FItriXo
Report Code
Generator

Technical Reference

Version 4.11

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph
(c)(1)(ii) of the Rightsin Technical Data and Computer Software clause at DFARS252.227-7013. Fourth
Generation Software Solutions, 2814 Spring Rd., Suite 300, Atlanta, GA 30039.

Copyright

Copyright (c) 1988-2002 Fourth Generation Software Solutions Corporation. All rightsreserved. No part of this
publication may be reproduced, transmitted, transcribed, stored in aretrieval system, or translated into any
language in any form by any means without the written permission of Fourth Generation Software Solutions.

Software License Notice

Y our license agreement with Fourth Generation Software Sol utions, which isincluded with the product, specifies
the permitted and prohibited uses of the product. Any unauthorized duplication or use of Fitrix, in wholeor in
part, in print, or in any other storage and retrieval system is forbidden.

Licenses and Trademarks

Fitrix is aregistered trademark of Fourth Generation Software Solutions Corporation.
Informix is aregistered trademark of Informix Software, Inc.

UNIX isaregistered trademark of AT&T.

FITRIX MANUALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, FURTHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE ENTIRE RISK ASTO THE QUAL-
ITY AND PERFORMANCE OF THE FITRIX MANUALSISWITH YOU. SHOULD THE FITRIX MANU-
ALS PROVE DEFECTIVE, YOU (AND NOT FOURTH GENERATION SOFTWARE OR ANY
AUTHORIZED REPRESENTATIVE OF FOURTH GENERATION SOFTWARE) ASSUME THE ENTIRE
COST OF ALL NECESSARY SERVICING, REPAIR, OR CORRECTION IN NO EVENT WILL FOURTH
GENERATION BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING ANY LOST PROFITS, LOST
SAVINGS, OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE
OF OR INABILITY TO USE SUCH FITRIX MANUALS, EVEN IF FOURTH GENERATION OR AN
AUTHORIZED REPRESENTATIVE OF FOURTH GENERATION HAS BEEN ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. IN ADDITION,
FOURTH GENERATION SHALL NOT BE LIABLE FOR ANY CLAIM ARISING OUT OF THE USE OF
OR INABILITY TO USE SUCH FOURTH GENERATION SOFTWARE OR MANUALS BASED UPON
STRICT LIABILITY OR FOURTH GENERATION'S NEGLIGENCE. SOME STATES DO NOT ALLOW
THE EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION MAY NOT APPLY TO
YOU. THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS AND YOU MAY ALSO HAVE
OTHER RIGHTS, WHICH VARY FROM STATE TO STATE.

Fourth Generation Software Solutions Corporate: (770) 432-7623
2814 Spring Road, Suite 300 Fax: (770) 432-3448
Atlanta, GA 30339 E-mail: info@fitrix.com
Copyright

Copyright (c) 1988-2002 - Fourth Generation Software Solutions Corporation - All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed, stored in aretrieval system or translated.

Fitrix Report Code Generator Technical Reference

Welcome to the Fitrix Report Code Generator Technical Reference.
Thismanual is designed to be afocused step-by-step guide. We hope
that you find al of thisinformation clear and useful.

All of the screen images in this document are show with the products
using the character user interface. While the Fitrix Rapid Application
Development (RAD) Tools operate in character mode only, the soft-
ware applications created by the RAD tools offer the option of being
viewed in a graphic based Windows (or X11) mode as well as the char-
acter mode shown. Examples of graphic based product viewing modes
are shown below in Example 1 and Example 2.

Fourth Generation Software Solutions Database: sample

View |Execute Settings | Help

e erieration Softwine Solutio
s [RUEUL 1 General Ledger
1 2 Acco 1 1 Ledger Journal

(3 3 Acce|(~) 3 Recurring Documents
(3 4 Orde| ™ 3 | adger End of Period

1 5 Invel| ™ 4 |edger Setup
(1 6 Purd| ™ 7 multilevel Tax
03 7 Multf~ 8 Administration
(1 8 Payn|(~} g pompany Setup
o -
a Reple

Status |dle Socket sock44/132 147 160.15/20030

Example 1: Menu Graphical Windows Mode

Fitrix Report Code Generator Technical Reference

Hereis another example:

' i_genim -[0fx]
0 GG B s oo g
|FEo T | | s | @ @
.
(Zoom)
General Journal

Zoom: [ESC] to Select, [TAB] for Menu
Key
i i

Totals-Debits [NZS0000 Credits [NSS0M00 Difference [NUNNE00M00 | "FAER<

| Enter Tedger account number to record transaction to.

Date:
Description:
EQP Reverse(Y/N): [N
Source: [CASHPY|
Account Group: |[CASHAR
user: [
-Account — Dept-Description ———————

Description

(8 rows selected)

l

v

I [

Example 2: Data Entry Graphical Windows Mode

Displaying our products in graphic mode, as shown in Example 1 and
Example 2, is customary for many Fitrix product users. However, your
viewing mode is a user preference. Changing from character based to
graphical based is a product specific procedure, so if you wish to view
some applications in character mode, and some in graphical mode, that
can be done as well.

If you have any questions about how to view your productsin graphical
mode, please consult your Installation Instructions or contact the Fitrix
helpdesk at 1(800)374-6157. Y ou can aso contact us by email:
support@fitrix.com. Please be prepared to offer your name, your com-
pany, telephone number, the product you are using, and your exact
question.

We hope you enjoy using our products and ook forward to serving you
in the future.

Thank Y ou,
Fourth Generation

Fitrix Report Code Generator Technical Reference

Table of Contents

Documentation CONVENTIONSccuiiieiieiieie et eeee e et s s sae e sbe e s s sbaessesresssreeas \

Chapter 1: Introduction

Code GENErator FEAIUIEScevveeirieiriecrieisieesieesie e 1-2
Technical REFEreNCE OVEIVIEWccoiiieiieieeeeeeeee e e 1-3
Installation and Preparationccocveeerereeieeiesienie e seesesee e seeseseeseenessenns 1-4
INFORMIX-AGL INStAlationScccvveivieiiiisiiises e 1-4
Report Code Generator INStallationscceeveveveneniene s e 1-4
DITECLOrY SIIUCIUIE ..ottt ettt et 1-5
Overview of the DIirectory StrUCIUIEc.oovvvveveveseseseseesesee e 1-5
Optional Directory Variables ... 1-6
REPOrt DIreCtory STUCLUEecvvieeieeieieseeeeeeese e see e s neene s 1-7

Chapter 2: Creating an Image File

IMage Fil€ DESCIIPLIONceivevieieceeeeeee et sre e 2-3
D 7z 7= = OSSR 2-4
L6011 0 2-5
FOrMEt SECHIONvecveiieceeece et sae e 2-6
0 Sl 170 [SRR 2-7
ONFIISEROW ottt sttt sre e s e 2-8
210 (=Y o1 o SRS 2-9
ON EVEIY ROW ...ttt e e e 2-10
F N 1] (01U 2-11
PagE TraIlEr ... b 2-12
ONLESE ROW ..ottt 2-13
ATIIDULES ...t 2-14
SEIECE i 2-16
DEfBLILS ... e e e e 2-18

Additional COMMENGScceerieirieirieeee e e 2-20

Fitrix Report Code Generator Technical Reference

IMage File LimItationsccccvoviereiiseseseseeeeese e 2-21
EXAMPIE FIIES ...t 2-22
SaMPleIMAGE FIIE ..o 2-23
Sample REPOIT OQULPULccveieeieiiiiiie e 2-25

Chapter 3: Generating Source Code

Starting the Code GENEIALONcccevereereeieieeeeresese e se e see e srenees 3-3
Handling DUPlICALE FIlESo.oiieeeeeeee e e 35
Reviewing the Source Code FleS ... 3-7

Chapter 4: Compiling and Running

Compiling Generated COOEccueveeeeeeeire et enens 4-3
Differences Between RDS and C COMPIIESooeeeerenininene e 4-4
Using fg.make to Compile Your Programccccccceeveeveveneseseeneeneenenenns 4-6
Speeding Application COMPIliNGcoeoeriririnreree e 4-10
ThE MEKEFIE ... 4-12
Compiling LIDIariescooieiiiiieiee e 4-17
Compiling Your Entire AppliCationccccceeerievienenienn e 4-20
Compiling aMOUUIEcoiiiiiiie e 4-21
Application and Module Compilation with $cust_pathc.ccccovevreennen. 4-21

RUNNING REPOIt PrOGIraMSccoiiieiieieree et 4-23
Invoking Compiled Programscccceeeevereriesesnneseseseseeseesseseeseeeesenns 4-23

Chapter 5: Customizing Reports

FEALUNZEr OVEIVIEIW ...oviiiiiitiie ettt e 5-3
RUNNING the FEALUNZEN ..ot s 5-4
Block Commands OVEIVIEWccccerererieniinie e e 5-7
Using Block Commands to Manipulate Codecccceevvvverinreveerieneesennenn 57
EXIENSION (LeXE) FIlES ..ot 5-10
Specifying Which .ext FIleStoO Mergeocoovveveveeceeeeceneee e 5-10
Specifying Source Code FIleS ..o 511
[31FoTo: Q@0 0111 4700 I oo o 5-12

ii

Fitrix Report Code Generator Technical Reference

Block Command StateMENEScoeeveeireeriiireeseeseeseeeseese e esens 5-13
Block Identification & GroUPINGcoereruerierierieienenere et 5-16
Custom Block ID (Tags) CONVENLIONSc.cceeeeeerererieserseeeeneeesesessennens 5-19
Pluggable Features and FEature SELScooeveeririeninese e 5-20
Pluggable Features (.ext FIleS)cccvvvrerereceeese e 5-20
Feature Set (hase.Set) FIlESoccvvvie i 5-21
Pre-merged Generated Files (.org FIleS)ccooiiiiiiiniie e 5-22
The Code Generator and .org FileSccvveveveeeeerece e 5-22
The Featurizer and .org FilES ... 5-22
FIOW Of the FEALUNZEScvoeieeeeee e 5-24
FIlename EXTENSIONSccoiiiiiiiieie ettt sre b snn 5-27
Featurizer Environment Variables ..o 5-28
Featurizer LIMItatioNScoccoiiiriiereeee et 5-29
LI (010 10 1=S o0l 1o T I o1 5-30

Chapter 6: Creating Advanced Report Features

Designing REPOIt PrOMPLSccvviereeieeeeeesese e e e e e sne e sreeeas 6-2
Obtaining Selection CrtErTacovereerieeereeere e e 6-2
SAMPIE PrOQramS ...c.ccueeeeeeeeeeeiesiesiesieseseeseeeeseeseesessessessessestessessessessensensesenses 6-3
Report Production and FOrmMattingccoceeeeeeerienenenenene e 6-7
Incorrect Trailer Information SUDFOULINEccoeerrenreeeiinereeeesee s 6-9

Modifying Report Functions for Job Schedulingccocooeriieieininincienns 6-10

Using Database Transactions for POSHINGccccvvivvviinenieseneereeereeeseseseeseens 6-12

Creating Transaction Logging FUNCLIONSccccoririirinene e 6-14

Issuing a Commit Work Without Closing the CUrsorccoeeevevecceecenieiennnns 6-17

Moving Applicationsto Other SYStEMScccoeriririnenie e 6-20

Chapter 7: New Features and Functionality

Larger Selection Statement Variables ..o 7-2
Backward Compatibilityc.ccooviviiinienieseeeeeecese e 7-2
Theml_ct_sel_compat() FUNCLIONcooiirininiiine e 7-3

Post Processor FIEXIDIITYcccveieiereereriereeeceee s 7-4

iii

Fitrix Report Code Generator Technical Reference

Print Statement BIOCK Tag LOGIC ..c.veveeeereeiereseesieie e e s seenae e 7-5
Backward Compatibilityccocooeiimininiceeereer e 7-7
Custom Image File BIOCK TagScvcvereeerererisiesesieseeeesessesessessesseseessessesaessesens 7-8
Numbering Scheme Variable ... 7-9
Block Tags in MaKEfil€ooveveieieiieceseeeee e 7-12
Adding in REPOt PrOMPLScccccviiiiriirere et s 7-13
Report Prompt EXtENSION FIlEooeiiiiiiiieeeeeee e 7-13

Chapter 8: Report Examples

iv

Fitrix Report Code Generator Technical Reference

Documentation Conventions

Some information is difficult to convey in text, such as a series of keystrokes or a
value you supply. This Technical Reference uses severa conventions to convey
information that has special meaning. These conventions use different fonts, for-
mats, and symbols to help you discern commands, program code, filenames, and
keystrokes from other text.

Text Format

Courier Bold

Courier Bold
Italic

Couri er

Smal | Couri er

Symbol
[1]

{1

Meaning

Represents command syntax
in addition to variable and
file definitions.

Represents text you should
replace with the appropriate
value.

Represents commands; code;
file, directory, table, and col-
umn names; and system
responses.

Represents program code or
text in afile.

Meaning

Represents optional com-
mand flags or arguments.

Represents a mandatory
choice of options.

Delimits choices.

Represents command argu-
ments that can be repeated.

Example

fg.writer

-r report-name

report.ifg
Makefil e
st andard
rtmargin

out put
top margin
bot t om nar gi n
left margin
right margin 7
page | ength 6

O~NWwWww

Example

fg.report [-f]

{one| two| three}

-yl-n

filename. ..

Documentation Conventions v

Fitrix Report Code Generator Technical Reference

When not part of an explicit instruction, single keyboard characters, field values,
and prompt responses are shown in uppercase. For example;

Choose Y or N.
Enter an A for ascending or D for descending.
Press Q to quit.

Named keys are shown in uppercase and enclosed in brackets, for instance:

[TAB]
[F1]
[ESC]
[ENTER]

When a series of keys should be entered at the same time, they are shown with a
hyphen connecting them. For example:

To close the menu, press[CTRL]-[d].

Some keys differ from keyboard to keyboard. This manual mentions the [ENTER]
and [DEL] keys, but both may be missing from your keyboard. Hardware manufac-
turers give different names to keys that perform the same function.

Keys Common Variations
[ENTER] RETURN, RTRN, ¢,

[ESC] STORE

[DEL] BREAK, CTRL C, CTRL BREAK

Although many similar versions of UNIX and XENIX can run INFORMIX-4GL
and the Fitrix Report Code Generator, this manual refersto all of them with the sin-
gleterm of UNIX.

vi

Introduction

Fitrix Report Code Generator uses the latest in Computer-Assisted Software Engi-
neering (CASE) to produce complete 4GL code for structured, diagrammed report
generation. Generated code is completely commented for you and Maintainable-
By-Design (MBD).

This section covers the following topics:
n Code Generator Features
n Technica Reference Overview
n Installation and Preparation

n Directory Structure

1-1

Fitrix Report Code Generator Technical Reference

Code Generator Features

Because of CASE technology, the Fitrix Report Code Generator can produce com-
plete 4GL code for robust report programs. The Fitrix Report Code Generator:

Creates hundreds of lines of INFORMIX-4GL code, which saves days of devel-
opment time.

Uses UNIX’s make utility to manage code changes and minimize recompile
time.

Combines the power of the INFORMIX-4GL language with the ease-of -use of
a sophisticated application generator.

Addsfirst page headers, regular page headers, page trailers, and page breaks.
Positions text flush | eft, flush right, or centered, and it truncates fields.
Creates dynamic report elements including headers, lines, and footers.

Allows ad hoc elements to be added at time of printing, including where selec-
tion and order by clauses.

Supports runtime redirection of report output to screen, printer, file, or another
program.

Generates complete INFORMIX-4GL code, allowing you the absolute flexibil-
ity of changing or modifying anything you desire.

Produces commented code to speed the addition of custom modifications for
each report application.

Reads report image files created with the Fitrix Report Writer.

Structures and organizes code so that 90 percent of the basic routines never
need to be touched or seen by the application devel oper.

In addition, you control al rightsto Fitrix generated code. No special runtimes
(other than INFORMIX-4GL runtime) are needed to move a compiled application
to adifferent machine.

1-2

Introduction

Fitrix Report Code Generator Technical Reference

Technical Reference Overview

This reference manual contains eight sections. The following list shows the title
and description of each section:

1. Introduction: Introduces the Fitrix Report Code Generator and describes
product features and installation.

2. Creating an Image (report.ifg) File: Coversthefirst step in developing a
complete report program. This section describesther eport . i f g imagefile,
illustrates an exampler eport . i f g file, and explainsr eport . i f g file
components.

3. Generating Source Code: Coversthe second step in developing acomplete
report program. This section shows how to create source code with the Report
Code Generator.

4. Compiling and Running: Describes the third step in devel oping a complete
report program. This section explains how to compile and run your report pro-
grams.

5. Customizing Reports: Describes the fourth step in developing a complete
report program. This section shows how to create and merge modifications and
customizations into report programs. It also illustrates how the Featurizer
merges customizations into report source code.

6. Creating Advanced Report Features: Showshow to build and implement
report prompts, scheduling programs, and other reporting events.

7. New Features: Describes new Report Code Generator features including
larger selection variable sizes, new Makef i | e and imagefile block tags, and
enhanced post processor flexibility.

8. Examples: lllustratesr eport . i f g and source code files. Also shows sam-
ple report output.

Technical Reference Overview 1-3

Fitrix Report Code Generator Technical Reference

Installation and Preparation

In order to run Fitrix Report Code Generator, make sure your system contains the
following items:

* UNIX/XENIX operating system

* INFORMIX-4GL version 4.10 or later

e Clanguage compiler

e Thestandard UNIX nmake utility

e Fitrix Report Code Generator program

INFORMIX-4GL installations
Follow installation instructions included with the program diskettes. These instruc-

tionsinclude steps for installing the C compiler/Devel opment System and the
make utility.

Report Code Generator Installations

Follow installation instructions included with the Fitrix Report Code Generator dis-
kettes.

1-4 Introduction

Fitrix Report Code Generator Technical Reference

Directory Structure

When you install the Fitrix Report Code Generator, a basic directory structureis
created. This section introduces you to that structure. In addition, this section cov-
ersthe preferred directory structure for devel oping report programs. In the follow-
ing diagrams, an ellipse indicates a directory or system variable and arectangle
indicates afile or group of files.

Overview of the Directory Structure

The following diagram represents basic directory structure of the Fitrix Report
Code Generator:

$fg

These directories form the basis of Fitrix Report:

$fg: This required variable points to the base directory for all Fitrix CASE Tools
and applications. The $f g variableistypically set to
[usr/fourgen.

Make: Thisdirectory contains all the files necessary to compile and link generated,
4GL code.

Directory Structure 1-5

Fitrix Report Code Generator Technical Reference

bin: Thisdirectory contains executable program files, such asf g. r eport.

codegen: Thisdirectory contains several code directoriesincluding
report. 4gmandscr een. 4gm These directories contain 4GL code for the
Report products and the Featurizer (f gl pp).

data: Thisdirectory contains database directories. Database directories are
required if you are using the INFORMIX-SE engine.

install: Thisdirectory containsinstallation files, such asdef andfi | es files.

lib: Thisdirectory contains library directories and files along with unload files and
thelibrary dbner ge.

release: Thisdirectory contains Fitrix Report Code Generator and CASE Tools
release notes.

tmp: This directory contains the installation log (.log) files.

Optional Directory Variables

In addition to the required $f g variable, you can set afew other optional variables.
These variables let you maintain your applications and the Tools themselvesin sep-
arate base directories (other than $f g). These variables also give you the ability to
install and use the new Tools on a system and set of applications without overwrit-
ing the old Tools.

$fgmakedir If set, thef g. make script looks for make filesin this directory
rather than $f g (even though the local Makef i | e contains
$f g).

$fglibdir |If set, thef g. make script looks for upper-level librariesin this
directory rather than $f g.

$fgtooldir If set, Tools executables, such as4GL programs executed by calls
to the Report Code Generator, are searched for in this directory
rather than $f g.

1-6 Introduction

Fitrix Report Code Generator Technical Reference

Report Directory Structure

Fitrix Report Code Generator works best when each report program is kept in its
own directory. Although it is possible to work with multiple reportsin a directory,
through clever file manipulation, placing one report in asingle directory is pre-

ferred.
I |
report.ifg report.ifg report.ifg
report.ifg
Wrong Right

A good structure for organizing applications has a main directory that contains dis-
tinct application directories. Each application directory holds individual program
directories, such as areport program directory. Y ou should give the program direc-
tories namesthat reflect their content. By convention, program directories are given
a .4gs extension (4GL Source). For example, a program directory that contains a
report on monthly sales might be named m sal es. 4gs.

In addition to application directories, the main directory can also hold a database
directory. Within the database directory, table data and indices can reside. Y ou can
use the INFORMIX-4GL $DBPATH variable to set the path of your main directory.

Asan example, consider an order-entry application built from the

st andar d database. (The st andar d database comes with INFORMIX-4GL.)
This simple application might contain only two programs: an order-entry program
that logs customer orders, and a report program that lists orders made by each cus-
tomer. The application directory could be named or der ent and residein the
same directory asthe st andar d database. The program directories might be
namedentry. 4gs and | i st. 4gs, respectively. Both program directories

Directory Structure 1-7

Fitrix Report Code Generator Technical Reference

would resideinthe or der ent application directory. Withinthel i st. 4gs
directory could bether eport . i f g filethat is used to generate source code for
the report program.

Main $DBPATH

Application

2 Database

Programs @ @

| I
Image
Files browse.per ordform.per report.ifg

Theor df or m per and br owse. per filesintheor der. 4gs directory are
used by Fitrix Screen to generate the order-entry program.

1-8 Introduction

Creating an Image
File

Thefirst step in building areport program involves creating an image file. An
imagefile, orr eport . i f g file, contains shorthand commands and picture lay-
outs of areport. The Fitrix Report Code Generator interprets these commands and
layouts and produces thousands of lines of commented source code.

This section covers the following topics:
n Image File Description
n Additional Commands
n Image File Limitations

n ExampleFiles

2-1

Fitrix Report Code Generator Technical Reference

The First Step to Developing a Complete Report Program

Step 1
Create an Image File

Step 2
Generate Source Code

Step 3
Compile and Run

\

Step 4
Customize

2-2 Creating an Image File

Fitrix Report Code Generator Technical Reference

Image File Description

Every image file contains several sections. These sections specify what database
the report uses, where the report prints to, the columns selected by the report, and
many other report characteristics. Each section must follow a general syntax so the
Report Code Generator can interpret the information in the section and produce
source code.

Sections begin with akeyword followed by a statement or control block. In general,
al image files, which are aways given the namer eport . i f g, use the following
syntax:

database section
[output section]

format section

[page header control block]
[on first row control block]
[before group control block]
[on every row control block]
[after group control block]
[page trailer control block]
[last row control block]

attributes section
select section
[default section]

The format section differs from the other sections. In the format section, you visu-
ally arrange your report elements. Y ou design page headers and footers, assign col-
umn labels, and set field widths. The format section is made up of control blocks.
These blocks give your report structure.

The following pages outline al the image file sections in more detail.

Image File Description 2-3

Fitrix Report Code Generator Technical Reference

Database

The dat abase section specifies the database to use for the report. This sectionis
placed at the top of the image file.

database database-name

database arequired keyword.
database-name the name of the database you want to use in the
report.

* You can only specify one database per report.

» If you specify adatabase that does not exist, the Report Code Generator pro-
duces source code, but an error occurs during compilation of the executable
code.

» Thefollowing example specifiesthe st andar d database.
database standard

* You can specify adifferent database when you run the report. For more infor-
mation on specifying different databases at runtime, refer to " Starting the Code
Generator” on page 3-3.

2-4 Creating an Image File

Fitrix Report Code Generator Technical Reference

Output

The out put section specifies the page length and margins of the report. If you
don't specify page length and marginsin the out put section, the Report Code
Generator uses default settings.

output
[top margin integer]
[bottom margin integer]
[left margin integer]
[right margin integer]
[page length integer]
output arequired keyword.
top margin keywords that specify the number of linesin the
top margin of the report. (Default setting isthree
lines.)
integer an integer value that specifies the number of
blank lines or columnsin a margin or page
length setting.
bottom margin keywords that specify the number of linesin the
bottom margin of the report. (Default setting is
threelines.)
left margin keywords that specify the number of columnsin
the left margin of the report. (Default setting is
five columns.)
right margin keywords that specify the number of columns
between the |eft edge of the page and the start of
the right margin. Report widths cannot exceed
255 columns. (Default setting is 132 columns.)
page length keywords that specify the number of linesin one

page of the report. (Default setting is 66 lines.)

Image File Description 2-5

Fitrix Report Code Generator Technical Reference

Format Section

In the format section of an image file, you layout the graphical elements of your
report. The format section consists of control blocks. Each control block handles a
different portion of the report output. For example, the page header control
block handles the information you want to display along the top of each page of
your report. In all, there are eight control blocks. All eight control blocks are
optional.

control-block

{
layout

}

Within the layout portion of the control blocks, you use special symbolsto repre-
sent database columns and column formats.

[Starts a column.

+ Centers column.

> Right justifies column to right margin.

< L eft justifies column to one space from the preceding column.

{ Left justifies column to end of the preceding column.

1 Ends a column (for character type columns).

[! Starts dynamic header/footer (doesn’t print if no rowsin the
group are empty).

[* Starts dynamic data line (doesn’t print if all columns on the
line are null).

2-6 Creating an Image File

Fitrix Report Code Generator Technical Reference

Page Header

Thepage header control block specifies the report page header. This control
block typically contains report values such as date of printing, page number, and
report title. Y ou can also add custom constant values and banners. The page header
printsimmediately after the top margin.

page header
{

layout
}
page header required keywords.
{ asymbol that specifies start of control block.
layout one of the following items.
special-symbol asymbol that represents a database element or
field format.
field-tag avariablethat isdefined intheat t ri but es
section.
graphical-element any keyboard character you want to appear on
your report.
} a symbol that specifies end of control block.

Image File Description 2-7

Fitrix Report Code Generator Technical Reference

On First Row

Theon first rowcontrol block works exactly likethepage header control
block, but it only prints on the first page of your report. For instance, an on
first rowecontrol block might contain the report title and date.

on first row

{
layout
}
on first row required keywords.
{ asymbol that specifies start of control block.
layout one of the following items.
special-symbol asymbol that represents a database element or
field format.
field-tag avariablethat isdefinedintheat t ri but es
section.
graphical-element any keyboard character you want to appear on
your report.
} asymbol that specifies end of control block.

2-8 Creating an Image File

Fitrix Report Code Generator Technical Reference

Before Group

Thebef or e gr oup control block contains information you want to print prior to
the detail portion of your report. In addition, before group control blocks contain
the columns you want to group your data by.

before group of table.column

{
layout
}
before group of required keywords.
table.column the database column name the data are grouped
by.
{ asymbol that specifies start of control block.
layout one of the following items.
special-symbol asymbol that represents a database element or
field format.
field-tag avariablethat isdefinedintheat t ri but es
section.

graphical-element any keyboard character you want to appear on
your report.

} asymbol that specifies end of control block.

e Youcandefineup to eight bef or e gr oup control blocks.

Image File Description 2-9

Fitrix Report Code Generator Technical Reference

On Every Row

Theon every rowcontrol block contains the detail portion of your report. In
this control block, most of your data are printed. This control block also contains
column labels and other graphical aides that help you align and decipher your data.

on every row

{
layout
}
on every row required keywords.
{ asymbol that specifies start of control block.
layout one of the following items.
special-symbol asymbol that represents a database element or
field format.
field-tag avariable that is defined in the attributes section.
graphical-element any keyboard character you want to appear on
your report.
} asymbol that specifies end of control block.

2-10 Creating an Image File

Fitrix Report Code Generator Technical Reference

After Group

Theafter group control block contains information you want to print after the
detail portion of your report. In many cases, theaf t er gr oup control block con-
tains subtotal values and calculations.

after group of table.column

{
layout
}
after group of required keywords.
table.column the database column name the data are grouped
by.
{ asymbol that specifies start of control block.
layout one of the following items.
special-symbol asymbol that represents a database element or
field format.
field-tag avariablethat isdefinedintheat t ri but es
section.
graphical-element any keyboard character you want to appear on
your report.
} asymbol that specifies end of control block.

* Youcandefineuptoeightafter group control blocks.

* You can calculate subtotals on up to ten columns.

Image File Description 2-11

Fitrix Report Code Generator Technical Reference

Page Trailer

Thepage trail er control block contains information you want to print on the
bottom of the page. Thisblock issimilar to the page header andon fi rst

r owcontrol blocks. A typical page trail er containsreport values such astime
of printing and page numbers.

page trailer

{
layout
}
page trailer required keywords.
{ asymbol that specifies start of control block.
layout one of the following items.
special-symbol asymbol that represents a database element or
field format.
field-tag avariablethat isdefinedintheat t ri but es
section.
graphical-element any keyboard character you want to appear on
your report.
} asymbol that specifies end of control block.

2-12 Creating an Image File

Fitrix Report Code Generator Technical Reference

On Last Row

Theon | ast rowecontrol block containsinformation you want to print at the
end of your report. This control block is a good location for summary information
and grand total values.

on last row

{
layout
}
on last row required keywords.
{ asymbol that specifies start of control block.
layout one of the following items.
special-symbol asymbol that represents a database element or
field format.
field-tag avariable that is defined in the attributes section.
graphical-element any keyboard character you want to appear on
your report.
} a symbol that specifies end of control block.

¢ You can calculate totals on up to ten columns.

Image File Description 2-13

Fitrix Report Code Generator Technical Reference

Attributes

Theat t ri but es section definesthe field tagsin animagefile. A field tag identi-
fies which columns, subtotal values, grand total values, math formulas, constant
values, runtime values, and hidden columns the report uses. In addition, the
attributes section controls how values and data are represented.

attributes
field-tag = assignment [,modifier]
[field-tag = ...]
attributes arequired keyword.
field-tag one or more identifiers of areport value, column,
or formula.

assignment one of the following values.

table.column acolumn in the database.

formonly.column aform-only column using any valid data type.

type data-type

[sum|avg|min|max] an aggregate function that takes a database col-
(table.column) umn as its argument.

[sum|avg|min|max] an aggregate function that takes aform-only col-
(formonly.column) umnusing any valid datatype asits argument.
type data-type

constant "string" anon-varying element or value.

date aruntime value that specifies date.

time aruntime value that specifiestime.

count aruntime value that specifiesitem count.
pageno aruntime value that specifies page number.
lineno aruntime value that specifies line number.

2-14 Creating an Image File

Fitrix Report Code Generator Technical Reference

modifier one of the following modifiers.

using "string" amodifier that specifiesaformat for anoney or
dat e expression.

upshift amodifier that converts character data to upper-
case.

downshift amodifier that converts character data to lower-
case.

updown amodifier that formats first character in upper-

case and following charactersin lowercase.

* Only one modifier may be used for each field tag definition.

» Constants cannot use any modifiers. The runtime values (dat e, t i e,
count , pageno, and| i neno) can takethe usi ng modifier, but not the
upshi ft,downshi ft, or updown modifiers.

e Column names must be unique. A f or nonl y column should not have the
same name as a database column used in the report. (If the Report Code Gener-
ator finds duplicate column names, it uses only thefirst one. Thusif your report
containscust oner . nane and or der . nane (and they are not join col-
umns), only cust orrer . nane isused.

e Theupdown modifier is not a standard Informix data type. Columns that use
this modifier print the first letter of aword in uppercase and the remaining let-
tersin lowercase, with the exception of letters following Mc. The following
shows some examples of the updown modifier:

Guido Molinari
Pete Obrien

Pete O’Brien
Odibbe McDowell
Ronald Macdonald

Image File Description 2-15

Fitrix Report Code Generator Technical Reference

Select

Thesel ect section creates a cursor that selects and arranges the datain the
report. Inthesel ect section, you define which data get selected by specifying the
tables, joins, columns, and filter the report uses. Y ou also decide how the selected
data are sorted and grouped. Every image file must contain asel ect section.

select
[more = table.column]
tables = table [, outer table...]
[join = table.column = table.column]
[filter = criteria]
order = table.column [, table.column...]
select arequired keyword.
more an optional keyword that defines columns not
included on the report but needed inthesel ect
statement.
table.column acolumn in the database.
tables akeyword that defines the tables used by the
report.
table a database table.
outer table a database table that is linked by an outer join.
join akeyword that defines criteriafor selecting the
rows from the named table.
filter akeyword that defines the selection criteriafor
the report.
criteria an Informix selection criteria expression.
order akeyword that specifies the columnsto sort by.

» If thereport uses multiple mor e statements, each nor e must be on a separate
line. For example:

2-16 Creating an Image File

Fitrix Report Code Generator Technical Reference

more stxckrgd.doc_no
stxckrgd.reconciled

more = stxchrtr.incr with crdt

more

To name tables that have an outer join to your report’s main table, use the SQL
modifier out er . For example:

tables = stxckrgd, outer stxhrtr

Image File Description 2-17

Fitrix Report Code Generator Technical Reference

Defaults

Thedef aul t s section specifies miscellaneous report information, such as mes-
sages that appear while the report is running and the destination of the report out-

put.

defaults
[progname = program-name]
[prcname = string]
[rtmargin = string]
[destin = destination]
[quiet = integer]

[prc_only =]
[allow_int =]

defaults

progname

program-name

prcname

string

rtmargin

destin

destination

screen

2-18 Creating an Image File

arequired keyword.

akeyword that specifies the executable program
name for the report.

aname for the executable report program.

akeyword that specifies the character string that
is displayed in the upper left portion of the
screen while the report is running.

acharacter string (i.e., word) that is displayed on
the screen.

akeyword that specifies the character string that
is displayed in the upper right portion of the
screen while the report is running.

akeyword that specifiesthe output destination of
the report.

one of the following output destinations.

akeyword that displays output to the screen.

Fitrix Report Code Generator Technical Reference

printer

file

| program

quiet

integer

prc_only =

allow_int

the name of the printer that receives the report
output.

the name of afile that receives the report output.

the name of a program that the report output is
piped to.

akeyword that defines how many records the
Code Generator processes before updating the
count on the screen.

an integer value that specifies the number of
records between update intervals.

the processing only statement that tells the Code
Generator not to print the report output. When
setto Y, the Report Code Generator processes
the report but does not print it. When set to N,
the Report Code Generator processes and prints
the report.

the allow interrupt statement prevents interrupt
signals from halting the report process. When set
to Y, interrupt statements can halt the report pro-
cess. When set to N, report processes cannot be
interrupted.

Image File Description 2-19

Fitrix Report Code Generator Technical Reference

Additional Commands

Y ou can use three other commands in an image file. These commands control pagi-
nation and report output.

page: Thepage command crestes a page break in your report. Y ou can place this
command before abef or e gr oup or afteranaft er group control block in
the format section. For example, to create a page break immediately following the
af t er group control block, place the page command following the right brace:

after group of customer.customer_num

{
Subtotals for [A9 | I

}
page

separate: Thesepar at e command splits output over two pages. By default,
three control blocks (bef ore group,after group,andon | ast row)
always print on a new page if the current page does not contain enough space. The
separ at e command tells the Report Code Generator to split the output of these
control blocks across two pages. The separate command goes above the |eft brace
inthebef ore group,after group,andon |ast rowcontrol blocks.

pause: The pause command creates a paging prompt for the report program.
This command only works for reports that print to the screen. After printing a page
of output, a paging prompt appears.

Press [ENTER] to continue

When the you press [ENTER], the program prints a second page of output to the
screen.

2-20 Creating an Image File

Fitrix Report Code Generator Technical Reference

Image File Limitations

Because the Code Generator must interpret image files of varying size and content,
afew limitations exist. When creating an image file, regard the following restric-
tions:

Image files cannot define reports wider than 255 characters.
Image files cannot exceed 200 lines.
Tabs are not alowed in image files.

Image files cannot contain mathematical expressions. Create math logic in
extension (.ext) files and merge them into your source code. For more informa-
tion on extension files, refer to "Extension (.ext) Files' on page 5-10.

Image filesmust contain adat abase, att ri but es, and sel ect section.
The other sections are optional.

Image filesmust alwaysbenamed r eport.ifg.

Image File Limitations — 2-21

Fitrix Report Code Generator Technical Reference

Example Files

Thefollowing pages show animage (r epor t . i f g) fileand sample report output.
Refer to these examples when you are creating your own image files. Y ou can find
additional examplesin "Report Examples' on page 8-1.

2-22 Creating an Image File

Fitrix Report Code Generator Technical Reference

Sample Image File

dat abase standard

out put
top margin
bot t om mar gi n
left margin
right margin 7
page | ength 6

DU AW W

page header
<Al] +A2] Page: >A3]
}

on first row

[Ad]

}

bef ore group of customner. custoner_num
page

{

Custoner Nunber: [A5]
Conpany Nare Phone Nunber Li ne Extension

on every row

) [A6 1 [A7 1 [A8 10

after group of custoner.customer_num

Subtotals for [A9 1 e
}

on last row

Gand Totals e
}

page trailer

[B3]
}

attributes
= today, nane=HD date

constant "Exanple Report", name=HD title

pageno usi ng "<<<<<", nanme=HD _page

constant "Exanple Report", nane=FR title

cust oner. cust omer _num usi ng " <<<<<<<<<<<", nane=BF1l_cust oner. cust omer _num

cust oner. conpany, name=cust oner. conpany

cust oner . phone, nane=cust omer . phone

itenms.total _price, nane=itens.total _price, subt=Y

cust oner. cust omer _num usi ng " <<<<<<<<<<<", nanme=AF_1_cust oner. cust oner _num

BELBEREBE

Example Files 2-23

Fitrix Report Code Generator Technical Reference

Bl = sun{itens.total _price), name=SUBT_AF_1_itens.total _price
B2 = sun{itens.total _price), name=TOT_LR itens.total _price
B3 = constant "", nanme=TR_user
sel ect
tabl es = custoner, orders, itens
join = itens.order_num = orders.order_num and orders. custonmer_num = cust oner.
cust oner _num
order = customer.custoner_num
defaul ts
progname = brianh
prcnane = Exanple
destin = report.out

2-24 Creating an Image File

Fitrix Report Code Generator Technical Reference

Sample Report Output

(&) Fri Oct 1 1993 Example Report Pazet 1 ()
= Customer Numberi 104 O
Company Hame Phone Humber Line Extension
(= Flay Eall! 415-368-1100 $42,00 =
Flay Eall! 415-368-1100 36,00
D) Flay Eall! 415-368-1100 $20,00 O
Flay Eall! 415-368-1100 $840,00
Flay Eall! 415-368-1100 419,20
O Flay Eall! 415-368-1100 $99,00 O
Flay Eall! 415-368-1100 $99,00
Flay Eall! 415-368-1100 $40,00
O Subtotals for 104 memmemem——eeee O
£1201,80
O Customer Humber: 112 O
Company Hame Fhaohe Humber Line Extension
O Runners & Others 415-887-7235 $99.,00 O
RFunners & Others 415-827-7235 $190,00
RFunners & Others 415-827-7235 $190,00
O Runners & Others 4158877235 199,00 O
RFunners & Others 415-827-7235 $120,00
RFunners & Others 415-827-7235 $36,00
O Runners & Dbhers 415-887-7235 $12500 -
RFunners & Others 415-827-7235 $42,00
) RFunners & Others 415-827-7235 $42,00 o
RFunners & Others 415-827-7235 $36,00
Subtotals for 112 mmmmm—m—e—————
() $996, 00 o
Customer Mumberi 115
') Company Hame Fhaohe Humber Line Extension (&)
Cold Medal Sports 415-366-1123 $42,00
O Cold Medal Sports 415-356-1123 $36.,00 O
Subtotals for 116 mmmmm—m—e— e
$84,00
Customer Mumberi 1ié
Company Hame Fhaohe Humber Line Extension
O N O
Olympic City 415-634-5522 $42,00
Olympeic City 415-534-5822 $36,00
O Olympeic City 415-534-5822 $280,00 O
Olympeic City 415-634-5822 $198,00
Subtotals for 116 mmmmm—m———eee
O $BE2, 00 O
O Grandd Tokals mmmmm—m—e———e— O
$2843.,80
O O
Robert Tadwick
- O
O O

Example Files 2-25

Fitrix Report Code Generator Technical Reference

2-26 Creating an Image File

Generating Source
Code

Onceyou create an imagefile, you areready to run the Report Code Generator. The
Code Generator creates the source code for your report program. To run the Code
Generator, you usethef g. r eport command. The Report Code Generator then
takes your image file and creates five source code filesand a Makef i | e.

This chapter covers the following topics:
n Starting the Code Generator
n Handling Duplicate Files

n Reviewing the Source Code Files

3-1

Fitrix Report Code Generator Technical Reference

The Second Step to Developing a Complete Report Program

Step 1
Create an Image File

Y

Step 2
Generate Source Code

Step 3
Compile and Run

\

Step 4
Customize

3-2 Generating Source Code

Fitrix Report Code Generator Technical Reference

Starting the Code Generator

You usethef g. r eport command to initiate the Report Code Generator. The
Code Generator takes your r eport . i f g file and creates five source code files
and aMakef i | e. From thesefiles, you can compile an executable report program.

fg.report [-fg] [-dbname database] [-r "report"]
[-s "selection-set"] [-f] [-o n] [-yes|-y|yes|-no|-n|no]

fg.report Initiates the Report Code Generator.

-fg Linksin the libraries needed by reports that run
with Fitrix Accounting modules. Use this
optional flag when generating reports for Fitrix
Accounting modules.

-dbname database Specifies a different database then the database
specifiedinther eport . i f g file. If no data
baseissetinther eport.if g fileandthe-
dbnane flag is not used, the Code Generator
defaultsto the st andar d database.

-r "report" Starts the Image Maker and creates a
report.ifg filefromaFitrix Report Writer
report. From thisr eport . i f g file, the Report
Code Generator creates source code for areport
program. Y ou must place the report name inside
quotation marks.

-s "selection-set" Changes the selection set used by the Report
Writer report. Y ou must place the selection set
name inside quotation marks. Usethe- s flagin
conjunction with the - r flag.

-on Changes level of screen output. Where nisa
value between 1 and 5. Use- 0 1 to limit screen
output and - 0 5 to show all screen output.

Starting the Code Generator 33

Fitrix Report Code Generator Technical Reference

-f Suppresses screen output while the Code Gener-
ator creates source code. This flag speeds up the
code generation process. Thisflag is synony-
mouswith-o 1.

-yes|-ylyes|-no|-n|no AnswersDuplicate Filesmessage (see"Handling
Duplicate Files" on page 3-5). Theyes flag
specifies option 1 and the no flag specifies
option 3.

» All the flags associated withf g. r epor t are optional flags. However, some
of these flags give your reports tremendous flexibility. From asingle
report.ifgfile you can create source code that uses different databases
and selection sets.

34 Generating Source Code

Fitrix Report Code Generator Technical Reference

Handling Duplicate Files

Before the Code Generator places source code files or the Makef i | e into the cur-
rent directory, it checks the directory for existing report files. Y ou should develop
report programs in their own directory; refer to "Report Directory Structure” on
page 1-7 for more information. Existing report files are usually the result of areport
you created previously. Sometimes these existing reports contain custom work that
you do not want destroyed. If source code files already exist, the Code Generator
provides alist of options. For example, if aMakef i | e aready exists, the follow-
ing message and options appear:
There currently exists a file called: Mkefile
Wul d you like ne to:

1) Overwite Makefile

2) Append the new Makefile to the existing Makefile

3) Move Makefile to Makefile.old

4) Wite to Makefile. new

5) Don't wite Makefile at all, or

6) Exit program

(If you wish to create file.diff, type
a 'd after the selection. exanple: 2d)

Enter Sel ection:

A similar list of options appearsfor all existing source code files. Use the following
table to decide which option you want to choose.

Option Result

1 Specifies the overwrite option; the Code Generator replaces the
old version of the file with the new version.

2 Specifies the append option; the Code Generator appends the
new file to the end of the old file.

3 Specifies the move option; the Code Generator adds the . ol d
extension to the existing file and writes the new file.

4 Specifies the write option; the Code Generator |eaves the exist-
ing file alone and writes the new file with a. new extension.

5 Specifies the don’t write option; the Code Generator skips the
creation of thisfile and proceeds to the next file.

Handling Duplicate Files 3-5

Fitrix Report Code Generator Technical Reference

Option Result

6 Specifies the exit option; the Code Generator exits the source
code generation process without writing any more files.

d Creates afile that shows the differences between the old file and
the new one. Y ou can use the d option in conjunction with the
other options. For example, if you enter 4d the old version does
not change, the. new extension is added to the new file, and a
.di ff fileiscreated. The. di f f file showsthe differences
between the old and new files.

3-6 Generating Source Code

Fitrix Report Code Generator Technical Reference

Reviewing the Source Code Files

Once the Report Code Generator compl etes creating source code, six newly gener-
ated files appear in your current directory. Five of these files are source codefiles,
which are given a .4gl extension. The other isafile caled the Makefi | e.

File

globals.4gl

lowlevel. 4gl

main.4gl

midlevel.4gl

report.4gl

Makefile

Contents

contains global record definitions. These definitions
include report record, cursor current record, cursor next
record, and control record. In addition, thisfile contains a
library communications area. This area holds global vari-
ables that communicate with library functions.

contains control block functions that handle dataretrieval,
suchasbef ore group,on every row,andafter

group.

contains error handling and program initialization and ter-
mination logic. Aswell, thisfile contains the logo function.

contains data selection and filter logic in addition to cursor
preparation and page break functions. For example, you
can find the functionsm _join(), M filter(),and
m _order inthisfile

contains page layout and format information. Thisfile
specifies placement of column dataand labelsin addition to
header, footer, and margin locations.

references UNIX nmake utility in $f g/ Make. In addition,
the OBJFI LES line shows which object files are linked,
and the LI BFI LES line shows library search precedence.
For moreon the Makef i | e, refer to "The Makefile" on
page 4-12

Reviewing the Source Code Files 3-7

Fitrix Report Code Generator Technical Reference

3-8 Generating Source Code

Compiling and
Running

After code generation, the next step to creating a report program involves compil-
ing the source code. Source code compilation creates a working report program.
This section outlines the compilation process and the method for initiating report
programs.

This section covers the following topics:

=}

Compiling generated code
n Usingfg. make to compile

n Compiling and linking libraries

=}

Compiling your entire application

n Executing the final program

4-1

Fitrix Report Code Generator Technical Reference

The Third Step to Developing a Complete Report Program

Step 1
Create an Image File

\

Step 2
Generate Source Code

Step 3

Compile and Run

Step 4
Customize

4-2 Compiling and Running

Fitrix Report Code Generator Technical Reference

Compiling Generated Code

Compiling code means turning 4GL source code into aworking program. Fitrix
Report Code Generator provides the facilities to do this for a single program or for
an entire set of programs.

The script for compiling your 4GL source codeisf g. make. This script can com-
pileindividual programs, al the programsin amodule, or even an entire applica-
tion. If you are using the INFORMIX-4GL Rapid Development System,

f g. make compiles programs into pseudo-code (called p-code) object files. If you
are using the INFORMIX-4GL C Compiler Version, f g. make compiles programs
into C source code. Refer to "Differences Between RDS and C Compiles' on page
4-4 for more on the two compile versions.

If you have both Informix products (the Rapid Development System and the C
Compiler Version) on your system, f g. make assumes you want to use the Rapid
Development System. Y ou can, however, override this behavior. Add the - F flag
tothef g. nake script (e.g., f g. make - F). Thisflagforcesf g. make to usethe
C compiler.

Depending on your current directory, f g. make completes the following tasks:

e Attheapplication directory, f g. make compiles each module listed in the
application Makef i | e.

e Atthemoduledirectory, f g. make compileseach library and program listed in
themodule Makefi | e.

e Atthelibrary directory, f g. nake:

1. Convertsform source (.per) filesto form (.frm) files. Form source (.per)
filesand form (.frm) files are used by the Fitrix Screen Code Generator. If
you have purchased Fitrix Screen products, you can learn more about these
filesin the Fitrix Screen Technical Reference.

2. Converts source (.4gl) filesto object (.4go or .0) files.
3. Loadsobject filesinto the archive (.afile or .RDS directory).
4. Removes the object files produced in step two.

e At theprogram directory, f g. make:

Compiling Generated Code 4-3

Fitrix Report Code Generator Technical Reference

1. Mergesextension (.ext) fileswith original (.org) filesto produce source
(.4gl) files. For more on extension files, refer to "Extension (.ext) Files' on
page 5-10.

2. Convertsform source (.per) filesto form (.frm) files;
3. Converts source (.4gl) filesto object (.4go or .0) files;

4. Linksobject fileswith objectsin alibrary archive file. These archive files
arelisted in the program Makef i | e. Thisfinal step produces the program
(.4gi or .4ge) file.

Note

Thef g. make script requires the standard UNIX make utility. This utility
determines which files are compiled. If your machine lacksthis utility, you must
copy it from a machine that hasit. The make utility is usually located in

/ bi n/ make.

Differences Between RDS and C Compiles

Y ou can compile INFORMIX-4GL source code into two different forms: abinary
executable (machine specific) form (.4ge), or a pseudo-code form (.4gi) that is
interpreted by arunner program (f gl go). Thefirst form usesthe C Compiler Ver-
sion and the second form uses the Rapid Development System. These forms are
known as C compile and RDS compile, respectively.

During C compile, 4GL source code (.4gl) files go through severa transformations.
Thefirst transformation uses f gl pc, an Informix ESQL/C program, which con-
verts source code filesinto ESQL/C (.ec) files. These ESQL/C files are then trans-
formed into pure C code (.c) files. At this point, compilation isturned over tocc,
the UNIX C compiler on your system. It produces object (.0) files. Finally, the
UNIX C compiler runs| d, the UNIX linker, which links object (.0) filesto each
other and to objects stored in alibrary archive file. This process produces a binary
(.4ge) file that you can run directly.

4-4 Compiling and Running

Fitrix Report Code Generator Technical Reference

The following figureillustrates the C compile process.

Compile phase
per —» .frm

49 —» € —» € —» .0

Link phase
.0 libraries (a) — .4ge

An RDS compile differs from a C compile. Initially, thef gl pc program trans-
forms source code (.4gl) files into p-code object (.4go) files. These p-code object
files are then concatenated using the UNIX cat command. Nextthel i nk. rds
shell script isused. Thisscript emulates| d, the UNIX linker. It searches library
archives specified in the program Makef i | e and locates p-code object (.4go) files
needed to complete the compile.

When | i nk. r ds isdone, ap-code (.4gi) file exists. Y ou can execute this p-code
filewith f gl go, the Informix runner program.

The following figureillustrates the RDS compile process.

Compile phase
per —» .frm
49l —» .4go

Link phase
.4go libraries ((RDS) —» .4gi

Note

RDS is atremendous developer’ stool. It has afirst class debugger (f gl db),
which can interpret p-code (.4gi) files. In addition RDS compiles are quick and
completely portable between machines. RDS also works well for your end users.
It isan excellent ideato have RDS and the debugger on your users’ and custom-
ers systems.

Compiling Generated Code 4-5

Fitrix Report Code Generator Technical Reference

Using fg.make to Compile Your Program

When you use the Report Code Generator to generate source code, aMakef i | e is
created. Thef g. make script usesthat Makef i | e, which must bein your current
directory. See "The Makefile" on page 4-12 for more information on the Mak e-
file.

Thef g. make script isnot complicated. It has two purposes: to set up environ-
ment variables and to run the appropriate compilation program (C compile or RDS
compile). The programs that do the compiling use environment variables to deter-
mine some of their actions. That means you can change the default behavior of

f g. make by setting those variables in your own environment.

For example, if you have both RDS and C compiles on your system, f g. make
assumes you want to use RDS. Y ou can force a C compile by passing the- F flag to
thef g. make script. This flag overrides the underlying environment variable,
which iscalled make_net hod. By default, thisvariableis set to RDS, which cor-
responds to an RDS compile. When - F is used, you override this variable. If you
always want to use a C compile, you can set make_ret hod to 4GL, which corre-
sponds to a C compile and the - F command flag.

fg.make [-h] [-F|-R] [-L library] [-M makefile]
[-T tags][-m {n|o|f|of}] [-o execname] [-1] [-f] [-D]
[-r] [-u] [-a] [-c] [args]

-h Displaysf g. nake command flags and flag descriptions.

-F Overridesnake_net hod variable and performs a C com-
pile. Its environment variable equivalent is
make net hod=4G..

-R Overridesnmake_net hod variable and performs an RDS
compile. Its environment variable equivalent is
make_ net hod=RDS.

-L library Lets you specify additional librariesyouwantf g. make to
link. These libraries appear in the Makef i | e abovethe
upper level libraries. Its environment variable equivalent is
xtra_lib=Ilibrary.

4-6 Compiling and Running

Fitrix Report Code Generator Technical Reference

-M makefile

-T type

-mn

-mfo

-0 execname

Allows you to specify afile other than Makefi | e. This
flag is useful when you are testing.

Lets you specify which type of Makef i | e to create. You
can create the following types: application, module, library,
program, shell, and make.

Preventsf g. make from performing amerge. The Featur-
izer isnot called. Its environment variable equivalent is
no_ner ge=y.

Runs the Featurizer without a subsequent compilation. Its
environment variable equivalent is
mer ge_onl y=y.

Overrides time stamp comparison logic and forces the Fea-
turizer to perform amerge. Its environment variable equiv-
dentisf orce_nerge=y.

Forces the Featurizer to merge and override the time stamp
comparison logic without compiling or linking. Itsenviron-
ment variable equivalent is

mer ge_onl y=y andf or ce_ner ge=y.

Specifies name of the target library archivesin library com-
piles (cutname. a or outname. RDS). In program com-
piles, it specifies the name of the program file

(outfile. 4ge or outfile. 4gi). Thisflag stripsany
extensions you might add to it. It is useful for testing.

Compiling Generated Code 4-7

Fitrix Report Code Generator Technical Reference

4-8

Instructsf g. make to link object files together into a pro-
gram (.4qi) file, in an RDS compile. This flag works with-
out checking for modifications between source (.4gl) and
corresponding object (.4go) files. Its environment variable
equivaentisl i nk_onl y=y.

You canuse-| whenaloca source (.4gl) file has been
modified and compiled (with f gl pc) into an object (.0)
file, with the remainder of the application source code held
constant.

The- | flag causesf g. nake toskipf gl pc and

for migl (i.e., skip the compilation of source (.4gl) files
and form (.frm) files) and run only the link part of the

f g. make suite of shell scripts. If yourunf g. make in

I i nk_onl y mode, dwaysrebuildthefil el i st. RDS
in the local program directory. Also, if alibrary has been
compiled, f g. make runinl i nk_onl y modeinthelocal
program directory rebuilds the depend. RDS,
func_map. RDS, and unr esol ved. RDS filesin the
library. If thel i nk_onl y optionisused, the Featurizer is
not run.

Limitsthework doneby f g. make eachtimeitisrunfor a
program. Thel i nk. r ds part of the compile creates alist
of filesthat must be concatenated with the local object
(.4go) files to create the program (.4gi) file (under RDS).
That list issaved in the local directory under the name
filelist.RDS. Aslongasno new callsto library func-
tions have been added to the program being compiled, this
list need not be recreated each time f g. make isrun. The
Featurizer is still run when - f isused. Its environment vari-
ableequivalentisf ast _| i nk=y.

Createsadependency list (fi | el i st . RDS). The- Dflag
letsyou rebuild your f i | el i st . RDS without having to
rebuild the program (.4gi) file. This flag works only with
RDS compiles.

Compiling and Running

Fitrix Report Code Generator Technical Reference

-r Causes| i nk. r ds to make multiple passes through the
library list when making a program so that functions are
more likely to be resolved cleanly. Thisflag can cause the
standard UNIX linker (cc and | d) to fail, depending on the
capabilities of the platform linker. Y ou should only use this
option if astandard make correctly resolves your functions,
and f g. make does not. Also note that this could allow you
to write non-portable code. This flag has no meaning if
fast | i nk hasbeen specified. Its environment variable
equivalentisr ecursi ve_| i nk=y.

-u Causes| i nk. r ds towarn the user of any function callsit
was unable to resolve. This flag has no meaning if
fast _|i nk hasbeen specified. Its environment variable
equivalentisl i st _unresol ved=y.

-a Causes al files to be recompiled regardiess of dependen-
cies. Its environment variable equivalent is
no_use_nake=y.

-c In the program directory, thisflag causesf g. nake to stop
after it compiles the source code. It does not continue on to
produce the program. In other words, this flags causes
f 9. make to skip thelink phase.

In thelibrary directory, thisflag causesf g. make to stop
after it compiles the source code. It does not continue on to
load the archive (either the .afile or the .RDS directory).

args Objects (files) to compile. The default is the list of objects
inthe Makefil e.

Many of these flags work together. Some are mutually exclusive. For example,
consider f g. make - nf o. Thiscommand skips all compilation except the Featur-
izer block merge. Likewise, f g. make - f | skipsthe compile phase, goes right to
thelink (- |) phase, and uses the current list of library files (produced by the last
link) rather than producing anew list (- f).

On the other hand, some flags cannot be used together. Specifying - | implies- rm
and overrides the - mo and/or the - nf flags. Likewise, if - Rand - F are specified,
whichever one occurs last on the command line takes effect.

Compiling Generated Code 4-9

Fitrix Report Code Generator Technical Reference

Just as an aside, you can list single-character flags together and - mflags together if
they occur last on theline. For example, f g. make -i urf | nof isacceptable,
where nof isequivalent to - no and - nf . The three-character flags must stand
alone.

Speeding Application Compiling

When you make slight changes to a source (.4gl) file or an extension (.ext) file, you
need not remerge, relink, and recompile your entire program. Y ou can limit

f g. make so that only your changes are recompiled. Thus saving you time and
speeding up the recompilation process. These shortcuts, however, only apply if you
are using RDS. C compiles cannot be expediated.

Changing a Source (.4gl) File

Altering asource (.4q|) file is the most frequent type of change. When you run

f g. make, it checksall your source (.4gl) files to see which ones you have
changed. This check takes up time. In addition, each timeyou runf g. make, anew
list of library filesis built. Y ou can avoid these steps with the f gl pc command.
This command lets you specify the source (.4gl) file you want to update, assuming
you did not add new library function calls. Since you know what source files you
have changed, you can use two commands to create a working application. First,
usethef gl pc command and the source (.4gl) file you have changed.

fglpc filename.4gl

Thef gl pc command recompiles your source (.4gl) file into an object (.4go) file.
You can then usef g. make withthe- f | flagto merge your new object (.4go) file.

fg.make -f1l

The- f | isthefast link flag. Thisflag puts together the compiled local programs
and al thelibrary programs. It assumesyou have run acompletef g. make at some
time in the past on your program to create alist of library files. It also assumesyou
haven't changed the Makef i | e to require adifferent set of libraries.

A Change to an Extension (.ext) File

4-10 Compiling and Running

Fitrix Report Code Generator Technical Reference

After you make an extension (.ext) file, it must be merged with the generated
source code. Several f g. make command flags affect extension file merging and
do various other steps in the compilation process.

When you just want to merge an extension file, use the -mo flag.
fg.make -mo

Thisflag, which means merge only, simply merges extension filesinto source code.
It only performs this single step.

Normally, f g. make does atimestamp comparison before merging an extension
(.ext) file with asource (.4gl) file. This comparison governs when amerge is neces-
sary. If the extension (.ext) file is newer than the source (.4gl) file, f g. make per-
forms the merge. Consider the following two files:

STWE W W 1 dona informx 3777 Aug 6 11:05 nain. 4gl
STV W W 1 dona informx 596 Aug 6 11:18 |ogo. ext

The extension filel ogo. ext isnewer than the source filenai n. 4gl (11: 18
opposed to 11: 05). Inthiscase, f g. make merges the two files. Now consider a
second example:

STV W W 1 dona informx 3777 Aug 6 1
STV W W 1 dona informx 506 Aug 6 1

mai n. 4gl
| ogo. ext

ou

1: 0
1: 0
Thistimel ogo. ext isolder thanmai n. 4gl (11: 00 opposedto 11: 05). No
merge is performed.

When you want to force a merge without respect to timestamps, use - nf o.
fg.make -mfo

All extension (.ext) files get merged, even those older than the source (.4qgl) files.

When you want to force a merge and do all of the other compilation steps as well,
use - nf , such as:

fg.make -mf

The - nf flag causes aforced merge and creates object files, links, and perfoms
additional compilation tasks.

Compiling Generated Code 4-11

Fitrix Report Code Generator Technical Reference

The Makefile

Thef g. make script reads a description file that contains information to produce a
program. By default this description fileiscalled Makef i | e. The Makefi |l e is
created during the generation of source code.

Here is an example of a generated program Makef i | e:

Copyright (O 1992 Your Conpany Name Here

Al rights reserved.

Use, nodification, duplication, and/or distribution of this
software is limted by the software |icense agreenent.

Sccsid: %% %80 % % Del ta: %%

i

#

'Maké'fi | e”fo'r én inf'orhix r'éport”
type - Makefile type
TYPE = program

#_name - program name
NAME = tnp. 4ge

#_objfiles - programfiles
OBJFI LES = globals.o | owl evel .o nmain.o nidlevel.o report.o

forms - performfiles

brary list

\

/report.a \
/user_ctl.a \
/ st andard. a

ooT T

als file
. 4gl

#_globals - gl
G.OBAL = gl oba

#_all_rule - programconpile rule
all:

@cho "make: Cannot use make. Use fg.make -F for 4& conpile.”
Thisexample Makef i | e contains six macros or variables and arule. Each these
elements may be different for your program, depending on the reports you are

building, and whether you have additional sourcefiles. The follwoing list describes
the elementsin the example Makefile on the previous page:

TYPE: This macro contains the type of Makef i | e. A Makef i | e can be one of
six types. program, library, application, module, shell, or make.

NAME: This macro contains the name of the compiled program. For an RDS com-
pile, f g. make converts the program extension to .4gi.

4-12 Compiling and Running

Fitrix Report Code Generator Technical Reference

OBJFILES: Thismacro contains alist of local object files. These files become
linked together to create the compiled program.

FORMS: This macro contains alist of .frm files used by the program. These files
are created from form specification (.per) files, which are associated with the Fitrix
Screen Code Generator, for more on .per and .frm file, refer to the Fitrix Screen
Technical Reference Manual.

LIBFILES: This macro lists the names of the library archives to search to resolve
function calls. For an RDS compile, f g. make converts the extensions to .RDS.

Note

When doing an RDS compile, f g. make producesalist of the abject filesthat it
has resolved from the libraries. Thislist, fi | el i st . RDS, can bereused in
later compiles by specifying the - f flag with f g. nake. You can only use this
flag, which resultsin a faster compile, when no new function calls have been
added to the code.

GLOBAL: Thismacro contains an entry for gl obal s. 4gl . All local object files
depend onthe gl obal s. 4gl file.

all: Thisnake ruleinforms you not to use the UNIX make utility. If auser
attemptsto use the make utility, the following message appears:

make: Cannot use make. Use fg.make -F for 4GL compile.

Changing the LIBFILES Macro with Block Commands

Y ou can use block commandsto alter the LI BFI LES macro. In an extension (.ext)
file, these lines use the brute force method. For example:

stért' fi le "”Makef'i | e" o

“replace bl ock TOF NUL from "LIBFILES' thru "$(fg)/Iib/standard"
LIBFILES = ../1i
i

b
b
v
/
/
/
/

—_

d
.a
I'l.4gnd | i badv.a \
ib/user_rpt.a \

b/scr.a \
b
b

ib/standard.a \

/
/
/
f
f
f
f

/ user_ctl.a

Compiling Generated Code 4-13

Fitrix Report Code Generator Technical Reference

Using the -L Flag to Link Custom Libraries

The block command method resultsin a physical changeto the Makefi | e. The

f g. make script provides amethod for specifying additional libraries without actu-
ally changing theMakef i | e. Thisfacility can bevery useful if you wish to try out
new featuresin alibrary but do not wish to make the change permanent.

For example, suppose you write some useful functions and put them in a custom
library directory such as$f g/ | i b/ st andar d. cus. You can physically change
your Makef i | e using an extension file (discussed above), or you can include the
custom library without physically changing your Makef i | e. To do so, usethe- L
flag with the f g. make script. The following line shows how to include st an-
dar d. cus withthe- L flag:

fg.make -L standard.cus

This command effectively actsasif you had changed theLI BFI LES macro to look
asfollows:
ib.a\
lib/scr.a\
: i g/ st andardcus. a \
lib

ib/standard.a \
i b/user_ctl.a

Y ou can also specify more than onelibrary at atime, for example:
fg.make -L standard.cus -L scr.adv

The above line produces the same effect as changing L1 BFI LES to ook like the
example on the next page:

Q
—

lib/scradv.a \
lib/scr.a\

|'i b/ standardcus. a \
l'i b

lib

i b/standard.a \
i b/user_ctl.a

It is also possible to modify the pathname of a custom library, for instance:
fg.make -L /usr/our_work/lib/standard.cus

The above line produces the same effect as changing L1 BFI LES to look as fol-
lows:

4-14 Compiling and Running

Fitrix Report Code Generator Technical Reference

LIBFILES = ../lib.a \
$(fg)/lib/scr.a\
/usr/our_work/ i b/ standardcus.a \
$(fg)/lib/standard.a \
$(fg)/libluser_ctl.a

Y ou can add new libraries to the end, but do not use a period, such as:
fg.make -L newguy

This command affects LI BFI LES asfollows:

LIBFILES = ../lib.a \
$(fg)/lib/scr.a\
$(fg)/libl/standard.a \
$(fg)/libluser_ctl.a \
newguy. a

LIBFILES = ../lib.a \
... lall.4gmlib.a\
$(fg)/||b/scr a\
$(fg)/libl/standard.a \
$(fg)/libluser_ctl.a

and you need to insert alibrary in front of the second occurrence of | i b. a, you
can include more than theword | i b in your prefix. Insert a question mark instead
of thedlash so f g. make does not interpret the slash to mean pathname. For exam-

ple
fg.make -L all.4gm?lib.adv

The above line produces the same effect as changing L1 BFI LES to look as fol-
lows:

LIBFILES = ..

N
Q
ES
CTCT
o
[N
<
QD
—

/lib.a

oo lall

o lall 4gn1|| \
$(fg)/lib/scr.a\
$(fg)/lib/standard.a \
$(fg)/libluser_ctl.a

The following list coversrules that govern the use of the - L flag:

e Theargument prefix (portion before period) specifies where to insert the
library.

« The argument suffix (portion following period) is part of the library name.

e A dashintheargument specifies a pathname. A slash does not affect where the
name isinserted.

Compiling Generated Code 4-15

Fitrix Report Code Generator Technical Reference

e A question mark can replace aslash, if the slash is needed as part of the inser-
tion criteria.

* When there is no match, thelibrary is put at the end with no change.

Compiling Libraries

Much of the RDS compile parallels the C compile. The source .4gl files are trans-
formed into object files (.4go or .0), and non-local function calls are resolved by
searching the library archiveslisted in the LI BFI LES macro. But it’sthislast pro-
cessthat is, in fact, the most different between the RDS and C compiles.

There are two classes of libraries. One class consists of the st andar d,

user _ctl ,andreport libraries, which provide the flow of control of generated
programs and a number of specialized functions that provide features of these pro-
grams.

The other class of libraries are those that you maintain yourself for common func-
tions that are used by more than one of your programs or that modify the behavior
of functions.

Thef g. make script is used to maintain both classes the same way, but it is not
advisable to make changes to the supplied functions. Y our changes are lost when
you install the next release. It is possible to add or change these functions by creat-
ing your own libraries.

To create your own library, there are two things you must consider: whereit is
physically located, and what sequence it is linked into your program.

Consider alibrary of functionsthat are common to afamily of programs. Y ou have
aprogram source directory for each program. If you review the example Make-
fil e, notethat thefirstentryinLl BFI LESis. ./l ib.a.Thelib. 4gs file
contains the source for this archive.

Creating the Library Archive

A library archive contains the compiled objects and catal ogs used for linking your
programs. A 4GL archiveisafile with an extension of .a. An RDS archiveisa
directory with an extension of .RDS. A 4GL archiveis created with the UNIX ar
utility and its catalogs are stored internally. The RDS archive is created by

f g. make directly and its catalogs are stored as filesin the archive.

4-16 Compiling and Running

Fitrix Report Code Generator Technical Reference

To create alibrary archive, you must have aMakef i | e inyour library. Thefol-
lowing shows an example of alibrary Makefi | e:

Copyright (C 1993 Your Conpany Name

Al rights reserved.

Use, nodification, duplication, and/or distribution of this
software is limted by the software |icense agreenent.

Sccsid: %% %Wh6 % % Del ta: %%

Makefile for an Informx function library
TYPE = library

LI BFILES =\

B) (funti on-nanel. o) \

$(LI B) (functi on- nane2. o)\

$(LI B) (function-nanme3. 0)\

$(LI B) (function-nane4. o)

FORVB=

LIB=../report.a

@cho "neke: Cannot use nake. Use fg.nake to conpile.”

Asyou can see, alibrary Makef i | e contains four sections and arule. The follow-
ing list describes each element in alibrary Makefi | e:

TYPE: This macro indicates the type of the Makef i | e, whichinthiscaseis
library. There are six types of which library is one.

LIBFILES: This macro contains the object files that are put in the library archive.

FORMS: This macro lists the .frm files used by the library functions, in the above
case there are no .frm files used.

LIB: This macro contains the name of thelibrary archive. It does not have to match
the name of the library source directory. For example, if you create alibrary to hold
custom functions from the $f g/ | i b/ r epor t . 4gs directory, thereis a conven-
tion for doing so: Y ou create your library source directory as
$fg/lib/report. cus,andyoumakethelLl B macroinyour Makefi | e look
like the following line:

LIB = ../reportcus.a

This strategy allows you to use the - L flag when compiling programs with
f g. make. Thecommand f g. make -L report. cus automatically linksyour
custom library just beforether eport library.

Compiling Generated Code 4-17

Fitrix Report Code Generator Technical Reference

Itisalso possible to use the same namein the LI B macro for different libraries. For
example, your Makef i | e can contain the following line;

LIB = ../report.4gs

Thisline causes your objects to be loaded into the same archive as our software
company’ s objects. Just remember you must recompile your library after a newkFi-
trix installation.

For an RDS compile, f g. make convertsthe .a extension to .RDS.
To create the library archive, run f g. make in thelibrary directory.

When f g. nake doesa4GL compile, it creates .o files for the fileslisted in the

LI BFI LES macro from the corresponding .4gl files and loads them into the
archivefileinthedirectory. It createsthe archiveif it doesn’'t exist. The$(LI B)
symbol is specia tothemake utility. Ittellsmake that the modification date of the
sourcefileis checked against the object in the archive instead of against an actua .o
object file, so the .o fileis deleted once it is loaded into the archive.

When f g. make does an RDS compile, it creates .4go files rather than .o files.
These files are then moved over to an archive directory. This directory is created if
it does not exist. In addition, the .4gl files are copied to the archive directory.

There are two reasons for keeping the .4gl filesin both the .4gs and the RDS.
First, the .4gl source fileis needed in the archive for the linking process. Second, it
must be possible to continue to link functions from the archive while modifications
are being made to the .4gl filesin the .4gs directory.

Inadditionto the .4gl and .4gofilesinl i b. RDS, there arefour catalog files. These
aref unc_map. RDS, depend. RDS, unr esol ved. RDS, and
resol ved. RDS.

* The func_map.RDS fileisalist of all the functionsin this directory. Next to
the function name is the name of thefileitisin. During the linking phase of a
program RDS compile, | i nk. RDS refersto thislist to find the names of the
files containing the "unresolved" functionsit is searching for.

* Thedepend.RDS fileisalist of all thefiles any file depends on. Once
I i nk. RDS hasfound the names of the files that will resolve functionsfor it, it
must then find the names of any other files that the found ones also depend on.

4-18 Compiling and Running

Fitrix Report Code Generator Technical Reference

e Theunresolved.RDS fileisalist of al the functions that were called by
functionsin| i b. RDS but were not resolved there. Li nk. r ds refersto this
to find out what new function namesit hasto add to its list of unresolved func-
tions before it goes on to the next library.

« Theresol ved. RDSfileisalist of all the files and function calls that were
resolved in thislibrary.

These files must be rebuilt every timef g. make does an RDS compile in the
library.

If you have modified a .4gl fileinl i b. 4gs, normally you need torun f g. make
inlib.4gs tocompileit. But if your modification does not include changes to
function names, or added, deleted, or changed function calls, it is not necessary to
rebuild those .RDSfilesin the .RDS directory.

Compiling Your Entire Application

Consider organizing your programs in a hierarchy. The top level would be the
application, the second level a module of that application, and the third would be
the programs themselves. The following explains how to set up your hierarchy.

Create adirectory for your entire application. It's recommended that you do thisin
the $f g directory, though that is by no means arequirement. The name for this
directory isn’t set by convention, so make the name something meaningful.

In your application directory, create directories for each of the modulesin your
application. The names for your module directories should have .4gm as an exten-
sion, but the prefix can be anything that you consider meaningful. Examples might
besal es. 4gmrcvbl s. 4gmi nvent ory. 4gm Also, put the application
Makefi | e inthisdirectory.

Usethis asamodel for the example $f g/ myappl i cati on/ Makefi | e:

Makefile for an Informx Application 7
S = application
APPL = nyapplication
= sales rcvbls inventory

@cho "neke: Cannot use nake. Use fg.nake to conpile.”

Compiling Generated Code 4-19

Fitrix Report Code Generator Technical Reference

To compile your entire application, typef g. make inthe application directory. To
compile only specific modules, give the module names as arguments (for example
fg. make sal es rcvbl es).

Compiling a Module

Put your program directories in the module directory. The names of these program
directories normally have a .4gs extension. Examplesin sal es. 4gmmight be
entry. 4gs,i nvoi ce. 4gs, andpost . 4gs. Also, put themodule Makef i | e
in the module directory.

To compile your entire module, type f g. make in the module directory. The fol-
lowing page contains an example module Makf i | e that you can use as amodel:

Mkefile for an Informx modue R

TYPE = module

MXDULE = sal es. 4gm

LIBS =1ib

PROGS = entry invoice post prog4 \
prog5 prog6 prog7 and_so_on

@cho "nake: Cannot use nake. Use fg.nmake to conpile."”

Application and Module Compilation with
$cust_path

When compiling at the module level, al program directories with an extension
found inthe $cust _pat h variable are compiled.

For example, if i nvoi ce islisted in the module Makefi | e and

$cust _pat h = bt h: 4gc: 4gs, theni nvoi ce. 4gs,andi nvoi ce. bt h
are compiled if they exist. These directories are compiled in reverse order of their
$cust _pat h listing.

4-20 Compiling and Running

Fitrix Report Code Generator Technical Reference

Running Report Programs

As soon as source code has been compiled, it can be executed. There are anumber
of command line arguments that can be specified upon invocation. This section
addresses these arguments, and explains the invocation of programs compiled with
C and RDS. Later, the usage of ther un UNIX shell script is explained.

Invoking Compiled Programs

The method of executing a program depends on the compilation method you used
to compile the source code.

The INFORMIX-4GL C compile version compiles source (.4gl) files down to
object (.0) files, which are then linked together into an executable (.4ge) file. This
executable file can be invoked by simply typing its filename at the UNIX prompt.

The INFORMIX-4GL RDS compile version converts source into pseudo-code,
which is stored in object code files (.0). The object files are linked together into a
non-executable program file (.4gi).

A number of command line arguments can be used when invoking a program gen-
erated by the Report Code Generator.

fglgo program-name.4gi [-dbname database] [order "order-
by-clause"] [filter "filter-clause"]

-dbname Specifies the database to run against.
order Specifies the order of initial selection.
filter Limitstheinitial selection.

The database can be selected on the command line. For example, the following
f gl go command specifiesthe st or es database:

fglgo report.4gi -dbname stores

The name of the database must follow the - dbnane argument.

Running Report Programs — 4-21

Fitrix Report Code Generator Technical Reference

Other command line arguments allow you to pass afilter clause and order by clause
to the program. This controls the selection and order of report data.

Y ou can define the initial filter for the selection of data by specifying the filter on
the command line. For example, the following command only selects customer
numbers higher than 100.

fglgo report.4gi filter "customer num >100"

Note

The example above only worksfor ani nt eger typefield. If you want to select
astring, you must quote the string.

Y ou can also specify acommand line argument to order the initial selection of doc-
uments. Y ou can order by any column, though the columns must be in the main
table. For example, the following line orders by the po_numcolumn:

fglgo report.4gi order "po_num"

The column is sorted according to ASCI| conventions.

4-22 Compiling and Running

Customizing
Reports

This section explains how to customize your applications while maintaining regen-
erability. Special files store all of your modifications in separate pieces known as
blocks. How these blocks get merged into the source code with the Featurizer is
also discussed.

This section covers the following topics:

n

n

n

Featurizer Overview

Block Commands Overview
Pluggable Features and Feature Sets
Pre-merged Generated Files

Flow of the Featurizer

5-1

Fitrix Report Code Generator Technical Reference

The Fourth Step to Developing a Complete Report Program

Step 1
Create an Image File

\

Step 2
Generate Source Code

Step 3
Compile and Run

Step 4

Customize

5-2 Customizing Reports

Fitrix Report Code Generator Technical Reference

Featurizer Overview

The Featurizer merges custom modifications into INFORMIX-4GL source code
produced by the Code Generator. The Featurizer pre-processes the source code
(.4gl files created by the Code Generator) just before it is compiled (converted into
object code). The Featurizer merges blocks and feature sets.

The following list outlines some key terms, concepts, and functionality of the Fea-
turizer.

Regenerability: The ability of a code generation tool to re-create the base source
code while maintaining custom modifications. For the application to be regenera-
ble, any modifications done to the source code after initial generation must be
applied to the new source code that has been regenerated. The Featurizer givesyou
true regenerability.

Source Code Blocks: Following programming conventions, source code can be
divided into small chunks or blocks. A block is the definition of specific lines
within a source code file. Blocks are denoted by block tags also called block IDs.

Our software provides a set of block commands that allow the insertion of new
blocks, deletion of blocks, replacement of blocks, and alterations of lines within a
block.

Note

By convention, blocks are defined as the physical lines of code that perform a
logical function. Logical functionsinclude initializing variables, checking vali-
dations, updating the disk, or any logical group of source code lines. Blocks
should be separated by white space (blank lines), and they should be relatively
small.

Custom Directories: Base .4gl programs should be stored in separate directories
with the filename extension of .4gs. In order to maintain different versions of the
same application on a system, a custom directory is created, and the differencesin
source code are stored in the custom directory. A generic custom directory exten-
sionis.4gc.

Featurizer Overview 5-3

Fitrix Report Code Generator Technical Reference

Y ou may choose any three-character extension for custom directories. At runtime,
setting your $cust _key environment variable to a custom extension runs the pro-
grams stored in that directory.

At pre-processing time, a custom directory search path is specified that merges
source code and extensions from other directories. Thisallowsyou to store only the
differencesin a custom directory (vs. a copy of the original). When the original is
changed, are-compile in the custom directory brings forward changes from the
other directories in the search path.

Pluggable Features: Logically, features are things that can be plugged in or
unplugged based on the need for that feature. Physically, features are groups of
source code extension (.ext) files throughout the application.

If afeatureisinstalled (plugged in), that source codeis applied to the application. If
itisnot installed (un-plugged), the source code for that feature is not merged into
the final source code.

Organizing source code into features has several advantages. It allows for plug in/
out functionality, it allows the application to have multiple versions, and it allows
for the organization of source code for a particular unit of work into one area. This
makes it very easy to identify the effect of afeature on the application.

Pluggable features can be used in different ways. In addition to the plug in/out
functionality, they can be used to maintain different upgrade versions of the appli-
cation, different customer requirements, product testing, etc.

Feature Sets: Simple groups of plug-in features. Since some features may be
incompatible with other features, you may wish to group featuresinto different sets
that are known to work together. When compiling an application, you can specify
which feature set to apply.

Feature set files, which are aways given the name base. set , include alist of
featuresin the order that they are applied to the source code.

Running the Featurizer

Y ou can initiate the Featurizer in any one of three ways:
1. Fromfg. make.

2. During code generation.

5-4 Customizing Reports

Fitrix Report Code Generator Technical Reference

3. Directly from the command line.

Invoking From the fg.make Utility

The most common way of running the Featurizer isthrough thef g. make compi-
lation script. Each timeyou run f g. nake to compile your programs, the Featur-
izer is automatically invoked and merges any necessary files into your program.
Flags are available with f g. nake to control whether you want to merge or not to
merge blocks when calling f g. make. Refer to "Using fg.make to Compile Y our
Program” on page 4-6 for more information on the f g. nake utility.

Invoking From the Code Generator

The Code Generator automatically creates the block tags in the generated code.
After the code is generated, the Code Generator automatically invokes the Featur-
izer, which searches for and merges .ext files into the generated code.

Executing the Featurizer Directly

Y ou can also run the Featurizer directly at the UNIX command line. The following
lists the syntax for thef gl pp command.

fglpp [-dbname database] [-C] [-force] [-set filename.set]
[-yes] [-trace] [filename. . .]

-dbname database Specifies the database name to use.

-C I nserts comments into merged code noting ori-
gin of blocks.

-force Ignoresfile date/time and forces pre-processing
of files.

-set filename.set Specifies the feature set file to use.

-yes Overwrites files without write permission.

-trace Displaysf gl pp activity to screen.

Featurizer Overview 5-5

Fitrix Report Code Generator Technical Reference

filename. .. Thefile(s) to pre-process. If omitted, alistis
built of the files that need pre-processing.

5-6 Customizing Reports

Fitrix Report Code Generator Technical Reference

Block Commands Overview

To modify source code within a block, there are a set of block commands to indi-
cate what you wish to do to that block. Block commands go into fileswith a .ext
extension. The Featurizer reads the block commands in the .ext file and act on the
specified block in the source code.

Here are some examples of simple block commands:
before block 1llh_add insert

after block 1llh_add serial

replace block 1lh lookup not_found
delete block 1llh lookup must_ find

A block command takes two arguments:

1. The function name that contains the block.

2. Thename of the block (called the block name or block ID).

Using Block Commands to Manipulate Code

The following are some block command examples to help give you an idea of what
block commands are and how they work. Using thel | h_add example from the
previous section, say you want to place one extraline beforethei nsert com-
mand:

let morders.entry_date = today

Again, hereisthe unmodified | | h_add function:

function |l h_add()

LI'hi's: 'functvi on i”nsert”s datva intvo {he Héaderﬂ tablvé.
#

#_define_var - define |ocal variables
define

| ocal _var - local variables

new rowi d integer # Rowid after insert

Set the serial field
let morders.order_num= 0

Block Commands Overview 5-7

Fitrix Report Code Generator Technical Reference

insert - Insert the data
insert into orders val ues(morders.*)
let new row d = sql ca.sql errd[6]

serial - Bring back the serial field & display it
l et morders.order_num = sql ca.sql errd[2]

l et p_orders.order_num = sql ca. sql errd[2]

call T1h_display()

#_on_di sk_add
#_end

rowid - Reset rowid
let sglca.sqlerrd[6] = new rowd

end function
|1 h_add()

Usethebef or e bl ock command to add this one extraline beforethei nsert
block. Thusin the .ext file, you can place the following block command and source
code;

start file "header.4gl"

before bl ock |1 h_add insert
let morders.entry_date = today ;

This block command goesinto the .ext fileunder thelinestart file
header . 4gl because you are modifying the source codein header . 4gl .

The .ext fileisread by the Featurizer, and the Featurizer pre-processes the appropri-
ate .4gl fileto include the extraline of code. After pre-processing, thisis the result
inthel | h_add function (in header . 4gl):

Set the serial field
let morders.order_num= 0

let morders.entry_date = tody ————— Custom Code Merged
insert - Insert the data Before Block
insert into orders val ues(morders.*)
let new rowi d = sql ca.sqlerrd[6]

If you want to insert the custom logic after thei nsert block, thenusetheaf t er
bl ock command in the .ext file asfollows:

after block |lh_add insert
let morders.entry_date = today ;

5-8 Customizing Reports

Fitrix Report Code Generator Technical Reference

Thischangesthel | h_add function in the following manner:

insert - Insert the data

insert into orders val ues(morders. *)

let new row d = sql ca.sql errd[6]

let morders.entry date = today ——8 Custom Code Merged
serial - Bring back the serial field & display it After Block
| et morders.order_num = sql ca. sql errd[2]

l et p_orders.order_num = sql ca.sql errd[2]

call Tlh_display()

Note that all block commandsin .ext files are delimited by semicolons.

Y ou can even replace blocks. Let’s say you wanted to add your custom logic
between thei nsert i ntoandthel et new row d linesof code. You could
replace the entire block with the replace block command:
replace bl ock |1 h_add insert
insert into orders val ues(morders. *)

let morders.entry_date = today
let newrow d = sqlca.sqlerrd[6] ;

Thisresultsasfollowsinl | h_add:

Set the serial field
let morders.order_num= 0

#_insert - Insert the data

:nsert igto orders \éal ues(m_grders. *) — Custom Code
et morders.entry_date = today

let newrow d = sql ca.sql errd[6] Replaces Block

#_serial - Bring back the serial field & display it
| et morders.order_num = sql ca. sql errd[2]

l et p_orders.order_num = sql ca. sql errd[2]

call T1h_display()

Y ou can even search for strings in blocks and place code before or after a string of
code within a block.

Y ou can delete blocks with the foll owing command:
del ete block |1 h_add insert ;

Theeffectonl | h_add isasfollows:

Set the seriral field

let morders.order_num= 0
- - Code Block

serial - Bring back the serial field & display it Deleted

l et morders.order_num = sql ca.sql errd[2]

let p_orders.order_num = sql ca.sqlerrd[2]

call Tlh_display()

Block Commands Overview 5-9

Fitrix Report Code Generator Technical Reference

In addition to manipulating code within blocks, you can add code to the top or bot-
tom of a.4gl file. Y ou use block commands with various reserved words as argu-
ments to the commands. In lieu of the function name argument in a block
command, you could specify TOF for Top of File or EOF for End of File. If you
used these reserved words as the function name argument to the block command,
the block name argument would be NUL for null, since thereis no block at the top
or bottom of a.4gl file.

Hereisablock command that places extra code at the bottom of athe
header . 4gl file

start file "header.4gl"

after block ECF NUL
display "this code is at the end of header.4gl"
sleep 3 ;
Noticehow af t er bl ock EOF NUL acts—it putstext at the end of files. TOF,
ECF, and NUL must all be uppercase.

Extension (.ext) Files

Asmentioned earlier, block commands are placed in .ext files. Basically .ext files
serve two purposes:. the first isto provide a means of plugging and unplugging fea-
tures; the second is to simply hold block commands which always need to be

merged into the basic program.

Note

An .ext file can be named with any combination of letters, numbers and under-
scores. Y ou cannot, however, use hyphens or any other symbol in an .ext’s
name.

For more information on the concept of pluggable features, refer to the separate
section "Pluggable Features and Feature Sets' on page 5-21.

Specifying Which .ext Files to Merge

Y ou must specify all .ext files you want to be merged by listing them in afile
named base. set .

5-10 Customizing Reports

Fitrix Report Code Generator Technical Reference

A more detailed description of base. set filesisavailable in"Pluggable Features
and Feature Sets" on page 5-21.

Specifying Source Code Files

Thestart fil e command allowsyou to specify which .4gl files you want your
block commandsto work on. Thest art fi | e command, along with the blocks
that correspond to it, are placed in .ext files. The syntax of thestart fi | e com-
mand is as follows:

start file "filename"

Example:

start file "header.4gl"
after block mh_clear init
initialize ny_record.* to null ;
Thefollowing is an example of how you can use an .ext file,astart fil e com-
mand, and a block command to make a customization to a section of .4gl code.

Suppose that you wish to modify thefunctionm h_cl ear inheader . 4gl . You
can do it with blocks. Hereis an example of thend h_cl ear functionin
header. 4gl :

function mih_clear()

i
#_define_var - define local variables
#_init - Initialize
initialize p_orders.* to null

initialize g_orders.* to null
initialize morders.* to null

end function
m h_cl ear

Youseethedefi ne_var andi nit blocksinm h_cl ear . You wishto apply
the following block command and codeto thei ni t block:

after block mh_clear init
initialize ny_record.* to null ;

First you need to create a .ext file to put your block command in. Since this modifi-
cation does not relate to a specific pluggable feature, you would create a
base. ext filetoputitin.

Block Commands Overview 5-11

Fitrix Report Code Generator Technical Reference

Next, youwould add thest art fi | e lineto specify which file you want to
apply the block to.

Here is how you would apply the above af t er bl ock command to
header . 4gl :

start file "header.4gl"

after block mh_clear init
initialize ny_record.* to null ;

The result of the above block command would bein header . 4gl asfollows:

#
_define_var - define |ocal variables

#init - Initialize

initialize p_orders.* to null
initialize g_orders.* to null
initialize morders.* to null
initialize ny_record.* to null

end function
m h_cl ear

Block Command Logic

The function name and block 1D can also be viewed as scopes, or starting points.
The Featurizer first searches for the function name. Once it locates the function
name it searches for the block 1D within that function name. Once thisisfound,
code manipulation takes place. Function name and block ID really stand for major
known section of the file and minor known section of the file, respectively. The
block ID isthe block tag without the # .

Theuseof fromafter,to,thru,ort hrough canfurther define the block ID
starting location. The keywordst hr u andt hr ough are synonymous.

The following function names and block 1Ds have special meaning when used in
Block Command Statements:

e The TOF function name specifies the top of thefile.
e The ECOF function name specifies the end of thefile.

» The NUL block ID means that there is no associated block tag for this com-
mand.

5-12 Customizing Reports

Fitrix Report Code Generator Technical Reference

e a_ field-nametargets# after field field-name
e b_field-nametargets#_before field field-name
e C_field-nametargets# _after _change_in field-name

e e_event-name targets#_on_event event-name

Block Command Statements

This section lists the syntax of each Block Command Statement and its definition.
start file "filename"

This command specifies that the commands below this line are working on the
specified filename. The filename must be in quotes. It isrequired as the first
block command in the .ext file, and may appear throughout the file to change
the file associated with the block commands that follow this. An example of
filename could bef g_f uncs. 4gl . For moreinformation refer to " Specifying
Source Code Files" on page 5-11.

before block function-name block-ID

Thisinserts the text directly above the first line of the block. The special func-
tion name of TOF inserts the text at the top of the file.

in block function-name block-ID {before | after}
"string"

Thisinserts the text either before or after the line that begins with the specified
string. bef or e or af t er isrequired. The line identification string can be 50

characters max. The specia function name of EOF is not allowed in this com-

mand.

after block function-name block-ID

Thisinsertsthe text after the last line of the block. The special function name of
EOF inserts the text at the end of thefile.

replace block function-name block-ID [{from | after}
"string"] [{to | thru} "string"]

Block Commands Overview 5-13

Fitrix Report Code Generator Technical Reference

This replaces the specified block (or portion of a block) with the given text.

Y ou may specify t hr ough instead of t hr u. The line identification strings
can be up to 50 characterslong. If the entire block is specified (with no from/
after or to/thru strings) only the text portion of the block isreplaced. The#
block tag line and the#_end line (if present) are preserved. The special func-
tion name of EOF is not allowed in this command.

delete block function-name block-ID [{from | after}
"string"] [{to | thru} "string"]

This deletes the specified block (or portion of ablock). The lineidentification
strings can be up to 50 characterslong. The special function name of EOF isnot
allowed in this command.

One special delete block command can be used to del ete the entire contents of a
file.ltisdel ete bl ock TOF NUL thru " string",wherestringisthe
last line in thefile.

Note

Caution: Thedel et e bl ock command deletes all existing block tagswithin
the specified block, thus making it difficult to maintain regenerability.

function define function-name

This command only allows you to define new or additional local variables used
in aspecific function. If you need to add somelocal variablesto a specific func-
tion, use this command. If the function specified by function name does not

havethedef i ne keyword init (there are no local variables previously defined

in thisfunction), the Featurizer putsthedef i ne keyword in, before adding the
variables.

Note

Semicolons: All block commands except del et e bl ock require additional
text following the command. This additional text must be terminated with a

semicolon. In the case of thedel et e bl ock command, you do not need a
semicolon.

5-14 Customizing Reports

Fitrix Report Code Generator Technical Reference

Using Strings in Block Commands

Using strings in block commands should be avoided if possible. The reason being
the generated code may change in future releases causing the Featurizer to be
unable to locate your strings.

Since block tags will not change in future releases you can be sure your code will
remain compatible if you rely on these pointsin the code. However, if you use a

string to locate a block, the generated code may change over time with enhance-

ments which may break your string searches.

A string can consist of up to 50 characters.

Note

Very important: When using strings, you must include the text from the begin-
ning of the line through the string that you are trying to target. In other words,
you cannot specify a string that beginsin the middle of aline of text. If you try
this, it results in a Featurizer error. See the following example.

Example:
let abc = xyz.

If you use string equal to abc, the Featurizer errors out. If you use string equal to
| et abc (again, including text up to the beginning of the 4GL line you are trying
to target), the Featurizer findsthe line.

Illustrated aboveinther epl ace and del et e block commands, is the use of
stringssuchasafter, from to,thru,andt hr ough. When deciding which
one to use you must decide whether or not you want to include the line of code that
matches the string pattern in the effect of the change. In other words, using f r om
abc in adelete block causes the line of code containing the string abc to be
deleted as well. Consider the following to help your decision:

e dfter string - line matching string is un-affected
e fromstring - line matching string is affected
e tostring - line matching string is un-affected
e thrustring - line matching string is affected
« through string - line matching string is affected

Block Commands Overview 5-15

Fitrix Report Code Generator Technical Reference

Note
A back slash must proceed double quotes in a string block command.

The following example DOES NOT work:

"when scr_fld = "stock_num'"

Adding a back slash before the double quotes works.

"when scr_fld = \"stock_num""

Block Identification & Grouping

The start of ablock isawaysaline that beginswith a#_ asthe first non-blank
character of theline.

The end of ablock is determined by the following rules:
A - The next block at the same indentation level, or
B - Any text to the left of the block identification line, or
C-Anend functi on statement asthe first words of theline, or
D - Anexplicit #_end block marker

Given these rules for ending blocks, any block indented to the right of another
block is considered contained in the first block.

5-16 Customizing Reports

Fitrix Report Code Generator Technical Reference

Thisworks well for programming constructs that have control processing (like if/
end if, case/end case, foreach/end foreach, etc.) Consider the following program
segment:

1 #_prc_rows - Process the rows in the cursor —

2 foreach abc_cursor into ny_rec.*

3

4 #_sleep - Had nuch sleep lately?

5 if my_rec.recent_sleep ="Y"

6 t hen s|eep
7 di splay "Need nore sleep..."

8 let nmy_rec.need_sleep = "Y"

9 end if

10

11 #_col _l evel - Need a chol esterol |evel checkup?

12 if my_rec.eats_fats = "Y'

13 t hen —— Prc_rows
14 if my_rec.num hanburgers > 20

15 then

16 di splay "Checkup is due..."

17 let ny_rec.need_checkup = "Y' —— col_level
18 end if

19 end if

20

21 end foreach

22 -

23 #_nxt _bl k - Next bl ock..

Block Start Line End Line Rule
prc_rows 1 21 A
sleep 4 9 A
col level 11 19 B

If you wish to group a number of blocks that have no control loop structure, you
may indent the blocks within the group.

If ablock isindented due to logical grouping, by convention there should be an
#_end bl ock bIlock-name marker. Thisisnot required by the Featurizer, but
it isaconvention that should be practiced. For exmaple notice line #19 in the fol-
lowing code:

1 #_bldcnd - Build the shell conmand to run that gets a list of
2 # all .ext files in the current directory and in the

3 # customdirectory paths.

4

5 # stfind - Start the find cormmand & add current directory
6 let scratch ="cd ..; find ",

7 dir_name clipped, ".", dir_ext clipped

8

9 #_addcus - Add customdirectories

10 for cur_path = 1 to num paths

11 let scratch = scratch clipped, " ", dir_nanme clipped,

Block Commands Overview 5-17

Fitrix Report Code Generator Technical Reference

12 ".", cust_path[cur_pat h]

13 end for

14

15 # finfind - Conplete the find command

16 let scratch = scratch clipped, "' (' -nane '?*.ext’ -0 ",
17 "-name ' ?*.ext’ ')’ -print 2>/ dev/null"

18

19 #_end bl ock bl dcnd

20

21 # prcfiles - Process

22 while true

23 call c_command(scr at ch)

24 returning stat_flag, stat_exit, sql _filter
25

26 #_noelem- No nore elenents to read

27 if stat_flag < 1 then exit while end if

28

29 end while

Note that the pr cf i | es block would have ended the bl dend and f i nfi nd
blocks implicitly, but the explicit # end block line should be used.

Note on Block Replace and Block Delete

If areplace or delete block command is passed a string that causes the deletion to
span ablock start or end line, the block ID for the spanned block is deleted (for
example, it cannot be used in alater block 1D). If the following command is speci-
fied on the following file:

5-18 Customizing Reports

Fitrix Report Code Generator Technical Reference

del ete bl ock TOF stfind from"dir_name" thru "for cur_path"

1 #_bldcnd - Build the shell command to run that gets a |i1st of

2 # all .ext files in the current directory and in the

3 # customdirectory paths.

4 —

5 # stfind - Start the find coomand & add current directory,

6 let scratch = "cd ..; find ",

7 dir_name clipped, ".", dir_ext clipped

8

9 #_addcus - Add customdirectories deleted
10 for cur_path = 1 to num paths I

11 let scratch = scratch clipped, " ", dir_name clipped

12 ".", cust_path[cur_path]

13 end for

14 _

15 # finfind - Conplete the find command

16 let scratch = scratch clipped, "' (° -nanme '?*.ext’ -o ", unusable
17 "-name '?*.ext’ ')’ -print 2>/ dev/null" blocks
18

19 #_end bl ock bl dend

20

21 # prcfiles - Process
22 while true

23 call c_command(scratch)

24 returning stat_flag, stat_exit, sql_filter
25

26 # noelem- No nore elenents to read

27 if stat_flag < 1 then exit while end if

28

29 end while

Given the previousfile, lines seven through 10 would be deleted. Since the com-
mand spanned over the top of theaddcus block, theaddcus block ID cannot be
used any longer. The deletion aso spanned past the end of the st f i nd block, and
thest f i nd block ID cannot be used any longer. The larger bl dcnd block ID is
left intact because the deletion was completely within it.

Spanning blocks for deletion is not suggested because it disturbs the logical group-
ing of blocks. In the above example, it would have been better to delete both the
st fi nd andaddcus blocks, then insert any new logic abovethef i nfi nd
block.

Note

If the text of acommand inserts or replaces block labels, the text of the insertion
is scanned for any new block IDs. The block scan is limited to the end of the
insertion. When inserting blocks, there is no way to have any new block label
span past the end of the insertion.

Block Commands Overview 5-19

Fitrix Report Code Generator Technical Reference

Custom Block ID (Tags) Conventions

» Block IDs contain no white space and are unique to 20 characters. They can
only contain a phanumeric and underscore characters.

» Block IDs should uniquely identify the block within the function and be some-
what readable.

* Block |IDs are case sensitive.

» Block IDs are lowercase |etters followed by a space-dash-space and a verbal
block description starting in an uppercase letter.

» Block IDs never change. Their description changes, the code in them changes,
but their IDs always stay the same.

The following shows afew sample block IDs.:

#_init - Initialize
verify credit - Verify the credit lint
In_calc - Calculate the order |ine anount

5-20 Customizing Reports

Fitrix Report Code Generator Technical Reference

Pluggable Features and Feature
Sets

Pluggable Features: areindividual features that are stored in source code exten-
sion (.ext) files. The filename specifies the feature that it contains. For example, a
file containing source code for the balance forward feature might be called

bal f wd. ext .

Feature Sets: contain alist of featuresto apply to the application. Feature set
filesare named base. set . Each feature contained in abase. set fileis stored
inan .ext file. All .ext files are specified oneto aline, and arelisted in their order of
merging.

Once you have afeature self-contained in a.ext file, you have the ability to plug the
featureinto the program. To plug in afeature means that you instruct the Featurizer
to merge the code just for that feature into the .4gl source codefiles. The Featurizer
takes the feature-driving code from the .ext file and merge it into the rest of the
source code.

Pluggable Features (.ext Files)

An .ext file contains all of the source code necessary to drive one feature. Y ou
determine which .4gl fileto perform work on by usingthest art fi |l e block
command. A start fil e command must precede any block commands. Y ou
can specify multiple commandsin an .ext file to perform modifications to multiple
files.

Note

In order for the source code in your .ext files to be merged, you must list the
name of each .ext filein afeature set (base. set) file.

The prefix of an .ext file describes the feature for which it contains code. For exam-
ple inapproval . ext, you might find code in block commands that drives an
approval entry feature. For secur . ext , you could find code in block commands
that institutes security on a program.

Pluggable Features and Feature Sets 5-21

Fitrix Report Code Generator Technical Reference

For example, with .ext files you can create the specific logic that drives an approval
feature. Thisway you can easily plug in or unplug this feature from your different
applications.

An .ext file has no sections, therefore, ast art fi | e command isaways issued
in an .ext file to indicate which file to insert the code.

Feature Set (base.set) Files

You instruct the Featurizer which featuresto plug in through abase. set file. A
base. set fileholdsthe user-specified settings for that program. Thebase. set
fileisthe user’ sfeaturelist.

Y ou specify featuresinthebase. set file asthe names of the .ext files without
the .ext extensions. Inabase. set file, anything placed one space after the fea-
tureisnot read by the Featurizer. Y ou can use therest of the line for comments. The
following example of base. set mergesthe code for the approval and installs
featuresinto the .4gl files:

approval - pronpts for approval for orders of $500

instvals - pulls up list of valid values for shipping instructions

When you invoke the Featurizer, the featuresinthebase. set it are merged inthe
order listed. Each feature listed inthebase. set filemust have an associated .ext
file of the same name.

Note

Since the Featurizer looks for only one base. set file, you must be sure that
thebase. set fileinyour current directory contains all of the features you
want to incorporate into your program. In other words, if you have a common
function specified inthebase. set directory at your application level and you
want to include those functions in a specific program, you must either specify
that application level base. set file, or specify each individua .ext file listed
inthat application base. set inanew base. set filelocated in the program
directory. If you want to add new features to your program with .ext files, you
must be sure to add those featuresto the base. set file.

5-22 Customizing Reports

Fitrix Report Code Generator Technical Reference

Pre-merged Generated Files (.org
Files)

The Code Generator and the Featurizer both create .org files. Whenever ablock is

merged into a4gl file, an .org file is created which is a copy of the .4gl file before

anything gets merged into it. The .org file contains source code in its generated but
pre-merged form.

The Code Generator and .org Files

When the Code Generator isrun, it searchesto seeif any .org files are present in the
current directory, or in the custom directory path. If it doesfind an .org file, the
Code Generator creates anew .org file with the same filename prefix. If an .org file
isnot found, a .4gl fileis created instead.

The Featurizer and .org Files

Whenever the Featurizer merges ablock into a .4gl file that does not have an asso-
ciated .org file, an .org fileis created by copying the .4gl to an .org. If an .org file
does not exist for a specific .4gl, such asheader . 4gl , the Featurizer assumes
that this particular .4gl does not have any blocksin it. The Featurizer then copies
that header . 4gl filetoaheader . or g file. Once an .org file exists, the Featur-
izer loads the .org, merges the blocks into it, then creates a new .4gl file that con-
tains the merged code. Every time a merge takes place, the merge is performed on
the .org file to create anew .4gl.

The Featurizer creates an .org filein the current directory for every file specified
withastart fil e command.

Removing Blocks from Existing .4gl Files

The following logic only applies to the situation where you used to have blocks
merged into afile and decide that you no longer want anything merged into that
file.

Pre-merged Generated Files (.org Files) 5-23

Fitrix Report Code Generator Technical Reference

Say you once had aschedul e. ext filewithabef ore bl ock that has
already been mergedinto header . 4gl , and you decide you no longer want it. All
you have to do is remove that extension file and then run the Featurizer.

Specia logic has been added to the Featurizer to automatically handle this situa-
tion. The Featurizer copiesthe header . or g, which must exist if the

header . 4gl has been merged before, over to header . 4gl , thus restoring
header . 4gl toitsoriginal generated state.

5-24 Customizing Reports

Fitrix Report Code Generator Technical Reference

Flow of the Featurizer

The following describes the operational flow of the Featurizer.
1. Load feature sets into the database.

All .ext filesfor the specified feature set are located in the current directory and
the custom directory search path. If any of these files have been modified since
the last compile, they are marked as modified, and loaded into the database.

2. Build a list of files to process.

If afileor list of filesis passed onto the command line, the Featurizer merges
only those files. The - f or ce option is assumed if files are specified on the
command line.

If no files are specified on the command line, the Featurizer must build thelist.
It does thisin two phases.

First, it buildstheinitial list as all files that have been referenced in all the .ext
filesin the current directory and the custom directory search path.

If the - f or ce option is specified on the command line, thisinitial list is used,
and this step is compl ete.

Second, the Featurizer checks each .ext filein the list to see if they have been
modified since the last merge. If afile has not been modified (the modification
date of the fileisthe same as the .49l file), thefileisignored. If the file has
been modified since the last merge, then the Featurizer remerges that file.

3. From the list of files to process, each file is Pre-processed as follows:

1. Determine the original (.org) source file to work from, and load it into
memory.

The .org fileis usually in the current directory, but if it doesn't exist here,
the custom directory search path is searched to find the .org file to work
from.

The name of the .org file is built by appending .org to the destination file-
name, or by replacing any three-character file extension with org. It then
loads this .org file into memory for processing.

Flow of the Featurizer 5-25

Fitrix Report Code Generator Technical Reference

5-26

If no .org fileisfound (meeting this naming criteria) in the search, aUNIX
cp command isrun onthe .4gl fileto create an .org in the current directory.
The name of this .org file is the same as the destination filename with any
three-character extension replaced by .org. If the destination filename does
not have athree-character extension, then .org is appended to the filename
to determine the .org filename (up to 14 characters).

Build alist of commands (CMDs) to apply to thisfile.

Commands (CMDs) are block commands stored in the .ext files for this
feature set.

The sequence that CMDs are merged into the code is significant. The order
is determined by the file they are located in, and their relative position
within that file. The ordering rules follow:

CMDs stored in lower-level directory search paths are applied before
CMDsinthe current directory. The default order is .4gs, then .4gc, then the
current directory. This order may be overridden with the CUSTPATH set-
ting.

All CMDsin one directory are processed before any CMDs in another
directory in the search path.

The order of .ext filesis determined by the order that the features are speci-
fiedinthebase. set filefor thisfeature set.

CMDs are then merged in their order within the .ext files.
Execute that list of commands in their proper sequence.

After thelist of CMDs has been built, each CMD isindividually processed.
If the block within the .org file isn't found, an error is displayed unless the
CMD originated from a higher directory in the search path.

Create .tmp files and/or .4ql files.

The Featurizer outputsto a.tmpfile. It then compares the .tmp file with the
existing .4gl file, if thereis one. If there is no difference, the original .4gl
file is untouched, thus preserving the time stamp of that .4gl file. If no .4gl
files are present, the Featurizer copies the .tmp filesinto .4gl files.

Customizing Reports

Fitrix Report Code Generator Technical Reference

Note

Do not use .tmp extensions for your files. The .tmp extension is used by the Fea-
turizer aswell asthe Code Generator. If you use a.tmp extension the file will be
removed.

Flow of the Featurizer 5-27

Fitrix Report Code Generator Technical Reference

Filename Extensions

Extension
Agm

A4gs

A4gc

Agl

4go

.0

Age

Agi

mp

.org

.opt

File Explanation

Indicates an application module directory.

Represents a4GL source code directory.

Stands for a custom 4GL source code directory.

Represents a 4GL source codefile.

Indicates an object code file compiled with RDS.

Indicates an object code file compiled with the C Compiler.

Represents an executable program file, which is run directly
from the command line.

Represents a program file, which is executed with the runner
f gl go or thef gl db debugger.

Indicatesan imagefileorreport. i f g. Thisfile containsa
picture or image of the report format.

Stands for source code extension file. These files contain custom
code that the Featurizer mergesinto the original source code.

Indicates afeature set fileor base. set . Thisfileholdsalist of
.ext files that are merged into the report source code.

Represents atemporary file. This extension isreserved for use
by the Featurizer and Code Generator.

Represents an original source codefile. When extension files are
merged by the Featurizer, original source code gets preserved in
thesefiles.

Stands for option file or report.opt. Thisfile lets you set custom
report program variables on the source code directory level. For
more on option (.opt) files, refer to"Backward Compatibility” on

page 7-2.

5-28 Customizing Reports

Fitrix Report Code Generator Technical Reference

Featurizer Environment Variables

$fg: Path to the fourgen directory (used to find executables so you do not have to
be within $f g while running the Featurizer).

$cust_path: If thisvariableis set before code generation and no CUSTPATH vari-
able existsin an existing Makef i | e, then the value of $cust _pat h iswritten
into the new Makef i | e. If CUSTPATHIisaready setinaMakefi | e, the
$cust _pat h variableisignored. This variable provides a path that the Featurizer
searches for .ext files to merge.

Featurizer Environment Variables 5-29

Fitrix Report Code Generator Technical Reference

Featurizer Limitations

Limitations Number Notes
Filesit can pre-processin one directory 50 A
Custom directoriesto search in CUSTPATH 10 A
Featuresin afeature set 100 A
Characters in custom directory extensions 3 B
Number of # block definitionsin onefile 1000 A
Linesin the (.org + .ext files) 7500 A, C
Block CMDsfor an .org file unlimited D
Charactersin oneline unlimited E
Block nesting levels 10 A
Note Description

A Theinternal program array limit.

B By convention.

C The number of lines (excluding blank lines) in the .org file and the

number of linesin all .ext filesthat refer to this.org.

D An .org file can contain any number of block commandsaslong as
the total number of lines does not exceed the line limit specified in
[C].

E The number of characters right of the indentation level. If it

exceeds 70 characters, the lines are (internally) split into as many
70-character lines as necessary. Each split internally consumes a
new line (of which there are a limited number, see [C] above).

5-30 Customizing Reports

Fitrix Report Code Generator Technical Reference

Troubleshooting Tips

Question: Where is the Featurizer located?

Answer: Theutility, f gl pp. 4ge, islocated in the $f g/ codegen/
screen. 4gm f gl pp. 4gs directory.

Question: What changes to my program reguire regeneration of my program ver-
sus simply merging my fileswith f g. nake?

Answer:
1. Addition of new fieldsto a screen.

2. Deletion of fields from a screen.

3. Addition or deletion of lookups and zooms.

4. Addition of aglobal event.

5. Addition of alocal event.

6. Changesto your table schemes.

Question: Are comments acceptable in my extension files?
Answer: Comments are acceptable in most cases.

Question: How do | cause the Featurizer to never be run from f g. make or the
generator until | decide | want to turn it back on?

Answer: Set the environmental variable no_ner ge=Y.

Question: Where do | look for error messages explaining why the Featurizer is
aborting?

Answer: These can be found inthefilef gl pp. er r. Thisfileresidesin the pro-
gram directory in which you are currently working.

Troubleshooting Tips 5-31

Creating Advanced
Report Features

Quiality report programs contain many features and customizations. The Report
Code Generator lets you create customizations to fit your needs. This section dis-
cusses some practical report customizations that you might want to add to your

report.

This section covers the following topics:

n

n

n

Designing Report Prompts

Modifying Report Functions for Job Scheduling
Using Database Transactions for Posting

Creating Transaction Logging Functions

Issuing a Commit Work Without Closing the Cursor

Migrating Applications to Other Systems

6-1

Fitrix Report Code Generator Technical Reference

Designing Report Prompts

Programs that produce reports have many parts. One part allows the user to enter
selection criteria, another part retrieves the data for the report, and athird formats
the data and creates the actual output.

The code for the last two parts of this process, the retrieval of data and the format-
ting of data, are created by the Fitrix Report Code Generator and are completely
consistent in general design.

Thefirst part of this processis not generated by the Code Generator. Thisis
because of the variety of different methods available for allowing the user to enter
selection criteria

Obtaining Selection Criteria

There are four different methods of obtaining selection criteriafrom the user. The
four methods are:

1. Creating Single Value Prompts

A single value prompt accepts one value for asingle variable at atime. This
type of prompt works best when users make quick single criteriainputs. For
instance, when the user must enter an archive date, a dialog box appears and
prompts the user for the date. Once the date is entered, a validity check is per-
formed on the date. If valid, the date gets passed as a selection statement. If not
valid, the date is converted to avalid date, or the prompt re-appears and
requests avalid entry.

2. Creating Input Forms

Input forms accept one value for one or more variables at atime. For example,
when users want to specify arange of dates, a dialog box appears that contains
an input form. On the form, the user can enter avalue into a start date and end
date field. The entered dates are checked to verify they are valid, and the selec-
tion statement is created. Input forms allow for sophisticated types of logic
including when-leaving and when-entering field logic to preassign, check, and
format values.

3. Creating Query-By-Example Forms

6-2 Creating Advanced Report Features

Fitrix Report Code Generator Technical Reference

The Query-By-Example method |ets you enter one or more values for one or
more variables at atime. For example, areport built from several different col-
umns might require large selection criteria. This method lets you build large
selection statements for several report values at once. In addition, this method
works well in situations involving a number of different fields for which you
want to specify a number of different relationships, such as equal-to, greater-
than, and less-than.

4. Creating Command Line Selection Criteria

The command line selection criteria method accepts one value per variable and
the entry of one or more values at atime. This method allows you to pass selec-
tion criteriataken from outside the program into the program. The Fitrix Menus
software used to write the menus allows for the construction of a data-entry
form at the menu level. This form takes user input and then passesit to an
INFORMIX-4GL program. One advantage to using this method is that the
same sel ection criteria can be passed to several different programs without hav-
ing the user re-enter it. Each 4GL program getsthe criteriainformation from its
arguments and convertsit into acriteria string.

Sample Programs

The following are examples of each method of getting user-defined criteria. The
main functioncr eat e_sel ecti on callsonthesel _cust function. There are
four different sel _cust functions. Each oneis an example of the different meth-
ods of getting user-defined criteria. To create regenerable input prompts you must
own the Fitrix Screen Code Generator. For more on integrating prompts into your
report program, see "Adding in Report Prompts" on page 7-13

Thesel _cust formisused for input and construct methods.

sel _cust form

screen
——————————— Sel ect Custoners -------------------

Cust omer Code: .a
Custonmer Nane: .b

tabl es

strecustr

attributes

a = strcustr.cust_code, upshift
b = strcustr. bus_nane, upshi ft
end

Designing Report Prompts 6-3

Fitrix Report Code Generator Technical Reference

instructions
screen record s_data (strcustr.cust_code, strcustr.bus_nane)

function

create_sel ection()

This function prepares the sel ect statenent
fromtable strcustr (custoner reference) for
execution. The criteria (custoner business
name and customer code) is based on the val ue
returned fromthe function sel _cust()

HHHFH

define
sel _criteria char(256),
sel _stnt char (320)

call sel_cust() returning sel _criteria

let sel _stnt = "select * fromstrcustr where(",
sel _criteria clipped, ")"

prepare get_curs from sel _stnt

end function

Single Value Prompts

function sel _cust()
returns cust_sel

This function pronpts the user to enter
customer code fromwhich it creates a
construct statenent and returns it. If an
invalid custoner code is entered, the program
will pronpt the user for a valid one
#
define
cust _code code(6),
cust _sel char(256),
invalid_cust smallint
open wi ndow selwin at 6, 6 with 14 rows,
70 colums attribute (border, blue)
di spl ay
at 3,1

let invalid_cust = true
whi l e invalid_cust
let invalid_cust = fal se
whenever error continue
pronpt "Enter Custoner Code: "
for cust_code
whenever error call error_handl er
validate the custoner code
if status !'= 0 or validate_cust(cust_code)
=0
t hen
let status = 0
let invalid_cust = true
call fg_err(1) # invalid cust code

end if

end while

cl ose wi ndow selw n

let cust_sel = "strcustr.cust_code =",
cust _code

return cust_sel
end function

6-4 Creating Advanced Report Features

Fitrix Report Code Generator Technical Reference

Input Forms

function sel _cust()
returns cust_sel

This function allows the user to enter
custonmer selection criteria (custoner business
nanme and custoner code) using input froma

sel ection screen fromwhich it creates a
construct statement and returns it. if an
invalid custoner code is entered, the user
will be placed back into the custonmer code
field

HHEFHHHEF T

define
p_cust_code |ike strcustr.cust_code,
p_bus_nane |ike strcustr. bus_nane,
cust_sel char(256)

open Wi ndow selwin at 6, 6 with 14 rows,
70 columms attribute (border, bl ue)

di spl ay

3,1
input p_cust_code, p_bus_nane from
s_dat a. cust _code, s_data. bus_nane
after field p_cust_code
if validate_cust(p_cust_code) != 0
t hen
call fg_err(1) # invalid cust code
next field p_cust_code
end if
end i nput
if int_flag =1

let int_flag =0
exit progran(1)
end if
cl ose form sel _screen
cl ose wi ndow selwin

|l et cust_sel = "strcustr.cust_code = ",
p_cust_code, " and strcustr.
bus_name = ", p_bus_nane

return cust_sel
end function

Query-By-Example Forms

function sel _cust()
returns cust_sel

This function allows the user to enter
custoner selection criteria (custoner

busi ness nanme and custoner code) using query
by exanple fromwhich it creates a construct
statement and returns it.

F o

define
cust_sel char(256)

open Wi ndow selwin at 6, 6 with 14 rows,
70 columms attribute (border, bl ue)

di spl ay

Designing Report Prompts

at

6-5

Fitrix Report Code Generator Technical Reference

at 3,1
di splay " ENTER SELECTION CRITERI A" at 2,1
attribute(white)
di spl ay
"Press [DEL] to Cancel
or [ESC] to Select"
at 2,30 attribute(white)
open form sel _screen
from"../../lib.4gm ar. 4gs/ sel _cust"
di splay form sel _screen
construct cust_sel
on
strcustr. cust_code,
strcustr. bus_nane
from
s_dat a. cust _code,
s_dat a. bus_nane
if int_flag =1
then
let int_flag =0
exit progran(1)
end if
cl ose form sel _screen
cl ose w ndow sel wi n
return cust_sel
end function

Command Line Selection Criteria

function sel _cust()
returns cust_sel

This function gets the customer codes fromthe

conmand |ine and converts theminto a
sel ection statenent
#

define

cust_sel char(256),

cust _code char(6),

n smal lint # working nunber
if numargs() > 10
t

call fg_err(2) # too many argunent on the
command |ine
exit progran(1)
end if
for n =1 to numargs()
| et cust_code = arg_val (n)
if validate_cust(cust_code) != 0

call fg_err(1) # invalid cust code
exit program1)
if

end i
ifn=1
t hen
let cust_sel = "strcustr.cust_code =",
cust_code
el se
l et cust_sel = cust_sel clipped,
" or strcustr.cust_code = ", cust_code
end if
end for

return cust_sel
end function

6-6 Creating Advanced Report Features

Fitrix Report Code Generator Technical Reference

Report Production and Formatting

The Report Code Generator report production routine has a certain set of rules that
governsits use. In this process, a series of datarecordsis passed to thisroutine. It
then manipulates and formats the data for output. The code for report production
and formatting isfound inther eport . 4gl file.

For reasons of modularity and to make it easier to reuse, the report-generation rou-
tine has its own unigque environment and is separated from all other routines and
functions. Global variables cannot be used by the report-generation routine. The
only interaction this routine has with other 4GL programsisin terms of the data
that is passed to it by those programs.

The report-generation routine isitself divided into several parts. The FORVAT sec-
tion creates the report image as it appears on paper.

Here are several subroutines we have created for the formatting section of the
report-generation routine;

1. Text Centering Subroutine

This subroutine centers afield (or fields) in the middle of the page, no matter what
amount of dataisincluded. It does the following:

e Assignsatemporary character variable to the variable to be printed.
e Assignsatemporary integer variable to be the center column of the report.
e Calculates and assigns an integer variable to the starting print column.

e Printsthe temporary variable at the calculated column.

let scratch = rpt.field(s)
let md_colum = 40
let x = md_colum - (length(scratch)/ 2)

print colum x, scratch clipped
2. Text Right Justification Subroutine

Thisroutine right-justifiesafield or fields. In other words, it aligns the data with
the right-hand margin, no matter how wide the dataiis. In addition, it does the fol-
lowing:

e Assignsatemporary character variable to the variable to be printed

Designing Report Prompts 6-7

Fitrix Report Code Generator Technical Reference

e Assignsatemporary integer variable to be the last column of report
» Calculates and assigns an integer variable to the starting print column

e Printsthe temporary variable at the calculated column

let scratch = rpt.field(s)
let last_colum = 81

let x = last_colum - |ength(scratch)
print columm x, scratch clipped

3. Dynamic Heading and Footer Subroutines

Thisisused to print heading and footer lines only if there are rows that are printed
for that report section. Thisis the case when you have a cursor of information from
a header-detail join relationship where you are printing your header information in
thebef or e gr oup section and the detail informationintheon every row
section. In your report, you want to have a heading for your detail only if thereis
detail associated with the header. This routine does the following:

* Inthebef ore rowsection, itteststo seeif thereisdetail dataand setsaflag
to print, or not to print, a heading. If the flag is set, it then prints the heading;
otherwise it does not print anything.

» To prevent the printing of blank lines when thereis no detail, it teststo print or
not printintheon every r owroutine before group of r pt . header .
if rpt.detaill is not null or

rpt.detail2 is not null
then

let dynamic_flag = true
el se

let dynamic_flag = fal se
end if
if dynamc
then

print "DETAI L HEADI NG'
end if

on every row
if rpt.detaill is not null or
rpt.detail2 is not null
then
print rpt.detaill,rpt.detail2
end if

4. Page Number On Group Subroutine

When printing multiple page forms, this subroutine keeps track of the page number
per group.

page header
i f p_pageno is null
then

6-8 Creating Advanced Report Features

Fitrix Report Code Generator Technical Reference

| et p_pageno = 0
d

en
if let scratch = pageno - p_pageno
usi ng " <<<<<<"
print colum x, scratch clipped
before group rpt.field
skip to top of page
after group rpt.field
| et p_pageno = pageno

Incorrect Trailer Information Subroutine

While printing forms, you want the program to skip to the top of the page in the
before group section. If thereistrailer information to print, the current data record
is from the next record, so your trailer output isincorrect. This subroutine corrects
the problem. It does the following:

Defines atrailer record the same as your trailer.
rpt.variabl es andsetsaflagtoindicateaf t er group.

Ifanaft er group hasoccurred, it setsthe printing of the trailer information
to the previous record.

last_trlr record
1st _trlr_info like,

2nd_trlr_info like,

3rd_trlr_info like
end record
before group rpt.field

skip to top of page
after group rpt.field

let after_group_flag = true

let last_trlr.1st_trlr_info = rpt.1st_trlr_info

let last_trlr.2nd_trlr_info = rpt.2nd_trlr_info

let last_trlr.3rd_trlr_info = rpt.3rd_trlr_info
page trailer

if after_group_flag is null

then

let after_group = false

end if

if after_group_flag

then

let after_group = false

el se
let last_trlr.1st_trlr_info = rpt.1st_trlr_info
let last_trlr.2nd_trlr_info = rpt.2nd_trlr_info
let last_trlr.3rd_trlr_info = rpt.3rd_trlr_info
end if
print last_trlr.1st_trlr_info
print last_trlr.2nd_trlr_info
print last_trlr.3rd_trlr_info

Designing Report Prompts 6-9

Fitrix Report Code Generator Technical Reference

Modifying Report Functions for
Job Scheduling

The Fitrix Menus program allows users to schedule reports to run at a specified
future time. The scheduling logic provides scheduling for any job using the

. print: instruction aswell asfor reports generated by the: i f xr eport:
instruction. In the case of the Informix generated report, it is the responsibility of
the report program itself to allow itself to be scheduled.

Thefollowing changesto gl obal s. 4gl, mi dl evel . 4gl , and the file con-
taining input logic allow areport program to take advantage of the scheduling
logic.

1. Addthesevariable definitionsto gl obal s. 4gl :

sel _| ag for selection only processing
bg_f ag for background processing
ob_

|
|
nique job id

flag smallint
|
j i

f

ag smal lint, # f

d like stxfiltr.unique_id, # u

2. Add thisargument processing logictoml _def aul t s() in
m dl evel . 4gl :

define
n_args snallint,
n smal | int

initialize globals
let n_args = num.args()
let sel _flag = fal se
let bg_flag = fal se

let job_id =""

check for flag
for n =1 to n_args
if arg_val(n) = "-s"
then
let sel_flag = true
let job_id = arg_val (n + 1)
end if
if arg_val(n) = "-b"
then

let bg_flag = true
let job_id = arg_val (n + 1)
end if
end for

3. Add thislogic to your input processing function:

check for background processing
if not bg_flag
then

6-10 Creating Advanced Report Features

Fitrix Report Code Generator Technical Reference

kékisting i nput function |ogic)

el se
get criteria fromstxfiltr
whenever error continue
sel ect sel _filter
into selection_string
fromstxfiltr
where stxfiltr.unique_id = job_id

make sure string was found

if status

then
default selection string in case of error, may be "1=2"
let selection_string = "1=1"

end if

delete the stxfiltr val ues
delete fromstxfiltr where stxfiltr.unique_id = job_id
whenever error call error_handler

end if

sel ection only processing
if sel_flag
then
insert the selection string into stxfiltr
whenever error continue
insert into stxfiltr values (job_id, 1, selection_string)
whenever error call error_handler

done - exit program
exit progran(status)
end if

Y ou can even add several pieces of databy usingtheseq_no fieldinst xfiltr.
For example, in the Fixed Assets module, theoption Pri nt Depr eci ati on
Report (p_asset d) thereisaprompt for adatein the check phase of the report
only. Thisdateisstoredinst xfi | tr withseq_no = 2 for scheduled jobs.
When retrieved the global normally filled by the prompted value is assigned the
retrieved value (use a character string to fetch the value then convert it to date using
| et).

For further information on the establishment of job scheduling with Fitrix Menus,
see the section titled "Report Scheduling Through Fitrix Menus."

Modifying Report Functions for Job Scheduling 6-11

Fitrix Report Code Generator Technical Reference

Using Database Transactions for
Posting

In Fitrix Accounting, many programs post datain one form or another. This means
that when the processisrun, the datais changed or updated in some way. Typically,
it istaken from an entry file and moved to an activity file, but thisisjust one type of
such posting.

In Fitrix Accounting, posting programs begin with either the o- (if they produce
printed output) or thep__ (if they just change data) prefixes. In writing these posting
programs, we used the SQL concept of database transactions. Database transac-
tions offer the programmer some unique features:

» They can be used to guarantee that everything between your begi n wor k and
conmit wor k statementsis either done 100%, or is not done at all (great for
power failures, and those programs that blow-up in the middle of posting
because that null value wasn’t taken into consideration).

e They give you the ability to rollback work (automatically undo the changes
made to the database since the last begi n wor k command).

* They give you the ahility to rollforward database. That isthe ability to take a
backup of your database, and apply all changes made to it since that backup to
bring it up to date.

If transactions offer so much, why aren’t they used very often? Most programmers
will seethe valuein the first two benefits outlined, but it'sther ol | f or war d
dat abase statement that makes transactions, for the most part, unusable. The rea-
son for thisissimple: if you areabletor ol | f or war d dat abase, thenyou
must always use transactions. The problem with this restriction is twofold.

First, the transaction | ogf i | e can grow out of control in avery short time. In
sometesting, thel ogf i | e grew larger than the database itself within an hour.

Second, begi n/ conmi t/ rol | back wor k consumes system resources when
they are required for only asmall portion of database i/o that occurs. In Fitrix
Accounting, only posting routines need to use begi n/ commi t / r ol | back
Statements.

6-12 Creating Advanced Report Features

Fitrix Report Code Generator Technical Reference

The fact that Fitrix Accounting had to guarantee data integrity during posting
required us to use database transactions, but we wanted to avoid maintaining a

| ogfi | e that could grow to 20MB in just one day of activity. So away was
developed to turn transactions on when they were needed, and turn them off when
they were not. This sacrificesthe ability tor ol | f orward dat abase froma

transaction | ogf i | e, but the overhead required by this feature was not worth the
benefit.

Using Database Transactions for Posting 6-13

Fitrix Report Code Generator Technical Reference

Creating Transaction Logging
Functions

There are two functions that turn database transactions on or off. The philosophy
behind these functions is simple: INFORMIX-4GL knows if the database uses
transactions by the presence or absence of arow in syst abl es with the tabname
sysl og. If youwant database transactions, add the row: if not, deleteit. The fol-
lowing pages contain the layout of the functionsadd_| og and chk_| og.

1. Theadd_l og(dbnane, | ogpat h) function:

If thesysl og rowisn’'tinsyst abl es, theninsert it, close the database, re-
open the database (it then opens using transactions), and delete the sy sl og
row (the default isno sysl og row).

function add_| og(dbnane, | ogpath)

Add a record "syslog" into systables.
O ose and reopen the database for |ogging.
Del etes the record "sysl og"
#
define
| og_rowi d integer,
dbnanme char (14),
| ogpat h char (64)
let status = 0
whenever error continue
select rowid into log_row d from systabl es

where tabnanme = "sysl og'
if status !'=0
t hen

let status = 0

not there - insert it.

insert into systables
(tabnane, owner, di r pat h, t abi d,
rowsi ze, ncol s, ni ndexes, nrows,
created, version, t abt ype)

val ues
("syslog","inform x", | ogpat h,
0,0,1,0,0,today, 0,"L")

if status =0

then
Cannot add the syslog row
call fg_error("lib_all"™,"log_on", 1)
exit progran(l)

end if

cl ose database
dat abase dbnane

if status !'= 10

then
Cannot open the database logfile.
call fg_error("lib_all","log_on",2)
exit program1)

end if

delete it for the next user.

6-14 Creating Advanced Report Features

Fitrix Report Code Generator Technical Reference

del ete from systabl es
wher e tabname = "sysl og"
end if
whenever error call error_handler
end function
add_l og

Thechk_| og(dbnane, | ogpat h) function:

If thesysl og row isinsyst abl es, then auser isopening the database
with transactions right now. Wait awhile and check again. If the wait istoo
long, then just delete the sy sl og row from syst abl es. Then close, and re-
open the database (this time without transactions).

og(dbnane, l ogpathy

function chk_

Check table systables to see if transactions are set on. |If so,
sleep until the record is renpved.
#
define

sys_row d integer,

dbnanme char (14),

| ogpat h char (64),

cnt smallint

let status = 0

whenever error continue

select rowid into sys_rowi d from systables

where tabname = "sysl og"
if status = notfound
then

dat abase opened wi thout transactions
let status = 0
el se
wait for database to open w thout trx
open w ndow wait_sys at 2,4
with 1 rows, 60 colums
attribute(white, border)
di spl ay
" Wiiting for table to becone available..."
at 1,1
let cnt =0
while cnt <5

sleep 5

select rowid into sys_rowid from systables
where tabnane = "sysl og"

if status = 0

then

let cnt =cnt + 1
continue while
el se
exit while
end if
end while
if cnt =5
then
problemw th syslog record. it should never be there for this
long. the only time the syslog record should be there is when
you run a process With transactions, and in that case, the
record is inserted only for the tine it takes to close the
dat abase, re-open it (with transactions), then delete that
syslog record. W're going to have to 86 that syslog record...
del ete from systabl es

HHHFHHH

Creating Transaction Logging Functions 6-15

Fitrix Report Code Generator Technical Reference

where rowid = sys_row d
end if
cl ose w ndow wai t _sys
cl ose dat abase
dat abase dbnane
end if
whenever error call error_handl er
end function

Before using these functions yourself, take heed of the following caveats:

1. Thelnformix sysl og convention is not documented, and although thereis no
reason for them to change it, Informix remains open for changing database log-
ging philosophies that may render these functions inoperable (the sysl og
convention is currently used in all Informix platforms);

2. Youlosetherol | forward dat abase capabilities.

If you can live with these two caveats, then you can start enjoying the benefits of
database transactions using these two routines. All 4GL programs that Fitrix pro-
duces utilize these routines because we demand the guarantee of data integrity
without the overhead of ther ol | f or war d dat abase function.

6-16 Creating Advanced Report Features

Fitrix Report Code Generator Technical Reference

Issuing a Commit Work Without
Closing the Cursor

Fitrix Accounting usesthebegi n/ conmi t/ rol | back wor k statementsto
control application transactions. Application transactions are defined as the transac-
tions of abusiness. Checks and invoices, for example, are compl ete transactions for
applications. When these types of transactions are posted, they are done abatch at a
time and a cursor is used to gather the data for posting.

A check (transaction) may take data from one to many of the rows retrieved from
the cursor. Use the work concept for just those rows of the transaction (the check),
rather than all rows in the cursor. A problem arises when you commit work for the
first check. Doing so closes the main posting cursor (just what the documentation
says it does). When you try reading in the next check from the cursor, a 4GL error
occurs due to a closed cursor. To tackle the problem, you have to understand the
nature of acursor. A cursor is merely amethod of gaining orderly accessto several
rows of data returned from an SQL statement. Routines like the following are used
to work on cursors:

function cl define(sql str)

#
define sql _str char(200)
prepare get_curs fromsql _str
declare cl_curs scroll cursor

for get_curs

open cl_curs

end function

cl_define()

#
define curs_numinteger
fetch absolute curs_numcl_curs
into cl_data.*
end function
cl_fetch()

In the main body of the program, Fitrix posting programs rely on these types of rou-
tinesto get dataintothec1_dat a. * record (actually, these are shortened versions
of thereal thing, with alot of the error-handling code removed). As discussed ear-
lier, thefirsttimeacomr t wor k statement isissued, you can no longer call on
thecl_f et ch() routine because the cursor is closed. The way to get around this
isto create an entity called afake cursor. A fake cursor is atemp table created by
this process for the purpose of obtaining an orderly method of accessing data

Issuing a Commit Work Without Closing the Cursor — 6-17

Fitrix Report Code Generator Technical Reference

returned from the SQL statement. A cursor must be defined in order to create the
temp table, then the data is moved from the cursor to the temp table. The cursor is
closed, and the f et ch routine takes data from the temp table instead of the cursor.
When the process is complete, the temp table isremoved (or you canissue adr op
t abl e on the temp table when you are done with it). The temp tableisthen treated
asthe cursor. By using this strategy, you can keep your cursor open outside of
begi n/ conmit wor k statements.

Here is an example of the same routines with the fake cursor logic inserted. This
routineletsbegi n/ commi t/rol | back transacti ons tooccur without
closing the cursor:

function c1_define(sql str)

#
define sqgl _str char(200)
prepare get_curs fromsql _str
declare cl1_curs cursor
for get_curs

create tenp table fake_curs (
check_nunber char (10)
doc_no integer,

the fake_curs table is defined to look like the data el ements
of the cl_curs cursor.
foreach cl_curs into cl_data.*
insert into fake_curs
val ues(cl_data. *)
end foreach
close cl_curs
end function
cl1_define()

#
define curs_numinteger
select * into cl_data.*
from fake_cursor
where rowid = curs_num
end function
cl_fetch()

Note the following about the preceding functions:

» The define section opens the cursor just for the amount of time it takes to trans-
fer the datain the cursor into the temp table.

e Thetemp table is defined with the exact same data elements as are defined in
thecl curs cursor.

6-18 Creating Advanced Report Features

Fitrix Report Code Generator Technical Reference

* Whentheinsert statement occurs on the temp table, the cursor rows are inserted
sequentially and can be accessed by r owi d (seecl_f et ch) inthe order that
they were written to the temp table.

e Thefetch function has been re-written to fill thec1_dat a. * record from the
temp table rather than the cursor.

The above method for accessing data versus direct cursor access has the following
disadvantages:

e It usestwice as much disk space for the same routine, since it must copy the
cursor datato the temp table.

* The cursor definition routine is much slower since it must move all data from
the real cursor into the fake cursor.

« When you change the layout of the cursor, you must remember to change the
layout of the temp table to match the new cursor layout.

Although thisis not the most graceful way to gain access to data returned from a
select statement, if you really have to perform begi n/ comi t/ r ol | back
wor k within large cursors, at least you have a method. Once understood, it isan
easy concept to remember and it is proven in the field. This technique has been
used in the Fitrix Accounting system, and although it is slow to startup, it getsthe
job done as advertised.

Issuing a Commit Work Without Closing the Cursor — 6-19

Fitrix Report Code Generator Technical Reference

Moving Applications to Other
Systems

To successfully run programs generated with the Report Code Generator on sys-
tems other than the development system, a few steps must be taken. These steps
ensure that the tables, data, and reports your program needs to operate exist on the
system to which you are transferring the program, and that your program knows
where to find them.

The following steps are required to add the necessary tables to the application data-
base:

1. Createthe following directories on the target system:
- $f g/ Make
 $fg/bin
o S$fg/lib/datal/library. dat
- S$fg/lib/data/library

2. Copy thefilesin the following three directories from the development system,
to the directories you created on the target system:

e $fg/bin
e S$fg/lib/data/library. dat
- S$fg/lib/data/library

3. Change your $PATH variable on the target system to include the $f g/ bi n
directory.

4. Besure that each database to be converted isin the $DBPATH.
5. Runnklib -dbname database on each database that needs converted.
The nkl b script adds a number of cg* and st x* tablesto your database.

If your application includes prompts or input forms, these steps are required to
make forms available to the application:

6-20 Creating Advanced Report Features

Fitrix Report Code Generator Technical Reference

3.

Createa$f g/ | i b/ f or ns directory on the target system.

Copy thefilesinthe $f g/ | i b/ f or s directory on the devel opment system
into the $f g/ I i b/ f or ns directory on the target system.

Add $f g/ | i b/ f or ns to your $DBPATH on the target system.

Thefollowingisalist of the minimum files required to move your application from

(0]

ne system to another.
Agi and .frm files
$fg/lib/datal/library. dat/*
$fg/lib/datal/library/dbmerge. 4gi
$fg/lib/forms/*.frm
$fg/bin/nklib
$f g/ Make/ *
Y our startup scripts or custom runners
$f g/ bi n needsto bein the $PATH
$f g/ 1 i b/ f or ms needsto be in the SDBPATH

Note

Y ou can also use the optional variables $f gmakedi r, $f gl i bdi r, and
$f gt ool di r to point to your Make directory, upper-level libraries (I i b)
directory, and your Tools executable directory. Refer to "Optional Directory
Variables' on page 1-6 for more information about these variables.

Moving Applications to Other Systems 6-21

Fitrix Report Code Generator Technical Reference

6-22 Creating Advanced Report Features

New Features and
Functionality

This release of the Report Code Generator includes several new features and
improved functionality.

This section covers these features, which include the following topics:

n

n

n

Larger Selection Statement Variables
Post Processor Flexibility

Print Statement Block Tag Logic
Custom Image File Block Tags
Block Tagsin Makefi |l e

Adding in Report Prompts

Fitrix Report Code Generator Technical Reference

Larger Selection Statement
Variables

The Report Code Generator now uses larger selection statement variables to pre-
pare and declare selection statements. This increased size more than doubles previ-
ous capabilities.

Previous Variable Size New Variable Size
ct.sel_join char (200) sel_join char(512)
ct.sel filter char(200) sel_filter char(2048)
ct.sel order char(200) sel order char (512)

ct.sel stmt char(1024) sel_stmt char (4096)

In addition these variables are now located in mi dl evel . 4gl instead of gl o-
bal s. 4gl ,and thect . hasbeen dropped from their name. This move and subse-
guent name change gives you easier access and more control over the selection
statement variables; you can increase their size whenever you near alimitation
without having to change any libraries.

Backward Compatibility

An early work around to the limited size of selection statements used block com-
mands and string replacements to increase selection limits. If you have programs
that depend on thiswork around and you want to regenerate them, you can use an
environment variable and an options file to maintain backward compatibility.

Ther pt _sel ect environment variable takes two options: | ocal and gl obal .
Thegl obal option setsall variable valuesto their former size, name, and loca-
tion. Thisis the option you should use to maintain backward compatibility. The

| ocal option setsall selection variablesto their new size, name, and location.

You can set ther pt _sel ect variableto gl obal on asystem, module (4gm) or
program level (4gs). By default thisvariableispre-setto| ocal , so all selection
variables start with the larger sizes.

7-2 New Features and Functionality

Fitrix Report Code Generator Technical Reference

To set on asystem level, typer pt _sel ect =" gl obal " inther eport. org
file. Thisfileislocated in the $f g/ codegen/ opt i ons directory.

To set on amodule or program level, createar eport . opt fileinthe directory
that contains the programs you want to affect. Inther eport . opt file, add the
rpt _sel ect="gl obal " line.

The ml_ct_sel_compat() Function

In addition to the new variables, a new function has also been added to

m dl evel . 4gl . Thisfunction, namedm _ct _sel _conpat (), setsloca
selection variablesto any value passed from the command line or any other initial-
izing method.

Larger Selection Statement Variables 7-3

Fitrix Report Code Generator Technical Reference

Post Processor Flexibility

The Report Code Generator |ets you customize generated source code with a post
processor. A post processor is useful for many tasks, such as making global
changes to code, replacing or altering code blocks, and implementing bug fixes.

Thef g. report program runs a post processor on the local application if the
environment variable$l ocal _r pt isset. Usethisvariableto point to the name of
the program you wish to run on the generated 4GL code.

The same arguments that you passtof g. r eport get passed to your post-proces-
Sor program.

For example, assume you write aninitialization function (say, my _i ni t ()) thatis
more relevant than the generici ni t () function that the Code Generator creates.
You may want mai n. 4gl tocall my_init () ratherthanthei ni t () function.
Y ou can set up apost processor to change theinitialization call in mai n. 4gl to

ny_init().
Tochangeinit () inmai n. 4gl tonmy_init():

1. Write a shell script (chg_init, for example) that uses the sed utility to
remove init () and add a call tomy_init (), such as:

#chg_init
sed "s, call init, call ny_init, " main.4gl > main.tnp &&
nmv main. tnp nain. 4gl

2. Setyour $local_ rpt environment variable to the name of the post-pro-
cessor script (you might want to set this variable in your .profile file),
for example:

l ocal _rpt=chg_init; export |ocal _rpt

Once the Code Generator completes creating source (.4gl) files, your local
mai n. 4gl file containsthe functioncall my_i ni t () ratherthaninit ().

7-4 New Features and Functionality

Fitrix Report Code Generator Technical Reference

Print Statement Block Tag Logic

In previous versions of the Fitrix Report Code Generator, ther eport . 4gl file
contained a block tag for each report row. These block tags, which were numbered
sequentialy, allowed you to create custom code for each linein the report. In other
words, you could use an extension file and block command to act on any
report. 4gl print statement. The following shows an example of the old logic:

T or mat

page header
whenever error call error_handl er

print_1 - tag for the followi ng print statement Print Statement

print i
colum 1, today using "midd/yy"; rBe|08|Ft-£a sin
let scratch = *COUSTGVER ORDER H STORY LI ST" port.4g9

let x = 40 - (length(scratch) / 2)
print
colum x, scratch clipped;

| et scratch = pageno using "Page: <<<<"

let x = 81 - |ength(scratch)

print

colum x, scratch clipped

print_2 - tag for the follow ng print statenent
print
#_print_3 - tag for the follow ng print statenent
print

colum 1, "Custoner"”
#_print_4 - tag for the follow ng print statenent
print

colum 1, "MNunber",

colum 11, "Nane",

col um 30, "Conpany",

col urm 54, "Phone"
print_5 - tag for the following print statenent
print

colum 1, M--commmmm i

page trailer

#_print_6 - tag for the follow ng print statenent
print
#_print_7 - tag for the follow ng print statenent
print

colum 1, M-c-ccmmmmmmm e e

colum 41, M---c-omi e
#_print_8 - tag for the follow ng print statenent
print

colum 1, pageno using "Page: <<<<";

| et scratch = pageno using "Page: <<<<"

let x = 81 - |ength(scratch)

print

colum x, scratch clipped

Print Statement Block Tag Logic 7-5

Fitrix Report Code Generator Technical Reference

This version of the Report Code Generator uses new print statement block tag
logic. Instead of the entirer epor t . 4gl file having sequentially numbered print
statement block tags, this version numbers print statement block tags according to
the control block that contains them. In other words, the numbering scheme restarts
at one for each control block. The new code looks as follows:

for mat
format - Format section .
page_header - Report block for page header. Print Statement Block
err - Trap fatal errors.
whenever error call error_handl er Tags f(l)l’ Fl)agke header
page_header _1 - Print statenent Control Bloc

cal | put_vararg(today using usg.today)

cal | put_vararg("CQUSTOMER ORDER H STCRY LI ST")
call put_vararg(pageno using usg. pageno)

| et header_i mage = i mageManager _get Li ne(1)
print header_i nage clipped

#_page_header_2 - Print statement

print
page_header _3 - Print statenent
| et header_i mage = i mageManager _get Li ne(2)

print header_i nage clipped
#_page_header _4 - Print statenent

| et header _i mage = i mageManager _get Li ne(3)
print header_i mage cli pped

page_header _5 - Print statenent

| et header_i mage = i mageManager _get Li ne(4)
print header_i nage clipped

#_end - End of report bl ock.

page trailer - Report block for page trailer. Print Statement Block

page_trailer_1 - Print statenent Tags for page trailer
print

page_trailer_2 - Print statenent Control Block

| et header_i mage = i mageManager _get Li ne(5)

print header_i mage cli pped
page_trailer_3 - Print statenent
cal | put_vararg(pageno using usg. pageno)
call put_vararg(pageno using usg. pageno)
| et header_i mage = i mageManager _get Li ne(6)
print header_i nage clipped

end - End of report bl ock

Asyou can see, this new scheme limits the number of lines affected when you
insert a custom print statement.

For instance, suppose you create areport that contains 30 print statements. When
the Report Code Generator constructs your source code (.4gl) files, it adds 30 print
statement block tagsto your r eport . 4gl file, onetag for each print statement.
The old method numbers these block tags from one to 30. As mentioned above, the
new numbering scheme restarts at one for each control block.

7-6 New Features and Functionality

Fitrix Report Code Generator Technical Reference

Now suppose this same report program uses several extension files containing
block commands that act on these print statement block tags. Using the old method,
if a situation arises where you need to remove a print statement, all your extension
files must be reworked. However, with the new method, you only need to alter the
extension files that reference the modified control block.

Backward Compatibility

Although this new numbering scheme makes modifying reports easier, you can
regenerate your existing report programs with the old method. The Report Code
Generator uses a new variable that controls which method gets used, namely r pt -
t agt ype. Thisvariable, which you set on alocal basisinther eport . opt file
and globally the $f g/ codegen/ opt i ons/ r eport . or g file, accepts one of
two values: bl ock or | i ne. By default, the Report Code Generator uses the new
print statement block tag logic, in other wordsr pt t agt ype issettobl ock. If
you want to use the old method, setr pt t agt ype tol i ne.

Asarule setr ptt agt ype tol i ne when you are working with previously gen-
erated programs. Inther eport . opt filetype:

rpttagtype=line

When developing new report programs, use the new numbering scheme to take
advantage of the simplified code and regenerability.

Print Statement Block Tag Logic 7-7

Fitrix Report Code Generator Technical Reference

Custom Image File Block Tags

Another new feature of the Report Code Generator is custom image file block tags.
Y ou can now add your custom block tags in the format section of the imagefile.
These block tags, upon code generation, get placed into ther eport . 4gl file.
Onceinther eport. 4gl file you can use extension files and block statementsto
customize the source code. For example, the following image (r epor t . i f g) file
contains a custom block tag in the bef or e gr oup control block:

before group of custoner.custoner_num

{
#_custom bl ock - Exanpl e custom bl ock tag Custom Block Tac
[T000 [f001 [f002 [f008 <
Activity Report: [!
Oder # PO# O dered Shi pped Pai d [!
--- [
}

When this example image file is generated into source code, the custom block tag
gets added to the appropriate linein ther epor t . 4gl file:

before group of rpt.customer_num
#_b_custoner_num - Before group custoner_num
if
rpt.order_numis not null

or rpt.po_numis not null

or rpt.order_date is not null

or rpt.ship_date is not null

or rpt.paid_date is not null

let dynamc = true
need 4 |ines

let dynamc = false
end if Custom Block Tag

Added to report.4g
_custom bl ock - Exanpl e custom bl ock tag
cal |l put_vararg(rpt.custonmer_num using usg.custoner_num
call put_vararg(rpt.fnanme)
call put_vararg(rpt.conpany)
call put_vararg(rpt.phone)
let line_image = | mageManager _get Li ne(7)
print line_image clipped

Custom tags are useful, because they never change. Whereas print statement block
tags change when new lines are added, custom tags are compl etely regenerable.
When you create extension files that act on custom block tags, your modifications
are preserved each time you regenerate the code.

7-8 New Features and Functionality

Fitrix Report Code Generator Technical Reference

Numbering Scheme Variable

When you create custom block tagsin your r epor t . i f g file, you must decide
how you want the print statement block tagsinther eport . 4gl filetoincrement.
There are two increment methods. The first method counts your custom block tags;
in other words, it is an absolute numbering scheme. The second method does not
count your custom block tags, thus the print statement block tags remain consi stent
no matter how many custom block tags you add to your r eport .. i f g file. This
second method is known as relative.

In almost every case, the Report Code Generator defaults to the method appropriate
to your situation. However, at times you might want to specify the non-default
method.

To specify the non-default method, use the new r pt t agnumvariable. Y ou can set
thisvariable to either absol ut e orr el at i ve. Onthelocal directory level, use
ther eport. opt fileto set thisvariable. For example, to set ther pt t agnumto
absol ut e, add thefollowing lineto ther eport . opt file:

rpttagnum=absolute

On aglobal basis, set thisvariablein the $f g/ code-
gen/ opti ons/report. orgfile

Note

Ther pt t agnumvariable defaults to a different value depending on the value
inther pt t agt ype variable. Whenr pt t agt ype issettobl ock, rptt ag-
numdefaultstor el ati ve. Whenr ptt agt ypeissettol i ne,r ptt agnum
defaultsto absol ut e. For moreonther ptt agt ype variable, refer to "Print
Statement Block Tag Logic" on page 7-5.

The following lines of code show an example of both absol ut e andr el ati ve
numbering schemes, notice how the number of the third print statement block tag
differs between the two methods:

Absolute Block Tag Numbering Scheme
page_header - Report block for page header.

#_err - Trap fatal errors.

Custom Image File Block Tags 7-9

Fitrix Report Code Generator Technical Reference

whenever error call error_handl er

page_header _1 - Print statenent

call put_vararg(today usi ng usg.today)
call put_vararg("Syscol ums ")

call put_var arg(pageno usi ng usg. pageno)

| et header _image = i mageManager _get Li ne(1)
print header_i mage cli pped

#_customtag - Custom block tag
| et header _image = i mageManager _get Li ne(2)
print header_i mage cli pped

page_header _3 - Print statenent
Il et header_image = i mageManager _get Li ne(3)
print header_i nage clipped

page_header _4 - Print statenent
I et header_i mage = i mageManager _get Li ne(4)
print header_i mage cli pped

#_page_header _5 - Print statenent
print

page_header _6 - Print statenent
print

#_end - End of report bl ock.

Relative Block Tag Numbering Scheme

7-10

#_page_header - Report block for page header.

err - Trap fatal errors.
whenever error call error_handl er

page_header _1 - Print statenent

call put vararg(today usi ng usg. t oday)
call put_vararg("Syscol ums ")

call put_vararg(pageno using usg.pageno)

| et header_i mage = i mageManager _get Li ne(1)
print header_i mage cli pped

customtag - Qustom bl ock tag
| et header_i mage = i mageManager _get Li ne(2)
print header_i nage clipped

page_header _2 - Print statenent
| et header_i mage = i mageManager _get Li ne(3)
print header_i nage clipped

#_page_header _3 - Print statenent
I et header_i mage = i mageManager _get Li ne(4)
print header_i mage cli pped

#_page_header _4 - Print statenent
print

page_header _5 - Print statenent
print

#_end - End of report bl ock.

New Features and Functionality

Fitrix Report Code Generator Technical Reference

A good time to use the non-default method is when you add a custom imagefile
block tag to areport that uses the old print statement logic (i.e., r ptt ag-

t ype=l i ne), and you regenerate that report. In this case, you do not want r pt -
t agnumset toabsol ut e, becauseabsol ut e numbers each block tag including
your custom tag, which in turn throws off every extension file that acts on the
changed tag numbers. Instead, set r pt t agnumtor el at i ve. Thissetting pre-
serves al the existing print statement block tags. In essence this setting numbers
around your custom tag.

Custom Image File Block Tags 7-11

Fitrix Report Code Generator Technical Reference

Block Tags in Makefile

Asyou might have noticed already, the Makef i | e now comes with generated
block tags before each Makef i | e macro. The new Makef i | e style makes
including custom libraries and source files into your generated programs easier. In
addition, you inherit al the flexibility and functionality of block statements and
extension files, such as pluggable features and feature sets, without having to use
difficult-to-maintain string replacement logic in block statements. The following
example Makef i | e illustrates the new block tags:

Copyright (O 1993 <Your Conpany Name>

Al rights reserved.

Use, nodification, duplication, and/or distribution of this
software is limted by the software |icense agreenent.

Sccsid: %% %80 % % Del ta: %%

i

#

'Maké'fi | e”fo'r én inf'orhix r'éport”
type - Makefile type
TYPE = program

#_name - program name
NAME = tnp. 4ge

#_objfiles - programfiles
OBJFI LES = globals.o | owl evel .o main.o nidlevel.o report.o

forms - performfiles

FOR\VB

#_libfiles - library list

LIBFILES = ../lib.a \
$(fg)/lib/report.a \
$(fg)/libluser_ctl.a\
$(fg)/1ib/standard. a

#_globals - globals file

G.OBAL = gl obal s. 4gl

#_all_rule - programconpile rule
all:

@cho "make: Cannot use nmake. Use fg.make -F for 4& conpile.”

7-12 New Features and Functionality

Fitrix Report Code Generator Technical Reference

Adding in Report Prompts

Asdiscussed in "Designing Report Prompts’ on page 6-2, many reports require the
end-user to enter selection criteriain aprompt prior to running areport. If you own
the Fitrix Screen Code Generator and Form Painter, you can use the following
extension file to automatically hook in these prompts. Follow the general steps out-
lined below to link in your query screens:

1. Create aquery screenin the Fitrix Screen Painter.
Run the Fitrix Screen Code Generator.

Create animage (r eport . i f g) filefor your report.

2

3

4. Run the Report Code Generator.

5. Create the extension file (shown below) and call it inthebase. set file.
6

Runf g. make to build the report program.

Before following any of these steps, you should reference " Customizing Reports”
on page 5-1. In that section you will find information that describes merging cus-
tom code into generated code, using the Featurizer, and making your programs
regenerable.

Report Prompt Extension File

Add the following lines of code to an extension file. Notice that you must supply
the name of your prompt screen in three locations within this extension file. The
italicized word screen name denotes where you should enter the name of your
prompt screen less the .per extension.

libraries
$(fg)/liblscr.a;

g
function define mi _filter

msmnal lint,

n smallint;

Adding in Report Prompts 7-13

Fitrix Report Code Generator Technical Reference

replace block m _filter sel_filter

call socket Manager (" screen name", "query", "default")
let sel _filter = null -
let n = fgStack_pop()
if n=0
then
let int_flag = true
set default filter if user continues
let sel _filter = "1=1"

el se
for m=1ton
let sel _filter = sel _filter clipped, fgStack_pop()
end for
end if;

after block main after_init
let scr_id = "defaul t"

at _eof

function sw tchbox(funct)

This is the sw tchbox function for version 4.11. UC1 screens.
1t is used to pass flow control to the appropriate screen functions.

#
#_define_var - define |ocal variables
define
#_local _var - local variables
funct char (20) # Function to pass on to the screen
#_post _scr_funct - Post the current function
let scr_funct = funct
#_switchbox - Pass flow control to appropriate screen
case
put your screen in here
when scr_id = "screen name" call S_screen name()
when scr_id = "defaul t" call lib_screen() —
#_otherw se - otherwi se clause
otherwi se | et scratch = "no screen"
end case

#_scr_funct - Reset scr_funct upon return
let scr_funct =""

end function
swi t chbox()

7-14 New Features and Functionality

Report Examples

Sometimes the best way to learn is by example. This chapter illustrates an image
file and other 4GL source code files that can help you develop your own report pro-
grams. Study these examples and try them yourself.

This section contains examples of the following files:
n Report Image File
n Source Code .4gl Files
n Report Output

8-1

Fitrix Report Code Generator Technical Reference

Report.ifg
dat abase standard
out put
top margin 0
bot t om mar gi n 0
left margin 0
right margin 80
page | ength 66
page header
<Al] +A2] Page: >A3]
on every row
{
CQust No [A4]
[*
Last Nanme [A5]
[*
Conpany Nare [A6]
[*
O der No [A7]
[*
O der Date [A8]
[*
Pay Date [A9]

Address Line #1 [Bl]

}
attributes
Al = date using "mdd/yy", name=HD date
A2 = constant "CQustomer Activity ", nane=HD title
A3 = pageno using "Page: <<<<<", name=HD page
A4 = custoner.customer _num nane=cust oner. cust oner _num
A5 = custoner.| nane, name=custoner.| nane
A6 = custoner.conpany, nane=custoner.conpany
A7 = orders. order_num nane=orders. order_num
A8 = orders. order_date, name=orders. order_date
A9 = orders. pai d_date, nane=orders. paid_date
Bl = custorer. addressl, name=custorer. addressl
sel ect
tabl es = custoner, orders
join = orders.custonmer_num = custoner.custoner_num
defaul ts
progname = query
prcname = Custoner Activity
destin = report. out

thls custoner orders itens stock manufact state

data group Deno Data Set
lang = ENG

8-2 Report Examples

Fitrix Report Code Generator Technical Reference

Globals.4gl

dat abase standard

gl obal s
define
#_define
#_define_0
#_end
#_using - Dynamc 'using’ variables
usg record
today char(16), # Default: "nm dd/yy"
pageno char(22) # Default: "Page: <<<<<"
end record,

rpt_rec - report record
rpt record # record for the report
cust oner _num | i ke cust omer. cust omer _num
| nane |ike custoner. | nane,
conpany |ike custoner.conpany,
order _num | i ke orders. order_num
order_date |ike orders. order_date,
pai d_date |ike orders. pai d_date,
addressl |ike custoner.addressl
end record,

_curs_rec - cursor current record
curs record # record |ike the cursor
cust oner _num | i ke cust omer. cust omer _num
| nane |ike custoner. | name,
conpany |ike custoner.conpany,
order _num | i ke orders. order_num
order_date |like orders. order_date,
pai d_date |ike orders. pai d_date,
addressl |ike custoner.addressl
end record,

#_curs_next_rec - cursor next record
curs_next record # next row of cursor
cust oner _num | i ke cust omer. cust omer _num
| nane |ike custoner. | name,
conpany |ike custoner. conpany,
order _num | i ke orders. order_num
order_date like orders. order_date,
pai d_date |ike orders. pai d_date,
addressl |ike custoner.addressl
end record,

#_ct_rec - control record

ct record # control record (don’t change)
pr cname char (35), # process nane (nessage on upper |eft)
rtmargn char(35), # message on upper right margin
prc_only char (1), # process only? (no report) "y" or "n"
al | ow_ i nt char (1), # allowinterrupts? "y" or "n"
qui et smallint, # display every "quiet" rows
destin char (150), # "screen", "printer", "pipe", or "filename"
sel _join char (200), # join portion of selection stnt
sel _filter char (200), # filter portion of selection stnt
sel _order char (200), # order by clause for above
sel _stmt char (1024), # sel ect staterment for report cursor
num r ows i nt eger, # nunber of rows in the cursor to process
cur_row i nt eger # current row being processed

end record,

#_communi cation - conmmuni cation area

#, Li br”ary commm céti 'on' ar'eav 4.' 10 UCl

8-3

Fitrix Report Code Generator Technical Reference

Qobal variables in this section should not be changed.
They are used to communicate to the screen |ibrary functions,
and nust be of the sane type as defined in the library.
Don't renove these comments. The codegenerator keys on them

#

progi d char (17),
scr_id char(7),
menu_i tem char (10),
scr_funct char (20),

sql _filter char (512),
sql _order char (100),
i nput _num smal |int,

p_cur smal lint,
s_cur smal lint,
scr_fld char (40),
nxt_fld char (40),

prev_data char (80),
this_data char (80),
dat a_changed snal |'int,
hot key smal lint,
scratch char (2047)

HHEFHHHHHEFT RS S

Programidentification

Qurrent screen id

CQurrent menu itemrunning

Qurrent screen function being run
Filter portion of SQ statenent
Order portion of SQ statenent
CQurrent input section within screen
CQurrent input array el enent
CQurrent screen array el enent
CQurrent screen field

Programatic next screen field
Data before field entry

Data after field entry

Has the field data changed?

The hot key that has been pressed
Scrat chpad for scribbling on and
communi cating between functions

End library conmmunication area

end gl obal s

8-4

Report Examples

Fitrix Report Code Generator Technical Reference

Lowlevel.4gl
gl obal s "gl obal s. 4gl "

local _static - Local (static) variable definition

function before group(group key) TR

#

#_define_var - Define local variables
define
#_local _var - Local variables
group_key char(20) # group identification

err - Trap fatal errors
whenever error call error_handl er

first_row - Check for first row

if group_key = "first_row

then
call _first_row- Call function for processing
call b_g_first_row()

end if

end function
before_group()

function b g first.

#_define_var - Define local variables

#_err - Trap fatal errors
whenever error call error_handl er

b first_row - Before first row processing

end function
b_g_first_row()

function on_every_row()

This function prepares the report record fromthe

cursor record and other data.

#
#_define_var - Define local variables
#_before_every_row - Before on every row assi gnnents

#_custoner_num - On every row processing for custoner_num
| et rpt.custoner_num = curs. custoner_num

| name - On every row processing for |name
let rpt.lname = curs.| name

#_conpany - On every row processing for conpany
I et rpt.conpany = curs. conpany

order_num- On every row processing for order_num
l et rpt.order_num = curs. order_num

8-5

Fitrix Report Code Generator Technical Reference

#_order_date - On every row processing for order_date
let rpt.order_date = curs.order_date

#_paid_date - On every row processing for paid_date
let rpt.paid_date = curs. pai d_date

addressl - On every row processing for addressl
let rpt.addressl = curs. addressl

#_after_every_row - After on every row assignnents

end function
on_every_row()

funct ion Zlf't'é}'_gr on(gr oup_key)

#,

#_define_var - Define local variables
define
#_l ocal _var - Local variables
group_key char (20) # group identification

| ast_row - Check for last row

if group_key = "last_row'

then
call _last_row - Call function for processing
call a_g_last_row()

end if

end function
after_group()

function a_g_last_row()

#
#_define_var - Define local variables

err - Trap fatal errors
whenever error call error_handl er

a_last_row - After last row processing

end function
a_g_last_row()

8-6 Report Examples

Fitrix Report Code Generator Technical Reference

Main.4gl

gl obal s "gl obal s. 4gl "

|l ocal _static - Local (static) variable definition.

#_define_var - Define local variables

#_err - Trap fatal errors
whenever error call error_handl er

set_up - Basic set up
clear screen
defer interrupt

errlog - Start the error |og
call startlog("errlog")

programid - Set programid
let progid = "brianh. query"

#_open_wi ndow - Qpen w ndow
open window winl at 2,3 with 22 rows, 76 col utms
attribute (border, red)

#_put_scrlib - Calls to put_scrlib()
call put_scrlib("dbnane","")

before_init - Before initialization processing
call init()
#_after_init - After initialization processing

#_cl ear _wi ndow - O ear the w ndow
cl ear wi ndow wi nl

flow control - Call flow control
call flow control ()

#_exit_program- Exit program
exit program (0)

end nmain

'f”lj'r;'ctlon 0go($
#_logo - insert your |logo here.
This is the format of the conpany | ogo:
#
di spl ay "PROGRAM NAME' at 4,3 attribute(bl ue)
display "Copyright (c) 1992" at 7,3 attribute(bl ue)
display "Your Conpany Name" at 9,3 attribute(blue)

display "Seattle, Washington USA' at 11,3 attribute(bl ue)
di splay "Loading Program.." at 16,3 attribute(bl ue)
#_logo_sleep - insert the sleep for your |ogo here.

sleep 2

end function
1 ogo()

8-7

Fitrix Report Code Generator Technical Reference

Midlevel.4gl
gl obal s "gl obal s. 4gl "

#_local _static - Local (static) variable definition

define

_msc_static - Msc static variables

sel _join char(512), # join for selection stnt

sel _filter char (2048), # filter for selection stnt

sel _order char (512) # order for selection stnt
function m join() R -
#

#_define_var - Define local variables

#_err - Trap fatal errors
whenever error call error_handl er

#_sel _join - Set the join criteria
let sel _join =
"orders. cust oner _num = cust oner . cust oner _nunt

end function
m _join()

function m filter()

#
#_define_var - Define local variables

sel _filter - Set the filter criteria
let sel _filter =

" 1=T"

end function
#n_filter()

#
#_define_var - Define local variables

#_sel _order - Set the order criteria
let sel _order =""

end function
m _order ()

function m_getcount()

#
#_define_var - Define local variables
define
#_l ocal _var - Local variables
sel _stnt char (4096) # Sel ection statenent

#_getcount - Build select statenment for getcount

8-8 Report Examples

Fitrix Report Code Generator Technical Reference

let sel _stnt =
"sel ect count (*)
“from",
"custoner, orders ",
"where ",
"(", sel _join clipped, ") and ",
"(", sel _filter clipped, ")"

#_set_ct_sel _stm - Set the ct.sel_stnt variable for
di splay during error handling
let ct.sel_stnt = sel_stnt clipped

#_count _cursor - Prepare and execute the cursor

_prep_curs - Prepare the string for execution
prepare get_count from sel _stnt

declare_curs - Declare cursor fromthe string
decl are count_cursor cursor with hold for get_count

#_read_data - Read the data
open count _cursor

fetch - Fetch statenent
fetch count_cursor into ct.numrows

#_close - dose the cursor
cl ose count _cursor

end function
m _getcount ()

#_define_var - Define local variables

define
#_l ocal _var - Local vari ables
sel _stnt char (4096) # Sel ection statenent

#_define_cur - Build select statement for define_cur
let sel_stnt =
"select ",
"cust oner . cust oner _num ",
"cust oner. | nane, ",
"cust orrer . conpany, ",
"orders.order_num
"orders.order_date, ",
"orders.paid _date, "
"cust oner . addr ess1 "
"from"
"custorrer, orders ",
"where ",
", sel_10| n clipped, ")",

" and (", sel _filter clipped,

include_order - Include any valid order criteria
if sel_order is not null
then

let sel _stm = sel_stnt clipped,
" order by ", sel_order clipped
end if

#_set_ct_sel _stm - Set the ct.sel_stnt variable for
di splay during error handling
let ct.sel_stnt = sel_stnt clipped

Fitrix Report Code Generator Technical Reference

#_rpt_cursor - Prepare and execute the cursor

_prep_curs - Prepare the string for execution
prepare get_curs fromsel _stnt

#_declare_curs - Declare cursor fromthe string
decl are rpt_cursor cursor with hold for get_curs

read_data - Read the data
open rpt_cursor

end function
m _define_cur()

#_define_var - Define local variables

fetch - Fetch statenent
fetch rpt_cursor into curs_next.*

end function
m _fetch()

function m _curs_null ()

This function sets all of the elements in the curs
record to null.
#

#_define_var - Define local variables

#_curs_null - Initialize the curs record to null
initialize curs.* to null

end function
m _curs_null ()

function m _next_null ()

This function sets all of the elenents in the
curs_next record to null.
#

#_define_var - Define local variables

#_curs_null - Initialize the curs record to null
initialize curs_next.* to null

end function
m _next_nul | ()

function m _curs_prep()

This function transfers data fromthe curs_next
record to the curs record.
#

#_define_var - Define local variables

set_curs - Set curs record equal to curs_next
let curs.* = curs_next.*

8-10 Report Examples

Fitrix Report Code Generator Technical Reference

end function
m _curs_prep()

function m before break() TR

.# :

#_define_var - Define local variables
define
local _var - Local variables
bk_I evel snal i nt # break |evel setting
#_return - Return if no break is required
return
action_| abel - Performthe correct break |ogic

| abel bf_break_action:

end function
ml _bef ore_break()

function n _”af t'er”_breé'k(j

#
#_define_var - Define local variables
define
local _var - Local variables
bk_I evel snal | int # break |evel setting

#_return - Return if no break is required
return

action_| abel - Performthe correct break |ogic
| abel af _break_action:

end function
ml _after_break()

function m _out put ()

#
#_define_var - Define local variables

output - Send output to report
output to report reportl (rpt.*, usg.*)

end function
m _out put ()

function nm _defaults

#
#_define_var - Define local variables

#_def _prcname - Default "prcname" val ue
let ct.prcname = "Custoner Activity"

#_def _destin - Default "destin" val ue
let ct.destin = "report.out"

8-11

Fitrix Report Code Generator Technical Reference

end function
m _defaul ts()

function m ct sel conpat() R

#_define_var - Define local variables

set_sel _join - Pass any ct.sel _join value to | ocal variable
let sel _join = ct.sel_join clipped

set_sel _filter - Pass any ct.sel _filter value to |ocal variable
let sel _filter = ct.sel_filter clipped

#_set_sel _order - Pass any ct.sel _order value to local variable
let sel _order = ct.sel _order clipped

end function
m _ct _sel _conpat ()

8-12 Report Examples

Fitrix Report Code Generator Technical Reference

Report.4ql

gl obal s "gl obal s. 4gl "

're'por't ”rep')or'{ 1(rr')i , us”g)'

#
#_define_var - Define |ocal variables.
define
rpt_rec - Report record.
rpt record # Record for the report

cust oner_num | i ke cust omer. cust oner _num
| nane |ike custoner. | nane,
conpany |ike custoner.conpany,
order _num | i ke orders. order_num
order_date |ike orders. order_date,
pai d_date |ike orders. pai d_date,
addressl |ike customer. addressl

end record,

end - End report record

using - Dynamic 'using variables
usg record
today char(16), # Default: "nmdd/yy"
pageno char(22) # Default: "Page: <<<<<"
end record,
end - End usg record

header _i mage char (255), # Header |ine inmage

l'i ne_i mage char (255), # Non- header |ine inage
dynam ¢ smal lint, # Bool ean: Print this |line?
X smal | int # Wor ki ng nunber

#_end - End of section.
out put
#_output - Qutput section.

#_def _top - insert "top" code here
top margin 0

#_def _bottom- insert "bottont code here
bot t om nar gi n

_def _left - insert "left" code here
left margin

def _right - insert "right" code here
right margin 80

#_def _page - insert "page" code here
page | ength

#_end - End of section
f or mat
format - Format section

page header
page_header - Report block for page header.

#_err - Trap fatal errors.
whenever error call error_handl er

page_header _1 - Print statenent

cal | put_vararg(today using usg.today)

cal | put_vararg("Custoner Activity ")
call put_vararg(pageno using usg.pageno)

8-13

Fitrix Report Code Generator Technical Reference

8-14

| et header_i mage = i mageManager _get Li ne(1)
print header_i mage clipped

#_page_header _2 - Print statenent
| et header _i mage = i nageManager _get Li ne(2)
print header_i nage cli pped

end - End of report block

on every row
#_on_every_row - Report block for on every row.

need 8 |ines

on_every_row 1 - Print statenent
print
if

rpt.customer_numis not nul
then

_on_every_row 2 - Print statenent
call put_vararg(rpt.customer_num

I et I'ine_image = | mageManager _get Li ne(3)
print line_image clipped
end | f

if
rpt.lnane is not nul
then

on_every_row 3 - Print statenent
cal | put_vararg(rpt.|nane)

let Iine_image = | mageManager _get Li ne(4)
print line_image clipped
end | f

if
rpt.conpany is not nul
then

on_every_row 4 - Print statenent
call put_vararg(rpt.conpany)

I et I'ine_image = | mageManager _get Li ne(5)
print line_image clipped
end | f

if
rpt.order_numis not nul
then

on_every_row 5 - Print statenent
cal | put_vararg(rpt.order_num

let |ine_image = | mageManager _get Li ne(6)
print line_image clipped
end | f

if
rpt.order_date is not nul
then

_on_every_row 6 - Print statenent
call put_vararg(rpt.order_date)

I et I'ine_image = | mageManager _get Li ne(7)
print line_image clipped
end | f

if
rpt.paid_date is not nul
then

on_every_row 7 - Print statenent
cal | put_vararg(rpt.pai d_date)
l et Iine_image = | mageManager _get Li ne(8)

Report Examples

Fitrix Report Code Generator Technical Reference

print line_image clipped
end i f
if

rpt.addressl is not null
then

#_on_every_row 8 - Print statenent
call put_vararg(rpt.addressl)

let line_image = | mageManager _get Li ne(9)
print line_imge clipped
end i f

end - End of report bl ock.

end report
report1()

function | oad i mage()

;f# Ll'hi's ”furllctvi on I”oads ”thé r”ep'ort' i'rmg';e'i nt'o'{he i”rraéel\'/'lanégé;' baékééje.'
#

call imageManager _set R ght Mar gi n(80)
cal | i mage_nane("brianh/ query. 4gs")
call image_line(1, "< +

Page: >"
call image_line(2,

)

call image_line(3, "CQust No "
call image_line(4, "Last Nane [
call image_line(5 "Conpany Name [")
call image_line(6, "Oder No [")
call image_line(7, "Oder Date ")
call image_line(8, "Pay Date ")
call image_line(9, "Address Line #1 [")

using - Default the dynam c using variabl es
| et usg.today = "mmidd/yy"
| et usg. pageno = "Page: <<<<<"

end function
| oad_i mage()

Fitrix Report Code Generator Technical Reference

Report Output

Company Hame
Order Mo

Opder Date

Fay Date
Address Line #1

Cust Mo

Last Hame
Company Hame
Order Mo

Order Date

FPay Date
Address Line #1

Cust Mo

Last HMame
Company Hame
Order No

Order Date

Fay Date
Address Line #1

Cust Mo

Last Hams
Company Hame
Order Mo

Order Date

Fay Date
Address Line #1

Cust Mo

Last Hame
Company Hame
Order Mo

Order Date

Fay Date
Address Line #1

Cust Mo

Last Hame
Company Hame
Order Mo

Order Date

FPay Date
Address Line #1

Cust Mo

Last HMame
Company Hame
Order No

Order Date
Address Line #1

Cust Mo

Last Hams
Company Hame
Order Mo

Order Date

Fay Date
Address Line #1

0O0000000000000000000O00

ALl Sports Supplies
1002

QESOLALI2E
QFAOIALIBE
213 Erstwild Court

104

Higgins

Flay Ball!

1001

01A20/1986
034221986

Eazt Shopping Chtr,

104

Higgins

Flay Ball!

1003

10/12,1986
11/04,1986

East Shopping Chbr,

104

Higgins

Flay Eall!

1043

09/01/1986
10/10/1986

East Shopping Chtr,

104
Higzins
FPlay Ball!
1011
Q3/2371986

QESOLALIEE
East Shopping Chtr,

106
Watson
HWatson & Son

O5S01/1986
QFS18/1926
1143 Carwver Flace

106
Watson
Watson & Son

04/12,1986
1143 Carver Flace

116

Jdasger

AR Athletics
1o0g

11171986
12/21/1986
520 Topaz Way

09/1593 Customer Activity FagFagze:
Cust Mo 101
Last Hame Pauli

0000000000000000000O0O00O0

8-16 Report Examples

Fitrix Report Code Generator Technical Reference

00000000000000000O0O0O0O0O0

Addres=s Line #1 850 Lytton Court

09593 Customer Activity PagPaze: B O

Cust Mo i1o

Lazt Hame Jaeger O

Company Mame AA Athletics

Order Ho 1045 &)

Order Date 07A10/1986

Pay Date 08/31/1986

Address Line #1 520 Topaz MWay O

Cust Ho 111

Last Hame Keyes

Company Mame Sports Center O

Order Ho 1002

Order Date 02/14,/1986

Pay Date 04./24./1586 O

Addres=s Line #1 319% Sterling Court

Cust Ho 112 O

Lazt Hame Lawson

Company Hame Rurners & Others

Order Ho 00 O

Order Date 09/19,1986

Address Line #1 234 Wyandotbte kay)

Cust Ho 115

Laszt Hams Grant

Company Mame Gold Medal Sports (@)

Order Ho 1040

Order Date 05/29,1986

Pay Date 07/22/1986 O

Address Line #1 776 Gary Avehus

Cust Mo 116 O

Last Hame Parmeles

Company Mame Olympic City

Order Ho 1005 O

Order Date 12404/1986

Pay Date 12/30,/1986

Address Line #1 1104 Spinosa Drive O

Cust Ho 117

Lazt Hame Sipes O

Company Hame Kids Kaorher

Order Mo i0d2

Order Date DE/OD/ 1986 O

Addres=s Line #1 850 Lytton Court

Cust Ho 117

Lazt Hame Sipes =

Company Hame Kids Korrer

Order No 1007 O

Order Date 03/26/1986
O
O
O
O

Fitrix Report Code Generator Technical Reference

8-18 Report Examples

Fitrix Report Code Generator Technical Reference

Index

Symbols

+ 26

.ext File
description of 5-10
merging 5-10

.org Files 5-22

< 26

> 2-6

[26

[' 2-6

[* 2-6

] 26

{ 2-6

A

Absolute Numbering Scheme 7-10
after block 5-13
after group 2-11
Application
compiling 4-17
attributes Section 2-14

B

Backward Compatibility 7-2

base.set File 5-21

before block 5-13

before group 2-9

Block
definition of 5-3
grouping 5-16
identifying 5-16
removing 5-22

Block Command
logic of 5-12
manipulating code 5-7
overview of 5-7
stringsin 5-15

Block Command Statement 5-13

after block 5-13
before block 5-13
deleteblock 5-14
inblock 5-13
replace block 5-14
Block ID 5-3
custom conventions 5-19
Block Tag 5-3
absolute numbering scheme 7-10
inimagefile 7-8
in makefile 7-12
numbering scheme description of 7-9
print statement logic 7-5
relative numbering scheme 7-10

C

C Compiler 4-4
Code Generator
.org File 5-22
compiling source code 4-6
files created by 3-7
speeding compilation 4-10
starting 3-3
Column Formats 2-6
Command Line Selection Criteria 6-3
example of 6-6
Commit Work Statement 6-17
Compiling Source Code 4-3
Control Block
after group 2-11
before group 2-9
description of 2-6
on every row 2-10
on first row 2-8
onlast row 2-13
page header 2-7
pagetrailer 2-12
ct.sel_filter 7-2
ct.sel_join 7-2
ct.sel_order 7-2
ct.sel_stmt 7-2
cust_path 5-28
Custom Code
merging 5-10
Custom Libraries 4-14
Custom Runner 4-4

Index-1

Fitrix Report Code Generator Technical Reference

D

database Section 2-4

Database Transaction Posting 6-12

DBPATH 1-7
defaults Section 2-18
deleteblock 5-14
demo filesdiagram 1-7
Directory

custom 5-3

structure 1-7
Dynamic Footer Subroutine 6-8

Dynamic Heading Subroutine 6-8

E

Extension File
description of 5-10
merging 5-10

F

Feature Set
description of 5-4, 5-20
file 5-21

Featurizer
.org Files 5-22
environment variables 5-28
flowin 5-24
limitations of 5-29
overview of 5-3
running 5-4
troubleshooting 5-30

fg 5-28

fg.make 4-6
invoking 5-5

fg.report 3-3

fgldb 4-6

foglgo 4-4
syntax 4-23

fglibdir 1-6, 6-20

folpc 4-4

folpp 5-5

fgmakedir 1-6

fgtooldir 1-6

Filename Extensions 5-27

Index-2

Format Section 2-6
after group 2-11
before group 2-9
on every row 2-10
on first row 2-8
onlast row 2-13
page header 2-7
pagetrailer 2-12
function define Command 5-14

G

globals4gl 3-7
example of 8-3

Image File
attributes section 2-14
center column 2-6
column formats 2-6
creating 2-1
database section 2-4
defaults section 2-18
description of 2-3
dynamic dataline 2-6
dynamic header 2-6
end of column 2-6
example of 2-23, 8-2
format section 2-6
left justify 2-6
left justify toend 2-6
limitations 2-21
output section 2-5
page command 2-20
pause command 2-20
report output 2-25, 8-16
right justify 2-6
select section 2-16
separate command 2-20
special symbols 2-6
start column 2-6
syntax of 2-3

inblock 5-13

Incorrect Trailer Subroutine 6-9

Input Form 6-2

Fitrix Report Code Generator Technical Reference

exampleof 6-5
Installation 1-4

J

Job Scheduling 6-10

L

LIBFILES Macro
changing with block commands 4-14
description of 4-13
Libraries
compiling 4-17
loca_rpt 7-4
lowlevel.4gl 3-7
exampleof 8-5

main.4gl 3-7
example of 8-7
Makefile
block tagsin 7-12
long description of 4-12
macrosin 4-13
short description of 3-7
midlevel.4gl 3-7
exampleof 8-8
Moving Applications to Other Systems 6-20

N

New Feature 7-1

Adding Report Prompt 7-13

block tagsin Makefile 7-12

image file block tag 7-8

larger selection statement variables 7-2

post processor 7-4

print statement block tag logic 7-5
Numbering Scheme

rpttagnum 7-9

O

on every row 2-10
on first row 2-8
onlast row 2-13
output Section 2-5

P

page command 2-20
page header 2-7
Page Number on Group Subroutine 6-8
pagetrailer 2-12
pause Command 2-20
p-code 4-3
Pluggable Features
definition of 5-4
description of 5-20
Post Processor 7-4
Pre-Merged Files 5-22
Preparation 1-4
Print Statement
block tag logic 7-5
Prompt, Report 7-13
Pseudo-Code 4-3

Q

Query, Report 7-13

Query-By-Example Form
description of 6-2
example of 6-5

R

Rapid Development System 4-4
RDS 4-4
Regenerability 5-3
Releative Numbering Scheme 7-10
replace block 5-14
Report Code Generator

description of 1-1

featuresof 1-2

installing 1-4

preparing 1-4

Index-3

Fitrix Report Code Generator Technical Reference

Report Program sel_filter 7-2
creating advanced features 6-1 sel_join 7-2
customizing 5-1 sel_order 7-2
formatting 6-7 sel_stmt 7-2
job scheduling 6-10 select Section 2-16
production of 6-7 Selection Criteria
running 4-23 obtaining 6-2
using Featurizer 5-3 Selection Statement Variable 7-2
Report Prompt separate Command 2-20
adding 7-13 Single Vaue Prompt 6-2
designing 6-2 example of 6-4
Report Prompt Extension File 7-13 Source Code
report.4gl 3-7 blocksin 5-3
exampleof 8-13 compiling 4-3, 4-6
report.ifg files 3-7
attributes section 2-14 generating 3-1
center column 2-6 Special Symbols 2-6
column formats 2-6 start file Command 5-11, 5-13
creating 2-1
database section 2-4 T

defaults section 2-18
description of 2-3
dynamic dataline 2-6
dynamic header 2-6
end of column 2-6
example of 2-23, 8-2
format section 2-6

Text Centering Subroutine 6-7

Text Right Justification Subroutine 6-7
Transaction Logging Functions 6-14
Transferring Applications to Other Systems 6-20
transferring applications to other systems

left justify 2-6 applications

left justify to end 2-6 transferring 6-20

limitations 2-21

output section 2-5 V

page command 2-20

pause command 2-20 Variable

report output 2-25, 8-16 ct.sel_filter 7-2

right justify 2-6 ct.sel_join 7-2

select section 2-16 ct.sel_order 7-2

separate command 2-20 ctsel_stmt 7-2

specia symbols 2-6 cust_path 5-28

start column 2-6 DBPATH 1-7

syntax of 2-3 fg 5-28
rpt_select 7-2 fglibdir 1-6
rpttagnum 7-9 fgmakedir 1-6
rpttagtype 7-7 fgtooldir 1-6

local_rpt 7-4
S rpt_select 7-2
rpttagnum 7-9

Screen Code Generator 7-13 rptiagtype 7-7

Index-4

Fitrix Report Code Generator Technical Reference

sel_filter 7-2
sel_join 7-2
sel_order 7-2
sel_stmt 7-2

Index-5

	Title
	Introduction
	Table Of Contents
	Preface
	1 Introduction
	2 Creating an Image File
	3 Generating Source Code
	4 Compiling and Running
	5 Customizing Reports
	6 Creating Advanced Report Features
	7 New Feature and Functionality
	8 Report Examples
	Index

