
.

FitrixTM

Report Code
Generator
Technical Reference
Version 4.11

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS252.227-7013. Fourth
Generation Software Solutions, 2814 Spring Rd., Suite 300, Atlanta, GA 30039.

Copyright

Copyright (c) 1988-2002 Fourth Generation Software Solutions Corporation. All rights reserved. No part of this
publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any
language in any form by any means without the written permission of Fourth Generation Software Solutions.

Software License Notice

Your license agreement with Fourth Generation Software Solutions, which is included with the product, specifies
the permitted and prohibited uses of the product. Any unauthorized duplication or use of Fitrix, in whole or in
part, in print, or in any other storage and retrieval system is forbidden.

Licenses and Trademarks

Fitrix is a registered trademark of Fourth Generation Software Solutions Corporation.
Informix is a registered trademark of Informix Software, Inc.

UNIX is a registered trademark of AT&T.

FITRIX MANUALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, FURTHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE ENTIRE RISK AS TO THE QUAL-
ITY AND PERFORMANCE OF THE FITRIX MANUALS IS WITH YOU. SHOULD THE FITRIX MANU-
ALS PROVE DEFECTIVE, YOU (AND NOT FOURTH GENERATION SOFTWARE OR ANY
AUTHORIZED REPRESENTATIVE OF FOURTH GENERATION SOFTWARE) ASSUME THE ENTIRE
COST OF ALL NECESSARY SERVICING, REPAIR, OR CORRECTION IN NO EVENT WILL FOURTH
GENERATION BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING ANY LOST PROFITS, LOST
SAVINGS, OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE
OF OR INABILITY TO USE SUCH FITRIX MANUALS, EVEN IF FOURTH GENERATION OR AN
AUTHORIZED REPRESENTATIVE OF FOURTH GENERATION HAS BEEN ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. IN ADDITION,
FOURTH GENERATION SHALL NOT BE LIABLE FOR ANY CLAIM ARISING OUT OF THE USE OF
OR INABILITY TO USE SUCH FOURTH GENERATION SOFTWARE OR MANUALS BASED UPON
STRICT LIABILITY OR FOURTH GENERATION'S NEGLIGENCE. SOME STATES DO NOT ALLOW
THE EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION MAY NOT APPLY TO
YOU. THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS AND YOU MAY ALSO HAVE
OTHER RIGHTS, WHICH VARY FROM STATE TO STATE.

Fourth Generation Software Solutions Corporate: (770) 432-7623
2814 Spring Road, Suite 300 Fax: (770) 432-3448
Atlanta, GA 30339 E-mail: info@fitrix.com

Copyright

Copyright (c) 1988-2002 - Fourth Generation Software Solutions Corporation - All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system or translated.

Fitrix Report Code Generator Technical Reference

Welcome to the Fitrix Report Code Generator Technical Reference.
This manual is designed to be a focused step-by-step guide. We hope
that you find all of this information clear and useful.
All of the screen images in this document are show with the products
using the character user interface. While the Fitrix Rapid Application
Development (RAD) Tools operate in character mode only, the soft-
ware applications created by the RAD tools offer the option of being
viewed in a graphic based Windows (or X11) mode as well as the char-
acter mode shown. Examples of graphic based product viewing modes
are shown below in Example 1 and Example 2.

Example 1: Menu Graphical Windows Mode

Fitrix Report Code Generator Technical Reference

Here is another example:

Example 2: Data Entry Graphical Windows Mode

Displaying our products in graphic mode, as shown in Example 1 and
Example 2, is customary for many Fitrix product users. However, your
viewing mode is a user preference. Changing from character based to
graphical based is a product specific procedure, so if you wish to view
some applications in character mode, and some in graphical mode, that
can be done as well.
If you have any questions about how to view your products in graphical
mode, please consult your Installation Instructions or contact the Fitrix
helpdesk at 1(800)374-6157. You can also contact us by email:
support@fitrix.com. Please be prepared to offer your name, your com-
pany, telephone number, the product you are using, and your exact
question.
We hope you enjoy using our products and look forward to serving you
in the future.

Thank You,
Fourth Generation

Fitrix Report Code Generator Technical Reference

i

Table of Contents

Documentation Conventions ... v

Chapter 1: Introduction
Code Generator Features .. 1-2

Technical Reference Overview ... 1-3

Installation and Preparation .. 1-4

INFORMIX-4GL installations .. 1-4

Report Code Generator Installations ... 1-4

Directory Structure ... 1-5

Overview of the Directory Structure ... 1-5

Optional Directory Variables ... 1-6

Report Directory Structure .. 1-7

Chapter 2: Creating an Image File
Image File Description .. 2-3

Database ... 2-4

Output .. 2-5

Format Section ... 2-6

Page Header ... 2-7

On First Row ... 2-8

Before Group ... 2-9

On Every Row ... 2-10

After Group .. 2-11

Page Trailer .. 2-12

On Last Row .. 2-13

Attributes ... 2-14

Select ... 2-16

Defaults .. 2-18

Additional Commands .. 2-20

Fitrix Report Code Generator Technical Reference

ii

Image File Limitations .. 2-21

Example Files .. 2-22

Sample Image File ... 2-23

Sample Report Output ... 2-25

Chapter 3: Generating Source Code
Starting the Code Generator .. 3-3

Handling Duplicate Files .. 3-5

Reviewing the Source Code Files ... 3-7

Chapter 4: Compiling and Running
Compiling Generated Code ... 4-3

Differences Between RDS and C Compiles .. 4-4

Using fg.make to Compile Your Program ... 4-6

Speeding Application Compiling ... 4-10

The Makefile .. 4-12

Compiling Libraries ... 4-17

Compiling Your Entire Application .. 4-20

Compiling a Module .. 4-21

Application and Module Compilation with $cust_path 4-21

Running Report Programs ... 4-23

Invoking Compiled Programs .. 4-23

Chapter 5: Customizing Reports
Featurizer Overview .. 5-3

Running the Featurizer ... 5-4

Block Commands Overview ... 5-7

Using Block Commands to Manipulate Code ... 5-7

Extension (.ext) Files ... 5-10

Specifying Which .ext Files to Merge ... 5-10

Specifying Source Code Files .. 5-11

Block Command Logic .. 5-12

Fitrix Report Code Generator Technical Reference

iii

Block Command Statements ... 5-13

Block Identification & Grouping ... 5-16

Custom Block ID (Tags) Conventions .. 5-19

Pluggable Features and Feature Sets .. 5-20

Pluggable Features (.ext Files) .. 5-20

Feature Set (base.set) Files .. 5-21

Pre-merged Generated Files (.org Files) ... 5-22

The Code Generator and .org Files .. 5-22

The Featurizer and .org Files ... 5-22

Flow of the Featurizer ... 5-24

Filename Extensions ... 5-27

Featurizer Environment Variables .. 5-28

Featurizer Limitations ... 5-29

Troubleshooting Tips .. 5-30

Chapter 6: Creating Advanced Report Features
Designing Report Prompts .. 6-2

Obtaining Selection Criteria .. 6-2

Sample Programs ... 6-3

Report Production and Formatting .. 6-7

Incorrect Trailer Information Subroutine .. 6-9

Modifying Report Functions for Job Scheduling ... 6-10

Using Database Transactions for Posting ... 6-12

Creating Transaction Logging Functions ... 6-14

Issuing a Commit Work Without Closing the Cursor 6-17

Moving Applications to Other Systems .. 6-20

Chapter 7: New Features and Functionality
Larger Selection Statement Variables ... 7-2

Backward Compatibility .. 7-2

The ml_ct_sel_compat() Function .. 7-3

Post Processor Flexibility ... 7-4

Fitrix Report Code Generator Technical Reference

iv

Print Statement Block Tag Logic .. 7-5

Backward Compatibility .. 7-7

Custom Image File Block Tags ... 7-8

Numbering Scheme Variable ... 7-9

Block Tags in Makefile ... 7-12

Adding in Report Prompts .. 7-13

Report Prompt Extension File .. 7-13

Chapter 8: Report Examples

Fitrix Report Code Generator Technical Reference

Documentation Conventions v

Documentation Conventions
Some information is difficult to convey in text, such as a series of keystrokes or a
value you supply. This Technical Reference uses several conventions to convey
information that has special meaning. These conventions use different fonts, for-
mats, and symbols to help you discern commands, program code, filenames, and
keystrokes from other text.

Text Format Meaning Example

Courier Bold Represents command syntax
in addition to variable and
file definitions.

fg.writer

Courier Bold
Italic

Represents text you should
replace with the appropriate
value.

-r report-name

Courier Represents commands; code;
file, directory, table, and col-
umn names; and system
responses.

report.ifg
Makefile
standard
rtmargin

Small Courier Represents program code or
text in a file.

output
 top margin 3
 bottom margin 3
 left margin 3
 right margin 77
 page length 66

Symbol Meaning Example

[] Represents optional com-
mand flags or arguments.

fg.report [-f]

{ } Represents a mandatory
choice of options.

{one|two|three}

| Delimits choices. -y|-n

... Represents command argu-
ments that can be repeated.

filename...

Fitrix Report Code Generator Technical Reference

vi

When not part of an explicit instruction, single keyboard characters, field values,
and prompt responses are shown in uppercase. For example:

Choose Y or N.
Enter an A for ascending or D for descending.
Press Q to quit.

Named keys are shown in uppercase and enclosed in brackets, for instance:

[TAB]
[F1]
[ESC]
[ENTER]

When a series of keys should be entered at the same time, they are shown with a
hyphen connecting them. For example:

To close the menu, press [CTRL]-[d].

Some keys differ from keyboard to keyboard. This manual mentions the [ENTER]
and [DEL] keys, but both may be missing from your keyboard. Hardware manufac-
turers give different names to keys that perform the same function.

Although many similar versions of UNIX and XENIX can run INFORMIX-4GL
and the Fitrix Report Code Generator, this manual refers to all of them with the sin-
gle term of UNIX.

Keys Common Variations

[ENTER] RETURN, RTRN, ↵
[ESC] STORE

[DEL] BREAK, CTRL C, CTRL BREAK

1-1

1
Introduction

Fitrix Report Code Generator uses the latest in Computer-Assisted Software Engi-
neering (CASE) to produce complete 4GL code for structured, diagrammed report
generation. Generated code is completely commented for you and Maintainable-
By-Design (MBD).

This section covers the following topics:

n Code Generator Features

n Technical Reference Overview

n Installation and Preparation

n Directory Structure

Fitrix Report Code Generator Technical Reference

1-2 Introduction

Code Generator Features
Because of CASE technology, the Fitrix Report Code Generator can produce com-
plete 4GL code for robust report programs. The Fitrix Report Code Generator:

• Creates hundreds of lines of INFORMIX-4GL code, which saves days of devel-
opment time.

• Uses UNIX’s make utility to manage code changes and minimize recompile
time.

• Combines the power of the INFORMIX-4GL language with the ease-of-use of
a sophisticated application generator.

• Adds first page headers, regular page headers, page trailers, and page breaks.

• Positions text flush left, flush right, or centered, and it truncates fields.

• Creates dynamic report elements including headers, lines, and footers.

• Allows ad hoc elements to be added at time of printing, including where selec-
tion and order by clauses.

• Supports runtime redirection of report output to screen, printer, file, or another
program.

• Generates complete INFORMIX-4GL code, allowing you the absolute flexibil-
ity of changing or modifying anything you desire.

• Produces commented code to speed the addition of custom modifications for
each report application.

• Reads report image files created with the Fitrix Report Writer.

• Structures and organizes code so that 90 percent of the basic routines never
need to be touched or seen by the application developer.

In addition, you control all rights to Fitrix generated code. No special runtimes
(other than INFORMIX-4GL runtime) are needed to move a compiled application
to a different machine.

Fitrix Report Code Generator Technical Reference

Technical Reference Overview 1-3

Technical Reference Overview
This reference manual contains eight sections. The following list shows the title
and description of each section:

1. Introduction: Introduces the Fitrix Report Code Generator and describes
product features and installation.

2. Creating an Image (report.ifg) File: Covers the first step in developing a
complete report program. This section describes the report.ifg image file,
illustrates an example report.ifg file, and explains report.ifg file
components.

3. Generating Source Code: Covers the second step in developing a complete
report program. This section shows how to create source code with the Report
Code Generator.

4. Compiling and Running: Describes the third step in developing a complete
report program. This section explains how to compile and run your report pro-
grams.

5. Customizing Reports: Describes the fourth step in developing a complete
report program. This section shows how to create and merge modifications and
customizations into report programs. It also illustrates how the Featurizer
merges customizations into report source code.

6. Creating Advanced Report Features: Shows how to build and implement
report prompts, scheduling programs, and other reporting events.

7. New Features: Describes new Report Code Generator features including
larger selection variable sizes, new Makefile and image file block tags, and
enhanced post processor flexibility.

8. Examples: Illustrates report.ifg and source code files. Also shows sam-
ple report output.

Fitrix Report Code Generator Technical Reference

1-4 Introduction

Installation and Preparation
In order to run Fitrix Report Code Generator, make sure your system contains the
following items:

• UNIX/XENIX operating system

• INFORMIX-4GL version 4.10 or later

• C language compiler

• The standard UNIX make utility

• Fitrix Report Code Generator program

INFORMIX-4GL installations

Follow installation instructions included with the program diskettes. These instruc-
tions include steps for installing the C compiler/Development System and the
make utility.

Report Code Generator Installations

Follow installation instructions included with the Fitrix Report Code Generator dis-
kettes.

Fitrix Report Code Generator Technical Reference

Directory Structure 1-5

Directory Structure
When you install the Fitrix Report Code Generator, a basic directory structure is
created. This section introduces you to that structure. In addition, this section cov-
ers the preferred directory structure for developing report programs. In the follow-
ing diagrams, an ellipse indicates a directory or system variable and a rectangle
indicates a file or group of files.

Overview of the Directory Structure

The following diagram represents basic directory structure of the Fitrix Report
Code Generator:

These directories form the basis of Fitrix Report:

$fg: This required variable points to the base directory for all Fitrix CASE Tools
and applications. The $fg variable is typically set to
/usr/fourgen.

Make: This directory contains all the files necessary to compile and link generated,
4GL code.

$fg

Make bin codegen data

tmpinstall lib release

Fitrix Report Code Generator Technical Reference

1-6 Introduction

bin: This directory contains executable program files, such as fg.report.

codegen: This directory contains several code directories including
report.4gm and screen.4gm. These directories contain 4GL code for the
Report products and the Featurizer (fglpp).

data: This directory contains database directories. Database directories are
required if you are using the INFORMIX-SE engine.

install: This directory contains installation files, such as def and files files.

lib: This directory contains library directories and files along with unload files and
the library dbmerge.

release: This directory contains Fitrix Report Code Generator and CASE Tools
release notes.

tmp: This directory contains the installation log (.log) files.

Optional Directory Variables

In addition to the required $fg variable, you can set a few other optional variables.
These variables let you maintain your applications and the Tools themselves in sep-
arate base directories (other than $fg). These variables also give you the ability to
install and use the new Tools on a system and set of applications without overwrit-
ing the old Tools.

$fgmakedir If set, the fg.make script looks for make files in this directory
rather than $fg (even though the local Makefile contains
$fg).

$fglibdir If set, the fg.make script looks for upper-level libraries in this
directory rather than $fg.

$fgtooldir If set, Tools executables, such as 4GL programs executed by calls
to the Report Code Generator, are searched for in this directory
rather than $fg.

Fitrix Report Code Generator Technical Reference

Directory Structure 1-7

Report Directory Structure

Fitrix Report Code Generator works best when each report program is kept in its
own directory. Although it is possible to work with multiple reports in a directory,
through clever file manipulation, placing one report in a single directory is pre-
ferred.

A good structure for organizing applications has a main directory that contains dis-
tinct application directories. Each application directory holds individual program
directories, such as a report program directory. You should give the program direc-
tories names that reflect their content. By convention, program directories are given
a .4gs extension (4GL Source). For example, a program directory that contains a
report on monthly sales might be named m_sales.4gs.

In addition to application directories, the main directory can also hold a database
directory. Within the database directory, table data and indices can reside. You can
use the INFORMIX-4GL $DBPATH variable to set the path of your main directory.

As an example, consider an order-entry application built from the
standard database. (The standard database comes with INFORMIX-4GL.)
This simple application might contain only two programs: an order-entry program
that logs customer orders, and a report program that lists orders made by each cus-
tomer. The application directory could be named orderent and reside in the
same directory as the standard database. The program directories might be
named entry.4gs and list.4gs, respectively. Both program directories

Wrong Right

o_rpt.4gs

report.ifg

report.ifg

report.ifg report.ifg

o_rpt.4gs

Fitrix Report Code Generator Technical Reference

1-8 Introduction

would reside in the orderent application directory. Within the list.4gs
directory could be the report.ifg file that is used to generate source code for
the report program.

The ordform.per and browse.per files in the order.4gs directory are
used by Fitrix Screen to generate the order-entry program.

report.ifg

Main

Application

Programs

Image

& Database

Files browse.per ordform.per

entry.4gs list.4gs

$DBPATH

standard orderent

2-1

2
Creating an Image
File

The first step in building a report program involves creating an image file. An
image file, or report.ifg file, contains shorthand commands and picture lay-
outs of a report. The Fitrix Report Code Generator interprets these commands and
layouts and produces thousands of lines of commented source code.

This section covers the following topics:

n Image File Description

n Additional Commands

n Image File Limitations

n Example Files

Fitrix Report Code Generator Technical Reference

2-2 Creating an Image File

The First Step to Developing a Complete Report Program

Step 1

Step 2

Step 3

Create an Image File

Generate Source Code

Compile and Run

Step 4

Customize

Fitrix Report Code Generator Technical Reference

Image File Description 2-3

Image File Description
Every image file contains several sections. These sections specify what database
the report uses, where the report prints to, the columns selected by the report, and
many other report characteristics. Each section must follow a general syntax so the
Report Code Generator can interpret the information in the section and produce
source code.

Sections begin with a keyword followed by a statement or control block. In general,
all image files, which are always given the name report.ifg, use the following
syntax:

database section
[output section]

format section
[page header control block]
[on first row control block]
[before group control block]
[on every row control block]
[after group control block]
[page trailer control block]
[last row control block]

attributes section
select section
[default section]

The format section differs from the other sections. In the format section, you visu-
ally arrange your report elements. You design page headers and footers, assign col-
umn labels, and set field widths. The format section is made up of control blocks.
These blocks give your report structure.

The following pages outline all the image file sections in more detail.

Fitrix Report Code Generator Technical Reference

2-4 Creating an Image File

Database

The database section specifies the database to use for the report. This section is
placed at the top of the image file.

database database-name

• You can only specify one database per report.

• If you specify a database that does not exist, the Report Code Generator pro-
duces source code, but an error occurs during compilation of the executable
code.

• The following example specifies the standard database.

database standard

• You can specify a different database when you run the report. For more infor-
mation on specifying different databases at runtime, refer to "Starting the Code
Generator" on page 3-3.

database a required keyword.

database-name the name of the database you want to use in the
report.

Fitrix Report Code Generator Technical Reference

Image File Description 2-5

Output

The output section specifies the page length and margins of the report. If you
don’t specify page length and margins in the output section, the Report Code
Generator uses default settings.

output
[top margin integer]
[bottom margin integer]
[left margin integer]
[right margin integer]
[page length integer]

output a required keyword.

top margin keywords that specify the number of lines in the
top margin of the report. (Default setting is three
lines.)

integer an integer value that specifies the number of
blank lines or columns in a margin or page
length setting.

bottom margin keywords that specify the number of lines in the
bottom margin of the report. (Default setting is
three lines.)

left margin keywords that specify the number of columns in
the left margin of the report. (Default setting is
five columns.)

right margin keywords that specify the number of columns
between the left edge of the page and the start of
the right margin. Report widths cannot exceed
255 columns. (Default setting is 132 columns.)

page length keywords that specify the number of lines in one
page of the report. (Default setting is 66 lines.)

Fitrix Report Code Generator Technical Reference

2-6 Creating an Image File

Format Section

In the format section of an image file, you layout the graphical elements of your
report. The format section consists of control blocks. Each control block handles a
different portion of the report output. For example, the page header control
block handles the information you want to display along the top of each page of
your report. In all, there are eight control blocks. All eight control blocks are
optional.

control-block
{
layout
}

Within the layout portion of the control blocks, you use special symbols to repre-
sent database columns and column formats.

[Starts a column.

+ Centers column.

> Right justifies column to right margin.

< Left justifies column to one space from the preceding column.

{ Left justifies column to end of the preceding column.

] Ends a column (for character type columns).

[! Starts dynamic header/footer (doesn’t print if no rows in the
group are empty).

[* Starts dynamic data line (doesn’t print if all columns on the
line are null).

Fitrix Report Code Generator Technical Reference

Image File Description 2-7

Page Header

The page header control block specifies the report page header. This control
block typically contains report values such as date of printing, page number, and
report title. You can also add custom constant values and banners. The page header
prints immediately after the top margin.

page header
{
layout
}

page header required keywords.

{ a symbol that specifies start of control block.

layout one of the following items.

special-symbol a symbol that represents a database element or
field format.

field-tag a variable that is defined in the attributes
section.

graphical-element any keyboard character you want to appear on
your report.

} a symbol that specifies end of control block.

Fitrix Report Code Generator Technical Reference

2-8 Creating an Image File

On First Row

The on first row control block works exactly like the page header control
block, but it only prints on the first page of your report. For instance, an on
first row control block might contain the report title and date.

on first row
{
layout
}

on first row required keywords.

{ a symbol that specifies start of control block.

layout one of the following items.

special-symbol a symbol that represents a database element or
field format.

field-tag a variable that is defined in the attributes
section.

graphical-element any keyboard character you want to appear on
your report.

} a symbol that specifies end of control block.

Fitrix Report Code Generator Technical Reference

Image File Description 2-9

Before Group

The before group control block contains information you want to print prior to
the detail portion of your report. In addition, before group control blocks contain
the columns you want to group your data by.

before group of table.column
{
layout
}

• You can define up to eight before group control blocks.

before group of required keywords.

table.column the database column name the data are grouped
by.

{ a symbol that specifies start of control block.

layout one of the following items.

special-symbol a symbol that represents a database element or
field format.

field-tag a variable that is defined in the attributes
section.

graphical-element any keyboard character you want to appear on
your report.

} a symbol that specifies end of control block.

Fitrix Report Code Generator Technical Reference

2-10 Creating an Image File

On Every Row

The on every row control block contains the detail portion of your report. In
this control block, most of your data are printed. This control block also contains
column labels and other graphical aides that help you align and decipher your data.

on every row
{
layout
}

on every row required keywords.

{ a symbol that specifies start of control block.

layout one of the following items.

special-symbol a symbol that represents a database element or
field format.

field-tag a variable that is defined in the attributes section.

graphical-element any keyboard character you want to appear on
your report.

} a symbol that specifies end of control block.

Fitrix Report Code Generator Technical Reference

Image File Description 2-11

After Group

The after group control block contains information you want to print after the
detail portion of your report. In many cases, the after group control block con-
tains subtotal values and calculations.

after group of table.column
{
layout
}

• You can define up to eight after group control blocks.

• You can calculate subtotals on up to ten columns.

after group of required keywords.

table.column the database column name the data are grouped
by.

{ a symbol that specifies start of control block.

layout one of the following items.

special-symbol a symbol that represents a database element or
field format.

field-tag a variable that is defined in the attributes
section.

graphical-element any keyboard character you want to appear on
your report.

} a symbol that specifies end of control block.

Fitrix Report Code Generator Technical Reference

2-12 Creating an Image File

Page Trailer

The page trailer control block contains information you want to print on the
bottom of the page. This block is similar to the page header and on first
row control blocks. A typical page trailer contains report values such as time
of printing and page numbers.

page trailer
{
layout
}

page trailer required keywords.

{ a symbol that specifies start of control block.

layout one of the following items.

special-symbol a symbol that represents a database element or
field format.

field-tag a variable that is defined in the attributes
section.

graphical-element any keyboard character you want to appear on
your report.

} a symbol that specifies end of control block.

Fitrix Report Code Generator Technical Reference

Image File Description 2-13

On Last Row

The on last row control block contains information you want to print at the
end of your report. This control block is a good location for summary information
and grand total values.

on last row
{
layout
}

• You can calculate totals on up to ten columns.

on last row required keywords.

{ a symbol that specifies start of control block.

layout one of the following items.

special-symbol a symbol that represents a database element or
field format.

field-tag a variable that is defined in the attributes section.

graphical-element any keyboard character you want to appear on
your report.

} a symbol that specifies end of control block.

Fitrix Report Code Generator Technical Reference

2-14 Creating an Image File

Attributes

The attributes section defines the field tags in an image file. A field tag identi-
fies which columns, subtotal values, grand total values, math formulas, constant
values, runtime values, and hidden columns the report uses. In addition, the
attributes section controls how values and data are represented.

attributes
field-tag = assignment [,modifier]

[field-tag = ...]

attributes a required keyword.

field-tag one or more identifiers of a report value, column,
or formula.

assignment one of the following values.

table.column a column in the database.

formonly.column
type data-type

a form-only column using any valid data type.

[sum|avg|min|max]
(table.column)

an aggregate function that takes a database col-
umn as its argument.

[sum|avg|min|max]
(formonly.column)
type data-type

an aggregate function that takes a form-only col-
umn using any valid data type as its argument.

constant "string" a non-varying element or value.

date a runtime value that specifies date.

time a runtime value that specifies time.

count a runtime value that specifies item count.

pageno a runtime value that specifies page number.

lineno a runtime value that specifies line number.

Fitrix Report Code Generator Technical Reference

Image File Description 2-15

• Only one modifier may be used for each field tag definition.

• Constants cannot use any modifiers. The runtime values (date, time,
count, pageno, and lineno) can take the using modifier, but not the
upshift, downshift, or updown modifiers.

• Column names must be unique. A formonly column should not have the
same name as a database column used in the report. (If the Report Code Gener-
ator finds duplicate column names, it uses only the first one. Thus if your report
contains customer.name and order.name (and they are not join col-
umns), only customer.name is used.

• The updown modifier is not a standard Informix data type. Columns that use
this modifier print the first letter of a word in uppercase and the remaining let-
ters in lowercase, with the exception of letters following Mc. The following
shows some examples of the updown modifier:

Guido Molinari
Pete Obrien
Pete O’Brien
Odibbe McDowell
Ronald Macdonald

modifier one of the following modifiers.

using "string" a modifier that specifies a format for a money or
date expression.

upshift a modifier that converts character data to upper-
case.

downshift a modifier that converts character data to lower-
case.

updown a modifier that formats first character in upper-
case and following characters in lowercase.

Fitrix Report Code Generator Technical Reference

2-16 Creating an Image File

Select

The select section creates a cursor that selects and arranges the data in the
report. In the select section, you define which data get selected by specifying the
tables, joins, columns, and filter the report uses. You also decide how the selected
data are sorted and grouped. Every image file must contain a select section.

select
[more = table.column]
tables = table [, outer table...]

[join = table.column = table.column]
[filter = criteria]
order = table.column [, table.column...]

• If the report uses multiple more statements, each more must be on a separate
line. For example:

select a required keyword.

more an optional keyword that defines columns not
included on the report but needed in the select
statement.

table.column a column in the database.

tables a keyword that defines the tables used by the
report.

table a database table.

outer table a database table that is linked by an outer join.

join a keyword that defines criteria for selecting the
rows from the named table.

filter a keyword that defines the selection criteria for
the report.

criteria an Informix selection criteria expression.

order a keyword that specifies the columns to sort by.

Fitrix Report Code Generator Technical Reference

Image File Description 2-17

more = stxckrgd.doc_no
more = stxckrgd.reconciled
more = stxchrtr.incr_with_crdt

• To name tables that have an outer join to your report’s main table, use the SQL
modifier outer. For example:

tables = stxckrgd, outer stxhrtr

Fitrix Report Code Generator Technical Reference

2-18 Creating an Image File

Defaults

The defaults section specifies miscellaneous report information, such as mes-
sages that appear while the report is running and the destination of the report out-
put.

defaults
[progname = program-name]
[prcname = string]
[rtmargin = string]
[destin = destination]
[quiet = integer]
[prc_only =]
[allow_int =]

defaults a required keyword.

progname a keyword that specifies the executable program
name for the report.

program-name a name for the executable report program.

prcname a keyword that specifies the character string that
is displayed in the upper left portion of the
screen while the report is running.

string a character string (i.e., word) that is displayed on
the screen.

rtmargin a keyword that specifies the character string that
is displayed in the upper right portion of the
screen while the report is running.

destin a keyword that specifies the output destination of
the report.

destination one of the following output destinations.

screen a keyword that displays output to the screen.

Fitrix Report Code Generator Technical Reference

Image File Description 2-19

printer the name of the printer that receives the report
output.

file the name of a file that receives the report output.

| program the name of a program that the report output is
piped to.

quiet a keyword that defines how many records the
Code Generator processes before updating the
count on the screen.

integer an integer value that specifies the number of
records between update intervals.

prc_only = the processing only statement that tells the Code
Generator not to print the report output. When
set to Y, the Report Code Generator processes
the report but does not print it. When set to N,
the Report Code Generator processes and prints
the report.

allow_int = the allow interrupt statement prevents interrupt
signals from halting the report process. When set
to Y, interrupt statements can halt the report pro-
cess. When set to N, report processes cannot be
interrupted.

Fitrix Report Code Generator Technical Reference

2-20 Creating an Image File

Additional Commands
You can use three other commands in an image file. These commands control pagi-
nation and report output.

page: The page command creates a page break in your report. You can place this
command before a before group or after an after group control block in
the format section. For example, to create a page break immediately following the
after group control block, place the page command following the right brace:

after group of customer.customer_num
{
Subtotals for [A9] -----------

[B1]
}
page

separate: The separate command splits output over two pages. By default,
three control blocks (before group, after group, and on last row)
always print on a new page if the current page does not contain enough space. The
separate command tells the Report Code Generator to split the output of these
control blocks across two pages. The separate command goes above the left brace
in the before group, after group, and on last row control blocks.

pause: The pause command creates a paging prompt for the report program.
This command only works for reports that print to the screen. After printing a page
of output, a paging prompt appears:

Press [ENTER] to continue:

When the you press [ENTER], the program prints a second page of output to the
screen.

Fitrix Report Code Generator Technical Reference

Image File Limitations 2-21

Image File Limitations
Because the Code Generator must interpret image files of varying size and content,
a few limitations exist. When creating an image file, regard the following restric-
tions:

• Image files cannot define reports wider than 255 characters.

• Image files cannot exceed 200 lines.

• Tabs are not allowed in image files.

• Image files cannot contain mathematical expressions. Create math logic in
extension (.ext) files and merge them into your source code. For more informa-
tion on extension files, refer to "Extension (.ext) Files" on page 5-10.

• Image files must contain a database, attributes, and select section.
The other sections are optional.

• Image files must always be named report.ifg.

Fitrix Report Code Generator Technical Reference

2-22 Creating an Image File

Example Files
The following pages show an image (report.ifg) file and sample report output.
Refer to these examples when you are creating your own image files. You can find
additional examples in "Report Examples" on page 8-1.

Fitrix Report Code Generator Technical Reference

Example Files 2-23

Sample Image File

database standard

output
top margin 3
bottom margin 3
left margin 5
right margin 75
page length 66

page header
{
<A1] +A2] Page: >A3]
==
}

on first row
{

[A4]
==
}

before group of customer.customer_num
page
{

Customer Number: [A5]
Company Name Phone Number Line Extension
-------------------- ------------------ --------------

}

on every row
{
[A6] [A7] [A8] [*

}

after group of customer.customer_num
{
Subtotals for [A9] --------------

[B1]
}

on last row
{

Grand Totals --------------
[B2]

}

page trailer
{
==

[B3]
}

attributes
A1 = today, name=HD_date
A2 = constant "Example Report", name=HD_title
A3 = pageno using "<<<<<", name=HD_page
A4 = constant "Example Report", name=FR_title
A5 = customer.customer_num using "<<<<<<<<<<<", name=BF1_customer.customer_num
A6 = customer.company, name=customer.company
A7 = customer.phone, name=customer.phone
A8 = items.total_price, name=items.total_price, subt=Y
A9 = customer.customer_num using "<<<<<<<<<<<", name=AF_1_customer.customer_num

Fitrix Report Code Generator Technical Reference

2-24 Creating an Image File

B1 = sum(items.total_price), name=SUBT_AF_1_items.total_price
B2 = sum(items.total_price), name=TOT_LR_items.total_price
B3 = constant "", name=TR_user

select
tables = customer, orders, items
join = items.order_num = orders.order_num and orders.customer_num = customer.

customer_num
order = customer.customer_num

defaults
progname = brianh
prcname = Example
destin = report.out

Fitrix Report Code Generator Technical Reference

Example Files 2-25

Sample Report Output

Fitrix Report Code Generator Technical Reference

2-26 Creating an Image File

3-1

3
Generating Source
Code
Once you create an image file, you are ready to run the Report Code Generator. The
Code Generator creates the source code for your report program. To run the Code
Generator, you use the fg.report command. The Report Code Generator then
takes your image file and creates five source code files and a Makefile.

This chapter covers the following topics:

n Starting the Code Generator

n Handling Duplicate Files

n Reviewing the Source Code Files

Fitrix Report Code Generator Technical Reference

3-2 Generating Source Code

The Second Step to Developing a Complete Report Program

Step 1

Step 2

Step 3

Create an Image File

Generate Source Code

Compile and Run

Step 4

Customize

Fitrix Report Code Generator Technical Reference

Starting the Code Generator 3-3

Starting the Code Generator
You use the fg.report command to initiate the Report Code Generator. The
Code Generator takes your report.ifg file and creates five source code files
and a Makefile. From these files, you can compile an executable report program.

fg.report [-fg] [-dbname database] [-r "report"]
[-s "selection-set"] [-f] [-o n] [-yes|-y|yes|-no|-n|no]

fg.report Initiates the Report Code Generator.

-fg Links in the libraries needed by reports that run
with Fitrix Accounting modules. Use this
optional flag when generating reports for Fitrix
Accounting modules.

-dbname database Specifies a different database then the database
specified in the report.ifg file. If no data-
base is set in the report.ifg file and the -
dbname flag is not used, the Code Generator
defaults to the standard database.

-r "report" Starts the Image Maker and creates a
report.ifg file from a Fitrix Report Writer
report. From this report.ifg file, the Report
Code Generator creates source code for a report
program. You must place the report name inside
quotation marks.

-s "selection-set" Changes the selection set used by the Report
Writer report. You must place the selection set
name inside quotation marks. Use the -s flag in
conjunction with the -r flag.

-o n Changes level of screen output. Where n is a
value between 1 and 5. Use -o 1 to limit screen
output and -o 5 to show all screen output.

Fitrix Report Code Generator Technical Reference

3-4 Generating Source Code

• All the flags associated with fg.report are optional flags. However, some
of these flags give your reports tremendous flexibility. From a single
report.ifg file, you can create source code that uses different databases
and selection sets.

-f Suppresses screen output while the Code Gener-
ator creates source code. This flag speeds up the
code generation process. This flag is synony-
mous with -o 1.

-yes|-y|yes|-no|-n|no Answers Duplicate Files message (see "Handling
Duplicate Files" on page 3-5). The yes flag
specifies option 1 and the no flag specifies
option 3.

Fitrix Report Code Generator Technical Reference

Handling Duplicate Files 3-5

Handling Duplicate Files
Before the Code Generator places source code files or the Makefile into the cur-
rent directory, it checks the directory for existing report files. You should develop
report programs in their own directory; refer to "Report Directory Structure" on
page 1-7 for more information. Existing report files are usually the result of a report
you created previously. Sometimes these existing reports contain custom work that
you do not want destroyed. If source code files already exist, the Code Generator
provides a list of options. For example, if a Makefile already exists, the follow-
ing message and options appear:

There currently exists a file called: Makefile

Would you like me to:

1) Overwrite Makefile
2) Append the new Makefile to the existing Makefile
3) Move Makefile to Makefile.old
4) Write to Makefile.new
5) Don’t write Makefile at all, or
6) Exit program

(If you wish to create file.diff, type
a ’d’ after the selection. example: 2d)

Enter Selection:

A similar list of options appears for all existing source code files. Use the following
table to decide which option you want to choose.

Option Result

1 Specifies the overwrite option; the Code Generator replaces the
old version of the file with the new version.

2 Specifies the append option; the Code Generator appends the
new file to the end of the old file.

3 Specifies the move option; the Code Generator adds the .old
extension to the existing file and writes the new file.

4 Specifies the write option; the Code Generator leaves the exist-
ing file alone and writes the new file with a .new extension.

5 Specifies the don’t write option; the Code Generator skips the
creation of this file and proceeds to the next file.

Fitrix Report Code Generator Technical Reference

3-6 Generating Source Code

6 Specifies the exit option; the Code Generator exits the source
code generation process without writing any more files.

d Creates a file that shows the differences between the old file and
the new one. You can use the d option in conjunction with the
other options. For example, if you enter 4d the old version does
not change, the .new extension is added to the new file, and a
.diff file is created. The .diff file shows the differences
between the old and new files.

Option Result

Fitrix Report Code Generator Technical Reference

Reviewing the Source Code Files 3-7

Reviewing the Source Code Files
Once the Report Code Generator completes creating source code, six newly gener-
ated files appear in your current directory. Five of these files are source code files,
which are given a .4gl extension. The other is a file called the Makefile.

File Contents

globals.4gl contains global record definitions. These definitions
include report record, cursor current record, cursor next
record, and control record. In addition, this file contains a
library communications area. This area holds global vari-
ables that communicate with library functions.

lowlevel.4gl contains control block functions that handle data retrieval,
such as before group, on every row, and after
group.

main.4gl contains error handling and program initialization and ter-
mination logic. As well, this file contains the logo function.

midlevel.4gl contains data selection and filter logic in addition to cursor
preparation and page break functions. For example, you
can find the functions ml_join(), ml_filter(), and
ml_order in this file.

report.4gl contains page layout and format information. This file
specifies placement of column data and labels in addition to
header, footer, and margin locations.

Makefile references UNIX make utility in $fg/Make. In addition,
the OBJFILES line shows which object files are linked,
and the LIBFILES line shows library search precedence.
For more on the Makefile, refer to "The Makefile" on
page 4-12

Fitrix Report Code Generator Technical Reference

3-8 Generating Source Code

4-1

4
Compiling and
Running

After code generation, the next step to creating a report program involves compil-
ing the source code. Source code compilation creates a working report program.
This section outlines the compilation process and the method for initiating report
programs.

This section covers the following topics:

n Compiling generated code

n Using fg.make to compile

n Compiling and linking libraries

n Compiling your entire application

n Executing the final program

Fitrix Report Code Generator Technical Reference

4-2 Compiling and Running

The Third Step to Developing a Complete Report Program

Step 1

Step 2

Step 3

Create an Image File

Generate Source Code

Compile and Run

Step 4

Customize

Fitrix Report Code Generator Technical Reference

Compiling Generated Code 4-3

Compiling Generated Code
Compiling code means turning 4GL source code into a working program. Fitrix
Report Code Generator provides the facilities to do this for a single program or for
an entire set of programs.

The script for compiling your 4GL source code is fg.make. This script can com-
pile individual programs, all the programs in a module, or even an entire applica-
tion. If you are using the INFORMIX-4GL Rapid Development System,
fg.make compiles programs into pseudo-code (called p-code) object files. If you
are using the INFORMIX-4GL C Compiler Version, fg.make compiles programs
into C source code. Refer to "Differences Between RDS and C Compiles" on page
4-4 for more on the two compile versions.

If you have both Informix products (the Rapid Development System and the C
Compiler Version) on your system, fg.make assumes you want to use the Rapid
Development System. You can, however, override this behavior. Add the -F flag
to the fg.make script (e.g., fg.make -F). This flag forces fg.make to use the
C compiler.

Depending on your current directory, fg.make completes the following tasks:

• At the application directory, fg.make compiles each module listed in the
application Makefile.

• At the module directory, fg.make compiles each library and program listed in
the module Makefile.

• At the library directory, fg.make:

1. Converts form source (.per) files to form (.frm) files. Form source (.per)
files and form (.frm) files are used by the Fitrix Screen Code Generator. If
you have purchased Fitrix Screen products, you can learn more about these
files in the Fitrix Screen Technical Reference.

2. Converts source (.4gl) files to object (.4go or .o) files.

3. Loads object files into the archive (.a file or .RDS directory).

4. Removes the object files produced in step two.

• At the program directory, fg.make:

Fitrix Report Code Generator Technical Reference

4-4 Compiling and Running

1. Merges extension (.ext) files with original (.org) files to produce source
(.4gl) files. For more on extension files, refer to "Extension (.ext) Files" on
page 5-10.

2. Converts form source (.per) files to form (.frm) files;

3. Converts source (.4gl) files to object (.4go or .o) files;

4. Links object files with objects in a library archive file. These archive files
are listed in the program Makefile. This final step produces the program
(.4gi or .4ge) file.

Note

The fg.make script requires the standard UNIX make utility. This utility
determines which files are compiled. If your machine lacks this utility, you must
copy it from a machine that has it. The make utility is usually located in
/bin/make.

Differences Between RDS and C Compiles

You can compile INFORMIX-4GL source code into two different forms: a binary
executable (machine specific) form (.4ge), or a pseudo-code form (.4gi) that is
interpreted by a runner program (fglgo). The first form uses the C Compiler Ver-
sion and the second form uses the Rapid Development System. These forms are
known as C compile and RDS compile, respectively.

During C compile, 4GL source code (.4gl) files go through several transformations.
The first transformation uses fglpc, an Informix ESQL/C program, which con-
verts source code files into ESQL/C (.ec) files. These ESQL/C files are then trans-
formed into pure C code (.c) files. At this point, compilation is turned over to cc,
the UNIX C compiler on your system. It produces object (.o) files. Finally, the
UNIX C compiler runs ld, the UNIX linker, which links object (.o) files to each
other and to objects stored in a library archive file. This process produces a binary
(.4ge) file that you can run directly.

Fitrix Report Code Generator Technical Reference

Compiling Generated Code 4-5

The following figure illustrates the C compile process.

An RDS compile differs from a C compile. Initially, the fglpc program trans-
forms source code (.4gl) files into p-code object (.4go) files. These p-code object
files are then concatenated using the UNIX cat command. Next the link.rds
shell script is used. This script emulates ld, the UNIX linker. It searches library
archives specified in the program Makefile and locates p-code object (.4go) files
needed to complete the compile.

When link.rds is done, a p-code (.4gi) file exists. You can execute this p-code
file with fglgo, the Informix runner program.

The following figure illustrates the RDS compile process.

Note

RDS is a tremendous developer’s tool. It has a first class debugger (fgldb),
which can interpret p-code (.4gi) files. In addition RDS compiles are quick and
completely portable between machines. RDS also works well for your end users.
It is an excellent idea to have RDS and the debugger on your users’ and custom-
ers’ systems.

.per .frm

.4gl .ec .c .o

Compile phase

Link phase

.o libraries (.a) .4ge

.per .frm

.4gl .4go

Compile phase

Link phase
.4go libraries (.RDS) .4gi

Fitrix Report Code Generator Technical Reference

4-6 Compiling and Running

Using fg.make to Compile Your Program

When you use the Report Code Generator to generate source code, a Makefile is
created. The fg.make script uses that Makefile, which must be in your current
directory. See "The Makefile" on page 4-12 for more information on the Make-
file.

The fg.make script is not complicated. It has two purposes: to set up environ-
ment variables and to run the appropriate compilation program (C compile or RDS
compile). The programs that do the compiling use environment variables to deter-
mine some of their actions. That means you can change the default behavior of
fg.make by setting those variables in your own environment.

For example, if you have both RDS and C compiles on your system, fg.make
assumes you want to use RDS. You can force a C compile by passing the -F flag to
the fg.make script. This flag overrides the underlying environment variable,
which is called make_method. By default, this variable is set to RDS, which cor-
responds to an RDS compile. When -F is used, you override this variable. If you
always want to use a C compile, you can set make_method to 4GL, which corre-
sponds to a C compile and the -F command flag.

fg.make [-h] [-F|-R] [-L library] [-M makefile]
[-T tags][-m {n|o|f|of}] [-o execname] [-l] [-f] [-D]
[-r] [-u] [-a] [-c] [args]

-h Displays fg.make command flags and flag descriptions.

-F Overrides make_method variable and performs a C com-
pile. Its environment variable equivalent is
make_method=4GL.

-R Overrides make_method variable and performs an RDS
compile. Its environment variable equivalent is
make_method=RDS.

-L library Lets you specify additional libraries you want fg.make to
link. These libraries appear in the Makefile above the
upper level libraries. Its environment variable equivalent is
xtra_lib=library.

Fitrix Report Code Generator Technical Reference

Compiling Generated Code 4-7

-M makefile Allows you to specify a file other than Makefile. This
flag is useful when you are testing.

-T type Lets you specify which type of Makefile to create. You
can create the following types: application, module, library,
program, shell, and make.

-mn Prevents fg.make from performing a merge. The Featur-
izer is not called. Its environment variable equivalent is
no_merge=y.

-mo Runs the Featurizer without a subsequent compilation. Its
environment variable equivalent is
merge_only=y.

-mf Overrides time stamp comparison logic and forces the Fea-
turizer to perform a merge. Its environment variable equiv-
alent is force_merge=y.

-mfo Forces the Featurizer to merge and override the time stamp
comparison logic without compiling or linking. Its environ-
ment variable equivalent is
merge_only=y and force_merge=y.

-o execname Specifies name of the target library archives in library com-
piles (outname.a or outname.RDS). In program com-
piles, it specifies the name of the program file
(outfile.4ge or outfile.4gi). This flag strips any
extensions you might add to it. It is useful for testing.

Fitrix Report Code Generator Technical Reference

4-8 Compiling and Running

-l Instructs fg.make to link object files together into a pro-
gram (.4gi) file, in an RDS compile. This flag works with-
out checking for modifications between source (.4gl) and
corresponding object (.4go) files. Its environment variable
equivalent is link_only=y.

You can use -l when a local source (.4gl) file has been
modified and compiled (with fglpc) into an object (.o)
file, with the remainder of the application source code held
constant.

The -l flag causes fg.make to skip fglpc and
form4gl (i.e., skip the compilation of source (.4gl) files
and form (.frm) files) and run only the link part of the
fg.make suite of shell scripts. If you run fg.make in
link_only mode, always rebuild the filelist.RDS
in the local program directory. Also, if a library has been
compiled, fg.make run in link_only mode in the local
program directory rebuilds the depend.RDS,
func_map.RDS, and unresolved.RDS files in the
library. If the link_only option is used, the Featurizer is
not run.

-f Limits the work done by fg.make each time it is run for a
program. The link.rds part of the compile creates a list
of files that must be concatenated with the local object
(.4go) files to create the program (.4gi) file (under RDS).
That list is saved in the local directory under the name
filelist.RDS. As long as no new calls to library func-
tions have been added to the program being compiled, this
list need not be recreated each time fg.make is run. The
Featurizer is still run when -f is used. Its environment vari-
able equivalent is fast_link=y.

-D Creates a dependency list (filelist.RDS). The -D flag
lets you rebuild your filelist.RDS without having to
rebuild the program (.4gi) file. This flag works only with
RDS compiles.

Fitrix Report Code Generator Technical Reference

Compiling Generated Code 4-9

Many of these flags work together. Some are mutually exclusive. For example,
consider fg.make -mfo. This command skips all compilation except the Featur-
izer block merge. Likewise, fg.make -fl skips the compile phase, goes right to
the link (-l) phase, and uses the current list of library files (produced by the last
link) rather than producing a new list (-f).

On the other hand, some flags cannot be used together. Specifying -l implies -mn
and overrides the -mo and/or the -mf flags. Likewise, if -R and -F are specified,
whichever one occurs last on the command line takes effect.

-r Causes link.rds to make multiple passes through the
library list when making a program so that functions are
more likely to be resolved cleanly. This flag can cause the
standard UNIX linker (cc and ld) to fail, depending on the
capabilities of the platform linker. You should only use this
option if a standard make correctly resolves your functions,
and fg.make does not. Also note that this could allow you
to write non-portable code. This flag has no meaning if
fast_link has been specified. Its environment variable
equivalent is recursive_link=y.

-u Causes link.rds to warn the user of any function calls it
was unable to resolve. This flag has no meaning if
fast_link has been specified. Its environment variable
equivalent is list_unresolved=y.

-a Causes all files to be recompiled regardless of dependen-
cies. Its environment variable equivalent is
no_use_make=y.

-c In the program directory, this flag causes fg.make to stop
after it compiles the source code. It does not continue on to
produce the program. In other words, this flags causes
fg.make to skip the link phase.

In the library directory, this flag causes fg.make to stop
after it compiles the source code. It does not continue on to
load the archive (either the .a file or the .RDS directory).

args Objects (files) to compile. The default is the list of objects
in the Makefile.

Fitrix Report Code Generator Technical Reference

4-10 Compiling and Running

Just as an aside, you can list single-character flags together and -m flags together if
they occur last on the line. For example, fg.make -iurflmof is acceptable,
where mof is equivalent to -mo and -mf. The three-character flags must stand
alone.

Speeding Application Compiling

When you make slight changes to a source (.4gl) file or an extension (.ext) file, you
need not remerge, relink, and recompile your entire program. You can limit
fg.make so that only your changes are recompiled. Thus saving you time and
speeding up the recompilation process. These shortcuts, however, only apply if you
are using RDS. C compiles cannot be expediated.

Changing a Source (.4gl) File
Altering a source (.4gl) file is the most frequent type of change. When you run
fg.make, it checks all your source (.4gl) files to see which ones you have
changed. This check takes up time. In addition, each time you run fg.make, a new
list of library files is built. You can avoid these steps with the fglpc command.
This command lets you specify the source (.4gl) file you want to update, assuming
you did not add new library function calls. Since you know what source files you
have changed, you can use two commands to create a working application. First,
use the fglpc command and the source (.4gl) file you have changed.

fglpc filename.4gl

The fglpc command recompiles your source (.4gl) file into an object (.4go) file.
You can then use fg.make with the -fl flag to merge your new object (.4go) file.

fg.make -fl

The -fl is the fast link flag. This flag puts together the compiled local programs
and all the library programs. It assumes you have run a complete fg.make at some
time in the past on your program to create a list of library files. It also assumes you
haven’t changed the Makefile to require a different set of libraries.

A Change to an Extension (.ext) File

Fitrix Report Code Generator Technical Reference

Compiling Generated Code 4-11

After you make an extension (.ext) file, it must be merged with the generated
source code. Several fg.make command flags affect extension file merging and
do various other steps in the compilation process.

When you just want to merge an extension file, use the -mo flag.

fg.make -mo

This flag, which means merge only, simply merges extension files into source code.
It only performs this single step.

Normally, fg.make does a timestamp comparison before merging an extension
(.ext) file with a source (.4gl) file. This comparison governs when a merge is neces-
sary. If the extension (.ext) file is newer than the source (.4gl) file, fg.make per-
forms the merge. Consider the following two files:

-rw-rw-rw- 1 dona informix 3777 Aug 6 11:05 main.4gl
-rw-rw-rw- 1 dona informix 596 Aug 6 11:18 logo.ext

The extension file logo.ext is newer than the source file main.4gl (11:18
opposed to 11:05). In this case, fg.make merges the two files. Now consider a
second example:

-rw-rw-rw- 1 dona informix 3777 Aug 6 11:05 main.4gl
-rw-rw-rw- 1 dona informix 596 Aug 6 11:00 logo.ext

This time logo.ext is older than main.4gl (11:00 opposed to 11:05). No
merge is performed.

When you want to force a merge without respect to timestamps, use -mfo.

fg.make -mfo

All extension (.ext) files get merged, even those older than the source (.4gl) files.

When you want to force a merge and do all of the other compilation steps as well,
use -mf, such as:

fg.make -mf

The -mf flag causes a forced merge and creates object files, links, and perfoms
additional compilation tasks.

Fitrix Report Code Generator Technical Reference

4-12 Compiling and Running

The Makefile

The fg.make script reads a description file that contains information to produce a
program. By default this description file is called Makefile. The Makefile is
created during the generation of source code.

Here is an example of a generated program Makefile:

###
Copyright (C) 1992 Your Company Name Here
All rights reserved.
Use, modification, duplication, and/or distribution of this
software is limited by the software license agreement.
Sccsid: %Z% %M% %I% Delta: %G%
##
Makefile for an Informix report

#_type - Makefile type
TYPE = program

#_name - program name
NAME = tmp.4ge

#_objfiles - program files
OBJFILES = globals.o lowlevel.o main.o midlevel.o report.o

#_forms - perform files
FORMS =

#_libfiles - library list
LIBFILES = ../lib.a \

$(fg)/lib/report.a \
$(fg)/lib/user_ctl.a \
$(fg)/lib/standard.a

#_globals - globals file
GLOBAL = globals.4gl

#---

#_all_rule - program compile rule
all:

@echo "make: Cannot use make. Use fg.make -F for 4GL compile."

This example Makefile contains six macros or variables and a rule. Each these
elements may be different for your program, depending on the reports you are
building, and whether you have additional source files. The follwoing list describes
the elements in the example Makefile on the previous page:

TYPE: This macro contains the type of Makefile. A Makefile can be one of
six types: program, library, application, module, shell, or make.

NAME: This macro contains the name of the compiled program. For an RDS com-
pile, fg.make converts the program extension to .4gi.

Fitrix Report Code Generator Technical Reference

Compiling Generated Code 4-13

OBJFILES: This macro contains a list of local object files. These files become
linked together to create the compiled program.

FORMS: This macro contains a list of .frm files used by the program. These files
are created from form specification (.per) files, which are associated with the Fitrix
Screen Code Generator, for more on .per and .frm file, refer to the Fitrix Screen
Technical Reference Manual.

LIBFILES: This macro lists the names of the library archives to search to resolve
function calls. For an RDS compile, fg.make converts the extensions to .RDS.

Note

When doing an RDS compile, fg.make produces a list of the object files that it
has resolved from the libraries. This list, filelist.RDS, can be reused in
later compiles by specifying the -f flag with fg.make. You can only use this
flag, which results in a faster compile, when no new function calls have been
added to the code.

GLOBAL: This macro contains an entry for globals.4gl. All local object files
depend on the globals.4gl file.

all: This make rule informs you not to use the UNIX make utility. If a user
attempts to use the make utility, the following message appears:

make: Cannot use make. Use fg.make -F for 4GL compile.

Changing the LIBFILES Macro with Block Commands
You can use block commands to alter the LIBFILES macro. In an extension (.ext)
file, these lines use the brute force method. For example:

start file "Makefile"
##
 replace_block TOF NUL from "LIBFILES" thru "$(fg)/lib/standard"
 LIBFILES = ../libadv.a \
 ../lib.a \
 ../../all.4gm/libadv.a \
 $(fg)/lib/user_rpt.a \
 $(fg)/lib/scr.a \
 $(fg)/lib/standard.a \
 $(fg)/lib/user_ctl.a
 ;

Fitrix Report Code Generator Technical Reference

4-14 Compiling and Running

Using the -L Flag to Link Custom Libraries
The block command method results in a physical change to the Makefile. The
fg.make script provides a method for specifying additional libraries without actu-
ally changing the Makefile. This facility can be very useful if you wish to try out
new features in a library but do not wish to make the change permanent.

For example, suppose you write some useful functions and put them in a custom
library directory such as $fg/lib/standard.cus. You can physically change
your Makefile using an extension file (discussed above), or you can include the
custom library without physically changing your Makefile. To do so, use the -L
flag with the fg.make script. The following line shows how to include stan-
dard.cus with the -L flag:

fg.make -L standard.cus

This command effectively acts as if you had changed the LIBFILES macro to look
as follows:

LIBFILES = ../lib.a \
 $(fg)/lib/scr.a \
 $(fg)/lib/standardcus.a \
 $(fg)/lib/standard.a \
 $(fg)/lib/user_ctl.a

You can also specify more than one library at a time, for example:

fg.make -L standard.cus -L scr.adv

The above line produces the same effect as changing LIBFILES to look like the
example on the next page:

LIBFILES = ../lib.a \
 $(fg)/lib/scradv.a \
 $(fg)/lib/scr.a \
 $(fg)/lib/standardcus.a \
 $(fg)/lib/standard.a \
 $(fg)/lib/user_ctl.a

It is also possible to modify the pathname of a custom library, for instance:

fg.make -L /usr/our_work/lib/standard.cus

The above line produces the same effect as changing LIBFILES to look as fol-
lows:

Fitrix Report Code Generator Technical Reference

Compiling Generated Code 4-15

LIBFILES = ../lib.a \
 $(fg)/lib/scr.a \
 /usr/our_work/lib/standardcus.a \
 $(fg)/lib/standard.a \
 $(fg)/lib/user_ctl.a

You can add new libraries to the end, but do not use a period, such as:

fg.make -L newguy

This command affects LIBFILES as follows:

LIBFILES = ../lib.a \
 $(fg)/lib/scr.a \
 $(fg)/lib/standard.a \
 $(fg)/lib/user_ctl.a \
 newguy.a

If your LIBFILES macro is already customized to look like this:

LIBFILES = ../lib.a \
 ../../all.4gm/lib.a \
 $(fg)/lib/scr.a \
 $(fg)/lib/standard.a \
 $(fg)/lib/user_ctl.a

and you need to insert a library in front of the second occurrence of lib.a, you
can include more than the word lib in your prefix. Insert a question mark instead
of the slash so fg.make does not interpret the slash to mean pathname. For exam-
ple:

fg.make -L all.4gm?lib.adv

The above line produces the same effect as changing LIBFILES to look as fol-
lows:

LIBFILES = ../lib.a \
 ../../all.4gm/libadv.a \
 ../../all.4gm/lib.a \
 $(fg)/lib/scr.a \
 $(fg)/lib/standard.a \
 $(fg)/lib/user_ctl.a

The following list covers rules that govern the use of the -L flag:

• The argument prefix (portion before period) specifies where to insert the
library.

• The argument suffix (portion following period) is part of the library name.

• A slash in the argument specifies a pathname. A slash does not affect where the
name is inserted.

Fitrix Report Code Generator Technical Reference

4-16 Compiling and Running

• A question mark can replace a slash, if the slash is needed as part of the inser-
tion criteria.

• When there is no match, the library is put at the end with no change.

Compiling Libraries

Much of the RDS compile parallels the C compile. The source .4gl files are trans-
formed into object files (.4go or .o), and non-local function calls are resolved by
searching the library archives listed in the LIBFILES macro. But it’s this last pro-
cess that is, in fact, the most different between the RDS and C compiles.

There are two classes of libraries. One class consists of the standard,
user_ctl, and report libraries, which provide the flow of control of generated
programs and a number of specialized functions that provide features of these pro-
grams.

The other class of libraries are those that you maintain yourself for common func-
tions that are used by more than one of your programs or that modify the behavior
of functions.

The fg.make script is used to maintain both classes the same way, but it is not
advisable to make changes to the supplied functions. Your changes are lost when
you install the next release. It is possible to add or change these functions by creat-
ing your own libraries.

To create your own library, there are two things you must consider: where it is
physically located, and what sequence it is linked into your program.

Consider a library of functions that are common to a family of programs. You have
a program source directory for each program. If you review the example Make-
file, note that the first entry in LIBFILES is ../lib.a. The lib.4gs file
contains the source for this archive.

Creating the Library Archive
A library archive contains the compiled objects and catalogs used for linking your
programs. A 4GL archive is a file with an extension of .a. An RDS archive is a
directory with an extension of .RDS. A 4GL archive is created with the UNIX ar
utility and its catalogs are stored internally. The RDS archive is created by
fg.make directly and its catalogs are stored as files in the archive.

Fitrix Report Code Generator Technical Reference

Compiling Generated Code 4-17

To create a library archive, you must have a Makefile in your library. The fol-
lowing shows an example of a library Makefile:

##
Copyright (C) 1993 Your Company Name
All rights reserved.
Use, modification, duplication, and/or distribution of this
software is limited by the software license agreement.
Sccsid: %Z% %M% %I% Delta: %G%
##

Makefile for an Informix function library

TYPE = library

LIBFILES = \
$(LIB)(funtion-name1.o) \
$(LIB)(function-name2.o)\
$(LIB)(function-name3.o)\
$(LIB)(function-name4.o)

FORMS=

LIB=../report.a

#---

all:
@echo "make: Cannot use make. Use fg.make to compile."

As you can see, a library Makefile contains four sections and a rule. The follow-
ing list describes each element in a library Makefile:

TYPE: This macro indicates the type of the Makefile, which in this case is
library. There are six types of which library is one.

LIBFILES: This macro contains the object files that are put in the library archive.

FORMS: This macro lists the .frm files used by the library functions, in the above
case there are no .frm files used.

LIB: This macro contains the name of the library archive. It does not have to match
the name of the library source directory. For example, if you create a library to hold
custom functions from the $fg/lib/report.4gs directory, there is a conven-
tion for doing so: You create your library source directory as
$fg/lib/report.cus, and you make the LIB macro in your Makefile look
like the following line:

LIB = ../reportcus.a

This strategy allows you to use the -L flag when compiling programs with
fg.make. The command fg.make -L report.cus automatically links your
custom library just before the report library.

Fitrix Report Code Generator Technical Reference

4-18 Compiling and Running

It is also possible to use the same name in the LIB macro for different libraries. For
example, your Makefile can contain the following line:

LIB = ../report.4gs

This line causes your objects to be loaded into the same archive as our software
company’s objects. Just remember you must recompile your library after a newFi-
trix installation.

For an RDS compile, fg.make converts the .a extension to .RDS.

To create the library archive, run fg.make in the library directory.

When fg.make does a 4GL compile, it creates .o files for the files listed in the
LIBFILES macro from the corresponding .4gl files and loads them into the
archive file in the directory. It creates the archive if it doesn’t exist. The $(LIB)
symbol is special to the make utility. It tells make that the modification date of the
source file is checked against the object in the archive instead of against an actual .o
object file, so the .o file is deleted once it is loaded into the archive.

When fg.make does an RDS compile, it creates .4go files rather than .o files.
These files are then moved over to an archive directory. This directory is created if
it does not exist. In addition, the .4gl files are copied to the archive directory.

There are two reasons for keeping the .4gl files in both the .4gs and the RDS.
First, the .4gl source file is needed in the archive for the linking process. Second, it
must be possible to continue to link functions from the archive while modifications
are being made to the .4gl files in the .4gs directory.

In addition to the .4gl and .4go files in lib.RDS, there are four catalog files. These
are func_map.RDS, depend.RDS, unresolved.RDS, and
resolved.RDS.

• The func_map.RDS file is a list of all the functions in this directory. Next to
the function name is the name of the file it is in. During the linking phase of a
program RDS compile, link.RDS refers to this list to find the names of the
files containing the "unresolved" functions it is searching for.

• The depend.RDS file is a list of all the files any file depends on. Once
link.RDS has found the names of the files that will resolve functions for it, it
must then find the names of any other files that the found ones also depend on.

Fitrix Report Code Generator Technical Reference

Compiling Generated Code 4-19

• The unresolved.RDS file is a list of all the functions that were called by
functions in lib.RDS but were not resolved there. Link.rds refers to this
to find out what new function names it has to add to its list of unresolved func-
tions before it goes on to the next library.

• The resolved.RDS file is a list of all the files and function calls that were
resolved in this library.

These files must be rebuilt every time fg.make does an RDS compile in the
library.

If you have modified a .4gl file in lib.4gs, normally you need to run fg.make
in lib.4gs to compile it. But if your modification does not include changes to
function names, or added, deleted, or changed function calls, it is not necessary to
rebuild those .RDS files in the .RDS directory.

Compiling Your Entire Application

Consider organizing your programs in a hierarchy. The top level would be the
application, the second level a module of that application, and the third would be
the programs themselves. The following explains how to set up your hierarchy.

Create a directory for your entire application. It’s recommended that you do this in
the $fg directory, though that is by no means a requirement. The name for this
directory isn’t set by convention, so make the name something meaningful.

In your application directory, create directories for each of the modules in your
application. The names for your module directories should have .4gm as an exten-
sion, but the prefix can be anything that you consider meaningful. Examples might
be sales.4gm, rcvbls.4gm, inventory.4gm. Also, put the application
Makefile in this directory.

Use this as a model for the example $fg/myapplication/Makefile:

Makefile for an Informix Application
##
TYPE = application
APPL = myapplication
MODULES = sales rcvbls inventory
#---
all:

@echo "make: Cannot use make. Use fg.make to compile."

Fitrix Report Code Generator Technical Reference

4-20 Compiling and Running

To compile your entire application, type fg.make in the application directory. To
compile only specific modules, give the module names as arguments (for example
fg.make sales rcvbles).

Compiling a Module

Put your program directories in the module directory. The names of these program
directories normally have a .4gs extension. Examples in sales.4gm might be
entry.4gs, invoice.4gs, and post.4gs. Also, put the module Makefile
in the module directory.

To compile your entire module, type fg.make in the module directory. The fol-
lowing page contains an example module Makfile that you can use as a model:

Makefile for an Informix module
##
TYPE = module

MODULE = sales.4gm

LIBS = lib

PROGS = entry invoice post prog4 \
 prog5 prog6 prog7 and_so_on
#--- #
all:

@echo "make: Cannot use make. Use fg.make to compile."

Application and Module Compilation with
$cust_path

When compiling at the module level, all program directories with an extension
found in the $cust_path variable are compiled.

For example, if invoice is listed in the module Makefile and
$cust_path = bth:4gc:4gs, then invoice.4gs, and invoice.bth
are compiled if they exist. These directories are compiled in reverse order of their
$cust_path listing.

Fitrix Report Code Generator Technical Reference

Running Report Programs 4-21

Running Report Programs
As soon as source code has been compiled, it can be executed. There are a number
of command line arguments that can be specified upon invocation. This section
addresses these arguments, and explains the invocation of programs compiled with
C and RDS. Later, the usage of the run UNIX shell script is explained.

Invoking Compiled Programs

The method of executing a program depends on the compilation method you used
to compile the source code.

The INFORMIX-4GL C compile version compiles source (.4gl) files down to
object (.o) files, which are then linked together into an executable (.4ge) file. This
executable file can be invoked by simply typing its filename at the UNIX prompt.

The INFORMIX-4GL RDS compile version converts source into pseudo-code,
which is stored in object code files (.o). The object files are linked together into a
non-executable program file (.4gi).

A number of command line arguments can be used when invoking a program gen-
erated by the Report Code Generator.

fglgo program-name.4gi [-dbname database] [order "order-
by-clause"] [filter "filter-clause"]

The database can be selected on the command line. For example, the following
fglgo command specifies the stores database:

fglgo report.4gi -dbname stores

The name of the database must follow the -dbname argument.

-dbname Specifies the database to run against.

order Specifies the order of initial selection.

filter Limits the initial selection.

Fitrix Report Code Generator Technical Reference

4-22 Compiling and Running

Other command line arguments allow you to pass a filter clause and order by clause
to the program. This controls the selection and order of report data.

You can define the initial filter for the selection of data by specifying the filter on
the command line. For example, the following command only selects customer
numbers higher than 100.

fglgo report.4gi filter "customer_num >100"

Note

The example above only works for an integer type field. If you want to select
a string, you must quote the string.

You can also specify a command line argument to order the initial selection of doc-
uments. You can order by any column, though the columns must be in the main
table. For example, the following line orders by the po_num column:

fglgo report.4gi order "po_num"

The column is sorted according to ASCII conventions.

5-1

5
Customizing
Reports

This section explains how to customize your applications while maintaining regen-
erability. Special files store all of your modifications in separate pieces known as
blocks. How these blocks get merged into the source code with the Featurizer is
also discussed.

This section covers the following topics:

n Featurizer Overview

n Block Commands Overview

n Pluggable Features and Feature Sets

n Pre-merged Generated Files

n Flow of the Featurizer

Fitrix Report Code Generator Technical Reference

5-2 Customizing Reports

The Fourth Step to Developing a Complete Report Program

Step 1

Step 2

Step 3

Create an Image File

Generate Source Code

Compile and Run

Step 4

Customize

Fitrix Report Code Generator Technical Reference

Featurizer Overview 5-3

Featurizer Overview
The Featurizer merges custom modifications into INFORMIX-4GL source code
produced by the Code Generator. The Featurizer pre-processes the source code
(.4gl files created by the Code Generator) just before it is compiled (converted into
object code). The Featurizer merges blocks and feature sets.

The following list outlines some key terms, concepts, and functionality of the Fea-
turizer.

Regenerability: The ability of a code generation tool to re-create the base source
code while maintaining custom modifications. For the application to be regenera-
ble, any modifications done to the source code after initial generation must be
applied to the new source code that has been regenerated. The Featurizer gives you
true regenerability.

Source Code Blocks: Following programming conventions, source code can be
divided into small chunks or blocks. A block is the definition of specific lines
within a source code file. Blocks are denoted by block tags also called block IDs.

Our software provides a set of block commands that allow the insertion of new
blocks, deletion of blocks, replacement of blocks, and alterations of lines within a
block.

Note

By convention, blocks are defined as the physical lines of code that perform a
logical function. Logical functions include initializing variables, checking vali-
dations, updating the disk, or any logical group of source code lines. Blocks
should be separated by white space (blank lines), and they should be relatively
small.

Custom Directories: Base .4gl programs should be stored in separate directories
with the filename extension of .4gs. In order to maintain different versions of the
same application on a system, a custom directory is created, and the differences in
source code are stored in the custom directory. A generic custom directory exten-
sion is .4gc.

Fitrix Report Code Generator Technical Reference

5-4 Customizing Reports

You may choose any three-character extension for custom directories. At runtime,
setting your $cust_key environment variable to a custom extension runs the pro-
grams stored in that directory.

At pre-processing time, a custom directory search path is specified that merges
source code and extensions from other directories. This allows you to store only the
differences in a custom directory (vs. a copy of the original). When the original is
changed, a re-compile in the custom directory brings forward changes from the
other directories in the search path.

Pluggable Features: Logically, features are things that can be plugged in or
unplugged based on the need for that feature. Physically, features are groups of
source code extension (.ext) files throughout the application.

If a feature is installed (plugged in), that source code is applied to the application. If
it is not installed (un-plugged), the source code for that feature is not merged into
the final source code.

Organizing source code into features has several advantages. It allows for plug in/
out functionality, it allows the application to have multiple versions, and it allows
for the organization of source code for a particular unit of work into one area. This
makes it very easy to identify the effect of a feature on the application.

Pluggable features can be used in different ways. In addition to the plug in/out
functionality, they can be used to maintain different upgrade versions of the appli-
cation, different customer requirements, product testing, etc.

Feature Sets: Simple groups of plug-in features. Since some features may be
incompatible with other features, you may wish to group features into different sets
that are known to work together. When compiling an application, you can specify
which feature set to apply.

Feature set files, which are always given the name base.set, include a list of
features in the order that they are applied to the source code.

Running the Featurizer

You can initiate the Featurizer in any one of three ways:

1. From fg.make.

2. During code generation.

Fitrix Report Code Generator Technical Reference

Featurizer Overview 5-5

3. Directly from the command line.

Invoking From the fg.make Utility
The most common way of running the Featurizer is through the fg.make compi-
lation script. Each time you run fg.make to compile your programs, the Featur-
izer is automatically invoked and merges any necessary files into your program.
Flags are available with fg.make to control whether you want to merge or not to
merge blocks when calling fg.make. Refer to "Using fg.make to Compile Your
Program" on page 4-6 for more information on the fg.make utility.

Invoking From the Code Generator
The Code Generator automatically creates the block tags in the generated code.
After the code is generated, the Code Generator automatically invokes the Featur-
izer, which searches for and merges .ext files into the generated code.

Executing the Featurizer Directly
You can also run the Featurizer directly at the UNIX command line. The following
lists the syntax for the fglpp command.

fglpp [-dbname database][-C][-force][-set filename.set]
[-yes][-trace][filename...]

-dbname database Specifies the database name to use.

-C Inserts comments into merged code noting ori-
gin of blocks.

-force Ignores file date/time and forces pre-processing
of files.

-set filename.set Specifies the feature set file to use.

-yes Overwrites files without write permission.

-trace Displays fglpp activity to screen.

Fitrix Report Code Generator Technical Reference

5-6 Customizing Reports

filename... The file(s) to pre-process. If omitted, a list is
built of the files that need pre-processing.

Fitrix Report Code Generator Technical Reference

Block Commands Overview 5-7

Block Commands Overview
To modify source code within a block, there are a set of block commands to indi-
cate what you wish to do to that block. Block commands go into files with a .ext
extension. The Featurizer reads the block commands in the .ext file and act on the
specified block in the source code.

Here are some examples of simple block commands:

before block llh_add insert

after block llh_add serial

replace block llh_lookup not_found

delete block llh_lookup must_find

A block command takes two arguments:

1. The function name that contains the block.

2. The name of the block (called the block name or block ID).

Using Block Commands to Manipulate Code

The following are some block command examples to help give you an idea of what
block commands are and how they work. Using the llh_add example from the
previous section, say you want to place one extra line before the insert com-
mand:

let m_orders.entry_date = today

Again, here is the unmodified llh_add function:

##
function llh_add()
##
This function inserts data into the header table.
#

#_define_var - define local variables
define

#_local_var - local variables
new_rowid integer # Rowid after insert

Set the serial field
let m_orders.order_num = 0

Fitrix Report Code Generator Technical Reference

5-8 Customizing Reports

#_insert - Insert the data
insert into orders values(m_orders.*)
let new_rowid = sqlca.sqlerrd[6]

#_serial - Bring back the serial field & display it
let m_orders.order_num = sqlca.sqlerrd[2]
let p_orders.order_num = sqlca.sqlerrd[2]
call llh_display()

#_on_disk_add
#_end

#_rowid - Reset rowid
let sqlca.sqlerrd[6] = new_rowid

end function
llh_add()

Use the before block command to add this one extra line before the insert
block. Thus in the .ext file, you can place the following block command and source
code:

start file "header.4gl"
before block llh_add insert

let m_orders.entry_date = today ;

This block command goes into the .ext file under the line start file
header.4gl because you are modifying the source code in header.4gl.

The .ext file is read by the Featurizer, and the Featurizer pre-processes the appropri-
ate .4gl file to include the extra line of code. After pre-processing, this is the result
in the llh_add function (in header.4gl):

If you want to insert the custom logic after the insert block, then use the after
block command in the .ext file as follows:

after block llh_add insert
 let m_orders.entry_date = today ;

Set the serial field
let m_orders.order_num = 0

let m_orders.entry_date = today

#_insert - Insert the data
insert into orders values(m_orders.*)
let new_rowid = sqlca.sqlerrd[6]

Custom Code Merged
Before Block

Fitrix Report Code Generator Technical Reference

Block Commands Overview 5-9

This changes the llh_add function in the following manner:

Note that all block commands in .ext files are delimited by semicolons.

You can even replace blocks. Let’s say you wanted to add your custom logic
between the insert into and the let new_rowid lines of code. You could
replace the entire block with the replace block command:

replace block llh_add insert
insert into orders values(m_orders.*)
let m_orders.entry_date = today
let new_rowid = sqlca.sqlerrd[6] ;

This results as follows in llh_add:

You can even search for strings in blocks and place code before or after a string of
code within a block.

You can delete blocks with the following command:

delete block llh_add insert ;

The effect on llh_add is as follows:

#_insert - Insert the data
insert into orders values(m_orders.*)
let new_rowid = sqlca.sqlerrd[6]

let m_orders.entry_date = today

#_serial - Bring back the serial field & display it
let m_orders.order_num = sqlca.sqlerrd[2]
let p_orders.order_num = sqlca.sqlerrd[2]
call llh_display()

Custom Code Merged
After Block

Set the serial field
let m_orders.order_num = 0

#_insert - Insert the data
insert into orders values(m_orders.*)
let m_orders.entry_date = today
let new_rowid = sqlca.sqlerrd[6]

#_serial - Bring back the serial field & display it
let m_orders.order_num = sqlca.sqlerrd[2]
let p_orders.order_num = sqlca.sqlerrd[2]
call llh_display()

Custom Code
Replaces Block

 # Set the serial field
 let m_orders.order_num = 0

 #_serial - Bring back the serial field & display it
 let m_orders.order_num = sqlca.sqlerrd[2]
 let p_orders.order_num = sqlca.sqlerrd[2]
 call llh_display()

Code Block
Deleted

Fitrix Report Code Generator Technical Reference

5-10 Customizing Reports

In addition to manipulating code within blocks, you can add code to the top or bot-
tom of a .4gl file. You use block commands with various reserved words as argu-
ments to the commands. In lieu of the function name argument in a block
command, you could specify TOF for Top of File or EOF for End of File. If you
used these reserved words as the function name argument to the block command,
the block name argument would be NUL for null, since there is no block at the top
or bottom of a .4gl file.

Here is a block command that places extra code at the bottom of a the
header.4gl file:

start file "header.4gl"

after block EOF NUL
display "this code is at the end of header.4gl"
sleep 3 ;

Notice how after block EOF NUL acts—it puts text at the end of files. TOF,
EOF, and NUL must all be uppercase.

Extension (.ext) Files

As mentioned earlier, block commands are placed in .ext files. Basically .ext files
serve two purposes: the first is to provide a means of plugging and unplugging fea-
tures; the second is to simply hold block commands which always need to be
merged into the basic program.

Note

An .ext file can be named with any combination of letters, numbers and under-
scores. You cannot, however, use hyphens or any other symbol in an .ext’s
name.

For more information on the concept of pluggable features, refer to the separate
section "Pluggable Features and Feature Sets" on page 5-21.

Specifying Which .ext Files to Merge

You must specify all .ext files you want to be merged by listing them in a file
named base.set.

Fitrix Report Code Generator Technical Reference

Block Commands Overview 5-11

A more detailed description of base.set files is available in"Pluggable Features
and Feature Sets" on page 5-21.

Specifying Source Code Files

The start file command allows you to specify which .4gl files you want your
block commands to work on. The start file command, along with the blocks
that correspond to it, are placed in .ext files. The syntax of the start file com-
mand is as follows:

start file "filename"

Example:

start file "header.4gl"

after block mlh_clear init
initialize my_record.* to null ;

The following is an example of how you can use an .ext file, a start file com-
mand, and a block command to make a customization to a section of .4gl code.

Suppose that you wish to modify the function mlh_clear in header.4gl. You
can do it with blocks. Here is an example of the mlh_clear function in
header.4gl:

##
function mlh_clear()
##
#

#_define_var - define local variables

#_init - Initialize
initialize p_orders.* to null
initialize q_orders.* to null
initialize m_orders.* to null

end function
mlh_clear

You see the define_var and init blocks in mlh_clear. You wish to apply
the following block command and code to the init block:

after block mlh_clear init
initialize my_record.* to null ;

First you need to create a .ext file to put your block command in. Since this modifi-
cation does not relate to a specific pluggable feature, you would create a
base.ext file to put it in.

Fitrix Report Code Generator Technical Reference

5-12 Customizing Reports

Next, you would add the start file line to specify which file you want to
apply the block to.

Here is how you would apply the above after block command to
header.4gl:

start file "header.4gl"

after block mlh_clear init
initialize my_record.* to null ;

The result of the above block command would be in header.4gl as follows:

##
function mlh_clear()
##
#

#_define_var - define local variables

#_init - Initialize
initialize p_orders.* to null
initialize q_orders.* to null
initialize m_orders.* to null
initialize my_record.* to null

end function
mlh_clear

Block Command Logic

The function name and block ID can also be viewed as scopes, or starting points.
The Featurizer first searches for the function name. Once it locates the function
name it searches for the block ID within that function name. Once this is found,
code manipulation takes place. Function name and block ID really stand for major
known section of the file and minor known section of the file, respectively. The
block ID is the block tag without the #_.

The use of from, after, to, thru, or through can further define the block ID
starting location. The keywords thru and through are synonymous.

The following function names and block IDs have special meaning when used in
Block Command Statements:

• The TOF function name specifies the top of the file.

• The EOF function name specifies the end of the file.

• The NUL block ID means that there is no associated block tag for this com-
mand.

Fitrix Report Code Generator Technical Reference

Block Commands Overview 5-13

• a_field-name targets #_after_field field-name

• b_field-name targets #_before_field field-name

• c_field-name targets #_after_change_in field-name

• e_event-name targets #_on_event event-name

Block Command Statements

This section lists the syntax of each Block Command Statement and its definition.

start file "filename"

This command specifies that the commands below this line are working on the
specified filename. The filename must be in quotes. It is required as the first
block command in the .ext file, and may appear throughout the file to change
the file associated with the block commands that follow this. An example of
filename could be fg_funcs.4gl. For more information refer to "Specifying
Source Code Files" on page 5-11.

before block function-name block-ID

This inserts the text directly above the first line of the block. The special func-
tion name of TOF inserts the text at the top of the file.

in block function-name block-ID {before | after}
"string"

This inserts the text either before or after the line that begins with the specified
string. before or after is required. The line identification string can be 50
characters max. The special function name of EOF is not allowed in this com-
mand.

after block function-name block-ID

This inserts the text after the last line of the block. The special function name of
EOF inserts the text at the end of the file.

replace block function-name block-ID [{from | after}
"string"] [{to | thru} "string"]

Fitrix Report Code Generator Technical Reference

5-14 Customizing Reports

This replaces the specified block (or portion of a block) with the given text.
You may specify through instead of thru. The line identification strings
can be up to 50 characters long. If the entire block is specified (with no from/
after or to/thru strings) only the text portion of the block is replaced. The #_
block tag line and the #_end line (if present) are preserved. The special func-
tion name of EOF is not allowed in this command.

delete block function-name block-ID [{from | after}
"string"] [{to | thru} "string"]

This deletes the specified block (or portion of a block). The line identification
strings can be up to 50 characters long. The special function name of EOF is not
allowed in this command.

One special delete block command can be used to delete the entire contents of a
file. It is delete block TOF NUL thru "string", where string is the
last line in the file.

Note

Caution: The delete block command deletes all existing block tags within
the specified block, thus making it difficult to maintain regenerability.

function define function-name

This command only allows you to define new or additional local variables used
in a specific function. If you need to add some local variables to a specific func-
tion, use this command. If the function specified by function name does not
have the define keyword in it (there are no local variables previously defined
in this function), the Featurizer puts the define keyword in, before adding the
variables.

Note

Semicolons: All block commands except delete block require additional
text following the command. This additional text must be terminated with a
semicolon. In the case of the delete block command, you do not need a
semicolon.

Fitrix Report Code Generator Technical Reference

Block Commands Overview 5-15

Using Strings in Block Commands
Using strings in block commands should be avoided if possible. The reason being
the generated code may change in future releases causing the Featurizer to be
unable to locate your strings.

Since block tags will not change in future releases you can be sure your code will
remain compatible if you rely on these points in the code. However, if you use a
string to locate a block, the generated code may change over time with enhance-
ments which may break your string searches.

A string can consist of up to 50 characters.

Note

Very important: When using strings, you must include the text from the begin-
ning of the line through the string that you are trying to target. In other words,
you cannot specify a string that begins in the middle of a line of text. If you try
this, it results in a Featurizer error. See the following example.

Example:

 let abc = xyz.

If you use string equal to abc, the Featurizer errors out. If you use string equal to
let abc (again, including text up to the beginning of the 4GL line you are trying
to target), the Featurizer finds the line.

Illustrated above in the replace and delete block commands, is the use of
strings such as after, from, to, thru, and through. When deciding which
one to use you must decide whether or not you want to include the line of code that
matches the string pattern in the effect of the change. In other words, using from
abc in a delete block causes the line of code containing the string abc to be
deleted as well. Consider the following to help your decision:

• after string - line matching string is un-affected
• from string - line matching string is affected
• to string - line matching string is un-affected
• thru string - line matching string is affected
• through string - line matching string is affected

Fitrix Report Code Generator Technical Reference

5-16 Customizing Reports

Note

A back slash must proceed double quotes in a string block command.

The following example DOES NOT work:

"when scr_fld = "stock_num""

Adding a back slash before the double quotes works.

"when scr_fld = \"stock_num\""

Block Identification & Grouping

The start of a block is always a line that begins with a #_ as the first non-blank
character of the line.

The end of a block is determined by the following rules:

A - The next block at the same indentation level, or

B - Any text to the left of the block identification line, or

C - An end function statement as the first words of the line, or

D - An explicit #_end block marker

Given these rules for ending blocks, any block indented to the right of another
block is considered contained in the first block.

Fitrix Report Code Generator Technical Reference

Block Commands Overview 5-17

This works well for programming constructs that have control processing (like if/
end if, case/end case, foreach/end foreach, etc.) Consider the following program
segment:

If you wish to group a number of blocks that have no control loop structure, you
may indent the blocks within the group.

If a block is indented due to logical grouping, by convention there should be an
#_end block block-name marker. This is not required by the Featurizer, but
it is a convention that should be practiced. For exmaple notice line #19 in the fol-
lowing code:

1 #_bldcmd - Build the shell command to run that gets a list of
2 # all .ext files in the current directory and in the
3 # custom directory paths.
4
5 #_stfind - Start the find command & add current directory
6 let scratch = "cd ..; find ",
7 dir_name clipped, ".", dir_ext clipped
8
9 #_addcus - Add custom directories
10 for cur_path = 1 to num_paths
11 let scratch = scratch clipped, " ", dir_name clipped,

Block Start Line End Line Rule

prc_rows 1 21 A

sleep 4 9 A

col_level 11 19 B

1 #_prc_rows - Process the rows in the cursor
2 foreach abc_cursor into my_rec.*
3
4 #_sleep - Had much sleep lately?
5 if my_rec.recent_sleep = "Y"
6 then
7 display "Need more sleep..."
8 let my_rec.need_sleep = "Y"
9 end if
10
11 #_col_level - Need a cholesterol level checkup?
12 if my_rec.eats_fats = "Y"
13 then
14 if my_rec.num_hamburgers > 20
15 then
16 display "Checkup is due..."
17 let my_rec.need_checkup = "Y"
18 end if
19 end if
20
21 end foreach
22
23 #_nxt_blk - Next block..

prc_rows

sleep

col_level

Fitrix Report Code Generator Technical Reference

5-18 Customizing Reports

12 ".", cust_path[cur_path]
13 end for
14
15 #_finfind - Complete the find command
16 let scratch = scratch clipped, "’(’ -name ’?*.ext’ -o ",
17 "-name ’?*.ext’ ’)’ -print 2>/dev/null"
18
19 #_end block bldcmd
20
21 #_prcfiles - Process
22 while true
23 call c_command(scratch)
24 returning stat_flag, stat_exit, sql_filter
25
26 #_noelem - No more elements to read
27 if stat_flag < 1 then exit while end if
28
29 end while

Note that the prcfiles block would have ended the bldcmd and finfind
blocks implicitly, but the explicit #_end block line should be used.

Note on Block Replace and Block Delete
If a replace or delete block command is passed a string that causes the deletion to
span a block start or end line, the block ID for the spanned block is deleted (for
example, it cannot be used in a later block ID). If the following command is speci-
fied on the following file:

Fitrix Report Code Generator Technical Reference

Block Commands Overview 5-19

delete block TOF stfind from "dir_name" thru "for cur_path"

Given the previous file, lines seven through 10 would be deleted. Since the com-
mand spanned over the top of the addcus block, the addcus block ID cannot be
used any longer. The deletion also spanned past the end of the stfind block, and
the stfind block ID cannot be used any longer. The larger bldcmd block ID is
left intact because the deletion was completely within it.

Spanning blocks for deletion is not suggested because it disturbs the logical group-
ing of blocks. In the above example, it would have been better to delete both the
stfind and addcus blocks, then insert any new logic above the finfind
block.

Note

If the text of a command inserts or replaces block labels, the text of the insertion
is scanned for any new block IDs. The block scan is limited to the end of the
insertion. When inserting blocks, there is no way to have any new block label
span past the end of the insertion.

1 #_bldcmd - Build the shell command to run that gets a list of
2 # all .ext files in the current directory and in the
3 # custom directory paths.
4
5 #_stfind - Start the find command & add current directory
6 let scratch = "cd ..; find ",
7 dir_name clipped, ".", dir_ext clipped
8
9 #_addcus - Add custom directories
10 for cur_path = 1 to num_paths
11 let scratch = scratch clipped, " ", dir_name clipped,
12 ".", cust_path[cur_path]
13 end for
14
15 #_finfind - Complete the find command
16 let scratch = scratch clipped, "’(’ -name ’?*.ext’ -o ",
17 "-name ’?*.ext’ ’)’ -print 2>/dev/null"
18
19 #_end block bldcmd
20
21 #_prcfiles - Process
22 while true
23 call c_command(scratch)
24 returning stat_flag, stat_exit, sql_filter
25
26 #_noelem - No more elements to read
27 if stat_flag < 1 then exit while end if
28
29 end while

deleted

unusable
blocks

Fitrix Report Code Generator Technical Reference

5-20 Customizing Reports

Custom Block ID (Tags) Conventions

• Block IDs contain no white space and are unique to 20 characters. They can
only contain alphanumeric and underscore characters.

• Block IDs should uniquely identify the block within the function and be some-
what readable.

• Block IDs are case sensitive.

• Block IDs are lowercase letters followed by a space-dash-space and a verbal
block description starting in an uppercase letter.

• Block IDs never change. Their description changes, the code in them changes,
but their IDs always stay the same.

The following shows a few sample block IDs.:

#_init - Initialize
#_verify_credit - Verify the credit limit
#_ln_calc - Calculate the order line amount

Fitrix Report Code Generator Technical Reference

Pluggable Features and Feature Sets 5-21

Pluggable Features and Feature
Sets
Pluggable Features: are individual features that are stored in source code exten-
sion (.ext) files. The filename specifies the feature that it contains. For example, a
file containing source code for the balance forward feature might be called
balfwd.ext.

Feature Sets: contain a list of features to apply to the application. Feature set
files are named base.set. Each feature contained in a base.set file is stored
in an .ext file. All .ext files are specified one to a line, and are listed in their order of
merging.

Once you have a feature self-contained in a .ext file, you have the ability to plug the
feature into the program. To plug in a feature means that you instruct the Featurizer
to merge the code just for that feature into the .4gl source code files. The Featurizer
takes the feature-driving code from the .ext file and merge it into the rest of the
source code.

Pluggable Features (.ext Files)

An .ext file contains all of the source code necessary to drive one feature. You
determine which .4gl file to perform work on by using the start file block
command. A start file command must precede any block commands. You
can specify multiple commands in an .ext file to perform modifications to multiple
files.

Note

In order for the source code in your .ext files to be merged, you must list the
name of each .ext file in a feature set (base.set) file.

The prefix of an .ext file describes the feature for which it contains code. For exam-
ple, in approval.ext, you might find code in block commands that drives an
approval entry feature. For secur.ext, you could find code in block commands
that institutes security on a program.

Fitrix Report Code Generator Technical Reference

5-22 Customizing Reports

For example, with .ext files you can create the specific logic that drives an approval
feature. This way you can easily plug in or unplug this feature from your different
applications.

An .ext file has no sections, therefore, a start file command is always issued
in an .ext file to indicate which file to insert the code.

Feature Set (base.set) Files

You instruct the Featurizer which features to plug in through a base.set file. A
base.set file holds the user-specified settings for that program. The base.set
file is the user’s feature list.

You specify features in the base.set file as the names of the .ext files without
the .ext extensions. In a base.set file, anything placed one space after the fea-
ture is not read by the Featurizer. You can use the rest of the line for comments. The
following example of base.set merges the code for the approval and installs
features into the .4gl files:

approval - prompts for approval for orders of $500
instvals - pulls up list of valid values for shipping instructions

When you invoke the Featurizer, the features in the base.set it are merged in the
order listed. Each feature listed in the base.set file must have an associated .ext
file of the same name.

Note

Since the Featurizer looks for only one base.set file, you must be sure that
the base.set file in your current directory contains all of the features you
want to incorporate into your program. In other words, if you have a common
function specified in the base.set directory at your application level and you
want to include those functions in a specific program, you must either specify
that application level base.set file, or specify each individual .ext file listed
in that application base.set in a new base.set file located in the program
directory. If you want to add new features to your program with .ext files, you
must be sure to add those features to the base.set file.

Fitrix Report Code Generator Technical Reference

Pre-merged Generated Files (.org Files) 5-23

Pre-merged Generated Files (.org
Files)
The Code Generator and the Featurizer both create .org files. Whenever a block is
merged into a 4gl file, an .org file is created which is a copy of the .4gl file before
anything gets merged into it. The .org file contains source code in its generated but
pre-merged form.

The Code Generator and .org Files

When the Code Generator is run, it searches to see if any .org files are present in the
current directory, or in the custom directory path. If it does find an .org file, the
Code Generator creates a new .org file with the same filename prefix. If an .org file
is not found, a .4gl file is created instead.

The Featurizer and .org Files

Whenever the Featurizer merges a block into a .4gl file that does not have an asso-
ciated .org file, an .org file is created by copying the .4gl to an .org. If an .org file
does not exist for a specific .4gl, such as header.4gl, the Featurizer assumes
that this particular .4gl does not have any blocks in it. The Featurizer then copies
that header.4gl file to a header.org file. Once an .org file exists, the Featur-
izer loads the .org, merges the blocks into it, then creates a new .4gl file that con-
tains the merged code. Every time a merge takes place, the merge is performed on
the .org file to create a new .4gl.

The Featurizer creates an .org file in the current directory for every file specified
with a start file command.

Removing Blocks from Existing .4gl Files
The following logic only applies to the situation where you used to have blocks
merged into a file and decide that you no longer want anything merged into that
file.

Fitrix Report Code Generator Technical Reference

5-24 Customizing Reports

Say you once had a schedule.ext file with a before block that has
already been merged into header.4gl, and you decide you no longer want it. All
you have to do is remove that extension file and then run the Featurizer.

Special logic has been added to the Featurizer to automatically handle this situa-
tion. The Featurizer copies the header.org, which must exist if the
header.4gl has been merged before, over to header.4gl, thus restoring
header.4gl to its original generated state.

Fitrix Report Code Generator Technical Reference

Flow of the Featurizer 5-25

Flow of the Featurizer
The following describes the operational flow of the Featurizer.

1. Load feature sets into the database.

All .ext files for the specified feature set are located in the current directory and
the custom directory search path. If any of these files have been modified since
the last compile, they are marked as modified, and loaded into the database.

2. Build a list of files to process.

If a file or list of files is passed onto the command line, the Featurizer merges
only those files. The -force option is assumed if files are specified on the
command line.

If no files are specified on the command line, the Featurizer must build the list.
It does this in two phases.

First, it builds the initial list as all files that have been referenced in all the .ext
files in the current directory and the custom directory search path.

If the -force option is specified on the command line, this initial list is used,
and this step is complete.

Second, the Featurizer checks each .ext file in the list to see if they have been
modified since the last merge. If a file has not been modified (the modification
date of the file is the same as the .4gl file), the file is ignored. If the file has
been modified since the last merge, then the Featurizer remerges that file.

3. From the list of files to process, each file is Pre-processed as follows:

1. Determine the original (.org) source file to work from, and load it into
memory.

The .org file is usually in the current directory, but if it doesn't exist here,
the custom directory search path is searched to find the .org file to work
from.

The name of the .org file is built by appending .org to the destination file-
name, or by replacing any three-character file extension with org. It then
loads this .org file into memory for processing.

Fitrix Report Code Generator Technical Reference

5-26 Customizing Reports

If no .org file is found (meeting this naming criteria) in the search, a UNIX
cp command is run on the .4gl file to create an .org in the current directory.
The name of this .org file is the same as the destination filename with any
three-character extension replaced by .org. If the destination filename does
not have a three-character extension, then .org is appended to the filename
to determine the .org filename (up to 14 characters).

2. Build a list of commands (CMDs) to apply to this file.

Commands (CMDs) are block commands stored in the .ext files for this
feature set.

The sequence that CMDs are merged into the code is significant. The order
is determined by the file they are located in, and their relative position
within that file. The ordering rules follow:

• CMDs stored in lower-level directory search paths are applied before
CMDs in the current directory. The default order is .4gs, then .4gc, then the
current directory. This order may be overridden with the CUSTPATH set-
ting.

• All CMDs in one directory are processed before any CMDs in another
directory in the search path.

• The order of .ext files is determined by the order that the features are speci-
fied in the base.set file for this feature set.

• CMDs are then merged in their order within the .ext files.

3. Execute that list of commands in their proper sequence.

After the list of CMDs has been built, each CMD is individually processed.
If the block within the .org file isn't found, an error is displayed unless the
CMD originated from a higher directory in the search path.

4. Create .tmp files and/or .4gl files.

The Featurizer outputs to a .tmp file. It then compares the .tmp file with the
existing .4gl file, if there is one. If there is no difference, the original .4gl
file is untouched, thus preserving the time stamp of that .4gl file. If no .4gl
files are present, the Featurizer copies the .tmp files into .4gl files.

Fitrix Report Code Generator Technical Reference

Flow of the Featurizer 5-27

Note

Do not use .tmp extensions for your files. The .tmp extension is used by the Fea-
turizer as well as the Code Generator. If you use a .tmp extension the file will be
removed.

Fitrix Report Code Generator Technical Reference

5-28 Customizing Reports

Filename Extensions

Extension File Explanation

.4gm Indicates an application module directory.

.4gs Represents a 4GL source code directory.

.4gc Stands for a custom 4GL source code directory.

.4gl Represents a 4GL source code file.

.4go Indicates an object code file compiled with RDS.

.o Indicates an object code file compiled with the C Compiler.

.4ge Represents an executable program file, which is run directly
from the command line.

.4gi Represents a program file, which is executed with the runner
fglgo or the fgldb debugger.

.ifg Indicates an image file or report.ifg. This file contains a
picture or image of the report format.

.ext Stands for source code extension file. These files contain custom
code that the Featurizer merges into the original source code.

.set Indicates a feature set file or base.set. This file holds a list of
.ext files that are merged into the report source code.

.tmp Represents a temporary file. This extension is reserved for use
by the Featurizer and Code Generator.

.org Represents an original source code file. When extension files are
merged by the Featurizer, original source code gets preserved in
these files.

.opt Stands for option file or report.opt. This file lets you set custom
report program variables on the source code directory level. For
more on option (.opt) files, refer to "Backward Compatibility" on
page 7-2.

Fitrix Report Code Generator Technical Reference

Featurizer Environment Variables 5-29

Featurizer Environment Variables
$fg: Path to the fourgen directory (used to find executables so you do not have to
be within $fg while running the Featurizer).

$cust_path: If this variable is set before code generation and no CUSTPATH vari-
able exists in an existing Makefile, then the value of $cust_path is written
into the new Makefile. If CUSTPATH is already set in a Makefile, the
$cust_path variable is ignored. This variable provides a path that the Featurizer
searches for .ext files to merge.

Fitrix Report Code Generator Technical Reference

5-30 Customizing Reports

Featurizer Limitations

Limitations Number Notes

Files it can pre-process in one directory 50 A

Custom directories to search in CUSTPATH 10 A

Features in a feature set 100 A

Characters in custom directory extensions 3 B

Number of #_ block definitions in one file 1000 A

Lines in the (.org + .ext files) 7500 A, C

Block CMDs for an .org file unlimited D

Characters in one line unlimited E

Block nesting levels 10 A

Note Description

A The internal program array limit.

B By convention.

C The number of lines (excluding blank lines) in the .org file and the
number of lines in all .ext files that refer to this .org.

D An .org file can contain any number of block commands as long as
the total number of lines does not exceed the line limit specified in
[C].

E The number of characters right of the indentation level. If it
exceeds 70 characters, the lines are (internally) split into as many
70-character lines as necessary. Each split internally consumes a
new line (of which there are a limited number, see [C] above).

Fitrix Report Code Generator Technical Reference

Troubleshooting Tips 5-31

Troubleshooting Tips
Question: Where is the Featurizer located?

Answer: The utility, fglpp.4ge, is located in the $fg/codegen/
screen.4gm/fglpp.4gs directory.

Question: What changes to my program require regeneration of my program ver-
sus simply merging my files with fg.make?

Answer:

1. Addition of new fields to a screen.

2. Deletion of fields from a screen.

3. Addition or deletion of lookups and zooms.

4. Addition of a global event.

5. Addition of a local event.

6. Changes to your table schemes.

Question: Are comments acceptable in my extension files?

Answer: Comments are acceptable in most cases.

Question: How do I cause the Featurizer to never be run from fg.make or the
generator until I decide I want to turn it back on?

Answer: Set the environmental variable no_merge=Y.

Question: Where do I look for error messages explaining why the Featurizer is
aborting?

Answer: These can be found in the file fglpp.err. This file resides in the pro-
gram directory in which you are currently working.

6-1

6
Creating Advanced
Report Features

Quality report programs contain many features and customizations. The Report
Code Generator lets you create customizations to fit your needs. This section dis-
cusses some practical report customizations that you might want to add to your
report.

This section covers the following topics:

n Designing Report Prompts

n Modifying Report Functions for Job Scheduling

n Using Database Transactions for Posting

n Creating Transaction Logging Functions

n Issuing a Commit Work Without Closing the Cursor

n Migrating Applications to Other Systems

Fitrix Report Code Generator Technical Reference

6-2 Creating Advanced Report Features

Designing Report Prompts
Programs that produce reports have many parts. One part allows the user to enter
selection criteria, another part retrieves the data for the report, and a third formats
the data and creates the actual output.

The code for the last two parts of this process, the retrieval of data and the format-
ting of data, are created by the Fitrix Report Code Generator and are completely
consistent in general design.

The first part of this process is not generated by the Code Generator. This is
because of the variety of different methods available for allowing the user to enter
selection criteria.

Obtaining Selection Criteria

There are four different methods of obtaining selection criteria from the user. The
four methods are:

1. Creating Single Value Prompts

A single value prompt accepts one value for a single variable at a time. This
type of prompt works best when users make quick single criteria inputs. For
instance, when the user must enter an archive date, a dialog box appears and
prompts the user for the date. Once the date is entered, a validity check is per-
formed on the date. If valid, the date gets passed as a selection statement. If not
valid, the date is converted to a valid date, or the prompt re-appears and
requests a valid entry.

2. Creating Input Forms

Input forms accept one value for one or more variables at a time. For example,
when users want to specify a range of dates, a dialog box appears that contains
an input form. On the form, the user can enter a value into a start date and end
date field. The entered dates are checked to verify they are valid, and the selec-
tion statement is created. Input forms allow for sophisticated types of logic
including when-leaving and when-entering field logic to preassign, check, and
format values.

3. Creating Query-By-Example Forms

Fitrix Report Code Generator Technical Reference

Designing Report Prompts 6-3

The Query-By-Example method lets you enter one or more values for one or
more variables at a time. For example, a report built from several different col-
umns might require large selection criteria. This method lets you build large
selection statements for several report values at once. In addition, this method
works well in situations involving a number of different fields for which you
want to specify a number of different relationships, such as equal-to, greater-
than, and less-than.

4. Creating Command Line Selection Criteria

The command line selection criteria method accepts one value per variable and
the entry of one or more values at a time. This method allows you to pass selec-
tion criteria taken from outside the program into the program. The Fitrix Menus
software used to write the menus allows for the construction of a data-entry
form at the menu level. This form takes user input and then passes it to an
INFORMIX-4GL program. One advantage to using this method is that the
same selection criteria can be passed to several different programs without hav-
ing the user re-enter it. Each 4GL program gets the criteria information from its
arguments and converts it into a criteria string.

Sample Programs

The following are examples of each method of getting user-defined criteria. The
main function create_selection calls on the sel_cust function. There are
four different sel_cust functions. Each one is an example of the different meth-
ods of getting user-defined criteria.To create regenerable input prompts you must
own the Fitrix Screen Code Generator. For more on integrating prompts into your
report program, see "Adding in Report Prompts" on page 7-13

The sel_cust form is used for input and construct methods.

sel_cust form

screen
{
----------- Select Customers -------------------
Customer Code: .a
Customer Name: .b
--}
tables
strcustr
attributes
a = strcustr.cust_code,upshift
b = strcustr.bus_name,upshift
end

Fitrix Report Code Generator Technical Reference

6-4 Creating Advanced Report Features

instructions
screen record s_data (strcustr.cust_code, strcustr.bus_name)

function
create_selection()
This function prepares the select statement
from table strcustr (customer reference) for
execution. The criteria (customer business
name and customer code) is based on the value
returned from the function sel_cust()

define
sel_criteria char(256),
sel_stmt char(320)

call sel_cust() returning sel_criteria
let sel_stmt = "select * from strcustr where(",

sel_criteria clipped, ")"
prepare get_curs from sel_stmt

end function

Single Value Prompts

function sel_cust()
returns cust_sel

This function prompts the user to enter
customer code from which it creates a
construct statement and returns it. If an
invalid customer code is entered, the program
will prompt the user for a valid one

define
cust_code code(6),
cust_sel char(256),
invalid_cust smallint

open window selwin at 6, 6 with 14 rows,
70 columns attribute (border, blue)

display
"==="
at 3,1

let invalid_cust = true
while invalid_cust

let invalid_cust = false
whenever error continue

prompt "Enter Customer Code: "
for cust_code

whenever error call error_handler
validate the customer code
if status != 0 or validate_cust(cust_code)
!= 0
then

let status = 0
let invalid_cust = true
call fg_err(1) # invalid cust code

end if
end while
close window selwin
let cust_sel = "strcustr.cust_code = ",

cust_code
return cust_sel

end function

Fitrix Report Code Generator Technical Reference

Designing Report Prompts 6-5

Input Forms

function sel_cust()
returns cust_sel

This function allows the user to enter
customer selection criteria (customer business
name and customer code) using input from a
selection screen from which it creates a
construct statement and returns it. if an
invalid customer code is entered, the user
will be placed back into the customer code
field

define
p_cust_code like strcustr.cust_code,
p_bus_name like strcustr.bus_name,
cust_sel char(256)

open window selwin at 6, 6 with 14 rows,
70 columns attribute (border, blue)

display
"===" at
3,1

input p_cust_code, p_bus_name from
s_data.cust_code, s_data.bus_name

after field p_cust_code
if validate_cust(p_cust_code) != 0
then

call fg_err(1) # invalid cust code
next field p_cust_code

end if
end input
if int_flag = 1
then

let int_flag = 0
exit program(1)

end if
close form sel_screen
close window selwin
let cust_sel = "strcustr.cust_code = ",

p_cust_code, " and strcustr.
bus_name = ", p_bus_name

return cust_sel
end function

Query-By-Example Forms

function sel_cust()
returns cust_sel

This function allows the user to enter
customer selection criteria (customer
business name and customer code) using query
by example from which it creates a construct
statement and returns it.

define
cust_sel char(256)

open window selwin at 6, 6 with 14 rows,
70 columns attribute (border, blue)

display
"==="

Fitrix Report Code Generator Technical Reference

6-6 Creating Advanced Report Features

at 3,1
display " ENTER SELECTION CRITERIA" at 2,1

attribute(white)
display

"Press [DEL] to Cancel
or [ESC] to Select"
at 2,30 attribute(white)

open form sel_screen
from "../../lib.4gm/ar.4gs/sel_cust"

display form sel_screen
construct cust_sel

on
strcustr.cust_code,
strcustr.bus_name

from
s_data.cust_code,
s_data.bus_name

if int_flag = 1
then

let int_flag = 0
exit program(1)

end if
close form sel_screen
close window selwin
return cust_sel

end function

Command Line Selection Criteria

function sel_cust()
returns cust_sel

This function gets the customer codes from the
command line and converts them into a
selection statement

define
cust_sel char(256),
cust_code char(6),
n smallint # working number

if num_args() > 10
then

call fg_err(2) # too many argument on the
command line

exit program(1)
end if
for n = 1 to num_args()

let cust_code = arg_val(n)
if validate_cust(cust_code) != 0
then

call fg_err(1) # invalid cust code
exit program(1)

end if
if n = 1
then

let cust_sel = "strcustr.cust_code = ",
cust_code

else
let cust_sel = cust_sel clipped,
" or strcustr.cust_code = ", cust_code

end if
end for
return cust_sel

end function

Fitrix Report Code Generator Technical Reference

Designing Report Prompts 6-7

Report Production and Formatting

The Report Code Generator report production routine has a certain set of rules that
governs its use. In this process, a series of data records is passed to this routine. It
then manipulates and formats the data for output. The code for report production
and formatting is found in the report.4gl file.

For reasons of modularity and to make it easier to reuse, the report-generation rou-
tine has its own unique environment and is separated from all other routines and
functions. Global variables cannot be used by the report-generation routine. The
only interaction this routine has with other 4GL programs is in terms of the data
that is passed to it by those programs.

The report-generation routine is itself divided into several parts. The FORMAT sec-
tion creates the report image as it appears on paper.

Here are several subroutines we have created for the formatting section of the
report-generation routine:

1. Text Centering Subroutine

This subroutine centers a field (or fields) in the middle of the page, no matter what
amount of data is included. It does the following:

• Assigns a temporary character variable to the variable to be printed.

• Assigns a temporary integer variable to be the center column of the report.

• Calculates and assigns an integer variable to the starting print column.

• Prints the temporary variable at the calculated column.

let scratch = rpt.field(s)
let mid_column = 40
let x = mid_column - (length(scratch)/ 2)
print column x, scratch clipped

2. Text Right Justification Subroutine

This routine right-justifies a field or fields. In other words, it aligns the data with
the right-hand margin, no matter how wide the data is. In addition, it does the fol-
lowing:

• Assigns a temporary character variable to the variable to be printed

Fitrix Report Code Generator Technical Reference

6-8 Creating Advanced Report Features

• Assigns a temporary integer variable to be the last column of report

• Calculates and assigns an integer variable to the starting print column

• Prints the temporary variable at the calculated column

let scratch = rpt.field(s)
let last_column = 81
let x = last_column - length(scratch)
print column x, scratch clipped

3. Dynamic Heading and Footer Subroutines

This is used to print heading and footer lines only if there are rows that are printed
for that report section. This is the case when you have a cursor of information from
a header-detail join relationship where you are printing your header information in
the before group section and the detail information in the on every row
section. In your report, you want to have a heading for your detail only if there is
detail associated with the header. This routine does the following:

• In the before row section, it tests to see if there is detail data and sets a flag
to print, or not to print, a heading. If the flag is set, it then prints the heading;
otherwise it does not print anything.

• To prevent the printing of blank lines when there is no detail, it tests to print or
not print in the on every row routine before group of rpt.header.

if rpt.detail1 is not null or
rpt.detail2 is not null

then
let dynamic_flag = true

else
let dynamic_flag = false

end if
if dynamic
then

print "DETAIL HEADING"
end if
on every row
if rpt.detail1 is not null or

rpt.detail2 is not null
then

print rpt.detail1,rpt.detail2
end if

4. Page Number On Group Subroutine

When printing multiple page forms, this subroutine keeps track of the page number
per group.

page header
if p_pageno is null
then

Fitrix Report Code Generator Technical Reference

Designing Report Prompts 6-9

let p_pageno = 0
end
if let scratch = pageno - p_pageno

using "<<<<<<"
print column x, scratch clipped

before group rpt.field
skip to top of page

after group rpt.field
let p_pageno = pageno

Incorrect Trailer Information Subroutine

While printing forms, you want the program to skip to the top of the page in the
before group section. If there is trailer information to print, the current data record
is from the next record, so your trailer output is incorrect. This subroutine corrects
the problem. It does the following:

• Defines a trailer record the same as your trailer.

• rpt.variables and sets a flag to indicate after group.

• If an after group has occurred, it sets the printing of the trailer information
to the previous record.

last_trlr record
1st_trlr_info like,

2nd_trlr_info like,
3rd_trlr_info like

end record
before group rpt.field

skip to top of page
after group rpt.field

let after_group_flag = true
let last_trlr.1st_trlr_info = rpt.1st_trlr_info
let last_trlr.2nd_trlr_info = rpt.2nd_trlr_info
let last_trlr.3rd_trlr_info = rpt.3rd_trlr_info

page trailer
if after_group_flag is null
then

let after_group = false
end if
if after_group_flag
then

let after_group = false
else

let last_trlr.1st_trlr_info = rpt.1st_trlr_info
let last_trlr.2nd_trlr_info = rpt.2nd_trlr_info
let last_trlr.3rd_trlr_info = rpt.3rd_trlr_info

end if
print last_trlr.1st_trlr_info
print last_trlr.2nd_trlr_info
print last_trlr.3rd_trlr_info

Fitrix Report Code Generator Technical Reference

6-10 Creating Advanced Report Features

Modifying Report Functions for
Job Scheduling
The Fitrix Menus program allows users to schedule reports to run at a specified
future time. The scheduling logic provides scheduling for any job using the
:print: instruction as well as for reports generated by the :ifxreport:
instruction. In the case of the Informix generated report, it is the responsibility of
the report program itself to allow itself to be scheduled.

The following changes to globals.4gl, midlevel.4gl, and the file con-
taining input logic allow a report program to take advantage of the scheduling
logic.

1. Add these variable definitions to globals.4gl:

sel_flag smallint, # flag for selection only processing
bg_flag smallint, # flag for background processing
job_id like stxfiltr.unique_id, # unique job id

2. Add this argument processing logic to ml_defaults() in
midlevel.4gl:

define
n_args smallint,
n smallint

initialize globals
let n_args = num_args()
let sel_flag = false
let bg_flag = false
let job_id = ""

check for flag
for n = 1 to n_args

if arg_val(n) = "-s"
then

let sel_flag = true
let job_id = arg_val(n + 1)

end if
if arg_val(n) = "-b"
then

let bg_flag = true
let job_id = arg_val(n + 1)

end if
end for

3. Add this logic to your input processing function:

check for background processing
if not bg_flag
then

...

Fitrix Report Code Generator Technical Reference

Modifying Report Functions for Job Scheduling 6-11

...
(existing input function logic)
...
...

else
get criteria from stxfiltr
whenever error continue
select sel_filter
into selection_string
from stxfiltr
where stxfiltr.unique_id = job_id

make sure string was found
if status
then

default selection string in case of error, may be "1=2"
let selection_string = "1=1"

end if

delete the stxfiltr values
delete from stxfiltr where stxfiltr.unique_id = job_id
whenever error call error_handler

end if

selection only processing
if sel_flag
then

insert the selection string into stxfiltr
whenever error continue
insert into stxfiltr values (job_id, 1, selection_string)
whenever error call error_handler

done - exit program
exit program(status)

end if

You can even add several pieces of data by using the seq_no field in stxfiltr.
For example, in the Fixed Assets module, the option Print Depreciation
Report (p_assetd) there is a prompt for a date in the check phase of the report
only. This date is stored in stxfiltr with seq_no = 2 for scheduled jobs.
When retrieved the global normally filled by the prompted value is assigned the
retrieved value (use a character string to fetch the value then convert it to date using
let).

For further information on the establishment of job scheduling with Fitrix Menus,
see the section titled "Report Scheduling Through Fitrix Menus."

Fitrix Report Code Generator Technical Reference

6-12 Creating Advanced Report Features

Using Database Transactions for
Posting
In Fitrix Accounting, many programs post data in one form or another. This means
that when the process is run, the data is changed or updated in some way. Typically,
it is taken from an entry file and moved to an activity file, but this is just one type of
such posting.

In Fitrix Accounting, posting programs begin with either the o- (if they produce
printed output) or the p_ (if they just change data) prefixes. In writing these posting
programs, we used the SQL concept of database transactions. Database transac-
tions offer the programmer some unique features:

• They can be used to guarantee that everything between your begin work and
commit work statements is either done 100%, or is not done at all (great for
power failures, and those programs that blow-up in the middle of posting
because that null value wasn’t taken into consideration).

• They give you the ability to rollback work (automatically undo the changes
made to the database since the last begin work command).

• They give you the ability to rollforward database. That is the ability to take a
backup of your database, and apply all changes made to it since that backup to
bring it up to date.

If transactions offer so much, why aren’t they used very often? Most programmers
will see the value in the first two benefits outlined, but it’s the rollforward
database statement that makes transactions, for the most part, unusable. The rea-
son for this is simple: if you are able to rollforward database, then you
must always use transactions. The problem with this restriction is twofold.

First, the transaction logfile can grow out of control in a very short time. In
some testing, the logfile grew larger than the database itself within an hour.

Second, begin/commit/rollback work consumes system resources when
they are required for only a small portion of database i/o that occurs. In Fitrix
Accounting, only posting routines need to use begin/commit/rollback
statements.

Fitrix Report Code Generator Technical Reference

Using Database Transactions for Posting 6-13

The fact that Fitrix Accounting had to guarantee data integrity during posting
required us to use database transactions, but we wanted to avoid maintaining a
logfile that could grow to 20MB in just one day of activity. So a way was
developed to turn transactions on when they were needed, and turn them off when
they were not. This sacrifices the ability to rollforward database from a
transaction logfile, but the overhead required by this feature was not worth the
benefit.

Fitrix Report Code Generator Technical Reference

6-14 Creating Advanced Report Features

Creating Transaction Logging
Functions
There are two functions that turn database transactions on or off. The philosophy
behind these functions is simple: INFORMIX-4GL knows if the database uses
transactions by the presence or absence of a row in systables with the tabname
syslog. If you want database transactions, add the row: if not, delete it. The fol-
lowing pages contain the layout of the functions add_log and chk_log.

1. The add_log(dbname,logpath) function:

If the syslog row isn’t in systables, then insert it, close the database, re-
open the database (it then opens using transactions), and delete the syslog
row (the default is no syslog row).

function add_log(dbname,logpath)
###
Add a record "syslog" into systables.
Close and reopen the database for logging.
Deletes the record "syslog"

define
log_rowid integer,
dbname char(14),
logpath char(64)

let status = 0
whenever error continue
select rowid into log_rowid from systables

where tabname = "syslog"
if status != 0
then

let status = 0
not there - insert it.
insert into systables

(tabname,owner,dirpath,tabid,
rowsize,ncols,nindexes,nrows,
created,version,tabtype)

values
("syslog","informix",logpath,
0,0,1,0,0,today,0,"L")

if status != 0
then

Cannot add the syslog row
call fg_error("lib_all","log_on",1)
exit program(1)

end if
close database
database dbname
if status != 0
then

Cannot open the database logfile.
call fg_error("lib_all","log_on",2)
exit program(1)

end if
delete it for the next user.

Fitrix Report Code Generator Technical Reference

Creating Transaction Logging Functions 6-15

delete from systables
where tabname = "syslog"

end if
whenever error call error_handler

end function
add_log

2. The chk_log(dbname,logpath) function:

If the syslog row is in systables, then a user is opening the database
with transactions right now. Wait a while and check again. If the wait is too
long, then just delete the syslog row from systables. Then close, and re-
open the database (this time without transactions).

function chk_log(dbname,logpath)

Check table systables to see if transactions are set on. If so,
sleep until the record is removed.

define
sys_rowid integer,
dbname char(14),
logpath char(64),
cnt smallint
let status = 0
whenever error continue
select rowid into sys_rowid from systables

where tabname = "syslog"
if status = notfound
then

database opened without transactions
let status = 0

else
wait for database to open without trx
open window wait_sys at 2,4

with 1 rows, 60 columns
attribute(white,border)

display
" Waiting for table to become available..."
at 1,1
let cnt = 0
while cnt < 5

sleep 5
select rowid into sys_rowid from systables
where tabname = "syslog"

if status = 0
then
let cnt = cnt + 1
continue while

else
exit while

end if
end while
if cnt = 5
then

problem with syslog record. it should never be there for this
long. the only time the syslog record should be there is when
you run a process with transactions, and in that case, the
record is inserted only for the time it takes to close the
database, re-open it (with transactions), then delete that
syslog record. We’re going to have to 86 that syslog record...

delete from systables

Fitrix Report Code Generator Technical Reference

6-16 Creating Advanced Report Features

where rowid = sys_rowid
end if
close window wait_sys
close database
database dbname

end if
whenever error call error_handler

end function

Before using these functions yourself, take heed of the following caveats:

1. The Informix syslog convention is not documented, and although there is no
reason for them to change it, Informix remains open for changing database log-
ging philosophies that may render these functions inoperable (the syslog
convention is currently used in all Informix platforms);

2. You lose the rollforward database capabilities.

If you can live with these two caveats, then you can start enjoying the benefits of
database transactions using these two routines. All 4GL programs that Fitrix pro-
duces utilize these routines because we demand the guarantee of data integrity
without the overhead of the rollforward database function.

Fitrix Report Code Generator Technical Reference

Issuing a Commit Work Without Closing the Cursor 6-17

Issuing a Commit Work Without
Closing the Cursor
Fitrix Accounting uses the begin/commit/rollback work statements to
control application transactions. Application transactions are defined as the transac-
tions of a business. Checks and invoices, for example, are complete transactions for
applications. When these types of transactions are posted, they are done a batch at a
time and a cursor is used to gather the data for posting.

A check (transaction) may take data from one to many of the rows retrieved from
the cursor. Use the work concept for just those rows of the transaction (the check),
rather than all rows in the cursor. A problem arises when you commit work for the
first check. Doing so closes the main posting cursor (just what the documentation
says it does). When you try reading in the next check from the cursor, a 4GL error
occurs due to a closed cursor. To tackle the problem, you have to understand the
nature of a cursor. A cursor is merely a method of gaining orderly access to several
rows of data returned from an SQL statement. Routines like the following are used
to work on cursors:

##################################
function c1_define(sql_str)
##################################

define sql_str char(200)
prepare get_curs from sql_str
declare c1_curs scroll cursor

for get_curs
open c1_curs

end function
c1_define()
##################################
function c1_fetch(curs_num)
##################################

define curs_num integer
fetch absolute curs_num c1_curs

into c1_data.*
end function
c1_fetch()

In the main body of the program, Fitrix posting programs rely on these types of rou-
tines to get data into the c1_data.* record (actually, these are shortened versions
of the real thing, with a lot of the error-handling code removed). As discussed ear-
lier, the first time a commit work statement is issued, you can no longer call on
the c1_fetch() routine because the cursor is closed. The way to get around this
is to create an entity called a fake cursor. A fake cursor is a temp table created by
this process for the purpose of obtaining an orderly method of accessing data

Fitrix Report Code Generator Technical Reference

6-18 Creating Advanced Report Features

returned from the SQL statement. A cursor must be defined in order to create the
temp table, then the data is moved from the cursor to the temp table. The cursor is
closed, and the fetch routine takes data from the temp table instead of the cursor.
When the process is complete, the temp table is removed (or you can issue a drop
table on the temp table when you are done with it). The temp table is then treated
as the cursor. By using this strategy, you can keep your cursor open outside of
begin/commit work statements.

Here is an example of the same routines with the fake cursor logic inserted. This
routine lets begin/commit/rollback transactions to occur without
closing the cursor:

##################################
function c1_define(sql_str)
##################################

define sql_str char(200)
prepare get_curs from sql_str
declare c1_curs cursor

for get_curs
create temp table fake_curs (

check_number char(10),
doc_no integer,
...)

the fake_curs table is defined to look like the data elements
of the c1_curs cursor.

foreach c1_curs into c1_data.*
insert into fake_curs
values(c1_data.*)

end foreach
close c1_curs

end function
c1_define()

##################################
function c1_fetch(curs_num)
##################################

define curs_num integer
select * into c1_data.*

from fake_cursor
where rowid = curs_num

end function
c1_fetch()

Note the following about the preceding functions:

• The define section opens the cursor just for the amount of time it takes to trans-
fer the data in the cursor into the temp table.

• The temp table is defined with the exact same data elements as are defined in
the c1_curs cursor.

Fitrix Report Code Generator Technical Reference

Issuing a Commit Work Without Closing the Cursor 6-19

• When the insert statement occurs on the temp table, the cursor rows are inserted
sequentially and can be accessed by rowid (see c1_fetch) in the order that
they were written to the temp table.

• The fetch function has been re-written to fill the c1_data.* record from the
temp table rather than the cursor.

The above method for accessing data versus direct cursor access has the following
disadvantages:

• It uses twice as much disk space for the same routine, since it must copy the
cursor data to the temp table.

• The cursor definition routine is much slower since it must move all data from
the real cursor into the fake cursor.

• When you change the layout of the cursor, you must remember to change the
layout of the temp table to match the new cursor layout.

Although this is not the most graceful way to gain access to data returned from a
select statement, if you really have to perform begin/commit/rollback
work within large cursors, at least you have a method. Once understood, it is an
easy concept to remember and it is proven in the field. This technique has been
used in the Fitrix Accounting system, and although it is slow to startup, it gets the
job done as advertised.

Fitrix Report Code Generator Technical Reference

6-20 Creating Advanced Report Features

Moving Applications to Other
Systems
To successfully run programs generated with the Report Code Generator on sys-
tems other than the development system, a few steps must be taken. These steps
ensure that the tables, data, and reports your program needs to operate exist on the
system to which you are transferring the program, and that your program knows
where to find them.

The following steps are required to add the necessary tables to the application data-
base:

1. Create the following directories on the target system:

• $fg/Make

• $fg/bin

• $fg/lib/data/library.dat

• $fg/lib/data/library

2. Copy the files in the following three directories from the development system,
to the directories you created on the target system:

• $fg/bin

• $fg/lib/data/library.dat

• $fg/lib/data/library

3. Change your $PATH variable on the target system to include the $fg/bin
directory.

4. Be sure that each database to be converted is in the $DBPATH.

5. Run mklib -dbname database on each database that needs converted.

The mklb script adds a number of cg* and stx* tables to your database.

If your application includes prompts or input forms, these steps are required to
make forms available to the application:

Fitrix Report Code Generator Technical Reference

Moving Applications to Other Systems 6-21

1. Create a $fg/lib/forms directory on the target system.

2. Copy the files in the $fg/lib/forms directory on the development system
into the $fg/lib/forms directory on the target system.

3. Add $fg/lib/forms to your $DBPATH on the target system.

The following is a list of the minimum files required to move your application from
one system to another.

• .4gi and .frm files

• $fg/lib/data/library.dat/*

• $fg/lib/data/library/dbmerge.4gi

• $fg/lib/forms/*.frm

• $fg/bin/mklib

• $fg/Make/*

• Your startup scripts or custom runners

$fg/bin needs to be in the $PATH

$fg/lib/forms needs to be in the $DBPATH

Note

You can also use the optional variables $fgmakedir, $fglibdir, and
$fgtooldir to point to your Make directory, upper-level libraries (lib)
directory, and your Tools executable directory. Refer to "Optional Directory
Variables" on page 1-6 for more information about these variables.

Fitrix Report Code Generator Technical Reference

6-22 Creating Advanced Report Features

7-1

7
New Features and
Functionality

This release of the Report Code Generator includes several new features and
improved functionality.

This section covers these features, which include the following topics:

n Larger Selection Statement Variables

n Post Processor Flexibility

n Print Statement Block Tag Logic

n Custom Image File Block Tags

n Block Tags in Makefile

n Adding in Report Prompts

Fitrix Report Code Generator Technical Reference

7-2 New Features and Functionality

Larger Selection Statement
Variables
The Report Code Generator now uses larger selection statement variables to pre-
pare and declare selection statements. This increased size more than doubles previ-
ous capabilities.

In addition these variables are now located in midlevel.4gl instead of glo-
bals.4gl, and the ct. has been dropped from their name. This move and subse-
quent name change gives you easier access and more control over the selection
statement variables; you can increase their size whenever you near a limitation
without having to change any libraries.

Backward Compatibility

An early work around to the limited size of selection statements used block com-
mands and string replacements to increase selection limits. If you have programs
that depend on this work around and you want to regenerate them, you can use an
environment variable and an options file to maintain backward compatibility.

The rpt_select environment variable takes two options: local and global.
The global option sets all variable values to their former size, name, and loca-
tion. This is the option you should use to maintain backward compatibility. The
local option sets all selection variables to their new size, name, and location.

You can set the rpt_select variable to global on a system, module (4gm) or
program level (4gs). By default this variable is pre-set to local, so all selection
variables start with the larger sizes.

Previous Variable Size New Variable Size

ct.sel_join char(200) sel_join char(512)

ct.sel_filter char(200) sel_filter char(2048)

ct.sel_order char(200) sel_order char(512)

ct.sel_stmt char(1024) sel_stmt char(4096)

Fitrix Report Code Generator Technical Reference

Larger Selection Statement Variables 7-3

To set on a system level, type rpt_select="global" in the report.org
file. This file is located in the $fg/codegen/options directory.

To set on a module or program level, create a report.opt file in the directory
that contains the programs you want to affect. In the report.opt file, add the
rpt_select="global" line.

The ml_ct_sel_compat() Function

In addition to the new variables, a new function has also been added to
midlevel.4gl. This function, named ml_ct_sel_compat(), sets local
selection variables to any value passed from the command line or any other initial-
izing method.

Fitrix Report Code Generator Technical Reference

7-4 New Features and Functionality

Post Processor Flexibility
The Report Code Generator lets you customize generated source code with a post
processor. A post processor is useful for many tasks, such as making global
changes to code, replacing or altering code blocks, and implementing bug fixes.

The fg.report program runs a post processor on the local application if the
environment variable $local_rpt is set. Use this variable to point to the name of
the program you wish to run on the generated 4GL code.

The same arguments that you pass to fg.report get passed to your post-proces-
sor program.

For example, assume you write an initialization function (say, my_init()) that is
more relevant than the generic init() function that the Code Generator creates.
You may want main.4gl to call my_init() rather than the init() function.
You can set up a post processor to change the initialization call in main.4gl to
my_init().

To change init() in main.4gl to my_init():

1. Write a shell script (chg_init, for example) that uses the sed utility to
remove init() and add a call to my_init(), such as:

#chg_init
sed "s, call init, call my_init, " main.4gl > main.tmp &&
mv main.tmp main.4gl

2. Set your $local_rpt environment variable to the name of the post-pro-
cessor script (you might want to set this variable in your .profile file),
for example:

local_rpt=chg_init; export local_rpt

Once the Code Generator completes creating source (.4gl) files, your local
main.4gl file contains the function call my_init() rather than init().

Fitrix Report Code Generator Technical Reference

Print Statement Block Tag Logic 7-5

Print Statement Block Tag Logic
In previous versions of the Fitrix Report Code Generator, the report.4gl file
contained a block tag for each report row. These block tags, which were numbered
sequentially, allowed you to create custom code for each line in the report. In other
words, you could use an extension file and block command to act on any
report.4gl print statement. The following shows an example of the old logic:

format
page header

whenever error call error_handler
#_print_1 - tag for the following print statement
print

column 1, today using "mm/dd/yy";
let scratch = "CUSTOMER ORDER HISTORY LIST"
let x = 40 - (length(scratch) / 2)
print

column x, scratch clipped;
let scratch = pageno using "Page: <<<<"
let x = 81 - length(scratch)
print

column x, scratch clipped
#_print_2 - tag for the following print statement
print
#_print_3 - tag for the following print statement
print

column 1, "Customer"
#_print_4 - tag for the following print statement
print

column 1, "Number",
column 11, "Name",
column 30, "Company",
column 54, "Phone"

#_print_5 - tag for the following print statement
print

column 1, "--",
column 41, "-----------------------------------"

page trailer
#_print_6 - tag for the following print statement
print
#_print_7 - tag for the following print statement
print

column 1, "--",
column 41, "------------------------------------"

#_print_8 - tag for the following print statement
print

column 1, pageno using "Page: <<<<";
let scratch = pageno using "Page: <<<<"
let x = 81 - length(scratch)
print

column x, scratch clipped

Print Statement
Block Tags in
report.4gl

Fitrix Report Code Generator Technical Reference

7-6 New Features and Functionality

This version of the Report Code Generator uses new print statement block tag
logic. Instead of the entire report.4gl file having sequentially numbered print
statement block tags, this version numbers print statement block tags according to
the control block that contains them. In other words, the numbering scheme restarts
at one for each control block. The new code looks as follows:

As you can see, this new scheme limits the number of lines affected when you
insert a custom print statement.

For instance, suppose you create a report that contains 30 print statements. When
the Report Code Generator constructs your source code (.4gl) files, it adds 30 print
statement block tags to your report.4gl file, one tag for each print statement.
The old method numbers these block tags from one to 30. As mentioned above, the
new numbering scheme restarts at one for each control block.

format
#_format - Format section

#_page_header - Report block for page header.
#_err - Trap fatal errors.
whenever error call error_handler
#_page_header_1 - Print statement
call put_vararg(today using usg.today)
call put_vararg("CUSTOMER ORDER HISTORY LIST")
call put_vararg(pageno using usg.pageno)
let header_image = imageManager_getLine(1)
print header_image clipped
#_page_header_2 - Print statement
print
#_page_header_3 - Print statement
let header_image = imageManager_getLine(2)
print header_image clipped
#_page_header_4 - Print statement
let header_image = imageManager_getLine(3)
print header_image clipped
#_page_header_5 - Print statement
let header_image = imageManager_getLine(4)
print header_image clipped

#_end - End of report block.

#_page_trailer - Report block for page trailer.
#_page_trailer_1 - Print statement
print
#_page_trailer_2 - Print statement
let header_image = imageManager_getLine(5)
print header_image clipped
#_page_trailer_3 - Print statement
call put_vararg(pageno using usg.pageno)
call put_vararg(pageno using usg.pageno)
let header_image = imageManager_getLine(6)
print header_image clipped

#_end - End of report block

Print Statement Block
Tags for page header
Control Block

Print Statement Block
Tags for page trailer
Control Block

Fitrix Report Code Generator Technical Reference

Print Statement Block Tag Logic 7-7

Now suppose this same report program uses several extension files containing
block commands that act on these print statement block tags. Using the old method,
if a situation arises where you need to remove a print statement, all your extension
files must be reworked. However, with the new method, you only need to alter the
extension files that reference the modified control block.

Backward Compatibility

Although this new numbering scheme makes modifying reports easier, you can
regenerate your existing report programs with the old method. The Report Code
Generator uses a new variable that controls which method gets used, namely rpt-
tagtype. This variable, which you set on a local basis in the report.opt file
and globally the $fg/codegen/options/report.org file, accepts one of
two values: block or line. By default, the Report Code Generator uses the new
print statement block tag logic, in other words rpttagtype is set to block. If
you want to use the old method, set rpttagtype to line.

As a rule, set rpttagtype to line when you are working with previously gen-
erated programs. In the report.opt file type:

rpttagtype=line

When developing new report programs, use the new numbering scheme to take
advantage of the simplified code and regenerability.

Fitrix Report Code Generator Technical Reference

7-8 New Features and Functionality

Custom Image File Block Tags
Another new feature of the Report Code Generator is custom image file block tags.
You can now add your custom block tags in the format section of the image file.
These block tags, upon code generation, get placed into the report.4gl file.
Once in the report.4gl file, you can use extension files and block statements to
customize the source code. For example, the following image (report.ifg) file
contains a custom block tag in the before group control block:

When this example image file is generated into source code, the custom block tag
gets added to the appropriate line in the report.4gl file:

Custom tags are useful, because they never change. Whereas print statement block
tags change when new lines are added, custom tags are completely regenerable.
When you create extension files that act on custom block tags, your modifications
are preserved each time you regenerate the code.

before group of customer.customer_num
{
#_custom_block - Example custom block tag
[f000 [f001 [f002 [f008

Activity Report: [!
Order # PO # Ordered Shipped Paid [!
--- [!

}

Custom Block Tag

before group of rpt.customer_num
#_b_customer_num - Before group customer_num

if
rpt.order_num is not null

or rpt.po_num is not null
or rpt.order_date is not null
or rpt.ship_date is not null
or rpt.paid_date is not null
then

let dynamic = true
need 4 lines

else
let dynamic = false

end if

#_custom_block - Example custom block tag
call put_vararg(rpt.customer_num using usg.customer_num)
call put_vararg(rpt.fname)
call put_vararg(rpt.company)
call put_vararg(rpt.phone)
let line_image = imageManager_getLine(7)
print line_image clipped

Custom Block Tag
Added to report.4gl

Fitrix Report Code Generator Technical Reference

Custom Image File Block Tags 7-9

Numbering Scheme Variable

When you create custom block tags in your report.ifg file, you must decide
how you want the print statement block tags in the report.4gl file to increment.
There are two increment methods. The first method counts your custom block tags;
in other words, it is an absolute numbering scheme. The second method does not
count your custom block tags, thus the print statement block tags remain consistent
no matter how many custom block tags you add to your report.ifg file. This
second method is known as relative.

In almost every case, the Report Code Generator defaults to the method appropriate
to your situation. However, at times you might want to specify the non-default
method.

To specify the non-default method, use the new rpttagnum variable. You can set
this variable to either absolute or relative. On the local directory level, use
the report.opt file to set this variable. For example, to set the rpttagnum to
absolute, add the following line to the report.opt file:

rpttagnum=absolute

On a global basis, set this variable in the $fg/code-
gen/options/report.org file.

Note

The rpttagnum variable defaults to a different value depending on the value
in the rpttagtype variable. When rpttagtype is set to block, rpttag-
num defaults to relative. When rpttagtype is set to line, rpttagnum
defaults to absolute. For more on the rpttagtype variable, refer to "Print
Statement Block Tag Logic" on page 7-5.

The following lines of code show an example of both absolute and relative
numbering schemes, notice how the number of the third print statement block tag
differs between the two methods:

Absolute Block Tag Numbering Scheme
#_page_header - Report block for page header.

#_err - Trap fatal errors.

Fitrix Report Code Generator Technical Reference

7-10 New Features and Functionality

whenever error call error_handler

#_page_header_1 - Print statement
call put_vararg(today using usg.today)
call put_vararg("Syscolumns ")
call put_vararg(pageno using usg.pageno)
let header_image = imageManager_getLine(1)
print header_image clipped

#_custom_tag - Custom block tag
let header_image = imageManager_getLine(2)
print header_image clipped

#_page_header_3 - Print statement
let header_image = imageManager_getLine(3)
print header_image clipped

#_page_header_4 - Print statement
let header_image = imageManager_getLine(4)
print header_image clipped

#_page_header_5 - Print statement
print

#_page_header_6 - Print statement
print

#_end - End of report block.

Relative Block Tag Numbering Scheme
#_page_header - Report block for page header.

#_err - Trap fatal errors.
whenever error call error_handler

#_page_header_1 - Print statement
call put_vararg(today using usg.today)
call put_vararg("Syscolumns ")
call put_vararg(pageno using usg.pageno)
let header_image = imageManager_getLine(1)
print header_image clipped

#_custom_tag - Custom block tag
let header_image = imageManager_getLine(2)
print header_image clipped

#_page_header_2 - Print statement
let header_image = imageManager_getLine(3)
print header_image clipped

#_page_header_3 - Print statement
let header_image = imageManager_getLine(4)
print header_image clipped

#_page_header_4 - Print statement
print

#_page_header_5 - Print statement
print

#_end - End of report block.

Fitrix Report Code Generator Technical Reference

Custom Image File Block Tags 7-11

A good time to use the non-default method is when you add a custom image file
block tag to a report that uses the old print statement logic (i.e., rpttag-
type=line), and you regenerate that report. In this case, you do not want rpt-
tagnum set to absolute, because absolute numbers each block tag including
your custom tag, which in turn throws off every extension file that acts on the
changed tag numbers. Instead, set rpttagnum to relative. This setting pre-
serves all the existing print statement block tags. In essence this setting numbers
around your custom tag.

Fitrix Report Code Generator Technical Reference

7-12 New Features and Functionality

Block Tags in Makefile
As you might have noticed already, the Makefile now comes with generated
block tags before each Makefile macro. The new Makefile style makes
including custom libraries and source files into your generated programs easier. In
addition, you inherit all the flexibility and functionality of block statements and
extension files, such as pluggable features and feature sets, without having to use
difficult-to-maintain string replacement logic in block statements. The following
example Makefile illustrates the new block tags:

###
Copyright (C) 1993 <Your Company Name>
All rights reserved.
Use, modification, duplication, and/or distribution of this
software is limited by the software license agreement.
Sccsid: %Z% %M% %I% Delta: %G%
##
Makefile for an Informix report

#_type - Makefile type
TYPE = program

#_name - program name
NAME = tmp.4ge

#_objfiles - program files
OBJFILES = globals.o lowlevel.o main.o midlevel.o report.o

#_forms - perform files
FORMS =

#_libfiles - library list
LIBFILES = ../lib.a \

$(fg)/lib/report.a \
$(fg)/lib/user_ctl.a \
$(fg)/lib/standard.a

#_globals - globals file
GLOBAL = globals.4gl

#---

#_all_rule - program compile rule
all:

@echo "make: Cannot use make. Use fg.make -F for 4GL compile."

Fitrix Report Code Generator Technical Reference

Adding in Report Prompts 7-13

Adding in Report Prompts
As discussed in "Designing Report Prompts" on page 6-2, many reports require the
end-user to enter selection criteria in a prompt prior to running a report. If you own
the Fitrix Screen Code Generator and Form Painter, you can use the following
extension file to automatically hook in these prompts. Follow the general steps out-
lined below to link in your query screens:

1. Create a query screen in the Fitrix Screen Painter.

2. Run the Fitrix Screen Code Generator.

3. Create an image (report.ifg) file for your report.

4. Run the Report Code Generator.

5. Create the extension file (shown below) and call it in the base.set file.

6. Run fg.make to build the report program.

Before following any of these steps, you should reference "Customizing Reports"
on page 5-1. In that section you will find information that describes merging cus-
tom code into generated code, using the Featurizer, and making your programs
regenerable.

Report Prompt Extension File

Add the following lines of code to an extension file. Notice that you must supply
the name of your prompt screen in three locations within this extension file. The
italicized word screen_name denotes where you should enter the name of your
prompt screen less the .per extension.

#---
start file "Makefile"
#---

 libraries
 $(fg)/lib/scr.a;

#---
start file "midlevel.4gl"
#---

function define ml_filter
 m smallint,
 n smallint;

Fitrix Report Code Generator Technical Reference

7-14 New Features and Functionality

replace block ml_filter sel_filter

 else
 for m = 1 to n
 let sel_filter = sel_filter clipped, fgStack_pop()
 end for
 end if;

#---
start file "main.4gl"
#---

 after block main after_init
 let scr_id = "default"
 ;

 at_eof

 ##
 function switchbox(funct)
 ##
 # This is the switchbox function for version 4.11.UC1 screens.
 # It is used to pass flow control to the appropriate screen functions.
 #
 #_define_var - define local variables
 define
 #_local_var - local variables
 funct char(20) # Function to pass on to the screen

 #_post_scr_funct - Post the current function
 let scr_funct = funct

 #_scr_funct - Reset scr_funct upon return
 let scr_funct = ""

 end function
 # switchbox()
 ;

 call socketManager("screen_name", "query", "default")
 let sel_filter = null
 let n = fgStack_pop()
 if n = 0
 then
 let int_flag = true
 # set default filter if user continues
 let sel_filter = "1=1"

 #_switchbox - Pass flow control to appropriate screen
 case
 # put your screen in here
 when scr_id = "screen_name" call S_screen_name()
 when scr_id = "default" call lib_screen()
 #_otherwise - otherwise clause
 otherwise let scratch = "no screen"
 end case

8-1

8
Report Examples

Sometimes the best way to learn is by example. This chapter illustrates an image
file and other 4GL source code files that can help you develop your own report pro-
grams. Study these examples and try them yourself.

This section contains examples of the following files:

n Report Image File

n Source Code .4gl Files

n Report Output

Fitrix Report Code Generator Technical Reference

8-2 Report Examples

Report.ifg
database standard

output
 top margin 0
 bottom margin 0
 left margin 0
 right margin 80
 page length 66

page header
{
<A1] +A2] Page: >A3]
==
}
on every row
{

Cust No [A4]
 [*
Last Name [A5]
 [*
Company Name [A6]
 [*
Order No [A7]
 [*
Order Date [A8]
 [*
Pay Date [A9]
 [*
Address Line #1 [B1]
 [*
}

attributes
 A1 = date using "mm/dd/yy", name=HD_date
 A2 = constant "Customer Activity ", name=HD_title
 A3 = pageno using "Page: <<<<<", name=HD_page
 A4 = customer.customer_num, name=customer.customer_num
 A5 = customer.lname, name=customer.lname
 A6 = customer.company, name=customer.company
 A7 = orders.order_num, name=orders.order_num
 A8 = orders.order_date, name=orders.order_date
 A9 = orders.paid_date, name=orders.paid_date
 B1 = customer.address1, name=customer.address1

select
 tables = customer, orders
 join = orders.customer_num = customer.customer_num

defaults
 progname = query
 prcname = Customer Activity
 destin = report.out

data group Demo Data Set
 tbls = customer orders items stock manufact state
 lang = ENG

Fitrix Report Code Generator Technical Reference

8-3

Globals.4gl
database standard

globals
 define
 #_define
 #_define_0
 #_end
 #_using - Dynamic ’using’ variables
 usg record
 today char(16), # Default: "mm/dd/yy"
 pageno char(22) # Default: "Page: <<<<<"
 end record,

 #_rpt_rec - report record
 rpt record # record for the report
 customer_num like customer.customer_num,
 lname like customer.lname,
 company like customer.company,
 order_num like orders.order_num,
 order_date like orders.order_date,
 paid_date like orders.paid_date,
 address1 like customer.address1
 end record,

 #_curs_rec - cursor current record
 curs record # record like the cursor
 customer_num like customer.customer_num,
 lname like customer.lname,
 company like customer.company,
 order_num like orders.order_num,
 order_date like orders.order_date,
 paid_date like orders.paid_date,
 address1 like customer.address1
 end record,

 #_curs_next_rec - cursor next record
 curs_next record # next row of cursor
 customer_num like customer.customer_num,
 lname like customer.lname,
 company like customer.company,
 order_num like orders.order_num,
 order_date like orders.order_date,
 paid_date like orders.paid_date,
 address1 like customer.address1
 end record,

 #_ct_rec - control record
 ct record # control record (don’t change)
 prcname char(35), # process name (message on upper left)
 rtmargn char(35), # message on upper right margin
 prc_only char(1), # process only? (no report) "y" or "n"
 allow_int char(1), # allow interrupts? "y" or "n"
 quiet smallint, # display every "quiet" rows
 destin char(150), # "screen", "printer", "pipe", or "filename"
 sel_join char(200), # join portion of selection stmt
 sel_filter char(200), # filter portion of selection stmt
 sel_order char(200), # order by clause for above
 sel_stmt char(1024),# select statement for report cursor
 num_rows integer, # number of rows in the cursor to process
 cur_row integer # current row being processed
 end record,

 #_communication - communication area
 ###
 # Library communication area 4.10.UC1

Fitrix Report Code Generator Technical Reference

8-4 Report Examples

 ###
 # Global variables in this section should not be changed.
 # They are used to communicate to the screen library functions,
 # and must be of the same type as defined in the library.
 # Don’t remove these comments. The codegenerator keys on them.
 #
 progid char(17), # Program identification
 scr_id char(7), # Current screen id
 menu_item char(10), # Current menu item running
 scr_funct char(20), # Current screen function being run
 sql_filter char(512), # Filter portion of SQL statement
 sql_order char(100), # Order portion of SQL statement
 input_num smallint, # Current input section within screen
 p_cur smallint, # Current input array element
 s_cur smallint, # Current screen array element
 scr_fld char(40), # Current screen field
 nxt_fld char(40), # Programmatic next screen field
 prev_data char(80), # Data before field entry
 this_data char(80), # Data after field entry
 data_changed smallint, # Has the field data changed?
 hotkey smallint, # The hot key that has been pressed
 scratch char(2047) # Scratchpad for scribbling on and
 # communicating between functions
 # End library communication area
 ###

end globals

Fitrix Report Code Generator Technical Reference

8-5

Lowlevel.4gl
globals "globals.4gl"

#_local_static - Local (static) variable definition

##
function before_group(group_key)
##
#

 #_define_var - Define local variables
 define
 #_local_var - Local variables
 group_key char(20) # group identification

 #_err - Trap fatal errors
 whenever error call error_handler

 #_first_row - Check for first row
 if group_key = "first_row"
 then
 #_call_first_row - Call function for processing
 call b_g_first_row()
 end if

end function
before_group()

##
function b_g_first_row()
##
#

 #_define_var - Define local variables

 #_err - Trap fatal errors
 whenever error call error_handler

 #_b_first_row - Before first row processing

end function
b_g_first_row()

##
function on_every_row()
##
This function prepares the report record from the
cursor record and other data.
#

 #_define_var - Define local variables

 #_before_every_row - Before on every row assignments

 #_customer_num - On every row processing for customer_num
 let rpt.customer_num = curs.customer_num

 #_lname - On every row processing for lname
 let rpt.lname = curs.lname

 #_company - On every row processing for company
 let rpt.company = curs.company

 #_order_num - On every row processing for order_num
 let rpt.order_num = curs.order_num

Fitrix Report Code Generator Technical Reference

8-6 Report Examples

 #_order_date - On every row processing for order_date
 let rpt.order_date = curs.order_date

 #_paid_date - On every row processing for paid_date
 let rpt.paid_date = curs.paid_date

 #_address1 - On every row processing for address1
 let rpt.address1 = curs.address1

 #_after_every_row - After on every row assignments

end function
on_every_row()

##
function after_group(group_key)
##
#

 #_define_var - Define local variables
 define
 #_local_var - Local variables
 group_key char(20) # group identification

 #_last_row - Check for last row
 if group_key = "last_row"
 then
 #_call_last_row - Call function for processing
 call a_g_last_row()
 end if

end function
after_group()

##
function a_g_last_row()
##
#

 #_define_var - Define local variables

 #_err - Trap fatal errors
 whenever error call error_handler

 #_a_last_row - After last row processing

end function
a_g_last_row()

Fitrix Report Code Generator Technical Reference

8-7

Main.4gl
globals "globals.4gl"

#_local_static - Local (static) variable definition.

##
main
##
#

 #_define_var - Define local variables

 #_err - Trap fatal errors
 whenever error call error_handler

 #_set_up - Basic set up
 clear screen
 defer interrupt

 #_errlog - Start the error log
 call startlog("errlog")

 #_program_id - Set program id
 let progid = "brianh.query"

 #_open_window - Open window
 open window win1 at 2,3 with 22 rows, 76 columns
 attribute (border, red)

 #_put_scrlib - Calls to put_scrlib()
 call put_scrlib("dbname","")

 #_before_init - Before initialization processing
 call init()
 #_after_init - After initialization processing

 #_clear_window - Clear the window
 clear window win1

 #_flow_control - Call flow control
 call flow_control()

 #_exit_program - Exit program
 exit program (0)

end main

###
function logo()
###
#
 #_logo - insert your logo here.
 # This is the format of the company logo:
 #
 # display "PROGRAM NAME" at 4,3 attribute(blue)
 # display "Copyright (c) 1992" at 7,3 attribute(blue)
 # display "Your Company Name" at 9,3 attribute(blue)
 # display "Seattle, Washington USA" at 11,3 attribute(blue)
 display "Loading Program..." at 16,3 attribute(blue)
 #_logo_sleep - insert the sleep for your logo here.
 sleep 2
end function
logo()

Fitrix Report Code Generator Technical Reference

8-8 Report Examples

Midlevel.4gl
globals "globals.4gl"

#_local_static - Local (static) variable definition
define
 #_misc_static - Misc static variables
 sel_join char(512), # join for selection stmt
 sel_filter char(2048), # filter for selection stmt
 sel_order char(512) # order for selection stmt

##
function ml_join()
##
#

 #_define_var - Define local variables

 #_err - Trap fatal errors
 whenever error call error_handler

 #_sel_join - Set the join criteria
 let sel_join =
 "orders.customer_num = customer.customer_num"

end function
ml_join()

##
function ml_filter()
##
#

 #_define_var - Define local variables

 #_sel_filter - Set the filter criteria
 let sel_filter =
 "1=1"

end function
ml_filter()

##
function ml_order()
##
#

 #_define_var - Define local variables

 #_sel_order - Set the order criteria
 let sel_order = ""

end function
ml_order()

##
function ml_getcount()
##
#

 #_define_var - Define local variables
 define
 #_local_var - Local variables
 sel_stmt char(4096) # Selection statement

 #_getcount - Build select statement for getcount

Fitrix Report Code Generator Technical Reference

8-9

 let sel_stmt =
 "select count(*) ",
 "from ",
 "customer, orders ",
 "where ",
 "(", sel_join clipped, ") and ",
 "(", sel_filter clipped, ")"

 #_set_ct_sel_stmt - Set the ct.sel_stmt variable for
 # display during error handling
 let ct.sel_stmt = sel_stmt clipped

 #_count_cursor - Prepare and execute the cursor

 #_prep_curs - Prepare the string for execution
 prepare get_count from sel_stmt

 #_declare_curs - Declare cursor from the string
 declare count_cursor cursor with hold for get_count

 #_read_data - Read the data
 open count_cursor

 #_fetch - Fetch statement
 fetch count_cursor into ct.num_rows

 #_close - Close the cursor
 close count_cursor

end function
ml_getcount()

##
function ml_define_cur()
##
#

 #_define_var - Define local variables
 define
 #_local_var - Local variables
 sel_stmt char(4096) # Selection statement

 #_define_cur - Build select statement for define_cur
 let sel_stmt =
 "select ",
 "customer.customer_num, ",
 "customer.lname, ",
 "customer.company, ",
 "orders.order_num, ",
 "orders.order_date, ",
 "orders.paid_date, ",
 "customer.address1 ",
 "from ",
 "customer, orders ",
 "where ",
 "(", sel_join clipped, ")",
 " and (", sel_filter clipped, ")"
 #_include_order - Include any valid order criteria
 if sel_order is not null
 then
 let sel_stmt = sel_stmt clipped,
 " order by ", sel_order clipped
 end if

 #_set_ct_sel_stmt - Set the ct.sel_stmt variable for
 # display during error handling
 let ct.sel_stmt = sel_stmt clipped

Fitrix Report Code Generator Technical Reference

8-10 Report Examples

 #_rpt_cursor - Prepare and execute the cursor

 #_prep_curs - Prepare the string for execution
 prepare get_curs from sel_stmt

 #_declare_curs - Declare cursor from the string
 declare rpt_cursor cursor with hold for get_curs

 #_read_data - Read the data
 open rpt_cursor

end function
ml_define_cur()

##
function ml_fetch()
##
#

 #_define_var - Define local variables

 #_fetch - Fetch statement
 fetch rpt_cursor into curs_next.*

end function
ml_fetch()

##
function ml_curs_null()
##
This function sets all of the elements in the curs
record to null.
#

 #_define_var - Define local variables

 #_curs_null - Initialize the curs record to null
 initialize curs.* to null

end function
ml_curs_null()

##
function ml_next_null()
##
This function sets all of the elements in the
curs_next record to null.
#

 #_define_var - Define local variables

 #_curs_null - Initialize the curs record to null
 initialize curs_next.* to null

end function
ml_next_null()

##
function ml_curs_prep()
##
This function transfers data from the curs_next
record to the curs record.
#

 #_define_var - Define local variables

 #_set_curs - Set curs record equal to curs_next
 let curs.* = curs_next.*

Fitrix Report Code Generator Technical Reference

8-11

end function
ml_curs_prep()

##
function ml_before_break()
##
#

 #_define_var - Define local variables
 define
 #_local_var - Local variables
 bk_level smallint # break level setting

 #_return - Return if no break is required
 return

 #_action_label - Perform the correct break logic
 label bf_break_action:

end function
ml_before_break()

##
function ml_after_break()
##
#

 #_define_var - Define local variables
 define
 #_local_var - Local variables
 bk_level smallint # break level setting

 #_return - Return if no break is required
 return

 #_action_label - Perform the correct break logic
 label af_break_action:

end function
ml_after_break()

##
function ml_output()
##
#

 #_define_var - Define local variables

 #_output - Send output to report
 output to report report1 (rpt.*, usg.*)

end function
ml_output()

##
function ml_defaults()
##
#

 #_define_var - Define local variables

 #_def_prcname - Default "prcname" value
 let ct.prcname = "Customer Activity"

 #_def_destin - Default "destin" value
 let ct.destin = "report.out"

Fitrix Report Code Generator Technical Reference

8-12 Report Examples

end function
ml_defaults()

##
function ml_ct_sel_compat()
##
#

 #_define_var - Define local variables

 #_set_sel_join - Pass any ct.sel_join value to local variable
 let sel_join = ct.sel_join clipped

 #_set_sel_filter - Pass any ct.sel_filter value to local variable
 let sel_filter = ct.sel_filter clipped

 #_set_sel_order - Pass any ct.sel_order value to local variable
 let sel_order = ct.sel_order clipped

end function
ml_ct_sel_compat()

Fitrix Report Code Generator Technical Reference

8-13

Report.4gl
globals "globals.4gl"

##
report report1(rpt, usg)
##
#
 #_define_var - Define local variables.
 define
 #_rpt_rec - Report record.
 rpt record # Record for the report
 customer_num like customer.customer_num,
 lname like customer.lname,
 company like customer.company,
 order_num like orders.order_num,
 order_date like orders.order_date,
 paid_date like orders.paid_date,
 address1 like customer.address1
 end record,
 #_end - End report record

 #_using - Dynamic ’using’ variables
 usg record
 today char(16), # Default: "mm/dd/yy"
 pageno char(22) # Default: "Page: <<<<<"
 end record,
 #_end - End usg record

 header_image char(255), # Header line image
 line_image char(255), # Non-header line image
 dynamic smallint, # Boolean: Print this line?
 x smallint # Working number

 #_end - End of section.
 output
 #_output - Output section.

 #_def_top - insert "top" code here
 top margin 0

 #_def_bottom - insert "bottom" code here
 bottom margin 0

 #_def_left - insert "left" code here
 left margin 0

 #_def_right - insert "right" code here
 right margin 80

 #_def_page - insert "page" code here
 page length 66

 #_end - End of section
 format
 #_format - Format section

 page header
 #_page_header - Report block for page header.

 #_err - Trap fatal errors.
 whenever error call error_handler

 #_page_header_1 - Print statement
 call put_vararg(today using usg.today)
 call put_vararg("Customer Activity ")
 call put_vararg(pageno using usg.pageno)

Fitrix Report Code Generator Technical Reference

8-14 Report Examples

 let header_image = imageManager_getLine(1)
 print header_image clipped

 #_page_header_2 - Print statement
 let header_image = imageManager_getLine(2)
 print header_image clipped

 #_end - End of report block.

 on every row
 #_on_every_row - Report block for on every row.

 need 8 lines

 #_on_every_row_1 - Print statement
 print
 if
 rpt.customer_num is not null
 then

 #_on_every_row_2 - Print statement
 call put_vararg(rpt.customer_num)
 let line_image = imageManager_getLine(3)
 print line_image clipped
 end if
 if
 rpt.lname is not null
 then

 #_on_every_row_3 - Print statement
 call put_vararg(rpt.lname)
 let line_image = imageManager_getLine(4)
 print line_image clipped
 end if
 if
 rpt.company is not null
 then

 #_on_every_row_4 - Print statement
 call put_vararg(rpt.company)
 let line_image = imageManager_getLine(5)
 print line_image clipped
 end if
 if
 rpt.order_num is not null
 then

 #_on_every_row_5 - Print statement
 call put_vararg(rpt.order_num)
 let line_image = imageManager_getLine(6)
 print line_image clipped
 end if
 if
 rpt.order_date is not null
 then

 #_on_every_row_6 - Print statement
 call put_vararg(rpt.order_date)
 let line_image = imageManager_getLine(7)
 print line_image clipped
 end if
 if
 rpt.paid_date is not null
 then

 #_on_every_row_7 - Print statement
 call put_vararg(rpt.paid_date)
 let line_image = imageManager_getLine(8)

Fitrix Report Code Generator Technical Reference

8-15

 print line_image clipped
 end if
 if
 rpt.address1 is not null
 then

 #_on_every_row_8 - Print statement
 call put_vararg(rpt.address1)
 let line_image = imageManager_getLine(9)
 print line_image clipped
 end if

 #_end - End of report block.

end report
report1()

##
function load_image()
##
This function loads the report image into the imageManager package.
#
call imageManager_setRightMargin(80)
call image_name("brianh/query.4gs")
call image_line(1, "< +
 Page: >")
call image_line(2, "===
=====================")
call image_line(3, "Cust No [")
call image_line(4, "Last Name [")
call image_line(5, "Company Name [")
call image_line(6, "Order No [")
call image_line(7, "Order Date [")
call image_line(8, "Pay Date [")
call image_line(9, "Address Line #1 [")

#_using - Default the dynamic using variables
let usg.today = "mm/dd/yy"
let usg.pageno = "Page: <<<<<"

end function
load_image()

Fitrix Report Code Generator Technical Reference

8-16 Report Examples

Report Output

Fitrix Report Code Generator Technical Reference

8-17

Fitrix Report Code Generator Technical Reference

8-18 Report Examples

12/29/95Index-1

Fitrix Report Code Generator Technical Reference

Index

Symbols
+ 2-6
.ext File

description of 5-10
merging 5-10

.org Files 5-22
< 2-6
> 2-6
[2-6
[! 2-6
[* 2-6
] 2-6
{ 2-6

A
Absolute Numbering Scheme 7-10
after block 5-13
after group 2-11
Application

compiling 4-17
attributes Section 2-14

B
Backward Compatibility 7-2
base.set File 5-21
before block 5-13
before group 2-9
Block

definition of 5-3
grouping 5-16
identifying 5-16
removing 5-22

Block Command
logic of 5-12
manipulating code 5-7
overview of 5-7
strings in 5-15

Block Command Statement 5-13

after block 5-13
before block 5-13
delete block 5-14
in block 5-13
replace block 5-14

Block ID 5-3
custom conventions 5-19

Block Tag 5-3
absolute numbering scheme 7-10
in image file 7-8
in makefile 7-12
numbering scheme description of 7-9
print statement logic 7-5
relative numbering scheme 7-10

C
C Compiler 4-4
Code Generator

.org File 5-22
compiling source code 4-6
files created by 3-7
speeding compilation 4-10
starting 3-3

Column Formats 2-6
Command Line Selection Criteria 6-3

example of 6-6
Commit Work Statement 6-17
Compiling Source Code 4-3
Control Block

after group 2-11
before group 2-9
description of 2-6
on every row 2-10
on first row 2-8
on last row 2-13
page header 2-7
page trailer 2-12

ct.sel_filter 7-2
ct.sel_join 7-2
ct.sel_order 7-2
ct.sel_stmt 7-2
cust_path 5-28
Custom Code

merging 5-10
Custom Libraries 4-14
Custom Runner 4-4

Index-2

Fitrix Report Code Generator Technical Reference

D
database Section 2-4
Database Transaction Posting 6-12
DBPATH 1-7
defaults Section 2-18
delete block 5-14
demo files diagram 1-7
Directory

custom 5-3
structure 1-7

Dynamic Footer Subroutine 6-8
Dynamic Heading Subroutine 6-8

E
Extension File

description of 5-10
merging 5-10

F
Feature Set

description of 5-4, 5-20
file 5-21

Featurizer
.org Files 5-22
environment variables 5-28
flow in 5-24
limitations of 5-29
overview of 5-3
running 5-4
troubleshooting 5-30

fg 5-28
fg.make 4-6

invoking 5-5
fg.report 3-3
fgldb 4-6
fglgo 4-4

syntax 4-23
fglibdir 1-6, 6-20
fglpc 4-4
fglpp 5-5
fgmakedir 1-6
fgtooldir 1-6
Filename Extensions 5-27

Format Section 2-6
after group 2-11
before group 2-9
on every row 2-10
on first row 2-8
on last row 2-13
page header 2-7
page trailer 2-12

function define Command 5-14

G
globals.4gl 3-7

example of 8-3

I
Image File

attributes section 2-14
center column 2-6
column formats 2-6
creating 2-1
database section 2-4
defaults section 2-18
description of 2-3
dynamic data line 2-6
dynamic header 2-6
end of column 2-6
example of 2-23, 8-2
format section 2-6
left justify 2-6
left justify to end 2-6
limitations 2-21
output section 2-5
page command 2-20
pause command 2-20
report output 2-25, 8-16
right justify 2-6
select section 2-16
separate command 2-20
special symbols 2-6
start column 2-6
syntax of 2-3

in block 5-13
Incorrect Trailer Subroutine 6-9
Input Form 6-2

12/29/95Index-3

Fitrix Report Code Generator Technical Reference

example of 6-5
Installation 1-4

J
Job Scheduling 6-10

L
LIBFILES Macro

changing with block commands 4-14
description of 4-13

Libraries
compiling 4-17

local_rpt 7-4
lowlevel.4gl 3-7

example of 8-5

M
main.4gl 3-7

example of 8-7
Makefile

block tags in 7-12
long description of 4-12
macros in 4-13
short description of 3-7

midlevel.4gl 3-7
example of 8-8

Moving Applications to Other Systems 6-20

N
New Feature 7-1

Adding Report Prompt 7-13
block tags in Makefile 7-12
image file block tag 7-8
larger selection statement variables 7-2
post processor 7-4
print statement block tag logic 7-5

Numbering Scheme
rpttagnum 7-9

O
on every row 2-10
on first row 2-8
on last row 2-13
output Section 2-5

P
page command 2-20
page header 2-7
Page Number on Group Subroutine 6-8
page trailer 2-12
pause Command 2-20
p-code 4-3
Pluggable Features

definition of 5-4
description of 5-20

Post Processor 7-4
Pre-Merged Files 5-22
Preparation 1-4
Print Statement

block tag logic 7-5
Prompt, Report 7-13
Pseudo-Code 4-3

Q
Query, Report 7-13
Query-By-Example Form

description of 6-2
example of 6-5

R
Rapid Development System 4-4
RDS 4-4
Regenerability 5-3
Releative Numbering Scheme 7-10
replace block 5-14
Report Code Generator

description of 1-1
features of 1-2
installing 1-4
preparing 1-4

Index-4

Fitrix Report Code Generator Technical Reference

Report Program
creating advanced features 6-1
customizing 5-1
formatting 6-7
job scheduling 6-10
production of 6-7
running 4-23
using Featurizer 5-3

Report Prompt
adding 7-13
designing 6-2

Report Prompt Extension File 7-13
report.4gl 3-7

example of 8-13
report.ifg

attributes section 2-14
center column 2-6
column formats 2-6
creating 2-1
database section 2-4
defaults section 2-18
description of 2-3
dynamic data line 2-6
dynamic header 2-6
end of column 2-6
example of 2-23, 8-2
format section 2-6
left justify 2-6
left justify to end 2-6
limitations 2-21
output section 2-5
page command 2-20
pause command 2-20
report output 2-25, 8-16
right justify 2-6
select section 2-16
separate command 2-20
special symbols 2-6
start column 2-6
syntax of 2-3

rpt_select 7-2
rpttagnum 7-9
rpttagtype 7-7

S
Screen Code Generator 7-13

sel_filter 7-2
sel_join 7-2
sel_order 7-2
sel_stmt 7-2
select Section 2-16
Selection Criteria

obtaining 6-2
Selection Statement Variable 7-2
separate Command 2-20
Single Value Prompt 6-2

example of 6-4
Source Code

blocks in 5-3
compiling 4-3, 4-6
files 3-7
generating 3-1

Special Symbols 2-6
start file Command 5-11, 5-13

T
Text Centering Subroutine 6-7
Text Right Justification Subroutine 6-7
Transaction Logging Functions 6-14
Transferring Applications to Other Systems 6-20
transferring applications to other systems

applications
transferring 6-20

V
Variable

ct.sel_filter 7-2
ct.sel_join 7-2
ct.sel_order 7-2
ct.sel_stmt 7-2
cust_path 5-28
DBPATH 1-7
fg 5-28
fglibdir 1-6
fgmakedir 1-6
fgtooldir 1-6
local_rpt 7-4
rpt_select 7-2
rpttagnum 7-9
rpttagtype 7-7

12/29/95Index-5

Fitrix Report Code Generator Technical Reference

sel_filter 7-2
sel_join 7-2
sel_order 7-2
sel_stmt 7-2

	Title
	Introduction
	Table Of Contents
	Preface
	1 Introduction
	2 Creating an Image File
	3 Generating Source Code
	4 Compiling and Running
	5 Customizing Reports
	6 Creating Advanced Report Features
	7 New Feature and Functionality
	8 Report Examples
	Index

