator and compilation utility from within the Form
Painter. The Run pull-down menu contains all the options necessary
to convert your form into an input program.

Compile Form

Generate 4GL

Compile 4GL
Fast Compile
Run 4GL Program
Navigate

Hot Keys >>

In general, you can use the following Run pull-down menu options to
convert your form into an input program:

1. Generate 4GL - this option creates the INFORMIX-4GL source
code.

2. Compile 4GL - this option compiles the 4GL code and links in
library functions.

3. Run 4GL Program - this option runs the input program in the
same manner a user would see it.

Note

You can also run the Screen Code Generator and compilation utility
from outside the Form Painter (see "Starting the Tools from the
Command Line" on page 8-8).

Converting Forms into Input Programs 2-11

«o: CASE Tools Training Course Workbook

Section Summary

2-12

The Form Painter is a front-end tool that lets you develop com-
plete data-entry programs written in INFORMIX-4GL.

There are two commands that start the Form Painter: fg.start and
fg.form.

The Form Painter contains five pull-down menus. You can open a
pull-down menu by highlighting it and pressing [ENTER].

The Form Painter lets you paint form images. You can use the
Form Painter to create a new form image or modify an existing
form image.

Once you load a form into the Form Editor, you can start painting
the form image. Form images contain both text and input field
definitions.

When painting the form image, you enter field labels and field
attributes. You define a field in the Form Editor by pressing the
left bracket ([) key.

When painting your form image, you can cut and paste fields and
text. Copying consists of marking a block of text using the arrow
keys and selecting the Copy option from the Edit pull-down
menu.

The Clipboard acts as a temporary storage place for text blocks.

After you paint your form image, you must save it with the Save
Form option on the File pull-down menu.

Once you create a form image and save it, you can run the
Screen Code Generator and compilation utility from within
the Form Painter.

Getting Started with the Form Painter

CASE Tools Training Course Workbook

Exercise 2A

Objective: To create a practice directory in which you will build your
own input program.

Create a Practice Directory Structure

In Exercise 1, you used the scr_demo 5 to build an input program.

The scr_demo command created a new shell for you to work in and
placed you in the screen demo "program" directory. When you create
input programs—without using the screen demos—you must create

your own directory structure.

-generated input programs use a four-tiered directory struc-
ture. The first tier is your fourgen directory or the directory specified
by the $fg variable. For example:

$fg=/usr/

The second tier is the application directory followed by the module
directory and finally the program directory. The module and program
directories use special naming extensions: *.4gm for the module
directory and *.4gs for the program directory.

application

module.4gm

program.4gs

Exercise 2A 2-13

- -+ CASE Tools Training Course Workbook

Before you build an input program with the Form Painter, it helps to
duplicate this directory structure.

1.

Move to your home directory:

cd $HOME

Create an application directory called 1abs:
mkdir labs

Move to your 1labs directory and create a module directory
called aw. 4gm for Application Workbench:

cd labs; mkdir aw.4gm
The semicolon delimits two UNIX commands.

Move to your aw. 4gm directory and create a program directory
called i_cust.4gs:

cd aw.4gm ; mkdir i_cust.4gs

Program directories reflect the type of programs they contain.
Input program directories start with i_, which stands for input.

Finally, move to the i_cust.4gs directory:
cd i_cust.4gs

Once complete, you should be in the i_cust . 4gs directory and
have the following directory structure:

labs

aw.4gm

i_cust.4gs

2-14 Getting Started with the Form Painter

- CASE Tools Training Course Workbook

Exercise 2B

Objective: To start and become familiar with the Form Painter.

Start the Form Painter

From within the i_cust . 4gs directory, you can use the Form
Painter to build an input program.

To start the Form Painter, enter:

fg.form

Note

The -dbname flag specifies the database you want to use with the
Form Painter. If you have been set up to use a different database,
specify it in place of stores.

After you enter the fg. form command, the Form Painter appears:

Edit Define Run Help

(stores)

The Form Painter lets you design input forms. In the next section you
will build a Customer Entry program.

Exercise 2B 2-15

- CASE Tools Training Course Workbook

Exercise 2C

Objective: To use the Form Painter to design a Customer Entry form.

There are several steps involved in designing a Customer Entry form.
In general you should use the following sequence:

1. Create a new form.

2. Add field labels.

3. Define which table and columns are used.
4

Save the form.

Create Your New Form

The New option on the File pull-down menu lets you create a new
form. For this exercise, you will make a header form called cust.

1. Select New from the File pull-down menu.

The Define a New Form box appears.

2. Enter cust into the Form Name field.

Update: [ESC] to Store.
[DEL] to Cancel

Befine a New Form

Form Name: B

Less the “.per” extension.

The "Select the screen type" box appears.
3. Choose header from the "Select the screen type" box.

A new form is created and the cursor is placed on the upper left
corner of the form (at this point, the form is empty).

2-16 Getting Started with the Form Painter

CASE Tools Training Course Workbook

Add Field Labels

Once you create a new form, you can use the Form Editor to add
input field labels. If you have just created a new form, your cursor is
placed within the Form Editor automatically. The Form Editor lets
you enter text and define input fields:

When you Form Editor: [ESC] or [DEL] Command Line [CTRLI-Cul Help
create a new Update data entry image »
form, your i:::::=(stores) (cust) {Zoom) (1.1)====

cursor is placed
within the Form
Editor
automatically.

The [ESC] key lets you toggle between the Form Editor and the pull-
down menus. You can also move to the Form Editor by selecting Edit
from the Edit pull-down menu.

Undo ~U
{Cut T
1Copy v

Paste “P

Clear Form

Hark)

Center

Novice Mode
Clipboard

Exercise 2C 2-17

- +-“CASE Tools Training Course Workbook

The Form Editor provides a number of useful editing keys and key-

strokes to help you design your input form. The following list con-
tains a few of them:

[F1] Inserts a line.

[F2] Deletes a line.

[ENTER] Moves cursor to the start of the next line.
[HOME] Moves cursor to the upper left corner.
[CTRL] - [a] Toggles between insert and overstrike mode.
[CTRL] - [x] Deletes a character.

[CTRL] - [d] Deletes to the end of a line.

[CTRL] - [u] Undoes an edit.

For this exercise, use the Form Editor to add input field labels that
resemble the following form:

Form Editor: [ESC] or L[DEL] Command Line [CTRLI-Lwl Help
Update data entry image
(stores) (cust) (Zoom) (18.76)==
Customer Entry Screen
Customer Number:[]
Company Name:[]
Contact Name:[1L 1
Phone Number:[]
City:[] State:L 1 Postal Code:[]

Make sure to add a dashed line to the bottom of your form. This line
will separate your the message line from your input form. After you
create all the labels, you can define the actual input fields themselves.

2-18 Getting Started with the Form Painter

CASE Tools Training Course Workbook

Define Input Fields

At this point, you need to define a corresponding field for each field
label on your form. The Form Editor gives you a special key, the left
bracket ([) key, for defining input fields.

1. Position your cursor to the right of the Customer Number field
label you created.

2. Press the left bracket ([) key.

The Define Fields dialog window appears.

Form Editor: [ESC] or [DEL] Command Line [CTRLI-Lw] Help
Update data entry image
===== 17)===
————— Update: [ESC] to Store. [DEL] to Cancel Help: -
Enter changes into form LCTRLI-Tw]
Custo (Zoom)==
Compa Define Fields
Conta
Phone| Table Name : (NN Input firea @ 1
City:| Column Name: Entry ? HE ¢
Field Type : Autonext ? : N
Message : Douwnshift ?: N
Picture : Upshift 2 N
Display Fmt: Verify ? N
Validate : Required ? : N
Default : Skip ? N
Translate
Enter table name (or “formonly”).

Input fields are associated with columns in a database table. They
accept data from the user and insert it into a column. In this exer-
cise, each field that you define will correspond to a column in the
customer table.

Note If you see a simplified version of this window, you are in "Novice
mode." For all exercises in this training material, you must be in
"Expert mode." The Edit pull-down menu contains an option that
toggles between Expert and Novice mode. When Novice Mode is
showing, it means you are in Expert mode and vice versa.

Exercise 2C 2-19

CASE Tools Training Course Workbook

2-20

Enter customer in the Table Name field.

In the Column Name field, press [CTRL]-[z].

A list of all the columns in the customer table appears.
Highlight customer_num and press [ESC] to select it.

Data entered by the user into the Customer Number input field
will go directly into this column in the cust omer database.

Press [ENTER] to move to the Input Area field.

Notice that when you press [ENTER] the Field Type field gets
filled in automatically witha serial not null value.

Verify that the Input Area field contains a 1 and press [ENTER].

For now, all fields will have an Input Area of 1 (see "Input Areas
and Specification Files" on page 6-1). Place a 1 in this field.

Accept the Y value for the Entry? field and press [ENTER].

A Y value lets the user enter data into this field. An N specifies a
no-entry field (i.e., a field in which the user cannot enter data).

Type a message in the Message field and press [ESC].

This message will appear at the bottom of the form when the cur-
sor is in the Customer Number field.

For now, you can leave the other fields on the Define Fields win-
dow as is. The finished window should appear as follows:

Update: EESCI to Store. [DEL] to Cancel Help:
Enter changes into form C[CTRLI-Lw]

Define Fields

Table Name : customer Input Area : 1
Column Name: customer_num Entry ? Y
Field Type : serial not null Autonext ? : N
Message : Enter a customer number Downshift ?: N
Picture : Upshift ? N
Display Fmt: Yerify ? N
Validate : Required ? : N
Default : Skip ? N
Translate

Enter the input mask (picture) for this field. (no quotes)

Getting Started with the Form Painter

CASE Tools Training Course Workbook

Once you save the Customer Number field definition, the field
appears in the Form Editor as two brackets with a highlight between
them. Notice also how the field is automatically sized and the field
message appears at the bottom of the screen:

Form Editor: LESC] or [DEL] Command Line C[CTRLI-Lw] Help
Press [CTRL]I-[z] to update definition for field “customer_num"
(stores) (cust) (Zoom) (3,18)===
Customer Entry Screen
Customer Number : (NN

Company Name :
Contact Name:
Phone Number:
City: State: Postal Code:

Enter a customer number

Follow the same sequence of steps to define the rest of the input fields
on your form. For the Contact Name field, define two fields (fname
and lname). When you finish, your form should look as follows:

Form Editor: ([ESCI or LDEL] Command Line C[CTRLI-Lwl Help
Press [CTRL1-[z] to update definition for field “zipcode”
(stores) (cust) (Zoom) (7.59)===
Customer Entry Screen
Customer Number:[]
Company Name:[]
Contact Name:[1L]
Phone Number:[]
City:[] State:[1 Postal Code ([l

Enter postal code

Exercise 2C 2-21

-+ +CASE Tools Training Course Workbook

After you create a field definition, you might need to re-edit it at
some point. ‘

To re-edit a field definition:

1. Place your cursor in the field and press [CTRL]-[z].
A pop-up menu appears.

2. Select Field from the pop-up menu.
The Define Fields window appears.

3. [Edit the field definition using the Define Fields window and
press [ESC] to save your changes.

Save the Form

When you are satisfied with your input form, save it using the Save
Form option under the File pull-down menu.

To save a form:

* Select Save Form from the File pull-down menu.

The Form Painter reads your form image and generates instruc-
tions in a form specification (*.per) file. This file gets used by the
Screen Code Generator to create source code, which is discussed
next.

2-22 Getting Started with the Form Painter

CASE Tools Training Course Workbook

Exercise 2D

Objective: To use the Form Painter to generate, compile, and run
your Customer Entry program.

Recall that you built a demonstration input program from the UNIX
command line using £g.screen, fg.make, and fglgo. The Form
Painter gives you the same ability, but you simply select these com-
mands from the Form Painter’s Run pull-down menu.

Generate Source Code

1.

Select Generate 4GL from the Run pull-down menu.

A pop-up menu appears asking you which forms to generate
code for.

Select All Forms from the pop-up menu.

A message box appears asking you if you want to only generate
code for local forms.

Select YES on the "Local forms only" message box.

The Screen Code Generator is run and code scrolls past your
screen as it creates code based on your cust form. You might see
a message indicating that your cust form is not current. If this
happens, simply select YES from the message box.

When the Screen Code Generator finishes, the following message
appears:

Code Generation Successful.

OK

Compile the Code

Select Compile 4GL from the Run pull-down menu.

Exercise 2D 2-23

'CASE Tools Training Course Workbook

The Form Painter calls the compilation utility and cre-
ates a program file. When done, the following message appears:

4GL Compile Succeeded.

Run Your Customer Entry Program

1. Select Run 4GL Program from the Run pull-down menu.

The Form Painter runs your Customer Entry program.

Action:| [EEEN Update Delete Find Browse Nxt Prv Options Quit
Create a new document

Customer Entry Screen

Customer Number:

Company Name:

Contact Name:

Phone Number:

City: State: Postal Code:

(No Documents Selected)

2. Use the ring menu to "test drive" your input program. When
you finish, select Quit to return to the Form Painter.

224 Getting Started with the Form Painter

CASE Tools Training Course Workbook

Exercise 2E

Objective: To make a slight change to your Customer Entry program
and then rebuild it.

At times, you may want to make changes to your form and incorpo-
rate those changes into your generated-input program. For example
you may want to move a field label and definition to a different loca-
tion. The Form Painter makes this task easy.

In this exercise you will use the Form Painter’s Mark, Cut, and Copy
options to move the Phone Number field to a new location on the
cust form. Once finished, you will save cust and rebuild an input
program from it. The resulting input program will reflect the change
you made.

Note This exercise picks up where the Exercise 2C left off. You should be
in the Form Painter and have your cust form visible in the Form
Editor. If you are not at this point, use the steps in the previous
sections to catch up.

In general there are three steps to moving a portion of your form:
1. Mark the portion you want to move.
2. Cut the marked portion.

3. Paste the cut portion back onto the form in the appropriate spot.

Mark the Phone Number Field

Before you can move a portion of your cust form, you must mark it.
You can mark anything that appears on your form: field labels, field
definitions, or both.

1. If you are not in it already, move to the Form Editor: Select the
Edit option under the Edit pull-down menu.

2. Move the cursor to the start of the Phone Number field.
3. Press [CTRL]-[v].

Exercise 2E 2-25

CASE Tools Training Course Workbook

This keystroke places you into "Mark" mode.
4. Use the arrow keys to highlight the Phone Number field.

Mark: CUT to Delete COPY to Clip [ESC] Command Line [DELJ Cancel

Use arrow keys to highlight region for CUT or COPY [CTRLI-Lu] Help

(stores) (cust) (Zoom) (6,35)===
Customer Entry Screen

Customer Number:[1

Company Name:[]

Contact Name:[1L]

Phone Number:[]

City:[] State:f 1] Postal Code:L 1

This is the area that you will cut.

Cut the Phone Number Field

Once you mark (i.e., highlight) the Phone Number field, you can cut
it from your form (once cut, you can paste it back into your form at
any location).

e Press [CTRLI-[t].
The Phone Number field disappears.

Form Editor: [ESC] or LDELI Command Line ECTREI-Lul Help
Update data entry image

(stores) (cust) (Zoom) (6,35)===

Customer Entry Screen
Customer MNumber:[1
Company Name:[]
Contact Name:[1L 1
|

City:L 1 State:[1 Postal Code:[]

Now you can use the Paste option to stick this field below the
City, State, and Postal Code line.

2-26 Getting Started with the Form Painter

-: CASE Tools Training Course Workbook

Paste the Phone Number Field Back into Your Form

1. Move your cursor below the City field.

Form Editor:

Update data entry image
=======(standard) =====z===zzz===== (cusent)

[ESC] or [DEL] Command Line L[CTRLI-Lw} Help

(Zoom) (8,1)====

Customer Entry Screen

Customer Number:[]
Company Name:[1
Contact Name:[1t

City:[] State:l 1

2. Press [CTRL]}-[pl.

]

Postal Code:L

]

The Phone Number field reappears. You can use the arrow keys
to "slide" the field around, but for now, leave it where it is.

Note
paste on a blank space or line.

Be sure to never paste on top of existing form objects. You must

3. Press [ESC] to "stick" the field to the form.

Use the Clipboard

If you make a mistake during cutting and pasting, you can select the
Clipboard option from the Edit pull-down menu. Everything you cut
gets placed on its own page in the Clipboard. You can use the Clip-
board’s ring menu to scroll through all the objects you have cut and

select the one you want.

When you select an object from the Clipboard, it gets pasted into your
form (just like the Phone Number field). Once again, you can reposi-
tion the object with the arrow keys before pressing [ESC] to "stick" it

to the form.

Exercise 2E

2-27

“GASE Tools Training Course Workbook

Save Your Changes

2-28

Now that you have moved the Phone Number field, you can save
your form and rebuild it. Once rebuilt, the resulting input program
will reflect the new location of the Phone Number field.

1. Save your cust form with the Save Form option under the File
pull-down menu.

2. Select Generate 4GL from the Run pull-down menu.

During code generation, the "Overwrite" message might appear:

The file globals.org already exists!
Hould you like to:

1) Overurite globals.org

2) Append the new globals.org to the existing globals.org
3) Move globals.org to globals.old

4) MHrite to globals.new

5) Don’t write globals.org at all. or

6) Exit program

(If you wish to create globals.diff. type
a “d” after the selection. example: 2d)

Enter Selection: Jj

This message lets you know that you are creating a "new" source
code file on top of a file that already exists in your i_cust.4gs
directory. For this exercise—and in most cases for that matter—
you want to overwrite this file. Depending on the number of
changes you have made, you might see this message several
times.

When it appears, simply select option one to overwrite the file.
3. Select Compile 4GL from the Run pull-down menu.

Once compiled, your program is ready for you to run.

Getting Started with the Form Painter

FourGen CASE Tools Training Course Workbook

Run the Customer Entry Program Again

Now you can see your changes in the resulting input program.

¢ Select Run 4GL Program from the Run pull-down menu.

The Form Painter initiates your Customer Entry program.

Action:[] [EEEN Update Delete Find Browse Nxt Prv Options Quit
Create a new document

Customer Entry Screen

Customer Number:
Company Name:
Contact Name:

City: State: Postal Code:
Phone Number:

(No Documents Selected)

Notice that the Phone Number field appears in its new location.
Once again, spend some time experimenting with this program.
Add a new document and see if the cursor path through your
input fields has changed.

When you are done, select Quit from the ring menu to return to
the Form Painter. Exit out of the Form Painter as well (select Exit
from the File pull-down menu).

Exercise 2E 2-29

CASE Tools Training Course Workbook

2-30 Getting Started with the Form Painter

Working with the
Database

Main topics:
B Displaying the Table Information Window
B Changing Database Values

B Using the AutoForm option

3-1

* + CASE Tools Training Course Workbook

Displaying the Table Information

Window

The Form Painter gives you direct access to the database through the
Table Information window. This window lets you manage tables and

columns in the database.

To initiate the Table Information window:

* Select Database from the File pull-down menu.

The Table Information window appears.

Use the fAction:|] Update Delete Find Browse Nxt Prv Tab Options Quit
Database Create a new document
9ptlon on the Table Information
File pull-down
menu to initiate Eable."i'j'e :
escription:
the Table Unique Key :
Information Owner :
window. freated
Yersion
- Column Name —————-~ Description Type

(No Documents Selected)

The Table Information window lets you do the following;:

* Alter the structure of your database
* Add and drop database tables

¢ Add, modify, and drop columns from tables

3-2 Working with the Database

CASE Tools Training Course Workbook

Changing Database Values

The Table Information window looks and functions like other gener-

ated input programs because it was created with the Screen
tools.
The Table fAction:f] Update Delete Find Browse Nxt Prv Tab Options Quit
Information Create a new document
window I(,)OKS Table Information
and functions
like other Table Name : customer

Description: Customer Information

generated input Unique Key : customer_num

programs. Ouner : seanb
Created : 10718793
Yersion : 57

- Column Name ——————- Description Type

customer_num Customer Number serial not null
fname First Name char(15) not null
Iname Last Name char(15)
company Company Name char (20)
addressi Address Line #1 char (20)
address?2 Address Line #2 char (20)
city City char(15)

1 of 1)

You can add tables to the database and give them descriptive names.
It is very important to fill in the Unique Key field. This field identifies
to an input program the columns that uniquely identify a row.

When you use the Table Information window to alter a table (for
example, you delete a column), a pop-up window appears and dis-
plays the SQL statement that it will run on the table.

The Form Painter stores all the changes you make in a file called
dbadmin.sql. All changes are also time stamped, and this file
remains in your local program directory.

Changing Database Values 3-3

- - - CASE Tools Training Course Workbook

Using the AutoForm Option

Use the Form has been copied into the clipboard.
AutoForm Press [ENTER] to continue: [
command to Customer Information
generate a
default image of Customer Number:[A0]
First Name HEG 1
a table. Last Name :[A2 1
Company Name :[A3 |
Address Line #1:[A4]
Address Line #2:[A5]
City :L[A6]
State <[A7]
Zip Code :[pg8]
Phone Number :[A9]

The Table Information window also lets you generate a default form
image from a table; in other words you can create an AutoForm. The
AutoForm command is located under the Options command on the
ring menu. When you create an AutoForm, the AutoForm image gets
stored to the Clipboard. You can then quit from the Table Information
window and paste the AutoForm image into your form image using
the Form Painter.

To create an AutoForm:

1. Use Find to select the table you want to generate an AutoForm
from (see "The Find Command" on page 1-6).

2. Select the Options command then AutoForm.

An AutoForm gets built and its image is stored to the Clipboard.

Once you create an AutoForm, you can go back to the Form Painter
and retrieve the AutoForm from the Clipboard. Once retrieved, the
AutoForm is placed into the Form Editor, and you can edit it any way
you want.

Working with the Database

.-~ CASE Tools Training Course Workbook

Section Summary

B The Form Painter gives you direct access to the database through
the Table Information window. This window lets you manage
tables and columns in the database.

B With the Table Information window you can alter the structure of
your database; add and drop database tables; and add, modify,
and drop columns from tables.

B The Table Information window looks and functions like other
generated input programs.

B The Table Information window also lets you generate a default
form image from a table; in other words, you can create an Auto-
Form.

Section Summary 3-5

: CASE Tools Training Course Workbook

Exercise 3

Objective: To create a credit table that holds credit codes, descrip-
tions, and amounts. Such a table could hold the following values:

Credit Code Credit Description | Credit Amount
AAA Excellent 10,000

BBB Good 5,000

CCcc Fair 1,000

DDD Poor 250

Start the Form Painter

1. Move to the $HOME/labs/aw.4gm directory:
cd $HOME/labs/aw.4gm

2. Create a new directory to hold a credit entry program.
mkdir i_cred.4gs

3. Move to the i_cred.4gs directory:
cd i_cred.dgs

4. Start the Form Painter.

3-6 Working with the Database

CASE Tools Training Course Workbook

Open the Database Option

1.

From the File pull-down menu, select Database.

The Table Information window appears.

Action:|} IEEEN Update Delete Find Browse Nxt Prv Tab Options Quit
Create a new document

Table Information

Table Name :
Description:
Unique Key :
Ouner :
Created
Yersion

- Column Name ———~——-— Description Type

(No Documents Selected)

The Database option is a data-entry program that allows you to
change the structure of your database. You can add, delete, and
alter tables by adding, deleting, and re-arranging columns, and
changing column types. You can change the structure of your
database much like using Informix ISQL to do so.

Notice how the screen looks just like a typical input program cre-
ated with Screen. It has the same ring menu that your
customer entry program has.

Select the Find ring menu option.
Your cursor moves to the Table Name field.

Type customer in the Table Name field.

Exercise 3 3-7

CASE Tools Training Course Workbook

4. Press [ESC].

Information about the customer table appears.

Action:l] Add Update Delete Brouse Nxt Prv Tab Options Quit
Select a group of documents

Table Information

Table Name : customer
Description: Customer Information
Unique Key : customer_num

Ouner < brianh
Created DORHRERERR
VYersion DoRER

- Column Name —----—— Description Type
customer_num Customer Number serial not null
fname First Name char(15) not null
1name Last Name char (15)
company Company Name char (20)
addressl Address Line #1 char (20)
address?2 Address Line #2 char (20)
city City char(15)

A of 1

Notice how the upper half of the screen (the "header") portion
contains information about the cust omer table. The lower half
of the screen (the "detail" portion) displays all of the columns that
make up the customer table.

Add the credit Table
1. Select the Add ring menu option.
2. Add a table to hold credit information.

Name your new table credit and add a descriptive name for the
table. Do not enter a Unique Key value yet.

3-8 Working with the Database

CASE Tools Training Course Workbook

3. Press [TAB] to move to the detail portion of the screen and add
the following columns as detail rows:
Column Name Description Type
credit_code Credit Code char(3)
credit_desc Credit Description char(10)
credit_amt Credit Amount decimal(10,2)
4. Press [TAB] to move back to the header portion of the screen

and fill in the Unique Key as credit_code.

All tables must have a unique key (i.e., a column that uniquely
identifies a row.

Press [ESC] to store your new table.

Create an AutoForm from the credit Table

1.

Select the Options ring menu and then choose AutoForm.

This builds a default data-entry form based on your credit
table. It then copies this form to the Clipboard. Once on the Clip-
board, you can paste it into a new form.

Press [ENTERI.

Select Quit from the ring menu to return to the Form Painter.

Create a New Form

1.

From the File pull-down menu, select New.

The Define a New Form box appears.
Name the form cred.
The Select the Screen Type box appears.

Choose header as the screen type.

Exercise 3 3-9

CASE Tools Training Course Workbook

Use the Clipboard

Instead of creating fields individually, you can copy the AutoForm
you created and stored on the Clipboard.

1. Select Clipboard from the Edit pull-down menu.
Find the AutoForm for the credit table.

2. Once you find the credit table AutoForm, choose Select.

The Select option pastes the AutoForm into the Form Editor. You
can use the arrow keys to position it.

3. Press [ESC] to stick it down.

Remove the extra heading line that came with the AutoForm.

Form Editor: [ESC] or [BEL] Command Line LCTRLI-Lwl Help
Update data entry image
(stores) (cred) (Zoom) (6.2)====

Credit Information Entry Screen —-———--—=—==-ee———-

Credit Code H .
Credit Description:l]
Credit Amount :L]

Save, Generate, and Compile
1. Save your newly-created form.
Use the Save Form option under the File pull-down menu.
2. Select Generate 4GL from the Run pull-down menu.

When it is finished, the Code Generation Successful message
appears.

3-10 Working with the Database

“CASE Tools Training Course Workbook

3. Select Compile 4GL from the Run pull-down menu.

When it is finished, the 4GL Compile Succeeded message
appears.

Run Your Credit Entry Program

1. Select Run 4GL Program from the Run pull-down menu.

The Credit Entry program starts.

Action:[f [EXEN Update BDelete Find Browse Nxt Prv Options Quit
Create a new document

Credit Information Entry Screen —-—=—==—mwemmewe—

Credit Code
Credit Description:
Credit Amount

(No Documents Selected)

2. Enter at least four new credit codes.
You can use the sample codes shown on page 3-6.

3. When finished, exit the program and the Form Painter.

Exercise 3 3-11

CASE Tools Training Course Workbook

3-12 Working with the Database

Creating Zooms

Main topics:

B Zoom Screen Overview

B Painting a Zoom Image

B Attaching the Zoom Screen

CASE Tools Training Course Workbook

Zoom Screen Overview

A Zoom is a data validation feature that shows the user a list of valid
values for an input field Zooms are created from zoom screen types
(see "Using Different Screen Types” on page 11-2) When users initiate
a Zoom, they can enter selection criteria on the fields in the Zoom
The Zoom then takes the selection criteria and returns all valid values
that meet the criteria Users can select the value they want to use from
the values the Zoom returns

Zooms make the data-entry process much more accurate and effi-
cient Field values are validated before they get inserted. In general,
creating Zooms is a two step process:

1 Paint and define the zoom screen image.

2. Attach the zoom screen to a field on your main input screen

4-2 Creating Zooms

CASE Tools Training Course Workbook

Painting a Zoom Image

You define Zooms by using the Form Painter to paint their image
Once you paint the image of the zoom screen, you must also specify
from which field on your main input form the zoom screen can be
activated. For example, the following application has a zoom screen
attached to the Customer No. field

Zoom screens

Update: [ESC] to Store, [DEL] to Cancel. [TABI Next Hindow Help:
are attached to Enter changes into form LCTRLI-[w]
i 3 —===)y==
mpm,fl,e,lds ---=| Zoom: [ESC] to Select. [TAB] for Menu Help: ——-
Users initiate Cus| [F31 or [F43 to Page, [DEL] to Quit LCTRLI-[w]
this Zoom from Com o e " :
the Customer c1 ustNum irstName astName ompany
No field B 110 Roy Jaeger AR Athletics
0 101 Luduwig Pauli All Sports Supplies
107 Charles Ream Athletic Supplies
Shi 118 Dick Baxter Blue Ribbon Sports
- 115 Alfred Grant Gold Medal Sports -—
Ite 117 Arnold Sipes Kids Korner on
1 (18 rous selected) 00
2 00
Order weight: 20 40 Freight: $10 00
Order Total: $890 00
Enter the customer code

To define a Zoom:
1. Select New from the File pull-down menu.
2. Specify a name for the zoom screen.

Traditionally, zoom screens are given a name that includes the
letters zm, such as cust_ zm, stockzm, etc

Painting a Zoom Image 4-3

- CASE Tools Training Course Workbook

3.

4,

Zooms, such as
this one, usually
contain several
rows of
duplicate field
definitions

Select zoom as the screen type.

Use the Form Painter to paint and save the zoom image (see
"Creating a Form Image" on page 2-5).

Because zoom screens usually contain several rows of duplicate
field definitions, use mark, copy, and paste to speed your creation
of the zoom image (see "Marking, Copying, and Pasting” on page
2-8)

CustNum FirstName LastName Company

[i i]
C Jr i It]
L 1t 1 i 1
L 1C i i]
L it IS il 1
3 1 iIs i 1

After you paint and save your zoom image, you need to use the Form
Defaults option on the Define pull-down menu. The Form Defaults
option opens the Define the Form window This window lets you
specify from which field the zoom screen can be activated.

After you paint
and save your
zoom image,
you need to use
the Define the
Form window to
set your Zoom
attributes

Update: [ESC] to Store. [DEL] to Cancel Help:
Enter changes into form ECTRLI-Lwl
(Zoom)==

Define the Form

Form ID I testzm

Module ID : demo

Program ID : screen3

Main Table customer

Form Type T zoom

Returning (zoom) :

Upper Left Row.Col : 2, '3

Lower Right Row.Col : 22 , 78

Form Attributes border. white

Initial Filter none

Non-Source Form N

Engine Compatibility: SE

4gl Compatibility : 4 00

Enter the return column for a zoom screen

4-4 Creating Zooms

CASE Tools Training Course Workbook

Make sure to specify a value in the Returning (zoom) field. This field
specifies where the returning value gets placed In most cases, this is
the field in which you attach the Zoom If you are not sure of the field,
press [CTRL]-[z] while to see a list of available fields

Painting a Zoom Image 4-5

-CASE Tools Training Course Workbook

Attaching the Zoom Screen

You can attach a zoom screen to the main screen of your program
using the Form Painter

To attach a zoom screen to an input field:

1.

The Define

Zooms window

lets you attach

a zoom screen
to an input field

4-6

Open the form that contains the field that you want to attach
the zoom screen to.

In most cases, you attach zoom screens to header or header/de-
tail screens, but this is not necessarily the case

Highlight the field you want to attach the zoom screen to.
Press [CTRL]-[z]

Note the irony here You activate a Form Painter Zoom in order to
define a Zoom for your input program When you press [CTRL]-
[z] a pop-up menu appears that contains all the items available
for you to attach to the input field

Select Zoom... from the list.

The Define Zooms window appears

Form Editor: [ESCI or [DEL] Command Line L[CTRLI-Lwl Help
Press [CTRL1-Lz] to update definition for field “customer_num”

(order/1) (Zoow) (2,15)===
Order Form
Customer No :L] Contact Name:[ar]
Company

Add| Update: [ESC] to Store, IDEL] to Cancel

City/St| Enter changes into form]
(Zoom)==
Order Define Zooms C 1

Shipping| Zoom Form ID S ust_zn|]
————————— futo Zoom ? Y —mmm e
Item Des| Main Zoom Table : customer Extension
L IC Zoom Entry Filter:
L I Zoom From Column :
L
L

1 Enter the zoom form™s unique ID

Order weight:L] Freight:L]
Order Total:L]

Enter the customer code

Creating Zooms

CASE Tools Training Course Workbook

Use the Define
Zooms window
to specify how
you want the
Zoom to be
attached.

5, Fillin the Define Zooms window and press [ESC].

The Define Zooms window lets you specify how you want the

zoom screen to be attached.

Enter changes into form

Update: [ESC] to Store. L[DEL] to Cancel

(Zoom) ==

Define Zooms

Zoom Form ID

Auto Zoom ?

Main Zoom Table
Zoom Entry Filter:
Zoom From Column :

o
Y

customer

Enter the zoom form”s unique ID.

The Define Zooms window contains several fields. Perhaps the Zoom
Form ID field is most important. In this field, you place the name of
your Zoom screen. You should make sure that the Main Zoom Table
field contains the correct value. If you want to add AutoZoom capa-
bility, specify Y in the AutoZoom field.

The Zoom Entry Filter field lets you assign a selection filter to the
Zoom. The last field, Zoom From Column, lets you specify a table and
column name for the Zoom if they differ from the column on the

main screen.

Attaching the Zoom Screen 4-7

* CASE Tools Training Course Workbook

Section Summary

B A Zoom is a data validation feature that shows the user a list of

valid values for an input field. Zooms are invoked by pressing
[CTRL}-[z].

B You define Zooms by using the Form Painter to paint their image.
Zooms are created from zoom screen types. Once you complete
painting a Zoom, you can attach it to a field on your input pro-
gram.

B To attach a zoom screen to an input field, you must identify
which field the Zoom applies to. You can set all the Zoom
attributes in the Define Zooms window.

4-8 Creating Zooms

CASE Tools Training Course Workbook

Exercise 4A

Objective: To add a credit field to the i_cust.4gs program.

Start the Form Painter

1. Move to SHOME/labs/aw.4gm/i_cust.4gs.

2. Start the Form Painter.

Add the credit_code Column to the customer Table
1. Select Database from the File pull-down menu.
The Table Information window appears.

2. Select Find from the ring menu, enter customer in the Table
Name field, and press [ESC].

3. Select Update and add a column named credit_code to the
customer table:

Update: [ESC] to Store. [DEL] to Cancel. LTAB] Next Window Help:
Enter changes into form ECTRLI-Lw]
(Zoom) ==

Table Information

Table Name : customer
Description: Customer Information
Unique Key : customer_num

Ouner ¢ brianh
Created I ORRRREERR
Yersion D oHRR

- Column Name ————--- Description Type
addressl fiddress Line #1 char(20)
address2 Address Line #2 char(20)
city City char(15)
state State char(2)
zipcode Zip Code char(5)
phone Phone Number char(18)
credit_code Credit Code |

Enter the data type for this column.

Exercise 4A 4-9

+ CASE Tools Training Course Workbook

4. Press [ESC]
A Verify SQL Statement box appears.

Choose: [ESC] to Select., Help:
IDEL] to Quit [CTRLI-Lw]

Verify SQL Statement

Press LESC] to run. or L[DEL] to abort:

alter table customer
add (credit_code char(3))

(4 items)

5. Press [ESC] again to run the alter table SQL statement.

6. Select Quit to return to the Form Painter.

Add a Credit Code Field to Your Screen

1. Select Open from the File pull-down menu.

The Form Painter opens your cust . per file. If you have addi-
tional form specification (*.per) files in this directory, you have to
select cust from a list.

2. Add a Credit Code field label in the upper half of your screen.

Form Editor: ([ESC] or [DEL] Command Line L[CTRLI-[wl Help
Update data entry image
(stores) (cusent) (Zoom) (3.55)===
Customer Entry Screen
Customer Number:[] Credit Code:Jj
Company Name :[]
Contact Name:[1L]

3. Define the Credit Code field by pressing a left bracket [after
the field.

The Define Fields window appears.

4-10 Creating Zooms

.+ GASE Tools Training Course Workbook

4. Define the Credit Code field using the values shown below,
then press [ESC] to save the definition.

Update: [ESC] to Store. [DEL] to Cancel Help:
Enter changes into form C[CTRLI-Lw]

Define Fields

Table Name : customer Input firea @ 1
Column Name: credit_code Entry ? Y
Field Type : char(3) flutonext ? : N
Message : Enter a Credit Code Downshift ?: N
Pictore [N Upshift ? N
Display Fmt: Verify ? N
Validate : Required ? : N
Default : Skip ? N
Translate

Enter the input mask (picture) for this field. (no quotes)

Save, Generate, and Compile
1. Select Save Form from the File pull-down menu.
2. Select Generate 4GL from the Run pull-down menu.

3. Select Compile 4GL from the Run pull-down menu.

Run Your Customer Entry Program

1. Select Run 4GL Program from the Run pull-down menu.

2. Use Find to select an existing customer and add a credit code
for that customer.

Update: [ESC] to Store. [DEL] to Cancel Help:
Enter changes into form [CTRLI-[w]

Customer Entry Screen

Customer Number: 101 Credit Code: JGGRN
Company Name: All Sports Supplies
Contact Name: Ludwig Pauli

3. When finished, quit the Customer Entry program and the Form
Painter.

Exercise 4A 4-11

- CASE Tools Training Course Workbook

Exercise 4B

Objective: To create a zoom screen so users can select from a refer-
ence list of credit codes.

Create a Zoom Screen
1. Start the Form Painter.
2. Select New from the File pull-down menu.
The Define a New Form box appears.
3. Name the new form cred_zm.
The Seiect a Screen Type box appears.

4. Use the down arrow to scroll down the screen type list and
select zoom as the screen type.

Create a Title
Enter a title for the zoom screen, such as:

------------- — Credit Information Zoom -~

Create the Column Headings

1. Create the column headings for the Zoom.

Form Editor: [ESCI or [DEL] Command Line [CTRLI-Lw] Help
Update data entry image

(cred_zm)====z=(Zoom) =={insert)==(5,3)====
----------- Credit Information Zoom ~----——-———

Credit Code Credit Desc Credit Limit

A zoom screen displays data in a row-by-row format.

4-12 Creating Zooms

CASE Tools Training Course Workbook

2. Add field definitions using the columns in your credit table.
(credit_code, credit_desc, and credit_amt)

Form Editor: [ESCI or [DEL] Command Line ECTRLI-Lwl Help
Update data entry image

(cred_zm) (Zoom) (6,1)====
——————————— Credit Information Zoom —————=———==~

Credit Code Credit Desc Credit Limit

L 1 L 1 T 3

3. Use the Mark, Copy, and Paste options to add three more rows
of field definitions, see "Marking, Copying, and Pasting" on
page 2-8.

Your finished zoom screen should look as follows:

Form Editor: [ESC] or [DEL] Command Line L[CTRLI~Cw] Help
Update data entry image

(ered_zm) (Zoom) (11.48)==
——————————— Credit Information Zoom ——=—----——-—

Credit Code Credit Desc Credit Limit

£ 1 L 1 L]

L 1 L 1 L]

L 1 L 1 L]

L 1 L 1 I]
1

Specify Form Defaults

1. Select Form Defaults from the Define pull-down menu.

The Form Defaults window appears.

2. Enter credit in the Main Table field.

Exercise 4B 4-13

- CASE Tools Training Course Workbook

Zooms typically return values to the field from which they were
invoked. Since you will be Zooming from the Credit Code field
on your Customer Entry program, you must specify from which
column the data will be supplied.

3. Add credit_code in the Returning (zoom) field.
You can bypass the other fields on the window.

4. Select Save Form from the File pull-down menu.

5. Select Generate 4GL from the Run pull-down menu.
The Generate 4gl: Enter Selection box appears.

6. Selectcred_zm.

Attach cred_zm to the Credit Code Field

4-14

Now you must attach cred_zm to the Credit Code field that you
credit on the Customer Entry program.

1. Select Open from the File pull-down menu and open the file
that corresponds to your Customer Entry program (cust).

LESC] to Select.
[DEL] to Quit

Choose a Form

Eust

cred_zm

(2 items)

2. Place your cursor in the Credit Code field and press [CTRL]-{z].
The Define Field pop-up menu appears.

3. Select Zoom... from the Define Field pop-up menu.
The Define Zooms window appears.

4. Enter cred_zm in the Zoom ID field.

Creating Zooms

- CASE Tools Training Course Workbook

Press [ENTER] in the Auto Zoom ? field and enter credit in
the Main Zoom Table field.

Specify credit_code in the Zoom From Column field and
press [ESC] to save your zoom definition.

Save, Generate, and Compile

1.
2.

Use the Save Form option under the File pull-down menu.
Select Generate 4GL from the Run pull-down menu.

The Generate 4gl: Enter Selection box appears.

Select All Forms from this box.

The Local Forms Only box appears.

Select YES.

As the Screen Generator runs, it builds code for both your zoom
screen and your Customer Entry screen.

Select Compile 4GL from the Run pull-down menu.

Run Your Customer Entry Program

1.

Select Run 4GL Program from the Run pull-down menu.

The Customer Entry program starts.
Use Find to select an existing customer and select Update.

From the Credit Code field, press [CTRL]-[z] and press [ESC].

Exercise 4B 4-15

CASE Tools Training Course Workbook

The Credit Information Zoom appears.

Zoom: [ESCT to Select, LTABI for Menu
[F31 or [F4] to Page. [DEL] to Quit

——————————— Credit Information Zoom -~--———————-

Credit Code Credit Desc Credit Limit

AT EXCELLENT 10000.00
BBB GOoD 5000.00
ccc FAIR 1006.00
DDD POOR 250.00

(4 rows selected)

4. Use the cred_zm a few times. When finished, quit out of Cus-
tomer Entry and the Form Painter.

4-16 Creating Zooms

Creating Lookups

Main topics:
B Lookup Overview

B Attaching a Lookup to a Field

5-1

- CASE Tools Training Course Workbook

Lookup Overview

A Lookup
validates data
and returns
related data

In this example,
a Lookup is
defined on the
Customer No.
field.

A Lookup performs a cross-check between two tables. You provide
the lookup with a key value. The generator builds logic to open a cur-
sor and fetch the key value from a reference table. If the key value
does not exist in the reference table, an error is returned and the user
is placed back in the Lookup field.

Lookups can also return data from the reference table keyed by the
value you pass it. For example, if you pass a Lookup the customer
number value, it can return a valid customer number, company
name, owner name, steet address, and other customer information:

Add: [ESC] to Store. EDEL] to Cancel. L[TABI Next Hindow Help:
Enter changes into form ECTRLI-[wl
(Zoom)==

Order Form
Customer No.: [] Contact Name:
Company Name:

Address:
City/St/Zip: Telephone:

Order Date: 12/16/93 PO Number: Order No:

Shipping Instructions:

Item Description Manufacturer Qty. Price Extension

Order weight: Freight:
Order Total:
Enter the customer code.

5-2 Creating Lookups

CASE Tools Training Course Workbook

When the user
enters a
customer
number, data
relating to that
number fills in
the adjacent
fields.

Add: [ESCT to Store. LDEL] to Cancel, [TAB] Next Hindow Help:

Enter changes into form L[CTRLI-Tw]
Order Form

Customer No.: 104 Contact Name: Anthony Higgins

Company Name: Play Ball!
Address: East Shopping Cntr.
City/St/Zip: Reduwood City

CA 94026 Tele

422 Bay Road

phone: 415-368-1100

Order Date: 1ZJFGYER PO Number: Order No:
Shipping Instructions:
Item Description Hanufacturer Qty. Price Extension
Order weight: Freight:

Enter the order date.

Order Total:

Lookup Overview

5-3

- CASE Tools Training Course Workbook

Attaching a Lookup to a Field

Wi

5-4

The Define
Lookups
indow lets you
specify the
Lookup name,
table, and join
criteria.

Like Zooms, you attach Lookups to input fields. Before you create a
Lookup, you must know which field you want to attach it to and
which fields you want to return values to.

Lookups are defined with the Define Lookups window. This window
lets you specify the Lookup name, table, and join criteria. You also
specify which fields on your main form the Lookup should fill.

Update: [ESC] to Store. Help:
EDEL] to Cancel [CTRLI-Lw]

Define Lookups

Lookup Nene : NN

Lookup Table :
Join Criteria:

- Lookup From Into

Enter the name for this lookup.

The Lookup Name field holds the name of the Lookup. Uniquely
naming Lookups lets you define multiple Lookups on the same field.

The Lookup Table field holds the name of the looked up table. In other
words, this is the table from which values are being returned.

The Join Criteria field lets you specify the where clause of the join
statement: you are specifying where the returned value is being put.
The Join Criteria field uses the following syntax:

table_name.column name = $field_name

Where table_name and column_name represent the looked up table and
field_name represents the column where the value gets returned.

For example, the following join criteria instructs the Lookup to search
the customer_num column in the customer table and verify that
the value in the customer_num field exists:

customer.customer_num = $customer_num

Creatling Lookups

CASE Tools Training Course Workbook

This example
shows how the
Lookup From
and Into fields
are used. You
only need to
use these fields
when the
column and
field names do
not match.

The Lookup From and Into fields are optional. These fields let you
specify the join criteria when the column and field names differ. For
instance, if the column name is description and the field nameis.
desc, you could define the Lookup as follows:

Update: [ESC] to Store. Help:
[DEL] to Cancel CCTRLI-Lw]l
(Zoom)==

Define Lookups

Lookup Name

Lookup Table : customer
Join Criteria: customer_num = ...

- Lookup From Into
description desc

Enter the column to lookup from.

If the fields and columns have the same name, you do not need to
add them to the Lookup From and Into fields. The Screen Generator
builds this logic when the field names and column names match.

To define a Lookup:

1. Using the Form Painter, highlight the field that you want to
attach a Lookup to.

2. Press [CTRL]-[z] to display the Define Field menu.
3. Select Lookups... from the Define Field menu.

The Define Lookups window appears. You can also access the
Define Lookups window from the Define pull-down menu by
choosing the Lookups... option.

4. Fill in the Define Lookups window and press [ESC].

When a user enters an invalid value into a field that has a Lookup
attached, an error occurs. The user is not able to leave that field until a
valid value has been entered.

Attaching a Lookup fo a Field 5-5

. CASE Tools Training Course Workbook

Section Summary

B Lookups are placed on fields in a data-entry screen to evaluate
the data entered by a user.

B Lookups check a key value against a reference data table. If the
key value exists, the Lookup allows the user to continue. If the
Lookup doesn’t exist, an error occurs and the user is placed back
in the Lookup field.

W Another purpose of a Lookup is to return data keyed by the
Lookup value. A value entered by a user can cause a cross-refer-
enced value to be looked up in the reference table and displayed
on the input form.

5-6 Creating Lookups

CASE Tools Training Course Workbook

Exercise 5A

Objective: To add a lookup on the Credit Code field. A lookup pre-
vents users from entering invalid data.

Check the Credit Code Value

1.

Start the Form Painter and select Run 4GL Program from the
Run pull-down menu.

From your Customer Entry program, use Find to select an exist-
ing customer.

Select Update and enter TTT in the Credit Code field.

Recall that TTT is not a record in the credit table. You only created
four records in that table (AAA, BBB, CCC, and DDD). Despite
this fact, however, the program still accepts TTT, a completely
invalid value. You can use lookups to verify data in a field.

Quit the Customer Entry program.

From the Form Painter, open the Customer Entry file (cust).

Define the Lookup

1.

From the Form Painter, place your cursor in the Credit Code
field and press [CTRL]-[z].

The Define Field pop-up menu appears.

[ESC] to Select.
I[DEL] to Quit

Define Field

Field...
Math...
Bookups. . .
Zoom. ..
Triggers >>

(5 items)

Exercise 5A 5-7

== CASE Tools Training Course Workbook

2. Select Lookups... from the Define Field pop-up menu.

The Define Lookups window appears.

Update: [ESC] to Store. Help:
[DEL] to Cancel [CTRLI-Lw]

Befine Lookups

Lookup Nene : NN

Lookup Table :
Join Criteria:

~ Lookup From Into

Enter the name for this lookup.

3. Enter cred_1lk in the Lookup Name field.
4. Enter credit in the Lookup Table field.

5. Enter credit.credit_code = $credit_code in the Join
Criteria field.

Update: [ESCI to Store. Help:
EDEL] to Cancel LCTRLI-Lw]
(Zoom>==

Define Lookups

Lookup Name : cred_lk
Lookup Table : credit

Join Criteria: [EIIOS IR

- Lookup From Into

Enter the “where” clause.

6. Press [ESC] to save your lookup.

5-8 Creating Lookups

CASE Tools Training Course Workbook

Save, Generate, and Compile

1.
2,

Use the Save Form option under the File pull-down menu.
Select Generate 4GL from the Run pull-down menu.

The Generate 4gl: Enter Selection box appears.

Select All Forms from this box.

The Local Forms Only box appears.

Select YES

Select Compile 4GL from the Run pull-down menu.

Run Your Customer Entry Program

1.

Select Run 4GL Program from the Run pull-down menu.

The Customer Entry program starts.
Find a customer and select Update.
Enter TTT in the Credit Code field.

An error message appears:

Error: Value Is Not in the List of Yalid Data.

Continue: L[ENTERI. View error information: L[Y].]

Press [DEL] to return to the Credit Code field and enter a valid
value (AAA).

This time the value is accepted and the cursor moves to the next
field. i

Press [ESC] and select Quit to return to the Form Painter.

Exercise 5A 59

.+ CASE Tools Training Course Workbook

Exercise 5B

Objective: To create a Credit Desc field that is linked to the Credit
Code field. When the user specifies a Credit Code, the Credit Desc
field will get filled automatically.

1. Create a new field on the Customer Entry form called Credit
Desc.

In other words, create a field label and press [to define it.
On the Define Fields window, specify N in the Entry ? field.

Update: [ESC] to Store, [DEL] to Cancel Help:
Enter changes into form L[CTRLI-[wl

Define Fields

Table Mame : credit Input frea : 1
Column Name: credit_desc Entry ? N |
Field Type : char(10) Autonext ? = N
Message : Downshift ?: N
Picture : Upshift 2 N
Display Fmt: Verify ? N
Yalidate : Required ? = N
Default : Skip ? N
Translate

Enter a [N] if field is protected.

When Entry ? is N, the user cannot enter/update the field.
2. Press [ESC] to save the field definition.

You should now have the following fields on you Customer

Entry program:
Form Editor: [ESC] or EDEL] Command Line CCTRLI-Lw] Help
Press [CTRLI-[z] to update definition for field “credit_desc”
(cust) (Zoom)==(insert)==(4.53)===
Customer Entry Screen
Customer Number:[1 Credit Code:[1
Company Name:[] Credit Desc -
Contact Name:[1C]
City:[] State:[1] Postal Code:L]
Phone Number:[]

5-10 Creating Lookups

CASE Tools Training Course Workbook

Save, Generate, and Compile

1. Use the Save Form option under the File pull-down menu.
2. Select Generate 4GL from the Run pull-down menu.
The Generate 4gl: Enter Selection box appears.
3. Select All Forms from this box.
The Local Forms Only box appears.
4. Select YES.

5. Select Compile 4GL from the Run pull-down menu.

Run Your Customer Entry Program
1. Select Run 4GL Program from the Run pull-down menu.
The Customer Entry program starts.
2. Select Add to create a new customer entry.
3. In the Credit Code field, enter BBB.
Notice how the Credit Desc field is filled automatically.

Add: [ESC] to Store, [DEL] to Cancel Help:
Enter changes into form ECTRLI-[w]

Customer Entry Screen

Customer Number: Credit Code: BBB

Company Name: [N Credit Desc: GOOD

Contact Name:

City: State: Postal Code:
Phone Number:

4. Quit out of the Customer Entry program to return to the Form
Painter.

Exercise 5B 5-11

CASE Tools Training Course Workbook

5-12 Creating Lookups

Input Areas and
Specification Files

Main topics:
B Input Area Overview

B Creating Form Specification (*.per) Files

6-1

CASE Tools Training Course Workbook

Input Areas Overview

You set input
area
characteristics
with the Define
Input Areas
window.

This example
shows values for
the detail portion

of a form.

Input areas are where you specify characteristics about the header
and/or detail portion of the form. The header portion is always given
an input area equal to one and the detail portion is given an input
area equal to two.

Input Area 1 = Header
Input Area 2 Detail

You set input area characteristics with the Define Input Areas win-
dow. You can use the Input Areas option under the Define pull-down
menu to access this window.

Update: [ESC] to Store. L[DEL] to Cancel
Enter changes into form

(Zoom)==

Define Input Area 2

Main Teble : i(FTRENNSNN

Unique Key : order_num, item_num

Join ¢ items.order_num = orders.order_num
Filter

Order © o item_num

—————————————— Scrolling Areas Only —-——==-—————-—-
Arrvay Limit: 100
Auto Number: item_num

Enter the main table for this input area.

For a header/ detail screen, you must specify characteristics about the
detail portion of the form in order for the form to work properly. For
instance, you must specify the join that connects the header table to
the detail table.

The most important field is the Join field. The Join field specifies how
the header and detail tables are related. Use the following syntax to
define the join between the two tables:

header_table.column = detail_ table.column

Where header_table.column represents the name of the header column
and detail_table.column represents the name of the detail column.

Another important field is the Unique Key field. This field specifies
which columns uniquely define a row in the table.

6-2 Input Areas and Specification Files

CASE Tools Training Course Workbook

If you do not specify the input area for the header, the Form Painter
puts in default values for you.

Update: EESC] to Store. [DEL] to Cancel
Enter changes into form

(Zoom)==
Befine Input Area 1
Main Teble :
Unique Key : order_num
Join :
Filter . orders.order_date > “12/31/80"
Order : order_num

—————————————— Scrolling fireas Only ——=~——==-—————
Array Limit: 0
Auto Number:

Enter the main table for this input area.

When you define the header input area, you cannot enter the Join
field. This field is only for detail input areas.

Input Areas Overview 6-3

-- CASE Tools Training Course Workbook

Creating Form Specification (*.per)
Files

Every time you save a form image with the Form Painter, an Informix
form specification (*.per) file is created. It is helpful for you to become
familiar with this file.

The Screen Code Generator uses form specification (*.per)
files to produce all the 4GL source code necessary to create an input
program. In general, form specification files contain the following
sections:

Section Use

DATABASE Specifies the database that the form is created
and compiled against.

SCREEN Contains the image of the form. Each input
field is identified by a field tag.

TABLES Identifies the tables that are used by the form.

ATTRIBUTES Ties each field tag (in the SCREEN section)
with a column in the table. Fields can also be
classified as formonly. Formonly fields are not
associated with columns of any database.
They are used to enter or show the values of
program variables. This section also contains
Informix-related characteristics of the field
(e.g., comments, required logic, verification
logic, and formatting instructions).

INSTRUCTIONS Specifies non-default field delimiters and
defines screen arrays and records, such as the
s record.

FOURGEN Contains -specific instructions that
are read by the Screen Code Generator. The
Screen Generator builds the code logic based
on what is specified in the section.

6-4 Input Areas and Specification Files

CASE Tools Training Course Workbook

Once you become familiar with CASE Tools, you will learn
how to read form specification files. You will learn how to recognize
what the Form Painter creates in these files. A typical form specifica-
tion file looks as follows:

DATABASE standard

SCREEN
{
————————————————————————————— Order FOrm ---——————————-—wmommm o
Customer No.:[£000] Contact Name: [£001 1[£002
]
Company Name:[£003]
Address:[£004 1{£005 1
City/St/Zip:[£006 1[a0] [£f007 1 Telephone:[£008
]
Order Date:[f010 1 PO Number:[f011] Order No:[f009]
Shipping Instructions: [£012 1
Item Description Manufacturer Qty. Price Extension
[£14]1[£f15 J(£16][£17 1[£f18 1[£f19 11£20]
[£14]1[£f15 10£16][£17 1 [f18 1[f1l9 1[£20]
[£14][£15 10f16][£17] [f18 1[f19 11£20]
[£14]1[£f15 J[£16)[£f17 1 [f18 J[f19 11£20]
Order weight: [£30] Freight: [£31]
Order Total: [£32]
}
TABLES
orders
items
customer
stock
manufact
ATTRIBUTES

f000 = orders.customer_num, comments =
" Enter the customer code.";
f001 = customer.fname, noentry;
f002 = customer.lname, noentry;
f003 = customer.company, noentry;
£004 = customer.addressl, noentry;
f005 = customer.address2, noentry;
£006 = customer.city, noentry;
a0 = customer.state, noentry;
£007 = customer.zipcode, noentry;
f008 = customer.phone, noentry;

Creating Form Specification (*.per) Files 6-5

- CASE Tools Training Course Workbook

6-6

£009 = orders.order_num, noentry;

£010 = orders.order_date, format = "mm/dd/yy", default = today, comments
" Enter the order date.";

f011 = orders.po_num, comments =
" Enter the customer’s purchase order number.";

£012 = orders.ship_instruct, comments =
" Enter any special shipping instructions to show on the invoice.";

fl14 = items.stock_num, comments =
" Enter the stock number for this line item.";
£15 = stock.description, noentry;
f16 = items.manu_code, comments =
" Enter the manufacturers code for this stock number.";
£17 = manufact.manu_name, noentry;
f18 = items.quantity, comments =
" Enter the number of units sold for this item.";
£19 = stock.unit_price, noentry;
£20 = items.total_price, noentry;

£30 = orders.ship_weight, comments =

" Enter the total shipping weight for this order.":
£31 = orders.ship_charge, comments =

" Enter the total shipping charge for this order.*;
£32 = formonly.t_price type money, noentry;

INSTRUCTIONS
screen record s_order (orders.customer_num, customer.fname, customer.lna
me,

customer.company, customer.addressl, customer.address2, customer.cit
Y.,

customer.state, customer.zipcode, customer.phone, orders.order_date,

orders.po_num, orders.order_num, orders.ship_instruct, orders.ship_w
eight,

orders.ship_charge, formonly.t_price)

screen record s_items[4] (items.stock_num, stock.description, items.manu_
code,

manufact.manu_name, items.quantity, stock.unit_price, items.total_ pr
ice)

delimiters " ™

{
FR A R R R R R R R R R R S R

FEEE 0 R R R SR R R R R R R R B R R RS R R

defaults
type = header/detail
init = orders.order_num > 100

Input Areas and Specification Files

- CASE Tools Training Course Workbook

input 1
table
key
filter
order
math
lookup

zoom

input 2
table
join
order
arr_max
autonum
math
lookup

lookup
lookup

zoom
zoom

= orders (default = 1st table in the "tables" section)

order_num

orders.order_date > "12/31/80"

order_num

t_price = sum(total_price) + ship_charge

= key=customer_num, table=customer,

filter=customer_num = $customer_num
key=customer_num, screen=cust_zm, table=customer

= items

items.order_num = orders.order_num

= item_num

100

item_num

total_price = quantity * unit_price

name=stock_num, key=stock_num, table=stock,
filter=stock num = $stock_num, into=description
name=stock_manu, key=manu_code, table=stock,
filter=stock num = $stock_num and manu_code = $manu_code,
into=unit_price

key=manu_code, table=manufact, filter=manu_code=$manu_code
key=stock_num, screen=stockzm, table=stock, noautozoom

= key=manu_code, screen=stk_mnu, table=stock,

filter=stock.stock_num = $stock_num

Creating Form Specification (*.per) Files 6-7

:: - CASE Tools Training Course Workbook

Section Summary

B All forms you create with the Form Painter contain input areas.
Input areas correspond to the header and /or detail section of a
form. The most important attribute that you set is the table
attribute. It specifies which table the header portion of the form
writes to and which the detail portion of the form writes to.

B The Form Painter creates an Informix form specification (*.per)
file. As you become familiar with the Screen CASE Tools, you will
learn how to read and alter form specification files.

6-8 Input Areas and Specification Files

- CASE Tools Training Course Workbook

Exercise 6

Objective: To convert the Customer Entry program from a header
screen to a header /detail screen. The detail portion will write to a

detail table, which is the "many" table in a one-to-many table relation-
ship.

The detail portion will show data from the orders table. At the end
of this exercise, your Customer Entry program will look as follows:

File Define Run Help

=======(stores)==================(cust/2)
Customer Entry Screen

Customer Number:[] Credit Code:[1]

Company Name:L 1 Credit Desc:[]
Contact Name:L 1L 1

City:[i) State:[1] Postal Code:L]
Phone Number:L 1

Order Information

Order Number Order Date PG Number Shipping Charge
r] L 1 L] [!
L] L 1 L] r 1
L] L h] C] []
L] L 1 L] L 3

Change the Screen Type to Header/Detail

This exercise assumes you are already running the Form Painter with
your cust . per form open. If this is not the case move to your pro-
gram directory (cd SHOME/labs/aw.4gm/i_cust.4gs), start the
Form Painter, and open cust .per.

1. Select Form Defaults from the Define pull-down menu.

The Define the Form window appears. As you recall, this win-
dow specifies various characteristics about your form, including
the screen type (which is set in the Form Type field).

Exercise 6 6-9

CASE Tools Training Course Workbook

2. Change the Form Type field from header to header/detail.
This converts your form to a header/detail screen.

3. Press [ESC] to store your change and close the window.

Add the Detail Section

Now add a detail section called Order Information to your Customer
Entry program.

1. Creating a detail section title:

Order Information
2. Add the following field labels below the title:

Order Number Order Date PO Number Shipping Charge

3. Place your cursor below the O in Order Number.
4. Press|.

The Define Fields window appears. Fields in this detail section
correspond to the orders table. Remember that a detail section
is considered Input Area 2.

5. Define the Order Number field using the following values.
(Note the Table Name and Input Area fields):

Update: [ESC] to Store. I[DEL1 to Cancel Help:
Enter changes into form L[CTRL]-Lw]

Define Fields

Table Name : orders Input Area = 2
Column Name: order_num Entry ? Y
Field Type : serial not null Autonext 2 @ N
Message : Enter order number Downshift ?: N
Picture : [N Upshift 2 : N
Display Fwt: Yerify ? : N
Validate : Required ? : N
Default : Skip ? N
Translate

Enter the input mask (picture) for this field. (no quotes)

6. Press [ESC] to store these values and define the field.

6-10 Input Areas and Specification Files

CASE Tools Training Course Workbook

7. Repeat these steps until you've created a complete row of detail

fields.

Once you have a complete row, use the Mark, Copy, and Paste
options to create three duplicate rows. As you recall, detail sec-
tions, much like zooms, display data in a row-by-row format.

When you are finished you should have four detail lines with
fields for the following columns:

orders.order_num
orders.order_date
orders.po_num
orders.ship_charge

Your screen should look as follows:

Form Editor: [ESC] or [DEL] Command Line [CTRLI-Lw] Help
Update data entry image
=======(stores)===ccz======zz=z===(cust/2) (Zoom) {17.2)===
Customer Entry Screen

Customer Number:[] Credit Code:L 1

Company Name:[] Credit Desc:[]

Contact Name:[1L]

City:L] State:[1 Postal Code:L]

Phone Number:[]

Order Information

Order Number Order Date PO Number Shipping Charge

L] C] L] L 1

L] L] L] L 1

L 1 C] C] L]

L 1 C 1 [] L]

1

Exercise 6 6-11

: -CASE Tools Training Course Workbook

Define the Detail Input Area

Once the image of the Customer Entry form’s detail section is correct,
you must define the Input Area.

1.

Select Input Areas from the Define pull-down menu.

The Input Area list box appears.
Select Detail from the list box.

The Define Input Area 2 box appears.

Update: [ESCI to Store. L[DEL] to Cancel
Enter changes into form

(Zoom)==

Define Input fArea 2

Main Table : [N

Unique Key :

Join :

Filter : all

Order :

—————————————— Scrolling Areas Only —————-—-===wux
fArray Limit: 100

Auto Number:

Enter the main table for this input area.

Specify orders as the Main Table.

Based on this value, the Unique Key value is automatically filled
with the order_num value.

In the Join field, enter:

customer.customer_num = orders.customer_num
For now, disregard the other fields and press [ESC].

The Define Input Area 2 window closes.

6-12 Input Areas and Specification Files

- CASE Tools Training Course Workbook

Save, Generate, and Compile

1.
2.

Use the Save Form option under the File pull-down menu.
Select Generate 4GL from the Run pull-down menu.

The Generate 4gl: Enter Selection box appears.

Select All Forms from this box.

The Local Forms Only box appears.

Select YES.

Select Compile 4GL from the Run pull-down menu.

Run Your Customer Entry Program

1.

Select Run 4GL Program from the Run pull-down menu.
The Customer Entry program starts.

Use Find to select all existing customers.
Use Nxt and Prv to scroll through the records.

As you scroll, notice how values from the orders table populate
the detail section of the program. As you can see, some customers
have made orders while others have not.

Press [TAB] to move to the Detail section. When you are
through, remain in your Customer Entry program. The next
exercise starts from here.

Exercise 6 6-13

CASE Tools Training Course Workbook

6-14 Input Areas and Specification Files

/

Working with the User
Control Libraries

Main topics:

User Control Library Overview

Creating a To-Do List

Adding Freefrom Notes

Entering Error Messages

Adding Help Text

Defining Navigation Events

Mapping Hot Keys to Navigation Events
Setting up Hot Keys

Logging Online Feature Requests

Creating User-Defined Fields

+ CASE Tools Training Course Workbook

User Control Library Overview

The User Control Libraries are a part of | » Enhancement
Toolkit. These libraries provide a series of features that give your
users more control over generated programs created by .

Screen.

The User Control Libraries provide the following:

* aset of commonly-requested features that appear in programs
you create with Screen.

* aset of features that makes supporting and servicing
Screen-generated applications easier.

7-2 Working with the User Control Libraries

"CASE Tools Training Course Workbook

Creating a To-Do List

The To-Do List
feature gives
users a note pad
to track the
tasks they need
to complete.

A To-Do List gives the user a note pad to track the tasks they need to
complete. Users can access their To-Do List by pressing [CTRL}-[t]
when they are running an input program. To-Do lists are attached to
auser’s login ID, so the user’s To-Do List is available from every gen-
erated input program.

Update: [ESC] to Store, L[DEL] to Cancel. LTABJ Next Window Help:
Enter changes into form CCTRLI-Lw]
(Zoom)==
Custo} Update: L[ESC] to Store. [DEL] to Cancel Help:
Compa| Enter changes into form L[CTRLI-[w]
City Personal To Do (Default)
Ord| DATE PRIORITY ACTION 001
Shipp| 12718 LOW Pick up a loaf of bread
Ttem nsion
1 50.00
2 30.00
10.00
90.00
Enter the customer code.

Crealing a To-Do List 7-3

CASE Tools Training Course Workbook

Adding Freeform Notes

Freeform Notes let users place notes in a data-entry document. The
user presses [CTRL]-[n] and adds the note. The note is bound to the
header portion of the input program. When a user defines a note, the
note is permanently attached, and other users can view it.

Freeform Notes Update: [ESCI to Store. LDEL] to Cancel. [TAB] Next Hindow Help:
let users place Enter changes into form LCTRLI-Lw]
notes on a data- (Zoom) ==
entry document. Custo| Update: [ESC] to Store. [DEL] to Cancel Help:
Compa| Enter changes into form [CTRLI-[w]
(Zoom)==
City Freeform Notes
Ord} This is the boss” cousin. Take care. 001
Shipp
Item nsion
1 50.00
2 30.00
10.00
90.00
Enter the customer code.

When a noted is attached to a document, the Note lamp appears in
the upper right portion of the screen.

The Notes lamp Action:f Update Delete Find Browse MNxt Prv Tab Options Quit

indicates when a Create a new document

Freeform Note is (Notes)
attached.

7-4 Working with the User Control Libraries

CASE Tools Training Course Workbook

Entering Error Messages

If an error occurs in a generated application, users see the following
type of message.

if an error Error: Value Is Not in the List of Yalid Data.

occurs, users Continue: LENTER]. View error information: [YI.]
see this type of
error message.

To see more information about an error, users can press Y.

When users Add: [ESC] to Store. [DELI to Cancel, L[TAB] Next Windouw Help:
press Y, a more Ent -
detailed ====| Action:]] Update Status Log Quit
e ====| Scroll through the error text
description of Cus
the error Com| Error: Value Is Not in the List of Valid Data.
appears. €i| This error occurs when:
The value that was entered does not match any knoun value
Q in the associated file.
Shi
TIte| Possible solutions include: ion

Change the value & try again. If there is a zoom function
attached to this field, you may scan through the file to
find the correct lookup value by pressing [CTRLI-[z].

Order Total:

Enter the customer code.

Users can use this window to check error information. In addition,
users can log the errors they encounter and add more information
describing the error to the error window.

You, as a programmer, may also want to add your own custom error
messages.

Entering Error Messages 7-5

.+t CASE Tools Training Course Workbook

Adding Help Text

Screen also provides a context sensitive help system, which
both you and program users can update and modify. When users
have questions about input fields, ring menu commands, or any pro-
gram control, they can press [CTRL]-[w] to see help information.

Context Action: Add Update Delete Find Browse Nxt Prv Tab Options Quit
sensitive help Select a group of documents
gives users the Ordor Fore (Notes)
ability to access Customer No.: 104 Contact Name: Anthony Higgins
specific help Comp
. . Help:] Info Update Quit
information Cit| Scroll through the help text
about input
fields, rin Or 01
€lds, ring The Update command lets you modify and alter values
menu Ship| in an existing document. Before you can use the Update
commands,or = |-——- command. you must use the Find command to select the ~ |-—--
any program Itim document . 3183
control. 2 0.00

7-6 Working with the User Control Libraries

CASE Tools Training Course Workbook

Setting up Hot Keys

Hot Keys let users map their keyboard to specific program events
including custom Navigation events (see "Defining Navigation
Events" on page 7-8). To access the Hot Keys pop-up menu, users can
press [CTRL]-{e]. The Hot Keys pop-up menu serves three purposes:

1. It lets users see how their keys are mapped.
2. Tt lets users customize their work environment and change their
default Hot Key settings.
3. It gives users the ability to assign their own Navigation events to
Hot Keys.
Hot Keys let Update: [ESCI to Store. [DEL] to Cancel. [TABT Next Hindow Help:
users map their Enter changes into form [CTRLI-[w]
keyboard to (Notes)==(Zoom)==
specific Customer No.: 104 Choose: [ESC] to Select. Help:
program events. Company Name: Play Ball! | [DEL] to Quit CCTRLI-[w]
Address: East Shoppi (Zoom) ==
City/St/Zip: Redwood Cit Hot Keys
Order Date: 01/20/86 [IF11 Undefined 001
[F2] Undefined
Shipping Instructions: u| [F3] Page Down
LF4] Page Up [-—----
Item Description Man| [F5] Mail nsion
1 baseball gloves HRC| [F6] Undefined 50.00
2 baseball HRO| CF71 Undefined 30.00
LF8] Undefined
(50 items)
Order weight: 20.40 Freight: $10.00
Order Total: $890.00
Enter the customer code.

Hot Keys are defined in the Hot Keys window. To access the Hot Keys
window, users must highlight the key they want to define on the Hot

Keys menu and press [CTRL]-[z].

Setting up Hot Keys 7-7

CASE Tools Training Course Workbook

Defining Navigation Events

The Navigation
pop-up menu
lets users select
from a list of
predefined
Navigation
events.

Users can use
this menu to
create
Navigation
events.

The Navigation
Commands
window lets
users define

new Navigation

events.

7-8

Navigation gives users the ability to define custom program events.
These events can perform a number of useful tasks, such as suspend-
ing one program to jump to another one. Users can define Navigation
events to go with an assortment of predefined Navigation events.
When users press [CTRL}-[g], the Navigation pop-up menu appears.

Update: [ESC] to Store. EDEL] to Cancel. [TABI Next Mindow Help:
Enter changes into form L[CTRLI-Tw]
(Notes)==(Zoom)==
Customer No.: Choose: [ESC] to Select, Help:
Company Name: Play Ball! | [DEL] to Quit [CTRLI-Lw]
Address: East Shoppi (Zoom)==
City/St/Zip: Redwood Cit Navigate: Choose an Action Item
Order Date: 01/20/86 Add a navigation action 001
Mail
Shipping Instructions: u| Navigate (go)
On-Screen Help |-————
Item Description Man| Program Information Menu nsion
1 baseball gloves HRO| Edit Hot-Keys 50.00
2 baseball HRO[To Do List 30.00
Freeform Notes
(37 items)
Order weight: 20.40 Freight: $10.00
Order Total: $890.00
Enter the customer code.

Users can add Navigation events by selecting "Add a navigation

action” from the Navigation menu.

Update: [ESC] to Store. [DEL] to Cancel
Enter changes into form

Help:
CCTRLI-[w]

Navigation Commands

Action Code:

Description:

Operating system command:

Press ENTER upon return 2 N
Access from other programs? N
Allow access for others ? N

Enter a unique identification code.

Working with the User Control Libraries

CASE Tools Training Course Workbook

This exampie
shows the Start
screen demo 1
event, whichis a
custom
Navigation event
defined by the
user.

You must name your Navigation event in the Action Code field. You
also need to describe your event in the Description field. If you are

entering an operating system event, enter the operating system com-
mand in the "Operating system command" field. For example, if this

events starts another program, enter the program command in this
field.

The remaining fields on the Navigation Commands window are Y/N
fields. "Press ENTER upon return” makes the user press [ENTER]
once the event terminates. The "Access from other programs" field
specifies whether this event can be run from other programs or not.
The final field, "Allow access for others" specifies if others can use this
event.

To define a Navigation event:
1. Press [CTRL]-[g] to open the Navigation pop-up menu.
2. Select"Add a navigation action" from the menu.
The Navigation Commands window appears.
3. Complete the Navigation Commands window and press [ESC].

Once you define a Navigation event, it appears on your Naviga-

tion menu.
Choose: [ESC] to Select. Help:
[DEL] to Quit CCTRLI-Lw]

(Zoom) ==
Navigate: Choose an Action Item

Add a navigation action
Mail

Btart screen demo 1
Navigate (go)

On-Screen Help

Program Information Menu
Edit Hot-Keys

To Do List

(38 items)

Defining Navigation Events 7-9

- CASE Tools Training Course Workbook

Mapping Hot Keys to Navigation

Events

The Hot Keys
window lets you
assign Hot Keys

to Navigation

events.

You can also combine the power of Hot Keys and Navigation by
defining custom Hot Keys to operate your Navigation events. You set
Hot Keys to work with Navigation events in the Hot Keys window.

Update: [ESC] to Store. [DEL] to Cancel Help:
Enter changes into form LCTRLI-Lw]
(Zoom)==

Hot Keys

Key Label : [F61

fAction Code : nEENEEE Undefined

User Name : brianh

System Wide?: N

Enter the action key.

The most important field is the Action Code field. This field corre-
sponds to the Action Code you gave the event in the Navigation
Commands window (page 9). The System Wide? field specifies if the
Hot Key is available to all system users.

To map a Hot Key to a Navigation event:

1.
2.
3.

Define your custom Navigation event.

Press [CTRL]-[e] to open the Hot Keys pop-up menu.
Highlight an undefined key and press [CTRL]-{z].
The Hot Keys window appears.

Complete the Hot Key window and press [CTRL}-[z].

7-10 Working with the User Control Libraries

.- CASE Tools Training Course Workbook

Logging Online Feature Requests

Online Feature
Requests let
users
communicate to
you what
features they
want.

Online Feature Requests let users communicate with you about the
features they want. When users press [CTRL]-[y] and select Software

Features, the Software Features Request window appears.

Enter the customer code.

Update: [ESC] to Store, [DEL] to Cancel. LTAB] Next Mindow Help:
Enter changes into form [CTRLI-[w]
(Notes)==(Zoom)==
Custo| Update: [ESC] to Store., [DEL] to Cancel Help:
Compa| Enter changes into form LCTRLI-[w]
(Zoom)==
City Software Feature Request
Ord| How about adding logic to enforce a P.0. number entry. 001
Shipp
Item nsion
1 50.00
2 30.00

Once a request is entered, it gets appended to the errolog file,

which you can review.

Logging Online Feature Requests

7-11

CASE Tools Training Course Workbook

Creating User-Defined Fields

User-Defined
Fields give
users the ability
to add fields on
the fly.

This exampie
shows a user
adding a Fax
Number field.

User-Defined Fields give you or your users the ability to add fields on
the fly. When users press [CTRL]-[f], the User-Defined Fields window
appears. Once a new field is defined, the User-Defined Fields win-
dow appears for every document that is created or updated.

Update: [ESC] to Store. [DELI to Cancel. LTAB] Next Window Help:
Enter changes into form [CTRLI-Lw]
(Notes)==(Zoom)==
Cust| Update: [ESC] to Store. [DEL] to Cancel Help:
Comp| Enter changes into form [CTRLI-Lw]
Cit| Line Data Field Name Contents
Or 1 Fax Number 503 543-5590 01
2
Ship 3
_____ 4 ———
Item 5 sion
1 6 0.00
2 7 0.00
8
Table: orders Key: 1001 =====
Enter the name of the user defined field. 0.00
0.00
Enter the customer code.

User-Defined Fields are not physically entered into a column on the
header or detail table. A separate table stores these field labels and
contents. If users define a number of fields, you should consider add-
ing those fields to the input program with the Form Painter.

7-12 Working with the User Control Libraries

CASE Tools Training Course Workbook

Section Summary

The User Control Libraries are a part of Enhancement

Toolkit. These libraries provide a series of features that give your

users more control over generated programs created by the
Screen.

A To-Do List gives users a note pad to track the tasks they need to
complete.

Freeform Notes let users place notes on a data-entry document.

Users can use the Error Message window to check error informa-
tion. In addition, users can log the errors they encounter and add
more information describing the error to the Error window.

Screen also provides a context sensitive help system,
which both you and program users can update and modify.

Hot Keys let users map their keyboard to specific program events
including custom Navigation events.

Navigation gives users the ability to define custom program
events. These events perform a number of useful tasks, such as
suspending one program to jump to another one.

You can combine the power of Hot Keys and Navigation by
defining custom Hot Keys to operate your Navigation events.

Online Feature Requests let users communicate with you about
the features they want.

User-Defined Fields give you or your users the ability to add
fields on the fly.

Section Summary 7-13

. CASE Tools Training Course Workbook

Exercise 7A

Objective: To place a navigation event in your Customer Entry pro-
gram. You will add an event to check the amount of disk space avail-
able on your computer.

Access the Navigation Menu

This exercise starts from your running Customer Entry program. If
not done already, start this program.

1. From anywhere within your Customer Entry program, press
[CTRL}-[g].

The Navigate pop-up menu appears.

Choose: [ESC] to Select. Help:
[BEL] to Quit [CTRLI-Lw]

(Zoom}==
Navigate: Choose an Action Item

[dd a navigation action
Mail
Navigate (go)
On-Screen Help
Program Information Menu
Edit Hot-Keys
To Do List
Freeform Notes
(40 items)

As you can see, this menu already has several navigation events
already defined. You can select any of these events to see what
they do.

2. Select Add a navigation event (option one) from the Navigate
menu.

The Navigate Commands window appears.

7-14 Working with the User Control Libraries

CASE Tools Training Course Workbook

Enter a Navigation Command to Check Disk Space

1.

Using the Navigate Commands window, set Action Code to
check_disk.

The Action Code field contains a unique name for the event you
are defining. You should try to make this name as descriptive as
possible.

Set Description to Check Disk Space.

Set the Operating system command field to the UNIX command
that checks your disk space (typically the 4f command).

Enter a Y in the Press ENTER upon return? field.

When the df command is executed, it will return to the program.
Many times commands, such as d£, return too quickly. Therefore,
the Press [ENTER] prompt pauses after the UNIX command ter-
minates so you can read its output.

Press [ESC] to save check_disk.

Run check_disk

1.

Invoke the Navigate menu again by pressing [CTRL]-[g].

Notice how check_disk appears as the second option on the
menu.

Select check_disk.

The df command runs and its output is displayed to the screen.
Once complete, the Press [ENTER] prompt appears.

Press [ENTER] to return to your program.

Exercise 7A 7-15

.+ CASE Tools Training Course Workbook

Edit check_disk

You can always edit a navigation event.

1. Invoke the Navigate menu again (press [CTRL]-[g]).

2. Highlight the Check Disk Space option and press [CTRL]-[z].
The Navigate Commands window appears.

3. Edit check_disk or press [ESC] to save it as is.

4. Remain in your Customer Entry program and continue to Exer-
cise 7B.

7-16 Working with the User Control Libraries

CASE Tools Training Course Workbook

Exercise 7B

Objective: To create a navigation event that runs a separate program.

Access the Navigation Menu

1.

From anywhere within your Customer Entry program, press
[CTRL}-[g].

The Navigate pop-up menu appears.

Select Add a navigation event (option one) from the Navigate
menu.

The Navigate Commands window appears.

Add an Event to Call the Credit Entry Program

1.
2.

3.

Set Action Code to credit_program.
Set Description to Run Credit Info Program.
Set Operating system command to:

For RDS users:

cd $HOME/labs/aw.4gm/i_cred.4gs; fglgo i_cred.4gi

This command changes to the i_cred.4gs directory and starts
the Credit Entry program.

Press [ESC] to save credit_program.

Note that you do not have to set the Press [ENTER] upon return
field. When you exit the Credit program, you return directly to
the Customer Entry program.

Exercise 7B 7-17

 CASE Tools Training Course Workbook

Use the credit_program Event

1. Initiate the Navigate pop-up menu.

Choose: [ESC] to Select. Help:
[DEL] to Quit L[CTRLI-[w]
(Zoom)==

Navigate: Choose an Action Item

Add a navigation action
Check Disk Space
Bun Credit Info Program
Hail
Navigate (go)
On-Screen Help
Program Information Menu
Edit Hot-Keys

(42 items)

2. Select Run Credit Info Program.

The Credit Entry program, which you created in Exercise 3,
starts.

Action:[] [EEKN Update Delete Find Browse Nxt Prv Options Quit
Create a new document

Credit Information Entry Screen ——————————=meee——o

Credit Code
Credit Description:
Credit Amount :

(No Documents Selected)

3. Select Quit from the Credit Entry program’s ring menu.

The Credit Entry program exits and you return to the customer
Entry program.

7-18 Working with the User Control Libraries

CASE Tools Training Course Workbook

Exercise 7C

Objective: To map a hot key to the credit_program event.

Edit Hot Keys

1. From Customer Entry, initiate the Navigate pop-up menu again
(press [CTRLI-[g)).

2. Select the Edit Hot-Keys option.

Choose: [ESCI to Select. Help:
[DEL] to Quit CCTRLI-Lw]
(Zoom)==

Navigate: Choose an Action Item

fidd a navigation action
Check Disk Space
Run Credit Info Program
Mail
Navigate (go)
On-Screen Help
Program Information Menu
Edit Hot-Keys

(42 items)

The Hot Keys pop-up menu appears.

Choose: [ESC] to Select. Help:
[DELI to Quit ECTRLI-Lw]
(Zoom)==
Hot Keys
11 Insert (usually [F11)
fF21 Delete (usually [F21)
LF31 Page Down (usually [F31)
[F4] Page Up (usually [F4])
LF51 Mail
[F61] Undefined
[F71 Undefined
LF81 Undefined
(50 items)

3. Highlight [F6] (which is Undefined) and press [CTRL]-[z].

The Hot Keys window appears.

Exercise 7C 7-19

CASE Tools Training Course Workbook

Enter the Navigation Event Codes

1. Setthe Action Code field to credit_program.

If you forget the Update: [ESCI to Store, [DELT to Cancel Help:
Action Code, Enter changes into form [CTRLI-Lwl
you can Zoom Hot Keys (Zoom) ==

on this field.
Key Label : [F61
Action Code : Undefined
User Name : brianh
System Wide?: N
Enter the action key.

2. Press [ESC] to save the [F6] hot key mapping.

Press [F6] to Start the Credit Info Program

1. From anywhere in your Customer Entry program, press [F6].

The Credit Entry program starts.

Action:[] [[EEN Update Delete Find Browse Nxt Prv Options Quit
Create a new document

Credit Information Entry Screen ———-———-=—r==—-ae—

Credit Code
Credit Description:
Credit Amount :

(No Documents Selected)

7-20 Working with the User Control Libraries

CASE Tools Training Course Workbook

2.

When finished, exit the Credit Entry program and return to the
Customer Entry program.

Edit a Hot Key Definition

If you ever need to remap a hot key you can change its definition.

1.

Press [CTRL]-[e] to initiate the Hot Keys pop-up menu.

The [CTRL]-[e] sequence lets you access this menu directly, you
can also select Edit Hot-Keys from the Navigate pop-up menu.

Highlight the Hot Key you want to edit. For example, highlight
the [F6] key.

Press [CTRL]-[z] to bring up the Hot Keys window.

Update: L[ESC] to Store. [DEL] to Cancel Help:
Enter changes into form [CTRLI-Cwl
(Zoom)==

Hot Keys

Key Label : [F6]

Action Code : C[TEIAIINYTINTE Run Credit Info Program

User Name : brianh

System Wide?: N

Enter the action key.

From the Hot Keys window, you can edit the Action Code
value.

For this exercise, do not change the [F6] hot key. It is enough for
you to know how to edit the values in this window.

Press [ESC] to return to the Customer Entry program.

Quit out of both the Customer Entry program and the Form
Painter.

Exercise 7C 7-21

CASE Tools Training Course Workbook

7-22 Working with the User Control Libraries

38

Using the Screen Code
Generator

Main topics:

B Screen Code Generator Overview
Understanding Library Code and Local Code
Classifying Functions

Starting the Tools from the Command Line

Using the Tags Feature

8-1

. CASE Tools Training Course Workbook

Screen Code Generator Overview

The Screen Code Generator functions as the back-end to the Form
Painter. You use the Form Painter to create a form image and the
Screen Code Generator to create code based on that form image.

The Screen Code Generator relies on a form specification (*.per) file to
create the 4GL source code. When you save a form image with the
Form Painter, a *.per file is created automatically. In a general sense,
you must complete the following steps to develop an input program:

1. Create a form image with the Form Painter.

2. Save your form image in the Form Painter to create a form speci-
fication (*.per) file.

3. Invoke the Screen Code Generator, which reads the *per file and
creates INFORMIX-4GL source code based on the instructions in
the specification file (see "Creating Form Specification (*.per)
Files" on page 6-4).

4. Usethe make utility (£g . make) to compile the source
code into object code and then link it into a (*.4ge) executable or
(*.4gi) pseudo code.

Note

The make utility (or £g.make) produces either a (*.4ge)
executable or (*.4gi) pseudo code file depending on the type of
development system you are using. If you are using the Informix C
compiler, £g.make creates a *.4ge executable file. If you are using
the RDS compiler, fg.make creates a *.4gi pseudo code file.

8-2

5. Run the input program and use its ring menu to add, update, and
delete data from the database.

Using the Screen Code Generator

CASE Tools Training Course Workbook

The following figure outlines the steps you take to develop a com-

plete input program using Screen.
Step 1: Create
a form image 1
with the Form i’
Painter. BE—— Painter
Step 2: Save

your form image
to create a form
specification 2
(*.per) file.

Form
Specication
(*.per) File

Step 3: Invoke /
the Screen

Code Generator
to read the *.per
file and create
4GL source
code.

Screen Code 3
Generator

Step 4: Use the
make

utility (fg.make)
to compile the
source code
into object code
and linkitinto a
(*4ge)
executable or
(*.4gi) pseudo
code file.

Make Utility
(fg.make)

Step 5: Run the

input program 5
and use its ring
menu to add,
update, and A/
deleie data from
the database. Database
Input
Program

Screen Code Generator Overview 8-3

CASE Tools Training Course Workbook

Files Created During the Development Process

Form

During the development process, there are several files that get cre-
ated. Each file is given a special file extension to help you identify its

file type.

Tool File Type File Extension
Form Painter =~ Form Specification Files *.per

Screen Code Compiled Form Files *frm
Generator

Screen Code INFORMIX-4GL Source *4gl
Generator Code Files

fg.make Compiled Object Files *.4go or *.0
fg.make Executable Files * 4gi or *.4ge

For example, if you build screen demo 3, these files are created using
INFORMIX-RDS:

Compiled Source Code Object Executable Other

Specification Form

browse.per browsefrm browse.4gl browse.dgo screen3.4gi Makefile

cust_zm.per cust_zm.frm cust_zm.4gl cust_zm.4go errlog
order.per order.frm detail.4gl detail.4go filelist. RDS
stk_mnu.per stk_mnu.frm globals.4gl globals.4go tags

stockzm.per stockzm.frm header4gl header.4go

main.4gl main.4go
midlevel.4gl midlevel.4go
stk_mnu.4gl stk_mnu.4go

stockzm.4gl stockzm.4go

Note also provides a code merge (fglpp) utility that creates
original (*.org) files (see "Featurizer Overview" on page 18-2).
8-4 Using the Screen Code Generator

CASE Tools Training Course Workbook

Understanding Library Code and Local
Code

You can classify code into two main categories:
1. Library Code

2. Local Code

Library code has the following characteristics:
¢ Ttis shared by different programs.

* ltis static; the code never changes.

¢ Itis data independent.

¢ ltis generic.

* Itis not created by the Screen Code Generator. Library code is
hand-coded and always available for use.

Many program features, such as the ring menu commands, are cre-
ated from library code:

Local code has the following characteristics:

It is used by only one program.

It is designed to change over time.

It is data dependent.
e Itis specific.
¢ [Itis created by the Screen Code Generator.

There are several visible examples of local code as well, such as read-
ing in a record, adding a record, and saving a record.

Understanding Library Code and Local Code 8-5

CASE Tools Training Course Workbook

Classifying Functions

8-6

code is highly modular, which means that all the code is
written within functions. Most of these functions are small, less than
20 lines long. functions have the following characteristics: -

* All code is organized into logical code blocks.
* Possible points of modification are easily identifiable.

¢ All functions contain comments that describe specifically what
they do.

e Function code can be reused.

* Generated functions have similar names, thus establishing con-
sistent naming conventions.

Functions are classified according to thier use. functions can
be divided into three classes:

1. Upper-level Functions

2. Low-level Functions

3. Mid-level Functions

Upper-level functions have the following attributes:
¢ they are data independent.

¢ they are generic.

¢ they are usually library functions.

¢ they are not created by the Screen Code Generator.
¢ they are typically left unchanged.

¢ they are usually prefixed with ring_.
Low-level functions have the following attributes:

* they are data dependent.

¢ they are specific.

Using the Screen Code Generator

- CASE Tools Training Course Workbook

¢ they are created by the Screen Code Generator.
¢ they are frequently changed.

* they are usually prefixed with 11h_ or 11d_.
Midlevel functions have the following attributes:

¢ they perform housekeeping tasks, such as initializing variables,
preparing cursors, and performing construct statements.

* they are created by the Screen Code Generator.
¢ they are typically left unchanged.

* they are always prefixed withmlh_ or m1d_.

Classifying Functions 8-7

CASE Tools Training Course Workbook

Starting the Tools from the Command
Line
In chapter 2, you learned how to start the Form Painter and run the

Screen Code Generator and FourGen make utility from within the
Form Pianter. These programs can also be run from the UNIX com-

mand line.

Tool Command

Form Painter fg.form

Screen Code Generator fg.screen
Make Utility fg.make

Each command also uses several command flags that you can use to
alter how the command works.

Form Painter Command Syntax

The Form Painter uses the following command flags and syntax.

fg.form [-dbname database] [-0{0-5}] [-f] [-yl|-nl]
[-p file.per]

-dbname database Specifies the database on which the Form
Painter operates.

-0{0-5} Specifies the level of information displayed
during code generation. To display the least
amount of information use -00. To display
the greatest amount of information use -o5.

-f Specifies a fast generation. The - £ flag and -
o0 are synonymous.

-yl-n Specifies interactive or non-interactive
generation mode. The -y flag answers yes
to all code generation prompts.

-p file.per Specifies the name of the form specification
file to automatically loads upon start-up.

8-8 Using the Screen Code Generator

- ~CASE Tools Training Course Workbook

Screen Code Generator Command Syntax

The Screen Code Generator uses the following command flags and

syntax.

fg.screen [-dbname database] [-0{0-5}] [-f] [-y|-n}

[file.per...]

-dbname database Specifies the database on which the Screen

-0{0-5}

-yl-n

file.per...

Code Generator operates.

Specifies the level of information displayed
during code generation. To display the least
amount of information use -00. To display

the greatest amount of information use -o5.

Specifies a fast generation. The - £ flag and -
00 are synonymous.

Specifies interactive or non-interactive
generation mode. The -y flag answers yes
to all code generation prompts.

Specifies the name(s) of the form
specification file(s) that the Screen Code
Generator reads and processes.

For a description and the syntax of the £g.make script see "Compil-
ing Generated Code" on page 17-2. And for a description of
code merging utility (£g1pp) see "Featurizer Overview" on

page 18-2.

Starting the Tools from the Command Line 8-9

*CASE Tools Training Course Workbook

Using the Hypertext Feature

The hypertext feature lets you quickly view functions. It is used when
you are viewing source code and come across a function that is unfa-
miliar. Hypertext lets you jump to the body of the function to view it.

Hypertext is particularly useful for library functions. If you come
across an unfamiliar library function, you can make the computer do
the work of finding the function for you.

Setting up Tags

8-10

Hypertext makes use of the tags capability in the vi text editor. Vari-
ous index files (called tags files) are created with . Screen so
you can jump between functions.

In your home directory, open your . exrc file. This file holds all your
custom vi settings. There is a setting called tags that you must set up
in your . exrc file before you can take advantage of hypertext. The
tags setting merely points to the tags file in your local directory and
any library directories.

Add the following line to your . exrc file:

set tags=tags\ ../tags\ /usr/fourgen/lib/tags
Subtitute the path name of your $ fg variable for /usr/
Also add these lines:

map] 4]

map [»4

To type a [CTRL] key character in a vi file, you must first type
[CTRL]-[v]. In other words, to enter the lines above, you should use
the following keystrokes:

map] [CTRL]-[v] [CTRL]-[1]}

map [[CTRL]-[v] [CTRL]-[4]

Using the Screen Code Generator

CASE Tools Training Course Workbook

Using Hypertext

There are three ways to use hypertext:

1.

You can use vi in command mode and issue a tag command and
the function name.

You can pass the -t flag and function name when initiating vi.

You can open a source code file, select the first character of the

function call, and press the left ([) bracket key to jump to the func-
tion.

To use the tag command in a vi file:

1.
2.

Press [ESC] to place vi into command mode.
Type :tag function-name and press [ENTER]

Where function-name represents the function you want to jump to.
For example:

ctag lib_before
To return to your starting location, type:

e

To use the -t flag from the command line, type:

vi -t function-name

To use hypertext from within a source code file:

1.
2.

Place the cursor on the first character of the function call.

Press the left bracket () key.

You immediately jump to the function. To return to your starting
location, press the right bracket (]) key.

Using the Hypertext Feature 8-11

CASE Tools Training Course Workbook

Section Summary

8-12

The Screen Code Generator functions as the backend to the Form
Painter. You use the Form Painter to create a form image and the
Screen Code Generator to create code based on that form image.

During the development process, there are several files that get
created. Each file is given a special file extension to help you
identify its file type.

You can classify code into two main categories: (1) Library Code
and (2) Local Code.

code is highly modular, which means that all the code is
written within functions. Most of these functions are small, less
than 20 lines long.

Functions are classified according to their use. . functions
can be divided into three classes: (1) Upperlevel Functions, (2)
Lowlevel Functions, and (3) Midlevel Functions.

The Form Painter, Screen Code Generator, and . make
utility can be run from the UNIX command line.

The hypertext feature lets you quickly view functions. It is used
when a you are viewing source code and come across a function
that is unfamiliar. Hypertext lets you jump to the body of the
function to view it.

Using the Screen Code Generator

- CASE Tools Training Course Workbook

Exercise 8A

Objective: To build the Customer Entry program from outside the
Form Painter. You will rebuild the entire application from the form
specification (*.per) files that you created with the Form Painter.

Make a Backup Directory

1. Move to the $HOME/labs/aw. 4gm directory:
¢d SHOME/labs/aw.4gm

2. Create a i_cust .bak directory to hold a copy the files in your
i_cust.4gs directory:

mkdir i cust.bak

3. Copy all of the filesin i_cust.4gs to i_cust .bak:
cp i_cust.4gs/* i_cust.bak

4. Move to your i_cust.4gs directory:

cd i_cust.4gs

Remove Everything Except Your *.per Files

1. Remove all the filesin i_cust.4gs except those with a *.per
extension:

¢cp *.per ../
rm *
mv ../*.per ./

This command leaves i_cust.4gs with two files: cred_zm.per
and cust .per.

2. List your files to verify that only these two files remain:

ls

Exercise 8A 8-13

CASE Tools Training Course Workbook

Generate 4GL Code

The cred_zm.per and cust .per files contain all the information
that is needed for the Screen Code Generator to re-create source code
for your Customer Entry program.

1.

From the i_cust.4gs directory, enter:
fg.screen -00 -y *.per

The -o flag specifies the amount of screen output to display. A 0
indicates the minimum amount of output. A 5 indicates the maxi-
mum amount. Finally the -y flag automatically answers "yes" to
all prompts.

The Screen Code Generator reads the instructions in the *.per files
and creates 4GL source code. When the Screen Code Generator is
finished, the UNIX prompt reappears.

From the UNIX prompt, list the files in i_cust.4gs:
1s

As you can see, the Screen Code Generator creates a number of
files, including a Makefile and multiple source code (*.4gl) files.

Compile the Code

After generating code, you must convert it into object code, link it to
the libraries, and build an executable. All these tasks are handled by

8-14

the
1.

compilation utility, which is known as fg.make.
From the i_cust.4gs directory, enter:
fg.make

The fg.make utility runs. When it is finished, the UNIX prompt
reappears.

List your files again:
1s

Notice that now there are object files (*.4go) and a program file
(*.4gi or *4ge). Which set of files you see depends on your Infor-
mix development type.

Using the Screen Code Generator

CASE Tools Training Course Workbook

Run the Customer Entry Program

Once fg.make is finished, you can run the Customer Entry program
again.

1. Use the following command to run the Customer Entry pro-
gram:

fglgo i_cust.4gi

The Customer Entry program starts.

Action:|] [EEEN Update Delete Find Browse Nxt Prv Tab Options Quit
Create a new document

Customer Entry Screen

Customer Number: Credit Code:
Company Name : Credit Desc:
Contact Name:

City: State: Postal Code:
Phone Number:

Order Information

Order Number Order Date PO Number Shipping Charge

(No Documents Selected)

2. Quit the Customer Entry program.

Exercise 8A 8-15

CASE Tools Training Course Workbook

Exercise 8B

Objective: To gain a basic knowledge of the INFORMIX-4GL source
code built by the Screen Code Generator and to become familiar with
FourGen standards and code structures.

List the Files

List the files in i_cust.4gs:
1ls

Notice that there are several files with a *.4gl extension. These are
source code files.

Examine midlevel.4g|

8-16

1.

Use vi to openmidlevel.4gl:
vi midlevel.4gl

This file contains generated source code that handles "housekeep-
ing" chores such as initializing variables, preparing cursors, and
locking records.

Notice how all the code is contained in functions. source
code is extremely modular.

Each functioninmidlevel.4gl is prefaced with m1. These char-
acters stand for midlevel. Both the header and detail portion of
Customer Entry have midlevel functions associated with them.
For this reason, midlevel functions are further classified as m1h
and m1d, which stand for midlevel header and midlevel detail
respectively.

Exit frommidlevel.4gl.

Using the Screen Code Generator

CASE Tools Training Course Workbook

Examine header.4gl and detail.4g|

1. Use vi to look through both header.4gl and detail.4gl.

Both files contain lowlevel functions. The header . 4gl lowlevel

functions handle header section activities such as inserting,

updating, deleting, and validation checking. The detail.4gl

lowlevel functions do much of the same, but they control the

detail portion of the screen.

Notice how each header . 4g1 function names are prefaced with
llhand detail.4gl functions are prefaced with 11d.

2. Exit these files.

Examine cred_zm.4g|

1. Usevito open cred_zm.4gl

This file corresponds to your Credit Information zoom screen.
Notice that there are sets of functions, prefaced by different capi-
tal letters that perform different tasks.

Preface

A

Q
R
D
Z

2. Exit cred_zm.4gl.

Use

Opens a Zoom window.

Queries for selection criteria.

Reads records into the program.
Displays records to the zoom screen.

Closes the zoom screen.

Exercise 8B

8-17

CASE Tools Training Course Workbook

Exercise 8C

Objective: To use hypertext capability to find functions.

Set up Your .exrc File

1.

Use vi to open the .exrc file in your home directory:
vi SHOME/.exrc
Add the following line to your .exzc file:

map] 4]
map [A4
set tags=tags\ ../tags\ /usr/ /lib/tags

The ~ characters are created in a special way. First press [CTRL]-
[v], then type subsequent key. For example, to add the first two
lines (map] ~]andmap [~"1), use the following key strokes:

map] [CTRL]-[v] [CTRL]1-[1]
map [[CTRL]-[v] [CTRL]-[*]

Save your .exrc file.
Make the values in this file current:

. S$HOME/.exrc

Jump to a Function

8-18

1.
2.
3.

Use vi to open header.4gl.
Find the function call to error_handler.

Place your cursor on the first letter (an e) in error_handler
and press the right bracket] key.

Your cursor jumps to the error_handler function. If your .exrc
file is not set properly, you'll get the message:

error_hanler: No such tag in tags file

Return by using the left bracket [, then exit from header.4gl.

Using the Screen Code Generator

Creating Triggers

Main topics:

Trigger Overview
Understanding the Trigger Concept
Creating Triggers

Merging Triggers into Code

9-1

CASE Tools Training Course Workbook

Trigger Overview

9-2

In most cases, you can use the Form Editor in the Form Painter to
accomplish everything an input program requires. The Form Editor
lets you:

* define input fields

* specify field attribute logic, such as whether the field can be
entered

¢ attach zoom screens
¢ attach lookups to validate input values

On occasion, however, you must make custom enhancements to an
input program that you cannot create in the Form Editor. For exam-
ple, you might want to include some of the following enhancement

types:

* after field logic

¢ before field logic

¢ after input logic

¢ after change in logic
* before input logic

¢ after row logic

* Dbefore row logic

event handling logic

You can create all these enhancements using triggers, which are
essentially code-level modifications to an input program.

Creating Triggers

CASE Tools Training Course Workbook

Understanding the Trigger. Concept

Triggers are enhancements made directly to the source code gener-
ated from the Screen Code Generator. A trigger is an automatic way of
placing code-level enhancements into the source code.

Triggers are named for logical points in the code. The following list
contains some common triggers:

o after field
® before_field
* after_input

* Dbefore_input
® on_event

Triggers get placed in trigger (*.trg) files. A trigger file functions
much like a form specification (*.per) file. Both contain instructions
that the Screen Code Generator reads and understands.

A single trigger file can contain more than one trigger.

Triggers do not require you to be an expert on code structure. You
simply work with the Form Painter to define the logical points at
which your triggers act.

Trigger (*.trg) files should have the same name as the form specifica-
tion file that they relate to. For example, the order . t rg file relates to
the order . per form specification file.

Understanding the Trigger Concept 9-3

: CASE Tools Training Course Workbook

Creating Triggers

Creating triggers is a straightforward task. There are two ways you

can construct triggers:

1. You can use the Form Painter.
2. You can create them by hand in trigger (*.trg) files.

Perhaps the best way to write your first trigger is with the Form
Painter; it provides the simplest environment to learn about trigger
creation.

Using the Form Painter to Create a Trigger

9-4

Before you create a trigger using the Form Painter, you should create
a form image and form specification file (see "Creating a Form Image"
on page 2-5).

Once you create a program from which to work, you can define a trig-
ger.

To add a new trigger using the Form Painter:

1. Select Triggers >> from the Define pull-down menu.

If your screen type contains more than one input area, the Choose
a Trigger Class pop-up menu appears.

2. Select the input area for your trigger.

The Choose a Trigger pop-up menu appears.

Creating Triggers

CASE Tools Training Course Workbook

Use the Trigger
Editor to enter
custom 4GL
logic.

Select the trigger you want to create.

Depending on the trigger you select, subsequent pop-up menus
appear. For example, if you select the after_field trigger, the
Choose a Field pop-up menu appears. After you choose a field,

the Form Painter opens the Trigger Editor.

File Edit Run Help

=======(standard) ================(order/1)
Update: [ESC] to Store. [DEL] to Cancel Help:
Enter changes into form C[CTRLI-[w]

Input 1 Trigger: after_field ship_instruct

(Zoom)==

Enter the custom 4GL logic of your trigger using the Trigger
Editor.

For example, after the shipping instruction field, you might want
to display shipping rate information. With the Trigger Editor, you

can specify 4GL logic that displays this information.

Your custom
logic can simply
display a
message aftera
field.

Update: [ESC1 to Store, [DEL] to Cancel Help:
Enter changes into form CCTRLI-Lw]
(Zoom)==

Input 1 Trigger: after_field ship_instruct

display “"Don’t send anything overnight, it is too expensive.”

5. Once you enter your trigger code, press [ESC] to store your trig-

ger.

Your trigger gets saved to a trigger (*.trg) file.

Crealing Triggers

9-5

CASE Tools Training Course Workbook

Creating Triggers by Hand

9-6

After a while, you might find it faster and more convenient to create
triggers manually. That is to say, you might want to create trigger files
directly using vi or some other UNIX text editor. Creating triggers by
hand can be as simple as using the Form Painter as long as you follow
the correct syntax.

All triggers follow the same general syntax:

input #
trigger argument
custom 4GL logic...

.
I

Where # indicates the input area number, trigger indicates the trigger
command, and argument indicates any argument that the trigger
accepts.

For example, the following after_input trigger displays a short mes-
sage:

input 1
after_input
display "After input logic"
sleep 2

1

Some triggers accept arguments. For example, this trigger accepts a
field name (company) as a trigger command argument:

input 1
after_field company
display "After field logic™
sleep 2

.
I

For a complete list of triggers, trigger descriptions, and syntax refer to
the Screen Technical Reference.

Creating Triggers

-CASE Tools Training Course Workbook

Merging Triggers into Code

Once you create a trigger, you can merge it into your source code. To
merge a trigger, however, you do not need to regenerate all your
code. You can simply run either the . make utility (fg.make)
or the Featurizer (fglpp).

If you are using the Form Painter, simply select the Compile 4GL
option under the Run pull-down menu. If you are working from the
command line, type:

fg.make
or:
fglpp

Both commands initiate the Featurizer. The Featurizer reads your
trigger (*.trg) file and places your code enhancements into the gener-
ated source code. When you run f£g.make, the final source code
(*.4gl) files contain your enhancement logic. The Featurizer saves
your original source code in files with an *.org extension.

Merging Triggers into Code 9-7

CASE Tools Training Course Workbook

Section Summary

9-8

Triggers are enhancements made directly to the source code gen-
erated from the Screen Code Generator. A trigger is an automatic
way of placing code-level enhancements into the source code.

You can create triggers using the Form Painter or by hand.

Triggers let you create custom modification to logical points in
your program flow.

There are a number of triggers that can be merged into 4GL
source code. Triggers are saved in trigger (*.trg) files, these files
are given the same name as the form specification files they relate
to. For example the order. trg trigger file relates to the

order .per form specification file.

The Featurizer reads *.trg files and merges the enhancements into
the generated source (*.4gl) code files.

Creating Triggers

CASE Tools Training Course Workbook

Exercise 9

Objective: To add a simple before_input trigger to the Customer
Entry program.

Open cust.per in the Form Painter

1. Move to $HOME/labs/aw.4gm/i_cust.4gs directory:
cd $HOME/labs/aw.4gm/i_cust.d4gs
2. Start the Form Painter.

3. Select Open from the File pull-down menu to load cust.

Create a before_input Trigger
1. Select Triggers >> from the Define pull-down menu.
The Choose a Trigger Class box appears.
2. Select Input Area 1 from the Choose a Trigger Class box.
The Choose a Trigger list box appears.

Choose: [ESCI to Select.
[DEL] to Quit

Choose a Trigger

Hefine
static_define
before_input
after_input
before_field
after_field
after_change_in
(16 items)

3. Select before_input from the Choose a Trigger list box.

An editing window appears.

Exercise 9 9-9

CASE Tools Training Course Workbook

4. Complete a "display" statement as follows:

Update: L[ESC] to Store. [DEL] to Cancel Help:
Enter changes into form [CTRLI~[w]
(Zoom)==

Input 1 Trigger: before_input

Lisplay "my trigger logic is executing now"”

sleep 3

5. Press [ESC] to save this before_input trigger.
The Choose a Trigger list box appears again.
6. Press [DEL] to close the Choose a Trigger box.

7. Select Save Trg File from the File pull-down menu.

Compile the Code

¢ Select Compile 4GL from the Run pull-down menu.

The compilation utility calls the Featurizer (which is a code merg-
ing utility). The Featurizer merges your custom "display" logic
into the generated source code.

Run the Customer Entry Program

¢ Select Run 4GL Program from the Run pull-down menu.

The Customer Entry program starts.

9-10 Creating Triggers

. CASE Tools Training Course Workbook

Check the before_input Trigger

1.

Select Add from the ring menu.

Your custom "display” logic appears at the bottom of the screen.
Finish adding the record.

Use Find to select a record and select update.

Again, your custom logic appears.

Quit the program and the Form Painter.

Examine header.4g|

1.
2.

Use vi to open header. 4gl.
Search for before_input.

Notice that your custom logic is inserted just before the input
command:

#_before_input
display "my trigger logic is executing now"
sleep 3

#_end

#_input - Main input loop

The #_ characters mark a trigger tag. In other words, these sym-
bols define locations where triggers can be inserted.

Using vi, search for other trigger tags.

This step familiarizes you with the types of triggers that are avail-
able. You will be adding custom logic to some of these locations
at a later time.

Exit header.4gl.

Note

When you make a change to a form (such as adding a field or field
label), you must rebuild the program by running both the Screen
Code Generator and fg.make. If you are only adding custom code
via triggers, save the trigger file then run the £g.make. The Screen
Code Generator is not required

Exercise 9 9-11

i CASE Tools Training Course Workbook

9-12 Creating Triggers

10

Managing Screen to
Table Flow

Main topics:

B Understanding Program Data Flow
] I/0 Triggers

M Referencing Input Fields
B Common Global Variables
|

Using the Scratch Variable

10-1

.~ = CASE Tools Training Course Workbook

Understanding Program Data Flow

Before you start building input programs with .Screen, it is
helpful to understand how data is handled by programs created with
the Screen Code Generator. In a general sense, input programs must
perform two tasks:

1. Move data entered by the program user to the database.
2. Move data stored in the database to the screen.

The Code Generator accomplishes both tasks by creating four records
(p_, m_, a_,and s_) and two "prep" functions (p_prep and m_prep).

Data Flow Records

Four records
transfer data
between the

program user

10-2

and the
database.

The p_ record: This record parallels the data elements defined on the
screen. The p_ record only contains those fields displayed on your
input program.

The m_ record: This record parallels information in the columns of a
table. The m_ record contains variables with the same names as the
columns in the database table.

The q_ record: This record contains all the columns not used by the
input program but contained in the table.

The s_ record: This record contains values that get entered from or
passed to the screen.

All records start with their various type (p_, m_, etc.). After the type,
the record is named with the last six characters of the table name. For
example p_stomer represents the p_ record for the cust omer table.

Managing Screen to Table Flow

- CASE Tools Training Course Workbook

After the table name, the p_ record is built from all the input fields
used by the input program. The following example shows a typical
p_ record:

p_orders record # Record like the order screen
customer_num like orders.customer_num,
fname like customer.fname,
Iname like customer.lname,
company like customer.company,
addressl like customer.addressl,
address2 like customer.address2,
city like customer.city,
state like customer.state,
zipcode like customer.zipcode,
phone like customer.phone,
order_date like orders.order_date,
po_num like orders.po_num,
order_num like orders.order_num,
ship_instruct like orders.ship_instruct,
ship_weight like orders.ship_weight,
ship_charge like orders.ship_charge,
t_price money (10)

end record,

The m_ record does not use the column names like the p_ record.
Instead the m_ record uses *. notation. For example, m_stomer.* rep-
resents a the m_ record for the customer table. The .* notation is used
to allow the m_ record to accept data all at once. The following shows
two example m_ records:

m_orders record like orders.*, # Record like the header table
m_items record like items.*, # Record like the detail table

The q_ record is defined like the p_ record, but it contains all the table
columns not used by the program as input fields. For example:

q_orders record # Parallel order record
row_id integer, # SQL rowid
backlog like orders.backlog,
ship_date like orders.ship_date,
paid_date like orders.paid_date,
ship_method like orders.ship_method
#_define_1
#_end

end record,

The s_ record gets defined in the Instruction section of the form spec-
ification file. It reflects the actual values displayed by the input pro-

gram.

Understanding Program Data Flow 10-3

-+ +CASE Tools Training Course Workbook

Data Flow Functions

Data flows
between the
input program
and database by
way of four
records and two
"prep" functions

The p_prep function: This function transfers data from the m_ record

to the p_record.

The m_prep function: This function transfers data from the p_record

to the m_ record.

company fname

Input Program

lname phone

customer_num

Screen

company fname

p_ Record

lname phone

customer num

p_prep

m_prep

customer_num company fname

m_ Record

lname phone

Ta

ble

customer_num company fname

Database

lname phone

10-4 Managing Screen to Table Flow

CASE Tools Training Course Workbook

Lowlevel Functions Used by the Data Flow

Lowlevel functions control data flow (as illustrated below). The
header.4gl and detail. 4gl files contain the data flow functions.:

Data Flow Header Functions Detail Functions

From Database to Input Program

database to m_ record lih_read() Ild_read() -
m_ record to p_ record Iih_p_prep() ld_p_prep()
p_ record to s_ record IIh_display() lld_display()
From Input Program to Database
s_record to p_ record IIh_input() ld_input()
p_ record to m_ record ITh_m_prep() Ild_m_prep()
From m_ Record to Database
create a new row lIh_add() I1d_add()
update a row 1Ih_update none
delete a row 1Ih_delete 11d_delete()
Data input and
display as it is
associated with S__
lowlevel dicol record | i
i Ith_displa _input
functions I display | A N input | idinput
display \ validate
""""""""""""""""" regard /
lh_p_prep ey 17T | e i
o5 brep P X\ in-m-prep
lIh_tookup p_prep m_prep
R\ N
i record
lIh_read lih_add
lld_read / \ add lld_add
read %P?atfe Ilh_update
elete lih_delete
\ tg;’{: / lid_delete

Understanding Program Data Flow 10-5

-~ CASE Tools Training Course Workbook

I/O Triggers

There are several useful triggers that are involved with the p_prep
and m_prep functions. The following shows some of the triggers that
insert code into the 11h* and 11d* functions shown on the previous

page.

Trigger Use

on_disk_read Inserts code just after the SQL select
loads the m_ record.

on_disk_add Inserts code just after m_ record
variables are inserted into the table.

on_disk_update Inserts code just after a record is
updated.

on_disk_delete Inserts code just after a record is
deleted.

on_disk_ record_prep Inserts code just after the m_ record is

loaded with p_ record values.

on_screen_record_prep Inserts code justafter the p_record is
loaded with m_ record values.

10-6 Managing Screen to Table Flow

CASE Tools Training Course Workbook

Referencing Input Fields in Triggers

Frequently, you want to manipulate data in fields. You can do so with
various triggers. When you reference an input field, though, you
must always qualify it with its p_ record name. For example, illus-
trates an after_field trigger with an incorrect input field reference:

after_field company
if company is null
then
error "You must £ill in the company field*
end if ;

Instead, you must qualify input fields with there p_ record name.
This example shows a correctly referenced input field:

after_field company
if p_stomer.company is null
then
error "You must £ill in the company field"
end if ;

In this case, p_stomer . company is the name of the p_ record that
coincides with the company field.

The p_ record name is always found in globals.4gl. Field names are
found in the globals.4gl file as well or in the form specification (*.per)
file under the ATTRIBUTES section.

To reference table columns, you must qualify the column name with
its m_ record.

Referencing Input Fields in Triggers 10-7

- CASE Tools Training Course Workbook

Common Global Variables

10-8

The Code Generator always creates a common set of variables in your
globals. 44l file. These variables, which can also be referenced in
triggers, are very useful. You can find these variables under the
Library communications section of your globals. 491 file.

FHEEREHR R R R R R R B R R R R AR S R
Library communication area 4.11.UD1

FREF B ARE BE BH AR SRS B B AR B R S R B R R R R AR SR R B
Global variables in this section should not be changed.

They are used to communicate to the screen library functions,
and must be of the same type as defined in the library.

Don’t remove these comments. The codegenerator keys on them.
#

progid char (17),
scr_id char (7),
menu_item char (10),
scr_funct char (20),
sql_filter char (512),

Program identification
Current screen id
Current menu item running
Current screen function being run
Filter portion of SQL statement
sgl_order char (100), # Order portion of SQL statement
input_num smallint, # Current input section within screen
p_cur smallint, # Current input array element
s_cur smallint, # Current screen array element
scr_£fld char (40), # Current screen field
nxt_£1ld char (40), # Programmatic next screen field
prev_data char (80) , # Data before field entry
this_data char (80), # Data after field entry
data_changed smallint, # Has the field data changed?
hotkey smallint, # The hot key that has been pressed
scratch char (2047) # Scratchpad for scribbling on and

communicating between functions
End library communication area
RRBR AR SHBHEH R R R R S S A R R R R R SR R

Managing Screen to Table Flow

- CASE Tools Training Course Workbook

Using the Scratch Variable

The scratch variable is used as a scratch pad for temporary data val-
ues. It is used throughout generated code.

Quite frequently, scratch is used for passing character type data
between functions, such as SQL statements, messages, table names
and column names.

Using the Scratch Variable 10-9

-+ CASE Tools Training Course Workbook

Section Summary

Input program data gets passed through the program code by
way of records. In all, there are four records that the generator
creates: the p_ record, m_ record, s_ record, and q_ record.

The s_ record reflects the actual values displayed by the input
program. The p_ record is formatted to parallel the input pro-
gram fields. The q_ record contains table values not used by the
input program. The m_ record parallels the columns in the data-
base table.

Two functions convert the m_ record to the p_ record and vice
versa. These functions, known as p_prep and m_prep, control
the mapping between the table columns and the program input
fields.

Data movement outside the program occurs all at once. Data val-
ues are accepted into a program from the screen en masse by the
Informix input command. Values are displayed to the screen all
at once by the Informix display command. The same holds true
for inserts and most selects.

Several lowlevel functions control the flow of data between the
database, m_ record, p_ record, and input program. There are
several I/O triggers that let you add custom logic to these func-
tions.

When you reference a column or input field in a trigger, you must
preface it with its record type. For example, the 1name field in the
customer table, when called in a trigger, should be referenced as
p_stomer. lname.

There are a variety of useful variables that are always generated
in the globals. 4g1 file. One of these variables is the scratch
variable, which temporarily holds character values.

10-10 Managing Screen to Table Flow

CASE Tools Training Course Workbook

Exercise 10A

Objective: To reference a field on the screen and perform error-check-
ing logic on that field.

You will reference a p_ record variable and use an after_field
trigger to perform validation. The error-checking logic that you create
will require the user to supply a phone number when entering a new
customer record in the Customer Entry program.

Add a Trigger

Your trigger will test for a null value in the Phone Number field.

1.
2
3.

Start the Form Painter in your i_cust.4gs directory.
Open the main Customer Entry form (cust) in the Form Painter.

Move to the pull-down menus and select Triggers >> from the
Define pull-down menu.

The Choose a Trigger Class box appears.

Since your Phone Number field is in the header section, select
Input Area 1 from the Choose a Trigger Class box.

The Choose a Trigger list box appears. Because you want check a
field for a null value, you want to evaluate the field once the user
has moved past it. You want to use an after_field trigger.

Select after_field from the Choose a Trigger list box.

The Choose a Field list box appears.

[ESC] to Select.
[DEL] to Quit

Choose a Field

fname
1name
city
state
zipcode
one
(10 items)

Exercise 10A 10-11

CASE Tools Training Course Workbook

6. Select phone from the Choose a Field list box.
The editing window appears.

7. In the editing window, add the following custom logic:

Update: [ESC] to Store. [DEL] to Cancel Help:
Enter changes into form C[CTRLI-Lw]
(Zoom)==

Input 1 Trigger: after_field phone

if p_stomer.phone is null !
then

error "You must enter a phone number”
end if

Important Since you are referencing a field on the screen, the field name in your
Informix logic must be qualified with its p_ record. If this is not
done, a syntax error will occur.

8. Press [ESC] to save your custom logic then [DEL] to close the
Choose a Trigger list box.

9. Select Save Trg File from the File pull-down menu.

New...

Open >>

Save Form

Save fAs...
Close

Delete Form >>
Delete Trg File >>
Database...
Info >>

Print >>

Exit

This option writes your trigger logic into a trigger (*.trg) file.

10-12 Managing Screen to Table Flow

CASE Tools Training Course Workbook

Compile the Code

Select Compile 4GL from the Run pull-down menu.

The compilation utility calls the Featurizer. The Featurizer reads
the trigger (*.trg) file and merges the after_fieldlogic into the
generated source code.

Run the Customer Entry Program

Select Run 4GL Program from the Run pull-down menu.

The Customer Entry program starts.

Test the after_field Trigger

1.

Select Add from the ring menu.

The before_input logic that you wrote in Exercise 9 appears.
Enter data into the fields preceeding the Phone Number field.
Leave the Phone Number field blank and press [ENTER].

Your error message appears at the bottom of the screen and your
cursor moves to the Credit Code field.

You must enter a phone number|

This result is not entirely desirable. The error message works
great, but you also must control the cursor movement. As it
stands, you can save a record without entering a phone number.

Press [ESC] to save this record and press Quit to return to the
Form Painter.

Exercise 10A 10-13

CASE Tools Training Course Workbook

Modify the after_field Trigger

You can use the nxt_f1d global variable in your trigger to control
the condition on which the cursor can move to the next field.

1.

Compile and
1.

2,

Return to the trigger editing window:

Select From

Triggers >> The Define pull-down menu.
Input Area 1 The Choose a Trigger Class box.
after_field The Choose a Trigger list box.
phone The Choose a Field list box.

Modify your trigger code to look as follows:

Update: [ESC] to Store, [DEL] to Cancel Help:
Enter changes into form [CTRL]-[w]

(Zoom)==

Input 1 Trigger: after_field phone

if p_stomer.phone is null

then
error “You must enter a phone number”
let nxt_fld = “phone”

end if

Press [ESC] to save your custom logic then [DEL] to close the
Choose a Trigger list box.

Select Save Trg File from the File pull-down menu.

Run

Select Compile 4GL from the Run pull-down menu.
Select Run 4GL Program from the Run pull-down menu.

The Customer Entry program starts.

10-14 Managing Screen to Table Flow

-+« CASE Tools Training Course Workbook

Test the after_field Trigger
1. Select Add from the ring menu.
The before_input logic that you wrote in Exercise 9 appears.
2. Enter data into the fields proceeding the Phone Number field.
3. Leave the Phone Number field blank and press [ENTER].

This time the error message appears and your cursor remains
trapped in the Phone Number field until you add a value.

Add: LESC] to Store. [DEL] to Cancel. LTAB] Next Window Help:
Enter changes into form [CTRLI-[w]

Customer Entry Screen

Customer Number: - Credit Code: ARA

Company Name: Sport 0 Bob’s Credit Desc: EXCELLENT
Contact Name: Bob Bannerwaver

City: Couple City State: CA Postal Code: 91111

Phone Number:

Order Information

Order Number Order Date PO Number Shipping Charge

Enter contact’s phone number

You must enter a phone number

4. Add a phone number, press [ESC], and then Quit to return to
the Form Painter.

Exercise 10A 10-15

- 1CASE Tools Training Course Workbook

Remove a Trigger

By now you're tired of seeing the before_input logic you wrote in
Exercise 9. You can remove this logic as simply as you added it.

1.

Move to the trigger editing window:

Select From

Triggers >> The Define pull-down menu.
Input Area 1 The Choose a Trigger Class box.
before_input The Choose a Trigger list box.

Delete both lines of the before_input trigger.
You can delete a line quickly by pressing [CTRL]-[d].

Press [ESC] to save your deletion then [DEL] to close the
Choose a Trigger list box.

Select Save Trg File from the File pull-down menu.

The before_input logic is removed.

Note

The File pull-down menu also has a Delete Trg File >> option. In this
case you do not want to delete a trigger file because both your
after_fieldand before_input triggers were in the same file.
Use the Delete Trg File >> option when you want to remove all the
triggers in that file.

Compile and Run

10-16

1.
2.

Select Compile 4GL from the Run pull-down menu.
Select Run 4GL Program from the Run pull-down menu.
The Customer Entry program starts.

Press Add to Verify that the before_input logic has been
removed.

Once you have proven this to yourself, remain in the Customer
Entry program and continue to Exercise 10B.

Managing Screen to Table Flow

CASE Tools Training Course Workbook

Exercise 10B

Objective: To replace the Informix error statement with FourGen’s
fg_err function. This function lets you write custom error messages.

Test the after_field Trigger

1. From the Customer Entry program, select Add.
2. Enter an invalid value in the Credit Code field (TTT).

An error message appears informing you that the value is not in
the list of valid data. This message also include the ability to see
more information about the error.

Error: Value Is Not in the List of Valid Data.

Continue: [ENTER]. View error information: L[Y]. JJ

3. Press [Y] to see additional error information.

An error window appears.

Action:[] [N Update Status Log Quit
Scroll through the error text

Error: Yalue Is Not in the List of Yalid Data.

This error occurs when:
The value that was entered does not match any known value
in the associated file.

Possible solutions include:
Change the value & try again. If there is a zoom function
attached to this field, you may scan through the file to
find the correct lookup value by pressing [CTRLI-[z1.

In this exercise, you will call a similar error window when the
user leaves the Phone Number field empty (null).

Exercise 10B 10-17

CASE Tools Training Course Workbook

Create Error Text

1. Return to the Customer Entry ring menu.

2. Press [CTRL]-[g] to open the Navigate pop-up menu and select
Edit Error Text.

An error text editing window appears.

Errors: [CTRLI-[z] to View the Error. Help:
[CTRLI-In] for New. C[DEL] or [ESC] to Quit CCTRLI-Lwl
Module Program Number Message

|

3. Press [CTRL]-[n] to create a new error message.

A prompt appears requesting you to enter a new error number
for this module/program.

4. Enter 20 as the number.

A Problem /Solution window appears.

Action:[] View [[EEIZH Status Log Quit
Update error text

Error: Undefined

This error occurs when:

Possible solutions include:

10-18 Managing Screen to Table Flow

. - CASE Tools Training Course Workbook

Select Update to enter a new error message.
The cursor moves to the Error field.
Enter "This field requires a value,” press [ENTER] then [TAB].

The cursor moves to the "This error occurs when" field and a
default line appears. Press [CTRL]-[d] to delete the default line.

Add the following message:

This error occurs when:
The Phone Number field requires a phone number.

8. Press [ENTER] then [TAB] to move to the '"Possible solutions

include" field and add the following message:

Possible solutions include:

[Anter a phone number value.

List the things to do that may correct the error.

9. When complete, press [ENTER], press [ESC] to save your error

message, then Quit to return to the Customer Entry program.

10. Finally, select Quit to return to the Form Painter.

Exercise 10B 10-19

CASE Tools Training Course Workbook

Add a Call to fg_err in Your after_field Trigger

1. Return to the trigger editing window:
Select From
Triggers >> The Define pull-down menu.
Input Area 1 The Choose a Trigger Class box.
after_field The Choose a Trigger list box.
phone The Choose a Field list box.

2. Replace the error line with a call to £g_err:

Update: L[ESC] to Store, [DEL] to Cancel Help:
Enter changes into form [CTRLI-Lw]
(Zoom)==

Input 1 Trigger: after_field phone

if p_stomer.phone is null
then

let nxt_fld = "phone”
end if

3. Return to the pull-down menus and select Save Trg File >>
from the File pull-down.

Compile, Run, and Test

1. Select Compile 4GL from the Run pull-down menu.

2. Select Run 4GL Program from the Run pull-down menu.
The Customer Entry program starts.

3. Leave the Phone Number field empty to see what happens.

4. Remain in the Customer Entry program and continue to Exer-
cise 10C.

10-20 Managing Screen to Table Flow

CASE Tools Training Course Workbook

Exercise 10C

Objective: To require input in the Credit Code field.

You will build an after_input trigger that requires the user to
enter a value in this field before the record can be saved.

Examine the Credit Code Field

From the Customer Entry program, select Add.
Press [ENTER] to move past the Credit Code field.
Complete the record and press [ESCI.

Notice how the program accepts this record without a value in
the Credit Code field.

Quit from the Customer Entry program and the Form Painter.

Examine the cust.trg File

1.

Use vi to open the cust .trg file.

BREER R SR R R R R B R R R
Copyright (C)

All rights reserved.

Use, modification, duplication, and/or distribution of this
software is limited by the software license agreement.

Sccsid: %2% $M% %1% Delta: %G%

B R SR R R R R R R R R RS R R R 44
Screen Generator version: 4.11.UEl

#
#
#
#

input 1
after field phone
if p_stomer.phone is null
then
call fg_err(20)
let nxt_£f1d = "phone"
end if;

To this file, you will add your after_input trigger. It is impor-
tant to note that you can create triggers by hand using vi. You do
not need to build them using the Form Painter, although the
Form Painter makes it easier.

Exercise 10C 10-21

CASE Tools Training Course Workbook

2. Below the lastline (end if;) add the following custom logic:

after_input
if p_stomer.credit_code is null

then
error "You must £ill in the Credit Code field"
let nxt_£1d = "credit_code"

end if;

3. Save and exit cust.trg.

Merge Your New Trigger Logic

¢ At the UNIX prompt, run fg.make:
fg.make

Remember that fg.make (which is analogous to the Compile
4GL Code option under the Form Painter’s Run pull-down
menu) calls the Featurizer. The Featurizer is the utility that
merges trigger (*.trg) files into 4GL source code files.

Run the Customer Entry Program

* Run the Customer Entry program using one of the following
commands:

For RDS users:
fglgo i_cust.4gi

The Customer Entry program starts.

10-22 Managing Screen to Table Flow

- CASE Tools Training Course Workbook

Test Your after_input Logic

1.
2.

Select Add from the ring menu.

Fill in all the fields except the Credit Code field and press
[ESC].

Your error message appears and the cursor moves to the Credit
Code field:

Add: [ESC] to Store. [DEL] to Cancel. [TAB1 Next Window Help:
Enter changes into form LCTRLI-[w]
(Zoom)==

Customer Entry Screen

Customer Number: Credit Code: [l

Company Name: Sport 0 Bob’s Credit Desc:

Contact Name: Bob bannerwaver

City: Couple City State: CA Postal Code: 91111

Phone Number: 714 456 7890

Order Information

Order Number Order Date PO Number Shipping Charge

Enter company’s credit code

You must fill in the Credit Code field|

You cannot save this record until you enter a value in the Credit
Code field.

Enter a Credit Code value, save this record, and press Quit to
return to the UNIX command line.

Exercise 10C 10-23

CASE Tools Training Course Workbook

10-24 Managing Screen to Table Flow

11

Screen Handling and
Add-on Headers

Main topics:

B Using Different Screen Types
B The socketManager Function
B Linking in Add-On Screens

111

: CASE Tools Training Course Workbook

Using Different Screen Types

In chapter two, you learned about the different screen types you can
build using the Form Painter. These screen types are classified into
three groups:

1. Main Screens
2. Secondary Screens

3. Auxiliary Screens

Main Screens

A main screen constitutes the main part of your input program. There
are two main screen types: header and header /detail screens.

header: This is a flat type. Header screens contain one input area and
one main table.

header/detail: This is a flat type (header) with another scrolling
(detail) section joined to the header. Header /detail screens are suited
for order forms where there is one occurrence for customer informa-
tion and multiple line items for merchandise.

Secondary Screens

11-2

Secondary screens are not used as stand-alone data-entry screens.
Instead, they are called from the main screen. There are four second-
ary screen types: add-ons, extension, query, and view.

add-on header: This is a header screen used in conjunction with
another header or header /detail screen to provide an extra window
of fields. This screen type generates disk read and write functions.

add-on detail: This is a scrolling detail-only screen. This screen can
be called from any other screen to display detail information. This
screen type generates disk read and write functions.

extension: This is a special type of screen that enables you to include
an extension of the main header table or detail table. This screen
type shares data with the main screen.

Screen Handling and Add-on Headers

- CASE Tools Training Course Workbook

query: this screen is used for building an SQL query. It can replace
themlh_construct function.

view-detail: This is a detail-only screen that allows you to view data
but not alter it.

view-header: This is a flat screen used to view header information.

Auxiliary Screens

Auxiliary screens are unlike any other screen type. These types are
used in conjunction with the main screen and are basically used to
locate and select information.

browse: This is a scrolling type screen. Its main table is the same as
the header section main table. A browse screen enables you to view
one row of the header table per line rather than one row per screen.
Only one browse screen can be used per program.

zoom: This is a special type of screen that enables you to view and /or
retrieve data from another table (or set of tables which are "joined").

Linking Different Screen Types to the Main Screen

You can divide the input program creation process into two main
tasks: painting the form images and linking screens together. This
chapter shows you how to create and link add-on header screens.

In an earlier chapter, you learned how to link in zoom screens, and in
later chapters you will learn how to link in other secondary screens.

Linking in an add-on header screen requires you to create a special
trigger file. You call the socketManager function from within this
file.

Using Different Screen Types 11-3

CASE Tools Training Course Workbook

The socketManager Function

1-4

The socketManager function controls which code block or flow dif-
ferent screen types use. For every screen type, there exists default
library code that is processed when that screen type gets initiated.
When you link secondary screens to your main screen, you must use
the socketManager function to call the library code associated with
your secondary screen type.

The socketManager function syntax looks as follows:

socketManager ("screen_name", "gcreen_ type", flow")

screen_name This argument represents the form
specification (*.per) file less the .per extension.

screen_type This argument represents the screen type.
Valid screen types include: add-on header,
add-on detail, extension, query, view header,
and view detail.

flow Flow indicates a default block of library code
associated with each screen types. In most
cases, the flow is default. Extension screen
types, however, require you to specify
between one of three screen types: flat_ext
deep_ext, and view

’

Screen Handling and Add-on Headers

CASE Tools Training Course Workbook

Designing Add-On Header Screens

A value of zero
in the Customer
No. field
triggers an add-
on header
screen.

The program
user can quickly
enter
information
about a new
customer, in an
add-on header
screen, before
concluding
order entry.

Add-on header screens provide input fields to an additional table.
Many times, you may want users to add data to this table during the
data-entry process. While inputting orders a user might come across
an order from a new customer. When the Customer No. field is
assigned a zero, an add-on header screen appears, and the program
user can enter information about the new customer before entering
that customer’s order.

Update: [ESC] to Store. [DEL] to Cancel. [TAB] Next Window Help:
Enter changes into form [CTRLI-Lw]
(Zoom)==

Order Form
Customer No.: [[Contact Name:
Company Name:

Address:
City/St/Zip: Telephone:

Order Date: 01/04/94 PO Number: 0 Order No: 1254

Shipping Instructions:

Item Description Hanufacturer Qty. Price Extension
Order weight: 80.00 Freight: $4.50
Order Total: $4.50
Enier the customer code.
Add: [ESC] to Store., IDEL] to Cancel Help:
Enter changes into form [CTRLI-Lw]
CUSTOMER FORM
Number :
Ouner Nome N
Company :
Address
City : State: Zipcode:
Telephone

Designing Add-On Header Screens 11-5

: - CASE Tools Training Course Workbook

Building Add-On Header Screens

To build an add-on header, use the Form Painter to create the form
image (select add-on header as the screen type). After you define the
form image, save it to a form specification (*.per) file.

Linking in Add-On Header Screens

To link in your add-on header, you must create a trigger file that con-
tains both the switchbox_items trigger and one or more initiating
event triggers, such as an after_field trigger. For more on trigger
files, see "Creating Triggers" on page 9-4.

You can use either the Form Painter or a text editor to create this trig-
ger file. For it to work correctly, you must specify four pieces of infor-
mation:

1. The name of the add-on header file, less the .per extension.

2. The trigger or event that initiates the add-on header screen. For
example, the add-on header discussed on the previous page was
initiated when the Customer No. field contained a value of zero.

3. The condition in which the add-on header screen is called. You
specify condition settings with the fgStack_push function. All
add-on header screens require you to set three attributes with the
fgStack_push function: mode, filter, and order by.

4. The socketManager function.

In addition, your trigger file should be named after the main screen
from which the add-on header gets called. For example, if the main
screen is defined in the order . per specification file, the trigger file
where you link your add-on header should be named order . trg.

11-6 Screen Handling and Add-on Headers

-+ +CASE Tools Training Course Workbook

The following code illustrates a switchbox_items trigger and an
after_field trigger. Together these triggers specify all the infor-
mation necessary to link in the cust . per add-on header screen.

default
switchbox_items switchbox_items
trigger cust S_cust;
input 1
aﬂenfﬁew after_field customer_num
trigger if p_orders.customer_num=0
then
three calls to call fgStack_push("A")
fgStack_push call fgStack_push("")
a call to call fgStack_push("")
socketManager call socketManager ("cust", "add-on header", "default")
end if;

Using the example, you can see where each piece of information nec-
essary to link in the add-on header screen gets supplied.

The default section contains the switchbox_items trigger. This
trigger requires two arguments: the add-on header form specification
file name (less the *.per extension) and the screen function. (The

screen function name is always an S_ followed by the form specifica-
tion file name.) '

default

switchbox_items
cust S_cust;

The input 1 section contains the trigger or event that initiates the
add-on header screen. In the example, an after_field trigger ini-
tiates the add-on header screen.

input 1
after_field customer_num

In addition, the input 1 section contains the fgStack_push func-
tion, which sets add-on header conditions. For add-on header

screens, you need to call this function three times. Even if you do not
want to set some of these conditions, you still must pass this function

three times passing null values for the conditions you do not want to
set.

Designing Add-On Header Screens 11-7

.= CASE Tools Training Course Workbook

11-8

The first call indicates the mode that the add-on header screen starts
in. An A indicates add mode. You can also specify a U for update
mode.

call fgStack_push("A")

The second call indicates the selection filter. If you are opening your
add-on header in update mode, you can pass it a filter indicating
which records you want updated.

call fgStack_push("")

The last call relates to both update mode and the filter you specify. It
constitutes an order by clause. If your filter selects multiple records,
you can order those records by the criteria you specify in the third
fgStack_push function call.

call fgStack_push("")

Finally, this section calls the socketManager function, which desig-
nates the correct flow for your add-on header screen.

call socketManager("cust", "add-on header", "default")

Screen Handling and Add-on Headers

CASE Tools Training Course Workbook

Section Summary

You build input programs based on many different screen types.
Each type has its own function.

In all there are ten screen types. These ten types can be classified
into three groups: main, secondary, and auxiliary.

When you build input programs you must first create the form
images and then link these images together using the socket -
Manager function.

The socketManager function controls which code block or flow
different screen types use. For every screen type, there exists
default library code that is processed when that screen type gets
initiated. When you link secondary screens to your main screen,
you must use the socketManager function to call the library
code associated with your secondary screen type.

Add-on header screens provide input fields to an additional
table. Many times, you may want users to add data to this table
during the data-entry process.

To build an add-on header, use the Form Painter to create the
form image (select add-on header as the screen type). After you
define the form image, save it to a form specification (*.per) file.

To link in your add-on header, you must create a trigger file that
contains both the switchbox_items trigger and one or more
initiating event triggers, such as an after_field trigger.

Section Summary 11-9

..~ CASE Tools Training Course Workbook

Exercise 11A

Objective: To become familiar with add-on header screens.

Add-on header screens provide additional data-entry screens that can

be incorporated into your input programs. These screens write to
tables other than the header or detail table.

Recall that in Exercise 3, you created the Credit Entry program. You
later built a hot key to initiate this program from within the Customer
Entry program. Add-on header screens provide much the same func-
tionality, but they are further integrated into your base program.

Run scr_demo 5

The screen demonstration five program shows a good example of an
add-on header screen.

1. Atthe UNIX prompt type:
scr_demo 5
2. From the Screen Demo prompt compile, generate, and run:
fg.screen -00 -y
fg.make
fglgo screenb5.4gi

Screen demo 5 starts.

11-10 Screen Handling and Add-on Headers

CASE Tools Training Course Workbook

Add a Customer

1.

3.

Select Add from the ring menu and enter 0 into the Customer
Number field.

An add-on header screen appears, which looks similar to your
Customer Entry program.

Add: LESC] to Store, [DEL] to Cancel Help:
Enter changes into form ECTRLI-[w]

CUSTOMER FORM

Number

Quner Neme ¢ NN
Company :
Address :

City : State: Zipcode:
Telephone

This screen lets you add another customer record to the cus-
tomer table.

Fill in the Customer Form and press [ESC].

You've just added a new customer on the fly. Notice how back on
the Order Form, the new customer number is returned and
placed in the Customer Number field.

Complete the Order Form and press [ESC] to save it.

Add a Navigation Event

Add-on headers can also be used to update customer information in
addition to creating new customer records.

1.

2
3.
4

Use Find to select the record you just added.
Select Update to update this record.
Press [CTRL]-[g] to open the Navigate pop-up menu.

Select Add a navigation action.

Exercise 11A 11-11

CASE Tools Training Course Workbook

5. Complete the Navigate Commands window as follows:

In This Field Type This
Action Code update_cust
Description Update a Customer

6. Leave the other fields as they are and press [ESC].
7. Select the Update a Customer event from the Navigate menu.

The Customer Form add-on header screen reappears.

Update: [ESCT to Store. [DEL] to Cancel Help:
Enter changes into form L[CTRLI-[w]

CUSTOMER FORM

Number : 3516

Owner Name - I Voreon

Company : Big Red Sports

Address : 123 St James AVE

City : Redbluff State: CA Zipcode: 90034
Telephone : 712-543-4567

8. Change this customer’s address and press [ESC].
Notice how the address is updated on the Order Form screen.

9. Press [ESC] to save this change and Quit out of the Order Form
program.

10. Exit screen demonstration five (type exit at the Screen Demo
prompt) and return to your i_cust.4gs directory:

cd $HOME/labs/aw.4gm/i_cust.4gs

11-12 Screen Handling and Add-on Headers

CASE Tools Training Course Workbook

Exercise 11B

Objective: To create and use your own add-on header screen.

This add-on header will let users enter sales representatives to a new
table from within the Customer Entry program.

To complete this exercise, you must perform the following major

steps:

1. Add a column named sales_code to the customer table.

Add a Sales Code field to your Customer Entry program.

Create a new table called salesrep.

2
3
4. Create an add-on header screen based on the salesrep table.
5

Incorporate this screen into your Customer Entry program.

Add a Column

If you haven’t done so already, move to your i_cust . 4gs directory.

1. Start the Form Painter and select Database from the File menu.

The Database option, as you recall, lets you change the structure
of your database. You can add, delete, and alter the columns in a

table.

2. Find the customer table and add the sales_code column.

- Column Name -——————- Description
city City
state State
zipcode Zip Code
phone Phone Number
credit_code Credit Code
sales_code Sales Person Code
Enter the data type for this column.

Type

char(15)
char(2)
char(5)
char(18)
char(3)

fehar (2)

3. Save this addition and press Quit to return to the Form Painter.

Exercise 11B 11-13

: CASE Tools Training Course Workbook

Add a Field

1. Back in the Form Painter, open your cust form file.
2. Add the Sales Code field to your Customer Entry form.

Probably the best location for this field is just above the Order
Information detail section. Use Mark, Cut, and Paste to return the
Phone Number field to its original location (below the Contact
Name field). Then add the Sales Code field. Define this field
using the following settings:

Table Name: customer
Column Name: sales_code
Input Area: 1

Entry ?: Y

Message: Enter sales code

When you're finished, your form should look as follows:

Form Editor: [ESCI or IDEL] Command Line LCTRLI-Lw] Help
Press [CTRLI-Lz] to update definition for field “sales_code”
(stores) (cust/1) (Zoom)==(insert)==(8,13)===

Customer Entry Screen

Customer Number:[h] Credit Code:[1]

Company Name:[1 Credit Desc:L]
Contact Name:[1C i}

Phone Number:[1

City:[] State:[1 Postal Code:L]

Sales Code :[lil}3

Order Information

Order Number Order Date PO Number Shipping Charge
L] L] L] L 1
L 1 £ 1 L] £ 1
L] [1 C] L]
L] L] C] C]

Enter sales code

3. Select Save Form from the File pull-down to save this change.

11-14 Screen Handling and Add-on Headers

- CASE Tools Training Course Workbook

Function of an Add-On Screen

At this point, you could rebuild your Customer Entry program and
start entering a sales person code for each customer. But this would
simply be meaningless data; you could enter any characters into this
field, none of which would stand for anything useful.

A better approach is to build an add-on screen based on a separate
table. This table can contain information that is relevant to the sales
code. You could add informative columns to this table, such as the
sales person’s name and rate of commission.

Add a New Table

Once again select Database from the File pull-down menu.

1. Select Add from the ring menu and create the following entry:

Action:[} [EEER Update Delete Find Browse Nxt Prv Tab Options Quit
Create a new document

Table Information

Table Name : salesrep
Description: Sales Person Information
Unique Key : sales_code

Ouner : brianh
Created I ORRRRRHER
Yersion 1

- Column Name —————-- Description Type
sales_code Sales Person Code char(2)
sales_name Sales Person Name char(20)
comm_code Commision Code char(6)

(Mew Document)

2, Press [ESC] to save this table, but remain in the Table Informa-
tion window.

Note You may receive a Warning message about the Unique Key field. If
so, simply press OK to continue.

Exercise 11B 11-15

. CASE Tools Training Course Workbook

Use AutoForm

Once salesrep is built, you can use the AutoForm option to build a
default data-entry screen based on salesrep.

1. Select the Options command and then choose AutoForm.

fAction:] Add Update Delete Find Browse MNxt Prv Tab Quit
Additional options

Options:] Quit

Generate a default form into the clipboard

A default entry screen is built and placed on the Clipboard in the
Form Painter.

2. Select Quit from the ring menu to return to the Form Painter.

Create a New Add-On Header Form

1. Select New from the Form Painter’s File pull-down menu.
2. Name the new form "reps."

3. Select add-on header as the screen type.

4. Place the following title on the top line of the form:

Sales Person Add-On Screen

Paste in the AutoForm

Now add the default AutoForm image.

1. After you add the title line, press [CTRL]-[p] to add the Auto-
Form image.

A form built from the salesrep table appears. You can use the
arrow keys to position in on your screen.

11-16 Screen Handling and Add-on Headers

CASE Tools Training Course Workbook

2.

"Tack" the image down by pressing [ESC].

Form Editor: [ESC] or EDEL] Command Line CCTRLI-Ew] Help
Update data entry image
(reps) (Zoom) (2.1)====
Sales Person Add-On Screen
B Sales Person Information
Sales Person Code:[]
Sales Person Name:[]

Commision Code H]

As you can see the AutoForm image also contains a title line. You

can delete this extra title line with the [F2] key.

Place your cursor on the first character of the extra title line and

press [F2].

When complete, your reps form should look as follows:

File Define Run Help

(reps)

Sales Person Add-On Screen

Sales Person Code:[1]
Sales Person Name:[]
Commision Code H 1

Exercise 11B 11-17

CASE Tools Training Course Workbook

Generate Code

Once you save your reps add-on form, you can generate code for it.

® Select Generate 4GL from the Run pull-down menu.

At this point, you do not have to compile it.

Instead, use the Form Painter to reopen your cust form.

Incorporate Your reps Add-On

After reps is built, you need to attach it to your to your Customer
Entry program. You attach add-on screens using triggers.

For your Customer Entry program, you will build custom logic in an
after_field trigger. This trigger will evaluate your Sales Code
field. When this field contains an xx value, it will call your add-on.

1. Inyour cust form (i.e,, your Customer Entry screen), build the
following after_field trigger:

Update: [ESC] to Store. [DEL] to Cancel Help:
Enter changes into form LCTRLI-[w]
(Zoom)==

Input 1 Trigger: after_field sales_code

if p_stomer.sales_code = “xx”
then

call fgStack_push("A")

call fgStack_push("")

call fgStack_push("*)

call socketManager(“reps”. “add-on header”. "default™)
end if

2. After you create this trigger, select Save Trg File from the File
pull down menu.

3. Once your trigger is saved, select Compile 4GL Code from the
Run pull-down menu.

Don'’t try to run your program yet, it won’t work until you com-
plete the next exercise.

11-18 Screen Handling and Add-on Headers

Working with
Switchboxes

Main topics:
M Switchbox Overview
B How do Screens Get Into Switchbox

M Zooms and Switchboxes

12

121

. CASE Tools Training Course Workbook

Switchbox Overview

generated code features Switchbox logic. In general terms, a
Switchbox manages flow control between library functions and local
functions. defines two types of Switchboxes:

1. Screen-Level Switchbox

2. Function-Level Switchbox

Screen-Level Switchbox

12-2

The screen level switchbox resides inmain. 4g1l and passes control
to the appropriate program screen. Screen-level switchbox is con-
trolled by the switchbox function. This function reads the value in
the global scr_id variable. The scr_id variable can contain any valid
form specification file in your program less the .per extension. For
example, your input program might contain the following form spec-
ification files:

Filename Screen Type scr_id Value
browse.per browse browse
cust .per add-on header cust
cust_zm.per zoom cust_zm
order.per header /detail default
stockzm.per zoom stockzm

As you can see, your header /detail screen (or main screen) receives
default as its scr_id value. If your program contained a header
screen instead of a header/detail screen, the header screen would
receive default as its scr_id.

Depending on the value in scr_id, flow is passed to the function
level Switchbox.

Working with Switchboxes

- CASE Tools Training Course Workbook

Function-Level Switchbox

The function-level switchbox determines what happens next. For
each form specification file in your program (i.e., for each screen used
by your program) a function-level switchbox is generated. The func-
tion-level switchbox reads the value in the scr_funct variable. Once
this value is read, the function level switchbox uses a large case state-
ment to determine the appropriate action.

When the Screen Code Generator creates each function-level switch-
box, it names the swichbox after the form specification file or scr_id
that it relates to. The only exception being header and header/ detail
form specification files. These files use the 1ib_screen function as
their function-level switchbox.

For example, if the scr_id variable equals cust_zm, a cust_zm
function is generated in the cust_zm.4g1 file. This function con-
tains all the possible actions that can take place from within the
cust_zm screen.

The following code illustrates an example cust_zm switchbox func-
tion.

FEEE AR R B S B R S G R R R R R R R R
function cust_zm()
FEEE A R R R R S B R R SR SR S R A R R R B R S
This is a screen function switching mechanism.
It’s job is to route requests from the screen manager
to the appropriate local function.
#

#_define_var - define local variables

define

no_function smallint # true if scr_funct not in case

statement

#_err - Trap fatal errors
whenever error call error_handler

#_flow_init - initialize flags
let no_function = false

#_switchbox - Screen switchbox function
case
#_case - case statement

#_init - init function

when scr_funct = "init" call Acust_zm()
#_read - disk read function

when scr_funct = "read" call Rcust_zm()
#_key - build unique key function

Switchbox Overview 12-3

CASE Tools Training Course Workbook

12-4

when scr_funct = "build key" call Kcust_zm()
#_close - close function

when scr_funct = "close" call Zcust_zm()
#_dsp_arr - display array function

when scr_funct = "display array" call Dcust_zm()
#_construct - comstruct function

when scr_funct = "construct" call Qcust_zm()
#_after_query - ‘after construct’ function

when scr_funct = "after_query" call AQcust_zm()
#_get_filter - Get the persistent filter

when scr_funct = "get sticky" call GFcust_zm()
#_set_filter - Set the persistent filter
when scr_funct = "set sticky® call SFcust_zm()

#_otherwise - otherwise clause
otherwise let no_function = true
end case

#_flow_close - check no_function status
case
#_no_function - no function found
when no_function
let scratch = "no function"
#_reset - function was found, reset scratch
when scratch = "no function”
let scratch = null
#_flow_close_otherwise - otherwise clause
end case

end function
cust_zm()

As you can see from the sample code, there are several logical points
within a switchbox function. The extended case statement provides
several code points that you can customize using triggers or block
commands (see "Creating Triggers" on page 9-4 and "Block Com-
mands" on page 18-3).

Working with Switchboxes

. CASE Tools Training Course Workbook

How Screens Get Into Switchbox

The screen level switchbox function, which actually uses the name
switchbox, determines which program screen is active and selects
the correct program flow based on the active screen. The switchbox
function evaluates the value in scr_id to know which screen and thus
which series of code to process. For this reason, it is important that
you define the links between your main program screen and your
secondary screens accurately. In chapter 11, you learned how to link
an add-on header screen to a main screen using the
switchbox_items trigger, an after_ field trigger, the
fgStack_push function, and the socketManager function. By
using the switchbox_items trigger, you declared your add-on
header screen to the scr_id variable. In essence, you made the
switchbox function aware of your add-on header screen.

For the screen level switchbox function to work, you must make
sure that all your secondary screens get linked in properly using the
switchbox_items trigger.

Code to place zoom screens into the switchbox function gets gener-
ated automatically. When the Screen Code Generator reads a zoom
attachment (i.e., the zoom= line in the form specification (*.per) file),
it places not only the library function that invokes the zoom screen,
but also the entry into the switchbox function. The Screen Code
Generator adopts responsibility for placing all zoom support logic
into code.

The main program screen (your header or header /detail) also gets
placed in automatically when you run the Screen Code Generator.

How Screens Get Into Switchbox 12-5

CASE Tools Training Course Workbook

The switchbox_items Trigger

12-6

You make screens known to the switchbox function with the
switchbox_items trigger. The switchbox_items trigger uses the
following syntax:

default
switchbox_items
screen_name screen_function_name

Here is an example of an add-on screen being placed into the
switchbox function by the switchbox_items trigger:

default
switchbox_items
cust S_cust ;

The above code, placed in a trigger (*.trg) file results in the following
line added to switchbox in main.4gl:

when scr_id = "cust" call S_cust()

If a request is passed to switchbox by a library function and the
switchbox function does not know the screen to pass it to, then the
following error message appears:

Screen not attached to program

Working with Switchboxes

CASE Tools Training Course Workbook

Section Summary

Numerous screens combine to constitute an input program. All
programs have a main screen (called the "default" screen) which
is either a header or header/detail type screen. Other screens
such as zoom screens and add-on header screens are attached to
the main screen.

All screens that interact with an input program must be known to
the switchbox function. The switchbox function constitutes
the screen-level switchbox. There is also a function-level
switchbox. Both types of switchbox functions exist in every
input program.

Library functions pass generic requests to local code via the two
switchbox function levels. The first switchbox level (the
screen level) uses the switchbox function. Its job is to receive
the request from the library functions and determine which pro-
gram screen to use. The switchbox function is generated in
local code and placed in the main.4g] file.

The second switchbox level (the function level) evaluates the
screen-level request and passes control to the appropriate low-
level function, which handles the request. The low-level function
contains all the code to process the request. When complete, pro-
gram control returns to the library function.

The second-level switchbox contains functions with a variety of
names. The 1ib_screen function is the second-level switch-
box function for the main screen. This function handles requests
including highlighting fields and recording values.

Since the switchbox function passes requests based on the pro-
gram screen, all screens interacting with the input program must
be "known" to the swit chbox function. In other words, all
screens must have logic in switchbox so that when a request is
passed to the switchbox function, it knows where to pass the
request.

You can use the switchbox_items trigger to make your screen
known to the switchbox function. Thus, when requests to per-
form something to your screen are received by the switchbox
function, it can direct control to the appropriate code.

Section Summary 12-7

CASE Tools Training Course Workbook

Exercise 12

Objective: To create a switchbox_items trigger that "links" the
Sales Person add-on screen to the Customer Entry screen.

Examine main.4g|

12-8

Had you tried to run your Customer Entry program at the end of
Exercise 11, and attempted to access your new add-on screen, the fol-
lowing error message would have occurred:

Screen not attached to program
1. Exit the Form Painter and use vi to openmain.4gl.
2. Search for the switchbox function.

FEEE R R R R R FR R R R R R R R R R R R B R R B
function switchbox(funct)
FERR SRR HA AR R HE R BRI B R R R R R R R B B R R R R R B R R
This is the switchbox function for version 4.11.UEl screens.
It is used to pass flow control to the appropriate screen function.
#
#_define_var - define local variables
define
#_local_var - local variables
funct char(20) # Function to pass on to the screen

#_post_scr_funct - Post the current function
let scr_funct = funct

#_switchbox - Pass flow control to appropriate screen
case
when scr_id = "cred_zm" call cred_zm()
when scr_id = "default" call lib_screen()
#_otherwise - otherwise clause
otherwise let scratch = "no screen"
end case

#_scr_funct - Reset scr_funct upon return
let scr_funct = "®

end function
switchbox ()

This function contains a "flow control" case statement that is
based on the scr_id variable. As you can see, your reps add-on
header screen is not yet a part of this statement. Before your add-

Working with Switchboxes

CASE Tools Training Course Workbook

on header screen works properly, you have to create a special
trigger, known as the switchbox_items trigger. This trigger
makes your add-on header screen known to switchbox.

Add the switchbox_items Trigger

The switchbox_items trigger creates a "when" clause in the
swichbox function. This trigger goes in the "defaults” section of the

trigger file.
1. Start the Form Painter and open your cust form.
2. Select Triggers >> from the Define pull-down menu.
The Choose a Trigger Class box appears.
3. Select Default as the Trigger Class.
The Choose a Trigger list box appears.
4. Select switchbox_items trigger.
The editing window appears.
5. Add the following line then save your trigger (select Save Trg
File then Save Form from the File pull-down menu).
Enter chonges into Fora o et fEre

(Zoom)==

Default Trigger: switchbox_items

reps S_reps

The first value (in this case reps) represents the name of your
add-on header screen. The second value (S_reps) represents the
name of the function that will control your screen.

Exercise 12 12-9

CASE Tools Training Course Workbook

6. Compile and run the Customer Entry program.

What happens when you type xx in the Sales Code field? You
should see the Sales Person add-on screen.

Add: [ESC] to Store. [DEL] to Cancel Help:
Enter changes into form LCTRLI-[w]

Sales Person Add-On Screen

Sales Person Code: ||
Sales Person Name:
Commision Code

Sales Code:

Order Information

Order Number Order Date PO Number Shipping Charge

Enter sales code

12-10 Working with Switchboxes

13

Working with Program
Events

Main topics:

B Program Event Overview

B Program Event and Hot Key Tables
B The on_event Trigger

B The at_eof Trigger

13-1

CASE Tools Training Course Workbook

Program Event Overview

Program events are either internal or external actions that you can
execute from within an input program. You can suspend your input
program at any moment and run a program event.

You can add program events to your Navigation menu, which you
activate with [CTRL]-[g]. You can also map program events to hot
keys.

External and Internal Events

As mentioned above, program events are classified either as external
events or internal events.

Events that contain UNIX operating system commands constitute
external events.

Events that issue Informix commands are internal. Internal events
can be further classified into local and global events.

Local and Global Events

13-2

A local event is an internal event that is executable only on one por-
tion of the screen. An event that is "local to the header" can only be
executed on the header portion of the screen. Whereas "local to the
detail" specifies an event that only takes place on the detail portion of
the screen.

A global event is an internal event that is executable from anywhere
on the screen. A global event can be executed on the header or detail
portions of the screen, from the ring menu, from a zoom screen, an
add-on screen, etc.

Working with Program Events

- CASE Tools Training Course Workbook

Program Event and Hot Key Tables

All events and hot keys that you set up are kept in reference tables in

the database.

Navigation Event Reference Table

Program events are kept in the Navigation Event Reference table,
which goes by the name stxactnr.

language

act_key

description

os_command

press_enter

Holds the language variable for the event,
such as [ENG] for English.

Holds the event name. When you define
events, you specify a value in an Action Code
field. Whatever value you specify gets placed
in this column.

Holds a description of your program event.

Holds the operating system command
associated with your program event (for
external events only).

Holds a Y/N value. When your event
completes, you can set a prompt to appear
before returning to the input program. The
"Press Enter to Continue" prompt gives you
an opportunity to check error messages if an
error occurred during event execution.

An internal event does not contain a value in the os_command col-
umn and it sets the press_enter column to N.

Program Event and Hot Key Tables 13-3

+ CASE Tools Training Course Workbook

Navigation Event Detail Table

All the program events that you set up are also kept in the Navigation
Event Detail table, which uses the name stxnvgtd. This table speci-
fies what program and user the event is associated with.

act_key

line_no

nav_module
nav_prorgram

nav_user

Holds the event name. When you define
events, you specify a value in an Action Code
field. Whatever value you specify gets placed
in this column.

Holds the line number value for the program
event.

Holds the module name for the event.
Holds the program name for the event.

Holds the user name for the event. This value
can be set to all or specify a single user.

Hot Key Definitions Reference Table

The Hot Keys Reference table assigns a unique number to most con-
trol keys and function keys. Control keys correspond with the order
the letters appear in the alphabet. Function key number start with
101. This table has two fields: key_code and key_desc. The follow-
ing list shows some default hot key entries:

13-4

key_code
[2]

[51]

[6]
[101]
[102]
[103]

Working with Program Events

key_desc
[[CTRL}Hb]
[CTRL]-[e]
[CTRL-[f]
[F1]

[F2]

[F3]

. CASE Tools Training Course Workbook

Hot Key Definitions Detail Table

The stxhotkd table maps program events to control or function
keys. It contains the following columns.

hot_key Holds the numeric hot key value.

act_key Holds the event name. When you define
events, you specify a value in an Action Code
field. Whatever value you specify gets placed
in this column.

hot_module Holds the module name for the hot key.
hot_program Holds the program name for the hot key.
hot_user Holds the user name for the hot key.

Program Event and Hot Key Tables 13-5

CASE Tools Training Course Workbook

The on_event Trigger

13-6

The on_event trigger lets you place custom logic for an internal
event into your program code. The on_event trigger uses the fol-
lowing trigger:

on_event event_name
informix_instruction... ;

For example, the following on_event trigger displays a message
when the show_message event takes place:

on_event show_mesgsage
display "intermal event logic"
sleep 3 ;

The event name, which is show_message in the above example, cor-
relates with the act_key value in the stxactnr table and the
Action Code field in the navigation window.

You must decide what section of the trigger file your on_event trig-
ger belongs. Depending on the section, the on_event trigger goes
into a different source code file.

defaults Puts the trigger code into a global_events
function in main.4gl.

input 1 Relates to the header portion of your main
screen. The trigger code is placed in
header.4gl.

input 2 Relates to the detail portion of your main

screen. The trigger code is placed in detail.4gl.

Working with Program Events

CASE Tools Training Course Workbook

The at_eof Trigger

The at_eof trigger places whatever you put in it at the end of a file.
It is commonly used for putting in functions that your write or library
functions that you customize. The following at_eof trigger illus-
trates a custom function:

at_eof

BRI R R B R R R R R R R R S
function my_funct ()

BRI R B R R R S E R R R

display “this is my own personal function”
sleep 3

end function
my_funct

There are three common uses for the at_eof trigger:

1.
2.

Adding custom functions.

Modifying library functions.

Library functions exist outside your program directory. They are
shared by many programs. If you modify a library functions in
the library, you change how it works throughout all your applica-
tions. It is much safer to alter library functions in your local direc-
tory using the at_eof trigger. Even though this creates two
functions with the same name, the function in the local directory
takes precedence.

Modifying a locally generated function.

By placing a locally generated function into your trigger file you
can modify it, but the original function still exists in source code.
You must use a do_not_generate trigger to keep the original
function from generating. For example if you alter them1lh_-
clear function in your trigger file, add the following do_not_-
generate trigger as well.

do_not_generate
mlh clear;

The at_eof Trigger 13-7

..~ CASE Tools Training Course Workbook

Section Summary

13-8

Events have instructions attached to them. You can execute
events at any time within a program. All events may be viewed,
setup, and executed via the Navigation Menu, which you access
by typing [CTRL]-[g].

Any event can be mapped to a hot key. Once mapped to a hot key,
the user can press the hot key to execute the event.

External events have operating system instructions attached to
them.

Internal events have Informix instructions attached to them.

Local events are internal events that can only be executed on one
portion of the screen (either the header or detail).

Global events are internal events that can be executed on any por-
tion of the screen: header, detail, or ring menu.

All events are set up as rows in two tables: the Navigation Event
Reference table (stxactnr) and the Navigation Event Detail
table (stxnvgtd).

All hot key mappings are set up as rows in two tables: the Hot
Key Definition Reference table (st xkeysr) and the Hot Key Def-
initions Detail table (st xhot kd).

The on_event trigger is used for placing Informix instructions
for a local event into generated code.

The at_eof trigger is used to add code at the end of a file. You
can modify library functions so that they behave a certain way
just for the program you are running. You can even use the
at_eof trigger to modify a function generated in local code, but
if you do, you must use the do_not_generate trigger to pre-
vent the original function from being created.

Working with Program Events

CASE Tools Training Course Workbook

Exercise 13A

Objective: To add a simple internal event to your Customer Entry
program. This event will display a message to the bottom of the
screen.

Add a Navigation Event

1. Start your Customer Entry program.
2. Press [CTRL]-[g] to display the Navigate menu.
3. Select Add a navigation action from the Navigate menu.

The Navigate Commands window appears.

Update: TESC] to Store, [DEL] to Cancel Help:
Enter changes into form [CTRLI-[w]

Navigation Commands

Action Code: MMM

Description:
Operating system command:

Press ENTER upon return ? N
Access from other programs? N
Allow access for others ? N

Enter a unique identification code.

4. Create and save the following Navigate Commands entry:

Navigation Commands

Action Code: display_test
Description: Run Test Display
Operating system command:

Press ENTER upon return ? N
Access from other programs? Y
Allow access for others 2 N

Exercise 13A 139

2.+ CASE Tools Training Course Workbook

Insert an on_event Trigger

Now you will build an on_event trigger to add logic that drives the
event you just created. When your user selects the event, the custom
logic is run.

1. Quit the Customer Entry program and use vi to edit your
cust.trg file.

Note Remember, there are two ways to build triggers. You can use the
Form Painter, or you can build them manually using vi.

FEPERE R R SRR B R B SR R B R
Copyright (C)

All rights reserved.

Use, modification, duplication, and/or distribution of this

software is limited by the software license agreement.

Sccsid: %Z% %M% %I% Delta: %G%

FREF R AR SRR R R R R R R R R B A R R R B R R
Screen Generator version: 4.11.UEl

defaults
switchbox_items
reps S_reps;

input 1
after_field phone
if p_stomer.phone is null
then
call fg_exrr (20)
let nxt_£f1d = "phone"
end if;

after_field sales_code
if p_stomer.sales_code = "xx"
then
call fgStack_push("A")
call fgStack_push("")
call fgStack_push("")
call socketManager ("reps", "add-on header", "default™")
end if;

after_input
if p_stomer.credit_code is null

then
error "You must fill in the Credit Code field"
let nxt_fld = "credit_code"

end if;

As you can see, you have already defined several triggers.

13-10 Working with Program Events

+ CASE Tools Training Course Workbook

2,

3.

4.

Use vi to add the following lines of code to the bottom of
cust.trg.
on_event display_test
let scratch = "Hello World"
call lib_message("scr_bottom")
sleep 3;
Save cust.trg and use fg.make to compile.

When complete, run Customer Entry.

Add a Record

1.
2,

Select Add from the ring menu.
While in the header portion of the screen, press [CTRL}-[g].
Select Run Test Display from the Navigate menu.

What happens? You should see the Hello World message on the
bottom of your screen.

Hello Horld]

Now move to the detail portion of the screen.
Press [CTRL]-[g] again and select Run Test Display.

What happens this time? You don’t see a message appear because
the display_test action is only defined for the header portion
of the screen (i.e., Input Area 1). Your next step is to make this a
global event, i.e., an event accessible from anywhere within your
Customer Entry program.

Exercise 13A 13-11

::: CASE Tools Training Course Workbook

Exercise 13B

Objective: To convert the display_test eventinto a global event.

Move the on_event Trigger

1.
2.

Quit from your Customer Entry program and vi cust .trg.

Move the entire on_event trigger from the input 1 section of
the trigger file to the defaults section.
defaults

switchbox_items

reps S_reps;

on_event display_test

let scratch = "Hello World"®
call 1lib_message("scr_bottom")
sleep 3;

As you can see, you already have a switchbox_items trigger
in this section. Place your on_event trigger directly below it.

Save the cust . trg file and compile the code (£g.make).

Run Customer Entry and test your on_event trigger from differ-
ent portions of your screen.

Can you display the Hello World message from the ring menu?
From the header section? From the detail section?

When you are finished testing this trigger, quit from Customer
Entry.

13-12 Working with Program Events

CASE Tools Training Course Workbook

Exercise 13C

Objective: To use the at_eof trigger to disable a ring menu option.

You will use the at_eof file trigger to add custom logic to the
ok_delete function. This function is called when the user selects the
Delete ring menu command.

Under normal conditions, the ok_delete function returns true. You
are going to alter ok_delete so that it returns false.

Add an at_eof Trigger

1. Use vi to open your cust.trg file.

2. In the defaults section add the following at_eof trigger.

at_eof
function ok_delete()
let scratch = "You are unable to delete a record"
call lib_message("scr_bottom")
sleep 3
return false
end function;

3. Save your trigger and compile the code.
4. Run Customer Entry.
5. Select a record and then try to delete it.

What do you see? Your message should appear at the bottom of
the screen, and you should be unable to delete the record.

Exercise 13C 13-13

CASE Tools Training Course Workbook

13-14 Working with Program Events

14

Creating Pop-Up Menus

Main topics:

B Pop-Up Menu Overview

B Assigning Pop-Up Menus to Program Events

B Initiating Secondary Screens from Pop-Up Menus

14-1

. .. - CASE Tools Training Course Workbook

Pop-Up Menu Overview

Textput

Textpick

Pop-up menus provide program users with a list of program options.
You can think of a pop-up menu as a single column zoom screen. If
you have used the Form Painter, you have already seen and used
many pop-up menus.

To create a pop-up menu, you have to answer three questions:
1. What items go on the menu?

2. What happens when a user selects an item?

3. What action initiates the pop-up menu?

You can use the textput () and textpick () functons to answer
the first two questions. The final question depends on how you want
your program to operate.

This function loads the items that appear on a pop-up menu. It is
called once for each item on the menu. The following example places
three items on the pop-up menu:

call textput("Add a Contact")
call textput("Update a Contact")
call textput("Delete a Contact")

This function displays the pop-up menu with all of the items on it.

call textpick("Select an Option")
returning item

It also assigns each item a value according to the items position on the
menu (i.e., the top item is assigned number one). When the user
selects an item, the value corresponding to that item is returned (so if
the user selects the top item, 1is returned). In the above example, the
numeric value gets placed into the item variable. You must declare a
variable before you can use it in a returning statement. To declare a
variable, you can use the def ine trigger. For example:

14-2 Creating Pop-Up Menus

CASE Tools Training Course Workbook

defaults
define
item smallint;

You can follow the textpick () function with a case statement that
describes what should take place when an item is selected by the
user. For example:

case
when item = 1
call add_contact()
when item = 2
call upd_contact()
when item = 3
call del_contact()
end case;

Initiating a Pop-Up Menu

There are a number of ways to initiate a pop-up menu. You can use a
trigger, such as an after_field trigger or a program event that is
assigned to a hot key. For example, the code to initiate this pop-up
menu is placed in an after_field trigger:

input 1
after_field customer_no

call textput("Add a Contact")
call textput("Update a Contact")
call textput("Delete a Contact")

call textpick("Select an Option®)
returning item

case
when item = 1
call add_contact()
when item = 2
call upd_contact()
when item = 3
call del_contact()
end case;

When the user presses [ENTER] from on the customer_num field,
the pop-menu appears.

When a menu item is selected, the appropriate function is called. For
example when a user selects "Update a Contact" from the menu, the
The upd_contact () function is called.

Pop-Up Menu Overview 14-3

-+ CASE Tools Training Course Workbook

Assigning Pop-Up Menus to Program
Events

Sometimes you might want to make a pop-up menu available
throughout the header or detail portion of an application. If this is the
case, you can define a program event and initiate your pop-up menu
with an on_event trigger.

For example, suppose you want to display the same pop-up window
every time the user presses [F6] from within the header section.

First define a program event called popup and map it to the [F6] key
(see "Mapping Hot Keys to Navigation Events" on page 7-10).

Next, create an on_event trigger that initiates the pop-up menu
when the [F6] key is pressed. Put this on_event trigger in input 1
section of your trigger file. For example:

input 1
on_event popup

call textput("Add a Contact")
call textput("Update a Contact")
call textput("Delete a Contact")

call textpick("Select an Option")
returning item

case
when item = 1
call add_contact ()
when item = 2
call upd_contact()
when item = 3
call del_contact()
end case;

14-4 Creating Pop-Up Menus

: - CASE Tools Training Course Workbook

Initiating Secondary Screens from
Pop-Up Menus

Main Entry
Screen

Program Event

Pop-Up Menu

ltem Selection

Secondary
Screens

Now that you can create pop-up menus and initiate them from any
program event, you can turn your attention toward their functional-
ity. Perhaps your program users need global access to a zoom, add-on
header, or view detail screen. You can create pop-up menu items that
open secondary screens.

Initiating Secondary Screens from Pop-Up Menus 14-5

CASE Tools Training Course Workbook

14-6

Recall from chapter 11, you used the switchbox_items trigger, the
fgStack_push (), and the socketManager () function to attach
an add-on header screen to your main screen. To attach secondary
screens to a pop-up menu, you follow much of the same process. But
you should note that different secondary screens are attached in dif-
ferent ways. At this point, you’ve only looked at add-on headers and
zooms (and zoom screens are attached automatically).

Suppose for now that you want to create a pop-up menu that con-
tains two items. One item initiates a zoom screen and the other item
initiates a view detail screen. To create such a menu, you must com-
plete the following steps:

1. Use the Form Painter to paint the zoom and view detail images.
Save both images as form specification (*.per) files (see "Creating
a Form Image" on page 2-5).

2. Usethe switchbox_items trigger to declare your zoom and
view detail screens see the chapter.

3. Build an on_event trigger that initiates the pop-up menu.
4. Create the frame work for the pop-up menu.

5. Create a case statement that calls both screens.

Create the Zoom and View Detail Screens

Use the Form Painter to build the images for both these screens. For
the zoom screen, don’t worry about setting any zoom definition val-
ues: you don’t want the Screen Code Generator to attach the zoom
screen automatically. Instead, you must build your own attachment
logic, which you place within the on_event trigger. Once you build
a form image save the image to a form specification file (i.e., select the
Save Form option from the File pull-down menu).

Build the switchbox_items Trigger

After you create the screens, declare them to the switchbox_items
trigger. In this example, the screens are shipzm and infodt.

defaults
switchbox_items
shipzm shipzm
infodt S_infodt;

Creating Pop-Up Menus

- CASE Tools Training Course Workbook

Pop-up menu
created by the
above code
sample.

Build an on_event Trigger

Create logic for an on_event trigger. You can use an on_event trig-
ger similar to the one that you created in the previous section:

input 1

on_event popup

Remember that the popup event was assigned to the [F6] key.

Add the textput and textpick Logic

After you create the on_event trigger, add your textput and tex-
tpick logic. For example:

call textput("Ship Info")
call textput("Customer Info")

call textpick("Select a Menu Item")
returning item

These functions combine to create the following pop-up menu:

LESC] to Select.
[DEL] to Quit

Select a Menu Item

Bhip Info
Customer Info

(2 items)

Create a case Statement that Calls Both Screens

Now you can call the screens by using a case statement following the
textpick () function. Different screen types require different syn-
tax. Recall that an add-on header required you to use three
fgstack_push () functions and the socketManager () function.
Zoom and view detail screens have a different attachment syntax as
well,

For zoom screens, you must call £gStack_push () once before call-
ing socketManager. The fgStack_push () function passes a filter.
You can leave it null if you do not want to pass a filter value.

Initiating Secondary Screens from Pop-Up Menus 14-7

=+ CASE Tools Training Course Workbook

For view detail screens, you can use the put_vararg () function
instead of the fgStack_push () function. The put_vararg func-
tion works in much the same way as fgStack_push. View detail
screens require four calls to put_vararg (). Notice below how the
the put_vararg () function works in pairs. The first call establishes
what is coming next. So in essence, you only need two elements to
call a view detail screen. You need an order clause and a join clause.

The following case statement calls both secondary screens:

case

when item = 1
call fgStack_push("")
call socketManager ("shipzm", "zoom", "default")

when item = 2
call put_vararg("order™")
call put_vararg ("company")
call put_vararg("join_elems")
call put_vararg("p_stomer.customer_num")
call socketManager("infodt", "view detail”, "default”

Don’t forget that you also must define the variable used by the case
statement, like the item variable above, before using it in the case
statement.

When you put all these code pieces together and run the Featurizer to
merge the code, you create a pop-up menu that calls secondary
screens. For example, the Customer Info option initiates the following
view detail screen:

A view detail Scroll: [TABI, [DELY, or [ESCI to Quit
screen initiated ARROW KEYS to Scroll. [F31 or LF4] to Page
from a pop-up
menu.

Company First Name Last Name
Ar Athletics Roy Jaeger
All Sports Supplies Ludwig Pauli
Athletic Supplies Charles Ream
Blue Ribbon Sports Dick Baxter
Gold Medal Sports Alfred Grant
Kids Korner Arnold Sipes

14-8 Creating Pop-Up Menus

CASE Tools Training Course Workbook

Section Summary

You can add pop-up menus to your input programs. Pop-up
menus can present users with a set of program options.

The textput and textpick functions build the frame work for
a pop-up menu. The textput function loads the items that
appear on a pop-up menu. It is called once for each item on the
menu. The textpick function displays the pop-up menu with
all of the items on it. It also assigns each item a sequential
numeric value according to the items position on the menu (i.e.,
the top item is assigned number one). When the user selects an
item, the value corresponding to that item is returned.

You can initiate a pop-up menu from any standard program
event. For example, you can create a pop-up menu that appears
after the user moves past a certain input field. Such a pop-up
menu is placed inan after_field trigger.

You can also initiate pop-up menus from defined program events
that you’ve mapped to a hot key. For example, you can map the
[F6] key to the popup event. When the user presses [F6], the pop-
up menu appears.

Pop-up menus can supply the user with all sorts of menu items.
One of the most useful items initiates a secondary screen, such as -
a zoom or view detail screen. You can use the socketManager
function to attach these screen types to a pop-up menu.

Section Summary 14-9

CASE Tools Training Course Workbook

Exercise 14

Objective: To create a pop-up menu that is accessible from anywhere

within the Customer Entry program.

This pop-up menu will contain two options. One option will open the
Sales Person add-on screen that you created in Exercise 11B. The
other option will open a new zoom screen, which will display a list of
sales people. The following steps outline the method you will use to

create this pop-up menu:

1. Create the Sales Person zoom screen.
2. Create the pop-up menu and the logic to initiate it.
3.

Build the logic to link the pop-up menu options to their respec-
tive screens.

Create a Zoom

Start the Form Painter.

Create a new zoom screen that shows all the values of the
salesrep table. Name the screen saleszm and make it look as
follows:

Form Editor:
Update data en

LESC] or L[DEL] Command Line
try image

[CTRLI-Lul Help

(stores)

(saleszm)

(Zoom)

(11.5)===

Sales Code

Sales Representative Zoom Screen

Sales Name

Commission Code

L1
L 1
L 3

L
L
L

]
1
]

[y
mee

3. When finished, save saleszm and generate 4GL code for it.

14-10 Creating Pop-Up Menus

CASE Tools Training Course Workbook

Add an on_event Trigger

Instead of attaching saleszm to a field, you will attach it using an
on_event trigger. This method gives you the ability to initiate
saleszm from your pop-up menu instead of from a field.

You will initiate the pop-up menu with the zoom event. This event is
run whenever a user presses [CTRL]-[z]. Instead of opening a specific
zoom screen, however, this event will now open a pop-up menu,
which will lead to either your saleszm screen or your reps add-on
header screen.

1. Use vito open cust.trg and add the following code to the
input 1 section.

on_event zoom
call textput(“View a sales person")
call textput("Add a sales person")

call textpick("Select a Screen")
returning picker_item

case
when picker_item = 1
call fgStack_push("")
call socketManager ("saleszm", "zoom", "default")
when picker_item = 2
call fgStack_push("a")
call fgStack_push("")
call fgStack_push("")
call socketManager ("reps", "add-on header®", "default")
end case;

As you can see, this code builds a pop-up menu. The textput
and textpick functions create the menu itself. The case state-
ment evaluates which menu item gets selected and calls the
appropriate screen. .

2. In the defaults section of cust.trg, add a define trigger and
a saleszm line to your switchbox_items trigger.

defaults
switchbox_items
reps S_reps
saleszm saleszm;

define
picker_item smallint;

Exercise 14 14-11

CASE Tools Training Course Workbook

14-12

N o o w

The saleszmlinein the switchbox_items trigger declares the
saleszmscreen to the switchbox function. The define trigger
simply assigns a variable type to picker_item.

Save cust.trg and compile code.

When complete, run your Customer Entry program.
Select Add to create a new record.

Press [CTRL]-[z] in the Credit Code field.

Notice that the Credit Information zoom appears. Although your
pop-up menu is "triggered” by the zoom event, your Credit Infor-
mation zoom takes precedence in the Credit Code field.

Add a credit code and move to the Company Name field.
Press [CTRL]-[z] again.

This time your pop-up menu appears.

Add: LESCI to Store, L[DEL] to Cancel. [TAB] Next Window Help:
Enter changes into form L[CTRLI-[w]

Customer Entry Scre
[ESC] to Select.

Customer Number: Credit| [DEL] to Quit
Company Neme: I Credit

Contact Name: Select a Screen
Phone Number:

City: State: Jiew a sales person
Sales Code: Add a sales person

Order Informatio] |-

Order Number Order Date PO Nu rge

(2 items)

Enter the company name

Try out your pop-up menu. Do both screens work? You probably
need to add some records to the salesrep table. Once you add a
couple records, try out the Sales Person zoom screen.

When your finished experimenting, quit out of Customer Entry.
Remain in your i_cust . 4gs directory, however.

Creating Pop-Up Menus

15

Creating Extension
Screens

Main topics:
B Extension Screen Overview

B Attaching Extension Screens to Main Screens

15-1

 CASE Tools Training Course Workbook

Extension Screen Overview

15-2

Extension screens provide users with additional screens. In effect,
extensions screens "extend" the main screen.

Many times, tables contain too many columns to fit on a single input
screen. Because of a limited amount of "screen geography,” it is some-
times useful to create extension screens off of the main screen. By
adding extension screens you can simplify and clarify your main
screen.

In addition, extension screens can provide conditional data-entry
logic. For example, one of your input programs might contain a Pay-
ment Method field. Perhaps your company recognizes three types of
payment methods: cash, check, and charge. Depending on the value
in the Payment Method field, you can initiate different extension
screens. Say for example that the charge value initiates an extension
screen that contains Card Type, Number, and Expiration Date fields.

The following figure shows an extension screen for adding additional
customer information:

Add: [ESC] to Store. LDEL] to Cancel Help:
Enter changes into form [CTRLI-Ew] |1-[wl

Company Information

Company Neme : | NN

Address :

City :

State : ====

2ip Code :
Phone Number :

Enter the Company Name

e
e
e e
(Kl

(S}

L
L
L
L
Ei

nter the Company Name

Creating Extension Screens

CASE Tools Training Course Workbook

Attaching Extension Screens to Main
Screens

Extension screens, like the other screen types you've learned about,
are attached to the main screen by the socketManager function. But
also like the other screens, extension screens use a syntax all their
own.

You can initiate an extension screen from an program event. There are
useful triggers that work well with extension files, such as:

¢ after_input
e after_field
* before_field
® on_event

You can also map hot keys to custom program events to initiate
extensions screens or you can initiate them from a pop-up menu (see
“Initiating Secondary Screens from Pop-Up Menus" on page 14-5).

You must complete the following basic steps to create and attach an
extension screen:

1. Use the Form Painter to paint the extension image and save the
image to a form specification (*.per) file (see "Creating a Form
Image" on page 2-5).

2. Create a switchbox_items trigger to declare the extension screen
to the screen-level switchbox function (see "The switchbox_items
Trigger" on page 12-6).

3. Create a trigger that initiates the extension screen.

4. Use socketManager to attach your extension screen.

1. Paint the Extension Screen Image

Use the form painter to create the extension screen image for your
extension screen. When you create the screen, make sure to select
extension as the screen type. Remember, extension screens are for

Attaching Extension Screens to Main Screens 15-3

. CASE Tools Training Course Workbook

15-4

additional input fields that cannot fit or are not contained on the main
screen. Unlike add-on header screens, extension screens work off the
same table as the main screen.

Once you create the image, save it with the Save Form option under
the File pull-down. The Save Form option generates a form specifica-
tion (*.per) for your extension screen.

2. Add the Extension Screen to the switchbox_items Trigger

Like other screens, you need to declare extension screens using the
switchbox_items trigger. For example, if your extension screen is
named custext, your switchbox_items trigger would look as
follows:

defaults
switchbox_items
custext S_custext;

3. Create a Trigger to Initiate the Extension Screen

Next, create a trigger that initiates the extension screen. For example,
if you want to initiate your extension screen after the user moves past
the Customer No. field, insert the following lines of code:

input 1
after_field customer_num

4. Use socketManager to Attach the Extension Screen

Finally, use socketManager to attach the extension screen. Unlike
the add-on header and zoom screen types, extension screens don’t
require you to use the fgStack_push function. You only need to use
the socketManager function. For example, to attach the custext
extension screen to your main screen, insert:

input 1
after_field customer_num

call socketManager("custext", "extension", "flat_ext");

When you attach extensions screens with socketManager, the flow
parameter differs slightly. Instead of using default as the flow
parameter, extension screens use one of three values: flat_ext,
deep_ext, and view Extension screens require multiple flow values

Creating Extension Screens

- CASE Tools Training Course Workbook

If a user pressed
[DEL] in Ext #1,
all edits to Ext
#2 and #3 are
rolled back.

because you can link multiple extension screens together. The follow-
ing list explains the different flow parameters available with exten-

sion screens.

flat_ext

deep_ext

view

The f1lat_ext flow parameter determines
how the program handles an interrupt (i.e.,
user pressing [DELY]). If a user presses [DEL]
in Ext #1 in the first diagram below, all edits to
Ext #2 and #3 are retained.

The deep_ext flow parameter operates in
the exact opposite of the f1lat_ext
parameter. If a user presses [DEL] in Ext #1,
all edits in Ext #2 and Ext #3 are rolled back.

This flow only lets users view the data within
extension screens.

Main Screen

Flat Flat
»

Ext #1 - Ext #2

Flat Y

Ext #3

Main Screen

Deep Flat

Ext #1 > Ext #2

Flat Y

Ext #3

By putting all these code pieces together and using the Featurizer to
merge your trigger file, your extension screen gets attached.

Attaching Extension Screens to Main Screens 15-5

: CASE Tools Training Course Workbook

Section Summary

15-6

Extension screens provide users with additional screens. In effect,
extensions screens "extend" the main screen.

Extension screens provide extra space, so you can simplify and
clarify the main screen. In addition, extension screens can be used
as data-entry control devices.

You can initiate an extension screen from any program event,
such as a trigger, a pop-up menu, or a mapped hot key.

You attach extension screens with the socketManager function.
The socketManager recognizes three different flow parameters
for extension screens: flat_ext, deep_ext, and view

Each flow parameter has a different function. The flat_ext
flow is for extension screens that are independent from calling
screens. The deep_ext flow is for extension screen that are
dependent on calling screens. The view flow is for extension
screens that only display data (i.e., users can’t add or update val-
ues on a view extension screen).

Creating Extension Screens

CASE Tools Training Course Workbook

Exercise 15

Objective: To create an extension screen that allows you to enter
additional data onto the customer table.

You will start by adding three columns: card_no, exp_date, and
card_holder. You will then place these columns on a custext
extension screen. Finally, you will incorporate this screen into your
Customer Entry program with an after_input trigger.

Add the Columns

1. Using the Form Painter (or isql) add the following columns to
the customer table.

Column Name Description Type
card_no Card Number char(20)
exp_date Expiration Date date
card_holder Card Holder char(20)

2. Save these changes and return to the Form Painter.

Create the Extension Screen

1. Use the Form Painter to create a new form. Name it custext
and define it as type extension.

2. Create a title line.

3. Label and define three fields, one for each of the columns you
just added. Your extension screen should look as follows:

Additional Customer Fields

Card MNo.:[h]
Expiration Date:[1
Card Holder:L]

Exercise 15 15-7

. CASE Tools Training Course Workbook

Save and Generate

1. Use Save Form to save your new form.

2. Invoke the Screen Code Generator to create 4GL code for your
new form.

3. When the Generator has finished, exit the Form Painter and list
your files (type 1s at the UNIX prompt).

Notice that the Generator has created a new source code file for
your custext .per file. This source code file contains all the
lowlevel source code to drive your custext extension screen.

Create an after_input Trigger

You can use the after_input trigger to attach your custext exten-
sion screen to your Customer Entry program. Several other triggers
will work as well, but the after_input trigger is a common choice.

1. Usevito open cust.trg.

2. In the input1section add the following lines of code:

after_input trigger to call my custext extension screen
call socketManager("custext", "extension", "flat_ext"):

Note

If you already have an after_input trigger defined, which
you should because you created one in Exercise 10C, you must
add these lines below it. You do not, and cannot, add two
identical triggers (for example, two after_field
customer_num triggers). You should just combine the code
under one trigger. Make sure to remove the semi-colon that
terminates the first after_input trigger or a syntax error will
occur.

15-8

Your complete after_input trigger should look as follows:

after_input
if p_stomer.credit_code is null
then
error "You must fill in the Credit Code field"
let nxt_£f1d = "credit_code"
end if

Creating Extension Screens

CASE Tools Training Course Workbock

8.

after_input trigger to call my custext extension screen
call socketManager("custext", "extension®, "flat_ext");

Also add a custext line to your switchbox_items trigger.

This trigger should now include three lines. A reps line, a
saleszmline, and a custext line.

switchbox_items
reps S_reps
saleszm saleszm
custext S_custext;
Save cust.trg.
Compile the code and run Customer Entry.
Select Add to create a new record.

Fill in all the fields on the header portion of the screen and
press [TAB] to move to the detail portion.

Your custext extension screen appears.

Add: LESC] to Store. [BEL] to Cancel Help:
Enter changes into form [CTRLI-Lwl

Additional Customer Fields

Card No.:
Expiration Date:
Card Holder:

Enter the card number

Order Number Order Date PO Number Shipping Charge

Enter sales code

Complete the Additional Customer screen and quit out of your
Customer Entry program.

Exercise 15 15-9

CASE Tools Training Course Workbook

15-10 Crealing Extension Screens

16

Version Control and
Conventions

Main topics:

M The Directory Structure
M Version Control Overview

B Building Custom Versions

B Table Naming Conventions

16-1

= CASE Tools Training Course Workbook

The

16-2

All software products utilize a four-tiered directory struc-
ture: fourgen, application, module, and program.

The directory contains all your
ally represented by the $ fg environment variable. The application

tier is rather general. It contains a set of related modules. The module
level is more specific. Every module directory is given a .4gm exten-
sion. Within each module directory exists a set of related programs.
The program tier is the lowest tier. Each program directory contains a
single input, output, or posting program. Program directories have a

4gs extension.

Directory Structure

programs. It is usu-

The following graphic shows a sample directory structure:

$fg
Application .
accounting
|
I | | |
Module
py.4gm gl.4gm ap.4gm ar.4gm
Program
o_vendid.cod i_invce.cod p_invpst.cod
Version Control and Conventions

-+ : CASE Tools Training Course Workbook

Version Control Overview

Version control lets you create multiple flavors of a program without
duplicating code. Version control is useful when two or more users
require different program functionality.

Version Control Directories

Module
directory.

Program and
Version Control
directories.

Version control uses custom directories that are parallel to program
(*.4gs) directories. In the custom directories, you place specification
or trigger files that are unique to your custom version. By default,
version control recognizes *.4gc directories as custom version directo-
ries. You can have as many custom version directories as you want.
For example, if you want to have a custom versions of the Enterprise
Invoice Entry program, you need to create a custom directory.

ap.4gm

i_invce.cod i_invce.xyz

The cust_path variable lets you specify the order in which version
control works. To merge base functionality with the new functionality
you've added ini_invce.xyz, set cust_path as follows:

cust_path = xyz:cod ; export cust_path

The cust_key variable describes the starting point from which the
merge utility should start on the cust_path. For the above example,
cust_key should be set as follows:

cust_path = xyz:cod ; export cust_path

Version Control Overview 16-3

... CASE Tools Training Course Workbook

Building Custom Versions

16-4

You can use version control logic to build multiple versions of a base
program or to build increasingly rich enhancements to a base pro-
gram. Perhaps the simplest case involves modifying an input screen.

For example, suppose you are customizing the i_invce. 4gi pro-
gram, which is located in ap . 4gm/i_invce.cod directory. You
know that this program is built from a series of form specification
(*.per) files, where each *.per file represents a different program
screen. If, on your custom version, you want to add an input field to
the main screen, you would need to complete the following steps:

1. Copy the form specification file you want to modify into the cus-
tom program directory (i_invce.xyz).

2. Use the Form Painter to add a field to the screen.

3. Run the Screen Code Generator (£g.screen) in the custom
directory (i_invce.xyz).

Once initiated, the Screen Code Generator takes the following steps:

1. Searches your current directory (i_invce.xyz) and reads the
modified form specification file.

2. Searches the base directory (i_invce. cod) for additional speci-
fication files.

3. Generates the 4GL code necessary to build your custom program.

You can then run the fg.make utility in the custom directory to com-
pile the custom program.

Once complied, you can issue the following command to run the cus-
tom version:

fg.go *4gi

Version Control and Conventions

==+ CASE Tools Training Course Workbook

Table Naming Conventions

Table names are
divided into four
sections.

All tables follow a specific naming convention. Each table
name is composed of eight characters, and the last six characters must
be unique. The eight-character name is divided into four sections.

|StvLXc|he|p||dl‘

The first two characters classify the table as either a application table
or a Screen Code Generator table:

st Application Table
cg Code Generator Table
The third character relates to the product, for example:

Screen

Database Program in Form Painter
m User-Defined Menus
x Non-Product Specific

The next four characters classify the type of data, for example:

eror Error Text
help Help Text
mssg Messages
note User-Defined Notes

The last character specifies the role of the table:

Reference (usually the same as a header)
Detail
Header

Table Naming Conventions 16-5

CASE Tools Training Course Workbook

Section Summary

16-6

uses a four-tiered directory structure. The top tier is set

by the $ fg variable. It points to the installation direc-
tory. The second tier is known as the application directory. It con-
tains an entire suite of related modules. uses

accounting, codegen, and distribution as application
directory names.

Beneath the application tier is the third tier or module tier. Each
module directory contains a set of related input, output, and
posting programs. All module directories use a *.4gm extension.
For example, you might have a set of Accounts Payable programs
ina ap.4gn directory.

The final and fourth tier is known as the program directory. Each
program directory contains a single generated program built by

Screen or Report. Enterprise program directo-
ries use a *.cod extension.

Version control lets you create multiple flavors of a program. Ver-
sion control is useful when you want to customize base function-

ality.
All tables follow a specific naming convention. Each
table name is composed of eight characters and the last six char-

acters must be unique. The eight-character name is divided into
four sections

Version Control and Conventions

CASE Tools Training Course Workbook

Exercise 16

Objective: To create a custom version of your Customer Entry pro-
gram in a version control directory.

Version control is extremely useful when you need to customize a
specific portion of your base program. In this exercise you will mod-
ify your Customer Entry program in a version control directory. You
will end up with two versions of Customer Entry, but you will only
have one code stream.

Create a i_cust.4gc Directory

By default, recognizes the *.4gc extension as a version con-
trol extension. To create a version control program, you must create a
new directory parallel to your program directory. Give this new
directory the same name as your program directory, but replace the
*4gs extension with a *.4gc extension.

1. Use the cd command to move to your aw.4gm directory.
2. Usemkdir to create a new directory. Name it i_cust.4gc.

3. Use cd again to move to i_cust.4gec.

Copy your *.per Files

1. Inyouri_cust.4gc directory, copy over all your form specifi-
cation (*.per) files from i_cust.4gs:

¢p ../i_cust.4gs/cust.per .

2. Start the Form Painter from your i_cust . 4gc directory and
open your cust .per file.

3. Change the title line to read:
------------ Acme Inc Customer Entry Screen —--—---———

In most cases, you will customize more than the title line. But
changing this line adequately demonstrates version control.

4. Save your changes and exit the Form Painter.

Exercise 16 16-7

CASE Tools Training Course Workbook

Generate and Compile

1. From i_cust.4gc, run the Screen Code Generator.
2. When the Generator finishes, use 1s to view the files it created.

Notice that the Generator creates a whole new set of *.4gl files
and a Makefile.

3. Now run £g.make to link and compile the code.

Run Your Custom Version
After you generate and compile, run your version control program:
e fg.go i_cust.4gi

The fg. go runner is for executing version control programs. You
execute base applications using fglgo.

Once you initiate Customer Entry, your custom version appears:

fAction:f Update Delete Find Browse Nxt Prv Tab Options Quit
Create a new document

ficme Inc Customer Entry Screen

Customer Number: Credit Code:

Company Name: Credit Desc:

Contact Name:

Phone Number:

City: State: Postal Code:
Sales Code:

Order Information

Order Number Order Date PO Number Shipping Charge

(No Documents Selected)

16-8 Version Control and Conventions

17

Compiling Generated

Code

Main topics:

Compiling Generated Code

Modifying Libraries

Understanding the Library Philosophy
Adding a Custom Library

171

. CASE Tools Training Course Workbook

Compiling Generated Code

17-2

Compiling generated code means turning 4GL source code and trig-
gers into a runnable program. gives you the ability to do
this for a single program or a group of programs.

You compile code using the Make Utility. This utility is run
with the fg.make command. When you run £g.make, it completes
the following tasks:

* Merges Custom Code: The fg.make command calls the Featurizer
(fglpp) program. The Featurizer merges custom code into your
program source code (see "Featurizer Overview" on page 18-2).

* Compiles Source Code and Form Specification Files: fg.make also
compiles both your source code (.*4g)) files and form specifica-
tion (*.per) files.

* Links Local Function Calls to Library Functions: The fg.make
command resolves library function calls in local (i.e., source code)
to their corresponding library functions.

* Produces Runnable Program File: The last task of fg.make is to
construct a runnable program file. The fg.make command creates
a different program file depending on the type of Informix devel-
opment system you are using. If you are using the INFORMIX-
4GL C Compiler, a *.4ge program file is created. If you are using
the INFORMIX-4GL RDS Compiler, a *.4gi file is created.

The final three tasks are controlled by the standard UNIX make util-
ity, which is called by fg.make. In general, the UNIX make utility
tracks the dependencies that files have to each other.

The UNIX make utility uses a specification file of its own. This file,
called the Makefile, contains all the instructions necessary for make
to work. You do not have to create the Makefile, however. It is cre-
ated automatically by the Screen Code Generator.

For the most part, you do not need a complete understanding of the
UNIX make utility in order to use it. You should simply realize that it
is called from the fg.make command and it produces a program file
that you can run.

The £g.make command uses a number of command flags:

Compiling Generated Code

CASE Tools Training Course Workbook

fg.make [-h]
[-£] [-al

-h

-R

-L library

~mn

-a

[-F|-R] [~L library] [-m{nlolflof}]

Prints an entire list of fg.make command
flags.

Forces fg.make to compile using the
INFORMIX-4GL C Compiler.

Forces fg.make to compile using the
INFORMIX-4GL Rapid Development System.

Specifies the name of any additional libraries
you want fg.make to link in.

Does everything except merge code. In other
words, when you use the -mn flag, the
Featurizer is not called.

Runs the Featurizer (merges code) but does
not perform a compilation.

Overrides timestamp comparison logic and
forces a custom code merge.

Overrides timestamp comparison logic and
forces a custom code merge. This flag does
not perform a compilation, however.

Performs a fast link. You should only use this
flag in compiles where no new calls to library
functions have been added.

Causes all files to be compiled regardless of
dependencies.

Compiling Generated Code 17-3

CASE Tools Training Course Workbook

The Makefile

17-4

It does help, though, to have a working knowledge of the Makefile.
The Makefile contains several sections. Each section supplies make
with information about your program.

AR AB AR AR F S G SR SR R R SRR B B R B RS R R S S RS B R R B E R SR R B 5 48
Copyright (C)

All rights reserved.

Use, modification, duplication, and/or distribution of this
software is limited by the software license agreement.

Scesid: %Z% %M% %I% Delta: %G%

FHEE SRR R R R R R R R R SR R R R B R R R R
Screen Generator version: 4.11.UD1

B

Makefile for an Informix-4GL program

#_type - Makefile type
TYPE = program

#_name - program name
NAME = screen3. 4ge

#_objfiles - program files
OBJFILES = browse.o cust_zm.o detail.o globals.o header.o \
main.o midlevel.o options.o stk_mnu.o stockzm.o

#_forms - perform files
FORMS = browse. frm cust_zm.frm order.frm \
stk_mnu.frm stockzm. frm

#_libfiles - library list
LIBFILES = ../lib.a \
$(fg) /lib/scr.a \
$(fg) /1lib/user_ctl.a \
$(fg) /1lib/standard.a

#_globals - globals file
GLOBAL = globals.4gl

_all_rule - program compile rule
all:
@echo "make: Camnot use make. Use fg.m

As you can see, the Makefile lists the files necessary to create your
program. For example, the LIBFILES section shows all the libraries
used by your program (1ib.a, scr.a, user_ctl.a,and stan-
dard.a).

Compiling Generated Code

CASE Tools Training Course Workbook

Library Overview

A library holds code shared by multiple programs. The code is struc-
tured into functions. Each function performs a single task and works
independently from other code. For example, several programs
require a message that reads, "Please wait." Instead of duplicating the
same lines of code in each program directory, you can simply place a
call to the library function that displays the "Please wait" message.

Screen makes extensive use of libraries. These libraries are
contained in the $f£g/1ib directory. Each library contains related
functions. For example, the standard library contains functions
shared by both input and output programs, such as the "Please wait"
message, which is in the pls_wait .4gl file:

B R R R R R R R R R R SRR R R B F R R U R B R 4
function please_wait()
FEREBR B AR R R R R S R R R R R R R R R R R R R
#

Trap fatal errors

whenever error call error_handler

if mssg_prep is null
then
let mssg_prep = "Y"
#1: " Please wait..."
let arr_mesgs([l].mssg_text =
fg_message(“"standard", "pls_wait",1)
end if

call variableText_message(arr_mesgs[1l] .mssg_text, 0)

end function
please_wait ()

Library Overview 17-5

- CASE Tools Training Course Workbook

Creating Custom Libraries

If you have programs that share common functions that are not in the
libraries, you can create your own custom library.

Custom libraries are created at the module directory level (the *.4gs
level). Just like the libraries, custom libraries contain func-
tions that perform specific, independent tasks. These functions are
placed in source code (*.4g}) file.

For example, to create a custom library called my1ib:
1. At the program directory level, create amylib. 4gs directory.
mkdir mylib.4gs

2. Movetomlib.4gs and create each custom function in its own
source code (*.4gl) file.

3. Copy alibrary Makefileintomylib.4gs.
cp $fg/lib/standard.4gs/Makefile mylib.4gs

In order to compile your library code there must be a Makefile
present. You can build a Makefile by hand or you can modify
the one in the standard. 4gs library.

4. Replace the Makefile’s LIBFILES section with your function
filenames.

For example, if mylib. 4gs contains wincl.4gl, windl.4qg1l,
and winop.4gl. The LIBFILES section should read:

LIBFILES = \
$(LIB) (wincl.o) \
$ (LIB) (windl.o) \
$ (LIB) (winop.o)

5. Changethe LIB=../standard.a line to read:
LIB= ../mylib.a

6. Finally, run fg.make in the mylib. 4gs directory.

17-6 Compiling Generated Code

. - CASE Tools Training Course Workbook

Using a Custom Library

Once you create a custom library, you can use it in your programs.
You must add your custom library to the LIBFILES section of the
program’s Makefile. In other words, if you call custom library func-
tions in your program code, you must tell the UNIX make utility
where to look to find the custom library functions.

For example, if your program calls windl, which is in your custom
mylib. 4gs library, the LIBFILES section must include mylib.a.

You can add libraries to your program’s Make£file using the
libraries trigger. For example, the following libraries trigger
adds the my 1ib library to your program’s Makefile:

defaults
libraries
../mylib.a

This trigger changes your Makefile to look as follows:

#_libfiles - library list
LIBFILES = ../lib.a \
./mylib.a |\
$(fg) /lib/scr.a \
$(fg)/lib/user_ctl.a \
$(fg) /1ib/standard.a

Another trigger, the custom_libraries trigger, also lets you add
libraries to your program’s Makefile. The custom_libraries
trigger places your custom library above the ../lib.a \ line in the
Makefile. For example, the following custom_libraries trigger
places your my1ib library first on the LIBFILES list.

defaults
custom_libraries
../mylib.a

This trigger changes your Makefile to look as follows:

#_libfiles - library list
LIBFILES = ../mylib.a \
../lib.a \
$(fg)/lib/scr.a \
$(fg) /lib/user_ctl.a \
$(fg) /lib/standard.a

Using a Custom Library 17-7

CASE Tools Training Course Workbook

Section Summary

17-8

Compiling generated code means turning 4GL source code into a
runnable program. . gives you the ability to do this for a
single program or a group of programs.

You compile code using the -Make Utility. This utility is
run with the fg.make command.

The £g.make command merges custom code, compiles source
code and form specification files, links local function calls to
library functions, and produces a runnable program file.

The f£g.make command uses the standard UNIX make utility,
which is called by fg.make. In general, the UNIX make utility
tracks the dependencies that files have to each other.

The Makefile contains several sections. Each section supplies
make with information about your program. For example, the
LIBFILES section shows all the libraries used by your program.

A library holds code shared by multiple programs. The code is
structured into functions. Each function performs a single task
and works independently from other code.

Screen makes extensive use of libraries. These libraries
are contained in the $fg/1ib directory.

If you have programs the share common functions that are not in
the’ libraries, you can create your own custom library.

Custom libraries are created at the module directory level (the
*4gs level). Just like the libraries, custom libraries con-
tain functions that perform specific, independent tasks. These
functions are placed in source code (*.4g]l) files.

Once you create a custom library, you can use it in your pro-
grams. You must add your custom library, however, to the LIB-
FILES section of your program’s Makefile. In other words, if
you call custom library functions in your program code, you
must tell the UNIX make utility where to look to find the custom
library function.

Compiling Generated Code

CASE Tools Training Course Workbook

Exercise 17A

Objective: To create a custom library and add a function to it.

Create a Library Directory

1.
2.

Use the cd command to move to your aw. 4gm directory.

Usemkdir to create a new directory called my1ib. 4gs and use
cd to move to that directory.

This is your custom library directory. Within this directory, you
can create custom functions for your programs.

Create a Custom Library Function

1.
2,

Use vi to open a new file called hello.4gl.

Add the following function to your new file:
function hello()
display "hello fourgen world"
sleep 3
end function
Use vi to create a new Makefile that looks as follows:
Makefile for an Informix function library

TYPE = library

LIBFILES = \
${LIB) (hello.o)

FORMS=

LIB=../mylib.a

@echo "make: Cannot use make. Use fg.make to compile."
While you are still inmylib. 4gs, run £g.make.

The fg.make script compiles your library and creates a parallel
RDS version of your library at the module directory level.

Exercise 17A 17-9

- CASE Tools Training Course Workbook

Add a libraries Trigger

To use your new hello () function, you must add your custom
library to the Makefile inyour i_cust .4gs directory. A special
trigger, called libraries lets you do this.

1.
2.
3.

Use cd to move to your i_cust.4gs directory.
Use vi to open your cust . trg trigger file.

Add the following code to the defaults section of cust .trg:

libraries
../mylib.a

This trigger adds your custom my1ib library to the LIBFILES
list in the program Makefile.

Save and quit from cugt.trg.

Add a before_input Trigger

To implement your new hello () function, you must use it from
somewhere in your program. Perhaps the simplest way to use it is
with a before_input trigger.

1.
2.

Use vi to open cust.trg.

In the input 1 section, add the following lines of code:

before_input
call hello();

This trigger simply calls your hello () function, which is in
your custom my1ib library.

Save and quit from cust.trg.

Compile the Code

Run £g.make to compile the code.

17-10 Compiling Generated Code

- .CASE Tools Training Course Workbook

Run Your Customer Entry Program

1. Run your Customer Entry program.
2. Select Add from the ring menu.

What happens? Do you see the "hello world" message?

hello world
-

3. Quit from your Customer Entry program.

Exercise 17A 17-11

CASE Tools Training Course Workbook

Exercise 17B

Objective: To call hello () from the Credit Entry program.

Custom libraries allow you to call custom functions from anywhere
in your module directory. In other words, custom libraries work with
all the programs in your module. You have already used the

hello () function in your Customer Entry program. Now you will
add a call to this function from your Credit Entry program.

Create a cred.trg Trigger File

1.
2.
3.

Use cd to move to the i_cred.4gs directory.
Use vi to create a cred. trg file.

Add the following libraries trigger to cred.trg:
defaults

libraries
../mylib.a

Save and exit cred.trg.

Add a libraries Trigger

1.
2.

Use vi to open cred.trg.

Just below your libraries trigger, add the following code:

input 1
before_input
call hello();

Your complete cred. trg file should look as follows:

defaults
libraries
../mylib.a

input 1
before_input
call hello();

17-12 Compiling Generated Code

CASE Tools Training Course Workbook

3. Save and exit cred.trg.

Compile the Code

¢ Run £g.make to compile the code.

Run Your Credit Entry Program

1. Run your Credit Entry program.
2. Select Add from the ring menu.

What happens? Do you see the "hello .world" message?

{hello world
|

3. Quit from your Credit Entry program.

Exercise 17B 17-13

CASE Tools Training Course Workbook

17-14 Compiling Generated Code

18

Using the Featurizer

Main topics:

Featurizer Overview
Creating Block Commands
Pluggable Feature Sets

Triggers Versus Block Commands

18-1

CASE Tools Training Course Workbook

Featurizer Overview

The Featurizer performs two tasks:

1. It copies *.org files, which are created by the Screen Code Genera-
tor, into *.4gl files.

2. After it creates the *.4gl files, the Featurizer merges the custom
code into the source *.4g] files.

The Featurizer

generated *.org
files into *.4gl
files.

After copying
the *.org files, *
the Featurizer A4gl

then merges \ Featurlzer —> *.4g|
custom code
into source

code. Custom

Both the Screen Code Generator and the £g.make command run the
Featurizer automatically. You can also run the featurizer directly with
the fglpp command.

For instance, if you want to merge custom code into header .4g1,
type:
fglpp header.4gl

You have already learned how to create custom modifications in trig-
ger (*.trg) files. In addition to trigger files, though, the Featurizer also
reads extension files and merges them into your source code (*.4gl)
files. Extension (*.ext) files are similar to trigger files, but extension
files act on physical locations in source code. Within extension files
you create block commands.

18-2 Using the Featurizer

CASE Tools Training Course Workbook

Block Commands

This function
contains eight
block tags.

Block commands let you customize physical points within generated
source code. Because block commands act on physical locations, you
must address where you want your block command to go. A code

address contains three parts: filename, function name, and block tag.

You already know about filenames and function names, but block
tags are a new concept. For example, themlh_cursor function in the
midlevel.4gl file contains eight block tags. You can easily identify
block tags because they all begin with the same two characters (¥_)
followed by their block name. For example, #_define_var is the
first block tag in the m1h_cursor function:

FhEFAEH AR SR SR S R R R S R R R R R R R R
function mlh_cursor ()

FHEH A R R R R R SR R SRR R R R R R S R R R R R
#

This function defines the table, filter, and ordering portions of
the select statement used to build the FourGen scroller.

#

#_define_var - define local variables
#_curs_elements - Cursor table, hard filter, and order

#_table - cursor table
call put_vararg ("customer")

#_filter - filter statement
call put_vararg("")

#_order - order statement
call put_vararg("")

#_dtl_tab - detail table statement
call put_vararg("")

#_join - join statement
call put_vararg("")

#_translate - Tell upper level about translation

call put_vararg(is_translated)
call put_vararg (num_trans)

end function
mlh _cursor()

Block Commands 18-3

. .- CASE Tools Training Course Workbook

The Featurizer
reads your
extension files
and merges
them into
generated
source code.

Block tags pinpoint physical locations within generated source code.
When you want to alter source code contained in a block tag, you can
use block commands. Block commands use the following syntax:

start file "filename"
block _command function name block tag

For example, the following block command adds a line to the
#_define_var block tag in the m1h_cursor function:

start file "midlevel.4gl™
after block mlh_cursor define_var
tmp_num smallint;

The start file command, on the first line, specifies the file to use
(in this case itismidlevel. 4gl).

The first argument on the second line is the name of the block com-
mand (in this case itis after block). The second argument speci-
fies the function name (m1h_cursor). The third argument specifies
the block tag minus the #_ characters (define_var).

The third line contains your custom code (in this case the third line
defines the variable tmp_num).

You place block commands within extension (*.ext) files, which get
read by the Featurizer and merged into your source code.

*.4gl \
P o

184 Using the Featurizer

. CASE Tools Training Course Workbook

Pluggable Feature Sets

The Featurizer
reads your
base.set file to
determine
which extension
files to merge.

Unlike trigger files, which the Featurizer reads and merges automati-
cally, you must declare extension files within a feature set (base. set)
file. A feature set file simply contains the names of the extension files
you want the Featurizer to merge into your code.

Feature set files are extremely useful because they let you add custom
code in a pluggable fashion. For example, you may have three exten-
sion files that add custom functionality to your program (acme . ext,
abc.ext, and xyz . ext). Some departments might want the func-
tionality added by all three extension files while others may only
want the functionality in the xyz . ext.

For your first group of departments, your base. set file would con-
tain the name of all three extension files minus the *.ext extensions:

acme
abc
XYz

For your second group of departments, your base. set file would
only contain the name of the xyz . ext file:

XYZ

When you run the Featurizer, it looks at your base. set file to deter-
mine which extension files to merge into your source code.

acme.ext
base.set /
acme | — > —» | abc.ext
abc \
Xyz

xyz.ext

Pluggable Feature Sets 18-5

: CASE Tools Training Course Workbook

Section Summary

18-6

The Featurizer performs two tasks: It copies each *.org file into a
*4gl source code file and it merges custom code into the *.4gl
files.

Both the Screen Code Generator and the £g.make command run
the Featurizer automatically. You can also run the featurizer
directly with the fg1pp command.

Block commands let you customize physical points within gener-
ated source code. Because block commands act on physical loca-
tions, you must address where you want your block command to
go. A code address contains three parts: filename, function name,
and block tag.

You already know about filenames and function names, but block
tags are a new concept. You can easily identify block tags because
they all begin with the same two characters (#_) followed by
their block name.

When you want to alter source code contained in a block tag, you
can use block commands.

You place block commands within extension (*.ext) files, which
get read by the Featurizer and merged into your source code.

Unlike trigger files, which the Featurizer reads and merges auto-
matically, you must declare extension files within a feature set
(base.set) file. A feature set file simply contains the names of
the extension files you want the Featurizer to merge into your
code.

Using the Featurizer

 CASE Tools Training Course Workbook

Exercise 18A

Objective: To use a block command to add a new ring menu item
beneath the Options command.

On every generated input program, the ring menu contains an
Options command. This command provides you, the program devel-
oper, with an "extra" space to add custom ring menu commands.
When the user selects Options, the ring menu clears. With the help of
block commands, you can add custom ring menu commands
"beneath" the Options command.

Become Familiar with Options

1. Start you Customer Entry program.

2. Select Options from the ring menu.

Options

Return to the main menu

As you can see, there is only a Quit command beneath the
Options menu. When you press Quit, you return to the main ring
menu. In this exercise, you will add a command that starts your
Credit Entry program.

3. Return to the ring menu and then Quit the program.

Exercise 18A 18-7

CASE Tools Training Course Workbook

Copy optnMenu.4gl to Your Local Directory

Before you can alter your Options ring menu command, you must
move the optnMenu. 4g1l file to your local directory (which in your
caseis i_cust.4gs). The optnMenu. 441 file is located in the
scr.4gs library directory.

1. Use cp to copy optnMenu. 4g1 to your i_cust.4gs directory.
If youare in i_cust.4gs, you can use the following command
(you should also give this file read and write permission):

cp $fg/lib/scr.4gs/optnMenu.4gl
2. Use 1s to verify that the copy worked correctly.

You should see optnMenu.4gl in your i_cust.4gs directory.
3. Usevi to open optnMenu.4gl.

Notice all the lines that begin with #_.

These characters (#_) indicate a block tag. You can use block com-
mands to alter (i.e., customize) any code within a block tag.

4. Quit out of optnMenu.4gl.

Build an Extension (*.ext) File

18-8

Block commands are created and stored in extension (*.ext) files. In a
general sense, extension files are a lot like trigger files. Extension files
hold block commands whereas trigger files hold triggers. The major
difference is how extension files are merged into base code. As you
recall triggers get merged automatically by the Screen Code Genera-
tor. For extension files, however, you must specify in a feature set file,
called base. set, which extension files to use.

1. Use vi to create a new file called menu. ext.

2. Add the following block command to menu. ext:
start file "optnMenu.4gl™
before block ring options quit

command key (c) “"Credit Entry" "Runs the Credit Entry program®
run "cd $HOME/labs/aw.4gm/i_cred.4gs ; fglgo *.4gi";

Using the Featurizer

- CASE Tools Training Course Workbook

As you can see, this code modifies optnMenu. 4gl. It adds code
to run the you Credit Entry program to the menu block tag in the
ring_options function.

3. Save and quit from menu. ext.

Create a base.set File

In order to incorporate your new block command into base code, you
must add menu . ext to the base.set file.

1. Usevi to create a new file called base.set.
2. Add the following line to the base.set file:
menu

This is all you need to add. You do not need to include the . ext
file extension. If you had more extension (*.ext) files to include,
you would list them in the same way.

3. Save and quit from base. set.

Compile the Code

¢ Run the compilation utility (fg.make).

Run Your Customer Entry Program

1. Start your customer entry program.

2. Select Options from the ring menu.

Options:|j XN Quit

Runs the Credit Entry program

As you can see, a new command (Credit Entry) has been added
to your ring menu.

Exercise 18A 18-9

CASE Tools Training Course Workbook

3. Select Credit Entry.

Your Credit Entry program starts.

fiction:[| IEEER Update Delete Find Browse Nxt Prv Options Quit
Create a new document

Credit Information Entry Screen -——--——-——————————

Credit Code
Credit Description:
Credit Amount :

4. Quit out of your Credit Information program.

What happens? You should be returned to the Options ring menu
within your Customer Entry program.

5. Quit out of both the Options command and your Customer
Entry program.

18-10 Using the Featurizer

-CASE Tools Training Course Workbook

Exercise 18B

Objective: To demonstrate the pluggable feature set concept, you will
"unplug" your menu . ext file.

Unplug menu.ext

1. Usevito open yourbase.set file.
2. Place a # before the word menu:
menu

3. Save and quit base.set.

Compile the Code

¢ Run £g.make to compile the code.

Run Your Customer Entry Program

1. Start your customer entry program.

2. Select Options from the ring menu.

Options:fj

Return to the main menu

As you can see, your custom ring menu command is gone. You
can add it back by simply removing the comment mark (#) from
your base. set file.

3. Quit from your Customer Entry program.

Exercise 188 18-11

CASE Tools Training Course Workbook

Exercise 18C

Objective: To create a generic library function that accepts multiple
arguments using the "vararg" functions.

You will create a simple function that displays the names of the pro-
grammers who created the program. Since this number changes from
program to program, you must use the vararg functions.

Create a Library Function

1. Use cd to move to yourmylib.4gs directory.

This is the library directory that you created in Exercise 17A.

2. Use vi to create a new file called shw_crd. 4gl and add the
following lines of logic to it:

BRER SRR R FE R RS R R R R R R R R R R S E R R R R 4
function show_credits ()
FHER AR AR R R R R R R R S R S B R R S 4
This function gives credit to all the members of the programming
team that created the program
#
define
n smallint, # generic number
people char (30)

Trap fatal errors
whenever error call error_handler
display "This program has been brought to you by:"
here’s the loop using num_vararg and get_vararg
let n = num_vararg()
while n > 0
let people = get_vararg()
display people
letn=n -1
end while
sleep 3
end function

show_credits()

3. Save and quit shw_crd.4gl.

18-12 Using the Featurizer

CASE Tools Training Course Workbook

Update the Makefile and Compile

1.
2.

Use vi to open the Makefile in yourmylib.4gs directory.

Add shw_crd to the LIBFILES section in the following way:

LIBFILES = \
$(LIB) (hello.o) \
$(LIB) (shw_crd.o)

Save and quit from the Makefile.

Run fg.make to compile your library code.

Use cd to return to your i_cust . 4gs directory.

Add a Navigation Event

1.
2,

3.

5.

Run your Customer Entry program.

Press [CTRL]-[g] to open the Navigate pop-up menu.
Select Add a navigation action.

The Navigation Command window appears.

Complete the Navigation Commands window as follows:

Update: [ESC] to Store, EDEL] to Cancel Help:
Enter changes into form [E€TRLI-Lw]

Navigation Commands

fiction Code: shou_credits
Description: Show who created this program
Operating system command:

Press ENTER upon return 2 Y
ficcess from other programs? Y
Allow access for others ? Y

Enter [Y] if you want this to appear on everybody else’s navigation menu.

Press [ESC] to save your definition and quit from your Cus-
tomer Entry program.

Exercise 18C 18-13

CASE Tools Training Course Workbook

Create an on_event Trigger

You will add custom logic to call your show_credit () function
using the on_event trigger. This trigger will be accessed via the nav-
igation event you just created.

1. Use vi to open your cust.trg file.

Note Although this section describes block commands and extension files,
this exercise is best completed using the on_event trigger. You
should note once again the main difference between triggers and
block commands: triggers act on logical points within code, block
commands act on physical points.

2. Add the following lines of code to the defaults section of your
trigger file:

on_event show_credits
call put_vararg("Perry Dillard")
call put_vararg("David Hanses")
call put_vararg("Robert Cumpston")
call show_credits();

3. Save and quit cust.trg.

Compile the Code

® Use £g.make to compile the code and merge in your new
on_event trigger.

Run Your Customer Entry Program

1. Start Customer Entry.

2. Press [CTRL]-[g] to display the Navigate pop-up menu and
select the "Show who created this program" option.

The programmer names appear at the bottom of the screen.

3. Quit your Customer Entry program.

18-14 Using the Featurizer

19

Getting Started with
Menus

Main topics:

B Benefits of. . Menus

B Files Used by Menus

LI . Menus Directory Structure

B Starting a Menus Program

191

- CASE Tools Training Course Workbook

Benefits of Menus

19-2

. Menus provides an attractive environment for users to run
programs you create with the FourGen CASE Tools. .Menus
are:

* Simple to create and modify.

* C-based and pre-compiled. All your modifications happen in
real-time.

* Attractive and sophisticated. You can attach sibling menus or
subordinate menus. You menus can cascade over each other. You
can also control the placement of a menu on the screen.

* Capable of running UNIX commands. Common UNIX com-
mands that users invoke, such as checking disk space, can be
attached to a menu choice. Through menus, the user has a
friendly way of executing UNIX commands.

* Able to set UNIX environmental variables.

® Securable. You can instruct Menus to prompt for pass-
words or deny people or groups access to menu choices.

Gelting Started

-CASE Tools Training Course Workbook

Files Used by Menus

Menus uses several files to control how the menus look and

operate. These files include image (*.img) files and item instruction
files.

Image Files
The image of a menu is kept in an image file, which can be named

mernu Or menu.img. You use a text editor to create the menu image. For
example, here is a sample menu image file:

@ ABC COMPANY @
~] I~
~1% 1 %- ABC Inquiry | ~
~|% 2 %- ABC Messages | ~
~] | ~
e e - ———— = = - & -~

The display characters that you see have special meanings:

@ text @ Highlights text between two @ symbols.
| Creates a vertical border character.
+ Creates a corner character.

- Creates a horizontal border character.

% text % Highlights text between two % symbols when
menu item is selected.

~ Creates a transparent space. It is important to
have a transparent space around menus that
overlap.

ltem Instruction Files

Item instruction files hold item instruction commands. Item instruction
commands are a series of commands specific to menus. When the
user selects a choice off of the menu, the item instruction(s) in the
respective item instruction file are executed.

Files Used : 19-3

- CASE Tools Training Course Workbook

For instance, if a user selects the first option on the following menu,
an item instruction file named 1 is executed.

@ ABC COMPANY @
~| ' [~
~|% 1 %- ABC Inquiry | ~
~|% 2 %- ABC Mesgsages | ~
~ |~
e ——— e ————————— +~

Menus executes the item instruction commands within this
file. For example, the following shows a sample item instruction com-
mand:

sunix:echo "You selected ABC Inquiry":

The unix item instruction command instructs menus that the next
field contains a UNIX command. Item instruction commands and
their arguments are always delimited by colons.

The following list shows some commonly used item instruction com-
mands and their meaning;:

sunix: Executes a UNIX command.

:system: Executes an operating system command.

:ifxscreen: Runs an input program.

:item: Notifies the user about menu item
functionality.

:show: Shows menu arguments to user.

:submenu: Calls up a subordinate menu.

:addmenu: Calls up a menu at the same level.

renv: Sets a UNIX environment variable.

:pauses: Prompts the user to press [ENTER] before
continuing with the next item instruction
command.

:password: Prompts the user for a password before
continuing with the next item instruction
command.

19-4 Getting Started

CASE Tools Training Course Workbook

:deny: Denies all users or groups in its argument list
access to the menu item.
:allow: Allows all users or groups in its argument list
access to the menu item.
:input: Prompts the user for input and assigns the
input to a UNIX variable.
Menus Files

Item instruction files:

1 Contains item instruction commands for first
item on menu.

2 Contains item instruction commands for
second item on menu.

3 Contains item instruction commands for third
item on menu.

Image files:

menu or Holds the menu image.
menu. img

*_ act Holds cosmetic item instruction commands,.
such as :window: and :color:. The prefix
must match that of the *.img file that it
corresponds fo.

Help files:
1.help Contains help text for the first item on the
menu. 7
menu.help Contains general help text for all the items on
the menu.
Permission files:
1l.prm Contains permission instructions for the first

item on the menu.

Files Used by . i 19-5

CASE Tools Training Course Workbook

Menus Directory Structure

As you recall, the application directory structure contains
four levels: fourgen, application, module, and program. The ¢ fg
variable always points to the directory.

Fourgen

$fg

codegen accounting lib

|
|]

oe.4gm ap.4gm

Application

Module

Program i_invce.cod i_vendr.cod i_cashe.cod

Menus uses two directory levels: project and menus.
These directories parallel the application directories.

The project directory contains the module name for the menu. For
example, if your module directory is ordmnt . 4gm, your Menus
project directory should be ordmenu, or some other name that
uniquely identifies it.

The menus directory contains Menus files, such as item instruction
files, image files, help files, and security files.

19-6 Getling Started

: CASE Tools Training Course Workbook

Directory Diagram

The following figure shows Menus directory structure in relation to
the application structure:

Fourgen
licati .
Application accounting
Module
ap.4gm menu
Program/Project i_invce.cod apmenu
*.4gi/Menu
main

The $mz Variable

The $mz variable points to your menu directory at the module level.
Before you create or use the Menus program set $mz, for example:

mz=$fg/accounting/menu ; export mz

'Menus Directory Structure 19-7

iCASE Tools Training Course Workbook

Starting a Menus Program

The mz command lets you run Menus programs. This command is
found in your $ fg/bin directory. It uses the following syntax:

mz [project_directory] [menu directoryl]
For example, to execute the apmenu program, type:
mz apmenu main

By default, Menus always looks for the main directory first. If you
there is a main directory beneath the project dirctory, you can leave
off the menu directory arguement. For example:

mz apmenu

To see a sample Menus program, run the Menus demonstration:
mz_demo

This command starts the Menus demonstration, which contains

descriptions of several item instruction commands:

The mz_demo

Mail Help Quit

command starts - Enter selection:

a sample

Menus program.
my - Zmenu: en - lenv:
sm — :submenu: pc -~ ipc:t
it - item: fm - :form:
1g - :log: xm -~ taddmenu:
nd - ‘needs: pw - :password:
r1 - treplace:
ps — :pause: rpt =~ tifxreport:
sy - ‘system: brpt - :ifxreport:
in - linput: scr - :ifxscreen:
pr - :print: fax - fax rpt
if - :if: lang - language
setup - printer

19-8 Getting Started

.. . --.- CASE Tools Training Course Workbook

Section Summary

Menus provides an attractive environment for users to
run programs you create with the CASE Tools.

. Menus not only runs generated programs, but it can also
run common UNIX commands.

The image of a menu is kept in an image file. You use a text editor
to create the menu image.

For each item on a menu, there is a corresponding item instruc-
tion file. For example, menu item one has an item instruction file
named 1, menu item two has an item instruction file named 2,
and menu item three has an item instruction file named 3.

When the user selects a menu item, the corresponding item
instruction file is executed.

Item instruction files contain short, simple instructions that tell
Menus what to do.

Menus utilizes two directory levels: project and menu.

Before you create or run a Menus program, you should set the
$mz variable.

You can run a Menus program with the mz command.

The mz_demo command starts a sample Menus program.

Section Summary 19-9

- CASE Tools Training Course Workbook

Exercise 19

Objective: To create a simple menuing front-end that starts your Cus-
tomer Entry program.

This part of the Exercises focuses on Menus. Menus
gives you a flexible, easy-to-use front-end for your generated pro-
grams. In general, there are three main steps for creating a Menus pro-
gram: '

1. Create a Menus directory structure.
2. Create the menu image, complete with each menu option.

3. Create the command that starts your program when the corre-
sponding option is selected by the user.

Create a Menus Directory

* From within your module (aw. 4gm) directory, add the follow-
ing Menus directory structure in alliance with your
i_cust.4gs and i_cred.4gs directories:

aw.4gm

|]

i_cust.4gs menu i_cred.4gs

I 1

main progmenu

The menu directory functions as the topmost menu directory. The
other two directories, main and progmenu, hold the image files
and item instruction files for your Menus program.

19-10 Getting Started with

~ASE Tools Training Course Workbook

Create the Menu Image

1. Inthemain directory, use vi to create a file called menu.

2. In this file, add the following character image:

@ ACME INC. Q@
~| |~
~|% 1 %- Customer Info |~
~1% 2 %- Credit Entry | ~
~] | ~

B e Ty 4~

3. Save and quit menu.

Run Your Menu
You now have a "hollow" menu image that you can run.
1. Set your mz variable so that it points to your module directory:
mz=$HOME/labs/aw.4gm ; export mz
2. Run your Menus program with the following command:
mz menu

A simple Menus program appears:

Mail Help Quit
Enter selection: [

~ Customer Info

2 - Credit Entry

Exercise 19 19-11

CASE Tools Training Course Workbook

This program reflects the image you created in the menu file. As
you will see, it does not yet initiate either of your input programs.

3. Selectitem 1.

What happens? You should see the following message because
you still must attach each menu item to its respective program.

Menu item ‘1’ not found.

4. Press [DEL] and Q to quit your Menus program.

Attach Your Programs to the Menus Front End

1. Inthemain directory, use vi to create a new file called 1:
vi 1l

This is the item instruction file for menu item number one. Item
instruction files contain the logic that attaches programs to menu
options.

2. Add the following ifxscreen command to this file:
:ifxscreen:aw:i_cust::x:

The ifxscreen command takes four arguments. The first repre-
sents your module directory less the .4gm extension. The second

contains your program directory less the .4gs directory. The third
argument (empty in this example) holds command flags. The last
field, which is optional, prevents abnormal exits during process-

ing.

3. Save and quit from 1.

4. Usevi to create a second file and name it 2.

5. Add the following i fxscreen command to this file:
:ifxgcreenzaw:i_cred: :x:

6. Save and quit from 2.

19-12 Geilling Started with

-« CASE Tools Training Course Workbook

Run Your Menus Program Again

1. Set $ifxproject to point to your application directory:
ifxproject=$HOME/labs ; export ifxproject

2. Run your Menus program again:
mz menu

Your Menus program appears.

Mail Help Quit

Enter selection:

- Customer Info

2 - Credit Entry

3. Selectitem 1.

Your Customer Entry program appears.

Action:|] [EXER Update Delete Find Browse Nxt Prv Tab Options Quit
Create a new document

Acme Inc Customer Entry Screen

Customer Number: Credit Code:

Company Name: Credit Desc:

Contact Name:

Phone Number:

City: State: Postal Code:
Sales Code:

Order Information

4. Quit from Customer Entry and from Menus.

You have now successfully created a Menus program. In the next
exercise, you will modify this program to include a submenu.

Exercise 19 19-13

CASE Tools Training Course Workbook

19-14 Gelting Started

20

Building a Menuing
System

Main topics:

M Linking Input Programs to Menus
M Setting the $ifxproject Variable
B Creating Menu Security Files
|

Using Menus with Version Control

20-1

CASE Tools Training Course Workbook

Linking Input Programs to Menus

20-2

Menus gives you a special item instruction command
(:ifxscreen:) to link input programs to Menus. You can use this
command to associate the programs you build with the Form Painter
to a Menus program.

The :ifxscreen: command uses the following syntax:
sifxscreen:module_name:program name:flags:x:
In general, to link an input program to a Menus program:

1. Build your input program using the Form Painter. Make sure to
follow the standard application directory structure (see "The
Directory Structure” on page 16-2).

2. Create a Menus image file that contains a menu item correspond-
ing to your input program. For example, if your input program is
a customer information entry program, let the menu item read
"Start Customer Entry” or some other descriptive phrase.

3. Create an item instruction file that corresponds to the position of
the menu item on the menu image. For instance, if the "Start Cus-
tomer Entry" item is the first item on the menu image, create an
item instruction file named 1.

4. Usethe :ifxscreen: command in the item instruction file. For
example, if your program isin ap.4gm/i_invce.cod, use the
following : ifxscreen: command:

:ifxscreen:ap:i_invce::x:

Building a Menuing System

- CASE Tools Training Course Workbook

Setting the $ifxproject Variable

The $ifxproject variable instructs Menus where to look for an
input program. For example, consider the following : ifxscreen:
command:

sifxscreen:ap:i_invce:

Menus knows that this program is in ap.4gm/i_invce.cod, but
Menus doesn’t know where ap . 4gm resides. To resolve this problem,
the sifxproject variable is set. This variable provides Menus with
the full directory path to your application directory. For example, if
your application directory is $£g/accounting, the $ifxproject
variable should be set to:

ifxproject=$fg/accounting ; export ifxproject

Other Useful Menus Variables

Besides $1ifxproject, Menus uses other useful variables. The fol-
lowing list contains some of these variables and a short description of

each:

hot Determines how many keystrokes the user
must enter to uniquely identify a menu.
Typically set to 1 or 2.

ifx Contains the full path name of the last
program run.

ifxdebug Allows you to run Informix programs using
the Informix debugger.

md ‘ Contains the name of the menu directory plus
the full pathname of the selected menu item.

company Holds the database name.

Setting the $ifxproject Variable 20-3

CASE Tools Training Course Workbook

Creating Menu Security Files

20-4

You can also assign security restrictions to menu items. For example,
if you want to assign user restrictions to menu item number one, you
can create a 1 . prm file. Inside this file, use the : deny: and :allow:
commands to set security values. These commands use the following

syntax:

tallow:user id,...:
sdeny:user id,...:

If you want to set security on a group of users, use:

tallow:group_name, ...:group:
sdeny:group name, ...:group:

For example, if you want to deny two groups (sales and managers)
access to a menu item, type:

sdeny:sales,managers:group:

You can also assign a password to a menu item. Unlike the : allow:
and :deny: commands (which go into *.prm files), the : password:
command goes into an item instruction file.

The :password: command uses the following syntax:
spassword:literal password:[p:]

Where literal_password is the actual password value. For example, if
you want failsafe to be your password, type

:password:failsafe:p:

Once you save this item instruction file, the password line gets
encrypted.

The :p: argument logs failed password attempts into an administra-
tive file that you can review. Use the $passfail variable to point to
this log file.

Building a Menuing System

CASE Tools Training Course Workbook

Using Menus with Version Control

In addition to running the base version of an input program, you can
also instruct Menus to run a version control version (see "Version
Control Overview" on page 16-3).

Recall that the : i fxscreen: item instruction command doesn’t
require the module and program directory extensions, *.4gm and
4gs/.cod respectively. To run a program in
ap.4gm/i_invce.cod, you specify:

tifxscreen:ap:i_invce::x:
You do not include the directory extensions.

When Menus encounters an : i fxscreen: item instruction, it looks
in the base program *.4gs/*.cod directory to find the input program.

If you want Menus to look in a version control directory, you need to
set the Scust_path variable to point to that directory. For example,
if you want to run a custom version of enterprise i_invce program
located in the i_invce.abc directory, set $cust_path as follows:

cust_path=abc:cod ; export cust_key

Using Menus with Version Control ~ 20-5

CASE Tools Training Course Workbook

Section Summary

20-6

Menus gives you a special item instruction command
(:ifxscreen:) to link input programs to Menus. You can use
this command to associate the programs you build with the Form
Painter to a Menus program.

The $ifxproject variable instructs Menus where to look for an
input program (i.e., it points to the program’s application direc-
tory).

You can assign security restrictions to menu items. For example,
if you want to assign user restrictions to menu item number one,
you can create a 1.prm file. Inside this file, you can use the
:deny: and :allow: commands to set security values.

In addition to running the base version of an input program, you
can also instruction Menus to run a version control version.

If you want Menus to look in a version control directory, you need
to set the Scust_path variable to point to that directory.

Building a Menuing System

CASE Tools Training Course Workbook

Exercise 20A

Objective: To create a submenu from your original menu.

Although the programs you have built do not require it, Menus gives
you the ability to create "submenus." There are three main steps for
building submenus:

1. Create a submenu directory.
2. Create the submenu image file.

3. Create the logic to open the submenu.

Create a Submenu Directory

If you created the Menus directory structures shown in Exercise 19,
you have already created a submenu directory, which you named
progmenu. If you haven’t, see "Create a Menus Directory” on page
19-10 and create that directory structure on your own system (includ-
ing the progmenu directory).

Create the Submenu Image File

Instead of starting from scratch, copy your original image . img file
into your progmenu directory. It will now become your submenu
image file.

1. From your menueze directory, type:
cp main/menu progmenu/menu

At this point, you should have two menu files, one in your main
directory and the other in your progmenu directory.

2. In addition, copy over both of your item instruction files:

cp main/1l progmenu/l
cp main/2 progmenu/2

3. Finally, delete file 2 in the main directory:

rm main/2

Exercise 20A 20-7

CASE Tools Training Course Workbook

Your menu directory should now contain the following files:

menu

main progmenu

o) () (=)0

Note that both menu files and 1 files are identical. In most cases,
it is simpler to modify image and item instruction files than it is
to create new ones.

Create the Logic to Open the Submenu

1. Use vi to edit the menu file in the main directory. Make it look
as follows:
@ ACME INC. Q@
~1 |~
~1% 1 %- Input Programs |~
~| f~

o +~

2. Save and quit menu.

3. Use vi again to replace the ifxscreen line inmain/1 as fol-
lows:

: submenu :menu : progmenu

4. Save and quit 1.

20-8 Building a Menuing System

CASE Tools Training Course Workbook

In affect, you have moved your original menu to a submenu and
created a "higher-order"” menu above it. As it was stated earlier,
your sample programs do not require such an elaborate structure.
This exercise is just intended to show you how to create sub-
menus.

Run Your Menus Program

1.

From the UNIX prompt, type:
mz menu

Notice that mz command remains unchanged, even though
you’ve added a submenu. Your Menus program appears and the
Input Programs menu appears first:.

Mail Help Quit
Enter selection: []

~ Input Programs ‘

Select item 1 (the only item available).

Your Customer Entry/Credit Entry menu appears:

Mail Help Quit
Enter selection: ||

- Customer Info

2 - Credit Entry

To start your Customer Entry program, select item 1. To select
your Credit Entry program, select item 2.

Quit out of your input program to return to the Menus screen.

Press [DEL] to return to the Input Programs menu and Q to exit
the application.

Exercise 20A 20-9

CASE Tools Training Course Workbook

Exercise 20B

Objective: To add a password to your Customer Entry menu item.

Menus lets you apply password protection on each menu item.

Create a password Instruction

1.

2,

In your progmenu directory, use vi to open file 1.

Add the following password command above the i fxscreen
line:

spassword:eatBreakfast::

Save and quit file 1.

Run Your Menus Program

1.

Run your Menus program:
mz menu

Select Input Programs from the first menu and the Customer
Entry.

Before the Customer Entry program loads, a password prompt
appears:

Enter password: [|

Enter eatBreak£fast as the password.

If you make a mistake typing in eat Breakfast, don’t worry,
Menus gives you three chances to type in a password correctly.

Once you enter the password, your Customer Entry program
starts.

20-10 Building a Menuing System

CASE Tools Training Course Workbook

Check Your Password

1. Quit out of both your Customer Entry and Menus program.
2. Return to your progmenu directory and use vi to open file 1.

What does the password command look like now? Instead of see-
ing the word eatBreakfast, an encrypted password appears.
Encryption takes place once you run your Menus program:

tpassword:+!1laX2/!nl~%1lrX{:

3. If you feel truly inspired, you can password protect the other
items on your menu.

Exercise 20B 20-11

CASE Tools Training Course Workbook

20-12 Building a Menuing System

21

Security

Main topics:
B Security Overview

B The Security Programs

21-1

CASE Tools Training Course Workbook

Security Overview

Security is based on a hierarchy. You design your security system
around three levels of users. In addition, applications are
divided into three levels. The key to setting up a quality security sys-
tem depends on your understanding of these levels and how they
relate to each other.

User Level Description

Individual User This level defines system users on a unique or
individual basis. All system users, in other
words anyone able to log in to the system, are
considered individual users. You can grant
individual users explicit allow or deny
permission settings.

User Group This level is made up of a subset of system
users. You define and determine the types of
groups and the members of each group on
your system. When you set permissions for a
group, all members of the group are given
that permission.

Defaults This level is made up of all system users. It
uses defaults as a keyword that signifies a
user group containing every individual user.
When you set permissions for defaults, you
are setting permissions for all users who do
not receive more specific group or individual
permissions. :

Application Level = Description

Module A collection of input and output programs
that compose a product, such as
General Ledger.

Program A single program within a module. For

instance, General Ledger Setup is an input
program within the General Ledger module.

21-2 Security

CASE Tools Training Course Workbook

Application Level = Description

Event An activity or command within a program.
For example, many input programs let you
Update current information. The Update
command, then, is considered an event.

Security Programs

Security is a collection of programs that let you define secu-
rity permissions for each level of user and application. Security con-
sists of five input programs. These programs work interactively. In
other words, information defined in one program is used to provide
information for another program.

Program Name Description
Module and Program This program lists the . modules and
Information programs on your system. By default, this

information comes pre-loaded in Security.

Security Events This program lists the events used by the
modules and programs on your system. Like
modules and programs, event information is
pre-loaded.

Security Groups This program lets you define which
individual users belong to which user group.

User & Group This program provides a complete method for

Permissions identifying users and groups on your system.
In addition, it links information in the Module
and Event programs with user and group
definitions, and it allows you to set explicit
user and group permissions. Most of the work
you do with Security is done in this program.

Group Security This program provides an easy-to-use

Control interface for setting up group permissions on
events. It does not contain all the features and
flexibility of the User & Group Permissions
program, but it is a simplistic alternative.

Security Overview 21-3

CASE Tools Training Course Workbook

In later sections of this Guide, each program is described in more
detail. This section concentrates on how Security takes and uses
information supplied to the Security programs and which permission
settings take precedence.

Determining Precedence

User Level

Search Order

Application

Level Search

Order

Security determines precedence in an inverted or "bottom up" man-
ner. In other words, the most specific settings (the individual user set-
tings and the event settings) take precedence over the more general
settings.

In terms of user levels, Security searches for an allow or
deny permission first on the individual level, then on the group level,
and finally on the global or defaults group level.

G) G) G

In terms of application levels, Security looks first at the event level,
then the program level, and finally the module level.

CE) Cen) Ges)

Overlapping Group Permissions

21-4

Security is designed to meet as many custom security set-
ups as possible. For this reason, you can place individual users into
more than one user group. Sometimes, however, users belong to
groups that contain conflicting permission settings otherwise known
as overlapping user groups. Users that belong to overlapping groups
are given allow permission.

Security

- CASE Tools Training Course Workbook

For instance a clerk might belong to a group called clerks and a
group called project_leaders. At times, clerks and pro-
ject_leaders might have conflicting permission settings. For
instance, clerks might allow the Update event and project_1le-
aders might deny it.

You can place
users into more
than one group.

If a useris in two
groups that have
conflicting
security Allow Update)
permissions, Project_leaders
allow , . Deny Update
permission is
granted.

In this situation, the clerk who belongs to both groups is able to use
the Update event.

Security Overview 21-5

. CASE Tools Training Course Workbook

The Security Programs

Security is a collection of five input programs. You use all of
these programs to define Security on each level of user and applica-
tion.

Module and Program Information

This input program lets you enter the modules and programs eligible
to secure. All' modules and programs come pre-loaded. You
only need to use Module and Program Information when you create
custom programs or modules. The following figure shows the input
screen for Module and Program Information:

The Module and Action:] KRN Update Delete Find Browse Nxt Pry Options Quit
Program Create a new document

Information
Program.

Module and Program Information

Module Name : report
Program Name : writer Description : Report Writer

User Definable : N

A of 1)

Adding Custom Programs to Module and Program
Information
When you create a custom application, the Report Code Generator
automatically builds logic that Security recognizes. For example, if

you create a custom report, you can add that report to Module and
Program Information.

21-6 . Security

CASE Tools Training Course Workbook

To add a custom report to Module and Program Information:
1. Select Add from the ring menu.

2. In the Module Name field, enter the module directory of the
custom program.

For example, if your custom report is in sales.4gm, enter
sales in the Module Name field.

3. In the Program Name field, enter the program directory that
contains your custom report.

For example, if your custom report is in g1_sales. 4gs, enter
gl_sales in the Program Name field.

4. Describe your custom report in the Description field.
The User Definable field is a non-entry field.

5. Press [ESC] to store your entry.

The Module and Action:|| IEEEN Update Delete Find Browse Nxt Prv Options Quit
Program Create a new document
Information

let Module and Program Information
program lets you

make custom
programs
"eligible" to
secure. Module Name : sales

Program Name : ql_sales Description : Quarter One Sales

User Definable :

(New Document)

Security Events

This input program is similar to Module and Program Information. It
too comes pre-loaded with events used in FourGen programs, such as
add, delete, and update. As well, Security Events lets you define cus-

The Security Programs 21-7

CASE Tools Training Course Workbook

tom events in custom programs. Similar to Module and Program
Information, Security Events just lets you define events that are eligi-
ble to secure.

The Security Action:] Update Delete Find Browse MNxt Prv Options Quit
Events Program Create a new document

Security Events

Hodule Name Program Name Event Name
Description :
Default Setting : User Definable :

(No Documents Selected)

The following shows some of the 35 events associated with Report

Writer.
There are 35 Action: Add Update Delete Find Browse Nxt Prv Options Quit
events Select a group of documents
associated with Brouse:j] Prev Up Down Top Bottom Select Goto Quit
the Report Move to next document
Writer,
Module Program Event Description
eknos) cagnent
report writer arrange_columns Arrange Columns
report writer choose_columns Choose Columns
report writer col_sel_help Column Selection Help
report writer context_help Context Help
report writer data_desc_help Data Description Help
report writer data_groups Data Groups
report writer data_selection Data Selection
report writer data_sets_help Data Set Help
report writer del_data_group Delete a data Group
A of 35
A of 3%

21-8 - Security

CASE Tools Training Course Workbook

Adding Custom Events to Security Events

If your application contains custom events, you can add these events
to the Security Events program. Once added, you can use the User
and Group Permissions program to place individual and group per-
missions on your custom event.

Unlike custom programs, where Security logic gets generated auto-
matically, you must add a few lines of code at the start of your custom
events for Security to be able to recognize it.

For example, suppose you create a q1_sales program. In
ql_sales, you create a custom event that allows users to fax report
output to company headquarters. At the start of your custom fax
event, add the following lines of code:

Inserted for program level security.
Check for permission
if not security_chk ("fax")
then
call security_msg (" fax")
else
call fax(p_stomer.phone)
end if

After you add this code to your custom event, making that event eli-
gible to secure requires the following steps:

1. Select Add from the ring menu.

2. In the Module Name field, enter the module directory of your
custom program.

For example, if the module directory is sales . 4gm, enter
sales.

3. Inthe Program Name field, enter the program directory of your
custom program.

For example, if the program directory is g1_sales.4gs, enter
gl_sales.

4. In the Event Name field, enter the name of your custom event.

For example, if the event name is fax, enter fax.

The Security Programs 219

CASE Tools Training Course Workbook

5. In the Description field, enter a description of your event.

6. Inthe Default Setting field, enter the default permission for the
event.

The User Definable field is a non-entry field.
7. Press [ESC] to store your entry.

Use the fAction:[] Update Delete Find Browse Nxt Prv Options Quit
Security Events Create a new document
program to Security Events
make custom
events
securable.
- Module Name Program Name Event Name
sales ql_sales fax
Description : SENDS FAX TO HEADQUARTERS
Default Setting : N User Definable : Y
1 of 1)
Note If you want to set permissions for your event in all the programs in a

module, leave the Program Name field blank.

Security Groups

This program lets you assign individual users to groups. By creating
groups of users, from individuals users who require similar system
access, you can simplify your security configuration.

2110 . . Security

CASE Tools Training Course Workbook

For example, you might want to assign your entire sales force to a
group called sales. Your definition of the sales group might look

as follows:
The Security Add: [ESCI to Store. [DEL] to Cancel. LTABI Next Window Help:
Groups Enter changes into form [CTRL]-[wl
(Zoom)==
program lets you Security Groups
define groups of
users who Group Code : sales
share the same Description : SALES PERSONNEL
permission
seitings — User Login ——- User Login —-- User Login ——- User Login --- User Login -
. donw 1ynnf Jamesp thomasr ralpho

Enter the user login.

Once you define a security group, you can set permissions for that
group in the User and Group Permissions program or in Group Secu-
rity Control.

The Security Programs 21-11

CASE Tools Training Course Workbook

User and Group Permissions

This input program is where most of your security work gets done. It
is this program that relates the information set in Module and Pro-
gram Information, Security Events, and Security Groups with actual
permission settings.

The User and fAction:]] Update Delete Find Browse Nxt Prv Tab Options Quit
Group Create a new document
Permissions User & Group Permissions
program. User Login Last Name First Name M/I
Company: Department :
Manager: Phone:
Module - Program - Event ——-—--——--—-- Description ———==——=w———————v Allow

(No Documents Selected)

Setting Individual User Permissions

The most basic task of the User and Group Permissions program is
setting permissions for an individual user.

To set permission for an individual user:
1. Select Add from the ring menu.
2. Enter values for the User Login and Last Name fields.

For example, if you are setting permissions for donw, enter donw
in the User Login field and donw’s last name (for instance Will-
iams) in the Last Name field.

The User Login and Last Name fields are the only required fields.
The other fields in the header section are optional, such as the
Department and Phone fields.

21-12 *Securily

CASE Tools Training Course Workbook

This entry
denies donw
the ability to
delete reports.

3. Press [TAB] to move to the detail section of the program.

In the detail section you can enter the module, program, and
event you want to set permissions on. You can also press [CTRL]-
[z] to pick from a list of defined modules, programs, and events.

For example, suppose you want to deny donw the ability to
delete reports:

Action:|] IEEN Update Delete Find Browse MNxt Prv Tab Options Quit
Create a new document

User & Group Permissions

User Login Last Name First Name M/1
donu WILLIAMS DON
Company: Department:
Hanager : Phone:
Module - Program - Event -——=-==—v—m— Description ———---—--———===-- Allow
report writer del_report Delete a Report

(New Document?

4. Once you finish entering permission data, press [ESC] to store
your entry.

Setting Permission for an Entire Module

To set permissions for an entire module, only specify the module
name in the detail portion of User and Group Permissions.

The Security Programs ~ 21-13

CASE Tools Training Course Workbook

This entry
denies donw
access to all the
programs in the
report module.

For example, to deny donw access to all programs in the report mod-
ule, make the following entry:

Action:] Add [IJYEE Delete Find Browse Nxt Prv Tab Options Quit
Change this document

User & Group Permissions

User Login Last Name First Name M/T
dons WILLIAMS
Company: Department :
Manager: Phone:
Module - Program - Event —--—---——~--- Description --—————==----~-"- Allow
report Any security events

(New Document)

In a similar sense, you can set permissions for all events in a program:
specify both the module and program and leave the Event field

blank.

Setting Group Permissions

21-14

You can also set permissions for groups that you have defined in the
Security Group program (see "Security Groups" on page 21-10). In the
same way you set permissions for individual users, you also set per-
missions for groups.

Security

- CASE Tools Training Course Workbook

To set permissions for a group:

1. Select Add from the ring menu.

2. Enter the group code (i.e., group name) in the User Login field
and enter a description of the group in the Last Name field.

3. Press [TAB] to move to the detail portion of the program.

In the detail section you can enter the module, program, and
event you want to set permissions on. You can also press [CTRL]-
[z] to pick from a list of defined modules, programs, and events.

For example, to set permissions of the sales group for the delete
report event:

This entry sets Add: [ESCI to Store. [DELI to Cancel. LTABI Next Hindow Help:
permissions for Enter changes into form [CTRL]-Cuw]
the sales group. User & Group Permissions

User Login Last Name First Name M/I
sales SALES PERSONNEL

Company: Department :
Manager : Phone:
Module - Program - Event ----——-—-——— Description —-—————————
report writer del_report Delete a Report

Enter a (Y)es to allow or (N)o to not allow event.

4. Once you finish entering permission data, press [ESC] to store
your entry.

Setting Defaults Permission

The Defaults permission is a reserved permission setting. The values
set for Defaults are passed to all users and groups not otherwise
defined. For instance, if the user robertc does not belong to any
groups and does not have an individual user entry, he receives the
permissions set in defaults.

The Security Programs 21-15

CASE Tools Training Course Workbook

To set Defaults permission:

1. Select Add from the ring menu.

2. Enter defaults in the User Login field and DEFAULTS in the
Last Name field.

3. Press [TAB] to move to the detail section of the screen.
In the detail section, enter the module, program, and event you
want to set permissions on. You can also press [CTRL]-[z] to pick
from a list of defined modules, programs, and events.

4. Press [ESC] to store your settings.

Caution

The Defaults permission affects all users on the system.

Group Security Control

This entry sets
permissions for
the account
group on the
report programs.

21-16

Group Security Control is a simplified version of the User and Group
Permissions program. With Group Security Control, common pro-

gram events are already listed. Group Security Control has
type interface, which helps you assign permission settings.

a matrix

Update: [ESC] to Store, [DEL] to Cancel, [TAB] Next Hindow
Enter changes into form C

Help:

CTRLI-[w]

Group Security Control

Group : account ACCOUNTANTS GROUP

Module : report Report Module
Program Run fidd Upt Del Fnd Bru Tab Opt Bng Hot Nav
Report Image Loader Y Y Y Y Y YN N, N N N
Report Image Maker N N Y ¥ Y Y ¥ N N N N
Report Runner Y Y Y N N N N N N N
Report Writer Y Y Y N Y Y N N N N [R

Enter permission for adding or editing Navigation events.

- Security

- CASE Tools Training Course Workbook

The following describes the events available in Security Control.

Event

Run

Add

Upt

Del

Fnd

Brw

Tab

Description

The Run event controls the use of the listed
program. When the Run permission field is
set to Y, members of the group can start the
listed program. When set to N, the group
cannot start the listed program.

The Add event controls the ability to add or
create new program documents. When Add is
set to Y, documents can be added. When set to
N, the group cannot add a document.

The Upt event specifies a group’s ability to
update a document. A Y in this field lets
group members update a document, an N
denies update permission.

The Del event controls document deletion.
Many times only specific users are allowed
delete permission. When you set the Del
event to Y, the group can delete documents.
When set to N, documents cannot be deleted.

The Fnd event controls a program’s Find
capabilities. When you set the Fnd eventto Y,
group members can conduct Query-By-
Example searches for specific documents.
When set to N, users cannot use the Find
feature.

The Brw event controls the Browse
capabilities. When you set Brw to Y, the group
can use the Browse command. When set to N,
browse privileges are denied.

The Tab event coincides with the Tab
command. When you set the Tab field to Y,
the group can use the Tab command. When
set to N, group members cannot use the Tab
command.

The Security Programs 2117

CASE T7ools Training Course Workbook

21-18

Event

Opt

Bng

Hot

Nav

- Security

Description

The Opt event controls access to the Options
command. A'Y in the Opt field grants access
to the Options command, an N denies access.

The Bng event controls access to the operating
system. In most cases, users are able to bang
out (also called shell out or escape) to the
operating system. When the Bng event is set
toY, the group can bang out of the program.
When set to N, the group cannot escape to the
operating system.

The Hot event corresponds to a program’s
HotKeys. In many programs, users can define
Hot Keys that serve as keyboard shortcuts to
common program commands. When you set
the Hot event to Y, users can alter the default
Hot Key definitions. When set to N, users
cannot edit the default Hot Key definitions.

The Nav event relates to a program’s
Navigate feature. In many

programs, users can press [CTRL]-[g] to view
the Navigate pop-up menu. When you set the
Nav event to Y, users gain the ability to use
this menu. When set to N, users cannot use
the Navigate menu.

:CASE Tools Training Course Workbook

Section Summary

Security is based on a hierarchy. You design your security system
around three levels of users. In addition, applications
are divided into three levels. The key to setting up a quality secu-
rity system depends on your understanding of these levels and
how they relate to each other.

Security is a collection of five input programs. You use
all of these programs to define Security on each level of user and
application.

The Module and Program Information program lets you enter the
modules and programs eligible to secure. All modules
and programs come pre-loaded. You only need to use Module
and Program Information when you create custom programs or
modules.

Security Events is similar to Module and Program Information. It
too comes pre-loaded with events used in programs,
such as add, delete, and update. As well, Security Events lets you
define custom events in custom programs. Similar to Module and
Program Information, Security Events just lets you define events
that are eligible to secure.

Security Groups lets you assign individual users to groups. By
creating groups of users, from individuals users who require sim-
ilar system access, you can simplify your security configuration.

User and Group Permissions is where most of your security work
gets done. It is the program that relates the information set in
Module and Program Information, Security Events, and Security
Groups with actual permission settings.

Group Security Control is a simplified version of the User and
Group Permissions program. With Group Security Control, com-
mon program events are already listed. Group Security Control
has a matrix type interface, which helps you assign permission
settings.

Section Summary 21-19

CASE Tools Training Course Workbook

Exercise 21

Objective: To use . Security to deny yourself the ability to
update records in your Customer Entry program.

Security lets you control how a program is used and by
whom. In this exercise, you will set a security restriction on yourself.
You will deny yourself access to the Update ring menu command in
your Customer Entry program.

Start the Module Information Program

This program adds your Customer Entry program to a "roster” in the
database. The roster is simply a listing of all the modules and pro-
grams that are "securable” or eligible to secure.

1. From the UNIX prompt, type:
fg.modules

The Module Information program appears:

Action:|] IEEER Update Delete Find Browse Nxt Prv Options Quit
Create a new document

Hodule and Program Information

Module Name
Program Name : Description :

User Definable :

(No Documents Selected)

21-20 Security

- CASE Tools Training Course Workbook

2. Select Add from the ring menu and enter aw in the Module
Name field.

3. Save this record.

4. Select Add again and enter aw in the Module Name field and
i_cust in the Program Name field.

5. Enter a description for i_cust then save and quit this pro-
gram.

Start the User Permissions Program

User Permissions assigns different security permission values to indi-

vidual users or groups of users. You will use this program on your-
self.

1. From the UNIX prompt, type:
fg.users

The User Information program appears. This programcontains
both a header and a detail section. The header section contains
information about the user, which in this case will be you. The
detail section contains information about the module, program,
event, and permission setting.

2. Select Add from the ring menu to create a new user record.
3. Place your user login in the User Login field.

4. Enter your first and last name in the Name fields.

Exercise 21 21-21

CASE Tools Training Course Workbook

5. Press [TAB] to move to the detail section:

Update: [ESC] to Store. [DEL] to Cancel. [TAB] Next Hindow Help:
Enter changes into form L[CTRLI-[w]
(Zoom)==
User & Group Permissions

User Login Last Name First Name M/L
brianh HIEGEL BRIAN

Company: Bepartment :

Manager: Phone :

Module - Program - Event ————-—---——— Description ——-——-——==wee——— Allow

Enter the module name.

6. Fill in the detail fields as follows and press [ESC] to save this

record:
Module - Program - Event —-~———————--- Description ——=~~———-—m—me-— Allow
custmr i_cust update Update a Record

7. Quit from User Permissions.

Start Your Customer Entry Program

1. Use cdto move to your i_cust.4gs directory and start your
Customer Entry program.

If you would rather, you can also start it from the Menus program
you created in Exercise 19.

2. Use Find to select a record or group of records.

21-22 Security

CASE Tools Training Course Workbook

3. Press Update to alter the record.

A message appears denying you access to update:

Action: Add Update Delete Find Browse Nxt Prv Tab Options Quit
Select a group of documents

(Notes)
Customer Entry Screen
Customer Number: 101 Credit Code: AAA
Company Name: All Sports Supplies Credit Desc: EXCELLENT

Contact Name: Lud
Phone Number: 408| Due to security permissions. you cannot:
City: Sunnyvale Update a Record 4086
Sales Code: Please contact your system administrator
—————————————————— for assistance if this is a problem. Rt

Order Number Press [ENTER] to continue: J ping Charge

1002 06/01/1986 9270 $15.30

1 of 18

4. Press [ENTER] to return to the ring menu.

Notice that you can still use the other ring menu commands, you
only restricted access to the Update command.

5. Quit from Customer Entry.

Exercise 21 21-23

*CASE Tools Training Course Workbook

21-24 Security

