@ GCNEro.

Genero Business
Development Language
User Guide

Version 2.11

©2008 Four J's Development Tools, Inc. www.4js.com

Copyright © 2008 by Four J's Development Tools, Inc. All rights reserved. All information, content,
design, and code used in this documentation may not be reproduced or distributed by any printed,
electronic, or other means without prior written consent of Four J's Development Tools, Inc.

Genero® is a registered trademark of Four J's Development Tools, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks.

e |IBM, AlX, DB2, DYNIX, Informix, Informix-4GL and Sequent are registered trademark of
IBM Corporation.

e Digital is a registered trademark of Compaq Corporation.

e HP and HP-UX are registered trademarks of Hewlett Packard Corporation.

e Intel is a registered trademark of Intel Corporation.

e Linuxis a trademark of Linus Torvalds in the United States, other countries, or both.

e Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in the
United States, other countries, or both.

e Oracle, 8i and 9i are registered trademarks of Oracle Corporation.
e Red Hat is a registered trademark of Red Hat, Inc.
e Sybase is a registered trademark of Sybase Inc.

e Sun, Sun Microsystems, Java, JavaScript™, and Solaris are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries.

e All SPARC trademarks are trademarks or registered trademarks of SPARC International,
Inc. in the United States and other countries.

e UNIX s a registered trademark of The Open Group.

All other trademarks referenced herein are the property of their respective owners.

Note: This documentation is for Genero 2.11. See the corresponding on-line documentation at the
Web site http://www.4js.com/online_documentation for the latest updates. Please contact your
nearest support center if you encounter problems or errors in the on-line documentation.

Table Of Contents

General
TaligeTe NletTol oM =10] I @fo] g Tol=] o] 1
Documentation CONVENLIONScooiiiiiiiiiie e 15
LaNQUAGE FRATUIMNEScuui et e e e e et eeera s 18
The Dynamic USEr INTEITACEueiiiiiiiiiiiiieeee et 24
Installation and SELUPccoe e 35
TOOIS ANA COMPONENTS.....uueii e 48
Frequently Asked QUESTIONSc.uuiiiiiiiei et e e e 58
New Features of the Language.............oooo i 66
L1.3X MiIQration ISSUEBSuuui e eieieeeiiiiit e e e e e et s e e e e e e et e e e e e e e e et a e e e e e e e e eertaa e eeeees 99
A0 QY T = L To] T TS UL PP 110
P QY T [= Lo g T TS UL PR 120

Language Basics

D= = B Y 01 S TP PP PP 123
LItEIalS .. 140
(O 0T £= 1 0] £ TP 144
EXPIreSSIONS ..o 174
(o = o 1[0 181
VANIADIES ...t e e e e e 188
(000 011 ¥= 11 PPN 199
RECOMS. ... 202
F N 1 = NV TP 204
L0 L] G I o[ST PP 210
Data CONVEISIONSccoeiiieieeee e 212
BUIIE-IN ClaSSES ... 214
Applications
(O%0]aa] o 11 [TaTo T =d 100 [r= 0 ¢ 1< T 219
PrOOIaMS ... et 226
Database Schema Files........cooo i 250
(€110] o= 1 LU EPPPR PP 259
FIOW CONIOL...oiiii e e e e e e e et r e e e e e e e s eebaaaaes 262
FUNCHIONS .. 276
=] 00 P 279
(o Tox= 1172 11 (o] o PP PP 316
LoCalized StrNgS...cco oo 326
Library
BUIlt-INn FUNCHIONS ... 334
L0 1] Y2 T T 1 0 371
WINAOWS DDE SUPPOIT ...eeeiieieeiiiiiiit ettt e e e e e e e 385
DAY 1T 396

Genero Business Development Language

SQL Management

Database CONNECLIONS.........uiiiiiiiiiii e e e e e e e e 397
Database TranSaCioNSciii i i e e e e e e e e raaaaas 423
Y= L [O] S] = (=] 1T o £ 430
Dynamic SQL ManagemeENL...........uuuiiiiiieiiiieiiiiis e e e e et e e e e e e ee e e e e e e e eeneenanas 440
Database Result Set Processing (CUISOr)oooeveiieee i, 447
SQL POSItIONEd UPAALES.........uiiiiiiiieeiiiiiieee et 460
1@] I | g FT =T o A X =T = N 465
I/O SQL INSIIUCTIONS.....coviiiiii ittt e e e e e e e e e et e e e e e e e e eerbaaaans 473
SQL ProgramiMiNgceeeeeiiiiiiiieeeeeee e e et e e e e e st e e e e e s s e e e e e e e e e s ennneeeees 480

User Interface

The INteraction MOUEI 525
Using WINAOWS and FOIMISoouiiiiiii e e e s e e e e e e enaan s 535
ACHON DEFAUITS ... e e e e e e 549
Presentation STYIESuiiiiiiii et 555
Form Specification FileS........cooo oo e e 578
Form Specification File Attributes ... 649
FOIM RENAEIING ..ceeiiiiiee et e e e e e e e e e e e e 704
IVIEIUS .o e ettt e e e e et e ettt b e e e e e e e et et bba e e e e e e e eneaa s 717
Displaying Data 10 FOIMIS......cooii i e e e e e e e e e e e eennees 726
RECOI INPUL ...t e e e e e eeaeeeas 732
Aray DISPIaYccoo e 749
N 1=V 1] o 1 N 763
(O T 1= YA =V s U 4] o] L= PR 792
MUIEIPIE DIAIOGS. .. .eeeeeeieiiitee ettt e e e e e e e s 806
(0 1 o (0 gAY = 10T 875
Displaying MESSAQEScccoee e 881
10 T0] = 1 885
TOPIMEINUS ...t e ettt ettt e e e e e e e et ittt e e e e e eeeeetban e e aaaeannnes 891
SEAMIMEINUS. ...ttt e e e et e et bbb e e e e e e e eerrb e e e aaeennne 898
CANVAS ...ttt et e e e e e e e e e e eennne 903
MeESSAQE FileS ... 908
MDIWINAOWS ... 911
Front ENG FUNCHONS........uiiiiiiiieee et e e e e e e 914
Front ENd ProtoCOlccoo i 919

Built-in Classes

B =3 AN o o [Tot=uTo] I o F= L 927
THe ChanNEl CIASS 930
The StriNGBUEI CIAaSS. e 939
The StriNgTOKENIZEN ClASS ... 944
The TYPEINTO ClaSS... oo e e e e e e e e eeees 947
THe INEITACE CIASS......ueiiiiiiieiii e 949
The WINAOW ClaSS ..uuuuiii et e e e et e e e e e e e e e et eeeaaeeaenes 955
B I = o 0 03 =T 959

Table of Contents

THE DiAlOQ CIASSuviieiiiii e 965
The COMbDOBOX ClASS......cciiiiiiiiii ettt e e e e e e e e e e e e eaeeees 980
The DOMDOCUMENT CIASS ... 987
THEe DOMNOUE CIASSeviiiiieeiieiiieee e e e e e e e e e e anae 990
The NOUELIST CIASS ...unieeiiiieie et e e et e eaeeeeees 997
The SAXAUINDULES CIASS ... 999
The SaxDocumentHandler CIassccooooiiioiii e, 1002
The XMIREAUET ClaSS......cciiiiiiiiiiiiiiiie e 1006
The XMIWIEEE CIAaSSo e e et e e e e eeanaes 1009
Miscellaneous
Environment Variables ... 1013
The FGLPROFILE configuration fileccovvviiiiiii e 1030
THE DEDUGQET ... 1035
LI = () 1= RS 1063
L@ 0] 1] .01 4= U1 o o 1S 1067
THE PrEPIOCESSON ...ttt e e e e e e e e e e e e e e e e e e aaaaaaaaaaas 1073
1Ll (=T 4 LT[0 1O URPURPIN 1084
o] Y =TS TST= T TP 1085
General Terms used in this dOCUMENTALIONccuviiiiiiiiee e 1145
BDL Tutorial
Genero BDL Tutorial SUMMAIY.........uuuuuiiiiiiiiiiiiiiiiiiiiiiiieiineieeinenennnnn——.. 1147
QLT Lo =TI O o = o) L= = 1148
Tutorial Chapter 1: OVEIVIEWccoeeuiiiiiiiieeeeeeeiies e e e e e e e s e e e e e e e eatr e e e e eeeeennes 1151
Tutorial Chapter 2: USING BDLieceee et 1156
Tutorial Chapter 3: Displaying Data (WIiNdOWS/FOIMS)cccouriiiiiiiiiieeeeeeniinnnns 1164
Tutorial Chapter 4: Query by EXample......ccoooiiiii 1177
Tutorial Chapter 5: Enhancing the FOrm ..., 1197
Tutorial Chapter 6: Add/Update/Delete...........ouvviiieeiiiiiiiiiiieiieeeeee e 1209
Tutorial Chapter 7: Array DiSPIaY .. .cocoooeeeeeee e 1225
Tutorial Chapter 8: Array INPUL........oooviiiiii e e e e e ennes 1238
Tutorial Chapter 9: REPOIS.... ... 1251
Tutorial Chapter 10: LOCAIZATIONcooviiiiiiiiiiiiieeeee e 1263
Tutorial Chapter 11: Master/Detallccoiieeiiieiiiiiii e 1272
Tutorial Chapter 12: Changing the User Interface Dynamically............................ 1296

ODI Adaptation Guides

ODI Adaptation Guide For Genero db 3.6X, 3.8X.........uuuvrriiiriiiriririiiiiiiriennnnnnnnnnne 1313
ODI Adaptation Guide For DB2 UDB 7.X, 8.X, 9Xuuutuuuiuuiiiniiiniiineiinninnninnnnnnneennns 1347
ODI Adaptation Guide For Oracle 8.X, 9.X, 10.X, 11.Xu.ciiieiiiiviiiiiiiiie e 1388
ODI Adaptation Guide For SQL Server 2000, 2005, 2008............ccuvvvvvvevveenvennnnnns 1435
ODI Adaptation Guide For PostgreSQL 8.0.2, 8.1.X, 8.2.X, 8.3.Xuvvvrvvrrvrvnrennnns 1472
ODI Adaptation Guide For MySQL 4.1.X, 5.0.X, 5.1.X ..uuvuuuiimiiiiiiiiiiiiiiiiiiiiiinniennnns 1498
ODI Adaptation Guide FOr SYbase ASA 8.Xuuuuiuuririiiiiiiiiiiiiiiinriinniennin.. 1519

Genero Business Development Language

Standard Extensions

File Management Classoooo oo 1547
Mathematical FUNCHONS ClaSScevuiiiiieiie ettt ettt e e e e e e e e eeaas 1569

User Extensions

Implementing C-EXtENSIONS ... 1577
GENEIO FESQLC ... it 1644

Vi

Introduction: BDL Concepts

Summary:

Overview

The Language

Forms

User Interface

Compiling a BDL Application
Deploying a BDL Application
Resources for Programmers

Overview

You typically use Genero to build an interactive database application, a program that
handles the interaction between a user and a database. The database schema that
organizes data into relational tables gives shape to one side of the program. The needs
of your user shape the other side. You write the program logic that bridges the gap
between them.

OO O
I Program

Diatahase ” ™ Laogic |

| =

An important feature of Genero BDL is the ease with which you can design applications
that allow the user to access and modify data in a database. The Genero BDL language
contains a set of SQL statements to manipulate the database, and interactive
instructions that provide simple record input, read-only list handling, updateable list
handling, and query by example (to search the database) using forms to facilitate
interaction.

Genero BDL is compiled to p-code, which can be interpreted on different platforms by
the Dynamic Virtual Machine (the Runtime system).

Genero Business Development Language

Separation of Business Logic and User Interface
Genero separates business logic and the user interface to provide maximum flexibility:

e The business logic is written in text files (.4gl source code modules). High-level
interactive instructions let you write a form controller in a few lines of code.

e Forms for the user interface are designed in a simple-to-understand and simple-
to-read form definition syntax..

e Action views (buttons, menu items, toolbar icons) in the form definition can
trigger actions defined in the business logic.

e Compiling a form definition file translates it into XML. The XML-based
presentation layer ensures that user interface development is completely
separated from deployment.

e The user interface can be manipulated at runtime, as a tree of objects called the
Abstract User Interface (AUI).

Portability - write once, deploy anywhere

Genero provides the ability to support different kinds of display devices using the same
source code. One production release supports all major versions of Unix, Linux,
Windows NT/2000/XP and Mac OS X. The same application can be displayed with a
graphical device (GUI mode) as well as on a simple dumb terminal (TUI mode).

A single code stream can be written to support HTML, Java, Windows, X.11, WML,
Maclintosh OS X and ASCII interfaces simultaneously.

Development Machine

Sources
r4gl, per, st

Compiled files
rd2m, 42f 42s)

Resource files

(4ad, 4sh

Production Machine (05 5

Resource files
Tl

Reports

General

Production Machine {03 ¥

Resource files II
Tl
ampiled ﬁlesII
]

Deployment

Froduction Machine {03 %)

Rezource files II
Tl

You can easily design and generate Reports. The output from a report can be formatted
so that the eye of the reader can easily pick out the important facts. Page headers and
footers, with page numbers, can be defined. Data can be grouped together, with group
totals and subtotals shown. The output from a report can be sent to the screen, to a
printer, to a file, or (through a pipe) to another program, and report output can even be

redirected to an SAX filter in order to write XML.

Internationalization

Genero BDL supports multi-byte character sets by using the POSIX standard functions
of the C library. Genero BDL uses BYTE-semantics to specify the length of a character
string (i.e. CHAR(10) means 10 bytes). You must make sure that the database client

Genero Business Development Language

locale matches the runtime system locale. For more details about internationalization
support, see Localization.

The Localized Strings feature allows you to customize your application for specific
subsets of your user population, whether it is for a particular language or a particular
business segment.

User Extensions

When the standard Genero built-in functions and classes are not sufficient, you can write
your own plug-ins by using the Dynamic C Extensions. This allows you to implement
specific function libraries in C, which can be called from the BDL modules. Typical User
Extensions interface with C libraries to drive specific devices, such as barcode scanners
or biometric identification devices.

The Language

Genero BDL is a high-level, fourth generation language with an open, readable syntax
that encourages good individual or group programming style. You write your program
logic in text files, or program source modules, which are compiled and linked into
programs that can be executed by the Runtime system. Programs are easily enhanced
and extended. This makes it easy for programmers to become productive quickly, no
matter what programming languages they know. See Programs, Flow Control, Functions
for additional information.

Database access

¢ A setof SQL statements are included as part of the language syntax and can be
used directly in the source code, as a normal procedural instruction. The Static
SQL Statements are parsed and validated at compile time. At runtime, these
SQL statements are automatically prepared and executed by the runtime system.
Program variables are detected by the compiler and handled as SQL
parameters.

¢ Dynamic SQL management allows you to execute any SQL statement that is
valid for your database version, in addition to those that are included as part of
the language. The statement can be hard coded or created at runtime, with or
without SQL parameters, returning or not returning a result set.

e Through the native drivers of the Open Database Interface, the same Genero
program can open database connections to any of the supported databases.

For additional information, see SQL Programming.
Interactive Statements

Writing the code for interactive database applications has been simplified for you in
Genero BDL; single statements automatically compile into the lines of program code

4

General

required for the common tasks associated with such applications. These interactive
statements allow the program to respond to user input.

The DIALOG instruction allows parts of a form that have different functionality to be
handled simultaneously.

Displaying data to the user

In Genero, programs manipulate Window and Form objects to define
display areas for interactive statements within your program. The Abstract
User Interface (AUI) tree contains a definition of these objects. You can
open as many windows and forms as needed, subject only to the limits of
memory and the maximum number of open files on the platform you are
using.

The OPEN WINDOW statement creates and opens a new window on the
user's screen. The runtime system maintains a stack of all open windows.
When you execute this statement to open a new window, it is added to
the window stack and becomes the current window.

You can modify the window stack with the CURRENT WINDOW and
CLOSE WINDOW statements.

With the OPEN WINDOW ... WITH FORM statement you open a window
on the screen, load a compiled form from disk into memory, and make it
ready for use.

The interactive DISPLAY statement allows you to display program
variable data in the fields of a form, for example, and then turn control
over to the user for his subsequent action.

The interactive DISPLAY ARRAY and DIALOG statements allow the user
to view the contents of an array of records, scrolling the records on the
screen.

Allowing the user to enter and change data

The INPUT statement is an interactive statement (dialog) that enables the
fields in a form for input, waits while the user types data into the fields,
and proceeds after the user accepts or cancels the dialog. If the user
accepts the dialog, the input that is automatically assigned to program
variables can be used by your program to insert rows or change rows in a
database, for example.

The interactive INPUT ARRAY statement allows the user to alter the
contents of records in a screen array, and to insert and delete records.
Your program can control and monitor these changes.

Genero Business Development Language

The DIALOG statement allows both INPUT and INPUT ARRAY
functionality.

Allowing the user to Search a Database (Query by Example)

Genero BDL lets you take input from the user in more than one way;
instead of literal values for the program to process, your user can enter
search criteria for a query. The interactive CONSTRUCT and DIALOG
statements allow the user to enter a value or a range of values for one or
several form fields, and your program looks up the database rows that
satisfy the requirements. You provide a single program variable to hold
the result of the CONSTRUCT statement. Your program can combine this
Boolean expression string with other text, to form a complete SELECT
statement to fetch the desired database rows.

What you do with the fetched rows depends on the specific application.
Often the reason is to select rows to be viewed by the user. In this case,
the program could display each row individually in a form or grouped in a
screen array; or, you might choose a set of rows for a report or a set of
rows to be deleted or updated.

Responding to actions by the user

You can define a program routine (set of instructions) that is triggered by
the user's actions. The actions can be displayed to the user as action
views - buttons, toolbars, or pull-down menus in the application window.
When the user makes a selection, the corresponding action is executed.

The interactive MENU statement can be used to define the list of actions
that can be triggered. Or, the ON ACTION clause of interactive
instructions, such as INPUT, INPUT ARRAY, CONSTRUCT, DIALOG,
and DISPLAY ARRAY, can be used to specify the program routine to be
executed for a given action.

Common actions, such as accept (dialog validation) and cancel (dialog
cancellation), are already pre-defined for you in accordance with the
interactive instruction.

Action Defaults allow you to define default decoration attributes (text,
image) and functional attributes (accelerator keys) for the graphical
objects associated with actions.

Predefined functions and classes

The BDL language provides built-in functions to perform many basic tasks, as well as
built-in classes that can be used to manipulate the user interface. Dynamic C Extension
libraries are part of the standard package; see File Manipulation functions and
Mathematical functions.

General

Forms

The end-user of a program does not know about the database schema or your carefully
designed program logic. As the user sees it, the application screens, and the menus that
invoke them, are the application. The arrangement of fields, labels, and other form
objects, and the behavior of the form as the user presses different keys or buttons and
selects different menu options, create the personality of the program.

You can define the application screens, or forms, in text-based Form Specification Files
(.per) These form files are translated by the Form Compiler to produce the Runtime
Form Files (.42f) that are deployed in production environments. Since form files are
separate from the other parts of your program, the Runtime Form Files can be used with
different programs.

Unlike compiled program files, the translated Runtime Form Files are XML documents
that describe the form elements, enabling portability across display devices. The XML
file can also be written directly, or it can be generated or modified from your program
code using the methods provided with Genero Built-in Classes.

You can design your form to group objects in horizontal and vertical boxes, display it as
a folder of pages, and use menus, toolbars, or buttons to trigger actions. You can
associate an array of data in the program with an array of fields on the form (screen-
array), so the user can see multiple rows of data on the screen. In addition to the form
fields and screen records, your form can contain objects such as progressbars,
checkboxes, radiogroups, comboboxes, and images. See Form Specification Files for
additional information.

The appearance of form objects can be standardized using Presentation Styles and
Action Defaults.

Different parts of the form can be handled simultaneously using the BDL instruction
DIALOG.

The User Interface

What happens when a user executes a Genero BDL application? The Genero Runtime
System creates the Abstract User Interface tree, and the Genero Front End makes this
abstract tree visible on the Front End Client, such as the Genero Desktop Client, Genero
Web Client, and Genero Java Client. When a user interaction statement takes control of
the application, the copy of the tree on the Front End is automatically synchronized with
the Runtime system tree by the Front End Protocol, an internal protocol used by the
Runtime System.

Genero Business Development Language

Application, Serrer Workistation
Famtitne Systein R End Frort Ead
Wiewr Protocol
LT Tree go| STTT Tree

F1i

oooao

The Genero BDL language provides Built-in Classes that implement methods to manage
the objects on the user's screen. Methods can be invoked by passing parameters and/or
returning values, allowing the User Interface to be modified completely at runtime.

Default XML files describe the appearance (decoration) of some of the graphic objects
on the user's screen. These files may be customized, or replaced with your own
versions.

o default.4ad - default decoration and accelerators for action views
e default.4st - default definition of presentation style attributes

A special StartMenu, used to start different programs on the application server where the
runtime system executes, can be defined in an XML file with the extension .4sm.

A set of XML Utilities are provided to allow you to create and modify XML documents.

Compiling a Genero BDL Application

Your Genero BDL program can consist of a single source code module, but generally
you will have multiple modules as well as form specification files and perhaps localized
string files. Database schema files are also required, if you have defined program data
types and variables in the terms of an existing database column or table by using the
DEFINE ... LIKE statement.

The tools that Genero provides to compile the various files that will make up your
application, and the file extensions of the source code and corresponding compiled files,
are listed below, and an explanation follows:

Source files

—
‘-____\—'_‘_'_,_F‘

Database
System tables

"'\-_.____'_'_'_,_:-"'

Frogram source
modules . 4al

Form files .per

String files .str

S

fildbsch

folcarmp Ffallink
—_—

foglfarm

falmkstr

General

Compiled files

att
vl

sch

AZm, 42w,
AZr

A2

Ais

The compiled source code modules can be linked into a program that can be executed
by the Runtime System, or into a library that can be linked into other programs.

Compiled files

A2m

1«

fgllink

Executable programs
and libraries

Database Schema Files - tool fgldbsch

Database Schema Files are used during program compilation to define data types,
default values, display attributes and validation rules for form fields and program
variables. You must generate database schema files each time the database structure
changes, before compiling any other parts of your application.

The SCHEMA statement in program source files and form files identifies the database
schema file to be used. The FGLDBPATH environment variable can be used to define a
list of directories where the compiler can find database schema files.

Genero Business Development Language

The Schema Extractor (fgldbsch) is the tool provided to generate the database schema
files from a real database. Database schema files are generated from the system tables.

Example:

fgldbsch -db <database_name>
It is important that the schema file of the development database corresponds to the
production database; otherwise, the elements defined in the compiled version of your
modules and forms will not match the table structures of the production database.

The primary file produced by the utility is:

<database>.sch - the file containing the data type definition of all columns selected
during schema extraction.

Program Source Modules - tools fglcomp, fgllink, fgl2p

Genero BDL provides its own source code compiler, which generates hardware-
independent pseudo-machine code (P-code). This code is not directly executable by the
operating system: it is interpreted by the Genero BDL runtime system (a program named
fglrun, and called "runner").

The compiled P-code modules are binary. The files are not printable or editable as text.

e Tool fglcomp - Module compiler

This tool compiles a program source module into a p-code version. The
compiled module has an extension of .42m.

If a compilation error occurs, the text file <filename>.err flagging the
errors is created. You can display directly the compilation errors by using
the -M option.

Example:

fglcomp <modulename>_4gl

Running the program:

fglrun <modulename>_42m

If your program consists of more than one module, the modules must be
linked together prior to execution, using the fgllink tool.

e Tool fgllink - Module linker

This tool assembles multiple p-code modules compiled with fglcomp into a single
.42r program or a .42x library.

10

General

Example to create a program:

fgllink -0 <programname>_42r <modulelname>.42m <module2name>_42m

Running the program:

fglrun <programname>.42r

Example to create a library that can be linked into other programs:

fgllink -o <libraryname>_42x <modulelname>.42m <module2name>_42m

e Tool fgl2p - As a convenience, fgl2p (the Program compiler) is provided to create
programs or libraries in one command line. It uses the fglcomp and the fgllink
tools to compile and link modules together. If compilation of any of the modules
fails, the file <modulename>.err is created.

Example to create a program:

fgl2p -0 <programname>.42r <modulelname>.42m
<module2name>.42m

Example to create a library:

Tfgl2p -0 <libraryname>.42x <modulelname>.42m
<moduleZ2name>_.42m

Form Specification Files - tool fglform

Form specification files are used by the Form Compiler (fglform) to produce the Runtime
Form Files that are deployed in production environments. The form files have an
extension of .per . Unlike compiled program files, the generated Runtime Form File is an
XML document that describes the form elements. The Runtime Form Files have an
extension of .42f.

If a compilation error occurs, the text file <filename>.err flagging the errors is created.
You can directly display the compilation error by using the -M option.

Example:
fglform <formname>.per
C-like Source Preprocessor

The fgl preprocessor can be used with the 4gl compiler and the form compiler to
transform your sources before compilation, based on preprocessor directives. It allows

11

Genero Business Development Language

you to include other files, to define macros that will be expanded when used in the
source, and to compile conditionally.

See The FGL Preprocessor for details.

Localized String Files - tool fglmkstr

Source String Files (<filename>.str) containing the text of the Localized Strings that are
used in your application must be compiled to binary files in order to be used at runtime.
By default the runtime system expects that the Source String file will have the same
filename as your program. The compiled file has an extension of .42s.

Example:

fglmkstr <filename>_str

As an assistance in creating the Source String Files, the -m option of the fglcomp and
fglform tools can be used to extract all the localized strings that are used in your source
code modules and forms.

Example:

fglcomp -m <modulename>_4gl

The output file will be <modulename>.str . This extracted file can be edited to assign text
to the localized strings, and combined with other extracted files into a single

<programname>.str file.

Note: Windows or Unix-based makefiles may be used to automate the process of
compiling and linking programs.

12

General

Deploying a Genero BDL Application

Faorms
(420

String Files
[42s)

Programs
42, 420

T

Resource files
rdad, 4st)

The following program files must be deployed at the user site:

A42r, .42x, .42m - Executable programs and libraries, compiled modules

.42f - Runtime Form Files

.42s - compiled Localized String Files, if used in your applications

.4sm - your custom Start Menu XML file, if created

4ad, .4st - these default XML files, provided with Genero, must be distributed
with the runtime system files; if you have customized these files, or created your
own versions, your versions must be deployed instead.

Front-end clients, such as Genero Desktop Client and Genero Web Client, make the
application available to the user.

The FGLPROFILE configuration file can be used to change the behavior of programs,
and environment variables can be set for Genero BDL.

Resources for Programmers

Documentation

This Business Development Language Manual (User Guide) is a complete guide to
Genero BDL language features, with explanations and sample code:

e Genero BDL Concepts - the following pages may be especially helpful in

understanding the concepts underlying Genero BDL:
o Dynamic User Interface

13

Genero Business Development Language

Windows and Forms

Programs

Connections

Transactions

SQL Programming

Compiling Programs

Built-In Classes

Presentation Styles

e The Business Development Language Tutorial - contains examples of basic
BDL program development, with sample code; see Summary

e Migrating to Genero BDL - the following pages may be especially helpful if you
are migrating an application from an earlier product:

o New Features

Frequently Asked Questions

Tools and Components

Layout - Form Rendering

1.30 Migration Issues

2.00 Migration Issues

O O O0OO0OO0OO0O0Oo

O O 00O

Note: The "Migration from I-4GL to Genero" section of the Four J's web site has
suggestions, plans, checklists, and migration case studies.

e Open Database Interface Adaptation guides - these pages are provided for
each relational database that Genero supports.

Code examples

e Short example programs in the demo subdirectory of the BDL software
installation directory illustrate the use of Genero BDL features. These programs
may be compiled and executed.

e The User Guide has extensive code samples.

e The Tutorial has code samples for each chapter with embedded comments.

Training

The Four J's web site lists the on-line and self-paced Genero training classes that are
offered. Instructor-led classes are also available; please call your regional sales office
for information.

14

General

Documentation Conventions

Summary:

TUI Only Features
De-supported Features
Informix Specific Features
Syntaxes

Notes

Warnings

Tips

Code Examples

TUI Only Features

TUI only features are marked with the red warning: TUI Only!

OPTIONS MENU LINE 3 TUI Only!

Elements marked with this flag must only be used in programs designed for text-based
terminals.

De-supported Features

Product features that are no longer supported are marked with the red warning: De-
supported!

The WIDGET="BMP" attribute De-supported!

Elements marked with this flag are no longer supported in the product.

Informix Specific Features

Features that are specific to Informix database servers are marked with the red warning:
Informix only!

15

Genero Business Development Language

DATABASE dbname@dbserver Informix only!

Elements marked with this flag work only with Informix database servers, and are not
recommended for multi-database programming.

Syntaxes

The term of 'syntax’ is global and indicates the way to use a product function. For
example, it can be used to describe a language instruction or a system command:

Syntax:

CALL function ([parameter [,...]1]) [RETURNING variable
[.---11

Wildcard characters in syntax definitions are marked with an underscore:

Wildcards Description
[1 Square braces indicate an optional element in the syntax.

{ 1 Curly braces indicate a list of possible elements separated by a
pipe.
[---1 Indicates that the previous element can appear more than once.

[.---1 Previous element can appear more than once separated by a
comma.

Notes

Notes hold a list of technical remarks about the product function:

Notes:

1. identifier is the name of the variable to be defined.

2. datatype can be any data type except complex types like TEXT or
BYTE.

3.

16

General

Warnings

Warnings are important technical remarks, describing special behavior of the product
function:

Warnings:

1. When a DATE, DATETIME or INTERVAL constant cannot be
initialized correctly, it is set to NULL.
2.

Tips
Tips are hints to use the product function more efficiently:
Tips:

1. Do notinclude a NULL value in a Boolean expression.
2.

Code Examples

Code examples are written with line numbers and language syntax highlighting as
follows:

Example 1:

01 MAIN

02 DEFINE al ARRAY[100] OF INTEGER,
03 a2 ARRAY[10,20] OF RECORD
04 id INTEGER,

05 -

17

Genero Business Development Language

Language Features

Summary:

Introduction

Lettercase Insensitivity
Whitespace Separators
Quotation Marks
Statement Terminator
Character Set
Comments

Program Components
SQL Support
Identifiers
Preprocessor Directives

Introduction

BDL is an English-like programming language designed for creating relational database
applications.

The language includes high-level instructions to implement the user interface of the
applications, generate reports, and execute SQL statements to communicate with
database servers.

Lettercase Insensitivity

BDL is case insensitive, making no distinction between uppercase and lowercase letters,
except within quoted strings. Use pairs of double (") or single (™) quotation marks in
the code to preserve the lettercase of character literals, flenames, and names of
database entities.

You can mix uppercase and lowercase letters in the identifiers that you assign to
language entities, but any uppercase letters in BDL identifiers are automatically shifted
to lowercase during compilation.

Tips:

1. ltis strongly recommended that you define a naming convention for your
projects. For example, you can use underscore notation (get_user_name). If you
plan to use the Java notation (getUserName), do not forget that BDL is case
insensitive (getusername is the same identifier as getUserName).

18

General

Whitespace Separators

BDL is free-form, like C or Pascal, and generally ignores TAB characters, LINEFEED
characters, comments, and extra blank spaces between statements or statement
elements. You can freely use these whitespace characters to enhance the readability of
your source code.

Blank (ASCII 32) characters act as delimiters in some contexts. Blank spaces must
separate successive keywords or identifiers, but cannot appear within a keyword or
identifier. Pairs of double (") or single (') quotation marks must delimit any character
string that contains a blank (ASCII 32) or other whitespace character, such as
LINEFEED or RETURN.

Quotation Marks

In BDL, string literals are delimited by single (") or double (**) quotation marks:

"Valid character string”
"Another valid character string”

Do not mix double and single quotation marks as delimiters of the same string. For
example, the following is not a valid character string:

"Not A valid character string”

In SQL statements, when accessing a hon-Informix relational database, such as a DB2
database from IBM, double quotation marks might not be recognized as database object
name delimiters. In the SQL language, the standard specifications recommend that you
use single quotes for string literals and double quotes for database object identifiers like
table or column names.

To include literal quotation marks within a quoted string, precede each literal quotation
mark with the backslash (\), or else enclose the string between a pair of the opposite
type of quotation marks:

01 MAIN

02 DISPLAY "Type °"Y® i1f you want to reformat your disk."
03 DISPLAY "Type "Y' if you want to reformat your disk."
04 DISPLAY "Type \"Y\" if you want to reformat your disk."
05 END MAIN

A string literal can be written on multiple lines. The compiler merges lines by removing
the new-line character.

For more details, see String Literals.

19

Genero Business Development Language

Escape Symbols

The compiler treats a backslash (\) as the default escape symbol, and treats the
immediately following symbol as a literal, rather than as having special significance. To
specify anything that includes a literal backslash, enter double (\\') backslashes
wherever a single backslash is required. Similarly, use \\\\ to represent a literal double
backslash.

For more details, see String Literals.

Statement Terminator

BDL requires no statement terminators, but you can use the semicolon (;) as a
statement terminator in some cases, PREPARE and PRINT statements for example.

01 MAIN

02 DISPLAY "Hello, World™ DISPLAY "Hello, World"
03 DISPLAY "Hello, World"™; DISPLAY "Hello, World"
04 END MAIN

Character Set

The language requires the ASCII character set, but also supports characters from the
client locale in data values, identifiers, form specifications, and reports.

Comments

A comment is text in the source code to assist human readers, but which BDL ignores.
(This meaning of comment is unrelated to the COMMENTS attribute in a form, or to the
OPTIONS COMMENT LINE statement, both of which control on-screen text displays to
assist users of the application.)

You can indicate comments in any of several ways:

e A comment can begin with the left-brace ({) and end with the right-brace (})
symbol. These can be on the same line or on different lines.

e The pound (#) symbol (sometimes called the "sharp symbol") can begin a
comment that terminates at the end of the same line.

e You can use a pair of minus signs (--) to begin a comment that terminates at
the end of the current line. (This comment indicator conforms to the ANSI
standard for SQL.)

20

General

Warnings:

1. Within a quoted string, 4GL interprets comment indicators as literal characters,
rather than as comment indicators.

2. You cannot use braces ({ }) to nest comments within comments.

3. Comments cannot appear in the SCREEN section of a form specification file.

4. The # symbol cannot indicate comments in an SQL statement block, nor in the
text of a prepared statement.

5. You cannot specify consecutive minus signs (--) in arithmetic expressions,
because BDL interprets what follows as a comment. Instead, use a blank space
or parentheses to separate consecutive arithmetic minus signs.

6. The symbol that immediately follows the -- comment indicator must not be the
sharp (#) symbol, unless you intend to compile the same source file with the
Informix 4GL product.

Tips:

1. For clarity and to simplify program maintenance, it is recommended that you
document your code by including comments in your source files.

2. You can use comment indicators during program development to disable
statements without deleting them from your source code modules.

Program Components

BDL programs are built from source code files with the language compiler, form
compiler, and message compiler. Source code files can be:

e Form Specification Files (. per)

o Database Schema Files (.sch, .att, .val)
e Message Files (.msg)

e Source String Files (.str)

e Program Sources Files (-4gl)

In Form Specification Files, you define the layout of application screens. See Forms for
more details.

The Database Schema Files describe the structure of the database tables. See
Database Schema for more details.

The Message Files hold texts that can be loaded at runtime. Each text is identified by a
number. See Message Files for more details.

The Localized Strings allow you to customize application strings, which are loaded
automatically at runtime. Each string is identified by an identifier. See Localized Strings
for more details.

21

Genero Business Development Language

In Program Source Files, you define the structure of the program with instruction blocks (
like MAIN, FUNCTION or REPORT). The program starts from the MAIN block. The
instruction blocks contain BDL instructions that are be executed by the runtime system in
the order that they appear in the code. Program blocks cannot be nested, nor any
program block divided among more than one source code module.

Some BDL instructions can include other instructions. Such instructions are called
compound statements. Every compound statement of BDL supports the END keyword to
mark the end of the compound statement construct within the source code module. Most
compound statements also support the EXIT statement keywords, to transfer control of
execution to the statement that follows the END statement keywords, where statement is
the name of the compound statement. By definition, every compound statement can
contain at least one statement block, a group of one or more consecutive SQL
statements or other BDL statements. In the syntax diagram of a compound statement, a
statement block always includes this element.

SQL Support

A limited syntax of SQL is supported directly by the BDL compiler, so you can write
common SQL statements such as SELECT, INSERT, UPDATE or DELETE directly in
your source code:

01 MAIN

02 DEFINE n INTEGER, s CHAR(20)

03 DATABASE stores

04 LET s = "Sansino”

05 SELECT COUNT(*) INTO n FROM customer WHERE custname = s
06 DISPLAY ""Rows found: ™ || n

07 END MAIN

For SQL statements that have a syntax that is not supported directly by the compiler, the
language provides SQL statement preparation from strings as in other languages.

01 MAIN

02 DEFINE txt CHAR(20)

03 DATABASE stores

04 LET txt = "'SET DATE_FORMAT = YMD"
05 PREPARE sh FROM txt

06 EXECUTE sh

07 END MAIN

For more details about SQL statement preparation, see the Dynamic SQL Instructions.

22

General

Identifiers

A BDL identifier is a character string that is declared as the name of a program entity. In
the default (U.S. English) locale, every 4GL identifier must conform to the following rules:

It must include at least one character, without any limitation in size.

Only ASCII letters, digits, and underscore (_) symbols are valid.

Blanks, hyphens, and other non-alphanumeric characters are not allowed.

The initial character must be a letter or an underscore.

Identifiers are not case sensitive, so my Var and MY_vaR both denote the same
identifier.

Within non-English locales, however, BDL identifiers can include non-ASCII characters
in identifiers, if those characters are defined in the code set of the locale that
CLIENT_LOCALE specifies. In multibyte East Asian locales that support languages whose
written form is not alphabet-based, such as Chinese, Japanese, or Korean, an identifier
does not need to begin with a letter.

Preprocessor Directives

The language supports preprocessing instructions, which allow you to write macros and
conditional compilation rules:

01 &include "myheader.4gl™
02 FUNCTION debug(msg)
03 DEFINE msg STRING

04 &ifdef DEBUG

05 DISPLAY msg

06 &endif

07 END FUNCTION

See The Preprocessor for more details.

23

Genero Business Development Language

The Dynamic User Interface

Summary:

Graphical rendering
The Dynamic User Interface
o The concept
o When is the front-end synchronized?
Connecting to the front-end
o Graphical and Text Mode
Defining the Target Front End
Front End Identification
Warning: Security Issue
Controlling Front End Connection
Front End Connection Lost
Front End Errors
The Abstract User Interface
What does the Abstract User Interface tree contain?
Manipulating the Abstract User Interface
XML Node Type and Attribute Names
Actions in the Abstract user Interface tree
o The Front End Protocol
Special Features
o Character Conversion Table
o Automatic front-end startup

.
O O oo O O O0OO0OO0Oo

See also: Form Files, Windows and Forms, Interaction Model.

Graphical rendering

In Genero, the user interface is designed to provide a real graphical look and feel,
compared to traditional Informix 4GL applications. However, graphical user interfaces
and especially windows management is not compatible with the traditional 4GL user
interface management, which was designed for character terminals. With the graphical
interface of Genero, you can, for example, display windows as real movable and
resizable windows, display labels with variable fonts, use toolbars and pull-down menus,
or show error messages in a status bar. But this requires you to adapt the code and
remove instructions like DISPLAY AT that make no sense in real GUI mode.

24

General

If]DORDER FORM [[Of =]
Application: Hepoits
Cugtomer Mumbsr.

Ok

First Hame: Last Mame: |

|

|

Campary Mame: |
Address | Address2 | Irrest

|

|

|

4ddi

City:
Shahe:

Crhzte:

v ZnCode: [0

Telephone:

Oirder Diate: |03 0/2003 =
=

PoMmber [0

fiem Mo ISt-ul:lt Nu.l Code | Desciphion iﬂuml'l_fl Price ITnhul] =
1/ HRD bazabal gloes 12 123000

Tokal
Funring Total nchadng Tax and Shepping Charges: I

éEnI:i the ibem quantily

The Dynamic User Interface

The concept

The Dynamic User Interface (DUI) is a global concept for a new, open User Interface
programming toolkit and deployment components, based on the usage of XML
standards and built-in classes.

The purpose of the DUI is to support different kinds of display devices by using the same
source code, introducing an abstract definition of the user interface that can be
manipulated at runtime as a tree of user interface objects. This tree is called the Abstract
User Interface.

The Runtime System is in charge of the Abstract User Interface tree and the Front End
is in charge of making this abstract tree visible on the screen. The Front End gets a copy
of that tree which is automatically synchronized by the runtime by using the Front End
Protocol.

In development, application screens are defined by Form Specification Files. These files
are used by the Form Compiler to produce the Runtime Form Files that can be deployed
in production environments.

25

Genero Business Development Language

Architectural schema

The following schema describes the Dynamic User Interface concept, showing how the
Abstract User Interface tree is shared by the Runtime System and the Front End:

Opplication Server Wodistation
Famdirme Systern F B Fromt Erd
Wima Protocol
AT Tree g BT Tree

F 3

ooono

When is the front-end synchronized?

The Abstract User Interface tree on the front-end is synchronized with the Runtime
System AUI tree when a user interaction instruction takes the control. This means that
the user will not see any display as long as the program is doing batch processing, until
an interactive statement is reached.

For example, the following program shows nothing:

01 MAIN

02 DEFINE cnt INTEGER

03 OPEN WINDOW w WITH FORM *myform'
04 FOR cnt=1 TO 10

05 DISPLAY BY NAME cnt
06 SLEEP 1

07 END FOR

08 END MAIN

If you want to show something on the screen while the program is running in a batch
procedure, you must force synchronization with the front-end, by calling the refresh()
method of the Interface built-in class:

01 MAIN

02 DEFINE cnt INTEGER

03 OPEN WINDOW w WITH FORM "‘myform'

04 FOR cnt=1 TO 10

05 DISPLAY BY NAME cnt

06 CALL ui.Interface.refresh() -- Sync the front-end!

26

General

07 SLEEP 1
08 END FOR
09 END MAIN

Connecting to the front-end

Graphical and Text Mode

By default, a Genero BDL application executes in graphical mode (GUI). However, you
can run the applications in dumb terminals by using the text-based display, called text
mode (TUI). To run the application in TUI mode, set the FGLGUI environment variable to
zero.

Defining the Target Front-End

In GUI mode, when the first interactive instruction like MENU or INPUT is executed, the
runtime system establishes a tcp connection to the front-end. The front-end acts as a
graphical server for the runtime system.

On the runtime system side, the front-end is identified by the FGLSERVER environment
variable. This variable defines the hostname of the machine where the front-end resides,
and the number of the front-end instance to be used.

The syntax for FGLSERVER is hostname[:servernum]:

$ FGLSERVER=fox:1
$ fglrun myprog

The servernum parameter is a whole number that defines the instance of the front-end.
It is actually defining a tcp port number, starting from 6400. For example, if servernum
equals 2, the tcp port number used is 6402 (6400+2).

This is the standard/basic connection technique, but you can set up different types of
configurations; for example, to have the front-end connect to an application server via
ssh, to pass through firewalls over the internet. Refer to the front-end documentation for
more details.

Front-End Identification

The front-end can open a terminal session on the application server to start a program
from the user workstation. This is done by using a ssh, rlogin, or telnet terminal session.
When the terminal session is open, the front-end sends a couple of shell commands to
set environment variables like FGLSERVER before starting the Genero program to
display the application on the front-end where the terminal session was initiated.

27

Genero Business Development Language

In this configuration, front-end identification takes place. The front-end identification
prevents the display of application windows on a front-end that did not start the Genero
application on the server. If the front-end was not identified, it would result in an
important security problem, as anyone could run a fake application that could display on
any front-end and ask for a password.

Warning (Security Issue): Front-end identification is achieved by setting two
environment variables in the terminal session, which identify the front-end. The
runtime system sends the first identifier back when connecting to the front-end,
and the front-end sends the second id in the returning connection string. The
Front-end checks the first id, and refuses the connection if that id does not
correspond to the original id set in the terminal session. The runtime system
checks the second id send by the front-end in the connection string, and refuses
the connection if that id does not correspond to the environment variable set in
the terminal session. There can be a security hole if users can overwrite the
program or the shell script started by the front-end terminal session. It is then
possible to change the front-end identification environment variables and
FGLSERVER, in order to display the application on another workstation to read
confidential data. As long as basic application users do not have read and write
privileges on the program files, there is no risk. To make sure that program files
on the server side are protected from basic users, create a special user on the
server to manage the application program files, and give other users only read
access to those files. As long as basic users cannot modify programs on the
server side, there is no security issue.

Controlling Front-End Connection

If the front-end host machine is down or if its firewall drops connections for the port used
by Genero, the program will stop with an error after a given timeout.

The connection timeout can be specified with the following FGLPROFILE entry:
gui.connection.timeout = seconds

The default timeout is 30 seconds.

Front-End Connection Lost

When the runtime system waits for a user action, but the end user does not do anything,
the client sends a 'ping' event every 5 minutes to keep the tcp connection alive. This
situation can happen if the user leaves the workstation for a while without closing the
application.

If the client is not stopped properly (when killed by a system reboot, for example), the tcp
connection is lost and the runtime system does not receive any more 'ping' events from
the client. In this case, the runtime system waits for a specified time before it stops with
fatal error -8062.

By default, the runtime system waits for 600 seconds (10 minutes).

28

General

You can configure this timeout with an FGLPROFILE entry:
gui.protocol .pingTimeout = 800

Warning: If you set this timeout to a value lower than the ping delay of the front-
end, the program will stop with a fatal error after that timeout, even if the tcp
connection is still alive. For example, with a front-end having a ping delay of 5
minutes, the minimum value for this parameter should be about 330 seconds (5
minutes + 30 seconds to make sure the client ping arrives).

Front-End Errors

When the Front End receives an invalid order, it stops the application. The Runtime
System then stops and displays the following message:

Program stopped at “xxx.4gl®, line number yy.
FORMS statement error number -6313.
The Userlnterface has been destroyed: <message>.

The following error messages can occur:

Message Description

The front-end has been stopped or the user

Application was terminated by has clicked on the "Terminate application”

user

button.
Unexpected interface version The runtime system and the front-end
sent by the runtime system versions are not fully compatible.
The container ‘container_name' The same WCI container has been started
already exists twice.

The parent WCI container has been
stopped while some children are still
running

The container 'container_name' The WCI parent of the current child doesn't
doesn't exist exist.

Invalid AUI Tree: Multiple Start The AUI Tree contains two Start Menu
Menu nodes Nodes - should not happen.

The container ‘container_name'
was destroyed

The Abstract User Interface

The Abstract User Interface (AUI) is a DOM tree describing the objects of the User
Interface of a Program at a given time. A copy of the AUI tree is held by both the Front
End and the Runtime System. AUI Tree synchronization is automatically done by the
Runtime System using the Front End Protocol. The programs can manipulate the AUI
tree by using built-in classes and XML utilities.

29

Genero Business Development Language

What does the Abstract User Interface tree contain?

The Abstract User Interface defines a tree of objects organized by parent/child
relationship. The different kinds of user interface objects are defined by attributes. The
AUI tree can be serialized as text according to the XML standard notation.

The following example shows a part of an AUI tree defining a Toolbar serialized with the
XML notation:

<ToolBar>
<ToolBarltem name="f5" text="List" image="list" />
<ToolBarSeparator/>
<ToolBarltem name="Query"' text="Query" iImage="'search” />
<ToolBarltem name="Add" text="Append' image="add" />

</ToolBar>

Manipulating the Abstract User Interface tree

The objects of the Abstract User Interface tree can be queried and modified at runtime
with built-in classes like ui.Form, provided to manipulate form elements.

01 DEFINE w ui.-Window

02 DEFINE f ui.Form

03 LET w = ui.Window.getCurrent()

04 LET ¥ = w.getForm()

05 CALL f.setElementHidden(*'groupbox1™,1)

In very special cases, you can also directly access the nodes of the AUI tree by using
DOM API classes like DomDocument and DomNode. To get the user interface nodes at
runtime, the language provides different kinds of API functions or methods, according to
the context. For example, to get the root of the Abstract User Interface tree, call the
ui.Interface.getRootNode() method. You can also get the current form node with
ui.Form.getNode() or search for an element by hame with the ui.Form.findNode()
method.

XML Node Types and Attribute Names

By tradition BDL uses uppercase keywords, such as LABEL in form files, and the
examples in this documentation reflect that convention. The BDL language itself is not
case-sensitive. However, XML is case-sensitive, and by convention node types use
uppercase/lowercase combinations to indicate word boundaries. In BDL, therefore,
the nodes and attributes of an Abstract User Interface tree are handled as follows:

e Node types - the first letter of the node type is always capitalized. Subsequent
letters are lower-case, unless the type consists of multiple words joined together.

30

General

In that case, the first letter of each of the multiple words is capitalized (the
CamelCase convention). Examples: Label, FormField, DateEdit, Edit

o Attribute names - the first letter of the name is always lower-case; subsequent
letters are also lower-case, unless the name consists of multiple words joined
together. In that case, the first letter of each subsequent word is capitalized (the
Lower CamelCase convention). Examples: text, colName, width, tablndex

e Attribute values - the values are enclosed in quotes, and BDL does not convert
them..

Warning: If you reference Nodes or Attributes in your BDL code, you must always
respect the naming conventions.

Actions in the Abstract User Interface tree

The Abstract User Interface identifies all possible actions that can be received by the
current interactive instruction with a list of Action nodes. The list of possible actions are
held by a Dialog node. An Action node is identified by the 'name' attribute and defines
common properties such as the accelerator key, default image, and default text.

Interactive elements are bound to Action nodes by the 'name’ attribute. For example, a
Toolbar item (button) with the name ‘cancel’ is bound to the Action node having the
name ‘cancel’, which in turn defines the accelerator key, the default text, and the default
image for the button.

Ohetract User Bderface tree

AT Tree

ToolBar

ToolBarkerm (fuarre= Trodify ™)

ToolBarkem Fuarre=‘cancel ™)

Tophlern
| Tophlerpifern (Frarre="cawel™) li

When an interactive element is used (such as a form field input, toolbar button click, or
menu option selection), an ActionEvent node is sent to the runtime system. The name of
the ActionEvent node identifies what Action occurred and the 'idRef' attribute indicates
the source element of the action.

See also Front End Events for more details.

31

Genero Business Development Language

The Front End Protocol

The Front End Protocol (FEP) is an internal protocol used by the Runtime System to
synchronize the Abstract User Interface representation on the Front End side. This
protocol defines a simple set of operations to edit the Abstract User Interface tree. This
protocol is based on a command processing principle (send command, receive answer)
and can be serialized to be transported over any network protocol, like HTTP for
example.

Both the Abstract User Interface and the Front End Protocol are public to allow third
parties to develop their own Front Ends. This enables applications to be deployed on
very specific Workstations.

Refer to Front End Protocol for more details about the operations supported by this
communication protocol.

Special Features

This section describes special features regarding the user interface domain:

e Character Conversion Table
e Automatic Front-End Startup

Character Conversion Table

Definition

By default, the runtime system expects that the operating system running the programs
uses the same character set as the operating system running the front-end. If the
character sets are different, you can set an FGLPROFILE configuration parameter to

enable character set mapping between the client and the runtime system, when using a
single-byte character set runtime system.

Warning: This feature is provided for backward compatibility. With the new
protocol, front-ends are able to identify the character set used by the runtime
system and automatically make the codeset conversion.

The following FGLPROFILE entry defines the character table conversion file:

gui .chartable = "relative-file-path”

The $FGLDIR/etc directory is searched for this file. The runtime system automatically
adds the ".ct" file extension.

32

General

Default value : NULL (no conversion).

Example:

gui .chartable = "iso/ansinogr"”

The runtime system loads the character table from: $FGLDIR/etc/iso/ansinogr.ct
Warnings:

1. The runtime system automatically adds the ".ct" file extension.
2. Character set conversion does not occur when using TUI mode (FGLGUI=0).

Automatic front-end startup
Definition

The runtime system tries to open a connection to the graphical front-end according to
the FGLSERVER environment variable. This requires having the front-end already
started and listening to the TCP port defined according to FGLSERVER.

In some configurations, such as X11 workstations or METAFRAME/Citrix Winframe or
Microsoft Windows Terminal Server, each user may want to start his own front-end to
have a dedicated process. This can be done by starting the front-end automatically when
the Genero program executes, according to the DISPLAY (X11) or
SESSIONNAME/CLIENTNAME (WTSE) environment variables.

Usage:
By default the runtime system always tries to connect to a front-end according to
FGLSERVER. If this variable is not set, it tries to connect to the "localhost:0" GUI

server. If this still does not work, automatic front-end startup takes place, if the
gui.server.autostart.cmd FGLPROFILE entry is set.

Warning: If the gui .server.autostart.cmd entry is not defined, automatic front-
end startup does not occur.

To enable automatic front-end startup, you configure gui.server.autostart.* entries in
FGLPROFILE.

The 'cmd' entry can be used to define what command should be executed to start the
front-end:

gui.server.autostart.cmd = "'gdc -p %d -q -M"
Here, %d will be replaced by the TCP port the front-end must listen to.

By default the runtime system waits for two seconds before it tries to connect to the
front-end. You can change this delay with the 'wait' entry:

33

Genero Business Development Language

gui .server.autostart.wait = 5 -— wait five seconds

The runtime system tries to connect to the front-end ten times. You can change this with
the 'repeat’ entry:

gui.server.autostart.repeat = 3 -- repeat three times

The following FGLPROFILE entries can be used to define workstation id to front-end id
mapping:

gui .server .autostart.wsmap.max = 3
gui .server.autostart.wsmap.l.names
gui .server.autostart.wsmap.2.names
gui .server .autostart.wsmap.3.names

"fox:1.0,fox.sxb.4js.com:1.0"
"wolf:1.0,wolf.sxb.4js.com:1.0"
"wolf:2_.0,wolf.sxb.4js.com:2.0"

The first '‘wsmap.max' entry defines the maximum number of front-end identifiers to look
for. The 'wsmap.N.names' entries define a mapping for each GUI server, where N is the
front-end identifier. The value of those entries defines a comma-separated list of
workstation names to match.

On X11 configurations, a workstation is identified by the DISPLAY environment variable.
In the above example, "fox:1.0" identifies a workstation that will make the runtime start a
front-end with the number 1.

On Windows Terminal Server, the CLIENTNAME environment variable identifies the
workstation. If no corresponding front-end id can be found in the 'wsmap' entries, the
front-end number defaults to the id of the session defined by the SESSIONNAME
environment variable, plus one. The value of this variable has the form "protocol#id";
for example, "RDP-Tcp#4" would automatically define a front-end id of 5 (4+1).

Tips:

1. If the front-end processes are started on the same machine as the runtime
system, you do not need to set the FGLSERVER environment variable. This will
then default to 'localhost:id’, where id will be detected according to the ‘wsmap'
workstation mapping entries.

2. If the front-end is executed on a middle-tier machine that is different from the
application server, MIDHOST for example, you can set FGLSERVER to
"MIDHOST" without a GUI server id. The workstation mapping will automatically
find the id according to 'wsmap' settings.

3. Some clients, such as the Genero Desktop Client (GDC), raise the control panel
to the top of the window stack when you try to restart it. In this case the program
window might be hidden by the GDC control panel. To avoid this problem, you
can use the -M option to start the GDC in minimized mode.

34

General

Installation and Setup

This chapter includes instructions for installing Genero BDL on either UNIX or Windows

platforms.

Summary:

1. Supported Operating Systems
2. Hardware Requirements
o 2.1 Network Card
o 2.2 Memory and Processor
o 2.3 Disk Space
e 3. Software Requirements
o 3.1 Internet access
o 3.2 Database Client Software
o 3.3 C Compiler for C Extensions
e 4. Installing the Product
o 4.1 Genero BDL Packages
o 4.2 Pre-installation tasks
o 4.3 Running the installation program
o 4.4 Post-installation tasks
e 5. Licensing the Product
o 5.1 License Basics
5.2 Registering the license
5.3 Getting license information
5.4 Removing the license
5.5 Re-installing the license
5.6 The FGLDIR/lock directory
o 5.7 Using a license server
e 6. Upgrading the Product
o 6.1 Pre-upgrade tasks
o 6.2 Licensing an upgraded installation
o 6.3 Post-upgrade tasks
e 7. Operating System Specific Notes
o HP/UX
o IBM AIX
o Microsoft Windows
o SCO Unixware

O O O0OO0Oo

See also: Tools and Components, Localization Support, Environment Variables.

1. Supported Operating Systems

Genero BDL is supported on a large brand of operating systems, such as Linux, IBM
AIX, HP-UX, SUN Solaris and Microsoft Windows.

35

Genero Business Development Language

Each Genero BDL package is identified with an operating system code (hpx1100,
w32vc71). You must install the Genero BDL package corresponding to the operating
system that you use.

For the detailed list of supported operating systems, please refer to the Four J's support
web site.

2. Hardware Requirements

Genero BDL does not require any particular hardware except a network card for license
control.

2.1 Network Card

A network card is required by the license manager. It is not possible to install Genero
BDL on a computer without a network card.

2.2 Memory and Processor

In a runtime environment, memory and processor requirements are dependent on the
number of users and the type of database server. Each DVM process requires 2 Mb to 6
Mb, based on the database client software. For example, a typical requirement for a 30
user runtime environment with an Informix database server is a 500 MHz processor with
512 Mb RAM.

2.3 Disk Space

According to the operating system and the type of installation (development or runtime
environment), the total disk space required can vary from 20 Mb to 25 Mb.

Warning: During installation, about 15 Mb are needed in the current temporary
directory.

3. Software Requirements
Genero BDL requires the following software to be installed on the system:

1. Aninternet access

36

General

2. The database client software
3. A C compiler if you need to compile C extensions

3.1 Internet access

In order to license the product online from the Four J's Web site (http://www.4js.com),
you need an Internet browser and an Internet connection.

3.2 Database Client Software

3.2.1 The database client software

To connect to a database server, you need the database client software to be installed
on the system where you run the BDL programs.

Below is a list of database client software examples:

Informix CSDK (with ESQL/C)

Genero db client (ODBC driver)

DB2 Connect (with CLI)

Oracle Client (with OCI)

Microsoft SQL Server Client (with ODBC driver)
PostgreSQL client (libpq)

MySQL client (libmysqglclient)

3.2.2 The database client library must be a shared object

Starting with Genero 2.00, database drivers are provided as pre-linked shared libraries.
There is no need to link a runner or driver on site, but the database client software must
provide a shared library corresponding to the one used to link the driver. The table in the
next section lists supported database client software versions and the corresponding
shared libraries that must exist on the system.

3.2.3 Supported database client versions

This table shows the database drivers with the corresponding database client version
and shared libraries:

dbmads3x Genero DB Client 3.x libaodbc.so aodbc.dll
dbmasa8x Sybase ASA Client 8.x libdblib8.so dblibtm.dll
dbmdb28x DB2 Client 8.x libdb2.s0 db2cli.dll

37

Genero Business Development Language

dbmdb29x

dbmmsv8x

dbmmsv9x

dbmsnc9x

dbmftm9x

dbmifx9x

dbmora81x
dbmora82x
dbmora92x
dbmoraAlx
dbmoraA2x
dbmpgs81x
dbmpgs82x
dbmpgs83x
dbmmys50x
dbmmys51x
dbmmys60x
dbmmys61x

dbmodc3x

See also Operating System Specific Notes.

DB2 Client 9.x

SQL Server Client 8.x (SQL

Server 2000)

SQL Server Client 9.x, old

driver (SQL Server 2005)

SQL Server Client 9.x,
native client (SQL Server
2005)

SQL Server Client 9.x,
FreeTDS client

Informix CSDK 2.80 and
higher

Oracle Client 8.1.x
Oracle Client 8.2.x
Oracle Client 9.2.x
Oracle Client 10.1.x
Oracle Client 10.2.x
PostgreSQL Client 8.1.x
PostgreSQL Client 8.2.x
PostgreSQL Client 8.3.x
MySQL Client 5.0.x
MySQL Client 5.1.x
MySQL Client 6.0.x
MySQL Client 6.1.x

Generic ODBC Client
(ODBC 3.x)

libdb2.s0
N/A

N/A

N/A

libtdsodbc.so

libifsqgl.so,
libifasf.so,
libifgen.so,
libifos.so,
libifgls.so,
libifglx.so

libclntsh.so
libclntsh.so
libclntsh.so
libclntsh.so
libclntsh.so
libpg.so
libpg.so
libpg.so

db2cli.dll

odbc32.dll /
SQLSRV32.DLL

odbc32.dll /
SQLSRV32.DLL

odbc32.dll /
SQLNCLI.DLL

N/A

isqlt09a.dll

oci.dll
oci.dll
oci.dll
oci.dll
oci.dll
libpg.dll
libpg.dll
libpg.dll

libmysqlclient.so libmysql.dll
libmysqglclient.so libmysql.dll
libmysqglclient.so libmysql.dll
libmysqlclient.so libmysql.dll

libodbc.so

odbc32.dll

3.3 C Compiler for C extensions

If you have C Extensions, you need a C compiler and linker to build the extension library.

For more details about C extensions, see "C Extensions" section in this documentation.

3.3.1 C compiler On UNIX platforms:

38

General

Warning: On UNIX platforms, you need a cc compiler on the system where you
create the C extension libraries. Some systems may not have a C compiler by
default. Make sure you have a C compiler on the system.

3.3.2 C compiler On Microsoft Windows platforms:

Warning: On Windows platforms, it is mandatory to install Microsoft Visual C++
version 7.1 or higher on the system where you create the C extension libraries.
You must install the appropriate Genero FGL package according to the version of
Visual C++ you have installed. For example, when using Visual C++ 8, you must
install the package marked by the w32vc80 operating system identifier.

4. Installing the Product

4.1 Genero BDL packages

The software is provided in self-extractible installation programs. On UNIX platforms, the
installation program is a shell script (with a .sh extension). On Windows platforms, it is
an executable program (with a .exe extension).

Genero BDL package files follow a specific naming convention:

fjs-product-version-osident.extension

where:
1. product is the product identifier.
2. version is the release number of the software (1.10.1a).
3. osident is the operating system identifier.
4. extension is sh on UNIX platforms and exe on Windows platforms.

Examples:

fjs-fgl-1.10.1a-a640510.sh
fjs-fgl-1.10.1la-InxIc22_sh
fjs-fgl-1.10.1a-wnt0430.exe

4.2 Pre-installation tasks

Before launching the installation program, make sure:

39

Genero Business Development Language

1. You have a license humber and a license key for Genero BDL development or
runtime.

See Licensing for more details.

2. You are using a supported operating system.

3. You are connected to the system as a user with sufficient privileges to install the
software in the target directory.

4. Your configuration matches all hardware requirements and software
requirements.

5. You have access to all needed DLLs (PATH) or shared libraries
(LD_LIBRARY_PATH).

6. You have set the environment variables for the database client software
(INFORMIXDIR/INFORMIXC, ORACLE_HOME, DB2DIR, PGDIR,
LD_LIBRARY_PATH).

7. You can use the C compiler if you need to create C Extensions.

Warning: Before starting the installation program, make sure that the database
client environment variables are set.

4.3 Running the installation program

The product is provided as an auto-extractible installation program (product files and
installation program are provided in the same file). The name of the package includes
the operating system type and version. Ensure the package name corresponds to your
system before starting the installation program.

4.3.1 Installing on UNIX platforms

On Unix platforms, Genero J's BDL is provided as an auto-extractible shell script.
Distribution files and installation program are provided in the same file.

The installation program has options. Display the installation program options using the -
h option:

$ /bin/sh fjs-fgl-1.10.1a-aix0430.sh -h
To perform the installation, run the auto-extractible shell script with the -i option:

$ /bin/sh fjs-fgl-1.10.1a-aix0430.sh -i

The installation program determines the operating system and checks that all the system
requirements are met before starting to copy the product files to your disk.

At this point, follow the online instructions.

4.3.2 Installing on Microsoft Windows platforms

40

General

On Microsoft Windows, Genero BDL is provided with a standard Windows setup
program. Distribution files and installation program are provided in the same file.

To perform the installation, login as a user with Administrator privileges and simply start
the executable program in the "Start" + "Run" window:

fjs-fgl-1.10.1a-wnt0430.exe

At this point, follow the online instructions.

4 .4 Post-installation tasks

After installing the product, you can look at the files provided in FGLDIR/release
directory.

It is recommended that you first read the license terms provided in the "license.txt" file.
Read this file carefully before using the product in production.

The release notes are in the "readme.txt" file. This file contains important last-minute
information that may not be found in the documentation.

Development team changes are provided in the "changes.txt" file. This file contain
detailed technical information about changes in the BDL source. You should only
reference this file when you cannot find an answer in the "readme.txt" file.

According to the database server you want to connect to, you will need to set up the
correct database driver in FGLPROFILE. The default database driver is Informix. For
more details about database driver configuration, see Connections.

5. Licensing the Product

5.1 License basics

During the installation, you are prompted to license the software. A license must be
entered before you can use the product.

During the first installation, you need the license number and license number key
supplied with the product package. For example:

FAZ#X34006TG + GFASOFD78XDT

When upgrading, the product is installed over the existing directory having a valid
license. You do not have to re-enter the license keys.

41

Genero Business Development Language

Warning: Neither the serial number nor the installation number will ever contain
the letter O: They can only contain the digit O (zero).

5.2 Registering the license

To perform a full licensing, you will be prompted for the license number and license
number key. An installation number will be generated from the license number and
license number key. Go to the http://www.4js.com web site to get the installation
number key (or contact your local Four J's support center if you fail to get the key from
the web site). Enter the installation number key to complete licensing.

You have 30 days to enter the installation number key. If you cannot get the installation
number key, you will have to complete the licensing manually by using the following
command:

$ fglwrt -k installation-number-key

5.3 Getting license information

The following command shows the current installation number:

$ fglwrt -a info

5.4 Removing alicense

An existing license can be dropped using the following command:

$ fglwrt -d

5.5 Re-installing a license
To re-install a license, use the following command:

$ fglwrt —I

42

General

5.6 The FGLDIR/lock directory

When running a BDL program, the license manager uses the FGLDIR/lock directory to
store information (number of active users). This directory must have access rights for
any user running a BDL program. If it does not exist, it is automatically created.

By default, the FGLDIR/lock directory is created with rwxrwxrwx rights, to let any user
access the directory and create files. If you want to restrict the access to a specific group
or user, you can use the FGLWRTUMASK environment variable to force fglWrt to use a
specific mask when creating the lock directory:

$ FGLWRTUMASK="022"; export FGLWRTUMASK

Warning: The FGLWRTUMASK environment variable must be set for any user
executing BDL programs, because the FGLDIR/lock directory can be re-created by
any user at first BDL program execution.

5.7 Using a license server

You don't need to install a locale license with fglWrt if you can access a license server
on the network.

To make the runtime system use a license server, you must set the following
FGLPROFILE entries:

flm.server = . . .
Defines the name of the license server machine

""<hostname>""

flm_license.number.]_h i b basi

— “Znumbers" e license number (see basics)
flm.license._key = . .

" ekey>" The license key (see basics)

If needed, you can specify the following optional parameters:

Tim.service = TCP port number used by license server (default is 6399)

<port>

flm.check = Number of iterations between two controls of the user list
<count> (default is 10)

fIm.ping = Timeout (ms) for ping to detect license server machine

<milTiseconds> (default is 3000)

flm.ps = "<ps Command to get the number of processes (default is "ps -
command>"' ae")

43

Genero Business Development Language

6. Upgrading the Product

6.1 Pre-upgrade tasks

=

Verify the FGLDIR environment is set to the directory you want to upgrade.

2. Verify the user rights (you should login as the owner of the current installed files)
and ensure all binaries can be overwritten.

3. Stop all running programs before starting the installation.

6.2 Licensing an upgraded installation

It is not necessary to re-enter the license of the product, as long the new version is
installed into an existing installation directory and the new version to be installed is not a
major version number change.

Warning: If you upgrade to a new release with a major version number change,
you will have to re-license the product again.

6.3 Post-upgrade tasks

When migrating to a major Genero FGL version (for example, from 1.20 to 1.33), you
must recompile the sources and form files. While recompilation is not needed when
migrating to minor versions (for example, from 1.32 to 1.33), it is recommended to
benefit from potential p-code optimizations of the new version.

If required, you may need to re-create the C Extension libraries. Starting with version
2.00 C extension libraries must be provided as dynamically loadable modules and thus
should not required a rebuild. However, if Genero C API header files have changed,
consider recompiling you C extensions. Check FGLDIR/include/f2c for C API header file
changes.

7. Operating System Specific Notes

HP/UX

Thread Local Storage in shared libraries

44

General

On HP/UX, the shared library loader cannot load libraries using Thread Local Storage
(TLS), like Oracle libcintsh. In order to use shared libraries with TLS, you must use the
LD_PRELOAD environment variable. For more details, search for "shl_load + Thread
Local Storage” on the HP support site.

PostgreSQOL on HP/UX LP64

On HP/UX LP64, the PostgreSQL database driver should be linked with the libxnet
library if you want to use networking. You can force the usage of libxnet by setting the
LD_PRELOAD environment variable to /lib/pa20_64/libxnet.sl.

IBM AIX

LIBPATH environment variable

The LIBPATH environment variable defines the search path for shared libraries. Make
sure LIBPATH contains all required library directories, including the system library path
/lib and /usr/lib.

Shared libraries archives

On AlX, shared libraries are usually provided in .a archives containing the shared
object(s). For example, the DB2 client library libdb2.a contains both the 32 bit (shr.0) and
the 64 bit (shr_64.0) versions of the shared library. Not all products follow this rule: for
example Oracle 9.2 provides libcIntsh.a with shr.o on 64 bit platforms, and Informix
provides both .a archives with static objects and .so shared libraries as on other
platforms...

The Genero database drivers are created with the library archives or with the .so shared
objects, according to the database type and version. No particular manipulation is
needed to use any supported database client libraries on this platform.

IBM provides a document describing linking on AIX systems. It is recommended that you
read this document.

http://www.ibm.com/servers/esdd/pdfs/aix_Il.pdf

The dump command

On IBM AlX, you can check the library dependencies with the dump command:

$ dump -Hv -X64 dbmora92x.so

Unloading shared libraries from memory

In production environments, AlX loads shared libraries into the system shared library
segment in order to improve program load time. Once a shared library is loaded, other

45

Genero Business Development Language

programs using the same library are just attached to that memory segment. This works
fine as long as you don't need to change the shared library (to replace it with a new
version for example).

Once a shared library is loaded by the system, you cannot copy the executable file
unless you unload the library from the system memory. Thus, you will probably need to
unload the Genero shared libraries before installing a new version of the software. This
problem occurs when installing in the same directory, but can also happen when
installing in a different directory. As shared libraries will have the same name, AlX will
not allow to load multiple versions of the same library. Therefore, before installing a new
version of Genero, make sure all shared libraries are unloaded from the system memory.

To get the list of shared libraries currently loaded into memory, use the genkld
command. The genld command collects the list of all processes and reports the list of
loaded objects corresponding to each process. Then, use the slibclean command to
unload a shared library from the system shared library segment.

POSIX Threads and shared libraries

When using a thread-enabled shared library like Oracle's libcintsh, the program using
the shared object must be linked with thread support, otherwise you can experience
problems (like segmentation fault when the runner program ends). IBM recommends
using the xIc_r compiler to link a program with pthread support.

By default, the runtime system provided for AlX platforms is linked with pthread support.

Microsoft Windows

Microsoft Visual C version

You need Microsoft Visual C++ compiler to create C Extensions. Make sure you have
installed the correct Genero package, according to the MSVC version you have installed
on your system. MSVC runtime libraries of different VC++ versions are not compatible.
Refer to the name of the Genero package to check the VC++ version compatibility.

Searching binary dependencies

Microsoft Visual C provides the dumpbin utility.

To check for DLL dependency, you can use the /dependents option:

C:\ dumpbin /dependents mylib.dll

Microsoft (R) COFF/PE Dumper Version 7.10.3077

Copyright (C) Microsoft Corporation. All rights reserved.
Dump of file mylib.dll

File Type: EXECUTABLE IMAGE

46

Image has the following dependencies:

isqlt09a.dll
MSVCR71.dI1
KERNEL32.dl1

Summary
1000 .data

1000 .rdata
1000 .text

General

SCO Unixware

Supported locales

Unixware 7.1 only supports a subset of the UTF-8 character set, named 1SO-10646-

Minimum-European-Subset. This character set does not include all characters defined
by UTF-8. Therefore, you can experience problems when running an application using
UTF-8 characters that are not in the 1SO-10646-Minimum-European-Subset character

set.

47

Genero Business Development Language

Tools and Components

Summary:

Product Information Viewer (fpi)
Runtime System Program (fglrun)

Form Compiler (fglform)

Program Compiler (fgl2p)

Module Compiler (fglcomp)

Module Linker (fgllink)

Message Compiler (fglmkmsg)
Database Schema Extractor (fgldbsch)
Localized String File Compiler (fglmkstr)

See also: Installation and Setup.

fpi
Purpose:

The fpi utility program is provided to display product information, such as the version
number.

Syntax:
fpi [options]
Notes:

1. options are described below.

Options:
Option Description
-V Displays version information for the tool.
-h Displays options for the tool. Short help.
1 Displays version information for all BDL tools and
components.
Usage:

This tool displays the product version number. This version number is useful if you need
to identify the installed software. For example, you must reference the product version
when you declare a bug.

48

fglrun

Purpose:

General

The fglrun tool is the runtime system program that executes p-code BDL programs.

Syntax:

fglrun [options] program[.42r] [argument [...]1]

Notes:

pPonE

options are described below.

program.42r is the program name.

argument is a program argument passed to the program.
The .42r form file extension is optional.

Options:

Option

-V

Usage:

{ mbcs }

extfile

--]

outfile

Description
Display version information for the tool.
Displays options for the tool. Short help.

Displays information. -1 mbcs displays information about
multi-byte character set settings.

Start in debug mode. See Debugger for more details.

Specify a C-Extension module to be loaded. This option can
take a comma-separated list of extensions.

Link pcode nodules together, see Compiling Programs.
Specify the output file for the link mode (-I option).

Displays compiler version information of the module, see
Compiling Programs.

Generate profiling information to stderr (UNIX only). See
Profiler for more details.

Displays size information in bytes about the module, see
Optimization.

Display a memory usage diagnostic when program ends, see
Optimization.

Check for memory leaks. If leaks are found, displays memory
usage diagnostic and stops with status 1, see Optimization.

This tool executes BDL programs.

fglrun myprogram.42r -x 123

49

Genero Business Development Language

fglform
Purpose:

The fglform tool compiles form specification files into XML formatted files used by the
programs.

Syntax:
fglform [options] srcfile[.per]
Notes:

1. options are described below.
2. srcfile.per is the form specification file.
3. The .per form file extension is optional.

Warning:

1. All .per form specification files used by the program must be compiled before

usage.
Options:
Option Description
-V Display version information for the tool.
-h Displays options for the tool. Short help.
i { mbcs } Displays information. -i mbcs displays information about

multi-byte character set settings.
-m Extract localized strings.
Write error messages to standard output instead of creating a

-M .
.err error file.
Display warning messages. Only -W al I option is supported
-w { all }
- - for now.
-E Preprocess only.
-p option Preprocessing option.
Here option can be one of:
- nopp: Disable preprocessing.
- noli: No line number information (only with -E option).
- fglpp: Use # syntax instead of & syntax.
-1 path Provides a path to search for include files.
-D ident Defines the macro ‘ident’ with the value 1.

50

General

Usage:
This tool compiles a .per form specification file into a .42f compiled version:
fglform custform.per

The .42f compiled version is an XML formatted file used by BDL programs when a form
definition is loaded with the OPEN FORM or OPEN WINDOW WITH FORM instructions.

fglmkmsg
Purpose:

The fglmkmsg tool compiles message files into a binary version used by the BDL
programs.

Syntax:
fglmkmsg [options] srcfile [outfile]
Notes:

1. options are described below.
2. srcfile is the source message file.
3. oultfile is the destination file.

Warning:

1. All .msg message files used by the program must be compiled before usage.

Options:
Option Description
-V Display version information for the tool.
-h Displays options for the tool. Short help.
-r msgfile De-compiles a binary message file.
Usage:

This tool compiles a .msg message file into a .iem compiled version:
Tfglmkmsg mess01.msg

For backward compatibility, you can specify the output file as second argument:
fglmkmsg messO0l.msg messOl.iem

51

Genero Business Development Language

The .iem compiled version can be used by BDL programs, for example, when the HELP
clause is used in a MENU or INPUT instruction.

See message files for more details.

fglcomp
Purpose:
The fglcomp tool compiles BDL program sources files into a p-code version.
Syntax:
fglcomp [options] srcfile[.4gl]
Notes:
1. options are described below.
2. srcfile.4qgl is the program source file.
3. The .4gl extension is optional.

Warnings:

1. The .42m p-code modules must be linked together with fgllink or fgl2p in order to
create a runable program.

Options:

Option Description

-V Display version information for the tool.

-h Displays options for the tool. Short help.

- Displays information. -1 mbcs displays information about
-1 { mbcs } . .
- - multi-byte character set settings.

=S Dump Static SQL statements found in the source.

-m Extract localized strings.

M Write error messages to standard output instead of creating a
.err error file.
Display warning messages. For a complete description, see

-W what
below.

-E Preprocess only.

-p option Preprocessing option.

Here option can be one of:

- nopp: Disable preprocessing.

- noli: No line number information (only with -E option).
- fglpp: Use # syntax instead of & syntax.

52

General

-G Produce .c and .h globals interface files for C Extensions.
-1 path Provides a path to search for include files.
-D ident Defines the macro ‘ident’ with the value 1.

Usage:

This tool compiles a .4gl into a .42m p-code module that can be linked to other modules
to create a program or a library.

fglcomp customers.4gl

If a compilation error occurs, the tool generates a file that has the .err extension, with the
error message inserted at the line where the error occurred. You can change this
behavior by using the -M option to display the error message to the standard output.

To create a executable program, the fgllink or fgl2p tool must be used to link the .42m
compiled file with other modules.

The -W option

The -W option can be used to check for wrong language usage, that must be supported
for backward compatibility. When used, this option helps to write better source code.

The argument following -W option can be one of return, unused, stdsql, print, error
and all.

e Using -W all enables all warning flags.

e Using -W error makes the compiler stop if any warning is raised, as if an error
occurred.

¢ The -W unused option displays a message for all unused variables.

e The -W return option displays a warning if the same function returns different
number of values with several RETURN..

e The -W stdsql option displays a message for all non-portable SQL statements
or language instructions.

e The -W print option displays a message when the PRINT instruction is used
outside a REPORT.

The -W option also supports the negative form of arguments by using the no- prefix as
in: no-return, no-unused, no-stdsql. You might need to use these negative form in
order to disable some warning when using the -w al I option:

fglcomp -Wall -Wno-stdsql customers.4gl
The order of warning arguments is important: switches will be enabled/disabled in the

order of appearance in the command line. Using the negative form of warning arguments
before -w all makes no sense.

53

Genero Business Development Language

fgllink
Purpose:

The fgllink tool assembles p-code modules compiled with fglcomp into a .42r program
or a .42x library.

Syntax:

To create a library:

fgllink [options] -o outfile.42x module.42m [...]

To create a program:

fgllink [options] -o outfile.42r { module.42m |

library.42x } [.-.]

Notes:

options are described below.

outfile.42r is the name of the program to be created.
outfile.42x is the name of the library to be created.
module.42m is a p-code module compiled with fglcomp.
library.42x is the name of a library to be linked.

arwnhpRE

Options:

Option Description
-V Display version information for the tool.
-h Displays options for the tool. Short help.

Output file specification, where ext can be 42r for a program
or 42x for a library.

otheroption Other options are passed to fglrun for linking.

-0 outfile.ext

Usage:

This tool links .42m p-code modules together to create a .42x library or a .42r program
file.

fgllink -0 myprog.42x modulel._42m module2.42m 1ibl.42x

Note that fgl link is just a wrapper calling fglrun with the -l option.

fgl2p
Purpose:

54

General

The fgl2p tool compiles source files and assembles p-code modules into a .42r
program or a .42x library.

Syntax:

To create a library:

fgl2p [options] -o outfile.42x { pcodem.42m | srcfile.4gl } [...]

To create a program:

options] -o outfile.42r { pcodem.42m | srcfile.4gl | library.42x

fogl2p [
Y L---1
Notes:

options are described below.

outfile.42r is the name of the program to be created.
outfile.42x is the name of the library to be created.
pcodem.42m is a p-code module compiled with fglcomp.
source.4gl is a program source file.

library.42x is the name of a library to be linked.

ourwNE

Options:

Option Description

-V Display version information for the tool.

-h Displays options for the tool. Short help.
otheroption Other options are passed to the linker or compiler.

Usage:

This tool can compile .4gl source files and link .42m p-code modules together, to create
a .42x library or a .42r program file.

Tfgl2p -0 myprog.-42x modulel._4gl module2.42m libl.42x
This tool is provided for convenience, in order to create programs or libraries in one

command line. It uses the fglcomp and the fgllink tools to compile and link modules
together.

fgldbsch

Purpose

The Database schema extractor is the tool provided to generate the Database Schema
Files from an existing database.

55

Genero Business Development Language

Syntax:
fgldbsch -db dbname [options]
Notes:

1. dbname is the name of the database from which the schema is to be extracted.
2. options are described below.

Options:

Option Description

-V Display version information for the tool.

-h Displays options for the tool. Short help.

-H Display long help.

-V Enable verbose mode (display information messages).

-ct Display data type conversion tables.

_db dbname Specify the database as dbname. This option is required to
generate the schema files.

-dv dbdriver Specify the database driver to be used.

-un user Define the user name for database connection as user.

-up pswd Define the user password for database connection as pswd.

-ow owner Define the owner of the database tables as owner.

_cv string _Spec_ify the data type conversion rules by character positions
in string.

-of name Specify output files prefix, default is database name.

-tn tabname Extract the description of a specific table.

_ie Ignore tables with columns having data types that cannot be
converted.

-cu Generate upper case table and column names.

-cl Generate lower case table and column names.

-cc Generate case-sensitive table and column names.

-st Generate database system tables.

Usage:

The fgldbsch tool extracts the schema description for any database supported by the
product. For more details about generated schema files, see Database Schema Files.

fglmkstr
Purpose:

The fglmkstr tool compiles localized string files.

56

General

Syntax:
fglmkstr [options] source-file[.str]
Notes:

1. options are described below.
2. source-file is the .str string file. You can omit the file extension.

Options:
Option Description
-V Display version information for the tool.
-h Displays options for the tool. Short help.
Usage:

This tool is used to compile .str localized string files into .42s files.

For more details, see Localized Strings.

57

Genero Business Development Language

Frequently Asked Questions

This page contains questions frequently asked when migrating applications from BDL V3
to Genero BDL.

FAQOO01: When using Genero, why do | have a different display than with BDL V3?
FAQO002: Why does an empty window always appear?

FAQO003: Why do some COMMAND KEY buttons no longer appear?

FAQO04: Why aren't the elements of my forms aligned properly?

FAQOO05: Why doesn't the ESC key validate my input?

FAQO006: Why doesn't the CTRL-C key cancel my input?

FAQOO07: Why do the gui.* FGLPROFILE entries have no effect?

FAQO008: Why do | get a link error when using the FGL_GETKEY/() function?

FAQOO01: When using Genero, why do | have a different display
than with BDL V3?

Explanation:

Genero introduces major Graphical User Interface enhancements that sometimes
require code modification. With BDL V3, application windows created with the OPEN
WINDOW instruction were displayed as static boxes in the main graphical window. In the
new GUI mode of Genero, application windows are displayed as independent, resizable
graphical windows.

Links: Dynamic User Interface, Windows, Application class.

FAQO002: Why does an empty window always appear?
Description:

An additional empty window appears when | explicitly create a window with OPEN
WINDOW (following the new window management rules).

01 MAIN

02 OPEN WINDOW wl AT 1,1 WITH FORM *“forml™
03 MENU "Example™

04 COMMAND "Exit"

05 EXIT MENU

06 END MENU

07 CLOSE WINDOW wil

08 END MAIN

58

General

Explanation:

In the new standard GUI mode, all Windows are displayed as real front-end windows,
including the default SCREEN Window. When an application starts, the runtime system
creates this default SCREEN Window, as in version 3. This is required because some
applications use the SCREEN Window to display forms (they do not use the OPEN
WINDOW instruction to create new windows). So, to facilitate V3 to Genero migration,
the runtime system must keep the default SCREEN window creation; otherwise, existing
applications would fail if their code was not modified.

Solution:

You can either execute a CLOSE WINDOW SCREEN at the beginning of the program,
to close the default window created by the runtime system, or use the OPEN FORM +
DISPLAY FORM instructions, to display the main form in the default SCREEN window.

Example:

01 MAIN

03 OPEN FORM ¥ FORM "formi®
03 DISPLAY FORM Ff

04 MENU *‘Example"

05 COMMAND "Exit"

06 EXIT MENU
07 END MENU
08 END MAIN

FAQO003: Why do some COMMAND KEY buttons no longer
appear?

Description:

When creating a MENU with COMMAND KEY (keyname) "option' clause, the button for
keyname is no longer displayed:

01 MAIN

02 MENU "Example"

03 COMMAND "‘First"

04 EXIT PROGRAM

05 COMMAND KEY (F5) ''Second"

06 EXIT PROGRAM

07 COMMAND KEY (F6) -- Third is a hidden option
08 EXIT PROGRAM

09 END MENU

10 END MAIN

59

Genero Business Development Language

Explanation:

In BDL Version 3, when using the MENU instruction, several buttons are displayed for
each clause of the type COMMAND KEY (keyname) "option’: one for the menu option,
and others for each associated key.

When using Genero, for a named MENU option defined with COMMAND KEY, the buttons
of associated keys are no longer displayed (F5 in our example), because there is
already a button created for the named menu option. The so called "hidden menu
options" created by a COMMAND KEY (keyname) clause (F6 in our example) are not
displayed as long as you do not associate a label, for example with the
FGL_SETKEYLABEL() function.

FAQO04: Why aren't the elements of my forms aligned properly?
Description:

In my forms, | used to align labels and fields by character, for typical terminal display.
But now, when using the new LAYOUT section, some elements are not aligned as
expected. In the following example, the beginning of the field 001 is expected in the
column near the end of the digit-based text of the first line, but the field is actually
displayed just after the label "Name:":

01 DATABASE FORMONLY

02

03 LAYOUT

04 GRID {

05 01234567890123456789

06 Name: [fO01 1
07 }

08 END

09 END

10

11 ATTRIBUTES
12 001 = formonly.fieldl TYPE CHAR;
13 END

Explanation:

By default, BDL Genero displays form elements with proportional fonts, using layout
managers to align these elements inside the window. In some cases, this requires a
review of the content of form screens when using the new layout management, because
the layout is based on new alignment rules which are more abstract and automatic than
the character-based grids in Version 3.

In most cases, the form compiler is able to analyze the layout section of form

specification files in order to produce an acceptable presentation, but sometimes you will
have to touch the form files to give hints for the alignment of elements.

60

General

Solution:

In the above example, the field 001 is aligned according to the label appearing on the
same line. By adding one space before the field position, the form compiler will
understand that the field must be aligned to the text in the first line:

01 DATABASE FORMONLY

02

03 LAYOUT

04 GRID {

05 01234567890123456789

06 Name: [001 1
07 }

08 END

09 END

10

11 ATTRIBUTES

12 001 = formonly.fieldl TYPE CHAR;
13 END

In the next example, the fields are automatically aligned to the text in the first line:

01 DATABASE FORMONLY

02

03 LAYOUT

04 GRID {

05 First Last
06 Name: [foOo1] [F002 1
07 3}

08 END

09 END

10

11 ATTRIBUTES

12 001 = formonly.fieldl TYPE CHAR;
13 002 = formonly.field2 TYPE CHAR;
14 END

FAQO05: Why doesn't the ESC key validate my input?
Description:

The traditional 4GL ESC key does not validate an INPUT, but cancels it instead!
Explanation:

To follow front end platform standards (like Microsoft Windows for example), Genero
must reserve the ESC key as the standard key to cancel the current interactive
statement.

61

Genero Business Development Language

Solution:

You can change the accelerator keys for the 'accept' action with Action Defaults.
However, is not recommended to change the defaults, because ESC is the standard key
to be used to cancel a dialog in GUI applications.

FAQO06: Why doesn't the CTRL-C key cancel my input?
Description:

The traditional 4GL CTRL-C key does not cancel an INPUT.

Explanation:

To follow front end platform standards (like Microsoft Windows for example), Genero
BDL must reserve the CTRL-C key as the standard key to copy the current selected text
to the clipboard, for cut and paste.

Solution:
You can change the accelerator keys for the ‘cancel’ action with Action Defaults.

However, is not recommended to change the defaults, because ESC is the standard key
to be used to cancel a dialog in GUI applications.

FAQOO07: Why do the gui.* FGLPROFILE entries have no effect?

Description:

The gui .* and some other FGLPROFILE entries related to graphics no longer have
effect.

Explanation:

These entries are related to the old user interface. They are no longer supported. In
version 3, the gui . > entries were interpreted by the front end. As the user interface has
completely been re-designed, the gui .* entries have been removed, too .

Solution:

Review the definition of these entries and use the new possibilities of the Dynamic User
Interface.

Entry Replacement
menu.Style None, no longer

62

key .key-name.order
Menu.defKeys
InputArray.defKeys
DisplayArray.defKeys
Input.defKeys
Construct.defKeys
Prompt.defKeys
Sleep.defKeys
GetKey.defKeys

gui.local .edit.*

gui .preventClose.message

gui .chartable

gui .whatch.delay

gui .useOO0B. interrupt
gui.containerType

gui .containerName
gui.mdi.*
gui.screen.clientPositioning
gui.screen.size.*

gui .screen.x
gui.screen.incrx
gui.screen.y

gui .screen.incry
gui.screen.withwnm

gui .workSpaceFrame._noList

needed.
None, no longer
needed.
None, no longer
needed.
None, no longer
needed.
None, no longer
needed.
None, no longer
needed.
None, no longer
needed.
None, no longer
needed.
None, no longer
needed.
None, no longer
needed.
None, no longer
needed.

None, cancel action is
sent when the user

closes a window.

None, no longer
needed.

None.
None.
None.
None.
None.
None.
None.
None.
None.
None.
None.
None.
None.

gui .workSpaceFrame.screenArray.optimalStretch None.

gui .workSpaceFrame.screenArray.compressed

gui.controlFrame.visible
gui.controlFrame.position

gui.controlFrame.scrollVisible

gui .controlFrame.scroll.*

None.
None.
None.
None.
None.

General

63

Genero Business Development Language

gui

gui

gui.

gui

gui

gui.
-button.*
-empty.button.visible

gui
gui

gui

gui
gui
gui
gui
gui

gui
gui

gui

gui
gui
gui

gui

gui

gui
gui
gui

gui
gui
gui

gui

64

-bubbleHelp.*

.directory. images

toolbar.dir

.toolbar.*

.menu.*

menuButton.*

-key.
-key.
-key.
-key.
-key.

-key.
-key.

-key.

-keyButton.*

add_function
interrupt
doubleClick. left
click.right
num.translate

copy

paste

cut

-Fform._foldertab.*
-key_forldertab. input.sendNextField
-key._foldertab.num.selection

-mswindow.button
-fieldButton.style

.BMPButton.style
-key.radiocheck. invokeexit

.entry.style
-interaction.inputarray.usehighlightcolor
-mswindow.scrol lbar
.scrol lbar.expandwindow

.statusbar.*

None, front end
specific.

None, front end
specific.

None, front end
specific.

The new toolbar
definition.
None.

None.

None.

None.

None, front end
specific.

None.

None.

None.

None.

None.

None, front end
specific.

None, front end
specific.

None, front end
specific.

None.

None.

None.

None, front end
specific.

None, front end
specific.

None, front end
specific.

None.

None, front end
specific.

None, front end
specific.

None, front end
specific.

None, front end
specific.

None, front end
specific.

General

gui .display.* None.
gui .user.font.choice None.

FAQO08: Why do | get a link error when using the
FGL_GETKEY() function?

Description:
This function is no longer supported; it has been removed from the language.
Explanation:

That function waited for a key-press from the user, but this kind of interaction does not fit
into the new user interface protocol.

Solution:
Review the program and use standard interactive instructions to manage the interaction

with the user.
See the Dynamic User Interface concept.

65

Genero Business Development Language

New Features of the Language

Product line 2.1x
o Version 2.11
o Version 2.10

Product line 2.0x

o Version 2.02

o Version 2.01

o Version 2.00
e Product line 1.3x

o Version 1.33

o Version 1.32

o Version 1.31

o Version 1.30
e Productline 1.2x

o Version 1.20
e Product line 1.1x

o Version 1.10

See also: FAQ List.

Version 2.11

e New database drivers
Static SQL syntax extension
o Derived tables and derived column list
o New transaction isolation levels of Informix 11
o The CAST operator
New preprocessor option to remove line number information
Connecting to Oracle as SYSDBA or SYSOPER
New methods for ui.ComboBox
Make current row visible after sort in lists
Reading pcode build information of older versions

New database drivers
The following database drivers are supported by Genero version 2.11.:

dbmpgs83x for a PostgreSQL 8.3.x client.

dbmmys51x for a MySQL 5.1.x client.

dbmftm90 for a FreeTDS 0.82 client connecting to SQL Server 2005.
dbmsncAO for a SQL Server Native client connecting to SQL Server 2008.
dbmoraB1 for a Oracle 11g client.

66

General

Static SQL syntax extension
Derived tables and derived column list

Genero FGL static SQL syntax now supports derived tables and derived column lists in
the FROM clause, for example:

SELECT * FROM (SELECT * FROM customers ORDER BY cust_num) AS
t(cl,c2,c3,...)

See database server documentation for more details about this SQL feature. Note that
Informix 11 does not support the full ANSI SQL 92 specification for derived columns,
while other databases like DB2 do. For this reason, fglcomp allows the ANSI standard
syntax.

New transaction isolation levels of Informix 11

The SET ISOLATION statement now supports the new Informix 11 clauses for the
COMMITTED READ option:

SET ISOLATION TO COMMITTED READ [LAST COMMITTED] [RETAIN UPDATE
LOCKS]

When connecting to a non-Informix database, the LAST COMMITTED and RETAIN
UPDATE LOCKS are ignored; other databases do not support these options, and have
the same behavior as when these options are used with Informix 11.

The CAST operator

The CAST operator can now be used in static SQL statements:

CAST (expression AS sql-data-type)

Note that only Informix data types are supported after the AS keyword.

New preprocessor option to remove line number information

You can now remove line number information with -p noln when preprocessing sources
to get a readable output:

fglcomp -E -p noln mymodule.4gl

Connecting to Oracle as SYSDBA or SYSOPER

In order to execute database administration tasks, you can now connect to Oracle as
SYSDBA or SYSOPER with the CONNECT instruction:

CONNECT TO "dbname™ USER ''scott/SYSDBA™ USING "'tiger"

67

Genero Business Development Language

New methods for ui.ComboBox

The ui.ComboBox class has been extended with new methods: getTextOf() and
getindexOf().

Make current row visible after sort in lists

A new FGLPROFILE entry has been added to force the current row to be automatically
shown after a sort in a table:

Dialog.currentRowVisibleAfterSort = 1

By default, the offset does not change and the current row may disappear from the
window. When this new parameter is used, the current row will always be visible. For
more details, see Runtime Configuration.

Reading pcode build information of older versions

The -b option of fglrun has been extended to recognize headers of pcode modules
compiled with older versions of FGL. For more details, see Compiling Programs.
Additionally, fglform now writes build information in the 42f files, to identify on the
production site what FGL version was used to compile forms.

Version 2.10

Multiple Dialogs

TRY/CATCH pseudo statement

WHENEVER ... RAISE

SQL Server Native Client driver

Support for SPLITTER attribute

Double-click in tables

New X conversion code in fgldbsch

SQL Interruption in database drivers

NULL pointer exceptions can be trapped

Client socket interface in Channels

Stack trace

GUI connection timeout

Assigning a value to a TEXT variable

New presentation styles

fglrun -s option now displays more information
fglrun -e option takes list of extensions
Detecting data changes immediately

Controlling data validation for actions

New MINWIDTH, MINHEIGHT attribute in forms
Avoid automatic temporary row in INPUT ARRAY
New implicit navigation actions in INPUT ARRAY and DISPLAY ARRAY

68

General

e New DOM methods to serialize or parse strings
e New I/O methods to read/write TEXT or BYTE from/to files

Multiple Dialogs

A new DIALOG instruction handles different parts of a form simultaneously. See also
ui.Dialog class.

TRY/CATCH pseudo statement

The TRY/CATCH pseudo statement can handle exceptions raised by the runtime
system.

WHENEVER RAISE

Instructs the DVM that an uncaught exception will be handled by the caller of the
function. See Exceptions.

SQL Server Native Client driver
Support for SQL Server 2005 Native Client is now provided.
Support for SPLITTER attribute

HBox and VBox containers can now have a splitter. See also Layout Tags.

Double-click in tables

With the new DOUBLECLICK table attribute, it is now possible to send a specific action
when the user double-clicks on a row.

New X conversion code in fgldbsch

The fgldbsch tool now supports the X conversion code to ignore table columns of a
specific type. This is useful for ROWID-like columns such as SQL Server's
uniqueidentifier columns.

SQL Interruption in database drivers

Before version 2.10, SQL interruption was not supported well for Oracle, SQL Server,
DB2 and Genero db databases. SQL interruption is now available with all databases
providing an API to cancel a long-running query.

For more details, see SQL Programming.

69

Genero Business Development Language

NULL pointer exceptions can be trapped

Error -8083 will be raised if you try to call an object method with a variable that does not
reference an object (that contains NULL):

DEFINE x ui.Dialog
-- X Is NULL
CALL x.setFieldActive('fieldname',FALSE) -- raises -8083

In previous versions, this raised a fatal NULL pointer error. This exception can now be
trapped with WHENEVER ERROR.

Client socket interface in Channels

The Channel class now provides a method to establish a client socket connection to a
server, with the new openClientSocket() method.

Stack trace

For debugging purpose, you can now get the stack trace of the program with the
Application.getStackTrace() method.

GUI Connection Timeout

It is now possible to define a timeout delay for front-end connections with the following
FGLPROFILE entry:

gui .connection.timeout = seconds

See Dynamic User Interface for more details.

Assigning a value to a TEXT variable

Before version 2.10, it was only possible to assign a TEXT to a TEXT variable. Now you
can assign STRING, CHAR and VARCHAR values to a TEXT variable. For more details
about data type conversions, see the Data Conversion Table.

New Presentation styles
Presentation Styles have been extended:

e The style attribute "position” for Windows can be set to "previous™

e TextEdit now has the "textSyntaxHighlight" attribute (value can be "per", more
to come...)

¢ All widgets can now use the "localAccelerators” global style attribute to interpret
standard navigation and editor keys (like Home/End) without firing an action that
uses the same keys as accelerators.

70

General

fglrun -s option now displays more information

The -s option of fglrun now reports more information about sizes. See Optimization for
more details.

fglrun -e option takes list of extensions

The fglrun -e option now supports a comma-separated list of extensions, and -e can be
specified multiple times:

fglrun -e extl,ext2,ext3 -e ext4,extb myprogram

See C Extensions for more details.

Detecting data changes immediately

It is now possible to get an action event when the user modifies the value of a field, with
the predefined dialogtouched action.

Controlling data validation for actions

You can now use the validate="no" action default attribute to prevent data validation
when executing an action.

New MINWIDTH, MINHEIGHT attributes in forms

It is now possible to define a minimum width and height for forms with the MINWIDTH,
MINHEIGHT attributes.

Avoid automatic temporary row in INPUT ARRAY

With the new AUTO APPEND attribute, you can now avoid the automatic creation of a
temporary row in INPUT ARRAY.

New implicit navigation actions in INPUT ARRAY and DISPLAY
ARRAY

When a DISPLAY ARRAY or INPUT ARRAY is executed, the runtime system now
creates two more implicit actions to navigate in the list: firstrow and lastrow. In previous
versions, only nextrow and prevrow actions were created. You can now bind four
buttons to these actions to get a typical list navigation toolbar. Note that the default
action views are hidden for these navigation actions.

New DOM methods to serialize or parse strings

The parse() and toString() methods are now available for a DomNode object, and a
DomDocument object can be created with createFromString().

71

Genero Business Development Language

New I/O methods to read/write TEXT or BYTE from/to files

The TEXT and BYTE data types now support the methods readFile(fleName) and
writeFile(fileName).

Version 2.02

New Static SQL Commands

Global Variables in C Extensions

Localization of runtime system error messages

Debugger enhancement

Tab index can be zero

New FGLPROFILE entry for Oracle driver

New FGLPROFILE entry to define temporary table emulation type

New Static SQL Commands

Some common SQL statements have been added to the static SQL syntax, such as
TRUNCATE TABLE, RENAME INDEX, CREATE / ALTER / DROP / RENAME
SEQUENCE. See Static SQL Commands.

Global Variables in C Extensions

You can now share global variables between the FGL source and the C Extension, by
using the -G option of fglcomp. See Global variables in C Extensions.

Localization of runtime system error messages

It is now possible to customize the runtime system error messages according to the
current locale. See Localization for more details.

Debugger enhancement
New debugger commands (ptype).

You can now avoid switching into debug mode with SIGTRAP (Unix) or CTRL-Break
(Windows) with the new fglrun.ignoreDebuggerEvent FGLPROFILE entry.

Tab index can be zero

You can now specify a TABINDEX of zero to exclude the form item from the tagging list.
See TABINDEX for more details.

72

General

New FGLPROFILE entry for Oracle driver

It is now possible to specify the SELECT statement producing the unique session
identifier which is used for temporary table names.
See Database vendor specific parameters for more details.

New FGLPROFILE entry to define temporary table emulation
type
To emulate Informix temporary tables, you can now set the temptables.emulation

parameter to use GLOBAL TEMPORARY TABLES instead of permanent tables.
See temporary table emulation for more details.

Version 2.01

FESQLC compiler (V2)

DB2 V9.x support

PostgreSQL V 8.2.x support

Extension of the form layout tag syntax
Negative form of warning flags in fglcomp

Run supports ComSpec variables on Windows

FESQLC compiler (V2)

ESQL/C Compiler. See FESQLC compiler (V2).

DB2 V9.x support

Support of DB2 V9.x. See DB2 V9.x support.

PostgreSQL V 8.2.x support

Support of PostgreSQL 8.2.x. See PostgreSQL V 8.2.x support.

Extension of the form layout tag syntax

The layout tag syntax in grids has been extended to support an ending tag to get better
control of form layout.

Negative form of warning flags in fglcomp

The fglcomp compiler now supports a negative form for warning arguments.

73

Genero Business Development Language

Run supports ComSpec variable on Windows

When using the RUN command, the ComSpec environment variable is now used under
Windows platforms.

Version 2.00

Dynamic Runner Architecture

User defined types

New Widgets

Extended Schema Files

File Management Functions

Math Functions

Stored procedure calls

Informix-like C API library

Memory usage optimization

The IMPORT instruction

WIDTH and HEIGHT attributes in Images

New debugger commands

Improved Presentation Styles

Compiler supports constraints in CREATE TABLE
Automatic front-end startup

New channel function to detect EOF

Responding to CTRL_LOGOFF_EVENT on Windows
New compiler warning options

Fourth accelerator definition

Conditional TTY attributes for all widgets

New FGL_SETENV() built-in function

Support for entities in XML reader and writer
Schema extractor supports now Informix LVARCHAR

Dynamic Runner Architecture

Runner now uses shared libraries; you no longer need to link a runner. See Dynamic
Runner Architecture.

User defined types

You can now define your own data type with records or arrays. See User defined types.

New Widgets

New widgets have been added: SLIDER, SPINEDIT, TIMEEDIT.

74

General

Extended Schema Files

Database Schema files have been extended for Genero (FIELD item type). See
Extended Schema Files.

File Management Functions

File management function library provided as loadable extension. See File Management
Functions.

Math Functions
Mathematical function library provided as loadable extension. See Math Functions.

Stored procedure calls

It is now possible to call stored procedures with output parameters. See Stored
procedure calls.

Informix-like C API library

C extension support has been extended with Informix-like C API functions. See Informix-
like C APl library.

Memory usage optimization

The runtime system now shares several static elements among all processes, reducing

the memory usage. The shared elements are: Data type definitions, string constants and
debug information. For example, when a program defines a string containing a long SQL
statement, all Genero processes will share the same string, which is allocated only once.

The IMPORT instruction

To declare a C extension module, you must now use the IMPORT instruction at the
beginning of a module.

WIDTH and HEIGHT attributes in Images

You can now specify the WIDTH and HEIGHT attributes for IMAGE form items, as a
replacement for PIXELWIDTH / PIXELHEIGHT.

New debugger commands

New commands have been added to the debugger (call, ignore).

75

Genero Business Development Language

Improved Presentation Styles

You can now specify pseudo selectors such as focus, active, inactive, input, display for
fields and odd / even states for table rows.

Some new style attributes were added:

e ‘'errorMessagePosition' can be used for Windows to define how the ERROR
message must be displayed;

e ‘highlightTextColor' for tables allows you to change the color of the selected line;

e 'border' allows you to remove the border of some widgets like button, images;

o ‘firstDayOfWeek' can be used for DateEdit widget to specify the first day of the
week in the calendar;

e The auto-selection behavior for ComboBoxes and RadioGroup can be changed
using 'autoSelectionStart'.

For more details, see Presentation Styles.

Compiler supports constraints in CREATE TABLE

It is now possible to specify primary key, foreign key and check constraints in static
CREATE TABLE statements:

CREATE TABLE t1 (
coll INTEGER PRIMARY KEY,
col2 CHAR(2),
col3 DATE,
FOREIGN KEY (col2) REFERENCES t2(coll)

)
Automatic front-end startup

In X11 or Windowse TSE environments, you can now automatically start up the front-
end with FGLPROFILE entries. See Dynamic User Interface for more details.

New channel function to detect EOF

The Channel class now has an isEof() method to detect end of file.

Responding to CTRL_LOGOFF_EVENT on Windows

It is now possible to ignore the CTRL_LOGOFF_EVENT events on Windows platforms.

New compiler warning options

The fglcomp compiler has new warning flags: See fglcomp for more details.

76

General

Fourth accelerator definition

You can now define a fourth accelerator for an action in actions defaults or in the form
files.

Conditional TTY attributes for all widgets

It is now possible to specify TTY attributes (COLOR, REVERSE) and conditional TTY
attributes (COLOR WHERE) for all type of fields.
See Form Specification Files and COLOR WHERE attribute for more details.

New FGL_SETENV() built-in function
A new built-in function has been added to set an environment variable: FGL_SETENV().
Support for entities in XML reader and writer

The XML reader and writer classes have been extended to properly support markup
language entities (like HTML's).

Schema extractor supports now Informix LVARCHAR

The fgldbsch tool can now extract database tables with LVARCHAR columns. The
LVARCHAR type is converted to VARCHAR2(n>255) in the .sch file.

Version 1.33

Typelnfo class

Generic ODBC support
MySQL 5 support

Genero DB 3.4 support
PostgreSQL 8.1 support

SQL Server 2005 support
New license manager
FESQLC compiler (V1)
Binary mode in Channel class
New header files for C extensions
Block fetch with SQL Server
Third accelerator definition

Typelnfo class

A class to serialize program variables. See Typelnfo class.

77

Genero Business Development Language

Generic ODBC support

A generic ODBC database driver is now available (code is odc). See Generic ODBC
support.

MySQL 5 support

MySQL version 5 is now supported. See MySQL 5. support.

Genero DB 3.4 support

Genero DB version 3.4 is now supported. See Genero DB support.
PostgreSQL 8.1 support

PostgreSQL version 8.1 is now supported. See PostgreSQL 8.1 support.
SQL Server 2005 support

Microsoft SQL Server 2005 is now supported. See SQL Server 2005 support.
New license manager

New license manager supporting strict licensing. See New license manager.
FESQLC compiler (V1)

ESQL/C compiler.

Binary mode in Channel class

The base.Channel class now supports a binary mode with the 'b’ option, to control
CR/LF translation when using DOS files.

New header files for C extensions

Distribution of Datetime.h, Interval.h, loc_t.h header files in FGLDIR/include/f2c.

Block fetch with SQL Server

You can now pre-fetch rows by block with SQL Server to get better performance. Use
the following FGLPROFILE entry to specify the maximum number of rows the driver can
pre-fetch:

dbi .database.<dbname>_msv.prefetch.rows = <count>

78

General

See "Database vendor specific parameters" in Connections for more details.

Third accelerator definition

You can now define a third accelerator for an action in actions defaults or in the form
files.

Version 1.32
e PostgreSQL 8.0 support
e File transfer functions
o Debugger enhancement
e Preprocessor is now integrated in compilers

PostgreSQL 8.0 support

PostgreSQL version 8.0 is now supported (8.0.2 and higher). See PostgreSQL 8.0
support.

File transfer functions

Get/Put functions to transfer files from/to the front-end. See File transfer functions.
Debugger enhancement

New debugger commands (watch with condition, whatis).

Preprocessor is now integrated in compilers

The preprocessor is how part of the compilers and is always enabled. Preprocessing
directives start with an ampersand character (&).

Version 1.31

Front-end Protocol Compression
MySQL 4.1.x support

Oracle 10g support

Dynamic C extensions

New built-in functions

79

Genero Business Development Language

e Interruption handling
e New Dialog method
e Front-end identification

Front-end Protocol Compression

Faster user interface communication. See Front-end Protocol Compression.

MySQL 4.1.x support

MySQL version 4.1.x is now supported, 3.23 is de-supported. See MySQL 4.1.x support.
Oracle 10g support

Oracle version 10g is now supported. See Oracle 10g support.

Dynamic C extensions

C extensions can be loaded dynamically, no need to re-link runner. See Dynamic C
extensions.

New built-in functions

The FGL_WIDTH built-in function computes the number of print columns needed to
represent a single or multi-byte character.

Interruption handling

Interruption handling with SSH port forwarding - only supported with GDC 1.31!
New Dialog method

New method ui.Form.setFieldStyle() to set a style for a field.

Front-end identification

Improved front-end identification when connecting to GUI client.

Version 1.30

e Preprocessor
¢ Layout Enhancements

80

General

Presentation Styles

Localization Support

Action defaults in forms

Dialog Control

Sybase ASA Support

PostgreSQL 7.4 support

Build information in 42m modules

MySQL 3.23 support for Windows platforms
Upshift / Downshift in Comboboxes

Message compiler does not require output file any longer
Breakpoint in source code

Row highlighting in tables

Method base.Array.appendElement()

Compiled Localized String file extension 42s
Assignment operator

New fglcomp option for SQL

Compiler generates standard UPDATE syntax
Defining color attributes for each table cell

Form methods in ui.Window

Method base.StringBuffer.replace()

Methods base.Channel.readLine() and base.Channel.writeline()
Dynamic arrays used as data model in INPUT ARRAY / DISPLAY ARRAY
TITLE attribute for fields

FGLLDPATH used during link

Method ui.Dialog.setDefaultUnbuffered()

Action Defaults applied by DVM

DATEEDIT supports DBDATE & FORMAT

New predefined action 'close’

Tabbing order in TABLEs during INPUT ARRAY
Preprocessor raises errors for invalid # macros
ACCEPT xx instruction

ACCEPT / CANCEL dialog attribute

Preprocessor disabled by default

INPUT ARRAY now has default ‘append' action
Linker option -O removed

Method ui.Window.createForm()

TopMenu attributes in .per

Specifying real field size in forms

Version number in Ul protocol

C-like source preprocessor

MENU node available in BEFORE MENU

New HBox tags

Form layout extensions

New Table definition attributes

New ORIENTATION attribute for RADIOGROUPs
Reviewed fglrun.setenv environment variables handling in FGLPROFILE
MENU COMMAND generates lowercase action name
Method ui.Interface.loadTopMenu()

ON CHANGE fired on click

New ui.Dialog built-in class

New ui.Form methods

81

Genero Business Development Language

Array sub-script operator now returns the sub-array
Dynamic arrays passed by reference to functions
Control MDI children with ui.Interface

Cancel INSERT in AFTER INSERT

Toolbar and Topenu now have the hidden attribute
NEXT FIELD CURRENT

Preprocessor

Integrated preprocessor allows use of #include and #define/#ifdef macros. See
Preprocessor.

Layout Enhancements

New layout rules and form item attributes provide better control of form design. See
Layout Enhancements.

Presentation Styles

Decoration attribute can be defined in a style file to set fonts and colors. See
Presentation Styles.

Localization Support

Localization Support (multi-byte character sets). See Localization Support.
Action defaults in forms

Action defaults can be specified in forms. See Action defaults in forms.

Dialog Control

Dialog built-in class to provide better control over interactive instructions. See Dialog
Control.

Sybase ASA Support

New drivers to connect to Sybase Adaptive Server Anywhere V7 and V8. See Sybase
ASA Support

PostgreSQL 7.4 support

Support for PostgreSQL 7.4 with parameterized queries. See PostgreSQL 7.4 support.

82

General

Build information in 42m modules

The fglcomp compiler now adds build information in 42m modules. Compiler version of a
42m module can be checked on site by using the fglrun with the -b option:

$ fglrun -b module.42m
2004-05-17 10:42:05 1.30.2a-620.10 /devel/tests/module.4gl

MySQL 3.23 support for Windows platforms

A MySQL 3.23 driver is now provided for Windows platforms (was previously only
provided on Linux).

Upshift/Downshift in Comboboxes

COMBOBOX fields now support UPSHIFT and DOWNSHIFT attributes, to force
character case when QUERYEDITABLE is used.

Message compiler does not require output file any longer

The fgimkmsg tool now has the same behavior as other tools like fglcomp and fglform: If
you give only the source file, the message compiler uses the same file name for the
compiled output file, adding the .iem extension.

Breakpoint in source code

New BREAKPOINT instruction to stop a program at a given position when using the
debugger. It is ignored when not running in debug mode.

Row highlighting in tables

New TABLE presentation style attribute highlightCurrentRow, to indicate if the current
row must be highlighted in a specific mode. By default, the current row is highlighted
during a DISPLAY ARRAY.

Method base.Array.appendElement()

New method base.Array.appendElement(), to append an element at the end of a
dynamic array.

Compiled Localized String file extension = 42s

Compiled Localized String files now have the .42s extension. Previous extension was
Als.

83

Genero Business Development Language

Assignment Operator

New assignment operator := has been added to the language. You can now assign
variables in expressions:
IF (i:=(+1))==2THEN

New fglcomp option for SQL

The fglcomp compiler now has a new option to detect non-standard SQL syntax:
fglcomp -W stdsqgl module.4qgl

Compiler generates standard UPDATE syntax

The fglcomp compiler now converts static SQL updates like:

UPDATE tab SET (cl,c2)=(vi,c2) ...

to a standard syntax:

UPDATE tab SET cl=v1l, c2=v2 ...
See also SQL Programming.
Defining color attributes for each table cell

The new method ui.Dialog.SetCellAttributes() lets you define colors for each cell of a
table.

Form methods in ui.Window
The ui.Window class provides new methods to create or get a form object.

Method base.StringBuffer.replace()

New method base.StringBuffer.replace(), to replace a sub-string in a string:

CALL s.replace(old", " new",2)

Replaces two occurrences of "old" with "new"...

Methods base.Channel.readLine() and base.Channel.writeLine()

New methods to read/write complete lines in Channel built-in class: readLine() and
writeLine().

84

General
Dynamic arrays used as data model in INPUT ARRAY / DISPLAY
ARRAY

When using a dynamic array in INPUT ARRAY or DISPLAY ARRAY, the number of rows
is defined by the size of the dynamic array. The SET_COUNT() or COUNT attributes are
ignored.

TITLE attribute for fields

The new form field attribute TITLE can be used to specify a table column label with a
localized string.

FGLLDPATH used during link

The FGLLDPATH variable is now used during link

Method ui.Dialog.setDefaultUnbuffered()

New class method ui.Dialog.setDefaultUnbuffered() to set the default for the
UNBUFFERED mode.

Action Defaults applied by DVM

Action Defaults now applied at element creation by the runtime system. In previous
versions this was done dynamically by the front-end. Now, changing an action default
node at runtime has no effect on existing elements.

DATEEDIT supports DBDATE & FORMAT

The DATEEDIT field type now supports DBDATE/CENTURY settings and the FORMAT
attribute.

New predefined action 'close'

New default action 'close' to control Window closing. You can now write the following to
control window closing:

ON ACTION close

See Windows and Forms.

Tabbing order in TABLEs during INPUT ARRAY

INPUT ARRAY using TABLE container now needs FIELD ORDER FORM attribute to
keep tabbing order consistent with visual order of columns.

85

Genero Business Development Language

Preprocessor raises errors for invalid # macros

If enabled, the preprocessor now raises an error when # comments are used in the
source. You must replace all # comments by -- comments before using the
preprocessor.

ACCEPT xx instruction

New instructions ACCEPT INPUT / ACCEPT CONSTRUCT / ACCEPT DISPLAY to
validate a dialog by program.

ON ACTION doit
ACCEPT INPUT

ACCEPT / CANCEL dialog attribute

New dialog attribute ACCEPT / CANCEL to avoid creation of default actions 'accept’ and
‘cancel.
See Record Input control instructions.

Preprocessor disabled by default

The Preprocessor is now disabled by default; there are no FGLPP / FGLPPOPTIONS
environment variables, you must use the -p option of fglcomp/fglform.

INPUT ARRAY now has default ‘append' action

New default action '‘append’ in INPUT ARRAY. Allows you to add a row at the end of the
list.

Linker option -O removed

The linker option -O (optimize) is de-supported (was ignored before). You now get a
warning if you use this option.

Method ui.Window.createForm()

New method ui.Window.createForm() to create an empty form object in order to build
forms from scratch at runtime.

TopMenu attributes in .per

TopMenu definition in forms now allows attributes in parenthesis.

86

General

Specifying real field size in forms

The form layout syntax now allows you to specify the real width of form items. By default,
BUTTONEDIT, COMBOBOX and DATEEDIT get a real width as follows:

iT nbchars>2 : width = nbchars - 2; otherwise width = nbchars
(Here nbchars is the number of characters used in the layout definition.)

Now you can specify the real width by using a dash '-' in the tag:

1234567
[fo1 -] width = 5, grid cells used = 7

This works also in hbox tags and screen arrays.
Version number in Ul protocol

User interface protocol is now controlled with a version number, to check compatibility
between the front end and runtime system.

C-like source preprocessor

New integrated preprocessor: The form and source compiler now integrates a
preprocessor! You can use macros as in C, such as #include, #define, #ifdef, etc.

MENU node available in BEFORE MENU

Important remark: Before build 530 the MENU has attached the WINDOW when
returning from the BEFORE MENU actions. Since build 530 the WINDOW must exist
before the MENU statement. So now the MENU node is available in the BEFORE MENU
block, but a WINDOW opened or made CURRENT in the BEFORE MENU block will
NOT be used.

New HBox tags

Layout GRID now accepts HBox tags to group items horizontally.

Form layout extensions

Elements in grids now have cell columns and lines plus width & height.
Form VERSION attribute to distinguish form revisions.

Layout SPACING attribute to define space between widgets.

The DEFAULT SAMPLE instruction.

New form item attributes, like SAMPLE, JUSTIFY, SIZEPOLICY ...

87

Genero Business Development Language

New Table definition attributes

You can now specify HIDDEN = USER as 'hidden to the user by default'.
Table columns now have new attribute UNMOVABLE to avoid moving.
WANTCOLUMNSANCHORED replaced by UNMOVABLECOLUMNS.
WANTCOLUMNSVISIBLE replaced by UNHIDABLECOLUMNS.

Tables now accept a WIDTH and HEIGHT attribute to specify a size.

New ORIENTATION attribute for RADIOGROUPs

RADIOGROUP fields now support the attribute ORIENTATION = { VERTICAL |
HORIZONTAL }.

Reviewed fglrun.setenv environment variables handling in
FGLPROFILE

Now, on Windows platforms only, the ix drivers automatically set standard Informix
environment variables with ifx_putenv(). Values are taken from the console environment
with getenv(). Additional variables can be specified with:

dbi.stdifx.environment.count = n
dbi.stdifx.environment.xx = "variable"

MENU COMMAND generates lowercase action name

The MENU COMMAND clause now generates action names in lowercase. This means,
when you define COMMAND "Open®, it will bind to all actions views defined with the
name 'open'.

Method ui.Interface.loadTopMenu()

New ui.Interface.loadTopMenu() method to load a global topmenu.

ON CHANGE fired on click

The ON CHANGE block is now fired when the user clicks on a checkbox, radiogroup, or
changes the item in a combobox.

New ui.Dialog built-in class

New ui.Dialog built-in class available with the DIALOG keyword in all interactive
instructions. You can now activate/deactivate fields and actions during a dialog:

INPUT ...
AFTER FIELD fieldl
CALL DIALOG.setFieldActive('field2",rec.fieldl 1S NOT NULL)
CALL DIALOG.setActionActive('check™,rec.fieldl IS NOT NULL)

88

General

New ui.Form methods
The ui.Form built-in class has new methods to handle form elements. The hidden

attribute is now also managed at the model level, this allows you to hide form fields by
name, instead of using the decoration node.

CALL myform.setElementHidden(*'formonly.fieldl",2)
CALL myform.setFieldHidden("'fieldl",2) -- prefix is optional

Array sub-script operator now returns the sub-array

The [] array sub-script operator now returns the sub-array:

DEFINE a2 DYNAMIC ARRAY WITH DIMENSION 2 OF INTEGER
LET a2[5,10] = 123

DISPLAY a2.getLength() -- displays 5

DISPLAY a2[5]-.getLength() -- displays 10

Dynamic arrays passed by reference to functions

Dynamic arrays are now passed by reference to functions. You can change a dynamic
array in a function when it is passed as an argument.

Control MDI children with ui.Interface

New methods are provided in ui.Interface to control the MDI children.

CANCEL INSERT in AFTER INSERT

In INPUT ARRAY, CANCEL INSERT now supported in AFTER INSERT, to remove the
new added line when needed.

Toolbar and Topmenu now have the hidden attribute

Toolbar and Topmenu elements now have the hidden attribute so you can create them
and hide the options the user is not supposed to see.

Warning: Hiding a toolbar or topmenu option does not prevent the use of the accelerator
of the action. Use ui.Dialog.setActionActive()!

NEXT FIELD CURRENT

New keyword for NEXT FIELD: NEXT FIELD CURRENT. Gives control back to the
dialog instruction without moving to another field.

89

Genero Business Development Language

Version 1.20

90

Debugger

Program Profiler

Localized Strings

Unbuffered Dialogs

Paged Display Array

Action Defaults

Client-side settings saved for each program
APPEND ROW dialog attribute

KEEP CURRENT ROW dialog attribute
UNHIDABLE attribute for image and labels
TERMINATE REPORT / EXIT REPORT
TINYINT data type with SQL Server
Toolbars can be defined in forms
Topmenus can be defined in forms
Build version number

Get a help message text

Set the current row

Interruption handling

StatusBar definition with style attribute
Field order form

Runtime system re-written in C

Passing arrays as function parameter
Compiler supports ANSI outer joins
Methods for StringBuffer

Default items created for COMBOBOX
ON IDLE clause in dialogs

Order of INPUT ARRAY trigger execution
New ui.ComboBox class

Predefined actions in lists: nextrow / prevrow
FOREACH infinite loop

Record comparison

ON CHANGE trigger

Program icon

Form compilation warnings

FORMAT attribute in LABELSs
SQLSTATE and SQLERRMESSAGE
Front End Function calls

New ui.Form built-in class

TABINDEX for tabbing order

LSTR operator

SFMT operator

ON ROW CHANGE trigger

New StringTokenizer class

Faster linker

Global constants

ON ACTION in MENUs

New Application class

New Channel class

General

e Predefined 'help' action

Debugger

Integrated debugger with gdb syntax to interface with graphical tools like ddd. See
Debugger.

Program Profiler

The Program Profiler can be used to generate statistics of program execution, to find the
bottlenecks in the source code.

Localized Strings
Internationalizes your application in different languages with localized strings.

Localized Strings are now supported. You can identify strings to be localized, with the %
notation:

LAYOUT (TEXT= %"custlist™)

See Localized Strings.

Unbuffered Dialogs

Interactive instructions support the UNBUFFERED mode, to synchronise data model
and view automatically. Dialogs can now use the UNBUFFERED attribute, that
simplifies INPUT, DISPLAY ARRAY and INPUT ARRAY coding; input/display buffer is
no longer used. When you set a variable, the value is automatically displayed to the
field. See Unbuffered Dialogs.

Paged Display Array

DISPLAY ARRAY can now work in buffered mode, to avoid loading a big array when you
have a lot of rows to display. The DISPLAY ARRAY instruction now has a new ON FILL
BUFFER block that can be used with dynamic arrays to feed the dialog with data rows
on demand. See Paged Display Array.

Action Defaults
Centralize default attributes for actions in Action Defaults files.

Client side settings saved for each program

Client side settings are now saved in registry according to the 'name’ attribute of
UserlInterface, which can be set with ui.Interface.setName() method. By default
Userlinterface.name is not set to the name of the program.

91

Genero Business Development Language

APPEND ROW dialog attribute

New attribute APPEND ROW = TRUE/FALSE for INPUT ARRAY instruction. Defines if
the user is allowed to add rows at the end of the list.

KEEP CURRENT ROW dialog attribute

New attribute KEEP CURRENT ROW = TRUE/FALSE for DISPLAY ARRAY and INPUT
ARRAY instructions. Defines if the current row must remain highlighted when leaving the
dialog. The default is FALSE.

UNHIDABLE attribute for image and labels
Image and labels now support the UNHIDABLE attribute for table columns.
TERMINATE REPORT / EXIT REPORT

New report instructions TERMINATE REPORT / EXIT REPORT. Use the EXIT REPORT
statement to terminate a report within a REPORT definition. Both statements have the
following effects:

- Terminate the processing of the current report.

- Delete any intermediate files or temporary tables that were created while processing
the report.

TINYINT data type with SQL Server

SQL Server driver now supports the TINYINT data type.
Toolbars can be defined in forms

You can now define Toolbars in form specification files.
Topmenus can be defined in forms

You can now define Topmenus in form specification files.

Build version number

The FGL_GETVERSION() function returns the internal version number of the runtime
system.

Get a help message text

The FGL_GETHELP() function returns the message text for a give help number.

92

General

Set the current row

The FGL_SET_ARR_CURR() function changes the current row in DISPLAY ARRAY or
INPUT ARRAY.

Interruption handling

Users can now send an interruption request from the client to the program, to stop long
running queries, reports and other BDL procedures, by testing the int_flag variable. The
client is using an OOB signal.

StatusBar definition with style attribute

There is now a new window style attribute for statusbar layout specification. You can
now set statusBarType attribute in the 4st style file for Windows, in order to control the
display of status bars.

Field order form

New OPTIONS clause FIELD ORDER FORM provided to use the TABINDEX attribute to
define the field tabbing order. FIELD ORDER FORM can also be used at the dialog level
as dialog attribute.

Runtime system re-written in C

Runtime system has been re-written in pure C language, g++ 3.2 and corresponding gnu
libs (libstdc++, libsupc++, ...) are no longer needed; a runner can be linked with a native
cc compiler. See Installation and Setup.

Passing arrays as function parameter
Arrays can be passed as parameters, all elements are expanded.

Compiler supports now ANSI outer joins

You can now write static SQL statements using ANSI outer joins:

SELECT .. FROM a LEFT OUTER JOIN b ON a.key=b.key

Methods for StringBuffer

New methods for StringBuffer class: base.StringBuffer.replaceAt() and
base.StringBuffer.insertAt().

93

Genero Business Development Language

Default items created for COMBOBOX

For COMBOBOX form items, a default ITEMS list is created by fglform when an
INCLUDE list is used.

ON IDLE clause in dialogs

The ON IDLE clause can be used to execute a block of instructions after a timeout.

Order of INPUT ARRAY trigger execution
New logical order of execution for INPUT ARRAY triggers:

BEFORE INPUT
BEFORE ROW
BEFORE INSERT
BEFORE FIELD

PobdPE

New ui.ComboBox class
New ui.ComboBox class has been added, to configure COMBOBOX fields at runtime.
Predefined actions in lists: nextrow / prevrow

DISPLAY ARRAY and INPUT ARRAY instructions now automatically use two predefined
actions nextrow and prevrow, which allow binding action views for navigation.

FOREACH infinite loop

FOREACH that raises an error no longer loops infinitely.

Record comparison

Operators equal (= or ==) and not equal (<> or !=) now can be used with records. All
members will be compared. If two members are NULL the result of this member
comparison results in TRUE.

ON CHANGE trigger

ON CHANGE field trigger in INPUT and INPUT ARRAY. Same as AFTER FIELD, but
only fired if the value has changed.

Program icon

New image attribute in UserInterface node, for the program icon. Can be set with
ui.Interface.setimage().

94

General

Form compilation warnings
New option -W for fglform to show warnings.
FORMAT attribute in LABELs

LABELs can now have a FORMAT attribute.

SQLSTATE and SQLERRMESSAGE
New SQLSTATE and SQLERRMESSAGE operators, to give SQL execution information.
Front End Function calls

You can now call predefined functions in the front-end, by using the
ui.Interface.frontCall()method.
See also Front End Functions.

New ui.Form built-in class

New ui.Form built-in class to handle forms.

TABINDEX for tabbing order

New TABINDEX field attribute to define the tabbing order in forms.

LSTR operator

New LSTR operator to get a localized string by name:
DISPLAY LSTR('custno_comment'™)

SFMT operator

New SFMT operator to format strings with parameters:

DISPLAY SFMT(*'Could not find %1 in %2.",filename,dirname)

ON ROW CHANGE trigger

New ON ROW CHANGE clause in INPUT ARRAY. This trigger will be executed if at
least one value in the row has been modified. The ON ROW CHANGE code is be
executed just before the AFTER ROW clause.

95

Genero Business Development Language

New StringTokenizer class

The StringTokenizer class can be used to parse strings for tokens.

Faster linker

Linker is now faster when having program modules with a huge number of functions.
Global constants

CONSTANTSs can now be defined as GLOBALSs.

ON ACTION in MENUSs

MENU instruction now supports ON ACTION clause, to write abstract menus as simple
action handlers.

New Application class

The base.Application class provides an interface to the program properties.

New Channel class

New definition of the interface for Channels, now based on objects:

DEFINE c base.Channel
LET ¢ = base.Channel.create()
CALL c.openFile('data.txt","r")

Predefined 'help' action

New 'help' predefined action, to start help viewer for HELP clauses in dialog instructions.

INPUT BY NAME HELP 12423 -- Creates action “help*®

Version 1.10

Dynamic User Interface
Interactive Instruction Extensions
Built-in Classes

Constant Definitions

Extended Form Files

Dynamic Arrays

96

General

XML utilities

STRING data type
Defining MDI containers
SCHEMA instruction

Dynamic User Interface

The Dynamic User Interface is the major new concept in Genero. It is the basement for
the new graphical user interface. See Dynamic User Interface.

Interactive Instruction Extensions

Classical interactive instructions such as INPUT, INPUT ARRAY, DISPLAY ARRAY,
CONSTRUCT have been extended with new control blocks and control instructions. See
Interactive Instruction Extensions.

Built-in Classes

The language supports now built-in classes, a new object-oriented way to program in
BDL. See Built-in Classes.

Constant Definitions

It is now possible to define constants, as in other languages. See Constant Definitions.

Extended Form Files

You can now define complex layouts with the extended PER files. See Extended Form
Files.

Dynamic Arrays

The language now supports dynamic arrays with automatic memory allocation. DISPLAY
ARRAY can now work in buffered mode, to avoid to load a big array when you have a lot
of rows to display. See Dynamic Arrays.

XML utilities

A set of XML Utilities are provided in the runtime library as built-in classes.

STRING data type

A new STRING data type is now available, to simplify utility function coding.

97

Genero Business Development Language

Defining MDI containers
Defining Window Containers (MDI) is a simple way to group programs.
SCHEMA instruction

The new SCHEMA instruction allows you to specific a database schema without having
an implicit connection when the program executes.

98

General

1.3x Migration Issues

This page describes migration issues when you are moving from version 1.2x to version
1.3x of Genero BDL.

Summary:

Front-end compatibility

HBox Tags

HBox Tags limitations

Elements inside HBoxes get their real sizes
Width of ButtonEdit/DateEdit/ComboBox
Default Sample

SizePolicy for ComboBoxes

Action Defaults at Form level

MySQL 3.23 is desupported

Front-end compatibility

When migrating to a 1.3x runtime system, you need to upgrade all front-end clients to
any 1.3x version. Front-end clients and runtime systems are compatible if the major
version number and the first minor number are the same (X.Y?). A front-end of version
1.31 works with a 1.30 runtime system, but if you try to use a 1.20 client with a 1.30
runtime system, you will get an error message.

HBox tags
HBox Tags allow you to stack form items horizontally without being influenced by
elements above or below. In an HBox there is a free mix of Form Fields, labels, and

Spacer Items possible.

A typical usage of an HBox Tag is to have zip-code/city form fields side by side with
predictable spacing in-between.

The "classic" layout would look like the following form definition:

<G "User Data(version 1.20)" >
Last Name [1_name JFirst Name[fT_name 1
Street [street 1
City [city 1Zip Code[zip]
Phone(private) [phone 1 At work [1
Code [aa]-[ab]-[ac]

99

Genero Business Development Language

In the screenshot you will notice that the distance between "I_name" and "First Name"
is smaller than between "First Name" and "f_name". How can this be? Two lines below
there is the "zip" field which affects this distance.

If we put HBox Tags around the fields we want to group horizontally together, we get the

predictable spacing between "I _name", "First Name" and "f_name".

<G "User Data in HBoxes stacked" >
Last Name [1_nameh "First Name':f _nameh 1
Street [streeth o |
City [cityh :"Zip Code™:ziph : 1
Phone(private)[phoneh :""At work' :phonewh |
Code [ba:"-":bb:"-":bc: 1

nn

Here "l1_nameh","First Name" and "f_nameh" are together in one HBox; the ":" colon
acts as a separator between the 3 elements.

The width of an element is calculated from the space between "[" and ":* (width of
cityh is 14), or from the space between ":" and ":" (width of "bb" is 2), or from the
space between ":" and "]" (width of "f_nameh" is 16). The "zip" field in the version 1.20
example has a width of five and the "ziph" field has also a width of five.

In the second Groupbox in the screenshot you will notice that the HBox is smaller than
the first one, even though it uses two characters more in the screen definition. The
reason is that each HBox occupies only ONE cell in the parent grid, and the content in
one HBox is independent of the content in another HBox. This relaxes the parent grid; it
has to align only the edges of the HBoxes and the labels left of the HBoxes. The two
extra characters in the Form file for the second Group come from the fact that the labels
need quoting to distinguish them from field definitions. Of course, you could use a Label
field if the two extra characters are unwanted (which is done in the third Groupbox).

The third Groupbox shows how the alignment in an HBox can be affected by putting
empty elements (: :) inside the HBox Tag:

<G "User Data in HBoxes right part right aligned” >
Last Name [1_nameh2 : Ifirsth2:f _nameh2 1
Street [streeth2 1
City [cityh2 : :1zip:ziph2]
Phone(private) [phoneh2 : s latw:phonewh?2 1
Code [ca: B zch: - zcc]

n_n

Between "I_nameh2" and "I firsth2" there are two ":" signs with a white space
between them. This means: put a Spacer Item between 1_nameh2 and Ifirsth2, which
gets all the additional space if the HBox is bigger than the sum of 1_nameh2, Ifirsth2
and ¥_nameh2. The number of spaces, however, has no effect. The spacer item between
cityh2 and Izip has the same force as the spacer between 1_nameh2 and Ifirsth2.

You can treat a spacer item like a spring. The spacer item between cityh2 and Izip

presses cityh2 to the left-hand side, and the rest of the fields to the right-hand side. In
the "Code" line there is more than one spacer item; they share the additional space

100

General

among them. (The "Code" HBox sample in the third line is only to show how spacer items
work; we always advise using "Code" as in the second Groupbox, or to use a picture)

In general we advise using the approach shown in the second Groupbox: stack the items
horizontally by replacing field ends with ":". This is the easy way to remove unwanted
horizontal spacing.

The resulting screenshot:

User Data(version 1.20)

Last Mame | | First Marme | |
Street | |
City | | ZpcCode | |

Phone(private) | | At work | |

Code |:|—|:|—|:|

User Data in HBoxes stacked

Last Mame | | First Marme | |
Street | |
City | | Zip Code [|

Phone(private} | | At work | |

Code |:|—|:|—|:|

User Data in HBoxes right part right aligned

Last Mame | | First Mame |
Street | |
City | | Zp Code | |
Phone(private) | | At work | |
Code |:| - |:| - |:|

| accept |’ cancel]

HBox Tags limitations

e HBox Tags don't work for fields of Screen Arrays or Tables; you will get a form
compiler error. The reason is that the current AUI structure does not allow this.

101

Genero Business Development Language

The front end needs a Matrix element directly in a Grid or a ScrolIGrid to
perform the necessary positioning calculations for the individual fields.

Elements inside HBoxes get their real sizes

A big advantage in using elements in an HBox is that the fields get their real sizes
according to the .per definition.

LAYOUT

GRID

{

<G g1 >

[a] single Edit Field

<G g2 >
MMMMM
[b 1 The large label expands the Edit Field

<G g3 >
MMMMM
[c :]The large label has no influence on the Edit width

}
END

END

ATTRIBUTES

EDIT a = formonly.a, sample="0", default=""12345"";
EDIT b = formonly.b, sample="0", default=""12345"";
EDIT ¢ = formonly.c, sample="0", default="12345";
END

In the second Groupbox, the edit field is expanded to be as large as the label above;
using an HBox prevents this:

[f] screen - BX]

1

re%l single Edit Field

:
MMMRM

12345 | The large label expands the Edit Field

3
MMMMM
12345 The large label has no influence on the Edit width

OVR.

102

General

Note: in this example, we use a sample of "0" to display exactly five numbers.

Width of ButtonEdit/DateEdit/ComboBox

The problem with BUTTONEDIT, DATEEDIT and COMBOBOX in previous versions is
that a field [b] got the width 3, the same width as an edit field with the same layout.

For example:
LAYOUT
GRID
{
[e 1
[b 1
¥
END
END
ATTRIBUTES

EDIT e=formonly.e;
BUTTONEDIT b=formonly.b;
END

In this example, the outer (visual) width of both elements was the same, but the edit
portion of "b" was much smaller, because the button did not count at all. (In practice this
meant that on average only one and a half characters of "b" was visible). However, you
could input 3 characters! This made a BUTTONEDIT where you could see only one
character and input only one character without tricks impossible.

Now, for the Button, the Form Compiler subtracts two character positions from the width
of BUTTONED I T/COMBOBOX/DATEEDIT. This is possible because now the form compiler
differentiates the width of the widget from the width of the entry part.

In fact, there is no visual difference between version 1.20 and 1.30 regarding this
example, but in version 1.30 you can only enter one character, which is visually more
correct.

In the example the BUTTONEDIT aligns with the Edit; that's why the Edit part of the
BUTTONEDIT is usually still a bit bigger than one character (this depends on the button
size, but if a button edit is contained by an HBox, it will get the exact size of "width"
multiplied by the average character pixel width.

To express the BUTTONEDIT/COMBOBOX/DATEEDIT layout more visually, it is possible to
specify:

[e 1
[b- 1]

103

Genero Business Development Language

the "-" sign marks the end of the edit portion and the beginning of the button portion (

edit width ="1", widget width ="3").

The two characters are also subtracted for a BUTTONEDIT which is child of an HBox.
[b :1

gets also width="1" , but no widget width, because the HBox stacks the elements
horizontally without needing widget width definition.

The two extra characters are only used to show the real size relations more WYSIWYG,
and to have the same calculation as in a field without an HBox parent.

[el:e2:e3: 1
[b1 :=b2 :b3]

shows that three BUTTONEDIT fields are much larger than three EDIT fields with the same
width.

You can even write:

[el:e2:e3:]
[bl- :b2- :b3-]

or:

[el:e2:e3:]
[bl-:b2-:b3-]

to use slim buttons and

[el:e2:e3: 1
[b1- :=b2- :b3- 1]

if one uses large buttons to get the maximum WYSIWYG effect.
Please note that buttons do not grow if two characters "- " is expanded to three

characters "- "; the button always computes its size from the image used, it's just to
reserve more space in the form to match the real size.

Default Sample

If no SAMPLE attribute is specified in the form files, the client uses an algorithm to
compute the field width. In this case, a very pessimistic algorithm is used to compute the
field widths: The client assumes a default SAMPLE of "M" for the first six characters and
then "0" for the subsequent characters and applies this algorithm to all fields, except
some field types like DATEEDIT fields.

104

General

The default algorithm tends to produce larger forms compared to forms used in BDL V3
and very first versions of Genero. Do not hesitate to modify the SAMPLE attribute in the
form file, to make your fields shorter.

If you do not want to touch all your forms, a more tailored automatic solution would be to
specify a ui.form.setDefaultinitiallizer() function, to set the SAMPLE depending on the
AUI tag. In the following example small UPSHIFT fields get a sample of "M"; all other
fields get a sample of "0". This will preserve the original width for UPSHIFT fields,
however numeric and normal String fields will get the sample of "0" and make the
overall width of the form smaller.

Program:

this demo program shows how to affect the "'sample™ attribute in a
ui.form_.setDefaultinitializer function

the main concern is to set a default sample of "0" and to

correct the sample attribute for small UPSHIFT fields to "'M"

to be able to display full uppercase letter for fields with a small
width

MAIN

DEFINE three_char_upshift CHAR(3)

DEFINE three_digit_number Integer

DEFINE longstring CHAR(100)

CALL ui.form.setDefaultinitializer(""myinit')

OPEN form ¥ from "sampletest2"

DISPLAY form T

INPUT BY NAME three_char_upshift,three_digit _number, longstring
END MAIN

FUNCTION mylInit(f)

DEFINE F ui.Form

CALL checkSampleRecursive(f.getNode())
END FUNCTION

FUNCTION checkSampleRecursive(node)
DEFINE node,child om.DomNode
LET child= node.getFirstChild()
WHILE chilld IS NOT NULL
CALL checkSampleRecursive(child)
CALL setSample(child)
LET child=child.getNext()
END WHILE
END FUNCTION

FUNCTION setSample(node)
DEFINE node,parent om.DomNode
LET parent=node.getParent()
-— only set the "sample™ for FormFields in this example
IF parent.getTagName()<>"FormField" THEN
RETURN
END IF
IF node.getAttribute('shift')="up" AND node.getAttribute("'width'")<=6
THEN
CALL node.setAttribute(“sample™, ™M)

105

Genero Business Development Language

ELSE
CALL node.setAttribute("'sample™,0"")
END IF
DISPLAY "set sample attribute of *",node.getld()," to
\""",node.getAttribute('sample™),"\""""
END FUNCTION

Form File:

LAYOUT (text="sampletest2')
GRID
{
<G
sampletest
>

3 Letter Code: [a] 3 digit code:[b] Description:[longstring]

<G "What can be

seen" >
There is no default sample set in this form, but due to a
ui .form.setDefaultinitializer function, small UPSHIFT fields
are adjusted to a sample of "M", all other fields get the sample "0"

1. The 3 letter code should show up exactly "MMM" because of the
applied sample=""M"

2. The 3 letter digit code should show up exactly 123" without
additional spacing
}
END
END
ATTRIBUTES
EDIT a=formonly.three_char_upshift,UPSHIFT,default="MMM"";
EDIT b=formonly.three_digit_number,defaul t=""123";
EDIT longstring=formonly.longstring,UPSHIFT,default="DESCRIPTION OF THE
ITEM",SCROLL;
END

(] sampletest? : E| [z|

sampletest

3 Letter Code: 3 digit code: [123| Description: [DESCRIPTION OF THE ITEM | oK
What can be seen

There iz no default sample set in this form | but dueto a
ui form set Defaultintializer] function, small UPSHIFT fields
are adjusted to a sample of "M", all other fields get the sample "0"

1. The 3 letter code should show up exacthy "MMM" because of the applied sample="M"
2. The 3 digit code should show up exactly " 123" without additional spacing

Please refer to the SAMPLE documentation for more information.

106

General

Size Policy for comboboxes

COMBOBOX items were VERY special in previous versions because they adapted their
size to the maximum item of the value list. On one hand, this is very convenient because
the programmer doesn't have to find the biggest string in the value list, and to estimate
how large it will be on the screen (with proportional fonts the string with the highest
number of characters is not automatically the largest string). On the other hand, this
behavior often led to an unpredictable layout if the programmer didn't reserve enough
space for the COMBOBOX.

The SIZEPOLICY attribute gives better control of the result.

<G ""Combo makes edit2 too big" >

[editl]

[combo]

[edit2]
ATTRIBUTES

EDIT editl=formonly.editl;

COMBOBOX combo=formonly.combo,
ITEMS=((0, ""Veeeeeeeery Loooooooooooooooong ltem™),(1,"hallo™)),
DEFAULT=0;

EDIT edit2=formonly.edit2;

END

[f] screen E;]ﬁiﬂ@i]

Combao makes edit? too big

Edit1 || OK

Combo |‘-.-"eeeeeeeer:,r Looooooooooooooooong fem V|

= |

In this case, the "combo™ field gets very large as does "edit2", because it ends in the
same grid column. It will confuse the end user if he can input only eight characters and
the field is apparently much bigger. Two possibilities exist to surround this:

Use an HBox to prevent the edit2 from growing, and use HBoxes for all fields which
start together with combo and are as large or bigger than combo

<G "Edit2 in HBox doesn"t grow" >

[editl]
[combo o |

[edit2 o |

107

Genero Business Development Language

[f] screen

EditZ in HBox doesn't grow
Edit1 | 0K

Combo |‘-.-"eeeeeeeer'_.r Looooooooooooooooong fem v|

e |

Use the new SIZEPOLICY attribute, and set it to fixed to prevent combo from getting
bigger than the initial six characters (6+Button)

<G "Combo has a fixed size" >

[combo]
[edit2]
A%%RIBUTES

COMBOBOX combo=formonly.combo,

ITEMS = ((0,'"Veeeeeeeery Looooooooooooooooong ltem™),(1,"hallo™)),
DEFAULT=0, SIZEPOLOCY=FIXED ;

[] screen [:]i:lﬁg]

Combo has a fixed size

[
cante
e

OWVR

Note that in this example the edit2 dictates the maximum size of combo, because even
if the SIZEPOLICY is fixed, the elements are aligned by the Grid.

To prevent this and have exactly six characters (hnumbers) in the ComboBox, you need
to decouple combo from edit2 by using an HBox.

<G ""Combo has a fixed size,sample 0,in HBox"™ >

Combo [combo o |
Edit2 [edit2 o |
ééMBOBOX combo=formonly_.combo,

ITEMS = ((0,'12345678 Looooooooooooooooong ltem™),(1,"hallo™)),
DEFAULT=0, SIZEPOLICY=FIXED, SAMPLE="0";

108

General

[f] screen

Combo has a fived size sample 0.in HBox

can |
Combao

2 |

OVR

Now the wanted six numbers are displayed and combo does not grow to the size of
edit2.

Please refer to the SIZEPOLICY documentation for more information.

Action Defaults at Form level

It is now possible to define action defaults in forms. In previous versions you had to
define a global action default file; this works for defining common global action attributes,
but there is a need to define specific action attributes in some forms. A typical zoom
window may have search and navigation actions, while data input windows need to
define add/delete/update actions instead.

It is now possible to define an action default section in the form file, and you can also
load action defaults with ui.Form.loadActionDefaults().

Tips:

1. Use the preprocessor to include action default sections in your forms.

MySQL 3.23 is de-supported

Version 1.32 supports MySQL 3.23.x, but there is no support for recent MySQL
versions.

Version 1.33 now de-supports MySQL 3.23.x, but supports MySQL 4.1.2 and higher
(5.0).

For technical reasons, MySQL 4.0.x cannot be supported.

109

Genero Business Development Language

2.0x Migration Issues

This page describes migration issues when you are moving from version 1.xx to version
2.0x of Genero BDL.

Summary:

De-supported platforms

fglmkrtm installation tool removed

fglinstall installation tool removed

Runner creation is no longer needed

Linking the utility functions library

Static C Extensions are de-supported

Dynamic C Extensions usage changes
WantColumnsAnchored attribute is de-supported
PixelWidth / PixelHeight attributes are de-supported
10. Pre-fetch parameters with Oracle

11. PostgreSQL 7 is de-supported

12. Adabas D is de-supported

13. Preprocessor directive syntax changed

14. Static SQL cache is removed

15. Connection database schema specification

16. FGLDBSCH schema extraction tool

17. Global and module variables using the same name
18. Connection Parameters in FGLPROFILE when using Informix
19. SQL Server 7 is de-supported

20. OPEN USING followed by FOREACH

21. Inconsistent USING clauses

22. FESQLC not provided in 2.00

23. Usage of RUN IN FORM MODE

24. TTY and COLOR WHERE attribute

CoNorONE

1. De-supported platforms

The following platforms are no longer supported by Genero BDL 2.0x:
e SUN Solaris 8-bit and 32-bit.
e IBM AIX 4.3.3 and AIX 32-bit.

e SCO Unixware lower than 7.1.3.

For information about supported platforms, please refer to the Installation and Setup
section of this manual.

110

General

2. Setup installation tool removed

The fglmkrtm tool has been removed from the distribution. This tool was provided in
previous versions to create a fglrun runner with the correct database driver. In version
2.0x, database drivers are now always loaded dynamically. Refer to Connections for
more details about database driver configuration.

3. fglinstall installation tool removed

The fglinstall tool has been removed from the distribution. This tool was provided in
previous versions to compile product message files, form files, and program modules
provided in the distribution. The compiled versions of all these files are now included in
the package.

4. Runner creation is no longer needed

In version 2.0x, you do not need to build a runner. The architecture is now based on
shared libraries (or DLLs on Windows), and the database drivers are automatically
loaded according to FGLPROFILE configuration parameters.

If you have C Extensions, you must re-build them as shared libraries. Refer to C
Extensions for more details.

Warning: Database vendor client libraries (libclntsh, libcli, libpq, libaodbc) must
be provided as shared objects (or DLL on Windows).

5. Linking the utility functions library

In version 1.3x, some utility functions (canvas draw* and database db_* functions) were
linked automatically to the 42r program when using fglrun -I or fgllink. These functions
are implemented in the fgldraw.4gl and fgldbutl.4gl modules, which were linked in the
libfgl.42x library and loaded automatically at runtime by fglrun.

In version 2.0x, all utility functions are now in the libfgl4js.42x library. So, if you use the
draw* or db_* utility functions, you must now add the libfgl4js.42x library explicitly when
using fglrun -l or fgllink, or you can use the fgl2p tool to link .42r programs. The fgl2p tool
links the program with the libfgl4js.42x library by default.

Refer to Utility Functions for more details.

111

Genero Business Development Language

6. Static C Extensions are de-supported

In version 2.0x, Static C Extensions must be re-written as Dynamic C Extensions.

Refer to C Extensions for more details.

7. Dynamic C Extensions usage changes

In version 1.3x, you must use FGLPROFILE entries to specify Dynamic C Extensions to
be loaded at runtime.

In version 2.0x, Dynamic C Extensions are automatically loaded according to IMPORT
instructions. The FGLPROFILE entries are no longer used.

Warning: Global variables (userData) can no longer be shared between the
runtime system and the C extensions. You must use functions to pass global
variable values.

There is no longer a need to define the FGL_API_MAIN macro in the extension interface
file.

All C data type definitions are now centralized in the fglExt.h header file, header files like
Date.h, MyDecimal.h have been removed from the distribution.

Refer to C Extensions for more details.

8. WantColumnAnchored attribute is de-supported

In version 1.3x, the WANTCOLUMNSANCHORED attribute was undocumented but still
supported by the language, to simplify migration from 1.20.

In version 2.0x, the WANTCOLUMNSANCHORED attribute is de-supported; you must use
UNMOVABLECOLUMNS to specify that table columns cannot be moved around by the
user.

9. PixelWidth / PixelHeight attribute is de-supported

In version 1.3x, the PIXELWIDTH and PIXELHEIGHT attributes were used to specify the
real size of an IMAGE form item.

112

General
In version 2.0x, you must use the WIDTH and HEIGHT attributes to specify the size of
an image:
In the .per form file:

01 IMAGE imgl = FORMONLY.imagel, HEIGHT = 100 PIXELS, WIDTH = 100
PIXELS;

The PIXELWIDTH and PIXELHEIGHT attributes are still supported by the form compiler,
but are deprecated and will be removed in a future version.

10. Pre-fetch parameters with Oracle

Pre-fetch parameters allow an application to automatically fetch rows from the Oracle
database when opening a cursor.

In version 1.3x, the default pre-fetch parameters are 50 rows and 65535 bytes for the
pre-fetch buffer. Some customers experienced a huge memory usage with those default
values, when using a lot of cursors: It appears that the Oracle client is allocating a buffer
of pre-fetch.memory (i.e. 64 Kbytes) for each cursor.

In version 2.0x, the default is 10 rows and 0 (zero) bytes for the pre-fetch buffer
(memory), meaning that memory is not included in computing the number of rows to pre-
fetch.

For more details, refer to Connections.

11. PostgreSQL 7 is de-supported
Version 1.3x supports PostgreSQL 7.1.x, 7.2.X, 7.3.X, 7.4.X.

Version 2.0x now de-supports all PostgreSQL versions 7, but supports PostgreSQL 8
and higher.

Remark: PostgreSQL 8 is available on Windows platforms.

12. Adabas D is de-supported

Version 2.0x no longer supports Adabas D 12.

113

Genero Business Development Language

13. Preprocessor directive syntax changed

In version 1.3x, the preprocessor directives start with a (#) sharp character, to be
compliant with standard preprocessors (like cpp). This caused too many conflicts with
standard language comments that use the same character:

01 #include "myheader.4gl™
02 # This is a comment

In version 2.0x, the preprocessor directives start with an ampersand character (&):

01 &include "myheader.4gl™
02 FUNCTION debug(msg)
03 DEFINE msg STRING

04 &ifdef DEBUG

05 DISPLAY msg

06 &endif

07 END FUNCTION

The preprocessor is now integrated in the compiler, to achieve faster compilation.

Warning: To simplify the migration, the # sharp character is still supported when
using the -p fglpp option of compiler. However, you should review your source
code and use the & character instead; # sharp will be de-supported in a future
version.

14. Static SQL cache is removed

In version 1.3x, the size of the static SQL cache is defined by a FGLPROFILE entry:

dbi.sgl.static.optimization.cache.size = max

This entry was provided to optimize SQL execution without touching code using a lot of
static SQL statements, especially when using non-Informix databases where the
execution of static SQL statements is slower than with Informix. This is useful for fast
migrations, but there were a lot of side effects and unexpected errors (refer to
"Connections” in 1.3x documentation for more details).

In version 2.0x, the Static SQL Cache has been removed for the reasons described
above. Programs continue to run without changing the code, but if you want to optimize
program execution, you must use Dynamic SQL (PREPARE + EXECUTE) as described
in "SQL Programming".

114

General

15. Connection database schema specification

Version 1.3x has an FGLPROFILE entry to specify the database schema at runtime:

dbi .database.dbname.schema = "‘schema-name"

This entry could be used to select the native database schema after connecting to the
server, for Oracle and Db2 only.

In version 2.0x, this entry is now specific to the Oracle and Db2 database driver
configuration parameters:

""'schema-name"*
""'schema-name"’

dbi .database.dbname.ora.schema
dbi .database.dbname.db2.schema

For other database servers, this configuration parameter is not defined.

Warning: It is no longer possible to specify the "schema" parameter in the
connection string (dbname+schema='name’).

For more details, refer to Connections.

16. FGLDBSCH schema extraction tool

Unigue tool

Version 1.3x provides two schema extractors: fglschema and fgldbsch. The first can only
extract schemas from Informix databases, while the second one can extract schemas
from all supported databases.

In version 2.0x, the fgldbsch tool has been extended to support the old fglschema
options, and fglschema has been replaced by a simple script calling fgldbsch. When you
call fglschema, you actually call fgldbsch. We recommend that you use fgldbsch with its
specific options.

System tables

In 2.0x, fgldbsch does not extract system tables by default. You must specify the -st
option to get the system tables description in the schema files.

Remote synonyms

The original fglschema tool was searching for remote synonyms with Informix
databases. The fgldbsch tool of 2.0x does not search for remote synonyms.

Public and private synonyms

115

Genero Business Development Language

Since bug fix #5021 (build 620.313), fgldbsch does not extract private synonyms
anymore. Only public synonyms are extracted. The .sch schema files do not contain
table owners, and if two private synonyms have the same names, there is no way to
distinguish them in the schema files. Therefore, to avoid any mistakes, private synonyms
are not extracted anymore.

See also: Database Schema.

17. Global and module variables using the same name

An important compiler bug has been fixed in 2.0x. This bug is referenced as #5752:
When you declare a module variable with the same name as a global variable, a
compilation error must be thrown.

This is critical to avoid confusion with the variable usage:

01 GLOBALS

02 DEFINE level INTEGER

03 END GLOBALS

01 GLOBALS "'globals.4gl"

02 DEFINE level INTEGER

03 FUNCTION funcl()

04 LET level = 123 -- is this the global or the module variable?
05 END FUNCTION

In version 1.3x, the compiler did not detect this and the module variable was used, but
one might want to use the global variable instead!

If you have module variables defined with the same name as global variables, the
compiler now raises the following error:

-4319: The symbol "variable-name® has been defined more than once.

You can easily fix this by renaming the module variable. There is no risk to do this
modification, since the module variable was used in 1.3x, not the global variable.

Remark: The compiler now also detects duplicate global variable declaration. Just
remove the duplicated lines in your source.

18. Connection parameters in FGLPROFILE when using
Informix

In version 1.3x, the dbi.database.* connection parameters defined in FGLPROFILE are
ignored by the Informix drivers.

116

General

In version 2.0x, the dbi.database.* connection parameters defined in FGLPROFILE are
used by the Informix driver, as well as other database vendor drivers. For example, if
you connect to the database "stores", and you have the following entries defined, the
driver tries to connect as "userl" with password "alpha™:

“userl"”
“alpha™

dbi.database.stores.username
dbi .database.stores.password

You typically get SQL errors -387 or -329 when the wrong database login or the wrong
database name is used.

For more details, refer to Connections.

19. SQL Server 7 desupported

In version 2.0x, Microsoft SQL Server 7 is no longer supported. Microsoft support of
this version ended the first of January 2006.

Only SQL Server 2000 and 2005 are supported by Genero 2.0x. You must upgrade
your server to one of these versions of SQL Server.

20. OPEN USING followed by FOREACH

Warning: This issue applies to non-Informix databases only.

In version 1.3x, you could use an OPEN USING instruction to specify the SQL
parameters of a following FOREACH:

01 PREPARE stl FROM "'SELECT * FROM tab WHERE col>?"
02 DECLARE cul CURSOR FOR stil

03 OPEN cul USING var

04 FOREACH cul INTO rec.*

05 DISPLAY rec.*

06 END FOREACH

In this case, the FOREACH instruction was reusing the parameters provided in the last
OPEN instruction. Supporting such a feature is complex and deters the proper
improvement of the database interface and database drivers. It was provided to support
compatibility with very old Informix 4GL compilers, but it is not proper SQL programming.

The database interface of version 2.0x has been rewritten for better performance. The
above usage of FOREACH is no longer supported.

To work around this issue, you can safely remove the OPEN instruction and put the
USING clause in the FOREACH instruction:

117

Genero Business Development Language

01 PREPARE stl FROM "'SELECT * FROM tab WHERE col>?"
02 DECLARE cul CURSOR FOR stil

03 FOREACH cul USING var INTO rec.*

04 DISPLAY rec.*

05 END FOREACH

21. Inconsistent USING clauses
Warning: This issue applies to non-Informix databases only.

In version 1.3x, it was possible to execute a prepared statement with the variable list
changing at each EXECUTE statement:

01 DEFINE varl DECIMAL(6,2)

02 DEFINE var2 CHAR(10)

03 DEFINE var3 DATE

04 PREPARE stl FROM "INSERT INTO tabl VALUES (?. ?, ?)"

05 EXECUTE stl USING varl, var2, var3

06 EXECUTE stl USING var2, var3, varl -- different order = different
data types

The database interface of version 2.0x has been rewritten for better performance.
Having data types changing at each execute is no longer supported.

Error -254 will be raised if different data types are used in subsequent EXECUTE
statements (with the same statement name).

22. FESQLC not provided in 2.00

Genero FGL version 1.33 has included an ESQL/C preprocessor named FESQLC. This
component provides both SQL support and C API functions to manipulate complex types
as dec _t.

Because of runtime system architecture changes, the FESQLC preprocessor could not
be shipped with 2.00. However, version 2.01 provides again the FESQLC tool. Note also
that version 2.00 implements Informix specific C API functions, to deploy your
application without the Informix client software. For more details about the supported C
API functions, have a look at the C Extensions page.

23. Usage of RUN IN FORM MODE

In version 1.3x, RUN...IN FORM MODE was recommended to run interactive
applications.

118

General

In version 2.0x, RUN ... IN LINE MODE is recommended to run interactive applications.
The RUN command should be used as follows (in both GUI and TUI mode):

1. When starting an interactive program, either use RUN ... IN LINE MODE or, if the
default mode is LINE MODE, use the RUN instruction without any option.

2. When starting a batch program that does not display any message, you should
use RUN ... IN FORM MODE.

For more details about the RUN options, see the RUN instruction.

24. TTY and COLOR WHERE attribute

In version 1.3x, only some field types like EDIT or TEXTEDIT could support TTY
attributes (COLOR, REVERSE), and the conditional COLOR WHERE attribute.

In version 2.0x, all type of fields now allow TTY attributes and the conditional COLOR
WHERE attribute. So when using any ATTRIBUTE(<tty-attribute>) in programs, all fields
will now be affected. For example, CHECKBOX and RADIOGROUP fields will now get a
colored background, while in 1.3x it was not the case.

119

Genero Business Development Language

2.1x Migration Issues

This page describes migration issues when you are moving from version 2.0x to version
2.1x of Genero BDL.

Summary:

1. De-supported platforms
2. New firstrow/lastrow implicit actions

1. De-supported platforms
The following platforms are no longer supported by Genero BDL 2.1x:

AlX 32 bit (all versions)

HP/UX 32 bit (all versions)

SCO Open Server lower than 5.0.7.

Microsoft Windows Visual C++ 6 (de-supported by Microsoft since September
2005).

For information about supported platforms, please refer to the Installation and Setup
section of this manual.

2. New firstrow/lastrow implicit actions

In prior versions, firstrow and lastrow actions were handled by the front-ends as local
actions. The firstrow and lastrow actions had the Home / End accelerators defined in the
default.4ad file. But these accelerators conflict with the Home/End field editor
accelerators if the controller is an INPUT ARRAY. The conflict was handled by the front-
ends. If the current dialog was a DISPLAY ARRAY, the front-end used Home/End as
navigation accelerators to move to the first or last row; when the current dialog was an
INPUT ARRAY, the front-end used Home/End as local text editor shortcuts to move to the
beginning or to the end of the text in the current field.

Version 2.10 now defines the firstrow and lastrow actions as server-side predefined
actions when using DISPLAY ARRAY or INPUT ARRAY. The default accelerators in the
FGLDIR/lib/defaults.4ad Action Defaults file are now Control-Home + Home for firstrow
and Control-End + End for lastrow. If the current widget is a text editor, the editor or
navigation accelerators (like Home and End) take precedence over the action
accelerators. This way, during an INPUT ARRAY, Home and End will be used as editor
accelerators.

If you have defined your own default.4ad file, you have probably kept the original
defaults for firstrow and lastrow actions as the accelerators Home and End. In this case,

120

General

only Home and End accelerators are defined for firstrow and lastrow actions. As a
result, the user cannot move to the first row or last row with Control-Home or Control-
End during INPUT ARRAY. To solve this problem, define the same accelerators for
firstrow and lastrow actions as in FGLDIR/lib/default.4ad.

You can use the Style "localAccelerators"” to define how the field editor must behave. Set
to "yes" (by default), the local accelerators will be used (for instance, the Home key will
move the cursor to the beginning of the field). Set to "no", the action accelerators will
have higher priority (The Home key will change the current row to the first row).

121

Data Types

The data types supported by the language:

Data Type Description

String Data Types

CHAR Fixed size character strings

VARCHAR Variable size character strings

STRING Dynamic size character strings

Date and Datetime Data Types

DATE Simple calendar dates

DATETIME High precision date and hour data
INTERVAL High precision time intervals

Numeric Data Types

INTEGER 4 byte integer

SMALLINT 2 byte integer

FLOAT 8 byte floating point decimal

SMALLFLOAT 4 byte floating point decimal
DECIMAL High precision decimals

MONEY High precision decimals with currency formatting
Large Data Types

BYTE Large binary data (images)

TEXT Large text data (documents)

See also: Data Conversions, Variables, Programs.

CHAR data type
Purpose:
The CHAR data type is a fixed-length character string data type.

Syntax:

CHAR[ACTER] [(size)]
Notes:

1. CHAR and CHARACTER are synonyms.

123

Genero Business Development Language

2. size defines the length of the variable; the number of bytes allocated for the
variable. The upper limit is 65534.
3. When size is not specified, the default length is 1 character.

Usage:
CHAR variables are initialized to NULL in functions, modules and globals.

The size defines the number of bytes the variable can store. It is important to distinguish
bytes from characters, because in a multi-byte character set, one character may be
encoded on several bytes. For example, in the ISO-8859-1 character set, "forét" uses 5
bytes, while in the UTF-8 multi-byte character set, the same word occupies 6 bytes,
because the "é" letter is coded with two bytes.

CHAR variables are always filled with trailing blanks, but the trailing blanks are not
significant in comparisons:

01 MAIN
02 DEFINE ¢ CHAR(10)
03 LET c = "abcdef"

04 DISPLAY [, c ,"]1" -- displays [abcdef 1
05 IF ¢ == "abcdef"™ THEN -- this is TRUE

06 DISPLAY "equals™

07 END IF

08 END MAIN

VARCHAR data type
Purpose:

The VARCHAR data type is a variable-length character string data type, with a maximum
size.

Syntax:
VARCHAR [(size, [reserve])]
Notes:
1. The size defines the maximum length of the variable; the maximum number of
bytes the variable can store. The upper limit is 65534.
2. reserve is not used, however its inclusion in the syntax for a VARCHAR variable is
permitted for compatibility with the SQL data type.
3. When size is not specified, the default length is 1 character.
Usage:
VARCHAR variables are initialized to NULL in functions, modules and globals.

124

Language Basics

The size defines the maximum number of bytes the variable can store. It is important to
distinguish bytes from characters, because in a multi-byte character set, one character
may be encoded on several bytes. For example, in the ISO-8859-1 character set, "forét"
uses 5 bytes, while in the UTF-8 multi-byte character set, the same word occupies 6
bytes, because the "é" letter is coded with two bytes.

VARCHAR variables store trailing blanks (i.e. "*abc " is different from "abc™). Trailing
blanks are displayed or printed in reports, but they are not significant in comparisons:

01 MAIN

02 DEFINE vc VARCHAR(10)

03 LET vc = "abc " -- two trailing blanks
04 DISPLAY "[', vc ,"]" -- displays [abc]

05 IF vc == "abc™"™ THEN -- this is TRUE

06 DISPLAY "equals"

07 END IF

08 END MAIN

When you insert character data from VARCHAR variables into VARCHAR columns in a
database table, the trailing blanks are kept. Likewise, when you fetch VARCHAR column
values into VARCHAR variables, trailing blanks are kept.

01 MAIN

02 DEFINE vc VARCHAR(10)

03 DATABASE testl

04 CREATE TABLE tablel (k INT, x VARCHAR(10))

05 LET vc = "abc " -— two trailing blanks
06 INSERT INTO tablel VALUES (1, vc)

07 SELECT x INTO vc FROM tablel WHERE k = 1

08 DISPLAY [, vc ,"]1" -- displays [abc]

09 END MAIN

Warning: In SQL statements, the behavior of the comparison operators when
using VARCHAR values differs from one database to the other. Informix is ignoring
trailing blanks, but most other databases take trailing blanks of VARCHAR values
into account. See SQL Programming for more details.

STRING data type

Purpose:

The STRING data type is a variable-length, dynamically allocated character string data
type, without limitation.

Syntax:

STRING

125

Genero Business Development Language

Usage:

The behavior of a STRING variable is similar to the VARCHAR data type. For example, as
VARCHAR variables, STRING variables have significant trailing blanks (i.e. "fabc " is
different from ""abc'). There is no size limitation, it depends on available memory.

STRING variables are initialized to NULL in functions, modules and globals.

The STRING data type is typically used to implement utility functions manipulating
character string with unknown size. It cannot be used to store SQL character string data,
because databases have rules that need a maximum size as for CHAR and VARCHAR

types.

Warning: The STRING data type cannot be used as SQL parameter of fetch buffer,
not can it be used as form field.

Variables declared with the STRING data type can use built-in class methods such as
getLength() or toUpperCase().

Methods:
Warning: The STRING methods are all based on byte-semantics. In a multi-byte

environment, the getLength() method returns the number of bytes, which can be
different from the number of characters.

Object Methods

Name Description
append(str STRING) Returns a new string made by adding
RETURNING STRING str to the end of the current string.
Returns TRUE if the string passed as
equals(src STRING) parameters matches the current
RETURNING INTEGER string. If one of the strings is NULL

the method returns FALSE.
Returns TRUE if the string passed as
equalslgnoreCase(src STRING) pa_ram(_eters _matches the current

RETURNING INTEGER string, ignoring character case. If one

of the strings is NULL the method

returns FALSE.

Returns the character at the byte

position pos (starts at 1). Returns

getCharAt(pos INTEGER) NULL if the position does not match a
RETURNING STRING valid character-byte position in the
current string or if the current string is
null.
getIndexOf(str STRING, spos Returns the position of the sub-string
INTEGER) str in the current string, starting from
RETURNING INTEGER byte position spos. Returns zero if the

126

Language Basics

sub-string was not found. Returns -1

if string is NULL.

This method counts the number of
getLength() bytes, including trailing blanks. The

RETURNING INTEGER LENGTH() built-in function ignores

trailing blanks.
Returns the sub-string starting at byte
position spos and ending at epos.

subString(spos INTEGER, epos paying NULL if the positions do not

INTEGER) - : o
RETURNING STRING delimit a valid sub-string in the
current string, or if the current string
is null.
Converts the current string to
tolL C : .
OREVTVSEN?EE(S%RWG !owercase. Returns NULL if the string
is null.
toUppercase() Converts the;{ current I\Tltjrl?;oh _
RETURNING STRING uppercase. Returns if the string
is null.
Removes white space characters
trim() from the beginning and end of the
RETURNING STRING current string. Returns NULL if the
string is null.
Removes white space characters
trimLeft() from the beginning of the current
RETURNING STRING string. Returns NULL if the string is
null.
trimRight() Removes white space charact_ers
RETURNING STRING from the end of the current string.

Returns NULL if the string is null.

Example:

01 MAIN
02 DEFINE s STRING
03 LET s = "abcdef

04 DISPLAY s || - (" |l s-getLengthQ || ™"
05 IF s.trimRight() = "abcdef" THEN

06 DISPLAY s.toUpperCase()

07 END IF

08 END MAIN

INTEGER data type
Purpose:

The INTEGER data type is used for storing large whole numbers.

127

Genero Business Development Language

Syntax:
INT[EGER]
Notes:
1. INT and INTEGER are synonyms.
Usage:

The storage of INTEGER variables is based on 4 bytes of signed data (= 32 bits). The
value range is from -2,147,483,647 to +2,147,483,647.

INTEGER variables are initialized to zero in functions, modules and globals.
Warning: The value -2,147,483,648 is reserved for the representation of NULL.

Example:

01 MAIN

02 DEFINE 1 INTEGER
03 LET 1 = 1234567
04 DISPLAY i

05 END MAIN

SMALLINT data type
Purpose:
The SMALLINT data type is used for storing small whole numbers.

Syntax:

SMALLINT
Notes:

1. Variables are initialized to zero in functions, modules and globals.
2. SMALLINT values can be converted to strings.

Usage:

The storage of SMALLINT variables is based on 2 bytes of signed data (= 16 bits). The
value range is from -32,767 to +32,767.

SMALLINT variables are initialized to zero in functions, modules and globals.

128

Language Basics

Warning: The value -32,768 is reserved for the representation of NULL.

Example:

01 MAIN

02 DEFINE 1 SMALLINT
03 LET 1 = 1234

04 DISPLAY i

05 END MAIN

FLOAT data type

Purpose:

The FLOAT data type stores values as double-precision floating-point binary numbers
with up to 16 significant digits.

Syntax:

{ FLOAT | DOUBLE PRECISION } [(precision)]
Notes:

1. FLOAT and DOUBLE PRECISION are synonyms.
2. The precision can be specified but it has no effect in programs.

Usage:

The storage of FLOAT variables is based on 8 bytes of signed data (= 64 bits), this type
is equivalent to the double data type in C.

FLOAT variables are initialized to zero in functions, modules and globals.

FLOAT values can be converted to strings according to the DBMONEY environment
variable (defines the decimal separator).

Tip: This data type it is not recommended for exact decimal storage; use the DECIMAL
data type instead.

129

Genero Business Development Language

SMALLFLOAT data type

Purpose:

The SMALLFLOAT data type stores values as single-precision floating-point binary
numbers with up to 8 significant digits.

Syntax:
{ SMALLFLOAT | REAL }
Notes:
1. SMALLFLOAT and REAL are synonyms.
2. SMALLFLOAT values can be converted to strings according to the DBMONEY
environment variable (which defines the decimal separator).

Usage:

The storage of SMALLFLOAT variables is based on 4 bytes of signed data (= 32 bits),
this type is equivalent to the float data type in C.

SMALLFLOAT variables are initialized to zero in functions, modules and globals.

SMALLFLOAT values can be converted to strings according to the DBMONEY environment
variable (defines the decimal separator).

Tip: This data type it is not recommended for exact decimal storage; use the DECIMAL
data type instead.

DECIMAL data type

Purpose:

The DECIMAL data type is provided to handle large numeric values with exact decimal
storage.

Syntax:
{ DEC[IMAL]] NUMERIC } [(precision[,scale])]
Notes:
1. DEC, DECIMAL and NUMERIC are synonyms.
2. precision defines the number of significant digits (limit is 32, default is 16).

3. scale defines the number of digits to the right of the decimal point.

130

Language Basics

4. When no scale is specified, the data type defines a floating point number.
Usage:

The DECIMAL data type must be used for storing number with fractional parts that must
be calculated exactly.

DECIMAL variables are initialized to NULL in functions, modules and globals.

The largest absolute value that a DECIMAL(p,s) can store without errors is 10 - 10°,
The stored value can have up to 30 significant decimal digits in its fractional part, or up
to 32 digits to the left of the decimal point.

When you specify both the precision and scale, you define a decimal with a fixed point
arithmetic. If the data type declaration specifies a precision but no scale, it defines a
floating-point number with precision significant digits. If the data type declaration
specifies no precision and scale, the default is DECIMAL(16), a floating-point number
with a precision of 16 digits.

DECIMAL values can be converted to strings according to the DBMONEY environment
variable (defines the decimal separator).

Warnings:

1. In ANSI-compliant databases, DECIMAL data types do not provide floating point
numbers. When you define a database column as DECIMAL(16), it is equivalent
to a DECIMAL(16,0) declaration. You should always specify the scale to avoid
mistakes.

2. When the default exception handler is used, if you try to assign a value larger
than the Decimal definition (for example, 12345.45 into DECIMAL(4,2)), no out
of range error occurs, and the variable is assigned with NULL. If WHENEVER
ANY ERROR is used, it raises error -1226. If you do not use WHENEVER ANY
ERROR, the STATUS variable is not set to -1226.

Example:

01 MAIN

02 DEFINE dl1 DECIMAL(10,4)

03 DEFINE d2 DECIMAL(10,3)

04 LET d1 = 1234.4567

05 LET d2 = d1 / 3 -- Rounds decimals to 3 digits
06 DISPLAY di1, d2

07 END MAIN

131

Genero Business Development Language

MONEY data type

Purpose:
The MONEY data type is provided to store currency amounts with exact decimal storage.
Syntax:
MONEY [(precision[,scale])]
Notes:
1. precision defines the number of significant digits (limit is 32, default is 16).
2. scale defines the number of digits to the right of the decimal point.
3. When no scale is specified, it defaults to 2.

Usage:

The MONEY data type is provided to store currency amounts. Its behavior is similar to the
DECIMAL data type, with some important differences:

A MONEY variable is displayed with the currency symbol defined in the DBMONEY
environment variable.

You cannot define floating-point numbers with MONEY: If you do not specific the scale in
the data type declaration, it defaults to 2. If no precision / scale parameters are specified,
MONEY is interpreted as a DECIMAL(16,2).

Warning: See the DECIMAL data type.

DATE data type
Purpose:
The DATE data type stores calendar dates with a Year/Month/Day representation.

Syntax:

DATE
Usage:

Storage of DATE variables is based on a 4 byte integer representing the number of days
since 1899/12/31.

132

Language Basics

Because DATE values are stored as integers, you can use them in arithmetic
expressions: the difference of two dates returns the number of days. This is possible
(and portable) with language arithmetic operators, but should be avoided in SQL
statements, because not all databases support integer-based date arithmetic.

Data conversions, input and display of DATE values are ruled by environment settings,
such as the DBDATE and DBCENTURY environment variables.

Several built-in functions and constants are available such as MDY() and TODAY.
DATE variables are initialized to zero (=1899/12/31) in functions, modules and globals.
Tips:

1. Integers can represent dates as a number of days starting from 1899/12/31, and
can be assigned to dates. It is not recommended that you directly assign integers
to dates, however, for source code readability.

2. As Date-to-String conversion is based on an environment setting, it is not
recommended that you hardcode strings representing Dates.

Example:

01 MAIN

02 DEFINE d DATE

03 LET d = TODAY

04 DISPLAY d, "™ ', d+100
05 END MAIN

DATETIME data type

Purpose:

The DATETIME data type stores date and time data with time units from the year to
fractions of a second.

Syntax:

DATETIME quall TO qual2
where quall can be one of:

YEAR
MONTH
DAY

HOUR
MINUTE
SECOND
FRACTION

133

Genero Business Development Language

and qual2 can be one of:

YEAR
MONTH

DAY

HOUR

MINUTE
SECOND
FRACTION
FRACTION(1)
FRACTION(2)
FRACTION(3)
FRACTION(4)
FRACTION(5)

Notes:

1. scale defines the number of significant digits of the fractions of a second.
2. quall and qual2 qualifiers define the precision of the DATET IME variable.

Usage:

The DATETIME data type stores an instance in time, expressed as a calendar date and
time-of-day.

The quall and qual2 qualifiers define the precision of the DATET IME variable. The
precision can range from a year through a fraction of second.

DATET IME arithmetic is based on the INTERVAL data type, and can be combined with
DATE values:

e Datetime +/- Datetime = Interval
o Datetime +/- Interval = Datetime
o Datetime +/- Date = Interval
The CURRENT operator provides current system date/time.
You can assign DATETIME variables with datetime literals with a specific notation.

DATET IME variables are initialized to NULL in functions, modules and globals.

DATETIME values can be converted to strings by the 1ISO format (YYYY-MM-DD
hh:mm:ss.fffff).

Example:

01 MAIN

02 DEFINE d1, d2 DATETIME YEAR TO MINUTE
03 LET d1 = CURRENT YEAR TO MINUTE

04 LET d1 = "1998-01-23 12:34"

05 DISPLAY d1, d2

134

Language Basics

06 END MAIN

INTERVAL data type

Purpose:

The INTERVAL data type stores spans of time as Year/Month or
Day/Hour/Minute/Second/Fraction units.

Syntax 1: year-month class interval

INTERVAL YEAR[(precision)] TO MONTH
| INTERVAL YEAR[(precision)] TO YEAR
| INTERVAL MONTH[(precision)] TO MONTH

Syntax 2: day-time class interval

INTERVAL DAY[(precision)] TO FRACTION[(scale)]
| INTERVAL DAY[(precision)] TO SECOND

| INTERVAL DAY[(precision)] TO MINUTE

| INTERVAL DAY[(precision)] TO HOUR

| INTERVAL DAY[(precision)] TO DAY

| INTERVAL HOUR[(precision)] TO FRACTION[(scale)]
| INTERVAL HOUR[(precision)] TO SECOND

| INTERVAL HOUR[(precision)] TO MINUTE

| INTERVAL HOUR[(precision)] TO HOUR

| INTERVAL MINUTE[(precision)] TO FRACTION[(scale)]
| INTERVAL MINUTE[(precision)] TO SECOND
| INTERVAL MINUTE[(precision)] TO MINUTE

| INTERVAL SECOND[(precision)] TO FRACTION[(scale)]
| INTERVAL SECOND[(precision)] TO SECOND

| INTERVAL FRACTION[(precision)] TO FRACTION[(scale)]
Notes:

1. precision defines the number of significant digits of the first qualifier, it must be
an integer from 1 to 9.
For YEAR, the default is 4. For all other time units, the default is 2.
For example, YEAR(5) indicates that the INTERVAL can store a number of years
with up to 5 digits.

135

Genero Business Development Language

Usage:

The INTERVAL data type stores a span of time, the difference between two points in time.
It can also be used to store quantities that are measured in units of time, such as ages
or times required for some activity.

The INTERVAL data type falls in two classes, which are mutually exclusive:

e Year-time intervals store a span of years, months or both.
o Day-time intervals store a span of days, hours, minutes, seconds and fraction of
seconds, or a contiguous subset of those units.

INTERVAL values can be negative.
INTERVAL arithmetic is possible, and can involve DATETIME values:

e [nterval +/- Interval = Interval
« Datetime +/- Datetime = Interval
« Datetime +/- Interval = Datetime

You can assign INTERVAL variable with interval literals with a specific notation.

INTERVAL values can be converted to strings by using the ISO format (YYYY-MM-DD
hh:mm:ss.fffff).

Example:

01 MAIN

02 DEFINE i1 INTERVAL YEAR TO MONTH

03 DEFINE 12 INTERVAL DAY(5) TO MINUTE
04 LET i1 = '2342-4"

05 LET 12 = "23423 12:34"

06 DISPLAY i1, i2

07 END MAIN

BYTE data type
Purpose:
The BYTE data type stores any type of binary data, such as images or sounds.

Syntax:

BYTE

136

Language Basics

Usage:

A BYTE variable is actually a 'locator’ for a large object stored in a file or in memory. The
BYTE data type is a complex type that cannot be used like simple types such as INTEGER
or CHAR: It is designed to handle a large amount of unstructured binary data. This type
has a theoretical limit of 2731 bytes, but the practical limit depends from the resources
available to the process. You can use the BYTE data type to store, fetch or update the
contents of a BYTE database column when using Informix, or the content of a BLOB
column when using another type of database.

Warning: A BYTE variable must be initialized with the LOCATE instruction before
usage. You might want to free resources allocated to the BYTE variable with the
FREE instruction. Note that a FREE will remove the file if the LOB variable is
located in afile.

The LOCATE instruction basically defines where the large data object has to be stored (in
file or memory). This instruction will actually allow you to fetch a LOB into memory or into
a file, or insert a LOB from memory or from a file into the database.

Warning: When you assign a BYTE variable to another BYTE variable, the LOB data
is not duplicated, only the handler is copied.

Note that if you need to clone the large object, you can use the 1/O built-in methods to
read/write data from/to a specific file. The large object can be located in memory or in a
file.

Methods:

Object Methods

Name Description

Reads data from a file and copies into
memory or to the file used by the
variables according to the LOCATE
statement issued on the object.
Writes data from the variable
(memory or source file) to the
destination file passed as parameter.
The file is created if it does not exist.

readFile(fileName STRING)

writeFile(fileName STRING)

Example:

01 MAIN

02 DEFINE b BYTE

03 DATABASE stock

04 LOCATE b IN MEMORY

05 SELECT bytecol INTO b FROM mytable
06 END MAIN

137

Genero Business Development Language

TEXT data type

Purpose:
The TEXT data type stores large text data.

Syntax:

TEXT
Usage:

A TEXT variable is actually a 'locator’ for a large object stored in a file or in memory. The
TEXT data type is a complex type that cannot be used like basic character string types
such as VARCHAR or CHAR: It is designed to handle a large amount of text data. You can
use this data type to store, fetch or update the contents of a TEXT database column
when using Informix, or the content of a CLOB column when using another type of
database.

Warning: A TEXT variable must be initialized with the LOCATE instruction before
usage. You might want to free resources allocated to the TEXT variable with the
FREE instruction. Note that a FREE will remove the file if the LOB variable is
located in afile.

The LOCATE instruction basically defines where the large data object has to be stored (in
file or memory). This instruction will actually allow you to fetch a LOB into memory or into
a file, or insert a LOB from memory or from a file into the database.

Warning: When you assign a TEXT variable to another TEXT variable, the LOB data
is not duplicated, only the handler is copied.

You can assign TEXT variables to/from VARCHAR, CHAR and STRING variables.

Note that if you need to clone the large object, you can use the I/O built-in methods to
read/write data from/to a specific file. The large object can be located in memory or in a
file.

Methods:

Object Methods

Name Description

Reads data from a file and copies into

memory or to the file used by the

variables according to the LOCATE

statement issued on the object.

Writes data from the variable

writeFile(fileName STRING) (memory or source file) to the
destination file passed as parameter.

readFile(fileName STRING)

138

Language Basics

The file is created if it does not exist.

Example:

01 MAIN

02 DEFINE t TEXT

03 DATABASE stock

04 LOCATE t IN FILE "/tmp/mytext.txt"
05 SELECT textcol INTO t FROM mytable
06 END MAIN

139

Genero Business Development Language

Literals

Summary:

Integer Literals
Decimal Literals
String Literals
Datetime Literals
Interval Literals

See also: Variables, Data Types, Expressions.

INTEGER LITERALS

Purpose:

The language supports integer literals in base-10 notation, without blank spaces and
commas and without a decimal point.

Syntax:
[+1-] digit[...]
Notes:
1. digitis a digit character from '0' to '9'.
Warnings:
1. Integer literals are limited to the ranges of an INTEGER value.

Example:

01 MAIN

02 DEFINE n INTEGER
03 LET n = 1234567
04 END MAIN

DECIMAL LITERALS

Purpose:

The language supports decimal literals as a base-10 representation of a real number,
with an optional exponent notation.

140

Language Basics

Syntax:

Notes:

1. dotis the decimal separator and is always a dot, independently from DBMONEY.
2. The E character is used to specify the exponent.

Example:

01 MAIN

02 DEFINE n DECIMAL(10,2)
03 LET n = 12345.67

04 LET n = -1.2356e-10
05 END MAIN

STRING LITERALS

Purpose:
The language supports string literals delimited by single quotes or double quotes.

Syntax 1 (using double quotes):

“alphanum [...] "

Syntax 2 (using single quotes):

alphanum [...] *©

Notes:

1. A string literal defines a character string constant, following the current character
set.

2. A string literal can be written on multiple lines, the compiler merges lines by
removing the new-line character.

3. The escape character is the back-slash character (\).

4. Quotes can be doubled to be included in strings.

Warnings:

1. Anempty string (") is equivalent to NULL.
Escape Sequences in string literals

A string literal can hold the following escape sequences:

141

Genero Business Development Language

\\ is a backslash character.

\" is a double-quote character.

\" is a single-quote character.

\n is a new-line character.

\r is a carriage-return character.

\O is a null character.

\f is a form-feed character.

\t is a tab character.

\xNN is a character defined by the hexadecimal code NN.

©CoNoGA~MWNE

Example:

01 MAIN

02 DISPLAY "Some text in double quotes"

03 DISPLAY "Some text in single quotes”

04 DISPLAY "Escaped double quotes : \"

05 DISPLAY "Escaped single quotes : * ** *

06 DISPLAY “Insert a new-line character here: \n and continue with
text. "

o7 DISPLAY "This is a text

08 on multiple

09 lines.\

10 You can insert a new-line with back-slash at the end of the
line.”

11 IF """ IS NULL THEN DISPLAY "Empty string is NULL" END IF

12 END MAIN

DATETIME LITERALS

Purpose:
The language supports datetime literals with the DATETIME () notation.

Syntax:

DATETIME (dtrep) quall TO qual2[(scale)]
Notes:

1. dtrep is the datetime value representation in normalized format (YYYY-MM-DD
hh:mm:ss.fffff).
2. quall and qual2 are the datetime qualifiers as described in the Datetime data

type.
Example:
01 MAIN
02 DEFINE d1 DATETIME YEAR TO SECOND
03 DEFINE d2 DATETIME HOUR TO FRACTION(5)

142

Language Basics

04 LET d1 = DATETIME (2002-12-24 23:55:56) YEAR TO SECOND
05 LET d2 = DATETIME (23:44:55.34532) HOUR TO FRACTION(5)
06 END MAIN

INTERVAL LITERALS

Purpose:
The language supports interval literals with the INTERVAL() notation.
Syntax:
INTERVAL (inrep) quall[(precision)] TO qual2[(scale)]
Notes:
1. inrep is the interval value representation in normalized format (YYYY-MM or DD

hh:mm:ss.fffff).
2. quall and qual2 are the interval qualifiers as described in the Interval data type..

Example:

01 MAIN
02 DEFINE i1 INTERVAL YEAR TO MONTH
03 DEFINE 12 INTERVAL HOUR(5) TO SECOND

04 LET i1 = INTERVAL (345-5) YEAR TO MONTH
05 LET 12 = INTERVAL (34562:12:33) HOUR(5) TO SECOND
06 END MAIN

143

Genero Business Development Language

Operators
Summary:
e Definition
e Operator List
e Order of Precedence List
e General Warnings

See also: Variables, Data Types, Expressions, Literals.

Definition

The operators listed in this section can appear in Expressions. Expressions with several
operators are evaluated according to their precedence, from highest to lowest, as
described in the Order of Precedence List. Use parentheses to instruct the runtime
system to evaluate the expression in a different way than the default order of

precedence.

List of Operators

e Parentheses (())
e Associative Operators

(0]

Membership (-)

e Assignment Operators
o Assignment (:=)
e Comparison Operators

o Is Null (IS NULL)
o Like (LIKE)
o Matches (MATCHES)
o Equal (=)
o Different (1= or <>)
o Lower (<)
o Lower or Equal (<=)
o Greater (>)
o Greater or Equal (>=)
e Logical Operators
o Not (NOT)
o And (AND)
o Or(OR)
e State Operators
o SQL State Code (SQLSTATE)
o SQL Error Message (SQLERRMESSAGE)

144

Language Basics

Numeric Operators

Addition (+)
Subtraction (-)
Multiplication (*)
Division (/)
Exponentiation (**)
o Modulus (MOD)
e String Operators
o ASCII Char (ASCI)
Concatenate (] |)
Append (,)
Substring ([x,y1)
Formatting (USING)
Clipped (CLIPPED)
Spaces (SPACES)
Localized String (LSTR)
o Replace (SFMT)
e Datetime Operators
o Current Datetime (CURRENT x TO y)
Datetime Extensions (EXTEND(d, x TO y))
Date Conversion (DATE)
Time Conversion (TIME)
Current Date (TODAY)
Year of Date (YEAR(d))
Month of Date (MONTH(d))
Day of Date (DAY (d))
Weekday of Date (WEEKDAY (d))
Building a Date (MDY (m,d,y))
o Interval Unit (UNITS)
e Form Field Operators
o Field Buffer (GET_FLDBUF)
o Current Field (INFIELD)
o Field Modification (FIELD_TOUCHED)

O 0O o0 oo

O O 0O OO0 OO0 O

O O 0O O0OO0OO0OO0OOo0OOo

Order of Precedence List

The following list describes the precedence order of operators. The P column defines the
precedence, from highest(14) to lowest(1). The A column defines the direction of
associativity (L=Left, R=Right, N=None). Some operators have the same precedence.

P |Operator A |Description Example
14 . (period) L Membership myrecord.memberl
14 |variable[] L | Array index or character myarray[2,x,y]

145

Genero Business Development Language

P NW| A OO0 OO OO OO N N 00 ©)|©

o

function()

UNITS

1
LIKE

MATCHES

<> or I=
IS NULL
NOT

AND

OR
ASCII()

CLIPPED

COLUMN
(reports)
(integer)
SPACES
LSTR(string)

SFMT(string
L.p[---1D

pd

J g9 - -r\frCrrCjlrCc0rr, - A rrjrr/r/r | Aa r

Py,

Py,

subscripts
Function call

Single-qualifier interval
Unary plus

Unary minus
Exponentiation
Modulus
Multiplication
Division

Addition
Subtraction
Concatenation
String comparison

String comparison

Less than

Less then or equal to
Greater than
Greater than or equal to
Equals

Not equal to

Test for NULL
Logical inverse
Logical intersection
Logical union

ASCII Character

Delete trailing blanks
Begin line mode display
Insert blank spaces
Load localized string

Parameter replacement

1 +
myfunc(10,"abc')

(integer) UNITS DAY
+ number

- number

X ** 5

X MOD 2

X *y

x /7y

X +y

X -y

“"Amount:" || amount
mystring LIKE "A%"

mystring MATCHES
e

var < 100

var <= 100

var > 100

var >= 100

var == 100

var <> 100

var 1S NULL
NOT Ca=b)
exprl AND expr2
exprl OR expr2
ASCI1(32)

DISPLAY string
CLIPPED

PRINT COLUMN 32,
TN

DISPLAY "a" (5)
SPACES

DISPLAY
LSTR("'str123™)

DISPLAY
SFMT(*"%1'",123)

146

Language Basics

1 SQLSTATE R |SQL State Code IF SQLSTATE=""1X000"
DISPLAY
1 SQLERRMESSAGE | R |SQL Error Message SOLERRMESSAGE
: TODAY USING
1 |USING R |Format character string ryy/mm/dd"
1 |:= L |Assignment var := "abc™

General Warnings

Pure SQL Operators
The following operators are related to SQL syntax and not part of the language:

e BETWEEN expr AND expr
e IN(Cexpr [, .." 1)

Report Routine Operators
The following operators are only available in the FORMAT section of report routines:

¢ PAGENO
e \WORDWRAP

See Report Definition for more details.

PARENTHESES

Purpose:

Parentheses are typically used to associate a set of values or expressions to override
the default order of precedence.

Syntax:

(expr operator expr [...])

Notes:

1. Typically used to change the precedence of operators.

147

Genero Business Development Language

Example:

01 MAIN
02 DEFINE n INTEGER

03 LETn=((3+2)*2)

04 IF n=10 AND (n<=0 OR n>=20) THEN
05 DISPLAY "OK"

06 END IF

07 END MAIN

MEMBERSHIP

Purpose:

The period membership operator specifies that its right-hand operand is a member of
the set whose name is its left-hand operand.

Syntax:
setname.element
Notes:
1. Typically used for record members.

Example:

01 MAIN

02 DEFINE rec RECORD

03 n INTEGER,

04 c CHAR(10)

05 END RECORD

06 LET rec.n = 12345

06 LET rec.c = "abcdef"
07 END MAIN

ASSIGNMENT

Purpose:

The := assignment operator sets a value to the left-hand operand, which must be a
variable.

Syntax:

variable := value

148

Language Basics

Notes:

Do not confuse with the LET instruction.

The left-hand operand must be a variable.

The assignment operator can be used in expressions.
The assignment operator has the lowest precedence.

PwbdPE

Example:

01 MAIN

02 DEFINE varl, var2 INTEGER

03 -- 1. Evaluates 2*5

04 -- 2. Sets var2 to 10

05 -- 3. Then affects varl with 10
06 LET varl = var2:=2*5

07 END MAIN

IS NULL

Purpose:
The 1S NULL operator is provided to test whether a value is NULL.

Syntax:

IS NULL
Notes:
1. Applies to most Data Types, except complex types like BYTE and TEXT.

Example:

01 MAIN

02 DEFINE n INTEGER

03 LET n = 257

04 IF n 1S NULL THEN

05 DISPLAY "Something is wrong here"
06 END IF

07 END MAIN

EQUAL
Purpose:
The == operator evaluates whether two expressions or two records are identical.

149

Genero Business Development Language

Syntax 1: Expression comparison
expr == expr
Syntax 2: Record comparison

recordl.* == record2.*
Notes:

1. Syntax 1 applies to most Data Types, except complex types like BYTE and
TEXT.

expr can be any expression supported by the language.

Syntax 2 allows you to compare all members of records having the same
structure.

4. recordl and record2 are records with the same structure.

5. A single equal sign (=) can be used as an alias for this operator.

2.
3.

Usage:

When comparing expressions using the first syntax, the result of the operator is FALSE
when one of the operands is NULL.

When comparing two records using the second syntax, the runtime system compares all
corresponding members of the records. If a pair of members are different, the result of
the operator is FALSE. When two corresponding members are NULL, they are
considered as equal.

Example:

01 MAIN

02 IF 256==257 THEN

03 DISPLAY "Something is wrong here"
04 END IF

05 END MAIN

DIFFERENT
Purpose:
The 1= operator evaluates whether two expressions or two records are different.

Syntax 1: Expression comparison

expr 1= expr

150

Language Basics

Syntax 2: Record comparison

recordl.* = record2.*
Notes:

1. Syntax 1 applies to most Data Types, except complex types like BYTE and
TEXT.

2. expr can be any expression supported by the language.

3. Syntax 2 allows you to compare all members of records having the same
structure.

4. recordl and record?2 are records with the same structure.

5. An alias exists for this operator: <>

Usage:

When comparing expressions with the first syntax, the result of the operator is FALSE
when one of the operands is NULL.

When comparing two records with the second syntax, the runtime system compares all
corresponding members of the records. If one pair of members are different, the result of
the operator is TRUE. When two corresponding members are NULL, they are
considered as equal.

Example:

01 MAIN

02 IF 256 1= 257 THEN

03 DISPLAY ""This seems to be true"
04 END IF

05 END MAIN

LOWER

Purpose:

The < operator is provided to test whether a value or expression is lower than another.
Syntax:

expr < expr

Warnings:

1. Applies to most Data Types, except complex types like BYTE and TEXT.

151

Genero Business Development Language

LOWER OR EQUAL

Purpose:

The <= operator is provided to test whether a value or expression is lower than or equal
to another.

Syntax:
expr <= expr
Warnings:

1. Applies to most Data Types, except complex types like BYTE and TEXT.

GREATER

Purpose:

The > operator is provided to test whether a value or expression is greater than another.
Syntax:

expr > expr

Warnings:

1. Applies to most Data Types, except complex types like BYTE and TEXT.

GREATER OR EQUAL

Purpose:

The >= operator is provided to test whether a value or expression is greater than or
equal to another.

Syntax:
expr >= expr
Warnings:

1. Applies to most Data Types, except complex types like BYTE and TEXT.

152

Language Basics

NOT

Purpose:

The NOT operator is a typical logical NOT used to invert a Boolean expression.

Syntax:

NOT boolexpr

Example:

01 MAIN

02 IF NOT (256 !'= 257) THEN

03 DISPLAY "Something is wrong here"
04 END IF

05 END MAIN

AND

Purpose:
The AND operator is the logical intersection operator.

Syntax:

boolexpr AND boolexpr

Example:

01 MAIN

02 IF 2561=257 AND 256=257 THEN
03 DISPLAY "Sure?"

04 END IF

05 END MAIN

OR

Purpose:

The OR operator is the logical union operator.

153

Genero Business Development Language

Syntax:
boolexpr OR boolexpr

Example:

01 MAIN

02 IF TRUE OR FALSE THEN

03 DISPLAY "Must be true!"
04 END IF

05 END MAIN

SQLSTATE

Purpose:

The SQLSTATE operator returns the ANSI/ISO SQLSTATE code when an SQL error
occurred.

Syntax:
SQLSTATE
Warnings:

1. The SQLSTATE error code is a standard ANSI specification, but not all database
engines support this feature. Check the database server documentation for more
details.

Example:

01 MAIN

02 DATABASE stores

03 WHENEVER ERROR CONTINUE
04 SELECT foo FROM bar

05 DISPLAY SQLSTATE

06 END MAIN

SQLERRMESSAGE

Purpose:

The SQLERRMESSAGE operator returns the error message if an SQL error occurred.

154

Language Basics

Syntax:
SQLERRMESSAGE

Example:

01 MAIN

02 DATABASE stores

03 WHENEVER ERROR CONTINUE
04 SELECT foo FROM bar

05 DISPLAY SQLERRMESSAGE
06 END MAIN

ASCII

Purpose:

The ASCI I operator returns the character corresponding to the ASCII code passed as a
parameter.

Syntax:
ASCII intexpr
Notes:
1. intexpris an integer expression..
2. Typically used to generate a hon-printable character such as NewLine or
Escape.
3. In adefault (U.S. English) locale, this is the logical inverse of the ORD() built-in
function.

Warnings:

1. This is not a function, but a real operator (it can, for example, be used as a
function parameter).

Tips:
1. Often used with parentheses (ASCII(n)), but these are not needed.

Example:

01 MAIN
02 DISPLAY ASCII 65, ASCII 66, ASCII 7
03 END MAIN

155

Genero Business Development Language

LIKE

Purpose:
The LIKE operator returns TRUE if a string matches a given mask.

Syntax:

expression [NOT] LIKE mask [ESCAPE '‘char']

Warnings:

1. Do not confuse with the LIKE clause of the DEFINE instruction.
2. LIKE operators used in SQL statements are evaluated by the database server.
This may have a different behavior than the LIKE operator of the language.

Notes:

1. expression is any character string expression.
2. mask is a character string expression defining the filter.
3. charis a single char specifying the escape symbol.

Usage:
The mask can be any combination of characters, including the % and _ wildcards:

¢ The % percent character matches any string of zero or more characters.
e The _ underscore character matches any single character.

The ESCAPE clause can be used to define an escape character different from the default
backslash. It must be enclosed in single or double quotes.

A backslash (or the escape character specified by the ESCAPE clause) makes the
operator treat the next character as a literal character, even if it is one of the special
symbols in the above list. This allows you to search for %, _or \ characters.

Example:

01 MAIN

02 IF "abcdef" LIKE "a%e_' THEN
03 DISPLAY "'yes™

04 END IF

05 END MAIN

156

Language Basics

MATCHES

Purpose:
The MATCHES operator returns TRUE if a string matches a given mask.

Syntax:

expression [NOT] MATCHES mask [ESCAPE "char™]

Notes:

1. expression is any character string expression.
2. mask is a character string expression defining the filter.
3. charis a single char specifying the escape symbol.

Usage:
The mask can be any combination of characters, including the *, ? and [] wildcards:

e The * star character matches any string of zero or more characters.

¢ The ? question mark matches any single character.

e The [] brackets match any enclosed character. A hyphen (-) between
characters means a range of characters. An initial caret (*) matches any
character that is not listed.

The ESCAPE clause can be used to define an escape character different from the default
backslash. It must be enclosed in single or double quotes.

A backslash (or the escape character specified by the ESCAPE clause) makes the
operator treat the next character as a literal character, even if it is one of the special
symbols in the above list. This allows you to search for *, ? or \ characters.

Example:

01 MAIN

02 IF "abcdef'" NOT MATCHES "b*[a-z]' THEN
03 DISPLAY "yes"

04 END IF

05 END MAIN

CONCATENATE

Purpose:

The | | operator is the concatenation operator that produces a string expression.

157

Genero Business Development Language

Syntax:
expr || expr
Notes:

1. expr can be a character, numeric or date time expression.

2. This operator has a high precedence; it can be used in parameters for function
calls.

3. The precedence of this operator is higher than LIKE and MATCHES, but less
than arithmetic operators. For example, a || b + cis equivalent to

(al 1 (b*c)).
Warnings:

1. If any of the members of a concatenation expression is NULL, the result string
will be NULL.

Example:

01 MAIN
02 DISPLAY "Length: ™ || length("ab™ || "cdef")
03 END MAIN

APPEND

Purpose:
The , operator appends a value to a string.
Syntax:
charexpr , expr
Notes:
1. Canonly be used in LET and DISPLAY instructions.
2. In earlier versions this was the only way to concatenate strings; use the ||

operator instead.

Example:

01 MAIN
02 DISPLAY "Today:"", TODAY, " and a number: ', 12345.67
03 END MAIN

158

Language Basics

SUBSTRING

Purpose:
The [] operator is provided to extract a sub-string from a character variable.

Syntax:

charvar [start [, end]]

Notes:

1. start defines the position of the first character of the sub-string to be extracted.
2. end defines the position of the last character of the sub-string to be extracted.
3. If end is not specified, only one character is extracted.

Warnings:

1. Sub-strings expressions in SQL statements are evaluated by the database
server. This may have a different behavior than the sub-string operator of the
language.

Example:

01 MAIN

02 DEFINE s CHAR(10)
03 LET s = "abcdef"
04 DISPLAY s[3,4]

05 END MAIN

USING

Purpose:

The USING operator converts datetime and numeric values into a string with a formatting
mask.

Syntax:

expr USING "format"
Notes:

1. format defines the formatting mask to be used; see below for more details.

159

Genero Business Development Language

Warnings:

1. The formatting characters of USING are not identical to those that you can
specify in the format strings of FORMAT and PICTURE form field attributes.

Formatting symbols for numbers:

Character Description

* Fills with asterisks any position that would otherwise be blank.
& Fills with zeros any position that would otherwise be blank.

This does not change any blank positions in the display.

< Causes left alignment.

Defines the position of the thousands separator. The
thousands separator is not displayed if there are no digits to
the left. By default, the thousands separator is a comma, but it
can be another character as defined by DBFORMAT.

Defines the position of the decimal separator. Only a single
decimal separator may be specified. By default, the decimal
separator is a period, however it can be another character as
defined by DBMONEY or DBFORMAT.

- Displays a minus sign for negative numbers.
+ Displays a plus sign for positive numbers.
This is the placeholder for the front specification of DBMONEY

, (comma)

. (period)

¥ or DBFORMAT.

(Displayed as left parentheses for negative numbers
(accounting parentheses).

) Displayed as right parentheses for negative numbers

(accounting parentheses).

Formatting symbols for dates:

Character Description
dd Day of the month as a 2-digit integer.

Three-letter English-language abbreviation of the day of the
week, for example, Mon, Tue.

mm Month as a 2-digit integer.

Three-letter English-language abbreviation of the month, for
example, Jan, Feb.

yy Year, as a 2-digits integer representing the 2 trailing digits.
yyyy Year as a 4-digit number.

dad

mmm

160

Example:

01 MAIN
02 DEFINE d DECIMAL(12,2)
03 LET d = -12345678.91

04 DISPLAY d USING "$-#i#,#it , #H#& . &&""
05 DISPLAY TODAY USING 'yyyy-mm-dd"

06 END MAIN

Language Basics

CLIPPED

Purpose:

The CLIPPED operator removes trailing blanks of a string expression.

Syntax:

charexpr CLIPPED

Example:

01 MAIN
02 DISPLAY '"'Some text " CLIPPED
03 END MAIN

SPACES

Purpose:

The SPACES operator returns a character string with blanks.

Syntax:
intexpr SPACES
Warnings:

1. intexpris an integer expression.

2. "SPACE" is an alias for this operator.

Example:

01 MAIN
02 DISPLAY 20 SPACES || "'xxx
03 END MAIN

161

Genero Business Development Language

LSTR

Purpose:

The LSTR operator returns a Localized String corresponding to the identifier passed as
parameter.

Syntax:
LSTR(strexpr)
Warnings:
1. strexpr is a string expression.

Example:

01 MAIN
02 DISPLAY LSTR (*'str'|]123) -- loads string "strl23*
03 END MAIN

SFMT

Purpose:

The SFMT operator returns a string after replacing the parameter.
Syntax:

SFMT(strexpr [, param [...] 1)

Warnings:

1. strexpr is a string expression.
2. param is any valid expression used to replace parameter place holders (%n).

Usage:
The SFMT() operator can be used with parameters that will be automatically set in the
string at the position defined by parameter place holders. The parameters used with the

SFMT () operator can be any valid expressions. Numeric and date/time expressions are
evaluated to strings according to the current format settings (DBDATE, DBMONEY).

162

Language Basics

A place holder a is special marker in the string, that is defined by the percent character
followed by the parameter number. For example, %4 represents the parameter #4. You
are allowed to use the same parameter place holder several times in the string. If you
want to use the percent sign in the string, you must escape it with %%.

Example:

01 MAIN

02 DEFINE n INTEGER

03 LET n = 234

04 DISPLAY SEMT('Order #%1 has been %2.',n,"deleted')
05 END MAIN

ADDITION

Purpose:

The + operator adds a number to another.
Syntax:

numexpr + numexpr

Example:

01 MAIN
02 DISPLAY 100 + 200
03 END MAIN

SUBTRACTION

Purpose:

The - operator subtracts a number from another.
Syntax:

numexpr - numexpr

Example:

01 MAIN
02 DISPLAY 100 - 200
03 END MAIN

163

Genero Business Development Language

MULTIPLICATION

Purpose:

The * operator multiplies a number with another.
Syntax:

numexpr * numexpr

Example:

01 MAIN
02 DISPLAY 100 * 200
03 END MAIN

DIVISION

Purpose:

The / operator divides a number by another.
Syntax:

numexpr / numexpr

Example:

01 MAIN
02 DISPLAY 100 / 200
03 END MAIN

EXPONENTIATION

Purpose:

The ** operator returns a value calculated by raising the left-hand operand to a power
corresponding to the integer part of the right-hand operand.

Syntax:

numexpr ** intexpr

164

Language Basics

Example:

01 MAIN
02 DISPLAY 2 ** 8
03 END MAIN

MODULUS

Purpose:

The MOD operator returns the remainder, as an integer, from the division of the integer
part of two numbers.

Syntax:
intexpr MOD intexpr

Example:

01 MAIN

02 DISPLAY 256 MOD 16

03 DISPLAY 26.51 MOD 2.7
04 END MAIN

CURRENT

Purpose:

The CURRENT operator returns the current date and time according to the qualifier.
Syntax:

CURRENT quall TO qual2[(scale)]

Notes:

1. quall, qual2 and scale define the date time qualifier; see the DATETIME data
type for more details.

Example:

01 MAIN

02 DISPLAY CURRENT YEAR TO FRACTION(4)
03 DISPLAY CURRENT HOUR TO SECOND

04 END MAIN

165

Genero Business Development Language

EXTEND

Purpose:
The EXTEND operator adjusts a date time value according to the qualifier.

Syntax:

EXTEND (dtexpr, quall TO qual2[(scale)])
Notes:

1. This operator is used to convert a date time expression to a DATETIME value
with a different precision.

2. dtexpr is a date or datetime expression. If it is a character string, it must consist
of valid and unambiguous time-unit values and separators, but with these
restrictions:

o It cannot be a character string in date format, such as "12/12/99".

o It cannot be an ambiguous numeric datetime value, such as "05:06" or
"05".

o It cannot be a time expression that returns an INTERVAL value.

3. quall, qual2 and scale define the date time qualifier, see the DATETIME data
type for more details.

4. The default qualifier is YEAR TO DAY.

Example:

01 MAIN
02 DISPLAY EXTEND (TODAY, YEAR TO FRACTION(4))
03 END MAIN

DATE

Purpose:

The DATE operator converts a character expression, an integer or a datetime to a date
value.

Syntax:
DATE [(dtexpr)]
Notes:
1. dtexpr is a character string, an integer or a datetime expression.

166

Language Basics

2. This operator is used to convert a character string, an integer or a date time
value to a DATE value.

3. When dtexpr is a character string expression, it must properly formatted
according to datetime format settings like DBDATE.

4. If dtexpr is an integer expression, it is used as the number of days since
December 31, 1899.

5. If you supply no operand, it returns a character representation of the current date
in the format "weekday month day year".

Example:

01 MAIN

02 DISPLAY DATE (34000)

03 DISPLAY DATE ("12/04/1978")
04 DISPLAY DATE (CURRENT)

05 END MAIN

TIME

Purpose:

The TIME operator converts the time-of-day portion of its datetime operand to a
character string.

Syntax:
TIME [(dtexpr)]
Notes:

1. dtexpr is a datetime expression.

2. This operator converts a date time expression to a character string representing
the time-of-day part of its operand.

3. The format of the returned string is always "hh:mm:ss".

4. If you supply no operand, it returns a character representation of the current time.

Example:

01 MAIN
02 DISPLAY TIME (CURRENT)
03 END MAIN

167

Genero Business Development Language

TODAY

Purpose:

The TODAY operator returns the current calendar date.
Syntax:

TODAY

Notes:

1. Reads current system clock and returns a DATE value that represents the
current calendar date.

Tips:
1. See also the CURRENT operator that returns current date and time.

Example:

01 MAIN
02 DISPLAY TODAY
03 END MAIN

YEAR

Purpose:

The YEAR operator extracts the year of a date time expression.
Syntax:

YEAR (dtexpr)

Notes:

1. dtexpr is a date or datetime expression.
2. Returns an integer corresponding to the year portion of its operand.

Example:

01 MAIN

02 DISPLAY YEAR (TODAY)
03 DISPLAY YEAR (CURRENT)
04 END MAIN

168

Language Basics

MONTH

Purpose:
The MONTH operator extracts the month of a date time expression.

Syntax:

MONTH (dtexpr)
Notes:

1. dtexpr is a date or datetime expression.
2. Returns a positive whole number between 1 and 12 corresponding to the month
of its operand.

Example:

01 MAIN

02 DISPLAY MONTH (TODAY)
03 DISPLAY MONTH (CURRENT)
04 END MAIN

DAY

Purpose:
The DAY operator extracts the day of the month of a date time expression.
Syntax:
DAY (dtexpr)
Notes:
1. dtexpr is a date or datetime expression.
2. Returns a positive whole number between 1 and 31 corresponding to the day of

the month of its operand.

Example:

01 MAIN

02 DISPLAY DAY (TODAY)
03 DISPLAY DAY (CURRENT)
04 END MAIN

169

Genero Business Development Language

WEEKDAY

Purpose:
The WEEKDAY operator extracts the day of the week of a date time expression.

Syntax:

WEEKDAY (dtexpr)
Notes:

1. dtexpr is a date or datetime expression.

2. Returns a positive whole number between 0 and 6 corresponding to the day of
the week implied by its operand.

3. The integer 0 (Zero) represents Sunday.

Example:

01 MAIN

02 DISPLAY WEEKDAY (TODAY)
03 DISPLAY WEEKDAY (CURRENT)
04 END MAIN

MDY

Purpose:

The MDY operator builds a date value with 3 integers representing the month, day and
year.

Syntax:
MDY (intexprl, intexpr2, intexpr3)
Notes:
1. intexprl is an integer representing the month (from 1 to 12).
2. intexpr2 is an integer representing the day (from 1 to 28, 29, 30 or 31 depending
on the month).

3. intexpr3 is an integer representing the year (four digits).
4. The resultis a DATE value.

170

Language Basics

Example:

01 MAIN
02 DISPLAY MDY (12, 3+2, 1998)
03 END MAIN

UNITS

Purpose:
The UNITS operator converts an integer expression to an interval value.

Syntax:

intexpr UNITS qual[(scale)]
Notes:

1. intexpr is an integer expression.
2. qual is one of the unit specifiers of a DATETIME qualifier.
3. Theresultis a INTERVAL value.

Example:

01 MAIN

02 DEFINE d DATE

03 LET d = TODAY + 200

04 DISPLAY (d - TODAY) UNITS DAY
05 END MAIN

GET_FLDBUF

Purpose:

The GET_FLDBUF operator returns as character strings the current values of the specified
fields.

Syntax:

GET_FLDBUF ([group.]field [,---1)
Notes:

1. group can be a table name, a screen record, a screen array or ‘formonly'.
2. field is the name of the screen field.

171

Genero Business Development Language

3. Typically used to get the value of a screen field before the input buffer is copied
into the associated variable.

4. If multiple fields are specified between parentheses, you must use the
RETURNING clause.

5. When used in a INPUT ARRAY instruction, the runtime system assumes that you
are referring to the current row.

Warnings:

1. The values returned by this operator are context dependent; it must be used
carefully. If possible, use the variable associated to the input field instead.

Example:

01 ...

02 LET v = GET_FLDBUF(customer.custname)

03 CALL GET_FLDBUF(customer.*) RETURNING rec_customer.*
04 ...

INFIELD

Purpose:

The INFIELD operator returns TRUE if its operand is the identifier of the current screen
field.

Syntax:

INFIELD ([group.]field)
Notes:

1. group can be a table name, a screen record, a screen array or 'FORMONLY".

2. field is the name of the field in the form.

3. Typically used to check for the current field in a CONSTRUCT, INPUT or INPUT
ARRAY instruction.

4. When used in an INPUT ARRAY instruction, the runtime system assumes that
you are referring to the current row.

Example:

01 ...

02 INPUT ...

03 IF INFIELD(customer.custname) THEN

04 MESSAGE ""The current field is customer®s name."
05 ...

172

Language Basics

FIELD_TOUCHED

Purpose:

The FIELD_TOUCHED operator returns TRUE if the value of a screen field has changed
since the beginning of the interactive instruction.

Syntax:

FIELD_TOUCHED ([group.]field [,---])
Notes:

group can be a table name, a screen record, a screen array or 'FORMONLY".
field is the name of the field in the form.

Typically used to check if the value of a field was edited..

When used in an INPUT ARRAY instruction, the runtime system assumes that
you are referring to the current row.

PwnE

Warnings:

1. After a DISPLAY instruction, the modified field is marked as 'touched'.
2. Do not confuse with FGL_BUFFERTOUCHED; in that function, the flag is reset
when entering a new field.

Usage:

For more details about the FIELD_TOUCHED operator usage and the understand the
"touched flag" concept, see the Touched Flag section of the DIALOG instruction.

Example:

01 ...

02 AFTER INPUT

03 IF FIELD_TOUCHED(customer.custname) THEN
04 MESSAGE '‘Customer name was changed."

05 ...

173

Genero Business Development Language

Expressions

Summary:

Definition

Boolean Expressions
Integer Expressions
Number Expressions
String Expressions
Date Expressions
Datetime Expressions
Interval Expressions

See also: Variables, Data Types, Literals, Constants.

Definition
What is an Expression?

An Expression is a sequence of operands, operators, and parentheses that the runtime
system can evaluate as a single value.

Expressions can include the following components:

e Operators, as described in the Operators section.
e Parentheses, to overwrite precedence of operators.
e Operands, including the following:
o Variables
o Constants
o Functions (returning a single value)
o Literal values
o Other expressions

Differences Between BDL and SQL Expressions

Expressions in SQL statements are evaluated by the database server, not by the
runtime system. The set of operators that can appear in SQL expressions resembles the
set of BDL operators, but they are not identical. A program can include SQL operators,
but these are restricted to SQL statements. Similarly, most SQL operands are not valid
in BDL expressions. The SQL identifiers of databases, tables, or columns can appear in
a LIKE clause or field name in BDL statements, provided that these SQL identifiers
comply with the naming rules of BDL. Here are some examples of SQL operands and
operators that cannot appear in other BDL expressions:

e SQL identifiers, such as column names
e The SQL keywords USER and ROWID

174

Language Basics

e Built-in or aggregate SQL functions that are not part of BDL
e The BETWEEN and IN operators
e The EXISTS, ALL, ANY, or SOME keywords of SQL expressions

Conversely, you cannot include BDL specific operators in SQL expressions, as for
example:

e Arithmetic operators for exponentiation (**) and modulus (MOD)

e String operators ASCI1, COLUMN, SPACE, SPACES, and WORDWRAP

o Field operators FIELD TOUCHED(), GET_FLDBUF(), and INFIELD()
e The report operators LINENO and PAGENO

Parentheses in BDL Expressions

You can use parentheses as you would in algebra to override the default order of
precedence of operators. In mathematics, this use of parentheses represents the
"associative" operator. It is, however, a convention in computer languages to regard this
use of parentheses as delimiters rather than as operators. (Do not confuse this use of
parentheses to specify operator precedence with the use of parentheses to enclose
arguments in function calls or to delimit other lists.)

In the following example, the variable y is assigned the value of 2:
LET y = 15 MOD 3 + 2

In the next example, however, y is assigned the value of 0 because the parentheses
change the sequence of operations:

LET y = 15 MOD (3 + 2)

Boolean Expressions

A Boolean expression is one that evaluates to an INTEGER value that can be TRUE,
FALSE and in some cases, NULL.

Notes:

1. Boolean expressions are a combination of Logical Operators and Boolean
comparisons based on Comparison Operators.

2. Boolean expressions are based on the INTEGER data type for evaluation.

3. Any integer value different from zero is defined as true, while zero is defined as
false.

4. Use an INTEGER variable to store the result of a Boolean expression.

5. If an expression that returns NULL is the operand of the 1S NULL operator, the
value of the Boolean expression is TRUE.

175

Genero Business Development Language

6. If you include a Boolean expression in a context where the runtime system
expects a number, the expression is evaluated, and is then converted to an
integer by the rules: TRUE = 1 and FALSE = O.

7. The Boolean expression evaluates to TRUE if the value is a non-zero real number
or any of the following items:

o Character string representing a non-zero number

o Non-zero INTERVAL

o Any DATE or DATETIME value

o A TRUE value returned by a Boolean function like INFIELD()
o The built-in integer constant TRUE

8. If a Boolean expression includes an operand whose value is not an integer data
type, the runtime system attempts to convert the value to an integer according to
the data conversion rules.

Example:

01 MAIN
02 DEFINE r, c INTEGER
03 LET c = 4

03 LET r TRUE!'=FALSE AND (c=2 OR c=4)

04 IF (r AND canReadFile("'config.txt'™)) THEN
05 DISPLAY "OK"

06 END IF

07 END MAIN

Warnings:

1. A Boolean expression evaluates to NULL if the value is NULL and the expression
does not appear in any of the following contexts:
o The IS [NOT] NULL test.
o Boolean Comparisons.
o Any conditional statement (IF, CASE, WHILE).
2. The syntax of Boolean expressions in BDL is not the same as Boolean conditions
in SQL statements.
3. Boolean expressions in CASE, IF, or WHILE statements return FALSE if any
element of the comparison is NULL, except for operands of the IS NULL and the
IS NOT NULL operator. See Boolean Operators for more information about
individual Boolean operators and Boolean expressions.

Integer Expressions
An Integer expression is one that evaluates to a whole number.
Notes:
1. The data type of the expression result can be SMALLINT or INTEGER.

2. The operands must be one of:
o An integer literal

176

Language Basics

o A variable or constant of type SMALLINT or INTEGER
o A function returning a single integer value
o A Boolean expression
o The result of a DATE subtraction
3. If an integer expression includes an operand whose value is not an integer data
type, the runtime system attempts to convert the value to an integer according to
the data conversion rules.

Example:

01 MAIN

02 DEFINE r, c INTEGER
03 LET ¢ = 4

04 LET r = c
05 END MAIN

* (2 + c MOD 4) / getRowCount(''customers'™)

Warnings:

1. If an element of an integer expression is NULL, the expression is evaluated to
NULL.

Number Expressions
A Number expression is one that evaluates to a number data type.
Notes:

1. The data type of the expression result can be SMALLINT, INTEGER, DECIMAL,
SMALLFLOAT or FLOAT.

2. The operands must be one of:

An integer literal

A decimal literal

A variable or constant of numeric data type

A function returning a single numeric value

A Boolean expression

o The result of a DATE subtraction

3. If a number expression includes an operand whose value is not a numeric data
type, the runtime system attempts to convert the value to a number according to
the data conversion rules.

O O 00O

Example:

01 MAIN

02 DEFINE r, ¢ DECIMAL(10,2)

03 LET ¢ = 456.22

04 LETr=c*2+ (c/ 4.55)
05 END MAIN

177

Genero Business Development Language

Warnings:

1. If an element of a number expression is NULL, the expression is evaluated to
NULL.

String Expressions

A String expression is one that includes at least one character string value and that
evaluates to the STRING data type.

Notes:

1. The data type of the expression result is STRING.
2. At least one of the operands must be one of:
o A string literal.
o A variable or constant of type CHAR, VARCHAR or STRING.
o A function returning a single character value
3. Other operands whose values are not character string data types are converted
to strings according to the data conversion rules.

Example:

01 MAIN

02 DEFINE r, ¢ VARCHAR(100)

03 LET ¢ = "abcdef"

04 LET r = c[1,3] || ": " || TODAY USING "YYYY-MM-DD** || " " ||
length(c)

05 END MAIN

Warnings:

1. If an element of an integer expression is NULL, the expression is evaluated to
NULL.
2. An empty string (

) is equivalent to NULL.

Date Expressions
A Date expression is one that evaluates to a DATE data type.
Notes:

1. The data type of the expression result is a DATE value.

2. The operands must be one of:
o A string literal that can be evaluated to a Date according to DBDATE
o A variable or constant of type DATE

178

Language Basics

o A function returning a single Date value
o A unary + or - associated to an Integer expression representing a number
of days

o The TODAY constant

o A CURRENT expression with YEAR TO DAY qualifiers

o An EXTEND expression with YEAR TO DAY qualifiers

3. If a date expression includes an operand whose value is not a date data type, the

runtime system attempts to convert the value to a date value according to the
data conversion rules.

Example:

01 MAIN
02 DEFINE r, c DATE

03 LET c = TODAY + 4
04 LETr=(Cc-2)
05 END MAIN

Warnings:

1. If an element of an integer expression is NULL, the expression is evaluated to
NULL.

Datetime Expressions
A Datetime expression is one that evaluates to a DATETIME data type.
Notes:

1. The data type of the expression result is a DATETIME value.
2. The operands must be one of:
o A datetime literal

A string literal representing a Datetime with the ISO format YYYY-MM-DD
hhzmm:ss.fffff

A variable or constant of DATETIME type

A function returning a single Datetime value

A unary + or - associated to an Interval expression

A CURRENT expression

o An EXTEND expression

3. If a datetime expression includes an operand whose value is not a datetime data
type, the runtime system attempts to convert the value to a datetime value
according to the data conversion rules.

o

O O O O

Example:

01 MAIN
02 DEFINE r, c DATETIME YEAR TO SECOND
03 LET ¢ = CURRENT YEAR TO SECOND

179

Genero Business Development Language

04 LET r = ¢ + INTERVAL(234-02) YEAR TO MONTH
05 END MAIN

Warnings:

1. If an element of an integer expression is NULL, the expression is evaluated to
NULL.

Interval Expressions
An Interval expression is one that evaluates to a INTERVAL data type.
Notes:

1. The data type of the expression result is a INTERVAL value.
2. The operands must be one of:
o Aninterval literal
A string literal representing an Interval with the ISO format YYYY-MM-DD
hh:zmm:ss. fffff
o An integer expression using the UNITS operator
o A variable or constant of INTERVAL type
o A function returning a single Interval value
o The result of a DATETIME subtraction
3. If an interval expression includes an operand whose value is not an interval data
type, the runtime system attempts to convert the value to an interval value
according to the data conversion rules.

o

Example:

01 MAIN

02 DEFINE r, c INTERVAL HOUR TO MINUTE

03 LET c = "12:45"

04 LET r = ¢ + (DATETIME(14-02) HOUR TO MINUTE - DATETIME(10-43)
HOUR TO MINUTE)

05 END MAIN

Warnings:

1. If an element of an integer expression is NULL, the expression is evaluated to
NULL.

180

Language Basics

Exceptions

Summary:

Exceptions handling
Exception Actions
Exception Types
Exception Classes
Exceptions handler (WHENEVER)
Exception blocks (TRY/CATCH)
Handling SQL Errors
Tracing exceptions
Examples
o Example 1 - WHENEVER ERROR CALL
Example 2 - WHENEVER ERROR CONTINUE / STOP
Example 3 - TRY / CATCH
Example 4 - WHENEVER + TRY CATCH
Example 5 - WHENEVER ERROR RAISE

(o}
o
(o}
o

See also: Flow Control, Fgl Errors.

Exception handling

If an instructions executes abnormally, the runtime system throws exceptions that can be
handled by the program. Actions can be taken based on the class of the exception.
There is no way to raise exceptions explicitly; only the runtime system can throw
exceptions. Runtime errors (i.e. exceptions) can be trapped by a WHENEVER exception
handler or by a TRY / CATCH block.

Exception Actions

There are five actions that can be executed if an exception is raised:

STOP
The program is immediately terminated. A message is displayed to the standard
error with the location of the related statement, the error number, and the details
of the exception.

CONTINUE

The program continues normally (the exception is ignored).

181

Genero Business Development Language

CALL name
The function name is called by the runtime system. The function can be defined
in any module, and must have zero parameters and zero return values. The
STATUS variable will be set to the corresponding error number.

GOTO name
The program execution continues at the label identified by name.

RAISE
This statement instructs the DVM that an exception raised will not be handled by

the local function, but by the calling function. If an exception is raised, the current
function will return and the exception handling is left to the caller function.

Exception Types

There are four types of exceptions, defining the kind of errors that can occur:

Type Reason Examples

DISPLAY AT invalid

ET_STATEMENT Error occurred in a statement. .
coordinates.

ET_EXPRESSION Expression evaluation error. Division by zero.
An SQL statement returns FETCH when cursor is on last
ET_NOTFOUND
- status NOTFOUND. row.
ET WARNING An SQL statement sets Fetched CHAR value has been
- sqlca.sqglawarn flag. truncated.

Exception Classes

The exception classes indirectly define the exception type:

Related Exception Type (defines the

Class Default Action
error reason)

ERROR ET_STATEMENT STOP

ANY ERROR ET_STATEMENT and ET_EXPRESSION CONTINUE

NOT FOUND ET_NOTFOUND CONTINUE

WARNING ET_WARNING CONTINUE

182

Language Basics

WHENEVER

The WHENEVER instruction defines exception handling in a program module, by
associating an exception class with an exception action.

Syntax:

WHENEVER [ANY] ERROR { CONTINUE | STOP | CALL function | RAISE | GOTO
label }

Notes:

function can be any function name defined in the program.

label can be any label defined in the current module.

Exception classes ERROR and SQLERROR are synonyms (compatibility issue).
Actions for classes ERROR, WARNING and NOT FOUND can be set independently.

rownE

Tips:

1. For SQL instructions that can potentially generate errors, it is recommended that
you define an exception handler locally; errors in the rest of the program can be
handled by the default exception handler. See example 2 for more details.

Warning: The scope of a WHENEVER instruction is similar to a C pre-processor
macro. It is local to the module and valid until the end of the module, unless a new
WHENEVER instruction is encountered by the compiler.

TRY - CATCH pseudo statement

Any FGL statement in the TRY block will be executed until an exception is thrown. After
an exception the program execution continues in the CATCH block. If no CATCH block is
provided, the execution continues after END TRY.

Without an exception the program continues after END TRY.

TRY can be compared with WHENEVER ERROR GOTO label.

The next two code fragments have similar behavior:

01 -- Exception handling using TRY CATCH

02 TRY

03 -- fgl-statements

04 CATCH

05 -- fgl-statements catching the error
06 END TRY

183

Genero Business Development Language

01 -- traditional fgl using WHENEVER ERROR GOTO
02 WHENEVER ERROR GOTO catch_error

03 -- fgl-statements

04 GOTO no_error

05 LABEL catch_error:

06 WHENEVER ERROR STOP

07 -- fgl-statements catching the error

08 LABEL no_error

The TRY statement can be nested in other TRY statements.

The TRY statement is a pseudo statement, because it does not instruct the compiler to
generate code. It is not possible to set a debugger break point at TRY, CATCH or END TRY.

Handing SQL Errors

After executing an SQL statement, you can query STATUS, SQLSTATE,
SQLERRMESSAGE and the SQLCA record to get the description of the error. When the
statement has been executed with errors, STATUS and SQLCA.SQLCODE contain the
SQL Error Code. If no error occurs, STATUS and SQLCA.SQLCODE are set to zero.

You control the result of an SQL statement execution by using the WHENEVER ERROR
exception handler:

01 MAIN

02

03 DATABASE stores
04

05 WHENEVER ERROR CONTINUE
06 SELECT COUNT(*) FROM customer
07 IF sglca.sqlcode THEN

08 ERROR *""SQL Error occurred:", sqlca.sqglcode
09 END IF

10 WHENEVER ERROR STOP

11

12 END MAIN

The SQL Error Codes are not standard. For example, ORACLE returns 903 when a
table name does not exist.

By convention, the STATUS and SQLCA.SQLCODE variables always use IBM Informix
SQL Error Codes. When using IBM Informix, both STATUS and SQLCA.SQLCODE
variables contain the native Informix error code. When using other database servers, the
database interface automatically converts native SQL Error Codes to IBM Informix Error
Codes. If no equivalent Informix Error Code can be found, the interface returns -6372 in
SQLCA.SQLCODE.

If an SQL error occurs when using IBM Informix, the SQLCA variable is filled with
standard information as described in the Informix documentation. When using other

184

Language Basics

database servers, the native SQL Error Code is available in the SQLCA.SQLERRDI[2]
register. SQL Error Codes in SQLCA.SQLERRD]I2] are always negative, even if the
database server defines positives SQL Error Codes. Additionally, if the target database
API supports ANSI SQL states, the SQLSTATE code is returned in SQLCA.SQLERRM.

The NOTFOUND (100) execution status is returned after a FETCH, when no rows are
found.

See also: Connections.

Tracing exceptions

Exceptions will be automatically logged in a file by the runtime system if all the following
conditions are true:

e The STARTLOG function has been previously called to specify the name of the
exception logging file.

e The exception action is set to CALL, GOTO or STOP. Exceptions are not logged
when the action is CONTINUE.

e The exception class is an ERROR, ANY ERROR or WARNING. NOT FOUND
exceptions cannot be logged.

Each log entry contains:

e The system-time

e The location of the related FGL statement (source-file, line)

e The error-number

e The text of the error message, giving human-readable details for the exception
Examples
Example 1:
01 MAIN

02 WHENEVER ERROR CALL error_handler

03 DATABASE stores

04 SELECT dummy FROM systables WHERE tabid=1
05 END MAIN

06

07 FUNCTION error_handler()

08 DISPLAY "Error:', STATUS

09 EXIT PROGRAM 1

10 END FUNCTION

185

Genero Business Development Language

Example 2:

01 MAIN

02 DEFINE tabname VARCHAR(50)

03 DEFINE rowcount INTEGER

04

05 # In the DATABASE statement, no error should occur.
06 DATABASE stores

07

08 # But in the next procedure, user may enter a wrong table.
09 WHENEVER ERROR CONTINUE

10 PROMPT "Enter a table name:" FOR tabname

11 LET sglstmt = "SELECT COUNT(*) FROM "™ || tabname
12 PREPARE s FROM sqglstmt

13 IF sqlca.sqlcode THEN

14 ERROR ""SQL Error occurred:", sqlca.sglcode

15 END IF

16 EXECUTE s INTO rowcount

17 IF sqlca.sqlcode THEN

18 ERROR ""SQL Error occurred:", sqlca.sqglcode

19 END IF

20 WHENEVER ERROR STOP

21

22 END MAIN

Example 3:

01 MAIN

02 TRY

03 DATABASE invalid_database name

04 DISPLAY "Will not be displayed"

05 CATCH

06 DISPLAY "Exception caught, status = ', status USING ""----&"
07 END TRY

08 END MAIN

Example 4:

01 MAIN

02 DEFINE 1 INTEGER

03 WHENEVER ANY ERROR CALL foo

04 TRY

05 DISPLAY "Next exception should be handled by the CATCH
statement™

06 LET i =170

07 CATCH

08 DISPLAY "Exception caught, status = ', status USING ""----&"
09 END TRY

10 -— The previous error handler is restored after the TRY - CATCH
block

11 LET status = O

12 DISPLAY "Next exception should be handled by the foo function™
13 LET i =1 /0

14 END MAIN

186

Language Basics

15
16 FUNCTION foo()
17 DISPLAY "foo called, status = ', status USING ""----&"

18 END FUNCTION

Example 5:

01 MAIN

02 DEFINE 1 INTEGER

03 WHENEVER ANY ERROR CALL exception_handler

04 DISPLAY "Next function call will generate an exception"
05 DISPLAY "This exception should be handled by the function
exception_handler”

06 DISPLAY do_exception(100, 0)

07 WHENEVER ANY ERROR STOP

08 END MAIN

09

10 FUNCTION do_exception(a, b)

11 DEFINE a, b INTEGER

12 WHENEVER ANY ERROR RAISE

13 RETURN a / b

14 END FUNCTION

15

16 FUNCTION exception_handler()

17 DISPLAY "Exception caught, status = ", status USING "----&"

18 END FUNCTION

187

Genero Business Development Language

Variables

Summary:

Definition

Defining Variables (DEFINE)
Declaration Context

Structured Types

Database Types

User Types

Default Values

Variable Initialization (INITIALIZE)
LOB Data Localization (LOCATE)
LOB Data Release (FREE)
Assigning Values (LET)

Data Validation (VALIDATE)
Examples

See also: Records, Arrays, Data Types, Constants, User Types.

Definition

A variable is a program element that can hold volatile data. The following list
summarizes variables usage:

You must DEFINE variables before use.

After definition, variables have default values according to the data type.

The scope of a variable can be global, local to a module, or local to a function.
You can define structured variables with records and arrays.

Variables can be initialized with the INITIALIZE instruction.

Variables can be assigned with the LET instruction.

Variables can be validated with the VALIDATE instruction.

Variables can be used as parameters or fetch buffers in Static or Dynamic SQL
statements.

Variables can be used as input or display buffers in interactive instructions such
as INPUT, INPUT ARRAY, DISPLAY ARRAY, CONSTRUCT.

DEFINE

Purpose:

A variable contains volatile information of a specific data type.

188

Language Basics

Syntax:

DEFINE identifier [,...] { type | LIKE [dbname:]tabname.colname }

Notes:

1. identifier is the name of the variable to be defined. See Identifiers for naming
rules.

2. type can be any data type supported by the language, a record definition, an
array definition, a user type, or a built-in class.

3. When using the LIKE clause, the data type is taken from the schema file.
Columns defined as SERIAL are converted to INTEGER.

4. dbname identifies a specific database schema file.

5. tabname.colname can be any column reference defined in the database schema
file.

Usage:

A variable is a named location in memory that can store a single value, or an ordered set
of values. Variables can be global to the program, local to a module, or local to a
function.

You cannot reference any program variable before it has been declared by the DEFINE
statement.

Tips:

1. To write well-structured programs, it is recommended that you not use global
variables. If you need persistent data storage during a program's execution, use
variables local to the module and give access to them with functions.

Warnings:

1. When defining variables with the LIKE clause, the data types are taken from the
schema file during compilation. Make sure that the schema file of the
development database corresponds to the production database; otherwise the
variables defined in the compiled version of your modules will not match the table
structures of the production database.

Declaration Context

The DEFINE statement declares the identifier of one or more variables. There are two
important things to know about these identifiers:

e Where in the program can they be used? The answer defines the scope of
reference of the variable. A point in the program where an identifier can be used

189

Genero Business Development Language

is said to be in the scope of the identifier. A point where the identifier is not
known is outside the scope of the identifier.

e« When is storage for the variable allocated? Storage can be allocated either
statically, when the program is loaded to run (at load time), or dynamically, while
the program is executing (at runtime).

The context of its declaration in the source module determines where a variable can be
referenced by other language statements, and when storage is allocated for the variable
in memory. The DEFINE statement can appear in three contexts:

1. Within a FUNCTION, MAIN, or REPORT program block, DEFINE declares local
variables, and causes memory to be allocated for them. These DEFINE
declarations of local variables must precede any executable statements within
the same program block.

o The scope of reference of a local variable is restricted to the same
program block. The variable is not visible elsewhere.

o Storage for local variables is allocated when its FUNCTION, REPORT, or
MAIN block is entered during execution. Functions can be called
recursively, and each recursive entry creates its own set of local
variables. The variable is unigue to that invocation of its program block.
Each time the block is entered, a new copy of the variable is created.

2. Outside any FUNCTION, REPORT, or MAIN program block, the DEFINE statement
declares names and data types of module variables, and causes storage to be
allocated for them. These declarations must appear before any program blocks.

o Scope of reference is from the DEFINE statement to the end of the same
module. The variable, however, is not visible within this scope in program
blocks where a local variable has the same identifier.

o Memory for variables of modules is allocated statically, when the program
starts.

3. Inside a GLOBALS block, the DEFINE statement declares global variables.

o Scope of reference is global to the whole program.

o The memory for global variables is allocated statically, when the program
starts.

o Multiple GLOBALS blocks can be defined for a given module. Use one
module to declare all global variables and reference that module within
other modules by using the GLOBALS 'filename.4gl" statement as the
first statement in the module, outside any program block.

A compile-time error occurs if you declare the same name for two variables that have the
same scope. You can, however, declare the same name for variables that differ in their
scope. For example, you can use the same identifier to reference different local
variables in different program blocks.

You can also declare the same name for two or more variables whose scopes of
reference are different but overlapping. Within their intersection, the compiler interprets
the identifier as referencing the variable whose scope is smaller, and therefore the
variable whose scope is a superset of the other is not visible.

190

Language Basics

If a local variable has the same identifier as a global variable, then the local variable
takes precedence inside the program block in which it is declared. Elsewhere in the
program, the identifier references the global variable.

A module variable can have the same name as a global variable that is declared in a
different module. Within the module where the module variable is declared, the module
variable takes precedence over the global variable. Statements in that module cannot
reference the global variable.

A module variable cannot have the same name as a global variable that is declared in
the same module.

If a local variable has the same identifier as a module variable, then the local identifier
takes precedence inside the program block in which it is declared. Elsewhere in the
same source-code module, the name references the module variable.

Structured Types
You can use the RECORD or ARRAY keywords to declare a structured variable.

For example:

01 MAIN

02 DEFINE myarr ARRAY[100] OF RECORD
03 id INTEGER,

04 name VARCHAR(100)

05 END RECORD

06 LET myarr[2]-id = 52

07 END MAIN

For more detail, refer to Arrays and Records.

Database Types

You can use the LIKE keyword to declare a variable that has the same data type as a
specified column in a database schema.

For example:

01 SCHEMA stores
02 DEFINE cname LIKE customer.cust_name

03 MAIN
05 DEFINE cr RECORD LIKE customer.*
06 END MAIN

The following rules apply when using the LIKE keyword:

191

Genero Business Development Language

e A SCHEMA statement must define the database name identifying the database
schema files to be used.

¢ The column data types are read from the schema file during compilation, not at
runtime. Make sure that your schema files correspond exactly to the production
database.

¢ The database schema files must exist and must be available as specified in the
FGLDBPATH variable.

e The column data type defined by the database schema must be supported by the
language. For more detail about supported types, refer to Data Types.

¢ When using database views, the column cannot be based on an aggregate
function like SUMQ).

e If LIKE references a SERIAL column, the new variable is of the INTEGER data
type.

e The table qualifier must specify owner if table.column is not a unique column
identifier within its database, or if the database is ANSI-compliant and any user of
your application is not the owner of table.

To understand how to generate database schema files with the schema extractor tool,
refer to Database Schema Files

User Types

Variables can be defined with a user type:

01 TYPE custlist DYNAMIC ARRAY OF RECORD LIKE customer.*
02 MAIN

03 DEFINE cl custlist

04 END MAIN

The scope of a user type can be global, local to a module or local to a function.
Variables can be defined with a user type defined in the same scope, or in a higher level
of scope.

Default Values

After a variable is defined, it is automatically initialized by the runtime system to a default
value based on the data type. The following table shows all possible default values that
variables can take:

Data Type Default Value
CHAR NULL
VARCHAR NULL

STRING NULL
INTEGER Zero

192

Language Basics

SMALLINT Zero

FLOAT Zero

SMALLFLOAT Zero

DECIMAL NULL

MONEY NULL

DATE 1899-12-31 (= Zero in number of days)
DATETIME NULL

INTERVAL NULL

TEXT NULL, See LOCATE
BYTE NULL, See LOCATE
INITIALIZE

Purpose:

The INITIALIZE instruction assigns NULL or default values to variables.
Syntax:
INITIALIZE target [,...] { TO NULL | LIKE {table.*]|table.column} }
Notes:
1. target is the name of the variable to be initialized.
2. target can be a simple variable, a record, a record member, an array or an array
element.
3. Iftargetis a record, you must use the star notation to reference all record
members in the initialization.
4. table.column can be any column reference defined in the database schema files.
Usage:

The TO NULL clause initializes the variable to NULL.

When initializing a static or dynamic array TO NULL, all elements will be initialized to
NULL. Note that dynamic arrays will keep the same number of elements (i.e. they are
not cleared).

The LIKE clause initializes the variable to the default value defined in the database
schema validation file. This clause works only by specifying the table.column schema
entry corresponding to the variable.

To initialize a complete record, you can use the star to reference all members:

193

Genero Business Development Language

01

INITIALIZE record.* LIKE table.*

Warnings:

1. You cannot initialize variables defined with a complex data type (like TEXT or
BYTE) to a non-NULL value.

Example:

01 DATABASE stores

02 MAIN

03 DEFINE cr RECORD LIKE customer.*
04 DEFINE al ARRAY[100] OF INTEGER
05 INITIALIZE cr.cust_name TO NULL
06 INITIALIZE cr.* LIKE customer.*
o7 INITIALIZE al TO NULL

08 INITIALIZE al1[10] TO NULL

09 END MAIN

VALIDATE

Purpose:

The VALIDATE statement tests whether the value of a variable is within the range of
values for a corresponding column in database schema files.

Syntax:

VALIDATE target [,...] LIKE {table.*]table.column}

Notes:

target is the name of the variable to be validated.

target can be a simple variable, a record, or an array element.

If target is a record, you can use the star to reference all record members in the
validation.

Values are compared to the value defined in the database schema validation file.
table.column can be any column reference defined in the database schema file.

wn e

ok

Errors:

194

1. If the value does not match any value defined in the INCLUDE attribute of the
corresponding column, the runtime system raises an exception with error code -
1321.

Language Basics

Warnings:

1. The LIKE clause requires the IBM Informix upscol utility to populate the
syscolval table. See the database schema files for more details. Informix only!

2. You cannot initialize variables defined with a complex data type (like TEXT or
BYTE) to a non-NULL value.

Example:

01 DATABASE stores

02 MAIN

03 DEFINE cname LIKE customer.cust _name
04 LET cname = "aaa"

05 VALIDATE cname LIKE customer.cust_name
06 END MAIN

LET

Purpose:
The LET statement assigns a value to a variable, or a set of values to a record.

Syntax:

LET target = expression
Notes:

target is the name of the variable to be assigned.

target can be a simple variable, a record, or an array element.

expression is any valid expression supported by the language

The runtime system applies data type conversion rules if the data type of
expression does not correspond to the data type of target.

If target is a record, you can use the star to reference all record members in the
validation, and expressions can also use this notation (record.*).

PwnE

o

Warnings:

1. Variables defined with a complex data type (like TEXT or BYTE) can only be
assigned to NULL.
2. For more detail, refer to the assignment operator.

Example:

01 DATABASE stores

02 MAIN

03 DEFINE cl1, c2 RECORD LIKE customer.*
04 LET cl1l.* = c2.*

195

Genero Business Development Language

05 END MAIN

LOCATE

Purpose:

The LOCATE statement specifies where to store data of TEXT and BYTE variables.

Syntax:

LOCATE target [,...] IN { MEMORY | FILE filename }

Notes:

agrwnNE

Defining the location of large object data is mandatory before usage.

target is the name of a TEXT or BYTE variable to be located.

target can be a simple variable, a record member, or an array element.
filename is a string expression defining the name of a file.

The IN MEMORY clause specifies that the large object data must be located in
memory.

6. The IN FILE clause specifies that the large object data must be located in a file.
7. After defining the data storage, the variable can be used as a parameter or as a
fetch buffer in SQL statements.
8. You can free the resources allocated to the large object variable with the FREE
instruction.
Warnings:
1. You cannot use a large object variable if the data storage location is not defined.
Example:
01 MAIN
02 DEFINE ctextl, ctext2 TEXT
03 DATABASE stock
04 LOCATE ctextl IN MEMORY
05 LOCATE ctext2 IN FILE "/tmp/datal.txt"
06 CREATE TABLE lobtab (key INTEGER, coll TEXT, col2 TEXT)
06 INSERT INTO lobtab VALUES (123, ctextl, ctext2)
07 END MAIN

196

Language Basics

FREE

Purpose:

The FREE statement releases resources allocated to store the data of TEXT and BYTE
variables.

Syntax:
FREE target
Notes:

target is the name of a TEXT or BYTE variable to be freed.

target can be a simple variable, a record member, or an array element.

If the variable was located in memory, the runtime system releases the memory.
If the variable was located in a file, the runtime system deletes the named file.
For variables declared in a local scope of reference, the resources are
automatically freed by the runtime system when returning from the function or
MAIN block.

arwnNpE

Warnings:
1. After freeing a large object, you must LOCATE the variable again before usage.

Example:

01 MAIN

02 DEFINE ctext TEXT

03 DATABASE stock

03 LOCATE ctext IN FILE "/tmp/datal.txt"

04 SELECT coll INTO ctext FROM lobtab WHERE key=123
05 FREE ctext

06 END MAIN

Examples

Example 1: Function variables

01 FUNCTION myfunc()
02 DEFINE i INTEGER
03 FOR i=1 TO 10

04 DISPLAY i

05 END FOR

06 END FUNCTION

197

Genero Business Development Language

Example 2: Module variables

01 DEFINE s VARCHAR(100)

02

03 FUNCTION myfunc()

04 DEFINE i INTEGER

05 FOR i=1 TO 10

06 LET s = "item #" || i
07 END FOR

08 END FUNCTION

Example 3: Global variables
File "myglobs.4gl":

01 GLOBALS

02 DEFINE userid CHAR(20)

03 DEFINE extime DATETIME YEAR TO SECOND
04 END GLOBALS

File "mylib.4gl":

01 GLOBALS "myglobs.4gl™
02

03 DEFINE s VARCHAR(100)
04

05 FUNCTION myfunc()

06 DEFINE i INTEGER

07 DISPLAY "User Id = " || userid
08 FOR 1=1 TO10

09 LET s = "item #" |] 1

10 END FOR

11 END FUNCTION
File "mymain.4gl":

01 GLOBALS "myglobs.4gl™

02

03 MAIN

04 LET userid = fgl_getenv("'LOGNAME™)
05 LET extime = CURRENT YEAR TO SECOND
06 CALL myfunc(Q

07 END MAIN

198

Language Basics

Constants

Summary:

e Definition
e Examples

See also: Variables, Records, Data Types, User Types.

Definition
Purpose:
A constant defines a read-only value identified by a name.

Syntax:

CONSTANT identifier [datatype] = value [,...]

Notes:

1. identifier is the name of the constant to be defined.

2. datatype can be any data type except complex types like TEXT or BYTE.

3. value can be an integer literal, a decimal literal, or a string literal. value cannot be
NULL.

Usage:

You can declare a constant to define a static value that can be used in other instructions.
Constants can be global, local to a module, or local to a function.

When declaring a constant, the data type specification can be omitted. The literal value
automatically defines the data type:

"Drink' -- Declares a STRING constant
4711 -- Declares an INTEGER constant

01 CONSTANT c1
02 CONSTANT c2

However, in some cases, you may need to specify the data type:
01 CONSTANT c1 SMALLINT = 12000 -- Would be an INTEGER by default
Constants can be used in variable, records, and array definitions:

01 CONSTANT n = 10
02 DEFINE a ARRAY[n] OF INTEGER

199

Genero Business Development Language

Constants can be used at any place in the language where you normally use literals:

01 CONSTANT n = 10
02 FOR i=1 TO n

Constants can be passed as function parameters, and returned from functions.

Warnings:

1.

Tips:

A constant cannot be used in the ORDER BY clause of a static SELECT statement,
because the compiler considers identifiers after ORDER BY as part of the SQL
statement (i.e. column names), not as constants.
CONSTANT position = 3
SELECT * FROM table ORDER BY position
Automatic date type conversion can take place in some cases:
CONSTANT cl1 CHAR(10) = '123"
CONSTANT c2 CHAR(10) = 'abc"
DEFINE i INTEGER
FOR 1=1 TO cl1 # Constant 123" is be converted to 123
FOR 1=1 TO c2 # Constant "abc' is converted to zero!
Character constants defined with a string literal that is longer than the length of
the datatype are truncated:
CONSTANT s CHAR(3) = "abcdef*
DISPLAY s # Displays "abc™
The compiler throws an error when the symbol used as a constant is not defined:
DEFINE s CHAR(c) # Error, c is not defined!
The compiler throws an error when the symbol used as a constant is a variable:
DEFINE c INTEGER
DEFINE s CHAR(c) # Error, c is a variable!
The compiler throws an error when you try to assign a value to a constant:
CONSTANT c INTEGER = 123
LET ¢ = 345 # Error, c is a constant!
The compiler throws an error when the symbol used is not defined as an integer
constant:
CONSTANT c¢ CHAR(10) = "'123"
DEFINE s CHAR(c) # Error, c is not an integer!

Define common special characters with constants:
CONSTANT C_ESC = *"\x1b-*

CONSTANT C_TAB = "\t~
CONSTANT C_CR = "\r-
CONSTANT C_LF = "\n*
CONSTANT C_CRLF = "\r\n-"

200

Language Basics

Examples

Example 1:

01 CONSTANT cl1 ="Drink", # Declares a STRING constant

02 c2 4711, # Declares an INTEGER constant
03 n = 10, # Declares an INTEGER constant
04 X SMALLINT = 1 # Declares a SMALLINT constant
05 DEFINE a ARRAY[n] OF INTEGER

06 MAIN

07 CONSTANT c1 = "Hello"

08 DEFINE 1 INTEGER

09 FOR i=1 TO n

10 -

11 END FOR

12 DISPLAY c1 || c2 # Displays "Hello4711"

13 END MAIN

201

Genero Business Development Language

Records

Summary:

e Definition
e Examples

See also: Variables, Arrays, Data Types, Database Schema File.

Definition
Purpose:
A record defines a structured variable.

Syntax 1:

RECORD
member { type | LIKE [dbname:]tabname.colname }

[,---1
END RECORD

Syntax 2:

RECORD LIKE [dbname:]tabname.*
Notes:

member is an identifier for a record member variable.

type can be any data type, a record definition, or an array definition.
dbname identifies a specific database schema file.

tabname identifies a database table defined in the database schema file.
colname identifies a database column defined in the database schema file.

arwnPE

Usage:

A record is an ordered set of variables (called members), where each member can be of
any data type, a record, or an array. Records whose members correspond in number,
order, and data type compatibility to a database table can be useful for transferring data
from the database to the screen, to reports, or to functions. In the first form (Syntax 1),
record members are defined explicitly. In the second form (Syntax 2), record members
are created implicitly from the table definition in the database schema file. The columns
defined as SERIAL are converted to INTEGER.

Warning: When using the LIKE clause, the data types are taken from the database
schema file during compilation. Make sure that the database schema file of the
development database corresponds to the production database, otherwise the

202

Language Basics

records defined in the compiled version of your programs will not match the table
structures of the production database. Statements like SELECT * INTO record.*
FROM table would fail.

In the rest of the program, record members are accessed by a dot notation
(record.member). The notation record.member refers to an individual member of a

record. The notation record.* refers to the entire list of record members. The notation
record.first THRU record. last refers to a consecutive set of members. (THROUGH is
a synonym for THRU).

Records can be used as function parameters, and can be returned from functions.

It is possible to compare records having the same structure with the equal operator:

recordl.* = record2.*

Examples

Example 1:

01 MAIN

02 DEFINE rec RECORD

03 id INTEGER,

04 name VARCHAR(100),
05 birth DATE

06 END RECORD

07 LET rec.id = 50

08 LET rec.name = "Scott”

09 LET rec.birth = TODAY

10 DISPLAY rec.*

11 END MAIN

Example 2:

01 SCHEMA stores

02 DEFINE cust RECORD LIKE customer.*
03 MAIN

04 SELECT * INTO cust.* FROM customer WHERE customer_num=2
05 DISPLAY cust.*

06 END MAIN

203

Genero Business Development Language

Arrays

Summary:
e Syntax
e Usage
e Examples

See also: Variables, Records, Data Types.

Syntax

Purpose:

Arrays can store a one-, two- or three-dimensional array of elements.

Syntax 1: Static array definition

ARRAY [size [,size [,size]]] OF datatype

Syntax 2: Dynamic array definition

DYNAMIC ARRAY [WITH DIMENSION rank] OF datatype

Notes:
1. size can be an integer literal or an integer constant. The upper limit is 65535.
2. rank can be an integer literal of 1, 2, or 3. Default is 1.

3. datatype can be any data type or a record definition.

Methods:

Object Methods

Name Description
Adds a new element at the end of a
appendElement() dynamic array. This method has no

effect on a static array.

Removes all elements in a dynamic
clear() array. Sets all elements to NULL in a

static array.

Removes an element at the given

position. In a static or dynamic array,
deleteElement(INTEGER) the elements after the given position

are moved up. In a dynamic array,

the number of elements is

204

Language Basics

decremented by 1.

getLength() Returns the length of a one-

RETURNING INTEGER dimensional array.
Inserts a new element at the given
position. In a static or dynamic array,
the elements after the given position
are moved down. In a dynamic array,
the number of elements is
incremented by 1.

insertElement(INTEGER)

Usage

Arrays can store a one-, two- or three-dimensional array of variables, all of the same
type. These can be any of the supported data types or a record definition, but it cannot
be another array (ARRAY .. OF ARRAY).

The first syntax (ARRAY[i [, [.k]]11) defines traditional static arrays, which are defined
with an explicit size for all dimensions. Static arrays have a size limit. The biggest static
arrays size you can define is 65535.

Warning: Because of backward compatibility with Informix 4gl, all elements of
static arrays are initialized, even if the array is not used. Therefore, it is not
recommended that you define huge static arrays, as they can use a lot of memory.

The second syntax (DYNAMIC ARRAY) defines arrays with a variable size. Dynamic arrays
have no theoretical size limit. The elements of dynamic arrays are allocated
automatically by the runtime system, according to the indexes used.

01 MAIN

02 DEFINE al ARRAY[100] OF INTEGER -- This is a static array

03 DEFINE a2 DYNAMIC ARRAY OF INTEGER -- This is a dynamic array
04 LET al[50] = 12456

05 LET a2[5000] 12456 -- Automatic allocation for element 5000
06 LET al[5000] 12456 -- Runtime error!

07 END MAIN

Warning: A dynamic array element is allocated before it is used. For example,
when you assign array element with the LET instruction, if the element does not
exist, it is created automatically. This is also true when using a dynamic array in a
FOREACH loop.

The elements of an array variable can be of any data type except an array definition, but
an element can be a record that contains an array member.

01 MAIN
02 DEFINE arr ARRAY[50] OF RECORD
03 key INTEGER,

205

Genero Business Development Language

04 name CHAR(10),

05 address VARCHAR(200),

06 contacts ARRAY[50] OF VARCHAR(20)
07 END RECORD

08 LET arr[1]-key = 12456

09 LET arr[1].name = "Scott"”
10 LET arr[1].contacts[1]
11 LET arr[1]-contacts[2]
12 END MAIN

"Bryan COX"
""Courtney FLOW"

A single array element can be referenced by specifying its coordinates in each
dimension of the array.

Warning: For Informix 4gl compatibility, the compiler allows the .* notation to
assigh a dynamic array with a record structure to another dynamic array with the
same structure, but the behavior is not clearly specified. Unlike simple records,
the array is actually copied by reference. We strongly discourage to use the .*
notation with dynamic arrays.

You cannot specify a static array as an argument or as a returned value of a function.
However, dynamic arrays can be used as function parameter and will be passed by
reference (i.e. the dynamic array can be modified inside the called function, and the
caller will see the modifications).

In the DEFINE section of a REPORT statement, formal arguments cannot be declared as
arrays, nor as record variables that contain array members.

If you reference an array element in an r-value, with an index outside the allocated
dimensions, you get a -1326 runtime error:

01 MAIN

02 DEFINE a DYNAMIC ARRAY OF INTEGER
03 LET a[50] = 12456

04 DISPLAY a[100] -- Runtime error
05 END MAIN

Arrays can be queried with the getLength() method, to get the number of allocated
elements:

01 MAIN

02 DEFINE a DYNAMIC ARRAY OF INTEGER
03 LET a[5000] = 12456

04 DISPLAY a.getlLength()

05 END MAIN

You can insert a new element at a given position with the insertElement() method.
The new element will be initialized to NULL. All subsequent elements are moved down
by an offset of +1. Dynamic arrays will grow by 1, while static arrays will lose the last
element:

01 MAIN
02 DEFINE a DYNAMIC ARRAY OF INTEGER

206

Language Basics

03 LET a[10] = 11

04 CALL a.insertElement(10)

05 LET a[10] = 10

06 DISPLAY a.getlLength() -- shows 11

07 DISPLAY a[10] -- shows 10
08 DISPLAY a[11] -- shows 11
09 END MAIN

You can append a new element at the end of a dynamic array with the
appendElement() method. The new element will be initialized to NULL. Dynamic arrays
will grow by 1, while static arrays will not be affected by this method:

01 MAIN

02 DEFINE a DYNAMIC ARRAY OF INTEGER
03 LET a[10] = 10

04 CALL a.appendElement()

05 LET a[a.getLength()] = a.getLength()
06 DISPLAY a.getlLength() -- shows 11

07 DISPLAY a[10] -- shows 10
08 DISPLAY a[11] -- shows 11
09 END MAIN

The deleteElement() method can be used to remove elements from a static or
dynamic array. Subsequent elements are moved up by an offset of -1. Dynamic arrays
will shrink by 1, while static arrays will have NULLs in the last element.

01 MAIN

02 DEFINE a DYNAMIC ARRAY OF INTEGER
03 LET a[10] = 9

04 CALL a.deleteElement(5)

06 DISPLAY a.getLength() -- shows 9
07 DISPLAY a[9] -- shows 9

08 END MAIN

You can clear an array with the clear() method. When used on a static array, this
method sets all elements to NULL. When used on a dynamic array, it removes all
elements:

01 MAIN

02 DEFINE a DYNAMIC ARRAY OF INTEGER
03 LET a[10] = 11

04 DISPLAY a.getlLength() -- shows 10
05 CALL a.clear()

06 DISPLAY a.getLength() -- shows O
07 END MAIN

When used as a function parameter, static arrays are passed by value, while dynamic
arrays are passed by reference:

01 MAIN

02 DEFINE a DYNAMIC ARRAY OF INTEGER
03 CALL fill(a)

04 DISPLAY a.getlLength() -- shows 2

207

Genero Business Development Language

05 END MAIN

06 FUNCTION Fill(x)

07 DEFINE x DYNAMIC ARRAY OF INTEGER
08 CALL x.appendElement()

09 CALL x.appendElement()

10 END FUNCTION

Array methods can be used on two- and three-dimensional arrays with the brackets
notation:

01 MAIN
02 DEFINE a2 DYNAMIC ARRAY WITH DIMENSION 2 OF INTEGER
03 DEFINE a3 DYNAMIC ARRAY WITH DIMENSION 3 OF INTEGER
04 LET a2[50,100] = 12456
05 LET a2[51,1000] = 12456

06 DISPLAY a2.getLength() -- shows 51
07 DISPLAY a2[50].getLength() -- shows 100
08 DISPLAY a2[51]-.getLength() -- shows 1000

09 LET a3[50,100,100] = 12456
10 LET a3[51,101,1000] = 12456

11 DISPLAY a3.getLength() -- shows 51
12 DISPLAY a3[50].getLength() -- shows 100
13 DISPLAY a3[51].getLength() -- shows 101

14 DISPLAY a3[50,100].getLength() -- shows 100

15 DISPLAY a3[51,101].getLength() -- shows 1000

16 CALL a3[50].insertElement(10) -- inserts at 50,10
17 CALL a3[50,10]-.insertElement(1)-- inserts at 50,10,1
18 END MAIN

Examples

Example 1: Using static and dynamic arrays.

01 MAIN

02 DEFINE al DYNAMIC ARRAY OF INTEGER

03 DEFINE a2 DYNAMIC ARRAY WITH DIMENSION 2 OF INTEGER
04 DEFINE a3 ARRAY[10,20] OF RECORD

05 id INTEGER,

06 name VARCHAR(100),
07 birth DATE

08 END RECORD

09 LET al[5000] = 12456

10 LET a2[5000,300] = 12456
11 LET a3[5,1].id = al[50]

12 LET a3[5,1]-name = "Scott”
13 LET a3[5,1]-birth = TODAY
14 END MAIN

Example 2: Here is the recommended way to fetch rows into a dynamic array.

01 SCHEMA stores
02 MAIN

208

03 DEFINE a DYNAMIC ARRAY OF RECORD LIKE customer.
04 DEFINE r RECORD LIKE customer.*

05 DATABASE stores

06 DECLARE c CURSOR FOR SELECT * FROM customer

07 FOREACH c INTO r.*

08 CALL a.appendElement()

09 LET afa.getLength()]-* = r.*

10 END FOREACH

11 DISPLAY "Rows found: ', a.getLength()

12 END MAIN

*

Language Basics

209

Genero Business Development Language

User Types

Summary:

e Definition
e Examples

See also: Variables, Records, Data Types, Constants.

Definition
Purpose:
A user type is a data type based on built-in types, records or arrays.

Syntax:
TYPE identifier definition
Notes:
1. identifier is the name of the user type to be defined.
2. definition is any data type, record structure, or array definition supported by the
language.

Usage:

You can define a user type as a synonym for an existing data type, or as a shortcut for
records and array structures.

After declaring a user type, it can be used as a normal data type to define variables.

The scope of a user type is the same as for variables and constants. Types can be
global, local to a module, or local to a function.

Examples

Example 1:

01 TYPE customer RECORD

02 cust_num INTEGER,

03 cust_name VARCHAR(50),
04 cust_addr VARCHAR(200)
05 END RECORD

210

Language Basics

06 DEFINE c customer
Example 2:

The following example defines the user type in a globals file and then uses the type in a
report program:

01 -- typeglobals._4gl

02

03 GLOBALS

04 TYPE rpt_order RECORD

05 order_num INTEGER,
06 store_num INTEGER,
07 order_date DATE,

08 fac_code CHAR(3)
09 END RECORD

10 END GLOBALS

01 -- reportl.4gl

02

03 GLOBALS "typeglobals.4gl™

04

05 MAIN

06 DEFINE o rpt_order

07 CONNECT TO *custdemo™

08 DECLARE order_c CURSOR FOR

09 SELECT order_num,
10 store_num,
11 order_date,
12 fac_code
13 FROM orders

14 START REPORT order_list

15 FOREACH order_c INTO o.*

16 OUTPUT TO REPORT order_list(o.*)
17 END FOREACH

18 FINISH REPORT order_list

19 DISCONNECT CURRENT

20 END MAIN

21

22 REPORT order_list(ro)

23 DEFINE ro rpt_order

24

25 FORMAT

26 ON EVERY ROW

27 PRINT ro.order_num,

211

Genero Business Development Language

Data Conversions

Summary:

o Data Conversion
e Conversion table

See also: Data Types.

Data Conversion

The runtime system performs data conversion implicitly without objection, as long as the
data conversion is valid. For example, when you assign a number expression to a
character variable, the runtime system converts the resulting number to a literal string.

Conversion rules apply to variable assignment, function parameters, and returned
values.

Data conversions from or to character string values involve environment and locale
settings like DBDATE, DBFORMAT.

When using the default exception handler, if a conversion error occurs, STATUS is zero
and the target is set to zero for SMALLINT, INTEGER, SMALLFLOAT and FLOAT data types
or NULL for all other data types.

Warning: The global STATUS variable is not set when a conversion error occurs
unless you have enabled ANY ERROR detection with the WHENEVER instruction.

Conversion Table
The following table shows which pairs of data types are compatible.

Conversion table:

Columns represent source data types and lines represent receiving data types.

||char||varchar||string||integer”smallint”float ||sma||f|oat||decimal||m0ney||date||datetime||interval||text||byte|

ehar 1 1 1 1 Ji Ji |1 L Ju8 Jiofp s |
barchar 1 i1 1 1 J1 J1 |1 L fu8 Jiofp s |
sting 1)t 1 1 Ji Ji |1 L fu8 jJiojp s |
linteger_[[2,3]2,3 2,3 | || 3.4 3.4 [3.4 |34 J11 15 |15 |
lsmallint [2,3]2,3 |[2,3 |3 | 13,4 3.4 |38,4 3,4 |3 |5 |15 |

212

Language Basics

[L [[[|
float 2, I2,3,5[>% |llo |10 3 3 11 |15 15 ||15 ||15

3,517 7 |5
smallfloat §:5 2,3,5 é 3 |5, 10 ||10 5 3,5 |3,5 ‘;”1 15 15 ||15 ||15
decimal 2:6 2,3,6 é’ 3 I3 3 3,6 |3,6 3,6 3,6 ?’1 15 15 ||15 ||15
money 2:6 2,3,6 é’ 3 I3 3 3,6 |[3,6 3,6 3,6 ?’1 15 15 ||15 ||15
ldate]2 |2 l2 Ja1 Ja1 3411|3411 |34,11 3411 |12,14 |15 |15 |15
datetime |2 |2 2 |15 |15 15 |15 15 |15 12 7,14 |15 (15 |15
linterval |2 |2 l2 |as Jas |i5 |15 115 |i5 a5 a5 |3,7 |5 15
text Jlt 1 J1 Jas5 Ja5 a5 a5 Ja5 Ja5 a5 a5 |5 || |15
byte Jjt5 a5 15 fu5 Ja5 fa5 fa5 15 15 15 a5 15 [l1s |

Notes:

1. If the result of converting a value to a character string is longer than the receiving
variable, the character string is truncated from the right.

2. Character string values must depict a literal of the receiving data type.

3. If the value exceeds the range of the receiving data type, an overflow error
occurs.

4. Any fractional part of the value is truncated.

5. If the passed value contains more significant digits than the receiving data type
supports, low-order digits are discarded.

6. If the passed value contains more fractional digits than the receiving data type
supports, low-order digits are discarded.

7. Differences in qualifiers can cause truncation from the left or right.

8. DBMONEY and DBFORMAT control the format of the converted string.

9. DBFORMAT, DBDATE, or GL_DATE controls the format of the result.

10. Rounding errors can produce an assigned value with fractional parts.

11. An integer value corresponding to a count of days is assigned.

12. An implicit EXTEND(value, YEAR TO DAY) is performed.

13. The DATE becomes a DATETIME YEAR TO DAY literal before assignment.

14. If the passed value has less precision than the receiving variable, any missing
time unit values are obtained from the system clock.

15. Unsupported conversion.

213

Genero Business Development Language

Built-in Classes

Summary:
e Purpose
e Syntax
e Usage

o base Package classes

ui Package classes

om Package classes

utils Package classes

os Package classes

Class and Object Methods
Working with Objects

O O O0OO0OO0Oo

See also: Variables, Functions.

Purpose

Built-in classes, grouped into packages, are predefined object templates that are
provided by the runtime system. Each class contains methods that interact with a
specific program object, allowing you to change the appearance or behavior of the
object. The classes provide the benefits of OOP programming in 4GL.

Syntax

Syntax 1: Defining an object

obj package.classname

Syntax 2: Using a class method

package.classname.method

Syntax 3: Using an object method

obj .method

Notes:

obj is the name of the variable defined for the object
package is the name of the package the class comes from.

classname is the name of the built-in class.
method is the name of the method

PwpnhPE

214

Language Basics

Usage
Package: base
Classes
Application

Channel

StringBuffer
StringTokenizer
Typelnfo

Package: ui

Classes
Interface
Window
Form
Dialog

ComboBox

Package: om

Classes
DomDocument

DomNode

NodelList
SaxAttributes

Purpose

Provides an interface to the application internals
Provides basic read/write functionality
(files/communication)

Allows manipulation of character strings

Allows parsing of strings to extract tokens
Provides serialization of program variables

Purpose

Provided to manipulate the user interface
Provides an interface to the Window objects
Provides an interface to the forms used by the
program

Provides an interface to the interactive
instructions

Provides an interface to the ComboBox formfield
view

Purpose
Provides methods to manipulate a DOM data
tree

Provides methods to manipulate a node of a
DOM data tree

Holds a list of selected DomNode objects
Provides methods to manipulate XML
element attributes

SaxDocumentHandler Provides methods to write an XML filter

XmIReader

XmIWriter

Provides methods to read and process a file
written in XML format

Provides methods to write XML documents
to different types of output

215

Genero Business Development Language

Package: util
Classes Purpose
Math Provides an interface for mathematical functions

The util package is a Dynamic C Extension library; part of the standard package. To use
the Math class, you must import the library in your program:

Package: os
Classes Purpose
Path Provides functions to manipulate files and

directories on the machine where the BDL
program executes

The os package is a Dynamic C Extension library; part of the standard package. To use
the Path class, you must import the library in your program:

Methods

There are two types of methods: Class Methods and Object Methods. Methods can be
invoked like global functions, by passing parameters and/or returning values.

Class Methods - you call these methods using the class identifier (package name +
class name) as the prefix, with a period as the separator.

01 CALL ui.Interface.refresh()

The method refresh() is a Class Method of the Interface class, which is part of the ui
package.

Object Methods - To use these methods, the object must exist. After an object has
been created, you can call the Object Methods in the class by using the object variable
as a prefix, with a period as the separator:

01 LET b = n.getDocumentElement()

The method getDocumentElement() is an Object Method of the class to which the n
object belongs.

Working with Objects

To handle an object in your program, you

216

Language Basics

o define an object variable using the class identifier.

e instantiate the object (create it) before using it. You usually instantiate objects
with a Class Method.

e once the object exists, you can call the Object methods of the class.

01 DEFINE n om.DomDocument, b DomNode
02 LET n om.DomDocument.create(*"'Stock™)
03 LET b n.getDocumentElement()

The object n is instantiated using the create() Class Method of the DomDocument
class. The object b is instantiated using the getDocumentElement() Object method of
the DomDocument class. This method returns the DomNode object that is the root node
of the DomDocument object n.

The object variable only contains the reference to the object. For example, when passed
to a function, only the reference to the object is copied onto the stack.

You do not have to destroy objects. This is done automatically by the runtime system for
you, based on a reference counter.

01 MAIN

02 DEFINE d om.DomDocument

03 LET d = om.DomDocument.create(''Stock') -- Reference counter = 1
05 END MAIN -- d is removed, reference counter = 0 => object is
destroyed.

You can pass object variables to functions or return them from functions. Objects are
passed by reference to functions. In the following example, the function creates the
object and returns its reference on the stack:

01 FUNCTION createStockDomDocument()
02 DEFINE d om.DomDocument

03 LET d = om.DomDocument.create(''Stock') -- Reference counter = 1
04 RETURN d

05 END FUNCTION -- Reference counter is still 1 because d is on the
stack

Another part of the program can get the result of that function and pass it as a parameter
to another function.

Example:

01 MAIN

02 DEFINE x om.DomDocument

03 LET x = createStockDomDocument()

04 CALL writeStockDomDocument(X)

05 END MAIN

06

07 FUNCTION createStockDomDocument()

08 DEFINE d om.DomDocument

09 LET d = om.DomDocument.create(''Stock™)

217

Genero Business Development Language

10 RETURN d

11 END FUNCTION

12

13 FUNCTION writeStockDomDocument(d)
14 DEFINE d om.DomDocument

15 DEFINE r om.DomNode

16 LET r = d.getDocumentElement()
17 CALL r.writeXml(*'Stock.xml™)

18 END FUNCTION

218

Applications

Compiling Programs
Summary:

Compiling Source Code
Creating Libraries
Linking Programs

Using Makefiles

Getting Build Information

See also: Tools, Form Files, Message Files, Localized Strings.

Compiling Source Code

Source code modules (4gl) must be compiled to p-code modules (42m) with the fglcomp
tool. Compiled p-code modules are portable; you can compile a module on a Windows
platform and install it on a Unix production machine.

The following lines show a compilation in a Unix shell session:

$ cat xx.4gl
main

display "hello”
end main

$ fglcomp xx.4gl

$ Is -s xx.42m
4 XX.42m

If an error occurs, the compiler writes an error file with the .err extension.

$ cat xx.4gl
main

let x = "hello”
end main

$ fglcomp xx.4gl
Compilation was not successful. Errors found: 1.
The file xx.4gl has been written.

$ cat xx.err
main
let x = "hello”
| The symbol "x* does not represent a defined variable.
| See error number -4369.
end main

219

Genero Business Development Language

With the -M option, you can force the compiler to display an error message instead of
generating a .err error file:

$ fglcomp xx.4gl
xx.4gl1:2:8 error:(-4369) The symbol "x" does not represent a defined
variable.

By default, the compiler does not raise any warnings. You can turn on warnings with the
-W option:

$ cat xx.4gl
main

database testl

select count(*) from x, outer(y) where x.k = y._k
end main

$ fglcomp -W stdsql xx.4gl

xx.4gl-3: warning: SQL statement or language instruction with specific
SQL syntax.

When a warning is raised, you can use the -W error option to force the compiler to stop
as if an error was found.

For more details about warning options, see the fglcomp tool.

Creating Libraries
Compiled 42m modules can be grouped in a library file using the 42x extension.

Library linking is done with the fglrun tool by using the -1 option. You can also use the
fgllink tool.

The following lines show a link procedure to create a library in a Unix shell session:

$ fglcomp fileutils._4gl
$ fglcomp userutils._4gl
$ fgllink -o libutils._.42x fileutils.42m userutils.42m

When you create a library, all functions of the 42m modules used in the link command
are registered in the 42x file.

Warning: The 42x library file does not contain the 42m files. When deploying your
application, you must provide all p-code modules as well as 42f, 42r and 42x files.

The 42x libraries are typically used to link the final 42r programs:

$ fglcomp mymain.4gl
$ Fgllink -0 myprog.42r mymain.42m libutils.42x

220

Applications

Note that 42r programs must be re-linked if the content of 42x libraries have changed. In
the above example, if a function of the userutils.4gl source file was removed, you must
recompile userutils.4gl, re-link the libutils42x library and re-link the myprog.42r
program.

If you are using C Extensions, you may need to use the -e option to specify the list of
extension modules if the IMPORT keyword is not used:

$ fgllink -e extlib,extlib2,extlib3 -o libutils.42x Ffileutils.42m
userutils.42m

Linking Programs

Genero programs are created by linking several 42m modules and/or 42x libraries
together, to produce a file with the 42r extension.

Program linking is done with the fglrun tool by using the -1 option. You can also use the
fgllink tool.

Warning: The 42r program file does not contain the 42m files. When deploying
your application, you must provide all p-code modules as well as 42f, 42r and 42x
files.

The following lines show a link procedure to create a library in a Unix shell session:

$ fglcomp main.4gl
$ fglcomp store.4gl
$ fgllink -0 stores.42r main.42m store.42m

By default, if you do not specify an absolute path for a file, the linker searches for 42m
modules and 42x libraries in the current directory.

Additionally, you can specify a search path with the FGLLDPATH environment variable:

$ FGLLDPATH=/usr/dev/lib/maths:/usr/dev/lib/utils
$ export FGLLDPATH

$ Is /usr/dev/lib/maths

mathlibl.42x

mathlib2.42x

mathmodulell.42m

mathmodulel?2.42m

mathmodule22.42m

$ Is /usr/dev/lib/utils

fileutils.42m

userutils.42m

dbutils.42m

$ fgllink -0 myprog.42r mymodule.42m mathlibl.42x fileutils.42m

221

Genero Business Development Language

In this example the linker will find the specified files in the Zusr/dev/lib/maths and
/usr/dev/lib/utils directories defined in FGLLDPATH.

If you are using C Extensions, you may need to use the -e option to specify the list of
extension modules if the IMPORT keyword is not used:

$ fgllink -e extlib,extlib2,extlib3 -0 stores.42r main.42m store.42m

Warning: If none of the functions of a module are used by a program, the
complete module is excluded when the program is linked. This may cause
undefined function errors at runtime, such as when a function is only used in a
dynamic call (an initialization function, for example.)

The following case illustrates this behavior:

$ cat x1.4gl
function x1AQ
end function
function x2AQ)
end function

$ cat x2.4gl
function x2A(Q
end function
function x2B(Q)
end function

$ cat prog.4gl
main

call x1AQ
end main

$ fglcomp x1.4gl

$ fglcomp x2.4gl

$ fglcomp prog-4gl

$ fgllink -o lib.42x x1.42m x2.42m

$ fgllink -o prog.42r prog.42m lib.42x

Here, module x1 .42m will be included in the program, but module x2.42m will not. At
runtime, any dynamic call to fx2A() or £x2B() will fail.

The link process searches recursively for the functions used by the program. For
example, if the MAIN block calls function FA in module MA, and FA calls FB in module
MB, all functions from module MA and MB will be included in the 42r program definition.

222

Applications

Using Makefiles

Most UNIX platforms provide the make utility program to compile projects. The make
program is an interpreter of Makefiles. These files contain directives to compile and link
programs and/or generate other kind of files.

When developing on Microsoft Windows platforms, you may use the NMAKE utility
provided with Visual C++, however this tool does not have the same behavior as the
Unix make program. To have a compatible make on Windows, you can install a GNU
make or third party Unix tools such as Cygwin.

For more details about the make utility, see the platform-specific documentation.

The follow example shows a typical Makefile for Genero applications:

Generic makefile rules to be included in Makefiles
.SUFFIXES: .42s .42F .42m .42r .str .per .4gl .msg .hlp

FGLFORM=Fglform -M
FGLCOMP=fglcomp -M

FGLLINK=Fglrun -1
FGLMKMSG=fglImkmsg
FGLMKSTR=FglImkstr
FGLLIB=$$FGLDIR/1ib/1ibfgl4js.42x

all::

-msg-hlp:
$(FGLMKMSG) $*.msg $*.hlp

.str.42s:
$(FGLMKSTR) $*.str $*.42s

-per.42fF:
$(FGLFORM) $*.per

-4gl _.42m:
$(FGLCOMP) $*._4gl

clean::
rm - *_hlp *.42? *.out

Makefile example
include Makeincl
FORMS=\
customers.42f\

orderlist.42H\
itemlist.42F

223

Genero Business Development Language

MODULES=\

customer Input.42m\
zoomOrders.42m\
zoomltems.42m

customer.42x: $(MODULES)
$(FGLLINK) -0 customer.42x $(MODULES)
all:: customer.42x $(FORMS)

Getting Build Information

The compiler version used to build the 42m modules must be compatible to the runtime
system used to execute the programs. The fglcomp compiler writes version information
in the generated 42m files. This can be useful on site, if you need to check the version of
the compiler that was used to build the 42m nodules.

To extract build information, run fglrun with the -b option:

$ fglrun -b mymodule.42m
2.11.01-1161.12 /home/devel/stores/mymodule._4gl 15

The output shows the following fields:

1. The product version and build number (2.11.01-1161.12).
2. The full path of the source file (/fhome/devel/stores/mymodule.4gl).
3. The internal identifier of the pcode version.

Tip: Since version 2.11, fglrun -b can read the header of pcode modules compiled
with older versions of fglcomp and display version information for such old
modules. If fglrun cannot recognize a pcode module, it returns with an execution
status is different from zero.

When reading build information of a 42x or 42r file, fglrun scans all modules used to
build the library or program. You will see different versions in the first column if the
modules where compiled with different versions of fglcomp. Note however that it's not
recommended to end up with mixed versions on a production site:

$ fglrun -b myprogram.42r

2.11.01-1161.12 /home/devel/stores/mymodulel._4gl 15
2.10.02-1148.36 /home/devel/stores/mymodule2.4gl 15
2.11.01-1161.12 /home/devel/stores/mymodule3.4gl 15

Warning: Before release 2.10, the 42m p-code files were also stamped with a
compilation timestamp. This timestamp information is no longer written to p-code
files, allowing 42m file comparison, checksum creation, or storage of 42m file in
versioning tools; the same p-code data is now generated after successive
compilations.

224

Applications

To check the version of the runtime system, run fglrun with the -V option.

225

Genero Business Development Language

Programs

Summary:

Runtime Configuration

The MAIN block

Signal Handling (DEFER)
The STATUS variable

The INT_FLAG variable
The QUIT_FLAG variable
Importing modules (IMPORT)
Program Options (OPTIONS)

o OPTIONS form-element LINE
OPTIONS DISPLAY ATTRIBUTES
OPTIONS INPUT ATTRIBUTES
OPTIONS INPUT WRAP
OPTIONS ON TERMINATE
OPTIONS ON CLOSE APPLICATION
OPTIONS HELP FILE
OPTIONS FIELD ORDER
OPTIONS control keys

o OPTIONS RUN IN
¢ Running Programs (RUN)
Stop Program Execution (EXIT PROGRAM)
Database Schema Specification (SCHEMA)
The NULL Constant
The TRUE Constant
The FALSE Constant
The NOTFOUND Constant
The BREAKPOINT instruction
Setting Key Labels
Responding to CTRL_LOGOFF_EVENT

O O O0OO0OO0OO0O0Oo

See also: Compiling Programs, Preprocessor, Database Schema Files, Flow Control,
The Application class, Localized Strings.

Runtime Configuration

You can control the behavior of the runtime system with some FGLPROFILE
configuration parameters.

Intermediate field trigger execution
Dialog.fieldOrder = {true]false}

When this parameter is set to true, intermediate triggers are executed. As the user
moves to a new field with a mouse click, the runtime system executes the BEFORE

226

Applications

FIELD / AFTER FIELD triggers of the input fields between the source field and the
destination field. When the parameter is set to false, intermediate triggers are not
executed.

For new applications, it is recommended that you set the parameter to false. GUI
applications allow users to jump from one field to any other field of the form by using the
mouse. Therefore, it makes no sense to execute the BEFORE FIELD / AFTER FIELD
triggers of intermediate fields.

Important note: The default setting for the runtime system is false; while the default
setting in FGLPROFILE for Dialog.fieldOrder is true. As a result, the overall setting
after installation is true. To modify the behavior of intermediate field trigger execution,
change the setting of Dialog.fieldOrder in FGLPROFILE to false.

Warning: The Dialog.fieldOrder configuration parameter is ignored when the
dialog uses the FIELD ORDER FORM option.

Make current row visible after sort in tables

Dialog.currentRowVisibleAfterSort = {true|false}

When this parameter is set to true, the offset of table page is automatically adapted to
show the current row after a sort. By default, the offset is not changed and current row
may not be visible after sorting rows of a table. Changing this parameter has no impact
on existing code, it is just an indicator to force the dialog to shift to the page of rows
having the current row, as if the end-user had scrollbar. You can use this parameter to
get the same behavior as well known e-mail readers.

The MAIN block

Purpose:

The MAIN block is the starting point of the application. When the runtime system
executes a program, after some initialization, it gives control to this program block.

Syntax:

MAIN
[define-statement | constant-statement]
{ [defer-statement] | fgl-statement | sql-statement }

=

END MAIN
Notes:

1. define-statement defines function arguments and local variables.
2. constant-statement can be used to declare local constants.

227

Genero Business Development Language

3. defer-statement defines how to handle signals in the program.
4. fgl-statement is any instruction supported by the language.
5. sgl-statement is any static SQL instruction supported by the language.

Signal Handling
Purpose:

The DEFER instruction allows you to control the behavior of the program when an
interruption or quit signal has been received.

Syntax:

DEFER { INTERRUPT | QUIT }
Warnings:

1. DEFER INTERRUPT and DEFER QUIT instructions can only appear in the MAIN
block.
2. Once deferred, you cannot reset to the default behavior.

Usage:

DEFER INTERRUPT indicates that the program must continue when it receives an
interrupt signal. By default, the program stops when it receives an interrupt signal.

When an interrupt signal is caught by the runtime system and DEFER INTERRUPT is
used, the INT_FLAG global variable is set to TRUE by the runtime system.

Interrupt signals are raised on terminal consoles when the user presses a key like
CTRL-C, depending on the stty configuration. When a BDL program is displayed through
a front end, no terminal console is used; therefore, users cannot send interrupt signals
with the CTRL-C key. To send an interruption request from the front end, you must
define an 'interrupt' action view. For more details, refer to Interruption Handling in the
Dynamic User Interface.

DEFER QUIT indicates that the program must continue when it receives a quit signal. By
default, the program stops when it receives a quit signal.

When a quit signal is caught by the runtime system and DEFER QUIT is used, the
QUIT_FLAG global variable is set to TRUE by the runtime system.

228

Applications

STATUS

Purpose:
STATUS is a predefined variable that contains the execution status of the last instruction.

Syntax:

STATUS

Definition:

DEFINE STATUS INTEGER
Notes:

1. The data type of STATUS is INTEGER.

2. STATUS is typically used with WHENEVER ERROR CONTINUE (or CALL).

3. STATUS is set by expression evaluation errors only when WHENEVER ANY ERROR is
used.

4. After an SQL statement execution, STATUS contains the value of
SQLCA.SQLCODE. Use SQLCA.SQLCODE for SQL error management, and
STATUS for 4gl errors.

Warnings:

1. STATUS is updated after any instruction execution. A typical mistake is to test
STATUS after a DISPLAY STATUS instruction, written after an SQL statement.

2. While STATUS can be modified by hand, it is not recommended, as STATUS may
become read-only in a later release.

Example:

01 MAIN

02 DEFINE n INTEGER

03 WHENEVER ANY ERROR CONTINUE
04 LET n = 10/0

05 DISPLAY STATUS

06 END MAIN

INT_FLAG

Purpose:

INT_FLAG is a predefined variable that is automatically set to TRUE when the user
presses the interruption key.

229

Genero Business Development Language

Syntax:

INT_FLAG

Definition:

DEFINE INT_FLAG INTEGER

Notes:

1.

The data type of INT_FLAG is INTEGER.

2. INT_FLAG is typically used with DEFER INTERRUPT.

3. INT_FLAG is set to TRUE when an interruption event is detected by the runtime
system. The interruption event is raised when the user presses the interruption
key.

4. If DEFER INTERRUPT is enabled and the interruption event arrives during a
procedural instruction (FOR loop), the runtime system sets INT_FLAG to TRUE; it is
up to the programmer to manage the interruption event (stop or continue with the
procedure).

5. If DEFER INTERRUPT is enabled and the interruption event arrives during an
interactive instruction (INPUT, CONSTRUCT), the runtime system sets INT_FLAG to
TRUE and exits from the instruction. It is recommended that you test INT_FLAG
after an interactive instruction to check whether the input has been cancelled.

Warnings:

1. Once INT_FLAG is set to TRUE, it must be reset to FALSE to detect a new
interruption event. It is the programmer's responsibility to reset the INT_FLAG to
FALSE.

Example:

01 MAIN

02 DEFINE n INTEGER

03 DEFER INTERRUPT

04 LET INT_FLAG = FALSE
05 FOR n = 1 TO 1000

06 IF INT_FLAG THEN EXIT FOR END IF
07 -

08 END FOR

09 END MAIN

QUIT_FLAG

Purpose:

QUIT_FLAG is a predefined variable that is automatically set to TRUE when a 'quit event'
arrives.

230

Applications

Syntax:

QUIT_FLAG

Definition:

DEFINE QUIT_FLAG INTEGER
Notes:

1. The data type of QUIT_FLAG is INTEGER.

2. QUIT_FLAG is typically used with DEFER QUIT.

3. QUIT_FLAG is set to TRUE when a quit event is detected by the runtime system.
The quit event is raised when the user presses the QUIT signal key
(Control+Backslash).

4. If DEFER QUIT is enabled and the quit event arrives during a procedural
instruction (FOR loop), the runtime system sets QUIT_FLAG to TRUE. It is the
programmer's responsibility to manage the quit event (whether to stop or
continue with the procedure).

5. If DEFER QUIT is enabled and the quit event arrives during an interactive
instruction (INPUT, CONSTRUCT), the runtime system sets QUIT_FLAG to TRUE and
exits from the instruction. It is recommended that you test QUIT_FLAG after an
interactive instruction to check whether the input has been cancelled.

Warnings:

1. Once QUIT_FLAG is set to TRUE, it must be reset to FALSE to detect a new quit
event. It is the programmer's responsibility to reset the QUIT_FLAG to FALSE.

Example:

01 MAIN

02 DEFER QUIT

03 LET QUIT_FLAG = FALSE
04 INPUT BY NAME ...

05 IF QUIT_FLAG THEN

06 -
07 END IF
08 END MAIN

Importing modules
Purpose:

The IMPORT instruction declares a C extension to be used by the current module.

231

Genero Business Development Language

Syntax:

IMPORT filename [,...]
Notes:

1. filename is the identifier (without the file extension) of the module to be loaded.
Usage:

The IMPORT instruction must be used to declare a C extension implementing functions or
variables used by the current module.

Modules declared with the IMPORT instruction do not have to be linked to create a
program. The runtime system automatically loads dependent modules.

The FGLLDPATH environment variable specifies the directories to search for the
modules.

By default, the runtime system tries to load a module with the name userextension, if it
exists. This simplifies the migration of existing C extensions; you just need to create a
shared library named userextension.so (or userextension.dll on Windows), and copy the
file to one of the directories defined in FGLLDPATH.

Warnings:

1. The IMPORT instruction must be the first instruction in the current module. If you
specify this instruction after DEFINE, CONSTANT or GLOBALS, you will get a syntax
error.

2. The compiler converts the module name specified by IMPORT to lowercase letters
(if you write IMPORT MyModule, the name is stored as "mymodule” in the pcode.)
When the module is loaded at runtime, the filename must match the lowercase
name. Therefore, you must always use lowercase filenames for modules. Using
lowercase filenames also simplifies distribution on platforms like Windows, where
filenames are not case-sensitive.

Example:

01 IMPORT mylibl, mylib2

02 DEFINE filename STRING

03 MAIN

04 CALL funcl() -- function defined in mylibl
05 END MAIN

See also: C Extensions.

232

Applications

Program Options
Purpose:
The OPTIONS instruction allows you to change default program options.

Syntax:

OPTIONS

{ INPUT [NO] WRAP

HELP FILE help-filename

INPUT ATTRIBUTE ({FORMJWINDOW] input-attributes})
DISPLAY ATTRIBUTE ({FORM]WINDOW]display-attributes})
SQL INTERRUPT {ON]OFF}

FIELD ORDER {CONSTRAINED]UNCONSTRAINED | FORM}

ON TERMINATE SIGNAL CALL user-function

ON CLOSE APPLICATION {CALL user-function|STOP}

RUN IN {FORM]LINE} MODE

MESSAGE LINE line-value TUI Only!
COMMENT LINE {OFF]line-value} TUI Only!
PROMPT LINE line-value TUI Only!
ERROR LINE line-value TUI Only!
FORM LINE Iine-value TUI Only!
INSERT KEY key-name TUI Only!
DELETE KEY key-name TUI Only!
NEXT KEY key-name TUI Only!
PREVIOUS KEY key-name TUI Only!
ACCEPT KEY key-name TUI Only!
HELP KEY key-name TUI Only!
[.---1

el el el el el el e e e e el e e e el e e

Notes:

1. The effect of the OPTIONS instruction is global for the entire program.
2. Most program options can be changed during the program execution.

Usage:

A program can include several OPTIONS statements. If these statements conflict in their
specifications, the OPTIONS statement most recently encountered at runtime prevails.
OPTIONS can specify the following features of other statements (such as CONSTRUCT,
DISPLAY, DISPLAY ARRAY, DISPLAY FORM, ERROR, INPUT, INPUT ARRAY,
MESSAGE, OPEN FORM, OPEN WINDOW, PROMPT and RUN):

Positions of the reserved lines
Input and display attributes
Logical key assignments

The name of the Help file
SQL statement interruption
Field traversal constraints

233

Genero Business Development Language

e Default screen display mode
Defining the default position of reserved lines TUI Only!

The following options define the positions of reserved lines in TUI mode. Is it not
recommended that you use these options in GUI mode, as most have no effect on the
display.

e COMMENT LINE specifies the position of the Comment line. The comment line
displays messages defined with the COMMENT attribute in the form specification
file. The default is (LAST-1) for the SCREEN, and LAST for all other windows.
You can hide the comment line with COMMENT LINE OFF.

e ERROR LINE specifies the position on the screen of the Error line that displays the
text of the ERROR statement. The default is the LAST line of the SCREEN.

e FORM LINE specifies the position of the first line of a form. The default is
(FIRST+2), or line 3 of the current window.

e MENU LINE specifies the position of the Menu line. This displays the menu name
and options, as defined by the MENU statement. The default is the FIRST line in
the window.

e MESSAGE LINE specifies the position of the Message line. This reserved line
displays the text of the MESSAGE statement. The default is (FIRST+1), or line 2
of the current window.

e PROMPT LINE specifies the position of the Prompt line where the text of PROMPT
statements is displayed. The default value is the FIRST line in the window.

You can specify any of the following positions for each reserved line:

Expression Description

FIRST The first line of the screen or window.

FIRST + integer A relative line position from the first line.

integer An absolute line position in the screen or window.
LAST - integer A relative line position from the last line.

LAST The last line of the screen or window.

Defining the default display and the input attributes

Any attribute defined by the OPTIONS statement remains in effect until the runtime
system encounters a statement that redefines the same attribute. This can be another
OPTIONS statement, or an ATTRIBUTE clause in one of the following statements:

e CONSTRUCT, INPUT, DISPLAY, DIALOG, INPUT ARRAY or DISPLAY ARRAY
¢ OPEN WINDOW

The ATTRIBUTE clause in these statements only redefines the attributes temporarily.
After the window closes (in the case of an OPEN WINDOW statement) or after the
statement terminates (in the case of a CONSTRUCT, INPUT, DISPLAY, DIALOG,

234

Applications

INPUT ARRAY, or DISPLAY ARRAY statement), the runtime system restores the
attributes from the most recent OPTIONS statement.

The FORM keyword in INPUT ATTRIBUTE or DISPLAY ATTRIBUTE clauses instructs the
runtime system to use the input or display attributes of the current form. Similarly, you
can use the WINDOW keyword of the same clauses to instruct the program to use the
input or display attributes of the current window. You cannot combine the FORM or
WINDOW attributes with any other attributes.

The following table shows the valid input-attributes and display-attributes:

Attribute Description

BLACK, BLUE, CYAN, GREEN,

MAGENTA, RED, WHITE, The color of the displayed text.
YELLOW

ﬁgEﬁALD'M’ INVISIBLE. The font attribute of the displayed text.

REVERSE, BLINK, UNDERLINE The video attribute of the displayed text.

Defining the form input loop

The tab order in which the screen cursor visits fields of a form is that of the field list of
currently executing CONSTRUCT, INPUT, and INPUT ARRAY statements, unless the
tab order has been modified by a NEXT FIELD clause. By default, the interactive
statement terminates if the user presses RETURN in the last field (or if the entered data
fills the last field and that field has the AUTONEXT attribute).

The INPUT WRAP keywords change this behavior, causing the cursor to move from the
last field to the first, repeating the sequence of fields until the user presses the Accept
key. The INPUT NO WRAP option restores the default input loop behavior.

Application Termination

The OPTIONS ON TERMINATE SIGNAL CALL function defines the function that must be
called when the application receives the SIGTERM signal. With this option, you can
control program termination - for example, by using ROLLBACK WORK to cancel all
pending SQL operations. If this statement is not called, the program is stopped with an
exit value of SIGTERM (15).

On Microsoft Windows platforms, the function will be called in the following cases:

e The console window that the program was started from is closed.
e The current user session is terminated (i.e. the user logs off).
e The system is shut down.

235

Genero Business Development Language

Front-End Termination

The OPTIONS ON CLOSE APPLICATION CALL function can be used to execute specific
code when the front-end stops. For example, when the client program is stopped, when
the user session is ended, or when the workstation is shut down.

Before stopping, the front-end sends a internal event that is trapped by the runtime
system. When a callback function is specified with the above program option command,
the application code that was executing is canceled, and the callback function is
executed before the program stops.

You typically do a ROLLBACK WORK, close all files, and release all resources in that
function.

The default is OPTIONS ON CLOSE APPLICATION STOP. This instructs the runtime
system to stop without any error message if the front end program is stopped.

Note that a front-end program crash or network failure is not detected and cannot be
handled by this instruction.

Defining the message file

The HELP FILE clause specifies an expression that returns the filename of a help file.
This filename can also include a pathname. Messages in this file can be referenced by
number in form-related statements, and are displayed at runtime when the user presses
the Help key.

By default, message files are searched in the current directory, then DBPATH
environment variable is scanned to find the file.

See also Message Files.
Defining field tabbing order

In an INPUT, INPUT ARRAY or CONSTRUCT, by default, the tabbing order is defined
by the list of fields used by the program instruction. This corresponds to FIELD ORDER
CONSTRAINED.

When using FIELD ORDER UNCONSTRAINED, the UP ARROW and DOWN ARROW keys
will move the cursor to the field above or below, respectively. Use the FIELD ORDER
CONSTRAINED option to restore the default behavior of the UP ARROW and DOWN
ARROW keys (moving the cursor to the previous or next field, respectively).

Warning: The UNCONSTRAINED option can only be supported in TUI mode, with a

simple form layout. It is not recommended to use this option: it is supported for
backward compatibility only.

236

Applications

When you specify FIELD ORDER FORM, the tabbing order is defined by the TABINDEX
attributes of the current form fields. This allows you to define a tabbing order specific to
the layout of the form, independent of the program instruction:

Form file:

01 LAYOUT

02 GRID

03 {

04 First name: [f001 1
05 Last name: [f002 1
06 }

07 END

08 END

09 ATTRIBUTES
10 EDIT f001
11 EDIT f002
12 END

FORMONLY . fname, TABINDEX
FORMONLY . Iname, TABINDEX

Program file:

01 MAIN

02 DEFINE fname, Iname CHAR(20)

03 OPTIONS FIELD ORDER UNCONSTRAINED
04 OPEN FORM 1 FROM "f1"

05 DISPLAY FORM f1

06 INPUT BY NAME fname, Iname

07 END MAIN

Defining control keys TUI Only!

The OPTIONS instruction can specify physical keys to support logical key functions in the
interactive instructions.

Warning: The physical key definition options are only provided for backward
compatibility with the character mode. These as not supported in GUI mode. Use
the Action Defaults to define accelerator keys for actions.

In TUI mode, action defaults accelerators are ignored.

Description of the keys:

e The ACCEPT KEY specifies the key that validates a CONSTRUCT, INPUT,
DIALOG, INPUT ARRAY, or DISPLAY ARRAY statement.
The default ACCEPT KEY is ESCAPE.

e The DELETE KEY specifies the key in INPUT ARRAY statements that deletes a
screen record.
The default DELETE KEY is F2.

o The INSERT KEY specifies the key that opens a screen record for data entry in
INPUT ARRAY.
The default INSERT KEY is F1.

237

Genero Business Development Language

e The NEXT KEY specifies the key that scrolls to the next page of a program array
of records in an INPUT ARRAY or DISPLAY ARRAY statement.
The default NEXT KEY is F3.

e The PREVIOUS KEY specifies the key that scrolls to the previous page of program
records in an INPUT ARRAY or DISPLAY ARRAY statement.
The default PREVIOUS KEY is F4.

e The HELP KEY specifies the key to display help messages.
The default HELP KEY is CONTROL-W.

Key Name
ESC or ESCAPE

INTERRUPT
TAB

CONTROL-char

F1 through F255
LEFT

RETURN or ENTER
RIGHT

DOWN

up

You can specify the following keywords for the physical key names:

Description

The ESC key (not recommended, use ACCEPT
instead).

The interruption key (on UNIX, interruption signal).
The TAB key (not recommended).

A control key where char can be any character
exceptA,D,H, I, J,K, L, M, R, orX

A function key.

The left arrow key.

The return key.

The right arrow key.

The down arrow key.

The up arrow key.

PREVI0US or PREVPAGE The previous page key.
NEXT or NEXTPAGE The next page key.

You might not be able to use other keys that have special meaning to your version of the
operating system. For example, CONTROL-C, CONTROL-Q, and CONTROL-S specify
the Interrupt, XON, and XOFF signals on many UNIX systems.

Setting default screen modes

When using character terminals, BDL recognizes two screen display modes: line mode
(IN LINE MODE) and formatted mode (IN FORM MODE). The OPTIONS and RUN
statements can explicitly specify a screen mode. The OPTIONS statement can set
separate defaults for these statements.

After IN LINE MODE is specified, the terminal is in the same state (in terms of stty
options) as when the program began. This usually means that the terminal input is in
cooked mode, with interruption enabled, and input not available until after a newline
character has been typed.

The IN FORM MODE keywords specify raw mode, in which each character of input
becomes available to the program as it is typed or read.

238

Applications

By default, a program operates in line mode, but so many statements take it into
formatted mode (including OPTIONS statements that set keys, DISPLAY, OPEN
WINDOW, DISPLAY FORM, and other screen interaction statements), that typical
programs are actually in formatted mode most of the time.

When the OPTIONS statement specifies RUN IN FORM MODE, the program remains in
formatted mode if it currently is in formatted mode, but it does not enter formatted mode
if it is currently in line mode.

When the OPTIONS statement specifies RUN IN LINE MODE, the program remains in line
mode if it is currently in line mode, and it switches to line mode if it is currently in
formatted mode.

The RUN instruction
Purpose:

The RUN instruction creates a new process and executes the command passed as an
argument.

Syntax:

RUN command
[IN {FORMJLINE} MODE]
[RETURNING variable | WITHOUT WAITING]

Notes:

1. command is a string expression containing the command to be executed.
2. variable is an integer variable receiving the execution status of the command.

Warnings:

1. The execution status in the RETURNING clause is system dependent. See below
for more detalils.

Usage:
The RUN instruction executes an operating system command line; you can even run a
second application as a secondary process. When the command terminates, the runtime

system resumes execution.

Defining the command execution shell

In order to execute the command line, the RUN instruction uses the OS-specific shell
defined in the environment of the current user. On UNIX, this is defined by the SHELL
environment variable. On Windows, this is defined by COMSPEC. Note that on

239

Genero Business Development Language

Windows, the program defined by the COMSPEC variable must support the /c option as
CMD.EXE.

Waiting for the sub-process

By default, the runtime system waits for the end of the execution of the command.
Unless you specify WITHOUT WAITING, the RUN instruction also does the following:

1. Causes execution of the current program to pause.

2. Displays any output from the specified command in a new window.

3. After that command completes execution, closes the new window and restores
the previous display in the screen.

If you specify WITHOUT WAITING, the specified command line is executed as a
background process, and generally does not affect the visual display. This clause is
useful if you know that the command will take some time to execute, and your program
does not need the result to continue. It is also used in GUI mode to start another Genero
program. In TUI mode, you must not use this clause because two programs cannot run
simultaneously on the same terminal.

Catching the execution status

The RETURNING clause saves the termination status code of the command that RUN
executes in a program variable of type SMALLINT. You can then examine this variable
in your program to determine the next action to take. A status code of zero usually
indicates that the command has terminated normally. Non-zero exit status codes usually
indicate that an error or a signal caused execution to terminate.

Warning: The execution status provided by the RETURNING clause is platform-
dependent. On Unix systems, the value is composed of two bytes having different
meanings. On Windows platforms, the execution status is usually zero for
success, not zero if an error occurred.

On Unix systems, the lower byte (x mod 256) of the return status defines the termination
status of the RUN command. The higher byte (x / 256) of the return status defines the
execution status of the program. On Windows systems, the value of the return status
defines the execution status of the program.

IN LINE MODE and IN FORM MODE

By default, programs operate in LINE MODE, but as many statements take it into FORM
MODE (including OPTIONS statements that set keys, DISPLAY, OPEN WINDOW,
DISPLAY FORM, and other screen interaction statements), typical programs are actually
in FORM MODE most of the time.

According to the type of command to be executed, you may need to use the IN

{LINE|FORM} MODE clause with the RUN instruction. It defines how the terminal or the
graphical front-end behaves when running the child process.

240

Applications

Besides RUN, the OPTIONS, START REPORT, and REPORT statements can explicitly
specify a screen mode. If no screen mode is specified in the RUN command, the current
value from the OPTIONS statement is used. This is, by default, IN LINE MODE. The
default screen mode for PI1PE specifications in REPORT is IN FORM MODE.

When the RUN statement specifies IN FORM MODE, the program remains in form mode if
it is currently in form mode, but it does not enter form mode if it is currently in line mode.
When the prevailing RUN option specifies IN LINE MODE, the program remains in line
mode if it is currently in line mode, and it switches to line mode if it is currently in form
mode. This also applies to the PIPE option.

Typically, if you need to run another interactive program, you must use the IN LINE
MODE clause:

e Ina TUIl mode, the terminal is in the same state (in terms if tty options) as when
the program began. Usually the terminal input is in cooked mode, with interrupts
enabled and input not becoming available until after a new-line character is
typed.

¢ In a Graphical Ul, if the WITHOUT WAITING clause in used, the front-end is
warned before the child process is started (this causes a first network round-trip)
After the child is started, the front-end is warned that the command was executed
(second network round-trip). If the RUN command must wait for child termination
(i.e. no WITHOUT WAITING clause is used), no particular action is taken.

However, if you want to execute a sub-process running silently (batch program without
output), you must use the IN FORM MODE clause:

e Ina TUIl mode, the screen stays in form mode if it was in form mode, which
saves a clear / redraw of the screen. The FORM mode specifies the terminal raw
mode, in which each character of input becomes available to the program as it is
typed or read.

e In a Graphical Ul, no particular action is taken to warn the front-end (there is no
need to warn the front-end for batch program execution).

Tip: To summarize, the FORM MODE must be used to optimize programs, if the
child program does not do any output. If the child program uses interactive
instructions, displays messages to the terminal, or if you don't known what it
does, just use the RUN instruction in LINE MODE (which is the default).

It is recommended that you use functions to encapsulate child program and system
command execution:

01 MAIN

02 DEFINE result SMALLINT

03 CALL runApplication(app2 -p xxx')

04 CALL runBatch("ls -1", FALSE) RETURNING result

05 CALL runBatch('ls -1 > /tmp/fTiles™, TRUE) RETURNING result
06 END MAIN

07

08 FUNCTION runApplication(pname)

241

Genero Business Development Language

09 DEFINE pname, cmd STRING

10 LET cmd = "fglrun " || pname

11 IF fgl_getenv("'FGLGUI') == 1 THEN
12 RUN cmd WITHOUT WAITING

13 ELSE

14 RUN cmd

15 END IF

16 END FUNCTION

17

18 FUNCTION runBatch(cmd, silent)
19 DEFINE cmd STRING

20 DEFINE silent STRING

21 DEFINE result SMALLINT

22 IF silent THEN

23 RUN cmd IN FORM MODE RETURNING result
24 ELSE

25 RUN cmd IN LINE MODE RETURNING result
26 END IF

27 IF fgl_getenv(*'0S™) MATCHES "'Win*" THEN
28 RETURN result

29 ELSE

30 RETURN (result /7 256)

31 END IF

32 END FUNCTION

EXIT PROGRAM

Purpose:
The EXIT PROGRAM instruction terminates the execution of the program.

Syntax:

EXIT PROGRAM [exit-code]

Notes:
1. exit-code is a valid integer expression that can be read by the process which
invoked the program.
2. Usually, exit-code will be zero by default for normal, errorless termination.
Warnings:
1. exit-code is converted into a positive integer between 0 and 255 (8 bits).

Example:

01 MAIN
02 DISPLAY "Emergency exit."
03 EXIT PROGRAM (-1)

242

Applications

04 DISPLAY "This will never be displayed 1"
05 END MAIN

Database Schema Specification
Purpose:

Database Schema Specification identifies the database schema files to be used for
compilation.

Syntax 1:

SCHEMA dbname

Syntax 2:

[DESCRIBE] DATABASE dbname
Notes:

1. The SCHEMA instruction defines the database schema files to be used for
compilation.

2. dbname identifies the name of the database schema file to be used.

3. The database hame must be expressed explicitly and not as a variable.

4. Use this instruction outside any program block, before a variable declaration with
DEFINE LIKE instructions. It must precede any program block in each module
that includes a DEFINE..LIKE declaration or INITIALIZE..LIKE and
VAL IDATE..LIKE statements. It must precede any GLOBALS..END GLOBALS block. It
must also precede any DEFINE..LIKE declaration of module variables.

5. The [DESCRIBE] DATABASE instruction defines both the database schema files
for compilation and the default database to connect to at runtime when the MAIN
block is executed.

Warnings:

1. [DESCRIBE] DATABASE is supported for backward compatibility, but it is strongly
recommended that you use SCHEMA instead. The SCHEMA instruction defines only
the database schema for compilation, and not the default database to connect to
at runtime, which can have a different name than the development database.

Example:

01 SCHEMA dbdevelopment -- Compilation database schema

02 DEFINE rec RECORD LIKE customer.*

03 MAIN

04 DATABASE dbproduction -- Runtime database specification
05 SELECT * INTO rec.* FROM customer WHERE custno=1

06 END MAIN

243

Genero Business Development Language

NULL Constant
Purpose:
The NULL constant is provided as "nil" value.

Syntax:

NULL
Notes:
1. When comparing variables to NULL, use the IS NULL operator, not the equal
operator.

2. If an element of an expression is NULL, the expression is evaluated to NULL.

Warnings:

=

Variables are initialized to NULL or to zero according to their data type.

2. Empty character string literals (*"**) are equivalent to NULL.
3. NULL cannot be used with the = equal comparison operation, you must use IS
NULL.
Example:
01 MAIN

02 DEFINE s CHAR(5)

03 LET s = NULL

04 DISPLAY "s IS NULL evaluates to:"
05 IF s IS NULL THEN

06 DISPLAY "TRUE"
07 ELSE

08 DISPLAY "FALSE"
09 END IF

10 END MAIN

TRUE Constant

Purpose:

The TRUE constant is a predefined boolean value that evaluates to 1.
Syntax:

TRUE

244

Applications

Example:

01 MAIN

02 IF FALSE = TRUE THEN

03 DISPLAY "Something wrong here"
04 END IF

05 END MAIN

FALSE Constant
Purpose:
The FALSE constant is a predefined boolean value that evaluates to 0.

Syntax:

FALSE

Example:

01 FUNCTION isodd(value)
02 DEFINE value INTEGER
03 IF value MOD 2 = 1 THEN

04 RETURN TRUE
05 ELSE

06 RETURN FALSE
07 END IF

08 END FUNCTION

NOTFOUND Constant
Purpose:
The NOTFOUND constant is a predefined integer value that evaluates to 100.

Syntax:

NOTFOUND
Notes:

1. This constant is used to test the execution status of an SQL statement returning
a result set, to check whether rows have been found.

245

Genero Business Development Language

Example:

01 MAIN

02 DATABASE stores

03 SELECT tabid FROM systables WHERE tabid = 1
04 IF SQLCA.SQLCODE = NOTFOUND THEN

05 DISPLAY "No row was found"

06 END 1IF

07 END MAIN

BREAKPOINT

Purpose:
The BREAKPOINT instruction sets a program breakpoint when running in debug mode.

Syntax:

BREAKPOINT
Usage:

Normally, to set a breakpoint when you debug a program, you must use the break
command of the debugger. But in some situations, you might need to set the breakpoint
programmatically. Therefore, the BREAKPOINT instruction has been added to the
language.

When you start fglrun in debug mode, if the program flow encounters a BREAKPOINT
instruction, the program execution stops and the debug prompt is displayed, to let you
enter a debugger command.

The BREAKPOINT instruction is ignored when not running in debug mode.

Example:

01 MAIN

02 DEFINE 1 INTEGER
03 LET 1=123

04 BREAKPOINT

05 DISPLAY i

06 END MAIN

246

Applications

Setting Key Labels
Purpose:

This feature allows you to define the labels of keys, to show a specific text in the default
action button created for the key.

Syntax 1: In FGLPROFILE

key._key-name.text = "label™

Syntax 2: At the program level

CALL FGL_SETKEYLABEL('key-name™, "label™)

Syntax 3: At the form level

KEYS
key-name = "label"
[---1
[END]

Syntax 4: At the dialog level
CALL FGL_DIALOG_SETKEYLABEL("key-name', "label™)
Syntax 5: At the field level
KEY key-name = "label™
Notes:
1. key-name is the name of the key as defined below.
Warning:
1. This feature is provided for backward compatibility.
Usage:
Traditional 4GL applications use a lot of function keys and/or control keys to manage

user actions. For example, in the following interactive dialog, the function key F10 is
used to show a detail window:

01 INPUT BY NAME myrecord.*
02 ON KEY (F10)

03 CALL ShowDetail()
04 END INPUT

247

Genero Business Development Language

For backward compatibility, the language allows you to specify a label to be displayed in
a default action button created specifically for the key.

By default, if you do not specify a label, no action button is displayed for a function key
or control key.

The following table shows the key names recognized by the runtime system:

Key Name Description

f1to £255 Function keys.

282:;8::2 to Control keys.

accept Validation key.

interrupt Cancellation key.

insert The insert key when in an INPUT ARRAY.
delete The delete key when in an INPUT ARRAY.
help The help key.

You can define key labels at different levels, from the default settings to a specific field,
to show a specific label for the key when the focus is in that field. The order of
precedence for key label definition is the following:

1. The label defined with the KEY attribute of the form field.

2. The label defined for the current dialog, using the FGL_DIALOG_SETKEYLABEL
function.

3. The label defined in the KEYS section of the form specification file.

4. The label defined as default for a program, using the FGL_SETKEYLABEL
function.

5. The label defined in the FGLPROFILE configuration file (key . key-name . text
entries).

You can query the label defined at the program level with the FGL_GETKEYLABEL
function and, for the current interactive instruction, with the
FGL_DIALOG_GETKEYLABEL function.

Responding to CTRL_LOGOFF_EVENT

Purpose:

On Windows platforms, when the user disconnects, the system sends a
CTRL_LOGOFF_EVENT event to all console applications. When the DVM receives this
event, it stops immediately (a simple exit(0) system call is done).

On a Windows Terminal Server, if an Administrator user closes his session, a
CTRL_LOGOFF_EVENT is sent to all console applications started by ANY user

248

Applications
connected to the machine (even if these applications were not started by the
Administrator).

To prevent the DVM from stopping on a logoff event, you can use the
fglrun.ignoreLogoffEvent entry in the FGLPROFILE configuration file. If this entry is
set to true, the CTRL_LOGOFF_EVENT event is ignored by the DVM.

fglrun.ignoreLogoffEvent = true

As a result, when the Administrator user disconnects on a Windows Terminal Server,
programs started by remote users would not stop.

249

Genero Business Development Language

Database Schema Files

Summary:

e What are Database Schema Files?
¢ Database Schema Extractor
e Schema Files
o Column Definition File (.sch)
o Column Validation File (.val)
o Column Video Attributes File (.att)

See also: Forms, Programs, Variables, fgldbsch

Definition of Database Schema Files

Database Schema Files hold the definition of the database tables and columns. The
schema files contain the column data types, validation rules, form item types, and
display attributes for columns.

The schema files are typically used to centralize column data types to define program
variables, as well as display attributes which are normally specified in the form
specification file.

The database schema files are generated with the fgldbsch tool from the system tables
of an existing database.

In program sources or form specification files, you must specify the database schema
file with the SCHEMA instruction. The FGLDBPATH environment variable can be used
to define a list of directories where the compiler can find database schema files.

Warning: The data types, display attributes, and validation rules are taken from
the Database Schema Files during compilation. Make sure that the schema files of
the development database correspond to the production database, otherwise the
elements defined in the compiled version of your modules and forms will not
match the table structures of the production database.

Program variables can be defined with the LIKE keyword to get the data type defined in
the schema files:

01 SCHEMA stores

02 MAIN

03 DEFINE custrec RECORD LIKE customer.*
04 DEFINE name LIKE customer.cust_name
05 S

06 END MAIN

250

Applications

Form fields defined with the FIELD item type can get the form item type from the schema
files:

01 SCHEMA stores

02 LAYOUT

03 GRID

04 {

05 [fOO01 1
06 }

07 TABLES

08 customer

09 END

10 ATTRIBUTES

11 FIELD f001 = customer.cust_name;
12 END

Note: For handling uppercase characters in the database name you must quote the
name: SCHEMA ""myDatabase"

Database Schema Extractor
See also: fgldbsch

The fgldbsch tool extracts the schema description for any database supported by the
product. Schema information is extracted from the database specific system tables. The
database type is automatically detected after connection; you do not have to specify any
database server type.

fgldbsch -db testl -un scott -up fourjs -v -ie

The database system must be available and the database client environment must be
set properly in order to generate the schema files.

You must run fgldbsch with the -db dbname option to identify the database to which to
connect. The dbname and related options could be present in the FGLPROFILE file. See
Indirect database specification method in Database Connections. Otherwise, related
options have to be provided with the fgldbsch command.

If the operating system user is not the database user, you can provide a database login
and password with the -un and -up options.

The database driver can be specified with the -dv dbdriver option, if the default driver
is not appropriate.

The BDL compiler expects FGL data types in the schema file. While most data types
correspond to Informix SQL data types, non-Informix databases can have different data
types. Therefore, data types are generated from the system catalog tables according to
some conversion rules. You can control the conversion method with the -cv option.

251

Genero Business Development Language

Each character position of the string passed by this option corresponds to a line in the
conversion table. You must give a conversion code for each data type (for example: -cv
AABAAAB). Run the tool with the -ct option to see the conversion tables. When using X
as conversion code, the columns using the corresponding data types will be ignored and
not written to the .sch file. This is particularly useful in the case of auto-generated
columns like SQL Server's uniqueidentifier data type, when using a DEFAULT NEWIDQ)
clause.

With some databases, the owner of tables is mandatory to extract a schema, otherwise
you would get multiple definitions of the same table in the .sch schema file. To prevent
such mistakes, you can specify the schema owner with the -ow owner option. If this

option is not used, fgldbsch will use the login name passed with the -un user option.

By default fgldbsch does not generate system table definitions. Use the -st option to
extract schema information of system tables.

Warning: The fgldbsch tool in BDL v1.3x provides the -ns option to generate
without the database system tables. This option is no longer supported in the
fgldbsch tool in BDL v2.xx and is replaced by the -st option to generate with the
database system tables.

Use the -tn tabname option to extract schema information of a specific table. You may
use the -of name option to generate files with a different name than the default name
(the name of the database specified with the -db option).

By default, table and column names are converted to lower case letters to enforce
compatibility with Informix. You can force lower case, upper case or case-sensitive
generation by using the -cl, -cu or -cc options.

Warning: When using an Informix database, fgldbsch extracts synonyms. By
default, only PUBLIC synonyms are extracted to avoid duplicates in the .sch file
when the same name is used by several synonyms by different owners. If you
want to extract PRIVATE synonyms, you must use the -ow option to specify the
owner of the tables and synonyms.

Schema Files

Column Definition File (.sch)

The .sch file contains the data types of table columns.
Example:

01 customer”customer_num™258™M/N1
02 customer”customer_name”256°5072

252

Applications

03 customer”customer_address”™0"100"3
04 order”™order_numn"258™M71

05 order”order_custnumn"2587M4n2

06 order”order_date”263™M4"3

07 order”order_total”26171538™M4

Description:

The data type of program variables or form fields used to hold data of a given database
column must match the data type used in the database. BDL simplifies the definition of
these elements by centralizing the information in external .sch files, which contain
column data types.

In form files, you can directly specify the table and column name in the field definition in
the ATTRIBUTES section of forms.

In programs, you can define variables with the data type of a database column by using
the LIKE keyword.

Warnings:

1. As column data types are extracted from the database system tables, you may
get different results with different database servers. For example, Informix
provides the DATE data type to store simple dates in year, month, and day
format (= BDL DATE), while Oracle stores DATES as year to second (= BDL
DATETIME YEAR TO SECOND).

The following table describes the fields you will find in a row of the .sch file:

Pos Type Description
1 STRING Database table name.
2 STRING Column name.

3 SMALLINT Coded column data type. If the column is NOT NULL, you
must add 256 to the value.

4 SMALLINT Coded data type length.

SMALLINT Ordinal position of the column in the table.

6 STRING Default value of the database column.
The value can be a simple numeric constant (1234.56) or a
string delimited by single quotes (‘abcdef').

7 STRING Default form item type.

The value can be one of the form item types (Edit, ButtonEdit,
ComboBox, and so on).

o1

Next table shows the data types that can be represented in the .sch schema file:

Data Data type length (field #4)
type This is a SMALLINT value encoding the length or
code composite length of the type.

Data type
name

253

Genero Business Development Language

CHAR
SMALLINT
INTEGER
FLOAT
SMALLFLOAT
DECIMAL

SERIAL
DATE
MONEY
Unused
DATETIME

BYTE
TEXT
VARCHAR

INTERVAL
NCHAR
NVARCHAR
INT8

SERIALS

SET (Unused)
MULTISET
(Unused)

LIST (Unused)
Unnamed ROW
(Unused)
Variable-length

254

(field
#3)

ab~hwWNEFLO

[
Hoo~wo

11
12
13

14
15
16
17
18
19
20

21
22

40

Maximum number of characters.

Fixed length of 2

Fixed length of 4

Fixed length of 8

Fixed length of 4

The length is computed using the following formula:
length = (precision * 256) + scale

Fixed length of 4

Fixed length of 4

Same as DECIMAL

To code the qualifiers, the length is computed using the
following formula:

length = (prec *256) + (quall * 16) + qual2

where prec is the precision of the last qualifier and quall
/ qual2 identify qualifiers according to the following list:

0= YEAR

2 = MONTH

4 = DAY

6 = HOUR

8 = MINUTE

10 = SECOND

11 = FRACTION(1)
12 = FRACTION(2)
13 = FRACTION(3)
14 = FRACTION(4)
15 = FRACTION(5)

Length of descriptor

Length of descriptor

If length is positive:

length = (min_space * 256) + max_size
If length is negative:

length + 65536 = (min_space * 256) + max_size
Same as DATETIME

Same as CHAR

Same as VARCHAR

Fixed length of 8

Fixed length of 8

Applications

opaque type

VARCHAR2 201 Maximum number of characters.
Named ROW 4118

(Unused)

Column Validation File (.val)

The .val file holds functional and display attributes of columns.
Example:

01 customer”customer_name~STYLEMN"important'”

02 customer”~customer_name”SHIFTANUPA

03 customer”customer_name”COMMENTS”"'Name of the customer'”
04 order”order_date”DEFAULTATODAYA

05 order”order_date”COMMENTS™'Creation date of the order'”

Description:
The .val file holds default attributes and validation rules for database columns.

In form files, the attributes are taken from the .val file as defaults if the corresponding
attribute is not explicitly specified in the field definition of the ATTRIBUTES section.

In programs, you can validate variable values in accordance with the INCLUDE attribute
by using the VALIDATE instruction.

The .val file can be generated by fgldbsch from the Informix-specific syscolval table, or
can be edited by an external column attributes editor.

The following table describes the structure of the .val file:

Pos Type Description

STRING Database table name.
STRING Column name.
STRING Column property name.
STRING Column property value.

A W N P

The supported attribute definitions are:

Attribute Name Description
Defines the ACTION attribute.
Value must be an identifier.

Defines the AUTONEXT attribute.
When this attribute is defined, value is YES.

ACTION

AUTONEXT

255

Genero Business Development Language

AUTOSCALE

CENTURY

COLOR

COMMENTS

DEFAULT

FORMAT

HEIGHT

IMAGE

INCLUDE

INITIALIZER

INVISIBLE

ITEMS

ITEMTYPE

JUSTIFY

ORIENTATION

PICTURE

SAMPLE

SCROLL

256

Defines the AUTOSCALE attribute.
When this attribute is defined, value is YES.

Defines the CENTURY attribute.

The value must be one of: R, C, F, or P.

Defines the COLOR attribute.

The value is a color identifier (RED, GREEN, BLUE, ...)
Defines the COMMENTS attribute.

The value is a quoted string or Localized String (%' xxx"").
Defines the DEFAULT attribute.

Number, quoted string or identifier (TODAY).

Defines the FORMAT attribute.

The value is a quoted string.

Defines the HEIGHT attribute.

The value is an integer followed by: { CHARACTERS, COLUMNS,
LINES, POINTS, or PIXELS }

Defines the IMAGE attribute.

The value is a quoted string.

Defines an include list as the INCLUDE attribute.

Value must be a list: (value [,...]), where value can be a
number, quoted string or identifier (TODAY).

Defines the INITIALIZER attribute.

Value must be an identifier.

Defines the INVISIBLE attribute.

When this attribute is defined, value is YES.

Defines the VALUEUNCHECKED attribute.

The value must be a list: (item [,...]), where item can be a
number, a quoted string or (value, " label™).

Defines the Form Item Type to be used when the column is
used as FIELD in forms.

Value must be an identifier defining the item type (case
sensitive!):

Edit, ButtonEdit, Label, Image, DateEdit, TextEdit,
ComboBox, RadioGroup, CheckBox, Slider, SpinEdit,
TimeEdit, ProgressBar

Defines the JUSTIFY attribute.

The value must be one of: LEFT, CENTER or RIGHT.

Defines the ORIENTATION attribute.
The value must be one of: VERTICAL or HORIZONTAL.

Defines the PICTURE attribute.
The value is a quoted string.
Defines the SAMPLE attribute.
The value is a quoted string.

Defines the SCROLL attribute.
When this attribute is defined, value is YES.

SCROLLBARS

SHIFT

SIZEPOLICY

STEP

STRECH

STYLE

TAG

TEXT

TITLE

VALUEMIN

VALUEMAX

VALUECHECKED

VALUEUNCHECKED

VERIFY

WANTTABS

WANTNORETURNS

WIDTH

Applications

Defines the SCROLLBARS attribute.
The value must be one of: X, Y or BOTH.

Corresponds to the UPSHIFT and DOWNSHIFT attributes.
Values can be UP or DOWN.

Defines the SIZEPOLICY attribute.
The value must be one of: INITIAL, DYNAMIC or FIXED.

Defines the STEP attribute.

The value must be an integer.

Defines the STRETCH attribute.

The value must be one of: X, Y or BOTH.

Defines the STYLE attribute.

The value is a quoted string.

Defines the TAG attribute.

The value is a quoted string.

Defines the TEXT attribute.

The value is a quoted string or Localized String (%" xxx"").
Defines the TITLE attribute.

The value is a quoted string or Localized String (%" xxx"").
Defines the VALUEMIN attribute.

The value must be an integer.

Defines the VALUEMAX attribute.

The value must be an integer.

Defines the VALUECHECKED attribute.

The value must be an number or a quoted string.
Defines the VALUEUNCHECKED attribute.

The value must be an number or a quoted string.
Defines the VERIFY attribute.

When this attribute is defined, value is YES.

Defines the WANTTABS attribute.
When this attribute is defined, value is YES.

Defines the WANTNORETURNS attribute.
When this attribute is defined, value is YES.

Defines the WIDTH attribute.
The value is an integer followed by: { CHARACTERS, COLUMNS,
LINES, POINTS, or PIXELS }

Column Video Attributes File (.att)

The .att file contains the default video attributes of columns.

This file is generated by fgldbsch from the Informix-specific syscolatt table.

257

Genero Business Development Language

The following table describes the structure of the .val file:

Pos Type Description

STRING Database table name.
STRING Column name.

SMALLINT Ordinal number of the attribute record.
STRING COLOR attribute (coded).
CHAR(1) INVERSE attribute (y/n).
CHAR(1) UNDERLINE attribute (y/n).
CHAR(1) BLINK attribute (y/n).
CHAR(1) LEFT attribute (y/n).
STRING FORMAT attribute.
STRING Condition.

© 0 N O 0o~ WDN P

=
o

Warning: This feature is supported for compatibility with Informix 4GL only.

258

Applications

Globals

Summary:

e Definition
e Examples

See also: Variables, Arrays, Records, Constants, Programs

Definition
Purpose:

The GLOBALS instruction declares modular variables that can be exported to other
program modules.

Syntax 1: Global block declaration
GLOBALS

declaration-statement

L.---1
END GLOBALS

Syntax 2: Importing global variables
GLOBALS 'filename™
Notes:
1. In Syntax 1, declaration-statement is a variable or constant declaration.
2. In Syntax 2, filename is the name of a file containing the definition of global

variables. Use this syntax to include a global declarations in the current module.

Warnings:

=

If you modify filename, you must recompile all the modules that include filename.

2. Do not declare a variable outside a GLOBALS...END GLOBALS block in a GLOBALS
file.

3. Avoid confusing function names and global variables names

4. Avoid declaring the same global variable twice when including multiple GLOBALS

files.

Usage:

In general, a program variable is in scope only in the same FUNCTION, MAIN, or
REPORT program block in which it was declared.

259

Genero Business Development Language

To extend the visibility of one or more module variables beyond the source module in
which they are declared, you must take the following steps:

1.

2.

Declare variables in GLOBALS...END GLOBALS declarations in files containing only
GLOBALS, DEFINE, and DATABASE statements (but no executable statements).
Specify the files in GLOBALS "filename™ statements in each additional source
module that includes statements referencing the variables.

The filename must contain the .4gl suffix. It can be a a relative or an absolute path. To
specify a path, the slash (/) directory separator can be used for Unix and Windows
platforms.

If a local variable has the same name as another variable that you declare in the
GLOBALS statement, only the local variable is visible within its scope of reference.

Each variable declared in a GLOBALS ... END GLOBALS block becomes a global
variable.

You can declare several GLOBALS blocks in the same module.

A GLOBALS file must not contain any executable statement.

You do not compile the source file containing the GLOBALS block.

You can declare several GLOBALS "filename" in the same module.

Although you can include multiple GLOBALS...END GLOBALS statements in the same
application, do not declare the same identifier as the name of a variable within the
DEFINE statements of more than one GLOBALS declaration. Even if several declarations
of a global variable defined in multiple places are identical, declaring any global variable
more than once can result in compilation errors or unpredictable runtime behavior.

A GLOBALS block can hold GLOBALS *'filename™ instructions. In such case, the specified
files will be included recursively.

Tips:

1.

ok ow

Use only a few global variables, too much globals makes the source code difficult
to maintain and denies reusability.

There is no need to compile filename, but compiling filename might be useful to
detect syntax errors.

To improve the readability of your source code, prefix global variables by "g_".
Global variables are often used as constants.

Global arrays allow a function to access the array modified by another function.

260

Applications

Examples
Example 1: Multiple GLOBALS file

labels.4gl : This module defines the text that should be displayed on the screen

01 GLOBALS
02 CONSTANT g_Ibl_val = "Index:"
03 CONSTANT g_Ibl_idx = "Value:"

04 END GLOBALS

globals.4gl : Declares a global array and a constant containing its size

01 GLOBALS "labels.4gl™ -- this statement could be line 2 of main.4gl
02 GLOBALS

03 DEFINE g_idx ARRAY[100] OF CHAR(10)

04 CONSTANT g_idxsize = 100

05 END GLOBALS

database.4qgl : This module could be dedicated to database access

01 GLOBALS "globals.4gl"

02 FUNCTION get_idQ)

03 DEFINE @1 INTEGER

04 FOR Ii = 1 TO g_idxsize -- this could be a FOREACH statement
05 LET g_idx[Ii] = g_idxsize - li

06 END FOR

07 END FUNCTION

main.4gl : Fill in the global array and display the result

01 GLOBALS "globals.4gl™

02 MAIN

03 DISPLAY "Initializing constant values for this application..."
05 DISPLAY "Filling the data from function get_idx in module
database.4gl.._"

06 CALL get_id(Q)

07 DISPLAY "Retrieving a few values from g_idx"

08 CALL display_data()

09 END MAIN

10 FUNCTION display_data()

11 DEFINE 1i INTEGER

12 LET Ii =1

13 WHILE Ii <= 10 AND li <= g_idxsize

14 DISPLAY g_Ibl_idx CLIPPED || ki || ™ ™ || g_lbl_val CLIPPED ||
g_idx[li]
15 LET 1i = li + 1

16 END WHILE
17 END FUNCTION

261

Genero Business Development Language

Flow Control

Summary:

e Invoking a function (CALL)

e Returning from a function (RETURN)

e Conditional cases (CASE)

e Continuing a block (CONTINUE instruction)
e Leaving a block (EXIT instruction)
e lterative loop (FOR)

e Labeled transfer (GOTO)

o Conditional block (IF)

e Statement label (LABEL)

e Suspending execution (SLEEP)

e Conditional loop (WHILE)

See also: Programs, Functions, Reports, Expressions

CALL
Purpose:
The CALL instruction invokes a specified function.

Syntax:

CALL function ([parameter [,...] 1) [RETURNING variable [,...]

(=

Notes:

1. function is the name of a built-in function or the name of the function defined in
one of the modules of the program.

parameter can be a variable, a literal, a constant or any valid expression.
parameters are separated by a comma ', .

The RETURNING clause assigns values returned by the function to variables in the
calling routine.

variable is a variable receiving a value returned by the function.

The RETURNING clause is only needed when the function returns parameters.

A function returning a single parameter can be used in expressions.

Pown

No o

Tips:

1. You can use a double-pipe operator ' || ' to pass the concatenation of character
expressions as a parameter.

262

Applications

Warnings:

1. The value of a receiving variable may be different from the value returned by the
function, following the data conversion rules.

Example 1: Function returning a single value

01 MAIN

02 DEFINE varl CHAR(10)
03 DEFINE var2 CHAR(2)
04 LET varl = foo()

05 DISPLAY "varl = " || varl
06 CALL foo() RETURNING var2
07 DISPLAY "var2 = " || var2
08 END MAIN

09

10 FUNCTION foo()
11 RETURN "Hello"
12 END FUNCTION

Example 2: Function returning several values

01 MAIN

02 DEFINE varl CHAR(15)

03 DEFINE var2 CHAR(15)

04 CALL foo() RETURNING varl, var2
05 DISPLAY varl, var2

06 END MAIN

07

08 FUNCTION foo()

09 DEFINE r1 CHAR(15)

10 DEFINE r2 CHAR(15)

11 LET r1 = "return value 1"
12 LET r2 = "return value 2"
13 RETURN ri1, r2

14 END FUNCTION

Example 3: Function and records

01 MAIN

02 DEFINE rl1 RECORD

03 idl INTEGER,
04 1d2 INTEGER,
05 name CHAR(30)
06 END RECORD

07 CALL get_name(NULL, NULL, NULL) RETURNING ri.*

08 CALL get _name(NULL, rl1.id2, rl.name) RETURNING ri1.*

09 CALL get _name(rl1.*) RETURNING rl.*

10 DISPLAY rl.name

11 CALL get name(1, 2, "John"™) RETURNING rl.id2, rl.idl, rl.name
12 DISPLAY ri1.name

13 END MAIN

14

15 FUNCTION get_name(codel, code2, name)

263

Genero Business Development Language

16 DEFINE codel INTEGER
17 DEFINE code2 INTEGER
18 DEFINE name CHAR(30)
19 IF codel 1S NULL THEN

20 LET name = "ERROR:codel is NULL"
21 LET code2 = NULL

22 ELSE

23 IF code2 IS NULL THEN

24 LET name = "ERROR:code2 is NULL"
25 LET codel = NULL

26 ELSE

27 IF name IS NULL THEN

28 LET name = "SMITH"

29 END IF

30 END IF

31 END IF

32 RETURN codel, code2, name
33 END FUNCTION

RETURN

Purpose:

The RETURN instruction transfers the control back from a function with optional return
values.

Syntax:

RETURN [value [,...] 1

Notes:

1. value can be a variable, a literal, a constant or any valid expression.

2. Record members can be returned with the .* or THRU notation. Each member is
returned as an independent variable.

3. A function may have several RETURN points (not recommended in structured
programming) but they must all return the same number of values.

4. The number of returned values must correspond to the number of variables listed
in the RETURNING clause of the CALL statement invoking this function.

Warnings:
1. A function cannot return an array.

Example:

01 MAIN
02 DEFINE forname, surname CHAR(10)
03 CALL foo(NULL) RETURNING forname, surname

264

Applications

04 DISPLAY forname CLIPPED, " ', upshift(surname) CLIPPED
05 CALL foo(l) RETURNING forname, surname

06 DISPLAY forname CLIPPED, " ', upshift(surname) CLIPPED
07 END MAIN

08

09 FUNCTION foo(code)

10 DEFINE code INTEGER

11 DEFINE person RECORD

12 namel CHAR(10),
13 name2 CHAR(20)
14 END RECORD

15 |IF code IS NULL THEN

16 RETURN NULL, NULL

17 ELSE

18 LET person.namel = "John"

19 LET person.name2 = "Smith"

20 RETURN person.*

21 END IF

22 END FUNCTION

CASE

Purpose:
The CASE instruction specifies statement blocks that must be executed conditionally.

Syntax 1:

CASE expression-1
WHEN expression-2
{ statement | EXIT CASE }
[---1
[OTHERWISE
{ statement | EXIT CASE }

L---1 N
1
END CASE

Syntax 2:

CASE
WHEN boolean-expression
{ statement | EXIT CASE }
[---1
[OTHERWISE
{ statement | EXIT CASE

[---1
1
END CASE

-]

265

Genero Business Development Language

Notes:

1.
2.

aprw

expression-1 is any expression supported by the language.

expression-2 is an expression that is tested against expression-1. expression-1
and expression-2 should have the same data type.

boolean-expression is any boolean expression supported by the language.
statement is any instruction supported by the language.

In a CASE flow control block, the first matching WHEN block is executed. If there is
no matching WHEN block, then the OTHERWISE block is executed.

If there is no matching WHEN block and no OTHERWI SE block, then the program
control jumps to the statement following the END CASE keyword.

The EXIT CASE statement transfers the program control to the statement
following the END CASE keyword.

There is an implicit EXIT CASE statement at the end of each WHEN block and at
the end of the OTHERWI SE block.

Warnings:

1.

4.

A NULL expression is considered as FALSE: When doing a CASE expr ... WHEN
[NOT] NULL using the syntax 1, it always evaluates to FALSE. Use syntax 2 as
CASE ... WHEN expr IS NULL to test if an expression is null.

Make sure that expression-2 is not a boolean expression when using the first
syntax. The compiler will not raise an error in this case, but you might get
unexpected results at runtime.

If there is more than one expression-2 matching expression-1 (syntax 1), or if
two boolean expressions (syntax 2) are true, only the first matching WHEN block
will be executed.

The OTHERWISE block must be the last block of the CASE instruction.

Example 1: First syntax

01 MAIN

02 DEFINE v CHAR(10)

03 LET v = "C1"

04 CASE v

05 WHEN **C1™

06 DISPLAY "Value is C1"
07 WHEN *C2"

08 DISPLAY "Value is C2"
09 WHEN **C3"

10 DISPLAY "Value is C3"
11 OTHERWISE

12 DISPLAY "Unexpected value"
13 END CASE

14 END MAIN

Example 2: Second syntax

01 MAIN

02
03

266

DEFINE v CHAR(10)
LET v = "Cc1"

Applications

04 CASE

05 WHEN (v="C1" OR v=""C2")

06 DISPLAY "Value is either Cl1 or C2"
06 WHEN (v="C3" OR v='"C4")

07 DISPLAY "Value is either C3 or C4"
08 OTHERWISE

09 DISPLAY "Unexpected value™

10 END CASE

11 END MAIN

CONTINUE

Purpose:

The CONTINUE instruction transfers the program execution from a statement block to
another location in the compound statement that is currently being executed.

Syntax:
CONTINUE { FOR]| FOREACH | MENU] CONSTRUCT | INPUT | WHILE }
Notes:

1. CONTINUE instruction can only be used within the statement block specified
by instruction. For example, CONTINUE FOR can only be used within a FOR
... END FOR statement block.

2. The CONTINUE FOR, CONTINUE FOREACH, or CONTINUE WHILE keywords cause
the current FOR, FOREACH, or WHILE loop (respectively) to begin a new cycle
immediately. If conditions do not permit a new cycle, however, the looping
statement terminates.

3. The CONTINUE CONSTRUCT and CONTINUE INPUT statements cause the program
to skip all subsequent statements in the current control block. The screen cursor
returns to the most recently occupied field in the current form, giving the user
another chance to enter data in that field.

4. The CONTINUE MENU statement causes the program to ignore the remaining
statements in the current MENU control block and redisplay the menu. The user
can then choose another menu option.

Tips:

1. CONTINUE INPUT is valid in INPUT and INPUT ARRAY statements.

Example:

01 MAIN

02 DEFINE 1 INTEGER
03 LET 1 =0

04 WHILE 1 < 5

267

Genero Business Development Language

05 LET i =1 + 1

06 DISPLAY "i=" || 1

07 CONTINUE WHILE

08 DISPLAY "This will never be displayed "
09 END WHILE

10 END MAIN

FOR

Purpose:

The FOR instruction executes a statement block a specified number of times.

Syntax:

FOR counter = start TO finish [STEP value]
statement

L---1
END FO

Notes:

1. counter is a variable of type INTEGER or SMALLINT that serves as an index for
the FOR statement block.

start is an integer expression used to set an initial counter value.

finish is any valid integer expression used to specify an upper limit for counter.
value is any valid integer expression whose value is added to counter after each
iteration of the statement block.

When the STEP keyword is not given, counter is incremented by 1.

statement is any instruction supported by the language.

If value is less than 0O, counter is decreased. In this case, start should be higher
than finish.

Pwn

No o

Usage:

The FOR instruction block executes the statements up to the END FOR keyword a
specified number of times, or until EXIT FOR terminates the FOR statement.

The runtime system maintains the counter, whose value changes on each pass through
the statement block. On the first iteration through the loop, this counter is set to the initial
expression at the left of the TO keyword. For all further iterations, the value of the
increment expression in the STEP clause specification (1 by default) is added to the
counter in each pass through the block of statements. When the sign of the difference
between the values of counter and the finish expression at the right of the TO keyword
changes, the runtime system exits from the FOR loop.

The FOR loop terminates after the iteration for which the left- and right-hand expressions
are equal. Execution resumes at the statement following the END FOR keywords. If either

268

Applications

expression returns NULL, the loop cannot terminate, because the Boolean expression
"left = right" cannot become TRUE.

Tips:
1. If the FOR loop includes one or more SQL statements that modify the database,

then it is advisable that the entire FOR loop be within a transaction. You may also
PREPARE the SQL statements before the loop to increase performance.

Warnings:
1. counter MUST be of type INTEGER or SMALLINT.
2. value = 0 causes an unending loop unless there is an adequate EXIT FOR
statement.
3. NULL for start, finish or value is treated as 0. There is no way to catch this as an
error.

4. If statement modifies the value of counter, you might get unexpected results at
runtime. In this case, it is recommended that you use a WHILE loop instead.

5. Itis highly recommended that you ensure that statement does not modify the
values of start, finish and/or value.

Example:

01 MAIN

02 DEFINE i, i_m
03 LET i_min = 1
04 LET i_max = 10

05 DISPLAY *Look how well 1 can count from * || i_min || ™ to ™ ||
i_max

06 DISPLAY "1 can count forwards..."

07 FOR 1 = i_min TO i_max

in, i_max INTEGER

08 DISPLAY 1

09 END FOR

10 DISPLAY "... and backwards!"
11 FOR 1 = i_max TO i_min STEP -1
12 DISPLAY 1

13 END FOR

14 END MAIN

GOTO

Purpose:

The GOTO instruction transfers program control to a labeled line within the same program
block.

269

Genero Business Development Language

Syntax:
GOTO [:] label-id

Notes:

1. label-id is the name of the LABEL statement to jump to.
2. The label can be defined before or after the GOTO statement.

Tips:

1. GOTO statements can reduce the readability of your program source and result in

infinite loops. It is recommended that you use FOR, WHILE, IF, CASE, CALL
statements instead.

2. The GOTO statement can be used in a WHENEVER statement to handle
exceptions.

Warnings:

1. The LABEL and GOTO statements must use the label-id within a single MAIN,
FUNCTION, or REPORT program block.

Example:

01 MAIN

02 DEFINE exit_code INTEGER

03 DEFINE 1 _status INTEGER

04 WHENEVER ANY ERROR GOTO _error
05 DISPLAY 1/0

06 GOTO _noerror

07 LABEL _error:

08 LET 1 _status = STATUS

09 DISPLAY "The error number ', 1 status, ' has occurred."
10 DISPLAY "Description : ", err_get(l_status)

11 LET exit_code = -1

12 GOTO :_exit

13 LABEL _noerror:

14 LET exit_code = 0

15 GOTO _exit

16 LABEL _exit:

17 EXIT PROGRAM (exit_code)
18 END MAIN

EXIT

Purpose:

The EXIT instruction transfers control out of a control structure (a block, a loop, a CASE

statement, or an interface instruction).

270

Applications

Syntax:

EXIT { CASE

{ | FOR | MENU | CONSTRUCT | FOREACH | REPORT | DISPLAY |
INPUT | WHILE }

Notes:

1. The EXIT instruction instruction must be used inside the control structure
specified by instruction. For example, EXIT FOR can only appear inside a FOR
... END FOR program structure.

2. EXIT DISPLAY exits the DISPLAY ARRAY instruction and EXIT INPUT exits both
INPUT and INPUT ARRAY blocks.

Tips:

1. To exit a function, use the RETURN instruction.
2. To exit a program, use the EXIT PROGRAM instruction.

Example:

01 MAIN

02 DEFINE 1 INTEGER
03 LET 1 =0

04 WHILE TRUE

05 DISPLAY "This is an infinite loop. How would you get out of here
o

06 LET i =i + 1

07 IF 1 = 100 THEN

08 EXIT WHILE

09 END IF

10 END WHILE
11 DISPLAY "Well done.™
12 END MAIN

IF

Purpose:
The IF instruction executes a group of statements conditionally.

Syntax:

IF condition THEN
statement
[---1

[ELSE
statement

L---1

271

Genero Business Development Language

1
END IF

Notes:

1. condition is any boolean expression supported by the language.
2. statement is any instruction supported by the language.

Usage:

If condition is TRUE, the runtime system executes the block of statements following the
THEN keyword, until it reaches either the ELSE keyword or the END 1F keywords and
resumes execution after the END IF keywords.

If condition is FALSE, the runtime system executes the block of statements between the
ELSE keyword and the END IF keywords. If ELSE is absent, it resumes execution after
the END IF keywords.

Tips:
1. To test the equality of integer expressions, both " =" and " == " operators may be
used. IF 5 = 5 THEN ... canbewritten IF 5 == 5 THEN ...
Warnings:

1. A NULL expression is considered as FALSE. Use the 1S NULL keyword to test if
an expression is null.

Example:

01 MAIN

02 DEFINE name CHAR(20)

03 LET name = "John Smith"

04 IF name MATCHES "John*" THEN

05 DISPLAY "The first name is too common to be displayed."

06 IF name MATCHES ""*Smith" THEN

07 DISPLAY "Even the last name is too common to be displayed."
08 END IF

09 ELSE

10 DISPLAY "The name is * || name || ™.

11 END IF

12 END MAIN

272

Applications

LABEL

Purpose:

The LABEL instruction declares a statement label, making the next statement one to
which a GOTO statement can transfer program control.

Syntax:

LABEL label-id:
Notes:

1. label-id is a unique identifier in a MAIN, REPORT, or FUNCTION program block.
2. The label-id must be followed by a colon (:).

Example:

01 MAIN

02 DISPLAY '"Line 2"
03 GOTO line5

04 DISPLAY "Line 4"
05 LABEL line5:

06 DISPLAY 'Line 6"
07 END MAIN

SLEEP
Purpose:
The SLEEP instruction causes the program to pause for the specified number of seconds.

Syntax:

SLEEP seconds
Notes:
1. seconds is a valid integer expression.
Warnings:
1. If seconds <0 or second IS NULL, the program does not stop.

Example:

01 MAIN

273

Genero Business Development Language

02 DISPLAY "Please wait 5 seconds..."
03 SLEEP 5

04 DISPLAY "Thank you."

05 END MAIN

WHILE

Purpose:

The WHILE statement executes a block of statements while a condition that you specify
in a boolean expression is true.

Syntax:

WHILE b-expression
statement

L---1
END WHILE

Notes:

1. b-expression is any valid boolean expression.
2. statement is any instruction supported by the language.

Usage:

If b-expression is TRUE, the runtime system executes the statements that follow it, down
to the END WHILE keyword. The runtime system again evaluates the b-expression, and if
it is still TRUE, the runtime system executes the same statement block. The runtime
system usually stops when b-expression becomes FALSE or statement is EXIT WHILE.

If b-expression is FALSE, the runtime system passes control to the statement that follows
END WHILE.

Tips:

1. If b-expression is complex, it is much better to define a boolean [INTEGER or
CHAR(1)] variable that takes the result of b-expression and use this variable for
b-expression.

2. AWHILE loop canreplacea FOR loop:FOR i =1 TO 5 ; ; END FOR is
equivalentto LET i = 1 ; WHILE i <=5 ; ... ; LET i =i + 1 ; END
WHILE

3. In order to avoid unending loops, make sure that either statement will cause b-
expression to be FALSE, or that the EXIT WHILE statement will be executed.

274

Applications

Example:

01 MAIN

02 DEFINE Ival INTEGER

03 DEFINE Imin INTEGER

04 DEFINE Imax INTEGER

05 DEFINE Inb INTEGER

06 DEFINE lIcnt INTEGER

07 DEFINE Iguess INTEGER

08 DISPLAY "NumberGuess program®

09 LET Inb = 20

10 LET Imin =0

11 LET Imax = 1000

12 LET Ival = 753 --random value between Imin and Imax

13 DISPLAY "Guess a number between ™ |] Imin |] ™ and ™ || Imax
14 LET Iguess = (Imax - Imin) / 2

15 LET Ient = 1

16 WHILE lIguess <> lval AND lIcnt < Inb

17 DISPLAY "\n Attempt number " |] lIcnt

18 DISPLAY "™ Your guess is " || lguess || ', hopefully between "
Il Imin |J] ™ and " || Imax

19 IF Ival > lIguess THEN

20 DISPLAY "™ Try higher."

21 LET Imin = lguess

22 ELSE

23 DISPLAY "™ Try lower."

24 LET Imax = lguess

25 END IF

26 LET Iguess = Imin + (Imax - Imin) / 2

27 LET Icnt = lcnt + 1

28 END WHILE

29 IF Icnt >= Inb THEN

30 DISPLAY "Sorry, the maximum number of attempts has been
reached. The number was ™ |] lIval

31 ELSE

32 DISPLAY "Well done. You have found the number * || Ival || ™ in
" 1] Ient || " attempts.™

33 END IF

34 END MAIN

275

Genero Business Development Language

Functions

Summary:
e Definition
e Usage
e Examples

See also: Variables, Data Types, Flow Control

Definition
Purpose:

The FUNCTION statement defines a named program block containing a set of statements
to be executed when the function is invoked.

Syntax:

FUNCTION function-name ([argument [,...]])

[define-statement | constant-statement]

{ fgl-statement | sgl-statement | return-statement } [...]
END FUNCTION

where return-statement is:

RETURN expression [,-..]

Notes:

1. function-name is the identifier that you declare for this function and must be
unigue among all the names of functions or reports in the same program.
argument is the name of a formal argument to this function. Its scope of
reference is local to the function.

define-statement is used to define function arguments and local variables.
constant-statement can be used to declare local constants.

fgl-statement is any instruction supported by the language.

sql-statement is any static SQL instruction supported by the language.
expression is any expression supported by the language.

N

Nookw

Usage

The FUNCTION block both declares and defines a function. The function declaration
specifies the identifier of the function and the identifiers of its formal arguments (if any).

276

Applications

A FUNCTION block cannot appear within the MAIN block, in a REPORT block, or within
another FUNCTION block.

The data type of each formal argument of the function must be specified by a DEFINE
statement that immediately follows the argument list. The actual argument in a call to the
function need not be of the declared data type of the formal argument. If data type
conversion is not possible, a runtime error occurs.

Function arguments are passed by value (i.e. value is copied on the stack) for basic data
types and records, while dynamic arrays and objects are passed by reference (i.e. a
handle to the original data is copied on the stack and thus allows modification of the
original data inside the function).

Local variables are not visible in other program blocks. The identifiers of local variables
must be unique among the variables that are declared in the same FUNCTION
definition. Any global or module variable that has the same identifier as a local variable,
however, is not visible within the scope of the local variable.

A function that returns one or more values to the calling routine must include the return-
statement. Values specified in RETURN must correspond in number and position, and
must be of the same or of compatible data types, to the variables in the RETURNING
clause of the CALL statement. If the function returns a single value, it can be invoked as
an operand within a expression. Otherwise, you must invoke it with the CALL statement
with a RETURNING clause. An error results if the list of returned values in the RETURN
statement conflicts in number or in data type with the RETURNING clause of the CALL
statement that invokes the function.

Any GOTO or WHENEVER ERROR GOTO statement in a function must reference a
statement label within the same FUNCTION block.

A function can invoke itself recursively with a CALL statement.
Warnings:
1. If no argument is specified, an empty argument list must still be supplied,
enclosed between the parentheses.

2. If the name is also the name of a built-in function, an error occurs at link time,
even if the program does not reference the built-in function.

Examples

Example 1:

01 FUNCTION findCustomerNumber(name)
02 DEFINE name CHAR(50)
03 DEFINE num INTEGER

277

Genero Business Development Language

04 CONSTANT sqgltxt = "SELECT cust _num FROM customer WHERE cust_name =
o

05 PREPARE stmt FROM sqltxt

06 EXECUTE stmt INTO num USING name

07 IF SQLCA.SQLCODE = 100 THEN

08 LET num =-1

09 END IF

10 RETURN num

11 END FUNCTION

278

Reports
Summary:
e What are reports?
¢ Report Engine Configuration
e Report Driver Instructions
e Report Routine Structure
e Statements in Report Routine
¢ Report Routine Prototype
¢ Two-Pass Reports
e Report Instructions
o EXIT REPORT
o PRINT
o PRINTX
o NEED
o PAUSE
o SKIP
e Report Operators
o COLUMN
o LINENO
o PAGENO
o SPACES
o WORDWRAP
o USING
o ASCII
e Report Aggregate Functions
o COUNT(*)
o PERCENT(*)
o SUM()
o AVG()
o MIN()
o MAX()

See also: Programs, Variables, Result set

Applications

Definition

A report can arrange and format the data according to your instructions and display the

output on the screen, send it to a printer, or store it as a file for future use.
To implement a report, a program must include two distinct components:

e The Report Driver specifies what data the report includes.
e The Report Routine formats the data for output.

279

Genero Business Development Language

The Report Driver retrieves the specified rows from a database, stores their values in
program variables, and sends these - one input record at a time - to the Report Routine.
After the last input record is received and formatted, the runtime system calculates any
aggregate values based on all the data and sends the entire report to some output
device.

Fi5L Progran

| Dratabace Correction |

| START REPORT \
| Diatah ace Chmrsor I-:.'
+

FOEELACH Fetmaction |
"a Report. oty
| Eecord Wariahle |
3 |

[]
| OUTPUT TO EEPORET I—"—'—"

| / ||:| |

| FINISH FEPORT |,/ I]

By separating the two tasks of data retrieval and data formatting, the runtime system
simplifies the production of recurrent reports and makes it easy to apply the same report
format to different data sets.

The report engine supports the following features:

e The option to display report output to the screen for editing.

e Full control over page layout for your report, including first page header and
generic page headers, page trailers, columnar presentation, and special
formatting before groups and after groups sorted by value.

o Facilities for creating the report either from the rows returned by a cursor or from
input records assembled from any other source, such as output from several
different SELECT statements through the Report Driver.

o Control blocks to manipulate data from a database cursor on a row-by-row basis,
either before or after the row is formatted by the report.

e Aggregate functions that can calculate and display frequencies, percentages,
sums, averages, minimum, and maximum values.

e The USING operator and other built-in functions and operators for formatting and
displaying information in output from the report.

e The WORDWRAP operator to format long character strings that occupy multiple lines
of output from the report.

e The option to update the database or execute any sequence of SQL and other
statements while writing a report, if the intermediate values calculated by the
report meet specified criteria; for example, to write an alert message containing a
second report.

280

Applications

e Stopping a report in the report definition code, with EXIT REPORT or
TERMINATE REPORT.

The report engine supports one-pass reports and two-pass reports. The one-pass
requires sorted data to be produced by the report driver in order to handle before/after
groups properly. The two-pass record handles sort internally and does not need sorted
data from the report driver. During the first pass, the report engine sorts the data and
stores the sorted values in a temporary file in the database. During the second pass, it
calculates any aggregate values and produces output from data in the temporary files.

Report Engine Configuration

By default, GROUP aggregate functions such as SUM() return a NULL value if all items
values are NULL. You can force the report engine to return a zero decimal value with the
following FGLPROFILE setting:

Report.aggregateZero = {true|false}
When this entry is set to true, aggregate functions return zero when all values are NULL.

Default value is : false (Aggregate functions evaluate to NULL if all items are NULL)

The Report Driver

The Report Driver invokes the report, retrieves data, and sends the data (as input
records) to be formatted by the REPORT program block (or routine). A Report Driver can
be part of the MAIN program block, or it can be in one or more functions. The report
driver typically consists of a loop (such as WHILE, FOR, or FOREACH) with the
following statements to process the report:

Instruction Description

START REPORT This statement is required to instantiate the report
driver.

OUTPUT TO Provide data for one row to the report driver.

REPORT

FINISH REPORT Normal termination of the report.

TERMINATE Cancels the processing of the report.

REPORT

281

Genero Business Development Language

Usage:

A report driver is started by the START REPORT instruction. Once started, data can be
given to the report driver through the OUTPUT TO REPORT statement. To instruct the
report engine to terminate output processing, use the FINISH REPORT instruction.

It is possible to manage several report drivers at the same time. It is even possible to
invoke a report driver inside a REPORT program block, which is different from the current
driver.

The programmer must make sure that the runtime system will always execute these
instructions in the following order:

1. START REPORT
2. OUTPUT TO REPORT
3. FINISH REPORT

Example:

01 DATABASE stores?

02 MAIN

03 DEFINE rcust RECORD LIKE customer.*

04 DECLARE cul CURSOR FOR SELECT * FROM customer
05 START REPORT myrep

06 FOREACH cul INTO rcust.*

07 OUTPUT TO REPORT myrep(rcust.*)

08 END FOREACH

09 FINISH REPORT myrep

10 END MAIN

START REPORT

Syntax:

START REPORT report-name
L
TO
{

SCREEN

PRINTER

FILE filename

PIPE program { IN FORM MODE | IN LINE MODE }
OUTPUT

""SCREEN"'

"PRINTER"

"FILE™ DESTINATION filename

"PIPE { IN FORM MODE | IN LINE MODE }' DESTINATION program
variable [DESTINATION { program | filename }]

=~

282

Applications

}
1
L
WITH
{
[LEFT MARGIN = m-left [,]]
[RIGHT MARGIN = m-right [,]]
[TOP MARGIN = m-top [,]1 1
[BOTTOM MARGIN = m-bottom [,]]
[PAGE LENGTH = m-length [,]]
[TOP OF PAGE = c-top [.]1 1
bs
1
1
Notes:

1. The START REPORT statement supersedes any clause in the output section of the
report definition.

2. report-name is a report that has been defined as a REPORT routine.

3. filename is a string expression specifying the file that receives output.

4. program is a string expression specifying a program, a shell script, or a
command line to receive output.

5. variable is a variable of type STRING that specifies one of: SCREEN, PRINTER,
FILE, PIPE, PIPE IN LINE MODE, PIPE IN FORM MODE. If PRINTER is specified,
the DBPRINT environment variable specifies which printer.

6. The values corresponding to a margin and page length must be valid integer
expressions.

7. The margins can be defined in any order, but a comma "," is required to separate
two page dimensions statements.

8. The comma "," cannot appear before the first or after the last page dimensions
statements.

9. me-left is the left margin in number of characters.

10. m-right is the right margin in number of characters.

11. m-top is the top margin in number of lines.

12. m-bottom is the bottom margin in number of lines.

13. c-top is a string that defines the page-eject character sequence.

Tips:

1. The START REPORT statement is handy to dynamically set up the destination and

/ or page setup of a report.
Warnings:
1. If a START REPORT statement references a report that is already running, the

report is reinitialized; any output might be unpredictable.

283

Genero Business Development Language

OUTPUT TO REPORT

Syntax:

OUTPUT TO REPORT report-name (parameters)
Notes:

1. report-name is the name of the report to which the parameters should be sent.
2. parameters is the data that needs to be sent to the report. As in a function call,
parameters must match the DEFINE section of the report routine.

Warnings:

1. At compile time, the number of parameters is not checked against the DEFINE
section of the report routine. This is a known behavior of the language.

FINISH REPORT

Syntax:

FINISH REPORT report-name
Notes:

1. report-name is the name of the report to be ended.
2. FINISH REPORT must be the last statement in the report driver.

Usage:

FINISH REPORT closes the report driver. Therefore, it must be the last statement in the
report driver and must follow a START REPORT statement that specifies the name of the
same report.

FINISH REPORT does the following:

1. Completes the second pass, if report is a two-pass report. These 'second pass'

activities handle the calculation and output of any aggregate values that are

based on all the input records in the report, such as COUNT(*) or PERCENT (*)

with no GROUP qualifier.

Executes any AFTER GROUP OF control blocks.

3. Executes any PAGE HEADER, ON LAST ROW, and PAGE TRAILER control blocks to
complete the report.

4. Copies data from the output buffers of the report to the destination.

5. Closes the Select cursor on any temporary table that was created to order the
input records or to perform aggregate calculations.

N

284

Applications

TERMINATE REPORT
Syntax:
TERMINATE REPORT report-name
Notes:
1. report-name is the name of the report to be canceled.
Usage:
TERMINATE REPORT cancels the report processing. It is typically used when the program
(or the user) becomes aware that a problem prevents the report from producing part of
its intended output, or when the user interrupted the report processing.
TERMINATE REPORT has the following effects:
e« Terminates the processing of the current report.
o Deletes any intermediate files or temporary tables that were created in

processing the report.

The EXIT REPORT instruction has the same effect, except that it can be used inside the
report definition.

Report Definition

Syntax:

REPORT report-name (argument-list)
[define-section]

[output-section]
[sort-section]
format-section]

END REPORT

=

where define-section is a function parameter definition using the DEFINE instruction.
You usually define one or more record variables:

DEFINE variable RECORD
member data-type

[.---1
END RECORD
where output-section is:

285

Genero Business Development Language

OUTPUT
"~ REPORT TO

SCREEN

PRINTER

[FILE] filename

PIPE [IN FORM MODE | IN LINE MODE] program

[Pl
I~
e e e

WITH]

LEFT MARGIN m-left]
RIGHT MARGIN m-right]
TOP MARGIN m-top]
BOTTOM MARGIN m-bottom]

PAGE LENGTH m-length]
TOP OF PAGE c-top]

[e e ey

1
where sort-section is:

ORDER [EXTERNAL] BY variable-list

where format-section is:

FORMAT EVERY ROW

or:

FORMAT

[FIRST 1 PAGE HEADER

ON EVERY ROW
BEFORE GROUP OF variable
AFTER GROUP OF variable
PAGE TRAILER

ON LAST ROW
b4
[fgl-statement | sgl-statement | report-statement]
[---1
[---1
Notes:

1. The define-section declares the data types of local variables used within the
report, and of any variables (the input records) that are passed as arguments to
the report by the calling statement. Reports without arguments or local variables
do not require a DEFINE section.

2. The output-section can set margin and page size values, and can also specify
where to send the formatted output. Output from the report consists of
successive pages, each containing a fixed number of lines whose margins and
maximum number of characters are fixed.

286

Applications

3. The sort-section specifies how the rows have to be sorted. The specified sort
order determines the order in which the runtime system processes any GROUP OF
control blocks in the FORMAT section.

4. The format-section is required. It specifies the appearance of the report, including
page headers, page trailers, and aggregate functions of the data. It can also
contain control blocks that specify actions to take before or after specific groups
of rows are processed. (Alternatively, it can produce a default report by only
specifying FORMAT EVERY ROW).

Usage:

The report definition formats input records. Like the FUNCTION or MAIN statement, it is a
program block that can be the scope of local variables. It is not, however, a function; it is
not reentrant, and CALL cannot invoke it. The report definition receives data from its
driver in sets called input records. These records can include program records, but other
data types are also supported. Each input record is formatted and printed as specified by
control blocks and statements within the report definition. Most statements and functions
can be included in a report definition, and certain specialized statements and operators
for formatting output can appear only in a report definition.

Like MAIN or FUNCTION, the report definition must appear outside any other program
block. It must begin with the REPORT statement and must end with the END REPORT
keywords.

Some statements are prohibited in a REPORT program control block.

The DEFINE Section

Syntax:

See the DEFINE statement.

Usage:

This section declares a data type for each formal argument in the REPORT prototype and
for any additional local variables that can be referenced only within the REPORT program
block. The DEFINE section is required if you pass arguments to the report or if you
reference local variables in the report.

For declaring local variables, the same rules apply to the DEFINE section as to the
DEFINE statement in MAIN and FUNCTION program blocks. Two exceptions, however,

restrict the data types of formal arguments:

e Report arguments cannot be of type ARRAY.
e Report arguments cannot be records that include ARRAY members.

287

Genero Business Development Language

Data types of local variables that are not formal arguments are unrestricted. You must
include arguments in the report prototype and declare them in the DEFINE section, if any
of the following conditions is true:

e If you specify FORMAT EVERY ROW to create a default report, you must pass all the
values for each record of the report.

o If an ORDER BY section is included, you must pass all the values that ORDER BY
references for each input record of the report.

e If you use the AFTER GROUP OF control block, you must pass at least the
arguments that are named in that control block.

e If an aggregate that depends on all records of the report appears anywhere
except in the ON LAST ROW control block, you must pass each of the records of
the report through the argument list.

Aggregates dependent on all records include:

e GROUP PERCENT(*) (anywhere in a report).
¢ Any aggregate without the GROUP keyword (anywhere outside the ON LAST ROW
control block).

If your report calls an aggregate function, an error might result if any argument of an
aggregate function is not also a format argument of the report. You can, however, use
global or module variables as arguments of aggregates if the value of the variable does
not change while the report is executing.

A report can reference variables of global or module scope that are not declared in the
DEFINE section. Their values can be printed, but they can cause problems in aggregates
and in BEFORE GROUP OF and AFTER GROUP OF clauses. Any references to non-local
variables can produce unexpected results, however, if their values change while a two-
pass report is executing.

The OUTPUT Section

Syntax:

OUTPUT

L
REPORT TO

SCREEN
| PRINTER
| [FILE] filename
| PIPE [IN FORM MODE | IN LINE MODE] program

[P el
M~

WITH]
LEFT MARGIN m-left]

= =

288

Applications

[RIGHT MARGIN m-right]
TOP MARGIN m-top]
BOTTOM MARGIN m-bottom]

PAGE LENGTH m-length]
TOP OF PAGE c-top]

[y ey

1
Notes:

1. This section is superseded by any corresponding START REPORT specifications.
Any output destination or page setup definition may be overridden by the report
driver with the START REPORT instruction.

2. program is a string literal, global, or constant specifying the name of a program,

shell script, command receiving the output.

filename is a string literal, global, or constant specifying the file which receives

the output of the report.

m-left is the left margin in number of characters.

m-right is the right margin in number of characters.

m-top is the top margin in number of lines.

m-bottom is an integer the bottom margin in number of lines.

c-top is a string that defines the page-eject character sequence.

w

© N OA

Usage:

The OUTPUT section can specify the destination and dimensions for output from the
report and the page-eject sequence for the printer. If you omit the OUTPUT section, the
report uses default values to format each page. This section is superseded by any
corresponding START REPORT specifications.

The OUTPUT section can direct the output from the report to a printer, file, or pipe, and
can initialize the page dimensions and margins of report output. If PRINTER is specified,
the DBPRINT environment variable specifies which printer.

The START REPORT statement of the report driver can override all of these specifications
by assigning another destination in its TO clause or by assigning other dimensions,
margins, or another page-eject sequence in the WITH clause.

Because the size specifications for the dimensions and margins of a page of report
output that the OUTPUT section can specify must be literal integers, you might prefer to
reset these values in the START REPORT statement, where you can use variables to
assign these values dynamically at runtime.

289

Genero Business Development Language

The ORDER BY Section

Purpose:

This section specifies how the variables of the input records are to be sorted. It is
required if the report driver does not send sorted data to the report. The specified sort
order determines the order in which the runtime system processes any GROUP OF control
blocks in the FORMAT section.

Syntax:

ORDER [EXTERNAL] BY variable [DESC | ASC]

L.---1
Notes:

1. The EXTERNAL keyword specifies that the data is sent to the report in a sorted
order. Without the EXTERNAL keyword, the report driver sorts the data before
sending it to the report program block.

2. variable identifies one of the variables passed to the report routine to be used for
sorting rows. The variables must be separated by a comma.

3. The DESC or ASC options defines the sort order

Usage:

The ORDER BY section specifies a sort list for the input records. Include this section if
values that the report definition receives from the report driver are significant in
determining how BEFORE GROUP OF or AFTER GROUP OF control blocks will process the
data in the formatted report output.

If you omit the ORDER BY section, the runtime system processes input records in the
order received from the report driver and processes any GROUP OF control blocks in their
order of appearance in the FORMAT section. If records are not sorted in the report driver,
the GROUP OF control blocks might be executed at random intervals (that is, after any
input record) because unsorted values tend to change from record to record.

If you specify only one variable in the GROUP OF control blocks, and the input records are
already sorted in sequence on that variable by the SELECT statement, you do not need to
include an ORDER BY section in the report.

Specify ORDER EXTERNAL BY if the input records have already been sorted by the
SELECT statement. The list of variables after the keywords ORDER EXTERNAL BY control
the execution order of GROUP BY control blocks.

Without the EXTERNAL keyword, the report is a two-pass report, meaning that the report
engine processes the set of input records twice. During the first pass, the report engine
sorts the data and stores the sorted values in a temporary file in the database. During
the second pass, it calculates any aggregate values and produces output from data in
the temporary files.

290

Applications

With the EXTERNAL keyword, the report engine only needs to make a single pass through
the data: it does not need to build the temporary table in the database for sorting the
data. Specifying EXTERNAL to instruct the report engine not to sort the records again
might result in an improvement in performance.

The FORMAT Section

Purpose:

A report definition must contain a FORMAT section. The FORMAT section determines how
the output from the report will look. It works with the values that are passed to the
REPORT program block through the argument list or with global or module variables in
each record of the report. In a source file, the FORMAT section begins with the FORMAT
keyword and ends with the END REPORT keywords.

Syntax:

Default format;

FORMAT EVERY ROW

Custom format:

FORMAT
control-block
[fgl-statement | sgl-statement | report-statement]
[---1
[---1

where control-block can be one of:

FIRST] PAGE HEADER

ON EVERY ROW

BEFORE GROUP OF variable
AFTER GROUP OF variable
PAGE TRAILER

ON LAST ROW

[e o e e [A

Notes:

1. fgl-statement is any language instruction supported in the report routine.
2. sgl-statement is any SQL statement supported by the language.
3. report-statement is any report-specific instruction.

201

Genero Business Development Language

Usage:
The FORMAT section is made up of the following Control Blocks:

FIRST PAGE HEADER
PAGE HEADER

PAGE TRAILER
BEFORE GROUP OF
AFTER GROUP OF
ON EVERY ROW

ON LAST ROW

If you use the FORMAT EVERY ROW, no other statements or control blocks are valid. The
EVERY ROW keywords specify a default output format, including every input record that is
passed to the report.

Control blocks define the structure of a report by specifying one or more statements to
be executed when specific parts of the report are processed.

If a report driver includes START REPORT and FINISH REPORT statements, but no data
records are passed to the report, no control blocks are executed. That is, unless the
report executes an OUTPUT TO REPORT statement that passes at least one input record
to the report; then neither the FIRST PAGE HEADER control block nor any other control
block is executed

Apart from BEFORE GROUP OF and AFTER GROUP OF, each control block must appear
only one time.

More complex FORMAT sections can contain control blocks like ON EVERY ROW or BEFORE
GROUP OF, which contain statements to execute while the report is being processed.
Control blocks can contain report execution statements and other executable
statements.

See also statements and report format section.

A control block may invoke most fgl-statements and sql-statements, except those listed
in prohibited statements.

The BEFORE/AFTER GROUP OF control blocks can include aggregate functions to instruct
the report engine to automatically compute such values.

A report-statement is a statement specially designed for the report format section. It
cannot be used in any other part of the program.

The sequence in which the BEFORE GROUP OF and AFTER GROUP OF control blocks are
executed depends on the sort list in the ORDER BY section, regardless of the physical
sequence in which these control blocks appear within the FORMAT section.

292

Applications

FORMAT EVERY ROW

A report routine written with FORMAT EVERY ROW formats the report in a simple default
format, containing only the values that are passed to the REPORT program block through
its arguments, and the names of the arguments. You cannot modify the EVERY ROW
statement with any of the statements listed in report execution statements, and neither
can you include any control blocks in the FORMAT section.

The report engine uses as column headings the names of the variables that the report
driver passes as arguments at runtime. If all fields of each input record can fit
horizontally on a single line, the default report prints the names across the top of each
page and the values beneath. Otherwise, it formats the report with the names down the
left side of the page and the values to the right, as in the previous example. When a
variable contains a null value, the default report prints only the name of the variable, with
nothing for the value.

The following example is a brief report specification that uses FORMAT EVERY ROW. We
assume here that the cursor that retrieved the input records for this report was declared
with an ORDER BY clause, so that no ORDER BY section is needed in this report definition:

01 DATABASE stores?7

02

03 REPORT simple(order_num, customer_num, order_date)
04

05 DEFINE order_num LIKE orders.order_num,

06 customer_num LIKE orders.customer_num,
07 order_date LIKE orders.order_date

08

09 FORMAT EVERY ROW

10

11 END REPORT

The above example would produce the following output:

order_num customer_num order_date

1001 104 01/20/1993
1002 101 06/01/1993
1003 104 10/12/1993
1004 106 04/12/1993
1005 116 12/04/1993
1006 112 09/19/1993
1007 117 03/25/1993
1008 110 11/17/1993
1009 111 02/14/1993
1010 115 05/29/1993
1011 104 03/23/1993
1012 117 06/05/1993

293

Genero Business Development Language

FIRST PAGE HEADER

This control block specifies the action that the runtime system takes before it begins
processing the first input record. You can use it, for example, to specify what appears
near the top of the first page of output from the report.

Because the runtime system executes the FIRST PAGE HEADER control block before
generating any output, you can use this control block to initialize variables that you use
in the FORMAT section.

If a report driver includes START REPORT and FINISH REPORT statements, but no data
records are passed to the report, this control block is not executed. That is, unless the
report executes an OUTPUT TO REPORT statement that passes at least one input record
to the report, neither the FIRST PAGE HEADER control block nor any other control block is
executed.

As its name implies, you can also use a FIRST PAGE HEADER control block to produce a
title page as well as column headings. On the first page of a report, this control block
overrides any PAGE HEADER control block. That is, if both a FIRST PAGE HEADER and a
PAGE HEADER control block exist, output from the first appears at the beginning of the
first page, and output from the second begins all subsequent pages.

The TOP MARGIN (set in the OUTPUT section) determines how close the header appears
to the top of the page.

Warnings:

1. You cannotinclude a SKIP integer LINES statement inside a loop within this
control block.

2. The NEED statement is not valid within this control block.

3. Ifyou use an IF...THEN...ELSE statement within this control block, the number of
lines displayed by any PRINT statements following the THEN keyword must be
equal to the number of lines displayed by any PRINT statements following the
ELSE keyword.

4. If you use a CASE, FOR, or WHILE statement that contains a PRINT statement
within this control block, you must terminate the PRINT statement with a
semicolon (;). The semicolon suppresses any LINEFEED characters in the loop,
keeping the number of lines in the header constant from page to page.

5. You cannot use a PRINT filename statement to read and display text from a file
within this control block

Corresponding restrictions also apply to CASE, FOR, IF, NEED, SKIP, PRINT, and WHILE
statements in PAGE HEADER and PAGE TRAILER control blocks.

294

Applications

PAGE HEADER

This control block is executed whenever a new page is added to the report. The PAGE
HEADER control block specifies the action that the runtime takes before it begins
processing each page of the report. It can specify what information, if any, appears at
the top of each new page of output from the report.

The TOP MARGIN specification (in the OUTPUT section) affects how many blank lines
appear above the output produced by statements in the PAGE HEADER control block.

You can use the PAGENO operator in a PRINT statement within a PAGE HEADER control
block to automatically display the current page number at the top of every page.

The FIRST PAGE HEADER control block overrides this control block on the first page of a
report.

New group values can appear in the PAGE HEADER control block when this control block
is executed after a simultaneous end-of-group and end-of-page situation.

The runtime system delays the processing of the PAGE HEADER control block until it
encounters the first PRINT, SKIP, or NEED statement in the ON EVERY ROW, BEFORE
GROUP OF, or AFTER GROUP OF control block. This order guarantees that any group
columns printed in the PAGE HEADER control block have the same values as the columns
printed in the ON EVERY ROW control block.

Warnings:

1. Warnings that apply to FIRST PAGE HEADER also apply to PAGE HEADER.

PAGE TRAILER

The PAGE TRAILER control block specifies what information, if any, appears at the
bottom of each page of output from the report.

The runtime system executes the statements in the PAGE TRAILER control block before
the PAGE HEADER control block when a new page is needed. New pages can be initiated
by any of the following conditions:

e PRINT attempts to print on a page that is already full.

e SKIP TO TOP OF PAGE is executed.

e SKIP n LINES specifies more lines than are available on the current page.
e NEED specifies more lines than are available on the current page.

You can use the PAGENO operator in a PRINT statement within a PAGE TRAILER control
block to automatically display the page number at the bottom of every page, as in the
following example:

295

Genero Business Development Language

01 PAGE TRAILER
02 PRINT COLUMN 28, PAGENO USING "page <<<<"

The BOTTOM MARGIN specification (in the OUTPUT section) affects how close to the
bottom of the page the output displays the page trailer.

Warnings:

1. Warnings that apply to FIRST PAGE HEADER also apply to PAGE TRAILER.

BEFORE/AFTER GROUP OF

The BEFORE/AFTER GROUP OF control blocks specify what action the runtime system
takes respectively before or after it processes a group of input records. Group hierarchy
is determined by the ORDER BY specification in the SELECT statement or in the report
definition.

A group of records is all of the input records that contain the same value for the variable
whose name follows the AFTER GROUP OF keywords. This group variable must be
passed through the report arguments. A report can include no more than one AFTER
GROUP OF control block for any group variable.

When the runtime system executes the statements in a BEFORE/AFTER GROUP OF
control block, the report variables have the values from the first / last record of the new
group. From this perspective, the BEFORE/AFTER GROUP OF control block could be
thought of as the "on first / last record of group" control block.

Each BEFORE GROUP OF block is executed in order, from highest to lowest priority, at the
start of a report (after any FIRST PAGE HEADER or PAGE HEADER control blocks, but
before processing the first record) and on these occasions:

¢ Whenever the value of the group variable changes (after any AFTER GROUP OF
block for the old value completes execution)

e Whenever the value of a higher-priority variable in the sort list changes (after any
AFTER GROUP OF block for the old value completes execution)

The runtime system executes the AFTER GROUP OF control block on these occasions:

¢ Whenever the value of the group variable changes.

e Whenever the value of a higher-priority variable in the sort list changes.

e At the end of the report (after processing the last input record but before the
runtime system executes any ON LAST ROW or PAGE TRAILER control blocks). In
this case, each AFTER GROUP OF control block is executed in ascending priority.

How often the value of the group variable changes depends in part on whether the input
records have been sorted by the SELECT statement:

296

Applications

e If records are already sorted, the BEFORE/AFTER GROUP OF block executes
before the runtime system processes the first record of the group.

e If records are not sorted, the BEFORE GROUP OF block might be executed after
any record because the value of the group variable can change with each record.
If no ORDER BY section is specified, all BEFORE/AFTER GROUP OF control blocks
are executed in the same order in which they appear in the FORMAT section. The
BEFORE/AFTER GROUP OF control blocks are designed to work with sorted data.

You can sort the records by specifying a sort list in either of the following areas:

e An ORDER BY section in the report definition
¢ The ORDER BY clause of the SELECT statement in the report driver

To sort data in the report definition (with an ORDER BY section), make sure that the name
of the group variable appears in both the ORDER BY section and in the BEFORE GROUP OF
control block.

To sort data in the ORDER BY clause of a SELECT statement, perform the following tasks:

e Use the column name in the ORDER BY clause of the SELECT statement as the
group variable in the BEFORE GROUP OF control block.

e If the report contains BEFORE or AFTER GROUP OF control blocks, make sure that
you include an ORDER EXTERNAL BY section in the report to specify the
precedence of variables in the sort list.

If you specify sort lists in both the report driver and the report definition, the sort list in
the ORDER BY section of the REPORT takes precedence.

When the runtime system starts to generate a report, it first executes the BEFORE GROUP
OF control blocks in descending order of priority before it executes the ON EVERY ROW
control block. If the report is not already at the top of the page, the SKIP TO TOP OF
PAGE statement in a BEFORE GROUP OF control block causes the output for each group to
start at the top of a page.

If the sort list includes more than one variable, the runtime system sorts the records by
values in the first variable (highest priority). Records that have the same value for the
first variable are then ordered by the second variable and so on until records that have
the same values for all other variables are ordered by the last variable (lowest priority) in
the sort list.

The ORDER BY section determines the order in which the runtime system processes
BEFORE GROUP OF and AFTER GROUP OF control blocks. If you omit the ORDER BY
section, the runtime system processes any GROUP OF control blocks in the lexical order
of their appearance within the FORVMAT section.

If you include an ORDER BY section, and the FORMAT section contains more than one

BEFORE GROUP OF or AFTER GROUP OF control block, the order in which these control
blocks are executed is determined by the sort list in the ORDER BY section. In this case,

297

Genero Business Development Language

their order within the FORMAT section is not significant because the sort list overrides their
lexical order.

The runtime system processes all the statements in a BEFORE GROUP OF or AFTER
GROUP OF control block on these occasions:

e Each time the value of the current group variable changes.

o Each time the value of a higher-priority variable changes. How often the value of
the group variable changes depends in part on whether the input records have
been sorted. If the records are sorted, AFTER GROUP OF executes after the
runtime system processes the last record of the group of records; BEFORE GROUP
OF executes before the runtime system processes the first records with the same
value for the group variable. If the records are not sorted, the BEFORE GROUP OF
and AFTER GROUP OF control blocks might be executed before and after each
record because the value of the group variable might change with each record.
All the AFTER GROUP OF and BEFORE GROUP OF control blocks are executed in
the same lexical order in which they appear in the FORMAT section.

In the AFTER GROUP OF control block, you can include the GROUP keyword to qualify
aggregate report functions like AVG(), SUMQ), MINQ), or MAX():

01 AFTER GROUP OF r.order_num
02 PRINT r.order_date, 7 SPACES,

03 r.order_num USING"###&', 8 SPACES,
04 r.ship_date, " ',
05 GROUP SUM(r.total price) USING"$$$$,$$$,5.8&"

06 AFTER GROUP OF r.customer_num
07 PRINT 42 SPACES, "-——————-————-——————— "
08 PRINT 42 SPACES, GROUP SUM(r.total_price) USING"$$$$,$$$,$$$.&&"

Using the GROUP keyword to qualify an aggregate function is only valid within the AFTER
GROUP OF control block. It is not valid, for example, in the BEFORE GROUP OF control
block.

After the last input record is processed, the runtime system executes the AFTER GROUP
OF control blocks before it executes the ON LAST ROW control block.

ON EVERY ROW

The ON EVERY ROW control block specifies the action to be taken by the runtime system
for every input record that is passed to the report definition.

The runtime system executes the statements within the ON EVERY ROW control block for
each new input record that is passed to the report. The following example is from a
report that lists all the customers, their addresses, and their telephone numbers across
the page:

298

Applications

01 ON EVERY ROW
02 PRINT r.fname, ™ ™, r.Iname, ™ ",
03 r.addressl, " ", r.cust_phone

The runtime system delays processing the PAGE HEADER control block (or the FIRST
PAGE HEADER control block, if it exists) until it encounters the first PRINT, SKI1P, or NEED
statement in the ON EVERY ROW control block.

If a BEFORE GROUP OF control block is triggered by a change in the value of a variable,
the runtime system executes all appropriate BEFORE GROUP OF control blocks (in the
order of their priority) before it executes the ON EVERY ROW control block. Similarly, if
execution of an AFTER GROUP OF control block is triggered by a change in the value of a
variable, the runtime system executes all appropriate AFTER GROUP OF control blocks (in
the reverse order of their priority) before it executes the ON EVERY ROW control block.

ON LAST ROW

The ON LAST ROW control block specifies the action that the runtime system is to take
after it processes the last input record that was passed to the report definition and
encounters the FINISH REPORT statement.

The statements in the ON LAST ROW control block are executed after the statements in
the ON EVERY ROW and AFTER GROUP OF control blocks if these blocks are present.

When the runtime system processes the statements in an ON LAST ROW control block,
the variables that the report is processing still have the values from the final record that
the report processed. The ON LAST ROW control block can use aggregate functions to
display report totals.

Statements in Report Definition Routine
Prohibited Statements

Language statements that have no meaning inside a report definition routine are
prohibited. The following table shows some of the statements that are not valid within
any control block of the FORMAT section of a REPORT program block:

CONSTRUCT FUNCTION MENU

DEFER INPUT PROMPT
DEFINE INPUT ARRAY REPORT
DISPLAY ARRAY MATIN RETURN

299

Genero Business Development Language

A compile-time error is issued if you attempt to include any of these statements in a
control block of a report. You can call a function that includes some of these statements,
but this is not recommended.

Report Control Statements

The following statements can appear only in control blocks of the FORMAT section of a
report definition:

Statement Effect

EE;ERT Cancels processing of the report from within the report definition.

NEED Forces a page break unless some specified number of lines is
available on the current page of the report.

PAUSE Allows the user to control scrolling of screen output (This
statement has no effect if output is sent to any destination
except the screen.)

PRINT Appends a specified item to the output of the report.

SKIP Inserts blank lines into a report or forces a page break.

The Report Prototype

When defining a report routine, the report name must immediately follow the REPORT
keyword. The name must be unique among function and report names within the
program. Its scope is the entire program.

The list of formal arguments of the report must be enclosed in parentheses and
separated by commas. These are local variables that store values that the calling routine
passes to the report. The compiler issues an error unless you declare their data types in
the subsequent DEFINE section. You can include a program record in the formal
argument list, but you cannot append the .* symbols to the name of the record.
Arguments can be of any data type except ARRAY, or a record with an ARRAY member.

When you call a report, the formal arguments are assigned values from the argument list
of the OUTPUT TO REPORT statement. These actual arguments that you pass must
match, in number and position, the formal arguments of the REPORT routine. The data
types must be compatible, but they need not be identical. The runtime system can
perform some conversions between compatible data types.

The names of the actual arguments and the formal arguments do not have to match.
You must include the following items in the list of formal arguments:

¢ All the values for each row sent to the report in the following cases:
o If you include an ORDER BY section or GROUP PERCENT (*) function

300

Applications

o If you use a global aggregate function (one over all rows of the report)
anywhere in the report, except in the ON LAST ROW control block
o If you specify the FORMAT EVERY ROW default format
e Any variables referenced in the following group control blocks:
o AFTER GROUP OF
o BEFORE GROUP OF

Two-Pass Reports

The report engine supports one-pass reports and two-pass reports. The one-pass report
requires sorted data to be produced by the report driver in order to handle before/after
groups properly. The two-pass report handles sorts internally and does not need sorted
data from the report driver. During the first pass, the report engine sorts the data and
stores the sorted values in a temporary file in the database. During the second pass, it
calculates any aggregate values and produces output from data in the temporary files.

A report is defined as a two-pass report if it includes any of the following items:

e An ORDER BY section without the EXTERNAL keyword.

e The GROUP PERCENT(*) aggregate function anywhere in the report.

e Any aggregate function that has no GROUP keyword in any control block other
than ON LAST ROW.

Two-pass reports create temporary tables. The FINISH REPORT statement uses values
from these tables to calculate any global aggregates, and then deletes the tables.

Warnings:

1. Atwo-pass report is one that creates a temporary table. Therefore, the report
engine requires that the program be connected to a database when the report
runs. Make sure that the database server and the database driver supports
temporary table creation and indexes creation on temporary tables.

EXIT REPORT

Syntax:

EXIT REPORT
Usage:

EXIT REPORT cancels the report processing. It must appear in the FORMAT section of
the report definition. It is useful after the program (or the user) becomes aware that a
problem prevents the report from producing part of its intended output.

301

Genero Business Development Language

EXIT REPORT has the following effects:

e Terminates the processing of the current report.
o Deletes any intermediate files or temporary tables that were created in
processing the report.

You cannot use the RETURN statement as a substitute for EXIT REPORT. An error is
issued if RETURN is encountered within the definition of a report.

PRINT

Syntax:

PRINT

{ :

expression

COLUMN left-offset

PAGENO

LINENO

ns SPACES

[GROUP] COUNT(*) [WHERE condition]
[GROUP] PERCENT(*) [WHERE condition]
[GROUP] AVG(variable) [WHERE condition
[GROUP] SUM(variable) [WHERE condition
[GROUP] MIN(variable) [WHERE condition
[GROUP] MAX(variable) [WHERE condition
char-expression WORDWRAP [RIGHT MARGIN rm]
FILE "file-name"

Y L---1
o |

=

Notes:

expression is any legal language expression.

left-offset is described in COLUMN.

ns is described in SPACES.

char-expression is a string expression or a TEXT variable.

file-name is a string expression, or a quoted string, that specifies the name of a
text file to include in the output from the report.

arwnhPE

Warnings:

1. You cannot use PRINT to display a BYTE value. The string "<byte value>" is the
only output from PRINT of any object that is not of the TEXT data type.

Usage:

This statement can include character data in the form of an ASCI! file, a TEXT variable,
or a comma-separated expression list of character expressions in the output of the

302

Applications

report. (For TEXT variable or filename, you cannot specify additional output in the same
PRINT statement.) You cannot display a BYTE value. Unless its scope of reference is
global or the current module, any program variable in expression list must be declared in
the DEFINE section.

The PRINT FILE statement reads the contents of the specified filename into the report,
beginning at the current character position. This statement permits you to insert a
multiple-line character string into the output of a report. If file-name stores the value of a
TEXT variable, the PRINT FILE file-name statement has the same effect as specifying

PRINT text-variable. (But only PRINT variable can include the WORDWRAP

operator)

PRINT statement output begins at the current character position, sometimes called
simply the current position. On each page of a report, the initial default character position
is the first character position in the first line. This position can be offset horizontally and
vertically by margin and header specifications and by executing any of the following

statements:

e The SKIP statement moves it down to the left margin of a new line.
¢ The NEED statement can conditionally move it to a new page.
e The PRINT statement moves it horizontally (and sometimes down).

Unless you use the keyword CLIPPED or USING, values are displayed with widths
(including any sign) that depend on their declared data types.

Data Type Default Print With

BYTE N/A

CHAR Length of character data type declaration.

DATE DBDATE dependant, 10 if DBDATE = "MDY4/"

DATETIME From 2 to 25, as implied in the data type declaration.

DECIMAL (2 + p + s), where p is the precision and s is the
scale from the data type declaration.

FLOAT 14

INTEGER 11

INTERVAL From 3 to 25, as implied in the data type declaration.

MONEY (2 + ¢+ p +s), where c is the length of the currency
defined by DBMONEY and p is the precision and s is
the sacle from the data type declaration.

NCHAR Length of character data type declaration.

NVARCHAR Length current value in the variable.

SMALLFLOAT 14

SMALLINT 6

STRING Length current value in the variable.

TEXT Length current value in the variable.

VARCHAR

Length current value in the variable.

303

Genero Business Development Language

Unless you specify the FILE or WORDWRAP option, each PRINT statement displays output
on a single line. For example, this fragment displays output on two lines:

01 PRINT fname, Iname
02 PRINT city, ', ", state, " ', zipcode

If you terminate a PRINT statement with a semicolon, however, you suppress the implicit
LINEFEED character at the end of the line. The next example has the same effect as the
PRINT statements in the previous example:

01 PRINT fname;
02 PRINT Iname
03 PRINT city, ', ", state, " ', zipcode

The expression list of a PRINT statement returns one or more values that can be
displayed as printable characters. The expression list can contain report variables, built-
in functions and operators. Some of these can appear only in a REPORT program block
such as PAGENO, LINENO, PERCENT.

If the expression list applies the USING operator to format a DATE or MONEY value, the
format string of the USING operator takes precedence over the DBDATE, DBMONEY,
and DBFORMAT environment variables.

Aggregate report functions summarize data from several records in a report. The syntax
and effects of aggregates in a report resemble those of SQL aggregate functions but are
not identical.

The expression (in parentheses) that SUM(), AVG(), MIN(), or MAX() takes as an
argument is typically of a number or INTERVAL data type; ARRAY, BYTE, RECORD,
and TEXT are not valid. The SUM(), AVG(), MIN(), and MAX() aggregates ignore
input records for which their arguments have null values, but each returns NULL if every
record has a null value for the argument.

The GROUP keyword is an optional keyword that causes the aggregate function to include
data only for a group of records that have the same value for a variable that you specify
in an AFTER GROUP OF control block. An aggregate function can only include the
GROUP keyword within an AFTER GROUP OF control block.

The optional WHERE clause allows you to select among records passed to the report, so
that only records for which the Boolean expression is TRUE are included.

Example:

The following example is from the FORMAT section of a report definition that displays
both quoted strings and values from rows of the customer table:

01 FIRST PAGE HEADER

02 PRINT COLUMN 30, "CUSTOMER LIST"
03 SKIP 2 LINES
04 PRINT "Listings for the State of ", thisstate

304

Applications

05 SKIP 2 LINES

06 PRINT "NUMBER', COLUMN 12, "NAME'"™, COLUMN 35, "LOCATION",
07 COLUMN 57, "ZIP'", COLUMN 65, "PHONE"

08 SKIP 1 LINE

09 PAGE HEADER

10 PRINT "NUMBER', COLUMN 12, "NAME"™, COLUMN 35, "LOCATION",
11 COLUMN 57, "ZIP"™, COLUMN 65, "PHONE"

12 SKIP 1 LINE

13 ON EVERY ROW

14 PRINT customer_num USING "###&", COLUMN 12, fname CLIPPED,
15 1 SPACE, Iname CLIPPED, COLUMN 35, city CLIPPED, ", ",
16 state, COLUMN 57, zipcode, COLUMN 65, phone

PRINTX

Syntax:

PRINTX [NAME = identifier] expression
Notes:

1. identifier is the name to be used in the XML node.
2. expression is any legal language expression.

Usage:
The PRINTX statement is similar to PRINT, except that it prints data in XML format.

You typically write a complete report with PRINTX statements, to generate an XML
output.

You can redirect the report output into a SAX document handler by calling the
fgl_report_set_document_handler().

Note that unlike normal PRINT instructions, the PRINTX outputs both TEXT and BYTE
data. The BYTE data is encoded to Base64 before output.

NEED
Syntax:
NEED n LINE[S]
Notes:

1. nis the number of lines.

305

Genero Business Development Language

Usage:

This statement has the effect of a conditional SKIP TO TOP OF PAGE statement, the
condition being that the number to which the integer expression evaluates is greater
than the number of lines that remain on the current page.

The NEED statement can prevent the report from dividing parts of the output that you
want to keep together on a single page. In the following example, the NEED statement
causes the PRINT statement to send output to the next page unless at least six lines
remain on the current page:

01 AFTER GROUP OF r.order_num
02 NEED 6 LINES
03 PRINT "™ ", r.order_date, " ", GROUP SUM(r.total price)

The LINES value specifies how many lines must remain between the line above the
current character position and the bottom margin for the next PRINT statement to
produce output on the current page. If fewer than LINES remain on the page, the report
engine prints both the PAGE TRAILER and the PAGE HEADER.

The NEED statement does not include the BOTTOM MARGIN value when it compares LINES
to the number of lines remaining on the current page. NEED is not valid in FIRST PAGE
HEADER, PAGE HEADER, or PAGE TRAILER blocks.

PAUSE Console Only!

Syntax:
PAUSE ["comment™]
Notes:
1. comment is an optional comment to be displayed.

Usage:

Output is sent by default to the screen unless the START REPORT statement or the
OUTPUT section specifies a destination for report output.

The PAUSE statement can be executed only if the report sends its output to the screen. It
has no effect if you include a TO clause in either of these contexts:

e Inthe OUTPUT section of the report definition.
e Inthe START REPORT statement of the report driver.

306

Applications

Include the PAUSE statement in the PAGE HEADER or PAGE TRAILER block of the
report. For example, the following code causes the runtime system to skip a line and
pause at the end of each page of report output displayed on the screen:

01 PAGE TRAILER
02 SKIP 1 LINE
03 PAUSE "Press return to continue"

SKIP

Syntax:

SKIP { n LINE[S] | TO TOP OF PAGE }
Notes:

1. nis the number of lines.
2. The LINE and LINES keywords are synonyms in the SKIP statement.

Warnings:

1. The SKIP n LINES statement cannot appear within a CASE statement, a FOR
loop, or a WHILE loop.

2. The SKIP TO TOP OF PAGE statement cannot appear in a FIRST PAGE
HEADER, PAGE HEADER or PAGE TRAILER control block.

Usage:

The SKIP statement allows you to insert blank lines into report output or to skip to the top
of the next page as if you had included an equivalent number of PRINT statements
without specifying any expression list.

Output from any PAGE HEADER or PAGE TRAILER control block appears in its usual
location.

Example:

01 FIRST PAGE HEADER

02 PRINT ""Customer List"

03 SKIP 2 LINES

04 PRINT "Number Name Location"
05 SKIP 1 LINE

06 PAGE HEADER

07 PRINT ""Number Name Location"
08 SKIP 1 LINE

09 ON EVERY ROW

10 PRINT r.customer_num, r.fname, r.city

307

Genero Business Development Language

COLUMN

Syntax:

COLUMN p
Notes:

1. pisthe column position (starts at 1).
Usage:

COLUMN specifies the position in the current line of a report where output of the next
value in a PRINT statement begins.

The COLUMN operator can appear in PRINT statements to move the character position
forward within the current line.

The operand must be a non-negative integer that specifies a character position offset
(from the left margin) no greater than the line width (that is, no greater than the
difference (right margin - left margin). This designation moves the character position to a
left-offset, where 1 is the first position after the left margin. If current position is greater
than the operand, the COLUMN specification is ignored.

Example:

01 FIRST PAGE HEADER

02 PRINT ""Customer List"

03 PRINT "Number', COLUMN 12,"Name', COLUMN 35,"Location"
04 PAGE HEADER

05 PRINT ""Number', COLUMN 12,"Name', COLUMN 35,"Location"
06 ON EVERY ROW

07 PRINT customer_num, COLUMN 12,fname, COLUMN 35,city

LINENO

Syntax:
LINENO
Usage:
This operator takes no operand but returns the value of the line number of the report line

that is currently printing. The report engine calculates the line number by calculating the
number of lines from the top of the current page, including the TOP MARGIN.

308

Applications

Example:

In the following example, a PRINT statement instructs the report to calculate and display
the current line number, beginning in the tenth character position after the left margin:

01 ON EVERY ROW
02 IF LINENO > 9 THEN

03 PRINT COLUMN 10, "Line:"™, LINENO USING "'<<<"
04 END IF

PAGENO

Syntax:

PAGENO

Usage:

This operator takes no operand but returns the number of the page the report engine is
currently printing.

You can use PAGENO in the PAGE HEADER or PAGE TRAILER block, or in other control
blocks to number the pages of a report sequentially.

Example:

If you use the SQL aggregate COUNT(*) in the SELECT statement to find how many
records are returned by the query, and if the number of records that appear on each
page of output is both fixed and known, you can calculate the total number of pages, as
in the following example:

01 FIRST PAGE HEADER

02 SELECT COUNT(*) INTO cnt FROM customer

03 LET y = cnt/50 -- Assumes 50 records per page
04 ON EVERY ROW

05 PRINT COLUMN 10, r.customer_num,

06 PAGE TRAILER

07 PRINT PAGE PAGENO USING "'<<"™ OF cnt USING "'<<"

If the calculated number of pages was 20, the first page trailer would be:
Page 1 of 20
PAGENO is incremented with each page, so the last page trailer would be:

Page 20 of 20

309

Genero Business Development Language

SPACES
Syntax:
n SPACES
Notes:
1. nis the number of spaces.
Usage:

This operator returns a string of blanks, equivalent to a quoted string containing the
specified number of blanks.

In a PRINT statement, these blanks are inserted at the current character position.

Its operand must be an integer expression that returns a positive number, specifying an
offset (from the current character position) no greater than the difference (right margin -
current position). After PRINT SPACES has executed, the new current character position
has moved to the right by the specified number of characters.

Outside PRINT statements, SPACES and its operand must appear within parentheses: (n
SPACES).

Example:

01 ON EVERY ROW
02 LET s = (6 SPACES), "=ZIP"
03 PRINT r.fname, 2 SPACES, r.lIname, s

WORDWRAP

Syntax:

WORDWRAP [RIGHT MARGIN tm]
Notes:

1. tm defines the temporary right margin.
Usage:

The WORDWRAP operator automatically wraps successive segments of long character
strings onto successive lines of report output. Any string value that is too long to fit

310

Applications

between the current position and the right margin is divided into segments and displayed
between temporary margins:

e The current character position becomes the temporary left margin.

e Unless you specify RIGHT MARGIN, the right margin defaults to 132, or to the size
value from the RIGHT MARGIN clause of the OUTPUT section or START
REPORT instruction.

Specify WORDWRAP RIGHT MARGIN tm to set a temporary right margin, counting from the
left edge of the page. This value cannot be smaller than the current character position or
greater than right margin defined for the report. The current character position becomes
the temporary left margin. These temporary values override the specified or default left
and right margins of the report.

After the PRINT statement has executed, any explicit or default margins defined in the
RIGHT MARGIN clause of the OUTPUT section or START REPORT instruction are
restored.

The following PRINT statement specifies a temporary left margin in column 10 and a
temporary right margin in column 70 to display the character string that is stored in the
variable called mynovel:

01 PRINT COLUMN 10, mynovelr WORDWRAP RIGHT MARGIN 70

The data string can include printable ASCII characters. It can also include the TAB
(ASCII 9), LINEFEED (ASCII 10), and ENTER (ASCII 13) characters to partition the
string into words that consist of sub-strings of other printable characters. Other
nonprintable characters might cause runtime errors. If the data string cannot fit between
the margins of the current line, the report engine breaks the line at a word division, and
pads the line with blanks at the right.

From left to right, the report engine expands any TAB character to enough blank spaces
to reach the next tab stop. By default, tab stops are in every eighth column, beginning at
the left-hand edge of the page. If the next tab stop or a string of blank characters
extends beyond the right margin, the report engine takes these actions:

1. Prints blank characters only to the right margin.

2. Discards any remaining blanks from the blank string or tab.
3. Starts a new line at the temporary left margin.

4. Processes the next word.

The report engine starts a new line when a word plus the next blank space cannot fit on
the current line. If all words are separated by a single space, this action creates an even
left margin. The following rules are applied (in descending order of precedence) to the
portion of the data string within the right margin:

e Break at any LINEFEED, or ENTER, or LINEFEED, ENTER pair.

e Break at the last blank (ASCII 32) or TAB character before the right margin.

e Break at the right margin, if no character farther to the left is a blank, ENTER,
TAB, or LINEFEED character.

311

Genero Business Development Language

The report engine maintains page discipline under the WORDWRAP option. If the string is
too long for the current page, the report engine executes the statements in any page
trailer and header control blocks before continuing output onto a new page.

For Japanese locales, a suitable break can also be made between the Japanese
characters. However, certain characters must not begin a new line, and some characters
must not end a line. This convention creates the need for KINSOKU processing, whose
purpose is to format the line properly, without any prohibited word at the beginning or
ending of a line.

Reports use the wrap-down method for WORDWRAP and KINSOKU processing. The
wrap-down method forces down to the next line characters that are prohibited from
ending a line. A character that precedes another that is prohibited from beginning a line
can also wrap down to the next line. Characters that are prohibited from beginning or
ending a line must be listed in the locale. 4GL tests for prohibited characters at the
beginning and ending of a line, testing the first and last visible characters. The KINSOKU
processing only happens once for each line. That is, no further KINSOKU processing
occurs, even if prohibited characters are still on the same line after the first KINSOKU
processing.

COUNT

Syntax:

[GROUP] COUNT(*) [WHERE condition]

Usage:

This aggregate returns the total number of records qualified by the optional WHERE
condition.

Warnings:
1. You mustinclude the (*) symbol.
Example:

The following fragment of a report definition uses the AFTER GROUP OF control block
and GROUP keyword to form sets of records according to how many items are in each
order. The last PRINT statement calculates the total price of each order, adds a shipping
charge, and prints the result. Because no WHERE clause is specified here, GROUP SUM(
) combines the total_price of every item in the group included in the order.

01 AFTER GROUP OF number

02 SKIP 1 LINE

03 PRINT 4 SPACES, ™Shipping charges for the order: ™,
04 ship_charge USING "$$$$.8&&"

312

Applications

05 PRINT 4 SPACES, "Count of small orders: ",

06 GROUP COUNT(*) WHERE total price < 200.00 USING "##,###"

07 SKIP 1 LINE

08 PRINT 5 SPACES, "Total amount for the order: ",

09 ship_charge + GROUP SUM(total price) USING "$$,$$$5,$55.88&"

PERCENT

Syntax:

[GROUP] PERCENT(*) [WHERE condition]

Usage:

This aggregate returns the percentage of the total number of records qualified by the
optional WHERE condition.

Warnings:

1. You must include the (*) symbol.

SUM

Syntax:

[GROUP] SUM(expression) [WHERE condition]
Usage:

This aggregate evaluates as the total of expression among all records or among records
gualified by the optional WHERE clause and any GROUP specification.

Warnings:
1. If one of the values is NULL, it is ignored.

2. By default, if all values are NULL, the result of the aggregate is NULL. See also:
Report Engine Configuration.

313

Genero Business Development Language

AVG
Syntax:
[GROUP] AVG(expression) [WHERE condition]
Usage:
This aggregate evaluates as the average (that is, the arithmetic mean value) of
expression among all records or among records qualified by the optional WHERE clause
and any GROUP specification.
Warnings:
1. If one of the values is NULL, it is ignored.

2. By default, if all values are NULL, the result of the aggregate is NULL. See also:
Report Engine Configuration.

MIN

Syntax:

[GROUP] MIN(expression) [WHERE condition]
Usage:

For number, currency, and interval values, MIN(expression) returns the minimum value
for expression among all records or among records qualified by the WHERE clause and
any GROUP specification. For DATETIME or DATE data values, greater than means later
and less than means earlier in time. Character strings are sorted according to their first
character. If your program is executed in the default (U.S. English) locale, for character
data types, greater than means after in the ASCII collating sequence, where a> A> 1,
and less than means before in the ASCII sequence, where 1< A< a.

MAX

Syntax:

[GROUP] MAX(expression) [WHERE condition]
Usage:

For number, currency, and interval values, MAX(expression) returns the maximum
value for expression among all records or among records qualified by the WHERE clause

314

Applications

and any GROUP specification. For DATETIME or DATE data values, greater than means
later and less than means earlier in time. Character strings are sorted according to their
first character. If your program is executed in the default (U.S. English) locale, for
character data types, greater than means after in the ASCII collating sequence, where
a> A> 1, and less than means before in the ASCII sequence, where 1< A< a.

315

Genero Business Development Language

Localization

Summary:

e Localization Support
e Writing Programs
e Runtime System Settings
o Language Settings
o Numeric and Currency Settings
o Date and Time Settings
Database Client Settings
Front-end Settings
Runtime System Messages
Troubleshooting
o Locale settings (LANG) corrupted on Microsoft platforms
A form is displayed with invalid characters
Checking the locale configuration on UNIX platforms
Verifying if the locale is properly supported by the runtime system
How to retrieve the list of available locales on the system
How to retrieve the list of available codesets on the system
Using the charmap.alias file when client has different codeset names

O O 0O O0OO0Oo

See also: Localized Strings

Localization Support

Localization Support allows you to write BDL programs that follow a specific language
and cultural rules. This includes single and multi-byte character set support, language-
specific messages, as well as lexical/numeric/currency conventions.

Localization Support is based on the POSIX system libraries handling the locale. A
locale is a set of language and cultural rules.

A BDL program needs to be able to determine its locale and act accordingly to be
portable to different cultures.

Writing Programs

Runtime character set must match development character set

When writing a form or program source file, you use a specific character set. This
character set depends upon the text editor or operating system settings you are using on

the development platform. For example, when writing a string constant in a 4gl module,
containing Arabic characters, you probably use the ISO-8859-6 character set. The

316

Applications

character set used used at runtime (during program execution) must match the character
set used to write programs.

At runtime, a Genero program can only work in a specific character set. However, by
using Localized Strings, you can start multiple instances of the same compiled program
using different locales. For a given program instance the character set used by the
strings resource files must correspond to the locale. Make sure the string identifiers use
ASCII only.

Byte length semantics vs Character length semantics

Genero BDL uses byte length semantics: When defining a character data type like
CHAR(Nn) or VARCHAR(N), n represents as a number of bytes, not a number of
characters. In a single-byte character set like 1ISO-8859-1, any character is encoded on a
unique byte, so the number of bytes equals the number of characters. But in a multi-byte
character set, encoding requires more that one byte, so the number of bytes to store a
multi-byte string is bigger as the number of characters. For example, in a BIG5
encoding, one Chinese character needs 2 bytes, so if you want to hold a BIG5 string
with a maximum of 10 Chinese characters, you must define a CHAR(20). When using a
variable-length encoding like UTF-8, characters can take one, two or more bytes, so you
need to choose the right average to define CHAR or VARCHAR variables.

The definition of database columns using CHAR, VARCHAR, NCHAR and NVARCHAR
types varies from one database vendor to another. Some use byte length semantics,
other use character length semantics, and other provide both ways. For example,
Informix uses bytes only; Oracle supports byte "CHAR(10 BYTE)" or character
"CHAR(10 CHAR)" length semantics. SQL Server uses a single-byte character set for
CHAR/VARCHAR and uses a 2-length Unicode character set (UCS-2) for NCHAR and
NVARCHAR.

Other SQL elements like functions and operators are affected by the length semantic.
For example, Informix LENGTHY() function always returns a number of bytes, while
Oracle's LENGTHY() function returns a number of characters (use LENGTHB() to get the
number of bytes with Oracle).

It is important to understand properly how the database servers handle multi-byte
character sets. Check your database server reference manual: In most documentations
you will find a "Localization" chapter which describes those concepts in detail.

For portability, we recommend to use byte length semantic based character data types
in databases, because this corresponds to the length semantics used by Genero BDL
(this is important when declaring variables by using DEFINE LIKE, which is based on
database schemas).

317

Genero Business Development Language

Runtime System Settings

This section describes the settings defining the locale, changing the behavior of the
runtime system.

Language Settings

The LANG environment variable defines the global settings for the language used by the
application. This variable changes the behavior of the character handling functions, such
as UPSHIFT, DOWNSHIFT. It also changes the handling of multi-byte characters.
Invalid settings of LANG will cause compilation errors if a source file contains multi-byte
characters.

With the LANG environment variable, you define the language, the territory (country)
and the codeset (character set) to be used. The format of the value is normalized as
follows, but may be specific on some operating systems:

language[territory[.codeset]]

Warning: Most operating system vendors define specific set of values for the
language, territory and codeset. For example, on a UNIX platform, you typically set
"en_US.ISO8859-1" for a US English locale, while Microsoft Windows supports
"English_USA.1252", or "en_us.1252". For more details about supported locales,
please refer to the operating system documentation (search for the 'setlocale’
function).

See also Troubleshooting to learn how to check if a locale is properly set, and list the
locales installed on your system.

Numeric and Currency Settings

To perform decimal to/from string conversions, the runtime system uses the DBMONEY
or DBFORMAT environment variables. These variables define hundreds / decimal
separators and currency symbols for MONEY data types.

The LC_MONETARY and LC_NUMERIC standard environment variables, defining
numeric and monetary rules, are ignored.

Date and Time Settings

To perform date to/from string conversions, the runtime system uses by default the
DBDATE environment variable. When assigning a string to a date variable, the standard
environment variable LC_TIME is ignored.

When using the FORMAT field attribute or the USING operator to format dates with
abbreviated day and month names - by using ddd / mmm markers - the system uses
English-language based texts for the conversion. This means, day (ddd) and month
(mmm) abbreviations are not localized according to the locale settings, they will always
be in English.

318

Applications

Database Client Settings
This section describes the settings defining the locale for the database client.
Each database vendor has its own locale settings.

Warning: You must properly configure the database client locale in order to
send/receive data to the database server, according to the locale used by your
application. Both database client locale and application locale settings must
match (you cannot have a database client locale in Japanese and a runtime locale
in Chinese).

Here is the list of environment variables defining the locale used by the application, for
each supported database client:

Database Client Settings

Genero DB The character set used by the client is defined by the
characterset ODBC DSN configuration parameter. If
this parameter is not set, it defaults to ASCII.

Before version 3.80, the character set was defined by
the ANTS _CHARSET environment variable.

Oracle The client locale settings can be set with environment
variables like NLS_LANG, or after connection, with the
ALTER SESSION instruction. By default, the client
locale is set from the database server locale.

Informix The client locale is defined by the CLIENT_LOCALE
environment variable. For backward compatibility, if
CLIENT_LOCALE is not defined, other settings are used
if defined (DBDATE / DBTIME / GL_DATE /
GL_DATETIME, as well as standard LC_* variables).

IBM DB2 The client locale is defined by the DB2CODEPAGE
profile variable. You must set this variable with the
db2set command. If DB2CODEPAGE is not set, DB2
uses the operating system code page on Windows and
the LANG environment variable on Unix.

Microsoft SQL The client locale is defined by the Window operating
Server system locale where the database client is installed.

PostgreSQL The client locale can be set with the
PGCLIENTENCODING environment variable, with the
client_encoding configuration parameter in
postgresql.conf, or after connection, with the SET
CLIENT_ENCODING instruction. Check the
pg_conversion system table for available character set
conversions.

319

Genero Business Development Language

MySQL The client locale is defined by the default-character-set
option in the configuration file, or after connection, with
the SET NAMES and SET CHARACTER SET
instructions.

Sybase ASA The client locale is defined by the operating system
locale where the database client is installed.

See database vendor documentation for more details.

Front-End Settings

The front-end workstation must support the character set used on the runtime system
side. You can refer to each front-end documentation to check the list of supported
character sets. The host operating system must also be able to handle the character set.
For instance, a Western-European Windows is not configured to handle Arabic
applications. If you start an Arabic application, some graphical problems may occur (for
instance the title bar won't display Arabic characters, but unwanted characters instead).

Runtime System Messages

Predefined runtime system error messages are stored in the .iem system message files.
The system message files use the same technique as user defined message files (See
Message Files). The default message files are located in the FGLDIR/msg/en_US
directory (.msg sources are provided).

For backward compatibility with Informix 4gl, some of these system error messages are
used by the runtime system to report a "normal” error during a dialog instruction. For
example, end users may get the error -1309 "There are ho more rows in the direction
you are going" when scrolling an a DISPLAY ARRAY list.

Here are some examples of system messages that can appear during a dialog:

Number Description

-1204 Invalid year in date.

-1304 Error in field.

-1305 This field requires an entered value.

-1306 Please type again for verification.

-1307 Cannot insert another row - the input array is full.
-1309 There are no more rows in the direction you are going.
and

more...

320

Applications

While it is recommended to use Localized Strings to internationalize application
messages, you might need to translated the default system messages to a specific
locale and language, or you might just want to customize the English messages.

With this technique, you can deploy multiple message files in different languages and
locales in the same FGLDIR/msg directory.

To use your own customized system messages, do the following:

1. Create a new directory under $FGLDIR/msg, using the same name as your
current locale.
For example, if LANG=Fr_FR.1S08859-1, you must create
$FGLDIR/msg/fr_FR.1S08859-1.

2. Copy the original system message source files (.msg) from $SFGLDIR/msg/en_US
to the locale-specific directory.
For example: $FGLDIR/msg/$LANG.

3. Modify the source files with the .msg suffix.

4. Re-compile the message files with the fglmkmsg tool to produce .iem files.

5. Run a program to check if the new messages are used.

Warnings:

1. Thelocale can be set with different environment variables (see setlocale
manual pages for more details). To identify the locale name, the runtime
system first looks for the LC_ALL value, then LC_CTYPE and finally LANG.

2. Pay attention to locale settings when editing message files: You must use
the same locale as the one used at runtime.

Troubleshooting
Locale settings (LANG) corrupted on Microsoft platforms

On Microsoft Windows XP / 2000 platforms, some system updates (Services Pack 2) or
Office versions do set the LANG environment variable with a value for Microsoft
applications (for example 1033).

Such value is not recognized by Genero as a valid locale specification. Make sure that
the LANG environment variable is properly set in the context of Genero applications.

A form is displayed with invalid characters

You may have different codesets on the client workstation and the application server.
The typical mistake that can happen is the following: You have edited a form-file with the
encoding CP1253; you compile this form-file on a UNIX-server (encoding ISO-8859-7).
When displaying the form, invalid characters will appear. This is usually the case when
you write your source file under a Windows system (that uses Microsoft Code Page
encodings), and use a Linux server (that uses ISO codepages).

321

Genero Business Development Language

Warning: All source files must be created/edited in the encoding of the server
(where fglcomp and fglrun will be executed).

Checking the locale configuration on Unix platforms

On Unix systems, the locale command without parameters outputs information about
the current locale environment.

Once the LANG environment variable is set, check that the locale environment is
correct:

$ export LANG=en_US.1S08859-1

$ locale

LANG=en_US. 1S08859-1
LC_CTYPE="en_US.1S08859-1"
LC_NUMERIC=""en_US.1S08859-1""
LC_TIME="en_US.1S08859-1"
LC_COLLATE="en_US.1S08859-1""
LC_MONETARY=""en_US. 1508859-1""
LC_MESSAGES=""en_US. 1508859-1""
LC_PAPER="en_US.1508859-1"
LC_NAME="en_US. 1S08859-1"
LC_ADDRESS="en_US.1S08859-1""
LC_TELEPHONE="en_US.1S08859-1""
LC_MEASUREMENT="en_US.1S08859-1""
LC_IDENTIFICATION=""en_US.1S08859-1"
LC_ALL=

If the locale environment is not correct, then you should check the value of the following
environment variables : LC_ALL, LC_CTYPE, LC_NUMERIC, LC_TIME, LC_COLLATE,
... value.

The following examples show the effect of LC_ALL and LC_CTYPE on locale
configuration. The LC_ALL variable overrides all other LC _.... variables values.

$ export LANG=en_US.1S08859-1
$ export LC_ALL=POSIX

$ export LC _CTYPE=fr_FR.1S08859-15
$ locale

LANG=en_US. 1S08859-1
LC_CTYPE="POSIX™"
LC_NUMERIC="POSIX""

LC TIME="POSIX"

LC COLLATE="POSIX"
LC_MONETARY=""POSIX"
LC_MESSAGES=""POSIX"
LC_PAPER="POSIX""

LC NAME="POSIX"
LC_ADDRESS="POSIX"
LC_TELEPHONE="POSIX"
LC_MEASUREMENT="POSIX"
LC_IDENTIFICATION=""POSIX""
LC_ALL=POSIX

$ fglrun -i mbcs

322

LANG honored : yes
Charmap - ANSI_X3.4-1968
Multibyte > no
Stateless > yes

Applications

The charset used is the ASCII charset. Clearing the LC_ALL environment variable

produces the following output:

$ unset LC_ALL

$ locale

LANG=en_US.15S08859-1
LC_CTYPE=fr_FR.1S08859-15
LC_NUMERIC="en_US.1S08859-1""
LC_TIME=""en_US.1S08859-1""
LC_COLLATE="en_US.1S08859-1""
LC_MONETARY=""en_US. 1508859-1"

LC MESSAGES=""en_US.1508859-1"
LC_PAPER="en_US. 1508859-1""
LC_NAME=""en_US. 1S08859-1""
LC_ADDRESS="en_US.1S08859-1""
LC_TELEPHONE="en_US.1S08859-1"
LC_MEASUREMENT=""en_US.1S08859-1""
LC_IDENTIFICATION=""en_US.1S08859-1"
LC_ALL=

$ fglrun -i mbcs

Error: locale not supported by C library, check LANG.

$ locale charmap
ANSI_X3.4-1968

After clearing the LC_ALL value, the value of the variable LC_CTYPE is used. It appears

that it is not correct. After clearing this value we get the following output:

$ unset LC_CTYPE

$ locale

LANG=en_US.1508859-1

LC _CTYPE=""en_US.1508859-1"
LC_NUMERIC="en_US.1S08859-1""
LC_TIME=""en_US.1S08859-1""
LC_COLLATE="en_US.1S08859-1""
LC_MONETARY=""en_US. 1508859-1"
LC_MESSAGES=""en_US. 1508859-1"
LC_PAPER="en_US. 1508859-1""
LC_NAME=""en_US. 1S08859-1""
LC_ADDRESS="en_US.1508859-1""
LC_TELEPHONE="en_US.1S08859-1"
LC_MEASUREMENT=""en_US.1S08859-1""
LC_IDENTIFICATION="en_US.1S08859-1"
LC_ALL=

$ locale charmap

1S0-8859-1

$ fglrun -i mbcs

LANG honored : yes

Charmap - 1S0-8859-1
Multibyte > no
Stateless > yes

323

Genero Business Development Language

Verifying if the locale is properly supported by the runtime system

You can check if the LANG locale is supported properly by using the -i mbcs option of
the compilers and runner programs:

$ fglcomp -i mbcs
LANG honored : yes

Charmap - ANSI_X3.4-1968
Multibyte > no
Stateless > yes

The lines printed with -i info option indicate if the locale can be supported by the
operating system libraries. Here is a short description of each line:

Verification
Parameter
LANG Honored This line indicates that the current locale configuration has

been correctly set.
Check if the indicator shows 'yes'.

Description

Charmap This is the name of the character set used by the
runtime system.

Multibyte This line indicates if the character set is multi-byte.
Can be 'yes' or 'no'.

Stateless A few character sets are using an internal state that can

change during the character flow. Only stateless
character sets can be supported by Genero.
Check if the indicator shows 'yes'.

How to retrieve the list of available locales on the system

On Unix systems, the locale command with the parameter '-a' writes the names of
available locales.

$ locale -a
en_US
en_US.1s0885915
en_US_utf8
en_ZA

en_ZA._utf8
en_ZW

How to retrieve the list of available codesets on the system

On Unix systems, the locale command with the parameter -m' writes the names of
available codesets.

$ locale -m

324

Applications

1S0-8859-1

1S0-8859-10
1S0-8859-13
1S0-8859-14
1S0-8859-15

Using the charmap.alias file when client has different codeset names

The name of the codeset can be different from one system to another. The file

$FGLDIR/etc/charmap.alias is used to provide the translation of the local name to a

generic name. The generic name is the name sent to the front-end. It is the translated
name that appears when the command 'fglrun -i mbcs' is used. The local codeset name
is the value obtained using the system call 'nl_langinfo(CODESET)'. Note: This file might

be incomplete.

An example of locale configuration on HP

$ export LANG=en_US.is088591
$ locale

LANG=en_US.1s088591

LC _CTYPE="en_US.is088591"
LC_COLLATE=""en_US.is088591"
LC_MONETARY=""en_US.1s088591"
LC_NUMERIC="en_US.i1s088591"
LC TIME="en_US.1s088591"
LC_MESSAGES=""en_US. is088591"
LC_ALL=

$ locale charmap
"1s088591.cm™

The charmap.alias file contains the following line:

15088591 1S08859-1

The name sent to the client is ISO-8859-1 instead of iso88591.

The following C program should compile, and outputs the current codeset name.

#include <stdio.h>
#include <stdlib.h>
#include <locale.h>
#include <langinfo.h>
int main()

setlocale(LC_ALL, ");
printf('%s\n", nl_langinfo(CODESET));
exit(0);

¥

With the previous example this program outputs:

1s088591

325

Genero Business Development Language

Localized Strings

Summary:

What are Localized Strings?
Syntax

Source String Files

Extracting Strings

Compiling String Files

Using String Files at Runtime
Predefined Application Strings
Example

See also: Programs, FGLPROFILE

Definition

Localized Strings provide a means of writing applications in which the text of strings can

be customized on site. This feature can be used to implement internationalization in your
application, or to use site-specific text (for example, when business terms change based
on territory).

This string localization feature does not define language identification. It is a simple way
to define external resource files which the runtime system can search, in order to assign
text to strings in the BDL application. The text is replaced at runtime in the p-code
modules (42m), in the compiled form specification files (42f), and in any XML resource
files loaded in the Abstract User Interface tree (4ad, 4st, 4tb, and so on).

By using a simple notation, you can identify the Localized Strings in the source code:

01 MAIN
02 DISPLAY %"my text"
03 END MAIN

The fglcomp and fglform compilers have been extended to support a new option to
extract the Localized Strings. This way, the Localized Strings can be extracted into
Source String Files.

From the original Source String File, you can create other files containing different text
(for example, one file for each language you want to support).

You must use the fglmkstr tool to compile the source string files into a binary version. By
convention, compiled string resource files must have the 42s extension.

326

Applications

By default, the compiled string files are loaded at runtime, according to the name of the
program (42r). It is also possible to define global string files in the FGLPROFILE
configuration file. See also: Using String Files at Runtime.

In 42m p-code modules, the Localized Strings are coded in our specific binary format.
But, for XML files such as compiled form files (42f), the localized strings must be
identified with a specific node, following the XML standards.

To support localized strings in XML files, any file loaded into the Abstract User Interface
tree is parsed to search for <LStr> nodes.

The <LStr> nodes define the same attributes as in the parent node with localized string
identifiers, for example:

01 <Label text="'Hello!" >
02 <LStr text="label01" />
03 </Label>

The runtime system automatically replaces corresponding attributes in the parent node
(text="Hello!), with the localized text found in the compiled string files, according to the
string identifier (label01). After interpretation, the <LStr> nodes are removed from the
XML data.

Syntax

Syntax 1: Static Localized String
%" sid"

Syntax 2: Dynamic Localized String
LSTR(eid)

Notes:

1. sid is a character string literal that defines both the string identifier and the default

text.
2. eid is a character string expression used at runtime as string identifier to load the
text.
Usage:

A Localized String can be used in the source code of program modules or form
specification files to identify a text string that must be converted at runtime.

Static Localized Strings

327

Genero Business Development Language

A Localized String begins with a percent sign (%), followed by the name of the string
which will be used to identify the text to be loaded. Since the name is a string, you can
use any kind of characters in the name, but it is recommended that you use a proper
naming convention. For example, you can specify a path by using several identifiers
separated by a dot, without any special characters such as space or tab:

01 MAIN
02 DISPLAY %'"common.helloworld"
03 END MAIN

The string after the percent sign defines both the localized string identifier and the
default text to be used for extraction, or the default text when no string resource files are
provided at runtime.

You can use this notation in form specification files as well, at any place where a string
literal can be used.

01 LAYOUT
02 VBOX

03 GROUP gl (TEXT=%"group01'")
04 ...

Warning: It is not possible to specify a static localized string directly in the area of
containers like GRID, TABLE or SCROLLGRID. You must use label fields to use
localized strings in layout labels:

01 LAYOUT
02 GRID

03 {

04 [1abol |f001 1
05 {

06 END

07 END

08 ATTRIBUTES

09 LABEL l1ab01 : TEXT=%"myform.label01";
10 EDIT f001 = FORMONLY.Ffield0O1;

11 END

Dynamic Localized Strings

The language provides a special operator to load a Localized String dynamically, using
an expression as string identifier. The name of this operator is LSTR(), and the syntax is
described above.

The following code example builds a Localized String identifier with an integer and loads
the corresponding string with the LSTR() operator:

01 MAIN

02 DEFINE n INTEGER

03 LET n = 234

04 DISPLAY LSTR('str]|n) -- loads string "“str234*
05 END MAIN

328

Applications

See also: The SFMT() operator

Source String Files
By convention, the source files of Localized Strings have the .str extension.
Defining a string:

You define a list of string identifiers, and the corresponding text, by using the following
syntax:

“identifier” = "string"”
Special characters:

The fglmkstr compiler accepts the backslash "\" as the escape character, to define non-
printable characters:

A\ \n \r \t \\

Example:

01 "id001"™ = *"‘Some text"

02 "this.is.a.path.for.a.very.long.string.identifier” = "Customer List"
03 "special .characters.backslash™ = "\\"

04 'special.characters.newline™ = "\n"

Extracting Strings

In order to extract Localized String from Source String Files, use the fglcomp and fglform
compilers with the -m option:

$ fglcomp -m mymodule.4gl

The compilers dumps all localized string to stdout. This output can be redirected to a file
to generate the default Source String File with all the localized strings used in the 4qgl file.

Compiling String Files

The Source String Files (.str) must be compiled to binary files (.42s) in order to be used
at runtime.

329

Genero Business Development Language

To compile a Source String File, use the fglmkstr compiler:

$ fglmkstr filename.str

This tool generates a .42s file with the filename prefix.

Using String Files at Runtime
Distributing string resource files

The "42s" Compiled String Files must be distributed with the program files in a directory
specified in the DBPATH environment variable.

How does the runtime system load the strings?

The string files are loaded in the following order:
1. the files defined in FGLPROFILE (see below),
2. afile having the same name prefix as the current "42r" program,
3. afile with the name "default.42s".

For each string file, the runtime system searches in following directories:
1. inthe current directory,
2. in the path list defined in the DBPATH environment variable,
3. INnFGLDIR/lib.

A string is loaded in memory only once (if the same string is defined in another file, it is
ignored).

What happens if a string is not defined in a resource file?

If a localized string is not defined in a resource files, the runtime system uses the string
identifier as default text.

What happens if a string is defined more that once?

When a localized string is defined in several resource files, the runtime system uses the
first string found.

For example, if the string "hello" is defined in program.42s as "hello from program”, and

in default.42s as "hello from default”, the runtime system will use the text "hello from
program"”.

330

Applications

Defining a list of string resource files in FGLPROFILE

You can specify a list of Compiled String Files with entries in the FGLPROFILE
configuration file. The file name must be specified without a file extension. The runtime
system searches for a file with the "42s" extension in the current directory and in the
path list defined in the DBPATH environment variable.

List of resource files

To define the list of resource files to be used, specify the total number of files with:

fglrun_localization.file.count = integer

And for each file, define the filename (without the 42s extension), including an index
number, with:

fglrun_localization.file.index.name = "filename"
Start index at 1.

Warning switches

If the text of a string is not found at runtime, the DVM can show a warning, for
development purposes.

fglrun.localization.warnKeyNotFound = boolean

By default, this warning switch is disabled.

Predefined Application Strings
What is a Predefined Application String?

In some situations, the runtime system needs to display texts to the user. For example,
the runtime system library includes a report viewer, which displays a form. By default the
texts are in English, and you may need to localize the texts in another language. So the
strings of this component must be 'localizable’, as other application strings.

To customize the built-in strings, the runtime system uses the mechanism of localized
strings.

All strings used by the runtime system are centralized in a unique file:

$FGLDIR/src/default.str

which is compiled into:

331

Genero Business Development Language

$FGLDIR/lib/default.4ls
This file is always loaded by the runtime system.

To overwrite the defaults, you can re-define these strings in your own localized string
files. See also: Using String Files at Runtime.

Example

The Source String File "common.str" (a compiled version must be created):

01 "common.accept' = "OK"
02 "common.cancel'™ = "Cancel"
03 "common.quit' = "Quit"

The Source String File "actions.str" (a compiled version must be created):

01 “action.append” = "Append"
02 "action.modify" = "Modify"
03 "action.delete" = "Delete"

The Source String File "customer.str" (a compiled version must be created):

01 "customer.mainwindow.title" = "Customers"

02 "customer.listwindow.title" = "Customer List"

03 "customer.l_custnum™ = "Number:"

04 "customer.l_custname'™ = "Name:"

05 "customer.c_custname'™ = "The customer name"

06 "‘customer.g_data'" = "Customer data"

07 "customer.g_actions'™ = "Actions"

08 *customer.qdelete™ = "Are you sure you want to delete this
customer?"

The FGLPROFILE configuration file parameters:

01 fglrun.localization.file.count = 2
02 fglrun.localization.file.1l.name = "‘common"
03 fglrun.localization.file.2_name = "actions"

Remark: The 'customer’ string file does not have to to listed in FGLPROFILE since it is
loaded as it has the same name as the program.

The form specification file "f1.per":

01 LAYOUT (TEXT=%"customer.mainwindow.title')

02 GRID

03 {

04 <g g1 >
05 [labl] [fOo1 1

332

Applications

06 [1ab2 1 [f02 1
07

08 <g g2 >
09 [b1 1 [b2 1
10

11 3}

12 END

13 END

14 ATTRIBUTES

15 LABEL labl
16 EDIT f01
17 LABEL lab2
18 EDIT f02
19 BUTTON bl
20 BUTTON b2
21 GROUP 01
22 GROUP g2
23 END

TEXT=%"customer.l_custnum';

FORMONLY .custnum;

TEXT=%"customer.l_custname';

FORMONLY .custname, COMMENT=%"‘customer.c_custname';
edit, TEXT=%"action.modify";

quit, TEXT=%"common.quit';
TEXT=%"customer.g_data';
TEXT=%"customer.g_actions';

The program "customer.4gl" using the strings file:

01 MAIN

02 DEFINE rec RECORD

03 custnum INTEGER,
04 custname CHAR(20)
05 END RECORD

06 OPEN WINDOW wl WITH FORM "f1"
07 MENU

08 ON ACTION edit

09 INPUT BY NAME rec.*

10 ON ACTION quit

11 EXIT MENU

12 END MENU

13 END MAIN

333

Genero Business Development Language

Built-in Functions

Summary:
e What is a built-in function?
e List of built-in functions
o List of de-supported functions
e The key code table

See also: Utility Functions, Variables, Functions, Operators, Built-in Classes.

What is a built-in function?

A built-in function is a predefined function that is included in the runtime system or
provided as a library function automatically linked to your programs. You do not have to
link with any additional BDL library to create your programs. The built-in functions are
part of the language.

See also Utility Functions.
Warnings:

1. Do not confuse built-in functions with SQL aggregate functions like:

o AVG()
o MAX()
o MINC)
o SUM(C)

2. Do not confuse built-in functions with operators. Some operators have the same
syntax as functions, but these are real language operators that have a specific
order of precedence. Operators can be used in different contexts according to
the BDL grammar. See for example:

o YEAR(date)

MONTH(date)

DAY (date)

WEEKDAY (date)

MDY (integer,integer,integer)

GET_FLDBUF(field)

INFIELD(field)

FIELD_TOUCHED(field)

O O O0OO0O0O0Oo

List of built-in functions
Function Description
ARG_VAL() Returns a command line

argument by position.

334

ARR_COUNT()

ARR_CURR()

DOWNSHIFT()

ERR_GET()

ERR_PRINT()

ERR_QUIT()

ERRORLOG()

FGL_BUFFERTOUCHED()

FGL_DIALOG_GETBUFFER()

FGL_DIALOG_GETBUFFERLENGTH()

FGL_DIALOG_GETBUFFERSTART()

FGL_DIALOG_GETCURSOR()
FGL_DIALOG_GETFIELDNAME()

FGL_DIALOG_GETKEYLABEL()

FGL_DIALOG_INFIELD()

FGL_DIALOG_SETBUFFER()

Library

Returns the number of records
entered in a program array
during or after execution of the
INPUT ARRAY statement.

Returns the current row in a
DISPLAY ARRAY or INPUT
ARRAY.

Returns a string value in which
all uppercase characters in its
argument are converted to
lowercase.

Returns the text corresponding
to an error number.

Prints in the error line the text
corresponding to an error
number.

Prints in the error line the text
corresponding to an error
number and terminates the
program.

Copies the string passed as a
parameter into the error log
file.

Returns TRUE if the current
input buffer was modified since
the field was selected.
Returns the value of the
current field as a string.

When using a paged display
array, returns the number of
rows to fill the array buffer.
When using a paged display
array, returns the row offset to
fill the array buffer.

Returns the position of the edit
cursor in the current field.
Returns the name of the
current input field.

Returns the text associated to
a key in the current interactive
instruction.

Returns TRUE if the field
passed as a parameter is the
current input field.

Sets the value of the current

335

Genero Business Development Language

FGL_DIALOG_SETCURRLINE()
FGL_DIALOG_SETCURSOR()
FGL_DIALOG_SETFIELDORDER()

FGL_DIALOG_SETKEYLABEL()

FGL_DRAWBOX()

FGL_DRAWLINE()

FGL_GETCURSOR()

FGL_GETENV()

FGL_GETFILE()

FGL_GETHELP()
FGL_GETKEYLABEL()

FGL_GETPID()
FGL_GETRESOURCE()

FGL_GETVERSION()
FGL_GETWIN_HEIGHT()

FGL_GETWIN_WIDTH()

FGL_GETWIN_X()
FGL_GETWIN_Y()
FGL_KEYVAL()

336

field as a string.

Moves to a specific row in a
record list.

Sets the position of the input
cursor within the current field.

Enables or disables field order
constraint.

Sets the text associated to a
key for the current interactive
instruction.

Draws a rectangle based on
character terminal coordinates
in the current open window.

Draws a line based on
character terminal coordinates
in the current open window.

Returns the position of the edit
cursor in the current field.

Returns the value of the
environment variable having
the name you specify as
argument.

Transfers a file from the front-
end to the application server
machine.

Returns the help message
according to a number.

Returns the default label
associated to a key.

Returns the system process id.

Returns the value of an
FGLPROFILE entry.

Returns the build number of
the runtime system.

Returns the number of rows of
the current window.

Returns the width of the
current window as a number of
columns.

Returns the horizontal position
of the current window.

Returns the vertical position of
the current window.

Returns the key code of a

FGL_LASTKEY()

FGL_PUTFILE()

FGL_REPORT_PRINT_BINARY_FILE()

Library

logical or physical key.
Returns the key code of the
last key pressed by the user.

Transfers a file from from the
application server machine to
the front-end.

Prints a file containing binary
data during a report.

FGL_REPORT_SET_DOCUMENT_HANDLER() Defines the document handler

FGL_SET_ARR_CURR()

FGL_SETENV()
FGL_SETKEYLABEL()

FGL_SETSIZE()
FGL_SETTITLE()

FGL_SYSTEM()

FGL_WIDTH()

FGL_WINDOW_GETOPTION()

LENGTH()

NUM_ARGS()

ORD()

SCR_LINE()

SET_COUNTY()

SHOWHELP()

to be used for a report.

Sets the current line in a record
list.

Sets an environment variable

Sets the default label
associated to a key.

Sets the size of the main
application window.

Sets the title of the main
application window.

Starts a program in a UNIX
terminal emulator when using a
graphical front end.

Returns the number of
columns needed to represent
the string.

Returns the attributes of the
current window.

Returns the number of
characters of the string passed
as a parameter.

Returns the number of
program arguments.

Returns the ASCII value of the
first byte of a character
expression.

Returns the number of the
current screen record in its
screen array.

Specifies the number of
records that contain data in a
static array.

Displays a runtime help
message, corresponding to its
specified argument, from the

337

Genero Business Development Language

STARTLOG()

UPSHIFT()

current help file.

Initializes error logging and
opens the error log file passed
as a parameter.

Returns a string value in which
all lowercase characters in its
argument are converted to
uppercase.

List of de-supported built-in functions:

Function
FGL_FORMFIELD_GETOPTION()
FGL_GETKEY()

FGL_GETUITYPE()
FGL_SCR_SIZE()

FGL_WINDOW_OPEN()

Description
Returns attributes of a specified form field.

Waits for a keystroke and returns the key
code.

Returns the type of the front end.

Returns the number of rows of a screen
array of the current form.

Opens a new window with coordinates and
size.

FGL_WINDOW_OPENWITHFORM(Opens a new window with coordinates and

)
FGL_WINDOW_CLEAR()

FGL_WINDOW_CLOSE()

FGL_WINDOW_CURRENT()

form.

Clears the window having the name that is
passed as a parameter.
Closes the window having the name that is
passed as a parameter.

Makes current the window having the name
that is passed as a parameter.

ARG_VAL()

Purpose:

This function returns a command line argument by position.

Context:

1. Atany place in the program.

338

Library

Syntax:

CALL ARG_VAL(position INTEGER) RETURNING result STRING
Notes:

1. position is the argument position. O returns the name of the program, 1 returns
the first argument.

Usage:

This function provides a mechanism for passing values to the program through the
command line that invokes the program. You can design a program to expect or allow
arguments after the name of the program in the command line.

Like all built-in functions, ARG_VAL() can be invoked from any program block. You can
use it to pass values to MAIN, which cannot have formal arguments, but you are not
restricted to calling ARG_VAL() from the MAIN statement. You can use the ARG_VALQ)
function to retrieve individual arguments during program execution. You can also use the
NUM_ARGS() function to determine how many arguments follow the program name on
the command line.

If position is greater than 0, ARG_VAL(position) returns the command-line argument
used at a given position. The value of position must be between 0 and the value
returned by NUM_ARGS(), the number of command-line arguments. The expression
ARG_VAL(0) returns the name of the application program.

See also: NUM_ARGS().

NUM_ARGS()
Purpose:
This function returns the number of program arguments.
Context:
1. Atany place in the program.

Syntax:

CALL NUM_ARGS() RETURNING result INTEGER
Notes:

1. returns O if no arguments are passed to the program.

339

Genero Business Development Language

See also: ARG_VAL().

SCR_LINE()

Purpose:
This function returns the number of the current screen record in its screen array.
Context:

1. During a DISPLAY ARRAY or INPUT ARRAY statement.

Syntax:

CALL SCR_LINE() RETURNING result INTEGER
Notes:

1. The current record is the line of a screen array that is highlighted at the beginning
of a BEFORE ROW or AFTER ROW clause.

Warnings:
1. When using new graphical objects such as TABLEs, this function can return an
invalid screen array line number, because the current row may not be visible if

the user scrolls in the list with scrollbars.

See also: ARR_CURR().

SET_COUNT()

Purpose:
This function specifies the number of records that contain data in a static array.
Context:

1. Before a DISPLAY ARRAY or INPUT ARRAY statement.

Syntax:

CALL SET_COUNT(nbrows INTEGER)

340

Library

Notes:

1. nbrows defines the number of rows in the static array.
2. Using this function is equivalent to the COUNT attribute of INPUT ARRAY and
DISPLAY ARRAY statements.

Usage:

When using a static array in an INPUT ARRAY (with WITHOUT DEFAULTS clause) or a
DISPLAY ARRAY statement, you must specify the total number of records in the array.
In typical applications, these records contain the values in the retrieved rows that a
SELECT statement returned from a database cursor. You specify the number of rows with
the SET_COUNT() function or with the COUNT attribute of INPUT ARRAY and DISPLAY
ARRAY statements.

Warning: You do not have to specify the number of rows when using a dynamic
array. When using a dynamic array, the number of rows is defined by the
getLength() method of the array object.

See also: ARR_CURR(), FGL_SET_ARR_CURR().

ARR_COUNT()

Purpose:

This function returns the number of records entered in a program array during or after
execution of the INPUT ARRAY statement.

Context:

1. Can be called at any place in the program, but should be limited to usage inside
or after INPUT ARRAY blocks.

Syntax:

CALL ARR_COUNT() RETURNING result INTEGER
Notes:

1. Returns the current number of records that exist in the current array.
2. Typically used inside INPUT ARRAY blocks.

Usage:

You can use ARR_COUNT() to determine the number of program records that are
currently stored in a program array. In typical FGL applications, these records

341

Genero Business Development Language

correspond to values from the result set of retrieved database rows from the most recent
query. By first calling the SET_COUNT() function or by using the COUNT attribute of
INPUT ARRAY, you can set an upper limit on the value that ARR_COUNT() returns.

ARR_COUNT() returns a positive integer, corresponding to the index of the furthest record
within the program array that the user accessed. Not all the rows counted by
ARR_COUNT() necessarily contain data (for example, if the user presses the DOWN
ARROW key more times than there are rows of data).

See also: INPUT ARRAY, ARR_CURR().

ARR_CURR()
Purpose:
This function returns the current row in a DISPLAY ARRAY or INPUT ARRAY.
Context:
1. During a DISPLAY ARRAY or INPUT ARRAY statement.
Syntax:
CALL ARR_CURR() RETURNING result INTEGER
Usage:
The ARR_CURR(Q) function returns an integer value that identifies the current row of a list

of rows in a INPUT ARRAY or DISPLAY ARRAY instruction. The first row is numbered
1.

You can pass ARR_CURR() as an argument when you call a function. In this way the
function receives as its argument the current record of whatever array is referenced in
the INPUT ARRAY or DISPLAY ARRAY statement.

The ARR_CURR(Q) function can be used to force a FOR loop to begin beyond the first line
of an array by setting a variable to ARR_CURR() and using that variable as the starting
value for the FOR loop.

The built-in functions ARR_CURR() and SCR_LINE() can return different values if the
program array is larger than the screen array.

See also: INPUT ARRAY, DISPLAY ARRAY, ARR_COUNT(), FGL_SET_ARR_CURR(),
SCR_LINE().

342

Library

ERR_GET()

Purpose:
This function returns the text corresponding to an error number.
Context:
1. Atany place in the program.
Syntax:
CALL ERR_GET(error-number INTEGER) RETURNING result STRING
Notes:

1. error-number is a runtime error or an Informix SQL error.
2. For development only.

Warnings:

1. Informix SQL error numbers can only be supported if the program is connected to
an Informix database.

See also: ERRORLOG(), STARTLOG(), ERR_QUIT(), ERR_PRINT(), Exceptions.

ERR_PRINT()
Purpose:
This function prints in the error line the text corresponding to an error number.
Context:
1. Atany place in the program.

Syntax:

CALL ERR_PRINT(error-number INTEGER)
Notes:

1. error-number is a runtime error or an Informix SQL error.
2. For development only.

343

Genero Business Development Language

Warnings:

1. Informix SQL error numbers can only be supported if the program is connected to
an Informix database.

See also: ERRORLOG(), STARTLOG(), ERR_QUIT(), ERR_GET(), Exceptions.

ERR_QUIT()

Purpose:

This function prints in the error line the text corresponding to an error number and
terminates the program.

Context:
1. Atany place in the program.
Syntax:
CALL ERR _QUIT(error-number INTEGER)
Notes:

1. error-number is a runtime error or an Informix SQL error.
2. For development only.

Warnings:

1. Informix SQL error numbers can only be supported if the program is connected to
an Informix database.

See also: ERRORLOG(), STARTLOG(), ERR_QUIT(), ERR_GET(), Exceptions.

ERRORLOG()

Purpose:

This function copies the string passed as parameter into the error log file.
Context:

1. Atany place in the program.

344

Library

Syntax:
CALL ERRORLOG(text STRING)
Notes:

1. textis the character string to be inserted in the error log file.
2. The error log must be started with STARTLOG().

See also: STARTLOG(), Exceptions.

SHOWHELP()

Purpose:

This function function displays a runtime help message, corresponding to its specified
argument, from the current help file.

Context:
1. Atany place in the program.

Syntax:
CALL SHOWHELP(help-number INTEGER)
Notes:
1. help-number is the help message number in the current help file.
2. You set the current help file with the HELP FILE clause of the OPTIONS

instruction.

See also: OPTIONS, Message Files.

STARTLOG()

Purpose:

This function initializes error logging and opens the error log file passed as the
parameter.

Context:

1. At the beginning of the program.

345

Genero Business Development Language

Syntax:

CALL STARTLOG(filename STRING)
Notes:

1. filename is the name of the error log file.
2. Runtime errors are automatically reported.
3. You can insert error records manually with the ERRORLOG() function.

Usage:

Call STARTLOG() in the MAIN program block to open or create an error log file. After
STARTLOG() has been invoked, a record of every subsequent error that occurs during
the execution of your program is written in the error log file. If you need to report specific
application errors, use the ERRORLOG() function to make an entry in the error log file.

The default format of an error record consists of the date, time, source-module hame
and line number, error number, and error message. If you invoke the STARTLOG()
function, the format of the error records appended to the error log file after each
subsequent error are as follows:

Date: 03/06/99 Time: 12:20:20

Program error at ''stock _one.4gl', line number 89.

SQL statement error number -239.

Could not insert new row - duplicate value in a UNIQUE INDEX column.
SYSTEM error number -100

ISAM error: duplicate value for a record with unique key.

The STARTLOG() and ERRORLOG() functions can be used for instrumenting a program,
to track how the program is used. This use is not only valuable for improving the
program but also for recording work habits and detecting attempts to breach security.

If the argument of STARTLOG() is not the name of an existing file, STARTLOG() creates
one. If the file already exists, STARTLOG() opens it and positions the file pointer so that
subsequent error messages can be appended to this file. The following program
fragment invokes STARTLOG(), specifying the name of the error log file in a quoted string
that includes a pathname and a file extension. The function definition includes a call to
the built-in ERRORLOG() function, which adds a message to the error log file.

See also: ERRORLOG(), Exceptions.

346

Library

FGL_BUFFERTOUCHED()

Purpose:

This function returns TRUE if the input buffer was modified after the current field was
selected.

Context:
1. In AFTER FIELD, AFTER INPUT, AFTER CONSTRUCT, ON KEY, ON ACTION blocks.
Syntax:
CALL FGL_BUFFERTOUCHED() RETURNING result INTEGER
Notes:

1. returns TRUE if the input buffer has been touched after the current field was
selected.

Warnings:

1. This function is not equivalent to FIELD_TOUCHED(): The flag returned by
FGL_BUFFERTOUCHED() is reset when you enter a new field, while
FIELD_TOUCHED() returns always TRUE for a field that was modified during the
interactive instruction.

See also: FGL_DIALOG_SETBUFFER(), FGL_DIALOG_GETBUFFER().

FGL_DIALOG_GETBUFFER()

Purpose:
This function returns the value of the current field as a string.
Context:

1. InINPUT, INPUT ARRAY, CONSTRUCT instructions.

Syntax:

CALL FGL_DIALOG_GETBUFFER() RETURNING result STRING
Notes:
1. Returns the content of the input buffer of the current field.

347

Genero Business Development Language

2. Only useful in a CONSTRUCT instruction, because there is no variable
associated to fields in this case.

See also: FGL_DIALOG_SETBUFFER(), FGL_BUFFERTOUCHED(), GET_FLDBUF().

FGL_DIALOG_SETBUFFER()

Purpose:

This function sets the input buffer of the current field, and assigns corresponding
program variable when using UNBUFFERED mode.

Context:
1. InINPUT, INPUT ARRAY, CONSTRUCT instructions.
Syntax:
CALL FGL_DIALOG_SETBUFFER(value STRING)
Notes:

1. value is the text to set in the current input buffer.
2. Only useful in a CONSTRUCT instruction, because there is no variable
associated to fields in this case.

Warnings:

1. With the default buffered input mode, this function modifies the input buffer of the
current field; the corresponding input variable is not assigned. It makes no sense
to call this function in BEFORE FIELD blocks of INPUT and INPUT ARRAY.
However, if the statement is using the UNBUFFERED mode, the function will set
both the field buffer and the program variable. If the string set by the function
does not represent a valid value that can be stored by the program variable, the
buffer and the variable will be set to NULL.

2. This function sets the 'touched' flag of the current form field, and the 'touched'
flag of the dialog. Therefore, both FIELD_TOUCHED() and
FGL_BUFFERTOUCHED() would return TRUE if you call this function.

See also: FGL_DIALOG_GETBUFFER(), FGL_BUFFERTOUCHED(), GET_FLDBUF().

348

Library

FGL_DIALOG_GETFIELDNAME()
Purpose:
This function returns the name of the current input field.
Context:
1. InINPUT, INPUT ARRAY, CONSTRUCT or DISPLAY ARRAY instructions.

Syntax:

CALL FGL_DIALOG_GETFIELDNAME() RETURNING result STRING
Notes:

1. Returns the name of the current input field.
Warnings:

1. Only the column part of the field name is returned.

See also: FGL_DIALOG_INFIELD().

FGL_DIALOG_INFIELD()
Purpose:
This function returns TRUE if the field passed as the parameter is the current input field.
Context:
1. InINPUT , INPUT ARRAY, CONSTRUCT or DISPLAY ARRAY instructions.

Syntax:

CALL FGL_DIALOG_INFIELD(field-name STRING) RETURNING result INTEGER
Notes:

1. field-name is the name if the form field.
Warnings:

1. Only the column part of the field name is used.

349

Genero Business Development Language

See also: INFIELD().

FGL_DIALOG_SETCURSOR()

Purpose:
This function sets the position of the input cursor in the current field.
Context:

1. Ininteractive instructions.

Syntax:

CALL FGL_DIALOG_SETCURSOR(index INTEGER)
Notes:
1. index is the character position in the text.

See also: FGL_GETCURSOR().

FGL_DIALOG_SETFIELDORDER()

Purpose:
This function enables or disables field order constraint.
Context:
1. Atthe beginning of the program or around INPUT instructions.

Syntax:

CALL FGL_DIALOG_SETFIELDORDER(active INTEGER)
Notes:

1. When active is TRUE, the field order is constrained.
2. When active is FALSE, the field order is not constrained.

350

Library

Usage:

Typical BDL applications control user input with BEFORE FIELD and AFTER FIELD
blocks. In many cases the field order and the sequential execution of AFTER FIELD
blocks is important in order to validate the data entered by the user. But with graphical
front ends you can use the mouse to move to a field. By default the runtime system
executes all BEFORE FIELD and AFTER FIELD blocks of the fields used by the interactive
instruction, from the origin field to the target field selected by mouse click. If needed, you
can force the runtime system to ignore all intermediate field triggers, by calling this
function with a FALSE attribute.

FGL_DIALOG_SETCURRLINE()

Purpose:
This function moves to a specific row in a record list.
Context:

1. During a DISPLAY ARRAY or INPUT ARRAY instruction.
Syntax:
CALL FGL_DIALOG_SETCURRLINE(line INTEGER, row INTEGER)
Notes:

1. line is the line number in the screen array.
2. row is the row number is the array variable.

Warnings:

1. The line parameter is ignored in GUI mode.

2. You can use the FGL_SET_ARR_CURR() function instead.

3. Control blocks like BEFORE ROW and field/row validation in INPUT ARRAY are
performed, as if the user moved to another row, except when the function is
called in BEFORE DISPLAY or BEFORE INPUT.

FGL_SET_ARR_CURR()

Purpose:

This function moves to a specific row in a record list.

351

Genero Business Development Language

Context:
1. During a DISPLAY ARRAY or INPUT ARRAY instruction.
Syntax:
CALL FGL_SET_ARR_CURR(row INTEGER)
Notes:
1. row is the row number is the array variable.
Usage:
This function is typically used to control navigation in a DISPLAY ARRAY or INPUT ARRAY.

When a new row is reaching by using with this function, the first field editable gets the
focus.

Warning: Control blocks like BEFORE ROW and field/row validation in INPUT ARRAY
are performed, as if the user moved to another row, except when the function is
called in BEFORE DISPLAY or BEFORE INPUT.

FGL_SETENV()

Purpose:
This function sets the value of an environment variable.
Context:

1. Atany place in the program.
Syntax:
CALL FGL_SETENV(variable STRING, value STRING)
Notes:

1. variable is the name of the environment variable.
2. value is the value to be set.

Warnings:

1. Use this function at your own risk: You may experience unexpected results if you
change environment variables that are already used by the current program - for

352

Library

example, when you are connected to INFORMIX and you change the
INFORMIXDIR environment variable.

2. There is a little difference between Windows and UNIX platforms when passing a
NULL as the value parameter: On Windows, the environment variable is
removed, while on UNIX, the environment variable gets an empty value (i.e. it is
not removed from the environment).

See also: FGL_GETENV()

FGL_DRAWBOX()

Purpose:

This function draws a rectangle based on the character terminal coordinates in the
current open window.

Context:
1. Atany place in the program.

Syntax:

CALL FGL_DRAWBOX(height, width, line, column, color INTEGER)
Warnings:
1. This function is provided for backward compatibility.

See also: FGL_DRAWLINE().

FGL_DRAWLINE()

Purpose:

This function draws a line based on the character terminal coordinates in the current
open window.

Context:
1. Atany place in the program.

Syntax:

CALL FGL_DRAWLINE(posX, posY, width, color INTEGER)

353

Genero Business Development Language

Warnings:
1. This function is provided for backward compatibility.

See also: FGL_DRAWBOX().

FGL_LASTKEY()

Purpose:
This function returns the key code of the last key pressed by the user.
Context:

1. Any interactive instruction.

Syntax:

CALL FGL_LASTKEY() RETURNING result INTEGER
Notes:

1. The function returns NULL if no key has been pressed.
Warnings:

1. This function is provided for backward compatibility.

See also: FGL_KEYVAL().

FGL_KEYVAL()

Purpose:
This function returns the key code of a logical or physical key.
Context:

1. Atany place in the program.

Syntax:

CALL FGL_KEYVAL(character STRING) RETURNING result INTEGER

354

Library

Notes:

1. character can be a single character, a digit, a printable symbol like @, #, $ or a
special keyword.

2. Keywords recognized by FGL_KEYVAL() are: ACCEPT, HELP, NEXT, RETURN,
DELETE, INSERT, NEXTPAGE, RIGHT, DOWN, INTERRUPT, PREVIOUS, TAB, ESC,
ESCAPE, LEFT, PREVPAGE, UP, F1 through F64, CONTROL-character (except A, D,
H, 1,3, L, MR, orX)

3. If you specify a single character, FGL_KEYVAL() considers the case. In all other
instances, the function ignores the case of its argument, which can be uppercase
or lowercase letters.

4. The function returns NULL if the parameter does not correspond to a valid key.

Warnings:

1. This function is provided for backward compatibility especially for TUI mode
applications. FGL_KEYVAL(Q) is well supported in text mode, but this function can
only be emulated in GUI mode, because the front-ends communicate with the
runtime system with other events as keystrokes.

Usage:

FGL_KEYVAL() can be used in form-related statements to examine a value returned by
the FGL_LASTKEY() function.

To determine whether the user has performed an action, such as inserting a row, specify
the logical name of the action (such as INSERT) rather than the name of the physical
key (such as F1). For example, the logical name of the default Accept key is ESCAPE.
To test if the key most recently pressed by the user was the Accept key, specify
FGL_KEYVAL('ACCEPT™) rather than FGL_KEYVAL(*'escape'") or FGL_KEYVAL('ESC™).
Otherwise, if a key other than ESCAPE is set as the Accept key and the user presses
that key, FGL_LASTKEY () does not return a code equal to FGL_KEYVAL(""ESCAPE'™). The
value returned by FGL_LASTKEY () is undefined in a MENU statement.

See also: FGL_LASTKEY().

FGL_REPORT_PRINT_BINARY_FILE()

Purpose:

This function prints a file containing binary data during a report.
Context:

1. In a REPORT routine.

355

Genero Business Development Language

Syntax:

CALL FGL_REPORT_PRINT_BINARY_FILE(filename STRING)
Notes:

1. filename is the name of the binary file.
Warnings:

1. This function is provided for backward compatibility.

FGL_REPORT_SET_DOCUMENT_HANDLER()

Purpose:
This function redirects the next report to an XML document handler.
Context:

1. Before / After the execution of a REPORT.

Syntax:

CALL FGL_REPORT_SET DOCUMENT_HANDLER(handler om.SaxDocumentHandler)
Notes:

1. handler is the document handler variable.

FGL_GETCURSOR()/ FGL_DIALOG_GETCURSOR()

Purpose:
This function returns the position of the edit cursor in the current field.
Context:

1. Ininteractive instructions.

Syntax:

CALL FGL_GETCURSOR() RETURNING index INTEGER

356

Library

Notes:
1. index is the character position in the text.

See also: FGL_DIALOG_SETCURSOR).

FGL_GETWIN_HEIGHT()
Purpose:
This function returns the number of rows of the current window.
Context:
1. Atany place in the program.

Syntax:

CALL FGL_GETWIN_HEIGHT() RETURNING result INTEGER
Warnings:
1. This function is provided for backward compatibility.

See also: FGL_GETWIN_WIDTH().

FGL_GETWIN_WIDTH()
Purpose:
This function returns the width of the current window as a number of columns.
Context:
1. Atany place in the program.

Syntax:

CALL FGL_GETWIN_WIDTH() RETURNING result INTEGER
Warnings:

1. This function is provided for backward compatibility.

357

Genero Business Development Language

See also: FGL_GETWIN_WIDTH().

FGL_GETWIN_X()

Purpose:
This function returns the horizontal position of the current window.
Context:

1. Atany place in the program.
Syntax:
CALL FGL_GETWIN_X() RETURNING result INTEGER
Warnings:

1. This function is provided for backward compatibility.

See also: FGL_GETWIN_Y().

FGL_GETWIN_Y()

Purpose:
This function returns the vertical position of the current window.
Context:

1. Atany place in the program.
Syntax:
CALL FGL_GETWIN_X() RETURNING result INTEGER
Warnings:

1. This function is provided for backward compatibility.

See also: FGL_GETWIN_X().

358

Library

LENGTH()

Purpose:
This function returns the number of bytes of the expression passed as parameter.
Context:
1. Atany place in the program.
Syntax:
CALL LENGTH(expression) RETURNING result INTEGER
Notes:
1. expression is any valid expression.
2. Trailing blanks are not counted in the length of the string.
3. If the parameter is NULL, the function returns zero.
Warnings:
1. The function counts bytes, not characters. This is important in a multi-byte
environment.
2. Most database servers support an equivalent scalar function in the SQL
language, but the result may be different from the FGL built-in function. For

example, Oracle's LENGTHY() function returns NULL when the string is empty.

See also: FGL_WIDTH)().

FGL_GETVERSION()
Purpose:
This function returns the build number of the runtime system.
Context:
1. Atany place in the program.

Syntax:

CALL FGL_GETVERSION(C) RETURNING result STRING

359

Genero Business Development Language

Warnings:

1. Provided for debugging info only; please do not write business code dependent
on the build number.

2. The format of the build number returned by this function is subject of change in
future versions.

FGL_GETHELP()

Purpose:
Returns the help text according to its identifier by reading the current help file.
Context:

1. At any place in the program, after the definition of the current help file (OPTIONS
HELP FILE).

Syntax:

CALL FGL_GETHELP(id INTEGER) RETURNING result STRING
Notes:
1. idis the help text identifier.

See also: The OPTIONS instruction.

FGL_GETPID()
Purpose:
This function returns the system process identifier.
Context:
1. Atany place in the program.

Syntax:

CALL FGL_GETPID() RETURNING result INTEGER

360

Library

Notes:
1. The process identifier is provided by the operating system; it is normally unique.

See also: FGL_SYSTEM().

FGL_DIALOG_GETBUFFERSTART()
Purpose:
This function returns the row offset of the page to feed a paged display array.

Syntax:

CALL FGL_DIALOG_GETBUFFERSTART() RETURNING result INTEGER
Usage:

See DISPLAY ARRAY.

FGL_DIALOG_GETBUFFERLENGTH()
Purpose:
This function returns the number of rows of the page to feed a paged display array.

Syntax:

CALL FGL_DIALOG_GETBUFFERLENGTH() RETURNING result INTEGER
Usage:

See DISPLAY ARRAY.

FGL_PUTFILE

Purpose:

Transfers a file from the application server machine to the front end workstation.

361

Genero Business Development Language

Syntax:

CALL fgl _putfile(src STRING, dst STRING)
Notes:

1. src contains the name of the source file to send.
2. dst contains the name of the file to write on the front end.

FGL_GETFILE

Purpose:
Transfers a file from the front end workstation to the application server machine.

Syntax:

CALL fgl _getfile(src STRING, dst STRING)
Notes:

1. src contains the name of the source file to retrieve from the front end workstation.
2. dst contains the name of the file to write on the server side.

FGL_GETENV()

Purpose:

This function returns the value of the environment variable having the name you specify
as the argument.

Syntax:
CALL FGL_GETENV(variable STRING) RETURNING result STRING
Notes:
1. variable is the name of the environment variable.
2. C‘E;tlr:;specified environment variable is not defined, the function returns a NULL

3. If the environment variable is defined but does not have a value assigned to it,
the function returns blank spaces.

362

Library

Warnings:

1. If the returned value can be a long character string, be sure to declare the
receiving variable with sufficient size to store the character value returned by the
function. Otherwise, the value will be truncated.

Usage:
The argument of FGL_GETENV() must be the name of an environment variable. If the
requested value exists in the current user environment, the function returns it as a

character string and then returns control of execution to the calling context.

See also: FGL_SETENV()

FGL_GETKEYLABEL()

Purpose:
This function returns the default label associated to a key.

Syntax:

CALL FGL_GETKEYLABEL(keyname STRING) RETURNING result STRING
Notes:

1. keyname is the logical name of a key such as F11 or DELETE, INSERT, CANCEL.
Warnings:

1. This function is provided for backward compatibility.

See also: FGL_SETKEYLABEL(), FGL_DIALOG_GETKEYLABEL()

FGL_SETKEYLABEL()
Purpose:
This function sets the default label associated to a key.

Syntax:

CALL FGL_SETKEYLABEL(keyname STRING, label STRING)

363

Genero Business Development Language

Notes:

1. keyname is the logical name of a key such as F11 or DELETE, INSERT, CANCEL.
2. labelis the text associated to the key.

Warnings:
1. This function is provided for backward compatibility.

See also: FGL_SETKEYLABEL(), FGL_DIALOG_SETKEYLABEL().

FGL_DIALOG_GETKEYLABEL()
Purpose:
This function returns the label associated to a key for the current interactive instruction.

Syntax:

CALL FGL_DIALOG_GETKEYLABEL(keyname STRING) RETURNING result STRING
Notes:

1. keyname is the logical name of a key such as F11 or DELETE, INSERT, CANCEL.
Warnings:

1. This function is provided for backward compatibility.

See also: FGL_SETKEYLABEL(), FGL_DIALOG_SETKEYLABEL().

FGL_DIALOG_SETKEYLABEL()
Purpose:
This function sets the label associated to a key for the current interactive instruction.
Syntax:
CALL FGL_DIALOG_SETKEYLABEL(keyname STRING, label STRING)
Notes:
1. keyname is the logical name of a key such as F11 or DELETE, INSERT, CANCEL.

364

Library

2. label is the text associated to the key.
Warnings:
1. This function is provided for backward compatibility.

See also: FGL_SETKEYLABEL(), FGL_DIALOG_GETKEYLABEL().

FGL_SETSIZE()

Purpose:
This function sets the size of the main application window.

Syntax:

CALL FGL_SETSIZE(width INTEGER, height INTEGER)
Notes:

1. width is the number of columns of the window.
2. height is the number of lines of the window.

Warnings:
1. This function is provided for backward compatibility.

See also: FGL_SETTITLE().

FGL_SETTITLE()
Purpose:
This function sets the title of the main application window.

Syntax:

CALL FGL_SETTITLE(label STRING)
Notes:

1. label is the text of the title.

365

Genero Business Development Language

Warnings:
1. This function is provided for backward compatibility.

See also: FGL_SETSIZE().

FGL_SYSTEM()

Purpose:

This function starts a program in a UNIX terminal emulator when using a graphical front
end.

Syntax:
CALL FGL_SYSTEM(command STRING)
Notes:
1. command is the command line to be executed on the server.
Warnings:
1. This function is provided for backward compatibility.
Usage:

The function starts a program that needs a UNIX terminal emulator when using the
Windows Front End, even if the current program has been started without a visible
terminal. The command parameter is a string or variable that contains the commands to
be executed. The UNIX terminal will be raised and activated. The terminal is
automatically lowered when the child process finishes.

See also: WINEXEC().

FGL_WIDTH()

Purpose:

This function returns the number of columns needed to represent the printed version of
the expression.

366

Library

Context:
1. Atany place in the program.
Syntax:
CALL FGL_WIDTH(expression) RETURNING result INTEGER
Notes:
1. expression is any valid expression.
2. Trailing blanks are counted in the length of the string.

3. If the parameter is NULL, the function returns zero.

See also: LENGTH().

FGL_WINDOW_GETOPTION()

Purpose:
This function returns attributes of the current window.

Syntax:

CALL FGL_WINDOW_GETOPTION(attribute STRING) RETURNING result STRING
Notes:

1. attribute is the name of a window attribute. This can be one of name, x, y, width,
height, formline, messageline.

Warnings:

1. This function is provided for backward compatibility.

FGL_GETRESOURCE()

Purpose:
This function returns the value of an FGLPROFILE entry.
Context:

1. Atany place in the program.

367

Genero Business Development Language

Syntax:
CALL FGL_GETRESOURCE(name STRING) RETURNING result STRING
Notes:

1. name is the FGLPROFILE entry name to be read.
2. If the entry does not exist in the configuration file, the function returns NULL.
3. See also FGLPROFILE definition.

Warnings:

1. FGLPROFILE entry names are not case sensitive.

ORD()

Purpose:

This function accepts as its argument a character expression and returns the integer
value of the first byte of that argument.

Context:
1. Atany place in the program.
Syntax:
CALL ORD(source STRING) RETURNING result INTEGER
Notes:
source is a string expression.
This function is case-sensitive.
Only the first byte of the argument is evaluated.
Returns NULL if the argument passed is not valid.

For a default (U.S. English) locale, this function is the logical inverse of the
ASCII() operator.

arwpdPE

See also: FGL_KEYVAL(), ASCII().

368

Library

DOWNSHIFT()

Purpose:

This function returns returns a string value in which all uppercase characters in its
argument are converted to lowercase.

Context:
1. Atany place in the program.
Syntax:
CALL DOWNSHIFT(source STRING) RETURNING result STRING
Notes:

1. source is the character string to convert to lowercase letters.
2. Non-alphabetic or lowercase characters are not altered.

Warnings:
1. Conversion depends on locale settings (the LC_CTYPE environment variable).

See also: UPSHIFT().

UPSHIFT()

Purpose:

This function returns a string value in which all lowercase characters in its argument are
converted to uppercase.

Context:
1. Atany place in the program.

Syntax:

CALL UPSHIFT(source STRING) RETURNING result STRING
Notes:
1. source is the character string to convert to uppercase letters.

2. Non-alphabetic or uppercase characters are not altered.

369

Genero Business Development Language

Warnings:

1. Conversion depends on locale settings (the LC_CTYPE environment variable).

See also: DOWNSHIFT().

The key code table

Warning: These are internal key codes. Avoid hardcoding these numbers in your
sources; otherwise your 4gl source will not be compatible with future versions of

Genero FGL. Always use the FGL_KEYVAL(keyname) function instead.

Value

1 to 26

others < 256

2000
2001
2002
2003
2005
2006
2008
2011
2012
2013
2016
2017

Key name
Control-x

ASCI1 chars

up

down

left
right
nextpage
prevpage
help
interrupt
home

end
accept
backspace

3000 to 3255 Fx

Description

Control key, where x is the any letter from A
to Z. The key code corresponding to Control-
Ais 1, Control-B is 2, etc.

Other codes correspond to the ASCII
characters set.

The up-arrow logical key.
The down-arrow logical key.
The left-arrow logical key.
The right-arrow logical key.
The next-page logical key.
The previous-page logical key.
The help logical key.

The interrupt logical key.
The home logical key.

The end logical key.

The accept logical key.

The backspace logical key.

Function key, where x is the number of the
function key. The key code corresponding to
a function key Fx is 3000+x-1, for example,
3011 corresponds to F12.

370

Utility Functions

Summary:

e What is a utility function?
e List of utility functions

Library

e List of de-supported utility functions

See also: Built-in Functions.

What is a utility function?

A utility function is a function provided in a separate 4GL library; it is not built in the
runtime system. You must link with the utility library to use one of the utility functions.

The library of utility function is named libfgl4js. The 42x file, 42m modules and 42f
forms are provided in $FGLDIR/lib. The sources of the utility functions and form files are

provided in the FGLDIR/src directory.

List of utility functions

Function
Common dialog functions
FGL_WINBUTTON()

FGL_WINMESSAGE()
FGL_WINPROMPT()
FGL_WINQUESTION()
FGL_WINWAIT()

Database utility functions
DB_GET_DATABASE_TYPE()
DB_GET_SEQUENCE()

DB_START_TRANSACTION()

DB_FINISH_TRANSACTION()

Description

In a separate window, displays an interactive
message box with multiple choices

In a separate window, Displays an interactive
message box with some text

Displays a dialog box with a field that accepts
a value

In a separate window, displays an interactive
message box with Yes, No, Cancel buttons

Displays a dialog box and waits for the user to
press a key

Returns the type of the current database

Returns a new serial value from a predefined
table (SERIALREG)

Starts a new transaction if none is started (for
nested transaction handling)

Ends a nested transaction

371

Genero Business Development Language

DB_IS _TRANSACTION_STARTED() Returns TRUE if a nested transaction is

started

Front End Functions (Use ui.Interface.frontCall() instead)

WINOPENDIR()

WINOPENFILE()

WINSAVEFILE()

Shows a dialog window to select a directory in
the front end workstation file system,;

use
ui.Interface.frontCall("standard","opendir",...)
instead.

Shows a dialog window to select a file in the
front end workstation file system;

use
ui.Interface.frontCall("standard","openfile",...)
instead.

Shows a dialog window to save a file in the
front end workstation file system;

use
ui.Interface.frontCall("standard”,"savefile",...)
instead.

Microsoft Windows Client Specific Functions (Use ui.Interface.frontCall()

instead)
WINEXEC()

WINEXECWAIT()

WINSHELLEXEC()

Starts a program on a Microsoft Windows
front end without waiting;

use
ui.Interface.frontCall("standard","execute",...)
instead.

Starts a program on a Microsoft Windows
front end and waits;

use
ui.Interface.frontCall("standard","execute",...)
instead.

Opens a document on a Microsoft Windows
front end with the corresponding program;

use
ui.Interface.frontCall("standard","shellexec",...)
instead.

List of de-supported utility functions

Function
DATEL()
TIMEL()

FGL_FGLGUI()

372

Description
Converts a DATETIME to a DATE.

Extracts the time part (hour, minute, second)
from DATETIME.

Returns TRUE if the application runs in GUI

Library

mode.
FGL_GETUITYPE() Returns the type of the front end.
FGL_MSG_NONL() Returns an error message without trailing
blanks.

FGL_INIT4JS() Initializes the built-in function library.
FGL_MSG_NONL() Returns an error message without the CR at
the end.

FGL_WTKCLIENT() Returns TRUE if the current front end is the
WTK.

FGL_RESOURCE() Selects a specific FGLPROFILE file.

FGL_UIRETRIEVE() Returns the value of a variable from the
WTK front end.

FGL_UISENDCOMMAND() Sends a TCL command to the WTK front
end.

FGL_WTKCLIENT() Returns TRUE if the current front end is the
WTK.

FGL_CHARBOOL_TO_INTBOOL() Converts a character representation of a
Boolean value to an INTEGER.

FGL_INTBOOL_TO_ CHARBOOL(Converts an INTEGER to a character
) representation of the Boolean value.

DB_GET DATABASE_TYPE()

Purpose:
This function returns the database type for the current connection.

Syntax:

CALL DB_GET_DATABASE_TYPEQ)
RETURNING result STRING

Usage:

After connecting to the database, you can get the type of the database server with this
function.

The following table shows the codes returned by this function, for the supported
database types:

Code Description
ADS ANTs / Genero DB
ASA Sybase ASA

373

Genero Business Development Language

DB2 IBM DB2

IFX Informix

MYS MySQL

MSV Microsoft SQL Server
ORA Oracle

PGS PostgreSQL

DB_GET_SEQUENCE()

Purpose:
This function generates a new sequence for a given identifier.

Syntax:

CALL DB_GET_SEQUENCE(id STRING)
RETURNING result INTEGER

Warnings:

1. This function needs a database table called SERIALREG.
2. This function must be used inside a transaction block.

Usage:

This function generates a new sequence from a register table created in the current
database.

The table must be created as follows:

CREATE TABLE SERIALREG
(TABLE_NAME VARCHAR(50) NOT NULL PRIMARY KEY,
LAST_SERIAL INTEGER NOT NULL)

Each time you call this function, the sequence is incremented in the database table and
returned by the function.

It is mandatory to use this function inside a transaction block, in order to generate unique
sequences.

Example:

01 MAIN

02 DEFINE ns, s INTEGER

03 DATABASE mydb

04 LET s = DB_START_TRANSACTIONQ)

374

Library

05 LET ns = DB_GET_SEQUENCE('mytable'™)

06 INSERT INTO mytable VALUES (ns, "a new sequence®)
07 LET s = DB_FINISH_TRANSACTION(TRUE)

08 END MAIN

DB_START_TRANSACTION()

Purpose:
This function encapsulates the BEGIN WORK instruction to start a transaction.
Syntax:

CALL DB_START_TRANSACTIONQ)
RETURNING result INTEGER

Usage:
You can use the transaction management functions to handle nested transactions.

On most database engines, you can only have a unique transaction, that you start with
BEGIN WORK and you end with COMMIT WORK or ROLLBACK WORK. But in a
complex program, you may have nested function calls doing several SQL transactions.

The transaction management functions execute a real transaction instruction only if the
number of subsequent start/end calls of these functions matches.

Example:

01 DEFINE s INTEGER

02

03 MAIN

04 DATABASE mydb

05 LET s = DB_START_TRANSACTION() -- real BEGIN WORK
06 CALL do_update()

07 LET s = DB_FINISH_TRANSACTION(TRUE) -- real COMMIT WORK
08 END MAIN

09

10 FUNCTION do_update()

11 LET s = DB_START_TRANSACTIONQ)

12 UPDATE customer SET cust_status = "X"

13 LET s = DB_FINISH_TRANSACTION(TRUE)

14 END FUNCTION

375

Genero Business Development Language

DB_FINISH_TRANSACTION()

Purpose:

This function encapsulates the COMMIT WORK or ROLLBACK WORK instructions to
end a transaction.

Syntax:

CALL DB_FINISH_TRANSACTION(C commit INTEGER)
RETURNING result INTEGER

Notes:
1. commit indicates whether the transaction must be committed.
Usage:

When the number of calls to DB_START_TRANSACTION() matches, this function
executes a COMMIT WORK if the passed parameter is TRUE; if the passed parameter
is not TRUE, it executes a ROLLBACK WORK.

If the number of calls does not match, the function does nothing.

See also: DB_START_TRANSACTION().

DB_IS_TRANSACTION_STARTED()

Purpose:

This function indicates whether a transaction is started with the transaction management
functions.

Syntax:

CALL DB_IS_TRANSACTION_STARTEDQ)
RETURNING result INTEGER

Usage:

The function returns TRUE if a transaction was started with
DB_START_TRANSACTION(Y).

376

Library

FGL_WINBUTTON()

Purpose:

This function displays an interactive message box containing multiple choices, in a
separate window.

Syntax:

CALL FGL_WINBUTTON(
title STRING, text STRING, default STRING,
buttons STRING, icon STRING, danger SMALLINT)
RETURNING result STRING

Notes:

title defines the title of the message window.

text specifies the string displayed in message window.

Use '\n'in text to separate lines (this does not work on ASCII client).

default indicates the default button to be pre-selected.

buttons defines a set of button labels separated by "|".

You can define up to 7 buttons that each have 10 characters.

icon is the name of the icon to be displayed.

Supported icon hames are: "information", "exclamation"”, "question", "stop".
danger (for X11 only), number of the warnings item. Otherwise, this parameter is
ignored.

10. The function returns the label of the button which has been selected by the user.

©CoNoO~LONE

Warnings:

1. You can also use a form or a menu with "popup” style instead.

2. If two buttons start with the same letter, the user will not be able to select one of
them on the ASCII client.

3. The "&" before a letter for a button is either displayed (ASCII client), or it
underlines the letter.

Example:

01 MAIN

02 DEFINE answer STRING

03 LET answer = FGL_WINBUTTON("Media selection', "What is your
favorite media?",

04 "Lynx", "Floppy Disk|CD-ROM|DVD-ROM]|Other', '‘question’, 0)
05 DISPLAY "Selected media is: ™ || answer
06 END MAIN

377

Genero Business Development Language

FGL_WINMESSAGE()

Purpose:
This function displays an interactive message box containing text, in a separate window.

Syntax:

CALL FGL_WINMESSAGE(title STRING, text STRING, icon STRING)

Notes:
1. title defines message box title.
2. textis the text displayed in the message box. Use '\n' to separate lines.
3. icon is the name of the icon to be displayed.
4. Supported icon names are: "information", "exclamation", "question", "stop".

Warnings:

1. You can also use a form or a menu with "popup" style instead.
2. iconisignored by the ASCII client.

Example:

01 MAIN

02 CALL FGL_WINMESSAGE("Title", "This is a critical message.",
IlStOpll)

03 END MAIN

FGL_WINPROMPT()

Purpose:
This function displays a dialog box containing a field that accepts a value.

Syntax:

CALL FGL_WINPROMPT (
X INTEGER, y INTEGER, text STRING,
default STRING, length INTEGER, type STRING)
RETURNING value STRING

Notes:
1. xis the column position in characters.

2. yisthe line position in characters.
3. textis the message shown in the box.

378

4,
5.
6

7.

Library

default is the default value.

length is the maximum length of the input value.

type is the datatype of the return value : 0=CHAR, 1=SMALLINT, 2=INTEGER,
7=DATE, 255=invisible

value is the value entered by the user.

Warnings:

1.
2.

You can also use your own form instead.
Avoid passing NULL values.

Example:

01 MAIN

02
04
05

DEFINE answer DATE
LET answer = FGL_WINPROMPT(10, 10, "Today', DATE, 10, 7)
DISPLAY "Today is ™ || answer

06 END MAIN

FGL_WINQUESTION()

Purpose:

This function displays an interactive message box containing Yes, No, and Cancel
buttons, in a separate window

Syntax:

CALL

FGL_WINQUESTION(

title STRING, text STRING, default STRING,
buttons STRING, icon STRING, danger SMALLINT)
RETURNING value STRING

Notes:

1.
2.

hw

title is the message box title.

text is the message displayed in the message box. Use \n' to separate lines
(does not work on ASCII client).

default defines the default button that is pre-selected.

buttons defines the buttons: Either "yes|no" or "yes|no|cancel”, not case-
sensitive.

icon is the name of the icon to be displayed.

Supported icon hames are: "information", "exclamation"”, "question", "stop".
danger is for X11, it defines the code of the warning item. Otherwise, this
parameter is ignored.

The function returns the label of the button which has been selected by the user.

379

Genero Business Development Language

Warnings:

1. You can also use a form or a menu with "popup" style instead.
2. Setting buttons to another value may result in unpredictable behavior at runtime.
3. Avoid passing NULL values

Example:

01 MAIN

02 DEFINE answer STRING

04 LET answer = "'yes™

05 WHILE answer = ''yes"

06 LET answer = FGL_WINQUESTION(

07 "Procedure', "Would you like to continue ? "
08 "cancel™, "yes|no]cancel', '"question”™, 0)
09 END WHILE

10 IF answer = "cancel" THEN

11 DISPLAY "Canceled."

12 END IF

13 END MAIN

FGL_WINWAIT()

Purpose:
This function displays an interactive message box and waits for the user to press a key

Syntax:

CALL FGL_WINWAIT(text STRING)
Notes:

1. textis the message displayed in the message box. Use "\n' to separate lines (not
working on ASCII client).

Warnings:

1. You can also use a form or a menu with "popup" style instead.

WINEXEC() MS Windows FE Only!

Purpose:

This function executes a program on the machine where the Windows Front End runs
and returns immediately.

380

Library

Context:

1. Atany place in the program, but only after the first instruction has displayed
something on the front end.

Syntax:

CALL WINEXEC(command STRING)
RETURNING result INTEGER

Notes:
1. command is the command to be executed on the front end.
2. The function executes the program without waiting.

3. The function returns FALSE if a problem has occurred.

See also: WINEXECWAIT(), DDE Support.

WINEXECWAIT() MS Windows FE Only!

Purpose:

This function executes a program on the machine where the Windows Front End runs
and waits for termination.

Context:

1. Atany place in the program, but only after the first instruction has displayed
something on the front end.

Syntax:

CALL WINEXECWAIT(command STRING)
RETURNING result INTEGER

Notes:
1. command is the command to be executed on the front end.
2. The function executes the program and waits for its termination.

3. The function returns FALSE if a problem has occurred.

See also: WINEXEC(), DDE Support.

381

Genero Business Development Language

WINSHELLEXEC() MS Windows FE Only!

Purpose:

This function opens a document with the corresponding program, based on the file
extension.

Context:

1. Atany place in the program, but only after the first instruction has displayed
something on the front end

Syntax:

CALL WINSHELLEXEC(filename STRING)
RETURNING result INTEGER

Notes:
1. filename is the file to be opened on the front end.
2. The function executes the program and returns immediately.

3. The function returns FALSE if a problem has occurred.

See also: WINEXEC(), DDE Support.

WINOPENDIR()

Purpose:

This function shows a dialog window to let the user select a directory path on the front
end workstation file system.

Context:

1. At any place in the program, but only after the first instruction has displayed
something on the front end

Syntax:

CALL WINOPENDIR(dirname STRING, caption STRING)
RETURNING result STRING

Notes:

1. dirname is the default path to be displayed in the dialog window.
2. caption is the label to be displayed.
3. The function returns the directory path on success.

382

Library

4. The function returns NULL if a problem has occurred or if the the user canceled
the dialog.

WINOPENFILE()

Purpose:

This function shows a dialog window to let the user select a file path on the front end
workstation file system, for displaying.

Context:

1. Atany place in the program, but only after the first instruction has displayed
something on the front end.

Syntax:

CALL WINOPENFILE(dirname STRING, typename STRING,
extlist STRING, caption STRING)
RETURNING result STRING

Notes:

dirname is the default path to be displayed in the dialog window.

typename is the name of the file type to be displayed.

extlist is a blank-separated list of file extensions defining the file type.

caption is the label to be displayed.

The function returns the file path on success.

The function returns NULL if a problem has occurred or if the the user canceled
the dialog.

ogagkrwnNE

WINSAVEFILE()

Purpose:

This function shows a dialog window to let the user select a file path on the front end
workstation file system, for saving.

Context:

1. Atany place in the program, but only after the first instruction has displayed
something on the front end

383

Genero Business Development Language

Syntax:

CALL WINSAVEFILE(dirname STRING, typename STRING,
extlist STRING, caption STRING)
RETURNING result STRING

Notes:

dirname is the default path to be displayed in the dialog window.

typename is the name of the file type to be saved.

extlist is a blank separated list of file extensions defining the file type.

caption is the label to be saved.

The function returns the file path on success.

The function returns NULL if a problem has occurred or if the the user canceled
the dialog.

oukrwNE

384

Library

Windows DDE Support

Summary:

What is DDE?

Using DDE API

The DDE API

Example

BDL Wrappers for DDE functions

See also: Built-in Functions.

What is DDE?

DDE is a form of inter-process communication implemented by Microsoft for Windows
platforms. DDE uses shared memory to exchange data between applications.
Applications can use DDE for one-time data transfers, and for ongoing exchanges in
applications that send updates to one another as new data becomes available.

Please refer to your Microsoft documentation for DDE compatibility between existing
versions. As an example, DDE commands were changed between Office 97 and Office
98.

Using DDE API

With DDE Support, you can invoke a Windows application and send data to or receive
data from it. To use this functionality, the program must use the Windows Front End.

Before using the DDE functions, the TCP communication channel between the
application and the front end must be established with a display (OPEN WINDOW,
MENU, DISPLAY TO).

385

Genero Business Development Language

Fi5L Progran Wromksstation

~ta| Disply .
Ilochale -1
| DDE Cormect Call }\
4 -
. [LDE
DDE Cormection | Modale %]

| Wariable to be cert |
LDE Poke Call

The DDE API is used in a four-part procedure, as described in the following steps:

1. The application sends the Front End the DDE order using the TCP/IP channel.

2. The Front End executes the DDE order and sends the data to the Windows
application through the DDE API.

3. The Windows application executes the command and sends the result, which
can be data or an error code, to the Front End.

4. The Windows Front End sends back the result to the application using the
TCP/IP channel.

A DDE connection is uniquely identified by two values: The name of the DDE Application
and the document. Most DDE functions require these two values to identify the DDE
source or target.

The DDE API

The DDE API is based on the front call technique described in Front End Functions. All
DDE functions are grouped in the WINDDE front end function module.

Function name Description

DDEConnect This function opens a DDE connection

DDEExecute This function executes a command in the specified
program

DDEFinish This function closes a DDE connection

DDEFinishAll This function closes all DDE connections, as well as the
DDE server program

DDEError This function returns DDE error information about the

last DDE operation

386

Library

DDEPeek This function retrieves data from the specified program
and document using the DDE channel
DDEPoke This function sends data to the specified program and

document using the DDE channel

DDEConnect

Purpose:
This function opens a DDE connection.

Syntax:

CALL ui.Interface.frontCall ('WINDDE", " DDEConnect",
[program, document], [result])

Notes:

program is the name of the DDE application.

document is the document that is to be opened.

result is an integer variable receiving the status.

result is TRUE if the function succeeded, FALSE otherwise.

If the function failed, use DDEError to get the description of the error.

alrwpdE

Warnings:

1. If the function failed with "DMLERR_NO_CONV_ESTABLISHED", then the DDE
application was probably not running; use execute or shellexec front call to start
the DDE application.

DDEEXxecute
Purpose:
This function executes a DDE command.

Syntax:

CALL ui.Interface.frontCall (""WINDDE", ' DDEExecute",
[program, document, command], [result])

Notes:
1. program is the name of the DDE application.

387

Genero Business Development Language

document is the document that is to be used.

command is the command that needs to be executed.

Refer to the program documentation for the syntax of command.
result is an integer variable receiving the status.

result is TRUE if the function succeeded, FALSE otherwise.

If the function failed, use DDEError to get the description of the error.

Nooahswd

Warnings:

1. The DDE connection must be opened; see DDEConnect.

DDEFinish
Purpose:
This function closes a DDE connection.

Syntax:

CALL ui.Interface.frontCall (C"WINDDE", ""DDEFinish™,
[program, document], [result])

Notes:

1. program is the name of the DDE application.

2. document is the document that is to be closed.

3. result is an integer variable receiving the status.

4. resultis TRUE if the function succeeded, FALSE otherwise.

5. If the function failed, use DDEError to get the description of the error.
Warnings:

1. The DDE connection must be opened, see DDEConnect.

DDEFinishAll
Purpose:
This function closes all DDE connections as well as the DDE server program.

Syntax

CALL ui.Interface.frontCall ("WINDDE"," "DDEFinishAll", []1, [result])

388

Library

Notes:

1. Closes all DDE connections.
2. resultis an integer variable receiving the status.
3. resultis TRUE if the function succeeded, FALSE otherwise.

DDEError
Purpose:
This function returns the error information about the last DDE operation.

Syntax:

CALL ui.Interface.frontCall (C"WINDDE", " DDEError™, []1, [errmsg])
Notes:

1. errmsg is the error message. It is set to NULL if no error occurred.

DDEPeek

Purpose:

This function retrieves data from the specified program and document using the DDE
channel.

Syntax:

CALL ui.Interface.frontCall (""WINDDE", " DDEPeek",
[program, container, cells], [result, value])

Notes:

program is the name of the DDE application.

container is the document or sub-document that is to be used.

A sub-document can, for example, be a sheet in Microsoft Excel.

3. cells represents the working items; see the program documentation for the format
of cells.

value represents the data to be retrieved; see the program documentation for the
format of values.

result is an integer variable receiving the status.

result is TRUE if the function succeeded, FALSE otherwise.

If the function failed, use DDEError to get the description of the error.

value is a variable receiving the cells values.

A

B

©No O

389

Genero Business Development Language

Warnings:

1. The DDE connection must be opened; see DDEConnect.
2. DDEError can only be called once to check if an error occurred.

DDEPoke

Purpose:
This function sends data to the specified program and document using the DDE channel.

Syntax:

CALL ui.Interface.frontCall (C"WINDDE", ""DDEPoke™,
[program, container, cells, values], [result])

Notes:

program is the name of the DDE application.

container is the document or sub-document that is to be used.

A sub-document can, for example, be a sheet in Microsoft Excel.

3. cells represents the working items; see the program documentation for the format
of cells.

4. values represents the data to be sent; see the program documentation for the
format of values.

5. result is an integer variable receiving the status.

6. resultis TRUE if the function succeeded, FALSE otherwise.

7. If the function failed, use DDEError to get the description of the error.

N =

Warnings:

1. The DDE connection must be opened; see DDEConnect.
2. An error may occur if you try to set many (thousands of) cells in a single
operation.

Example

dde_example.per

01 DATABASE formonly

02 SCREEN

03 {

04 Value to be given to top-left corner :
05 [f00 1
06 Value found on top-left corner :

07 [fO1 1

390

08 }

Library

09 ATTRIBUTES

10
11

OO0 = formonly.val;
01 = formonly.rval, NOENTRY;

dde_example.4gl

01 MAIN

02 -— Excel must be open with "Filel.xlIs"

03 CONSTANT Ffile = "Filel.xlIs"

04 CONSTANT prog = "EXCEL"

05 DEFINE val, rval STRING

06 DEFINE res INTEGER

07 OPEN WINDOW w1l AT 1,1 WITH FORM "‘dde_example.per"

08 INPUT BY NAME val

09 CALL ui.Interface.frontCall (""WINDDE", " DDEConnect", [prog,file],
[res])

10 CALL checkError(res)

11 CALL ui.Interface.frontCall (""WINDDE", "'DDEPoke",
[prog,file,"R1C1",val], [res]);

12 CALL checkError(res)

13 CALL ui.Interface.frontCall (""WINDDE", ""DDEPeek",
[prog,file,""R1C1"], [res,rval]);

14 CALL checkError(res)

15 DISPLAY BY NAME rval

16 INPUT BY NAME val WITHOUT DEFAULTS

17 CALL ui.Interface.frontCall (""WINDDE", " DDEExecute",
[prog,file,"[save]'], [res]);:

18 CALL checkError(res)

19 CALL ui.Interface.frontCall ("WINDDE",""DDEFinish', [prog,file],
[res]);

20 CALL checkError(res)

21 CALL ui.Interface.frontCall (""WINDDE",""DDEFinishAIl", [], [res]);
22 CALL checkError(res)

23 CLOSE WINDOW wl

24 END MAIN

25

26 FUNCTION checkError(res)

27 DEFINE res INTEGER

28 DEFINE mess STRING

29 IF res THEN RETURN END IF

30 DISPLAY "DDE Error:"

31 CALL ui.Interface.frontCall (""WINDDE",""DDEError™,[],[mess]);

32 DISPLAY mess

33 CALL ui.Interface.frontCall(""WINDDE", " DDEFinishAIl", [], [res]);
34 DISPLAY "Exit with DDE Error."

35 EXIT PROGRAM (-1)

36 END FUNCTION

BDL Wrappers to DDE front end functions

The following functions are provided for backward compatibility. We recommend that you
use the front call functions if you write new code.

391

Genero Business Development Language

Warning: These functions (especially DDEExecute and DDEPoke) expect escaped
TAB, CR and LF characters in the strings passed as parameters. For example, a
TAB character must be written as ""\\t" in a BDL string constant passed as
parameter to the DDEPoke function.

Function Description
DDEConnect() This function opens a DDE connection

DDEExecute() This function executes a command in the specified
program

DDEFinish() This function closes a DDE connection

DDEFinishAll() This function closes all DDE connections as well as the
DDE server program

DDEGetError() This function returns DDE error information about the
last DDE operation

DDEPeek() This function retrieves data from the specified program
and document using the DDE channel
DDEPoke() This function sends data to the specified program and

document using the DDE channel

DDEConnect()

Purpose:

This function opens a DDE connection.

Syntax:

CALL DDEConnect (program STRING, document STRING) RETURNING SMALLINT
Notes:

program is the name of the DDE application.

document is the document that is to be opened.

The function returns TRUE if the connection succeeded, FALSE otherwise.

If the return value is FALSE, use DDEGetError() to get the description of the
error.

PwnhPE

Warnings:

1. If the function failed with "DMLERR_NO_CONV_ESTABLISHED", then the DDE
application was probably not running; use WinExec() or WinShellExec() front call
to start the DDE application.

392

Library

DDEExecute()

Purpose:
This function executes a DDE command.

Syntax:

CALL DDEExecute (program STRING, document STRING, command STRING)
RETURNING SMALLINT

Notes:

program is the name of the DDE application.

document is the document that is to be used.

command is the command that needs to be executed.

Refer to the program documentation for the syntax of command.

The function returns TRUE if the command execution succeeded, FALSE
otherwise.

If the return value is FALSE, use DDEGetError() to get the description of the
error.

arwpdPE

o

Warnings:

1. The DDE connection must be opened see DDEConnect().

DDEFinish()

Purpose:

This function closes a DDE connection.

Syntax:

CALL DDEFinish (program STRING, document STRING) RETURNING SMALLINT
Notes:

program is the name of the DDE application.

document is the document that is to be closed.

The function returns TRUE if the function succeeded, FALSE otherwise.

If the return value is FALSE, use DDEGetError() to get the description of the
error.

PwnE

Warnings:

1. The DDE connection must be opened, see DDEConnect().

393

Genero Business Development Language

DDEFinishAll()
Purpose:
This function closes all DDE connections, as well as the DDE server program.

Syntax

CALL DDEFinishAIl()
Notes:

1. Closes all DDE connections.

DDEGetError()

Purpose:

This function returns the error information about the last DDE operation.
Syntax:

CALL DDEGetError() RETURNING STRING

Notes:

1. The function returns the error message or NULL if no error occurred.

DDEPeek()

Purpose:

This function retrieves data from the specified program and document using the DDE
channel.

Syntax:

CALL DDEPeek (program STRING, container STRING, cells STRING)
RETURNING value

394

Notes:

N =

Library

program is the name of the DDE application.
container is the document or sub-document that is to be used. A sub-document
can, for example, be a sheet in Microsoft Excel.

3. cells represents the working items; see the program documentation for the format
of cells.
4. value represents the data to be retrieved; see the program documentation for the
format of values.
5. If the function succeeded, DDEGetError() function returns NULL.
Warnings:
1. The DDE connection must be opened; see DDEConnect().
2. DDEGetError() can only be called once to check if an error occurred.
DDEPoke()
Purpose:

This function sends data to the specified program and document using the DDE channel.

Syntax:

CALL DDEPoke (program STRING, container STRING, cells STRING, values
STRING) RETURNING SMALLINT

Notes:
1. program is the name of the DDE application.
2. container is the document or sub-document that is to be used. A sub-document
can, for example, be a sheet in Microsoft Excel.
3. cells represents the working items; see the program documentation for the format
of cells.
4. values represents the data to be sent; see the program documentation for the
format of values.
5. The function returns TRUE if the function succeeded, FALSE otherwise.
6. If the return value is FALSE, use DDEGetError() to get the description of the
error.
Warnings:
1. The DDE connection must be opened; see DDEConnect().
2. An error may occur if you try to set many (thousands of) cells in a single

operation.

395

Genero Business Development Language

XML Utilities

This pages describes the XML utility API provided by the language.

See also: Built-in Classes, DomDocument class, DomNode class, SaxAttributes class,
XmlReader class, XmlIWriter class, SaxDocumentHandler class.

DOM and SAX standards

The DOM (Document Object Model) is a programming interface specification being
developed by the World Wide Web Consortium (W3C), that lets a programmer create
and modify HTML pages and XML documents as full-fledged program objects. DOM is a
full-fledged object-oriented, complex but complete API, providing methods to manipulate
the full XML document as a whole. DOM is designed for small XML trees manipulation.

The SAX (Simple API for XML) is a programming interface for XML, simpler as DOM.
SAX is event-driven, streamed-data based, and designed for large trees.

The DOM and SAX APIs
The runtime system includes a set of built-in classes based on DOM and SAX.
The DOM API is composed of:

e The DomDocument class, that defines the interface to a DOM document.
Instances of this class can be used to identify and manipulate an XML tree.
DomNode object manipulation methods are provided by this class.

o The DomNode class, that defines the interface to an DOM node. Instances of this
class can be used to identify and manipulate a branch of an XML tree. Child
nodes and node attributes management methods are provided by this class.

The SAX API is composed of:

e The SaxAttributes class represents a set of element attributes. It is used with an
XmlIReader or an XmlIWriter object.

e The XmIReader class, that is defined to read XML. The XML document
processing is based on events.

e The XmlWriter class, that is defined to write XML. The XML document processing
is based on events.

e The SaxDocumentHandler class, which provides an interface to implement a
SAX filter using functions.

Controlling the user interface with DOM/SAX APIs

The runtime system represents the user interface of a program with a DOM tree. User
interface elements can be manipulated with the built-in classes described in this section.

For more details about the user interface manipulation, see the Dynamic User Interface.

396

Database Connections

Summary:

e What is a database connection?
e Database Specification
o Connection parameters in connection string
o Keep the compiled programs configurable
o Database Specification when using Informix
= Informix environment variables on Windows platforms
o Database Specification when using other databases
= Direct database specification
= Indirect database specification
= Informix emulations parameters
= Database vendor specific parameters
o Database user authentication
= Specifying user name and login with CONNECT
= Authenticating users with Informix
= Authenticating users with Oracle
= Authenticating user with SQL Server
e Global Configuration Parameters
o Default Database Driver
Database Client Environments
The FGLSQLDEBUG environment variable
The SQLCA record
STATUS, SQLCA.SQLCODE, SQLSTATE and SQLERRMESSAGE
Interrupting SQL Statements
Unique-session mode:
o Opening a connection (DATABASE)
o Closing a connection (CLOSE DATABASE)
e Multi-session mode:
o Opening connections (CONNECT TO)
o Selecting connections (SET CONNECT I0ON)
o Closing connections (DISCONNECT)

See also: Transactions, Static SQL, Dynamic SQL, Result Sets, SQL Errors, Programs.

What is a database connection?

A Database Connection is a session of work, opened by the program to communicate
with a specific database server, in order to execute SQL statements as a specific user.

397

Genero Business Development Language

Fi5L Progran
Dratabace Dratah ase
Correction & Copmection & |
Poomt 41		Chreor ©1
Chrsor 42		Potm C2
Cirsor 4%		Potmt O3
Dratabace
Cortection B
PSont B2

The database user can be identified explicitly for each connection. Usually, the user is
identified by a login and a password, or by using the authentication mechanism of the
operating system (or even from a tier security system).

The database connection instructions can not be prepared as Dynamic SQL statements;
they must be static SQL statements.

There are two kind of connection modes: unique-session and multi-session mode.
When using the DATABASE and CLOSE DATABASE instructions, you are in unigue-session
mode. When using the CONNECT TO, SET CONNECTION and DISCONNECT instructions you
are in multi-session mode. The modes are not compatible. It is strongly recommended
that you choose the session mode and not mix both kinds of instructions.

In unigue-session mode, you simply connect with the DATABASE instruction; that creates
a current session. You disconnect from the current session with the CLOSE DATABASE
instruction, or when another DATABASE instruction is executed, or when the program
ends.

In multi-session mode, you open a session with the CONNECT TO instruction; that creates
a current session. You can open other connections with subsequent CONNECT TO
instructions. To switch to a specific session, use the SET CONNECTION instruction; this
suspends other opened connections. Finally, you disconnect from the current, from a
specific, or from all sessions with the DISCONNECT instruction. The end of the program
disconnects all sessions automatically.

Once connected to a database server, you have a current database session. Any
subsequent SQL statement is executed in the context of the current database session.

398

SQL Management

Warning:

1. Before creating database connections, make sure you have properly installed
and configured Genero BDL, using the correct database client environment and
driver. For more information, see Installation and Setup.

Database Specification

The Database Specification identifies the data source (the database and database
server) you want to connect to.

There are different ways to identify the data source, depending on the database type.
For example, when you connect to Oracle, you cannot specify the database server as
you do with Informix by using the 'dbname@dbserver' notation.

For portability reasons, it is not recommended that you use database vendor specific
syntax in the database specification (like 'dbname@dbserver'). We recommend using a
simple symbol instead, and configuring the connection parameters in external resource
files. The ODI architecture allows this indirect database specification using the
FGLPROFILE configuration file.

Specifying connection parameters in the connection string

Although this is not recommended for abstract programming reasons, you can specify
connection parameters in the string used by the connection instructions.

This behavior is enabled when you use a plus sign in the connection string:

dbname+property="value"[,-..]

In this syntax, property can be one of the following parameters:

Parameter Description

resource Specifies which 'dbi . database' entries have to be read
from the FGLPROFILE configuration file.
When this property is set, the database interface reads
dbi.database.name.* entries, where name is the value
specified for the resource parameter.

driver Defines the database driver library to be loaded
(filename without extension).

source Specifies the data source of the database (for example,
Oracle's TNS name).

username Defines the name of the database user.

password Defines the password of the database user. Warning:

399

Genero Business Development Language

Should not be used in production!

In the following example, driver, source and resource are specified in the connection
string:

01 MAIN

02 DEFINE db CHAR(50)

03 LET db = "stores+driver="dbmora®,source="orcl”,resource="ora""
04 DATABASE db

05 -

06 END MAIN

Keep the compiled programs configurable

You can use a string variable with the DATABASE or CONNECT TO statement, in order
to specify the database source at runtime (to be loaded from your own configuration file
or from an environment variable). This solution gives you the best flexibility.

01 MAIN

02 DEFINE db, us, pwd CHAR(50)
03 LET db = arg_val (1)

03 LET us = arg_val(2)

03 LET pwd = arg_val(3)

04 CONNECT TO db USER us USING pwd

05

06 END MAIN

Database specification when using the Informix driver Informix
only!

When using an Informix database driver, you can use the following syntax for the
database specification:

BClEIL A Description
Specification P
dbname Connects to the database server identified by the

Informix environment (for example, with the
INFORMIXSERVER environment variable) and
opens the database dbname.

@dbserver Connects to the database server identified by
dbserver. This database specification does not
select any database, the program is only connected
to the database server.

dbname@dbserver Connects to the database server identified by
dbserver and opens the database dbname.

400

SQL Management

Informix environment variables on Windows platforms

On Windows platforms, in a C console application, the Informix environment variables
must be set with a call to ifx_putenv(). See INFORMIX ESQL/C documentation for more
details about environment settings.

By default, the database driver automatically calls ifx_putenv() for all standard Informix
environment variables such as INFORMIXDIR with the current value set in the console
environment. You can specify additional environment variables to be set with the
following FGLPROFILE entries:

dbi.stdifx.environment.count = max
dbi.stdifx.environment.index = "variable"

Database specification when using a non-Informix database

To connect to a database server, additional connection parameters are often required.
Most database engines require a name to identify the server, a name to identify the
database entity, a user name and a password. Some parameters might be omitted: For
example, when using Oracle, the server can be implicitly defined by the ORACLE_SID
environment variable if the program and the database server run on the same

system. The ODI architecture allows you to define these parameters indirectly in the
FGLPROFILE configuration file.

Direct database specification method

The Direct Database Specification method takes place when the database name used
in the program is not used in FGLPROFILE to define the data source with a

'dbi .database.dbname.source' entry. In this case, the database specification used in
the connection instruction is used as the data source.

This method is well known for standard Informix drivers, where you directly specify the
database name and, if needed, the Informix server:

01 MAIN

02 DATABASE stores@orion
03 -

04 END MAIN

In the next example, the database server is PostgreSQL. The string used in the
connection instruction defines the PostgreSQL database (stock), the host (localhost),
and the TCP service (5432) the postmaster is listening to. As PostgreSQL syntax is not
allowed in standard BDL, a CHAR variable must be used:

01 MAIN

02 DEFINE db CHAR(50)

03 LET db = "stock@localhost:5432"
04 DATABASE db

05 R

06 END MAIN

401

Genero Business Development Language

Indirect database specification method

Indirect Database Specification method takes place when the database specification
used in the connection instruction corresponds to a 'dbi .database.dbname.source
entry defined in the FGLPROFILE configuration file. In this case, the database
specification is considered a key to read the connection information from the
configuration file:

Program:

01 MAIN

02 DATABASE stores
03 S

04 END MAIN

FGLPROFILE:

""'stock@localhost:5432"
"'dbmpgs721"

dbi .database.stores.source
dbi.database.stores.driver

This technique is flexible: The database name in programs is a kind of alias used to
define the real database. Using this method, your can develop your application with the
database name "stores" and connect to the real database "stores1" in a production
environment.

In FGLPROFILE, the entries starting with 'dbi . database' group information defining
data sources by name:

dbi .database.dsname.source = "value"
dbi.database.dsname.driver = "value"
dbi.database.dsname.username = "‘value"
dbi .database.dsname.password = "value'" -- Warning: not encrypted, do

not use in production!

The "source" entry identifies the data source name. The following table describes the
meaning of this parameter for the supported databases:

Database " " .

Type Value of "source" entry Description

Genero DB datasource ODBC Data Source

ggréeéic datasource ODBC Data Source

Informix dbname[@dbserver] Informlx c!atabase
specification

IBM DB2 dsname DB2 Catalogued Database

dbname[@host[:port]] Database Name @ Host
MySQL or Name : TCP Port

dbname[@localhost~socket] or

402

SQL Management

Database Name @ Local host
~ Unix socket file

ORACLE tnsname Oracle TNS Service name

Database Name @ Host
Name : TCP Port

SQL Server datasource ODBC Data Source

Database Name @ Engine
Name

PostgreSQL dbname[@host[:port]]

Sybase ASA dbname[@engine]

If the "source" entry is defined with an empty value ("), the database interface connects
to the default database server, which is usually the local server. If this entry is not
present in FGLPROFILE, the Direct Database Specification method takes place (see
above for more details).

The "driver” entry identifies the shared library or DLL to be used. Driver file names do
not have to be specified with a file extension.

If you have a lot of databases, you can define a default driver with the Default Database
Driver entry.

Database drivers shared libraries are located in FGLDIR/dbdrivers on both UNIX and
Windows platforms. Some drivers may not be available on a specific platform (for
example if the target database client does not exist). Contact your support if you do not
find the driver you are looking for.

The following table defines the database driver names according to the database client
type:

Driver library

Database Type prefix Example
Genero DB dbmads dbmads3x.so
Generic ODBC dbmodc dbmodc3x.dll
Informix dbmi X dbmifx9xx.so
IBM DB2 dbmdb2 dbmdb28x.s0
MySQL dbmmys dbmmys41x.so
ORACLE dbmora dbmora92x.so
PostgreSQL dbmpgs dbmpgs80x.so
SQL Server (MDAC) dbmmsv dbmmsv80.d11
g%nts)erver (Native dbmsnc dbmsnc90.d1 I
SQL Server (FreeTDS) dbmftm dbmftm90.dl1
Sybase ASA dbmasa dbmasa8x.so

403

Genero Business Development Language

The "username" and "password" entries define the default database user, when the
program uses the DATABASE instruction or the CONNECT TO instruction without the
USER clause.

Warning: The "username" and "password" entries are not encrypted. These
parameters are provided to simplify migration and should not be used in
production. You better use CONNECT TO with a USER / USING clause to avoid
any security hole, or OS user authentication. Example of database servers
supporting OS user authentication: Informix, Oracle, SQL Server and Genero db.

The "username" and "password" entries take effect based on the connection instruction
as described in the following table:

Connection FGLPROFILE Effect

Instruction

DATABASE dbname No default No user specification is provided to
or . .. user definition the database server. Usually, the

CONNECT TO **dbname Operating System authentication

takes place.

DATABASE dbname With default The FGLPROFILE user name and

or _user definition password are used to connect to the

CONNECT TO "dbname’ database server.

CONNECT IO "dbnam:al" N/A The user information of the
Bglzﬁe Hsernamed" CONNECT TO instruction are used
passwor to identify the actual user

Informix emulation parameters in FGLPROFILE

To simplify the migration process to other databases, the database interface and drivers
can emulate some Informix-specific features like SERIAL columns and temporary tables;
the drivers can also do some SQL syntax translation.

Warning: Avoid using Informix emulations; write portable SQL code instead as
described in SQL Programming. Informix emulations are only provided to help
you in the migration process. Disabling Informix emulations improves
performance, because SQL statements do not have to be parsed to search for
Informix-specific syntax.

Emulations can be controlled with FGLPROFILE parameters. You can disable all
possible switches step-by-step, in order to test your programs for SQL compatibility.

Global switch to enable or disable Informix emulations:

dbi.database.dbname.ifxemul = { true | false }

Feature specific switches:

404

SQL Management
The 'ifxemul.datatype' switches define whether the specified data type must be
converted to a native type (for example, when creating a table):

dbi.database.dbname. ifxemul .datatype.type = { true | false }

Here, type can be one of: char, varchar, datetime, decimal, money, float, real, integer,
smallint, serial, text, byte.

To control SERIAL generation type, you can use the following switch:

dbi.database.dbname.ifxemul .datatype.serial .emulation = { "native" |
"regtable™ | "trigseq” }

When using "native", the database driver creates a native sequence generator - it is fast,
but not fully compatible to Informix SERIAL. When using "regtable”, you must have the
SERIALREG table created - it is slower than the "native” emulation, but compatible to
Informix SERIAL. The serial emulation "trigseq", can be used by some database drivers,
to use triggers with native sequence generators.

The 'temptables' switch can be used to control temporary table emulation:

dbi.database.dbname. ifxemul.temptables = { true | false }

The 'temptables.emulation’ switch can be used to specify what type of tables must be
used to emulate temporary tables:

dbi.database.dbname. ifxemul .temptables.emulation = { "default" |
"global™ }

The 'dblquotes' switch can be used to define whether double quoted strings must be
converted to single quoted strings:

dbi.database.dbname. ifxemul .dblquotes = { true | false }

If this emulation is enabled, all double quoted strings are converted, including database
object names.

The 'outers' switch can be used to control Informix OUTER specification:
dbi.database.dbname. ifxemul .outers = { true | false }
It is better to use standard 1SO outer joins in your SQL statements.

The 'today’ switch can be used to convert the TODAY keyword to a native expression
returning the current date:

dbi.database.dbname.ifxemul .today = { true | false }

The 'current’ switch can be used to convert the CURRENT X TO Y expressions to a
native expression returning the current time:

405

Genero Business Development Language

dbi.database.dbname.ifxemul .current = { true | false }

The 'selectunique’ switch can be used to convert the SELECT UNIQUE to SELECT
DISTINCT:

dbi.database.dbname. i1fxemul.selectunique = { true | false }

It is better to replace all UNIQUE keywords by DISTINCT.

The 'colsubs' switch can be used to control column sub-strings expressions (col[x,y]) to
native sub-string expressions:

dbi.database.dbname. ifxemul .colsubs = { true | false }

The 'matches’ switch can be used to define whether MATCHES expressions must be
converted to LIKE expressions:

dbi.database.dbname. ifxemul .matches = { true | false }
It is better to use the LIKE operator in your SQL statements.

The 'length’ switch can be used to define whether LENGTH function names have to be
converted to the native equivalent:

dbi.database.dbname. ifxemul.length = { true | false }

The 'rowid' switch can be used to define whether ROWID keywords have to be
converted to native equivalent:

dbi .database.dbname.ifxemul .rowid = { true | false }

It is better to use primary keys instead.

The 'listupdate' switch can be used to convert the UPDATE statements using non-ANSI
syntax:

dbi.database.dbname. ifxemul.listupdate = { true | false }

The 'extend’ switch can be used to convert simple EXTEND() expressions to native
date/time expressions:

dbi.database.dbname.ifxemul _.extend = { true | false }

Defining database vendor specific parameters in FGLPROFILE

Some database vendor specific connection parameters can be configured by using
FGLPROFILE entries with the following syntax:

dbi.database.dsname.dbtype.param.[.subparam] = "value"

406

SQL Management

The table below describes all database vendor specific parameters supported:

Database
Server

Genero DB

IBM DB2

ORACLE

Parameters

dbi.database.dsname.ads.schema
Name of the database schema to be selected after
connection is established.

Example:
dbi.database.stores.ads.schema = "store2"

Usage:
Set this parameter to a specific schema in order to share the
same table with all users.

dbi.database.dsname.db2.schema
Name of the database schema to be selected after
connection is established.

Example:
dbi.database.stores.db2.schema = "store2"

Usage:
Set this parameter to a specific schema in order to share the
same table with all users.

dbi.database.dsname.db2.prepare.deferred
True/False Boolean to enable/disable deferred prepare.

Example:
dbi.database.stores.db2.prepare.deferred = true

Usage:

Set this parameter to true if you do not need to get SQL
errors during PREPARE statements: SQL statements will be
sent to the server when executing the statement (OPEN or
EXECUTE). The default is false (SQL statements are sent to
the server when doing the PREPARE).

dbi.database.dsname.ora.schema
Name of the database schema to be selected after
connection is established.

Example:
dbi.database.stores.ora.schema = "'store2"

Usage:
Set this parameter to a specific schema in order to share the
same table with all users.

dbi.database.dsname.ora.prefetch.rows
Maximum number of rows to be pre-fetched.

Example:
dbi.database.stores.ora.prefetch.rows = 50

Usage:
You can use this parameter to increase performance by

407

Genero Business Development Language

408

SQL Server
(MDAC)

defining the maximum number of rows to be fetched
automatically. However, the bigger this parameter is, the
more memory is used by each program. This parameter
applies to all cursors in the application.

The default is 10 rows.

dbi.database.dsname.ora.prefetch.memory
Maximum buffer size for pre-fetching (in bytes).

Example:
dbi .database.stores.ora.prefetch.memory = 4096

Usage:

This parameter is equivalent to prefetch.rows, but here you
can specify the memory size instead of the number of rows.
As prefetch.rows, this parameter applies to all cursors in the
application.

The default is 0, which means that memory size is not
included in computing the number of rows to pre-fetch.

dbi.database.dsname.ora.sid.command
SQL command (SELECT) to generate a unique session id
(used for temp table names).

Example:

dbi.database.stores.ora.sid.command = "'SELECT
TO_CHAR(SID)|]"_"]11TO_CHAR(SERIAL#) FROM V$SESSION
WHERE AUDSID=USERENV("SESSIONID")""

Usage:

By default the driver uses "SELECT
USERENV('SESSIONID') FROM DUAL". This is the
standard session identifier in Oracle, but it can become a
very large number and can't be reset.

This parameter gives you the freedom to provide your own
way to generate a session id.

The SELECT statement must return a single row with one
single column.

Value can be an integer or an identifier.

dbi.database.dsname.msv.logintime
Connection timeout (in seconds).

Example:
dbi .database.stores.msv.logintime = 5

Usage:

Set this parameter to raise an SQL error if the connection
can not be established after the given number of seconds.
The default is 5 seconds.

dbi.database.dsname.msv.prefetch.rows
Maximum number of rows to be pre-fetched.

Example:
dbi.database.stores.msv.prefetch.rows = 50

Usage:

SQL Server
(NCLI)

SQL Server
(FreeTDS)

Sybase ASA

SQL Management

You can use this parameter to increase performance.
However, the bigger this parameter is, the more memory is
used by each program.

The default is 10 rows.

dbi.database.dsname.snc.logintime
Connection timeout (in seconds).

Example:
dbi .database.stores.snc.logintime = 5

Usage:

Set this parameter to raise an SQL error if the connection
can not be established after the given number of seconds.
The default is 5 seconds.

dbi.database.dsname.snc.prefetch.rows
Maximum number of rows to be pre-fetched.

Example:
dbi .database.stores.snc.prefetch.rows = 50

Usage:

You can use this parameter to increase performance.
However, the bigger this parameter is, the more memory is
used by each program.

The default is 10 rows.

dbi.database.dsname.ftm.logintime
Connection timeout (in seconds).

Example:
dbi.database.stores.ftm.logintime = 5

Usage:

Set this parameter to raise an SQL error if the connection
can not be established after the given number of seconds.
The default is 5 seconds.

dbi.database.dsname.ftm.prefetch.rows
Maximum number of rows to be pre-fetched.

Example:
dbi .database.stores.ftm.prefetch.rows = 50

Usage:

You can use this parameter to increase performance.
However, the bigger this parameter is, the more memory is
used by each program.

The default is 10 rows.

dbi.database.dsname.asa.logintime
Connection timeout (in seconds).

Example:
dbi .database.stores.asa.logintime = 10

409

Genero Business Development Language

Usage:

Set this parameter to raise an SQL error if the connection
can not be established after the given number of seconds.
The default is 5 seconds.

Database user authentication

Connecting to a database server is not just specifying a database name. Informix 4gl
programmers are used to write "DATABASE dbname" to get connected. But this is only
possible when the database server is configured to trust Operating System users. Only a
few database server support OS authentication. Database users are usually defined in
the database server and must be explicitly identified by a user name and password.
Note also that some database servers support external authentication methods, which
can be used with Genero. See DB specific documentation for more details.

Specifying a user name and password with the CONNECT

In order to specify a user name and password, you must use the USER/USING clause of
the CONNECT instruction:

01 MAIN

02 CONNECT TO "orclfox+driver="dbmoraA2x"" USER "'scott" USING
"tiger"

03 S

04 END MAIN

User name and login could be specified with FGLPROFILE entries but we strongly
discourage you to do this for security reasons.

Authenticating users with Informix

Informix users are operating system users with database connection privileges, if the
client program resides on the same machine as the database server, you typically use
OS authentication and don't need to provide a user name and password.

However, you need to specify a user name and password if you want to connect to a
remove server that does not have trusted connection configured.

Authenticating users with Oracle

Oracle users can be authenticated in different manner: as DB users, as OS users or with
another external authentication method like Kerberos.

If you don't specify the USER/USING clause, OS authentication takes place.
An Oracle connection can also be established as SYSDBA or SYSOPER users. This is

possible with Genero by specifying the following strings after the user name in the USER
clause of the CONNECT instruction:

410

SQL Management

String passed to USER

Effect as Oracle connection
clause after user name

/SYSDBA Connection will be established as SYSDBA
user.

/SYSOPER Connection will be established as SYSOPER
user.

Note that you must specify the user login before the /[SYSDBA or /SYSOPER strings:

01 CONNECT TO "orclfox+driver="dbmoraA2x"' USER "orauser/SYSDBA'" USING
"fourjs"

Authenticating users with SOL Server

SQL Server users can be authenticated as DB users or with the Windows users.

If you don't specify the USER/USING clause, OS authentication takes place.

Global Configuration Parameters

Default Database Driver

With the following entry, you can define a default driver identifying the shared library or
DLL to be used to connect to the database:

dbi.default.driver = "value"

Database Client Environment

To connect to a database server, the BDL programs must be executed in the correct
database client environment. The database client software is usually included in the
database server software, so you do not need to install it when your programs are
executed on the same machine as the database server. However, you may need to
install the database client software in three-tier configurations, where applications and
database servers run on different systems.

This section describes basic configuration elements of the database client environment
for some well-known database servers.

Genero DB

1. The ANTSHOME environment variable must define the Genero DB software
installation path.

411

Genero Business Development Language

2. The PATH environment variable must define the access path to database client
programs.

3. On UNIX, LD_LIBRARY_PATH (or equivalent) must hold the path to
$ANTSHOME/antsodbc.

4. The ANTS ODBC client library 'libaodbc* must be available.

5. You can make a connection test with the ANTS antscmd tool.

IBM DB2 Universal Database

1. The DB2DIR environment variable must define the DB2 software installation

path.

2. The PATH environment variable must define the access path to database client
programs.

3. On UNIX, LD_LIBRARY_PATH (or equivalent) must hold the path to
$DB2DIR/lib.

4. The DB2 client library 'DB2DIR/lib/libdb2* must be available.

5. The remote server node and the remote database must be declared locally
with the CATALOG db2 command.

6. You can make a connection test with the IBM db2 tool.

IBM Informix Dynamic Server

1. The INFORMIXDIR environment variable must define the Informix software
installation path.

2. The PATH environment variable must define the access path to database client
programs.

3. On UNIX, LD_LIBRARY_PATH (or equivalent) must hold the path to
SINFORMIXDIR/lib:$INFORMIXDIR/lib/esql.

4. The Informix client libraries 'INFORMIXDIR/lib/*" must be available.

5. The INFORMIXSERVER environment variable can be used to define the name of
the database server.

6. The sqglhost file must define the database server identified by
INFORMIXSERVER.

7. You can make a connection test with the Informix dbaccess tool.

MySQL

1. The MYSQLDIR environment variable must define the MySQL software
installation path.

2. On UNIX, LD_LIBRARY_PATH (or equivalent) must hold the path to
$MYSQLDIR/ib.

3. The PATH environment variable must define the access path to database client
programs.

4. You can make a connection test with the mysql tool.

Oracle

1. The ORACLE_HOME environment variable must define the Oracle software
installation path.

412

SQL Management

2. The ORACLE_SID environment variable can be used to define the name of the
local database instance.

3. The PATH environment variable must define the access path to database client
programs.

4. On UNIX, LD_LIBRARY_PATH (or equivalent) must hold the path to
$ORACLE_HOME/lib.

5. The Oracle client library 'ORACLE_HOME/lib/libcIntsh* must be available.

6. The TNSNAMES.ORA file must define the database server identifiers for remote
connections (the Oracle Listener must be started on the database server to
allow remote connections).

7. The SQLNET.ORA file must define network settings for remote connections.

8. You can make a connection test with the Oracle sqlplus tool.

PostgreSQL

1. The PGDIR environment variable must define the PostgreSQL software
installation path.

2. The PATH environment variable must define the access path to database client
programs.

3. On UNIX, LD_LIBRARY_PATH (or equivalent) must hold the path to
$PGDIR/lib.

4. The PostgreSQL client library 'PGDIR/lib/libpg* must be available.

5. On the database server, the pg_hba.conf file must define security policies.

6. You can make a connection test with the PostgreSQL psql tool.

SQL Server

1. Make sure that ODBC data source is defined on database client and database
server systems, with the correct ODBC driver. Note that Genero FGL provides
different sort of SQL Server drivers:

o The MSV driver is based on the Microsoft Data Access Components
(MDAC) ODBC driver (SQLSRV32.DLL). This driver is obsolete if you are
using SQL Server 2005.

o The SNC driver is based on the SQL Native Client ODBC driver
(SQLNCLI.DLL). This is the new driver to be used with SQL Server 2005.

o The FTM driver is based on the FreeTDS ODBC driver (libtdsodbc.so).
This driver can be used if you want to connect to SQL Server from a
UNIX machine.

2. The PATH environment variable must define the access path to database client
programs (ODBC32.DLL).

3. Check the SQL Server Client configuration with the Client Network Utility tool:
Verify that the ANSI to OEM conversion corresponds to the execution of FGL
applications in a CONSOLE environment.

4. You can make a connection test with the Microsoft Query Analyzer tool.

Sybase ASA
1. The ASADIR environment variable must define the Sybase ASA software

installation path.

413

Genero Business Development Language

2. The PATH environment variable must define the access path to database client
programs.

Check the Sybase Client configuration.

You can make a connection test with the Sybase ISQL tool.

P w

FGLSQLDEBUG

You can set the FGLSQLDEBUG environment variable to get debug information on SQL
instructions. This variable can be set to an integer value from 0 to 10, according to the
debugging details you want to see. The debug messages are sent to the standard error
stream. If needed, you can redirect the standard error output into a file.

Unix (shell) example:

FGLSQLDEBUG=3
export FGLSQLDEBUG
fglrun myprog 2>sqgldbg.txt

SQLCA
Purpose:

The SQLCA variable is a predefined record containing information about the execution of
an SQL statement.

Syntax:

SQLCA
Definition:

DEFINE SQLCA RECORD
SQLCODE INTEGER,
SQLERRM CHAR(71),
SQLERRP CHAR(8),
SQLERRD ARRAY[6] OF INTEGER,
SQLAWARN CHAR(8)
END RECORD

Notes:

1. The SQLCA record is filled after any SQL statement execution.

2. The "SQLCA" name stands for "SQL Communication Area".

3. SQLCODE contains the SQL execution code (0 = OK, 100 = not row found, <0 =
error).

4. SQLERRM contains the Informix error message parameter.

414

©No o

SQL Management

SQLERRP is not used at this time.

SQLERRD[1] is not used at this time.

SQLERRD[2] contains the last SERIAL or the native SQL error code.

SQLERRD[3] contains the number of rows processed in the last statement (server
dependent).

SQLERRD[4] contains the estimated CPU cost for the query (server dependent).

10. SQLERRD[5] contains the offset of the error in the SQL statement text (server

dependent).

11. SQLERRD[6] contains the ROWID of the last row that was processed (server

dependent).

12. SQLAWARN contains the ANSI warning represented by a W character at a given

position in the string.

13. SQLAWARN[1] is set to W when any of the other warning characters have been

setto W.

14. SQLAWARN[2] is set to W when:

o a CHAR value has been truncated.
o an Informix database without transactions has been selected.

15. SQLAWARN[3] is set to W when:

o an aggregate like SUM() encountered a NULL value.
o an Informix database in ANSI/ISO mode has been selected.

16. SQLAWARN[4] is set to W when:

17.

18.

19.

20.

o the number of SELECT items is not the same as the number of INTO
variables.

o an Informix Dynamic Server database has been selected.
SQLAWARN[5] is set to W when:

o a float to decimal conversion is used.
SQLAWARN[6] is set to W when:

o the program executes an extension to the ANSI/ISO standard.
SQLAWARN[7] is set to W when:

o query skips a table fragment.
SQLAWARN[8] is not used at this time .

Warnings:

1.

SQLCA can be modified by hand, but this is not recommended because it may
become read-only in a later release.

Example:

01 MAIN

02 WHENEVER ERROR CONTINUE

02 DATABASE stores

03 SELECT COUNT(*) FROM foo -- Table should not exist!
04 DISPLAY SQLCA.SQLCODE, SQLCA.SQLERRD[2]

05 END MAIN

415

Genero Business Development Language

STATUS, SQLCA.SQLCODE, SQLSTATE and SQLERRMESSAGE

If an error occurs during an SQL statement execution, you can get the error description
in the STATUS, SQLCA .SQLCODE, SQLSTATE and SQLERRMESSAGE built-in registers.

STATUS is the global language error code register, set for any kind of error (even non-
SQL). When an SQL error occurs, the Informix SQL error code held by SQLCA . SQLCODE
is copied into STATUS. The register SQLCA.SQLCODE returns the Informix error code.
SQLSTATE returns the standard ANSI error code and SQLERRMESSAGE returns the
database specific error message.

Use SQLCA.SQLCODE for SQL error management, and STATUS for 4gl errors.
Warnings:

1. SQLSTATE is an ANSI standard specification, but not all database servers support
this register. For example, Oracle 8.x and 9.0 engines do not support this

See also: STATUS, SQLCA, SQLSTATE, SQLERRMESSAGE, Exceptions.

Interrupting SQL Statements

Syntax:

OPTIONS SQL INTERRUPT { ON | OFF }

Notes:
1. By default, SQL interruption is OFF.
Warnings:

1. Not all database servers support SQL interruption.
2. You must set INT_FLAG to FALSE before executing the SQL statement.

Usage:
Typical FGL programs control the interrupt signals, by using the following instructions:

DEFER INTERRUPT
DEFER QUIT

If the database server supports SQL interruption, the runtime system can enable
interruption of long SQL queries when you set the SQL INTERRUPT program option.
When the program gets an interrupt signal from the system, the running SQL statement
is stopped and the INT_FLAG global variable is set to TRUE.

416

SQL Management

Example:

01 MAIN

02 DEFER INTERRUPT

03 DEFER QUIT

04 DATABASE stock

05 OPTIONS SQL INTERRUPT ON

06 LET INT_FLAG = FALSE

07 SELECT COUNT(*) FROM items WHERE items_value > 100
08 IF INT_FLAG THEN

09 DISPLAY "Query was interrupted by user"
10 END IF

11 END MAIN

DATABASE

Purpose:
Opens a new database connection in unique-session mode.
Syntax:
DATABASE { dbname[@dbserver] | variable | string } [EXCLUSIVE]
Notes:
1. dbname identifies the database name.
2. dbserver identifies the Informix database server (INFORMIXSERVER). Informix
only!
3. variable can be any character string defined variable containing the database
specification.
4. string can be a string literal containing the database specification.

Usage:

The DATABASE instruction opens a connection to the database server, like CONNECT
TO, but without user and password specification.

By default the database user is identified by the current operating system user, but it can
be authenticated according to database specification parameters.

The EXCLUSIVE keyword can be used to open an Informix database in exclusive mode to
prevent access by anyone but the current user. Informix only!

If a current connection exists, it is automatically closed before connecting to the new
database.

417

Genero Business Development Language

If the connection could not be established, the instruction raises an exception. For
example, if you specify a database that the runtime system cannot locate, or cannot
open, or for which the user of your program does not have access privileges, an
exception is raised.

Warnings:

1. When used in a program block, the DATABASE instruction has a different meaning
than when it is used outside a program block. See Database Schema
Specification for more details.

2. The EXCLUSIVE keyword is specific to Informix databases; do not use this
keyword when programming for non-Informix databases.

Tips:

1. The CONNECT TO instructions allow better control over database connections;
you should use these instructions instead of DATABASE and CLOSE DATABASE.

Example 1: Using a static database name.

01 MAIN

02 DATABASE stores

03 SELECT COUNT(*) FROM customer
04 END MAIN

Example 2: Using a variable.

01 MAIN

02 DEFINE dbname VARCHAR(100)

03 LET dbname = arg_val (1)

04 DATABASE dbname

05 SELECT COUNT(*) FROM customer
06 END MAIN

CLOSE DATABASE

Purpose:

Closes the current database connection when in unique-session mode.
Syntax:

CLOSE DATABASE

Usage:

The CLOSE DATABASE instruction closes the current database connect opened by the
DATABASE instruction.

418

SQL Management

Warnings:
1. The current connection is automatically closed when the program ends.

Example:

01 MAIN

02 DATABASE storesl
03 CLOSE DATABASE
04 DATABASE stores2
05 CLOSE DATABASE
06 END MAIN

CONNECT TO

Purpose:
Opens a new database session in multi-session mode.

Syntax:

CONNECT TO { dbname | DEFAULT } [AS session]
[USER username USING password]
[WITH CONCURRENT TRANSACTION]

Notes:

1. dbname is a string expression identifying the database specification.

2. session is a string expression identifying the database session. By default, it is
dbname.

3. username is a string expression identifying the name of the database user.

4. password is a string expression identifying the password of the database user.

Usage:

The CONNECT TO instruction opens a database connection. If the instruction successfully
connects to the database environment, the connection becomes the current database
session for the application.

An application can connect to several database environments at the same time, and it
can establish multiple connections to the same database environment, provided each
connection has a unique connection name. If you need only one connexion to a
database, you can use the DATABASE instruction.

With Informix database servers, when using the DEFAULT keyword, you connect to the

default Informix database server, identified by the INFORMIXSERVER environment
variable, without any database selection.

419

Genero Business Development Language

By default the database user is identified by the current operating system user, but it can
be authenticated according to database specification parameters.

When the USER username USING password clause is specified, the database user is
identified by username and password, ignoring all other settings defined by the database
specification. See also Database user authentication.

The WITH CONCURRENT TRANSACTION clause allows a program to open several
transactions concurrently in different database sessions.

Warnings:

1. The session name is case-sensitive.

2. You cannot include a CONNECT TO statement within a PREPARE instruction.

3. When using Informix databases on UNIX, the only restriction on establishing
multiple connections to the same database environment is that an application
can establish only one connection to each local server that uses the shared-
memory connection mechanism. To find out whether a local server uses the
shared-memaory connection mechanism or the local-loopback connection
mechanism, examine the $INFORMIXDIR/etc/sqlhosts file.

Example:

01 MAIN

02 CONNECT TO '"'storesl'™ -- Session name is ''storesl"

03 CONNECT TO "storesl'™ AS "SA"™ -- Session name is ""SA"

04 CONNECT TO *'stores2'™ AS "SB" USER "scott'™ USING "tiger"
05 END MAIN

SET CONNECTION

Purpose:
Selects the current session when in multi-session mode.

Syntax:

SET CONNECTION { { session | DEFAULT } [DORMANT] | CURRENT DORMANT }

Notes:

1. session is a string expression identifying the name of the database session to be
set as current.

Usage:

The SET CONNECTION instruction make a given connection current.

420

SQL Management

When using the DEFAULT keyword, it identifies the default database server connection
established with a CONNECT TO DEFAULT or a DATABASE instruction. Informix only!

To make the current connection dormant, use CURRENT DORMANT keyword. Informix
only!

Warnings:

1. The session hame is case-sensitive.

2. You cannot include a SET CONNECTION statement within a PREPARE instruction.

3. The CURRENT DORMANT option is only supported for compatibility with Informix;
there is no need to make a connection dormant in FGL programs.

Example:

01 MAIN

02 CONNECT TO "'storesl™

03 CONNECT TO "storesl'™ AS "SA"
04 CONNECT TO "stores2'™ AS "SB"

05 SET CONNECTION "storesl" -- Select first session

06 SET CONNECTION "SA™ -- Select second session

07 SET CONNECTION "'storesl" -— Select first session again
08 END MAIN

DISCONNECT

Purpose:

Terminates database sessions when in multi-session mode.
Syntax:
DISCONNECT { ALL | CURRENT | session }

Notes:

1. session is a string expression identifying the name of the database session to be
terminated.

Usage:
The DISCONNECT instruction closed a given database connection.

When using the DEFAULT keyword, it identifies the default database server connection
established with a CONNECT TO DEFAULT or a DATABASE instruction. Informix only!

421

Genero Business Development Language

Use the ALL keyword to terminate all opened connections. From that point, you must
establish a new connection to execute SQL statements.

Use the CURRENT keyword to terminate the current connection only. From that point, you
must select another connection or establish a new connection to execute SQL

statements.

Warnings:
1. The session name is case-sensitive.
2. You cannot include a DISCONNECT statement within a PREPARE instruction.
3. If a DISCONNECT statement is used while a transaction is active, it is automatically

rolled back.

Example:

01 MAIN

02 CONNECT TO "storesl'

03 CONNECT TO "'storesl'™ AS ''SA™

04 CONNECT TO "'stores2" AS "SB" USER "scott' USING "tiger"

05 -- SB is the current database session

06 DISCONNECT "storesl'"™ -- Continue with SB

07 DISCONNECT "'SB" -- SB is no longer the current session

08 SET CONNECTION "SA"™ -- Select second session

09 END MAIN

422

SQL Management

Database Transactions

Summary:

e What is a database transaction?

¢ Transaction Management Model

e Starting a transaction (BEGIN WORK)

e Validating a transaction (COMMIT WORK)

e Cancelling a transaction (ROLLBACK WORK)
e Setting the Isolation Level (SET 1SOLATION)
e Setting the Lock Mode (SET LOCK MODE)

e Examples

See also: Connections, Static SQL, Dynamic SQL, Result Sets, SQL Errors, Programs.

What is a database transaction?

A Database Transaction delimits a set of database operations that are processed as a
whole. Database operations included inside a transaction are validated or canceled as a
unique operation.

TRAMEACTION

| BEEGIH WORK |

| SELECT ... FOR UPD'ATE

| IHEERT IMTO table ...

| IHEERT IMTO table ...

| IHEERT IMTO table ...

| TP ATE tahle ...
| DELETE FEOMtable ...
| COMBIT WFOFE | | ROLLEACE "WORK |

The database server is in charge of Data Concurrency and Data Consistency control.
Data Concurrency control allows the simultaneous access of the same data by many
users, while Data Consistency control gives each user a consistent view of the
database.

Without adequate concurrency and consistency controls, data could be changed
improperly, compromising data integrity. If you want to write applications that can work
with different kinds of database servers, you must adapt the program logic to the

423

Genero Business Development Language

behavior of the database servers regarding concurrency and consistency management.
This requires good knowledge of multi-user application programming, transactions,
locking mechanisms, isolation levels and wait mode. If you are not familiar with these
concepts, carefully read the documentation of each database server that covers this
subject.

Usually, database servers set exclusive locks on rows that are modified or deleted inside
a transaction. These locks are held until the end of the transaction to control concurrent
access to that data. Some database servers like Oracle implement row versioning
(before modifying a row, the server makes a copy). This technique allows readers to see
a consistent copy of the rows that are updated during a transaction not yet committed.
When the isolation level is high (Repeatable Read) or when using a SELECT FOR

UPDATE statement, the database server sets shared locks on read rows to prevent other
users from changing the data fetched by the reader. Again, these locks are held until the
end of the transaction. Some database servers like Informix allow read locks to be held
regardless of the transactions (WITH HOLD cursor option), but this is not a standard.

Processes accessing the database can change transaction parameters such as the
isolation level or lock wait mode. The main problem is to find a configuration which
results in similar behavior on every database engine. Programs using Informix-specific
behavior must be adapted to work with other database servers.

Here is the recommended configuration to get common behavior with all kinds of
database engines:

The database must support transactions; this is usually the case.
Transactions must be as short as possible (a few seconds).

The Isolation Level must be at least "Committed Read" (= "Cursor Stability").
The Wait Mode for locks must be "WAIT" or "WAIT n" (timeout).

When using this configuration, the locking granularity does not have to be set at the row
level. For example, to improve performance with Informix databases, you can use the
"LOCK MODE PAGE" locking level, which is the default.

A lot of applications have been developed for old Informix SE databases that do not
manage transaction logging. These applications often work in the default lock wait mode
which is "NOT WAIT". Additionally, applications using databases without transactions
usually do not change the isolation level, which defaults to "Dirty Read". You must
review the program logic of these applications in order to conform to the portable
configuration.

Transaction Management Model

To write portable SQL applications, programmers use the instructions described in this
section to delimit transaction blocks and define concurrency parameters such as the
isolation level and the lock wait mode. At runtime, the database driver generates the
appropriate SQL commands to be used with the target database server.

424

SQL Management

If you initiate a transaction with a BEGIN WORK statement, you must issue a COMMIT WORK
statement at the end of the transaction. If you fail to issue the COMMIT WORK statement,
the database server rolls back any modifications that the transaction made to the
database. If you do not issue a BEGIN WORK statement to start a transaction, each
statement executes within its own transaction. These single-statement transactions do
not require either a BEGIN WORK statement or a COMMIT WORK statement.

For historical reasons, the language is based on IBM Informix SQL language, which
defines the transaction management instructions. IBM Informix database servers can
work in different transaction logging modes:

Native, without logging
Native, non-buffered logging
Native, buffered logging
ANSI, buffered logging

PwonE

The first mode does not allow transaction management and should be avoided. In the
second and third modes, you can use the BEGIN WORK, COMMIT WORK and ROLLBACK
WORK statements. In ANSI mode, you can only use the COMMIT and ROLLBACK
statements, because transactions are implicit.

When using Informix databases, the type of logging defines the way you manage
transactions in your programs. For example, when using an ANSI-compliant Informix
database, you do not have to start transactions with BEGIN WORK, since these are
implicit.

When using the Standard Database Interface (SDI) architecture, you are free to use any
type of transaction logging with Informix databases. When using the Open Database
Interface (ODI) architecture you are free to use the native transaction management
statements supported by the underlying database server, but it is recommended that you
follow the default (native) Informix logging, by using BEGIN WORK, COMMIT WORK and
ROLLBACK WORK to manage transactions. At runtime, the database drivers can manage
the execution of the appropriate instructions for the target database server. This allows
you to use the same source code for different kinds of database servers.

The instructions described in this section must be executed as Static SQL statements.
Even if it is supported by the Informix API, it is not recommended that you use the
Dynamic SQL instructions to PREPARE and EXECUTE transaction management
statements, because it can result in unexpected behavior when using other database
servers.

BEGIN WORK

Purpose:

Starts a database transaction in the current connection.

425

Genero Business Development Language

Syntax:

BEGIN WORK
Usage:

Use this instruction to indicate where the database transaction starts in your program. If
supported by the database server, the underlying database driver starts a transaction.
Each row that an UPDATE, DELETE, or INSERT statement affects during a transaction
is locked and remains locked throughout the transaction. When using a non-Informix
database, the ODI driver executes the native SQL statement corresponding to BEGIN
WORK.

Warnings:

1. Some database servers do not support a Data Definition Language statement
(like CREATE TABLE) inside transactions, or even auto-commit the transaction
when such a statement is executed. Therefore, it is strongly recommended that
you avoid DDL statements inside transactions.

2. A transaction that contains statements that affect many rows can exceed the
limits that your operating system or the database server configuration imposes
on the maximum number of simultaneous locks.

Tips:

1. Include a limited number of SQL operations in a transaction to execute short
transactions. In a standard database session configuration (wait mode), it is not
recommended that you have a transaction block running a long time, since it may
block concurrent processes which want to access the same data.

COMMIT WORK

Purpose:

Validates and terminates a database transaction in the current connection.

Syntax:

COMMIT WORK

Usage:

Use this instruction to commit all modifications made to the database from the beginning
of a transaction. The database server takes the required steps to make sure that all
modifications that the transaction makes are completed correctly and saved to disk. The
COMMIT WORK statement releases all exclusive locks. With some databases like Informix,

shared locks are not released if the FOR UPDATE cursor is declared WITH HOLD option.

426

SQL Management

The COMMIT WORK statement closes all cursors not declared with the WITH HOLD option.
When using a non-Informix database, the ODI driver executes the native SQL statement
corresponding to COMMIT WORK.

ROLLBACK WORK

Purpose:

Cancels and terminates a database transaction in the current connection.

Syntax:

ROLLBACK WORK

Usage:

Use this instruction to cancel the current transaction and invalidate all changes since the
beginning of the transaction. After the execution of this instruction, the database is
restored to the state that it was in before the transaction began. All row and table locks
that the canceled transaction holds are released. If you issue this statement when no
transaction is pending, an error occurs. When using a non-Informix database, the ODI
driver executes the native SQL statement corresponding to ROLLBACK WORK.

Warnings:

1. Normally, the ROLLBACK WORK statement closes all cursors not declared with the
WITH HOLD option. This is not the case with some databases like IBM DB2, which
closes all kind of cursors when doing a ROLLBACK.

SET ISOLATION

Purpose:

Defines the transaction isolation level for the current connection.

Syntax:

SET ISOLATION TO
DIRTY READ
COMMITTED READ
CURSOR STABILITY
REPEATABLE READ }

fom e e [Ay

427

Genero Business Development Language

Usage:

Sets the isolation level for the current connection. See database concepts in your
database server documentation for more details about isolation levels and concurrency
management.

When using a non-Informix database, the ODI driver executes the native SQL statement
that corresponds to the specified isolation level.

Warnings:

1. When using the DIRTY READ isolation level, the database server might return a
phantom row, which is an uncommitted row that was inserted or modified within a
transaction that has subsequently rolled back. No other isolation level allows
access to a phantom row.

Tips:
1. On most database servers, the default isolation level is usually COMMITTED READ,

which is appropriate to portable database programming. Therefore, we do not
recommend that you change the isolation level.

SET LOCK MODE

Purpose:
Defines the behavior of the program that tries to access a locked row or table.

Syntax:

SET LOCK MODE TO { NOT WAIT | WAIT [seconds] }
Notes:

1. This instruction defines the timeout for lock acquisition for the current connection.

2. When possible, the underlying database driver sets the corresponding
connection parameter to define the timeout for lock acquisition. But some
database servers may not support setting the lock timeout parameter. In this
case, the runtime system generates an exception.

3. When using the NOT WAIT clause, the timeout is set to zero. If the resource is
locked, the database server ends the operation immediately and returns an SQL
Error.

4. seconds defines the number of seconds to wait for lock acquisition. If the
resource is locked, the database server ends the operation after the elapsed time
and returns an SQL Error.

5. When using the WAIT clause without a number of seconds, the database server
waits for lock acquisition for an infinite time.

428

SQL Management

6. On most database servers, the default is to wait for locks to be released.
Warnings:

1. Make sure that the database server and corresponding database driver both
support a lock acquisition timeout option, otherwise the program would generate
an exception. For example, the IBM DB2 V8.1 database server does not support
this option at the session level.

Examples

Example 1:

01 MAIN

02 DATABASE stock

03 BEGIN WORK

04 INSERT INTO items VALUES (...)
04 UPDATE items SET ...

05 COMMIT WORK

06 END MAIN

429

Genero Business Development Language

Static SQL Statements

Summary:

What are Static SQL Statements?

Using program variables in Static SQL

Table and column names in Static SQL

What SQL string was generated by the compiler?
Supported Static SQL Statements

Adding rows (INSERT)

e Deleting rows (DELETE)

e Updating rows (UPDATE)

e Selecting rows (SELECT)

See also: Transactions, Positioned Updates, Dynamic SQL, Result Sets, SQL Errors.

What are Static SQL Statements?

Static SQL Statements are SQL instructions that are a part of the language syntax.
Static SQL Statements can be used directly in the source code as a normal procedural
instruction. The static SQL statements are parsed and validated at compile time. At
runtime, these SQL statements are automatically prepared and executed by the runtime
system.

Program variables are detected by the compiler and handled as SQL parameters.

The following example defines two variables that are directly used in an INSERT
statement:

01 MAIN

02 DEFINE iref INTEGER, name CHAR(10)
03 DATABASE stock

04 LET iref = 65345

05 LET name = "Kartopia"

06 INSERT INTO item (item_ref, item_name) VALUES (iref, name)
07 SELECT item_name INTO name

08 FROM item WHERE item_ref = iref

09 END MAIN

Using Static SQL Statements clarifies the source code (you do not need to use Dynamic
SQL Instructions to prepare and execute the SQL statement), but you cannot modify the
SQL text at runtime.

A limited number of SQL statements is directly supported in the language (see below),

but most common statements like INSERT, UPDATE, DELETE, SELECT can be executed
without problems using a simple standard syntax.

430

SQL Management

Using program variables in Static SQL statements

The syntax of Static SQL statements supports the usage of program variables directly as
SQL parameters. This gives a better understanding of the source code and requires less
lines as using SQL parameters with Dynamic SQL.:

01 MAIN

02 DEFINE c_num INTEGER

03 DEFINE c_name CHAR(10)

04 DATABASE stock

05 SELECT cust_name INTO c_name FROM customer WHERE cust_num = c_num
06 END MAIN

If a database column name conflicts with a program variable, you can use the @ sign as
the column prefix. The compiler will treat the identifier following the @ as a table column:

01 MAIN

02 DEFINE cust_name CHAR(10)

03 DEFINE cnt INTEGER

04 DATABASE stock

05 SELECT COUNT(*) INTO cnt FROM customer WHERE @cust _name =
cust_name

06 END MAIN

The @ sign will not figure in the resulting SQL statement stored in the 42m module.

Table and column names in Static SQL

In Static SQL, table and column names will be converted to lowercase by the fglcomp
compiler. The SQL keywords are always converted to uppercase.

For example:
01 UPDATE CUSTOMER set CUST_name = "undef® WHERE cust_name is null
will be converted to:

UPDATE customer SET cust_name = “"undef® WHERE cust_name 1S NULL

While SQL keywords are not case sensitive for database servers, table names and
column names can be case-sensitive.

For more details, see Naming database objects.

431

Genero Business Development Language

What SQL string was generated by the compiler?

As described in the above sections, the fglcomp compiler parses the Static SQL
statements and modifies them before writing the resulting SQL text to the 42m module.

You can extract all SQL statements from the source by using the -S option of fglcomp:

01 MAIN

02 DEFINE c_name CHAR(10)

03 DEFINE cnt INTEGER

04 DATABASE stock

05 SELECT COUNT(*) INTO cnt FROM customer WHERE customer.cust name =
C_nhame

06 END MAIN

$ fglcomp -S test.4gl

test.4gINS5NSELECT COUNT(*) FROM customer WHERE cust _name = ?

Supported Static SQL Statements

The following table shows all SQL statements supported by the language as Static SQL
Statements.

Lines marked with a pink background show SQL statements that are specific to IBM
Informix SQL language. These are supported for backward compatibility with the IBM
Informix 4GL compiler, and it is not recommended that you use them in your programs if
you want to write portable SQL. Other statements can be used, as long as you use
standard SQL syntax.

SQL Statement Description

ALTER INDEX ... Modify the definition of an index.

ALTER TABLE ... Modify the definition of a table.

ALTER SEQUENCE ... Modify the definition of a sequence.
CREATE AUDIT ... Create audit recording for a given table.
CREATE DATABASE ... Create a database.

CREATE INDEX ... Create an index.

CREATE TABLE ... Create a table.

CREATE SEQUENCE ... Create a sequence.

CREATE SYNONYM ... Create a synonym for a database table or view.
CREATE TEMP TABLE ... Create a temporary table.

CREATE VIEW ... Create a view.

DELETE FROM ... Delete rows in a table.

DROP AUDIT ... Remove audit for a given table.

DROP INDEX ... Delete an index.

DROP SEQUENCE ... Delete a sequence.

432

DROP SYNONYM ...
DROP TABLE ...

DROP VIEW ...

GRANT ...

INSERT INTO ...
RECOVER TABLE ...
RENAME COLUMN ...
RENAME INDEX ...
RENAME SEQUENCE ...
RENAME TABLE ...
REVOKE ...
ROLLFORWARD DATABASE
SELECT ...
SELECT ...
ttab

SET EXPLAIN ...

SET LOG ...

START DATABASE ...
TRUNCATE TABLE table

INTO TEMP

UPDATE table ...

UPDATE STATISTICS ...

SQL Management

Delete a table or view synonym.
Delete a table.

Delete a view.

Grant access rights.

Insert rows into a table.

Re-build an SE database table from log files.
Rename a table column.

Rename an index.

Rename a sequence.

Rename a table.

Revoke access rights.

Put an SE database in a safe state.

Select rows from a table.
Create a temporary table from a result set.

Enable/disable query execution plan trace.
Set the logging of an On-line database.
Initialize an SE database.

Cleanup a table without logging changes (no
rollback possible)

Update rows in a table.

Collect statistics information for the query
optimizer.

INSERT

Purpose:

Inserts a row in a table in the current database session.

Syntax:

INSERT INTO table-specification [(column [,...7) 1

i
~ VALUES ({ variable | literal | NULL } [,.--]1)

select-statement

b3

where table-specification is:

[dbname[@dbserver]:][owner.]table

433

Genero Business Development Language

Notes:

1.
2.

dbname identifies the database name. Informix only!
dbserver identifies the Informix database server (INFORMIXSERVER). Informix
only!

3. owner identifies the owner of the table, with optional double quotes. Informix
only!
4. table is the name of the database table.
5. column is a name of a table column.
6. variable is a program variable, a record or an array used as a parameter buffer to
provide values.
7. When you use records, you can specify all record members with the star notation
(rec.®).
8. literal is any literal expression supported by the language.
9. select-statement is a static SELECT statement with or without parameters as
variables.
10. When you use the VALUES clause, the statement inserts a row in the table with
the values specified in variables, as literals, or with NULL.
11. When you use a select-statement, the statement insert all rows returned in the
result set of the SELECT statement.
Warnings:
1. For portability, it is not recommended that you use the select-statement syntax.
2. When you use a select-statement, the columns returned by the result set must
match the column number and data types of the target table.
Example:
01 MAIN
02 DEFINE myrec RECORD
03 key INTEGER,
04 name CHAR(10),
05 cdate DATE,
06 comment VARCHAR(50)
07 END RECORD
08 DATABASE stock
09 LET myrec.key = 123
10 LET myrec.name = "Katos"
11 LET myrec.cdate = TODAY
12 LET myrec.comment = ""XXXXxXX"
13 INSERT INTO items VALUES (123, “Practal®, NULL, myrec.comment)
14 INSERT INTO items VALUES (myrec.*)
15 INSERT INTO items SELECT * FROM histitems WHERE name = myrec.name
16 END MAIN

434

SQL Management

UPDATE

Purpose:
Updates rows of a table in the current database session.

Syntax 1:

UPDATE table-specification
SET
column = { variable | literal | NULL }

[---1
[WHERE { condition | CURRENT OF cursor }]

Syntax 2: Informix only!

UPDATE table-specification
SET { ([table.]*) | Ccolumn [,...1) }
({ variable | literal | NULL } [,.--1)

L WHERE { condition | CURRENT OF cursor }]

where table-specification is:

[dbname[@dbserver]:][owner.]table
Notes:

1. dbname identifies the database name. Informix only!

2. dbserver identifies the Informix database server (INFORMIXSERVER). Informix
only!

3. owner identifies the owner of the table, with optional double quotes. Informix
only!

4. table is the name of the database table.

5. column is a name of a table column.

6. column can be specified with a sub-script expression (column[a,b]). Informix
only!

7. variable is a program variable, a record or an array used as a parameter buffer to
provide values.

8. literal is any literal expression supported by the language.

9. condition is an SQL expression to select the rows to be updated.

10. cursor is the identifier of a database cursor.

11. For more details about the WHERE CURRENT OF clause, see Positioned Updates.

Warnings:

1. column with a sub-script expression (column[a,b]) is not recommended
because most database servers do not support this notation.

2. Although a few database servers support Syntax 2, it is strongly recommended
that you use Syntax 1 only.

435

Genero Business Development Language

Example:

01 MAIN

02 DEFINE myrec RECORD

03 key INTEGER,

04 name CHAR(10),

05 cdate DATE,

06 comment VARCHAR(50)
07 END RECORD

08 DATABASE stock

09 LET myrec.key = 123

10 LET myrec.name = "Katos"
11 LET myrec.cdate = TODAY

12 LET myrec.comment = ""XXXXXX'
13 UPDATE items SET

14 name = myrec.name,
15 cdate = myrec.cdate,
16 comment = myrec.comment
17 WHERE key = myrec.key

18 END MAIN

DELETE

Purpose:

Deletes rows from a table in the current database session.

Syntax:

DELETE FROM table-specification
[WHERE { condition | CURRENT OF cursor }]

where table-specification is:

[dbname[@dbserver]:][owner.]table

Notes:

1. dbname identifies the database name. Informix only!

2. dbserver identifies the Informix database server (INFORMIXSERVER). Informix
only!

3. owner identifies the owner of the table, with optional double quotes. Informix
only!

4. table is the name of the database table.

5. condition is an SQL expression to select the rows to be deleted.

6. cursor is the identifier of a database cursor.

7. For more details about the WHERE CURRENT OF clause, see Positioned Updates.

436

SQL Management

Warnings:
1. If you do not specify the WHERE clause, all rows in the table will be deleted.

Example:

01 MAIN

02 DATABASE stock

03 DELETE FROM items WHERE name LIKE "A%"
04 END MAIN

SELECT

Purpose:
Selects rows from one or more tables in the current database session.
Syntax:

select-statement [UNION [ALL] select-statement] [...]

where select-statement is:

SELECT [{ALL|DISTINCTJUNIQUE}] { * | select-list }
[INTO variable [,...1 1
FROM table-list [,...]
[WHERE condition]
[GROUP BY column-list [HAVING condition]]
[ORDER BY column [{ASC|DESC}] [,---11

where select-list is:

Jtable-specification.*
able-specification.]Jcolumn
t

[AS] column-alias]

-1

where table-list is:

{ table-name

| OUTER table-name

| OUTER (table-name [,...])
3+

,---1

-

where table-name is:

table-specification [[AS] table-alias]

437

Genero Business Development Language

where table-specification is:

[dbname[@dbserver]:][owner.]table

where column-list is:

column-name [,...]

where column-name is:

[table.]column

Notes:

A

dbname identifies the database name. Informix only!
dbserver identifies the Informix database server (INFORMIXSERVER). Informix
only!

3. owner identifies the owner of the table, with optional double quotes. Informix
only!

4. table is the name of the database table.

5. table-alias defines a new name to reference the table in the rest of the statement.

6. column is a name of a table column.

7. column-alias defines a new name to reference the column in the rest of the
statement.

8. condition is an SQL expression to select the rows to be deleted.

9. The INTO clause provides the list of fetch buffers. This clause is not part of the
SQL language sent to the database server; it is extracted from the statement by
the compiler.

Warnings:

1. The language supports the SELECT INTO TEMP statement to create temporary

tables (this statement does not return a result set).
Usage:

If the SELECT statement returns only one row of data, you can write it directly as a
procedural instruction. However, you must use the INTO clause to provide the list of
variables where column values will be fetched:

01 MAIN

02 DEFINE myrec RECORD

03 key INTEGER,

04 name CHAR(10),

05 cdate DATE,

06 comment VARCHAR(50)
07 END RECORD

08 DATABASE stock

09 LET myrec.key = 123

10 SELECT name, cdate

11 INTO myrec.name, myrec.cdate

438

SQL Management

12 FROM items
13 WHERE key=myrec.key
14 END MAIN

If the SELECT statement returns more than one row of data, you must declare a database
cursor to process the result set:

01 MAIN

02 DEFINE myrec RECORD

03 key INTEGER,

04 name CHAR(10),

05 cdate DATE,

06 comment VARCHAR(50)
07 END RECORD

08 DATABASE stock
09 LET myrec.key = 123
10 DECLARE c1 CURSOR FOR

11 SELECT name, cdate
12 FROM items
13 WHERE key=myrec.key

14 OPEN c1

15 FETCH c1 INTO myrec.name, myrec.cdate
16 CLOSE c1

17 END MAIN

The SELECT statement can include the INTO clause, but it is strongly recommended that
you use that clause in the FETCH instruction only.

See Result Sets Processing for more details.

439

Genero Business Development Language

Dynamic SQL Management

Summary:

e What is Dynamic SQL Management?

e Preparing an SQL statement (PREPARE)

o Executing prepared statements (EXECUTE)

e Releasing prepared statements (FREE)

e Immediate execution (EXECUTE IMMEDIATE)

See also: Transactions, Positioned Updates, Static SQL, Result Sets, SQL Errors,
Declaring a cursor (DECLARE).

What is Dynamic SQL management?

BDL includes basic SQL instructions in the language syntax (see Static SQL), but only a
limited number of SQL instructions are supported this way. Dynamic SQL Management
allows you to execute any kind of SQL statement, hard coded or created at runtime, with
or without SQL parameters, returning or not returning a result set.

In order to execute an SQL statement with Dynamic SQL, you must first prepare the
SQL statement to initialize a statement handle, then you execute the prepared statement
one or more times:

FiGL Progran

Dratabace
Cotection

Staternert Handle 51 |

PEEPAFE 51 FEOM “TPDATE castaner SET .77

When you no longer need the prepared statement, you can free the statement handle to
release allocated resources:

440

SQL Management

Fi5L Progran

Dratah ace
Cottectio

Statermert Handle 51 |

—[FREESI

When using insert cursors or SQL statements that produce a result set (like SELECT),
you must declare a cursor with a prepared statement handle.

Prepared SQL statements can contain SQL parameters by using ? placeholders in the
SQL text. In this case, the EXECUTE or OPEN instruction supplies input values in the
USING clause.

To increase performance efficiency, you can use the PREPARE instruction, together with
an EXECUTE instruction in a loop, to eliminate overhead caused by redundant parsing
and optimizing. For example, an UPDATE statement located within a WHILE loop is parsed
each time the loop runs. If you prepare the UPDATE statement outside the loop, the
statement is parsed only once, eliminating overhead and speeding statement execution.

PREPARE

Purpose:

This instruction prepares an SQL statement for execution in the current database
connection.

Syntax:
PREPARE sid FROM sqgltext
Notes:
1. sidis an identifier to handle the prepared SQL statement.

2. sqltext is a string expression containing the SQL statement to be prepared.

441

Genero Business Development Language

Usage:

The PREPARE instruction allocates resources for an SQL statement handle, in the context
of the current connection. The SQL text is sent to the database server for parsing,
validation and to generate the execution plan.

Prepared SQL statements can be executed with the EXECUTE instruction, or, when the
SQL statement generates a result set, the prepared statement can be used to declare
cursors with the DECLARE instruction.

A statement identifier (sid) can represent only one SQL statement at a time. You can
execute a new PREPARE instruction with an existing statement identifier if you wish to
assign the text of a different SQL statement to the statement identifier. The scope of
reference of the sid statement identifier is local to the module where it is declared.

The SQL statement can have parameter placeholders, identified by the question mark
(?) character.

Resources allocated by PREPARE can be released later by the FREE instruction.
Warnings:

1. You cannot directly reference a variable in the text of a prepared SQL statement;
you must use question mark (?) placeholders instead.

2. The number of prepared statements in a single program is limited by the
database server and the available memory. Make sure that you free the
resources when you no longer need the prepared statement.

3. The identifier of a statement that was prepared in one module cannot be
referenced from another module.

4. You cannot use question mark (?) placeholders for SQL identifiers such as a
table name or a column name; you must specify these identifiers in the statement
text when you prepare it.

5. Some database servers like Informix support multiple SQL statement preparation
in a unique PREPARE instruction, but most database servers avoid multiple
statements.

Example:

01 FUNCTION deleteOrder(n)

02 DEFINE n INTEGER

03 PREPARE sl FROM "DELETE FROM order WHERE key=?"
04 EXECUTE sl1 USING n

05 FREE s1

06 END FUNCTION

442

SQL Management

EXECUTE

Purpose:

This instruction runs an SQL statement previously prepared in the same database
connection.

Syntax:

EXECUTE sid [USING pvar {INJOUT]INOUT} [,--.1 1 [INTO fvar [,...] 1

Notes:

1. sidis an identifier to handle the prepared SQL statement.

2. pvar is a variable containing an input value for an SQL parameter.

3. fvaris a variable used as fetch buffer, when the prepared statement returns a
single database row.

Usage:

The EXECUTE instruction performs the execution of a prepared SQL statement. Once
prepared, an SQL statement can be executed as often as needed.

If the SQL statement has (?) parameter placeholders, you must specify the USING clause
to provide a list of variables as parameter buffers. Parameter values are assigned by

position.

If the SQL statement returns a result set with one row, you can specify the INTO clause
to provide a list of variables to receive the result set column values. Fetched values are
assigned by position. If the SQL statement returns a result set with more than one row,
the instruction raises an exception.

The IN, OUT or INOUT options can be used to call stored procedures having input / output
parameters. Use the IN, OUT or INOUT options to indicate if a parameter is respectively
for input, output or both. For more details about stored procedure calls, see SQL
Programming.

Warnings:

1. You cannot use strings or numeric constants in the USING or INTO list. All
elements must be program variables.

2. You cannot execute a prepared SQL statement based on database tables if the
table structure has changed (ALTER TABLE) since the PREPARE instruction; you
must re-prepare the SQL statement.

3. The IN, OUT or INOUT options can only be used for simple variables, you cannot
specify those options for a complete record with the record.* notation.

443

Genero Business Development Language

Example:

01 MAIN

02 DEFINE varl CHAR(20)

03 DEFINE var2 INTEGER

04

05 DATABASE stores

06

07 PREPARE s1 FROM "UPDATE tab SET col=? WHERE key=?"
08 LET varl = "aaaa"

09 LET var2 = 345

10 EXECUTE s1 USING varl, var2

11

12 PREPARE s2 FROM "SELECT col FROM tab WHERE key=?"
13 LET var2 = 564

14 EXECUTE s2 USING var2 INTO varl

15

16 PREPARE s3 FROM "CALL myproc(?,?)"

17 LET varl = "abc”

18 EXECUTE s3 USING varl IN, var2 OUT

19

20 END MAIN

FREE

Purpose:
This instruction releases the resources allocated to a prepared statement.
Syntax:
FREE sid
Notes:
1. sid is the identifier of the prepared SQL statement.
Usage:
The FREE instruction takes the name of a statement as parameter.
All resources allocated to the SQL statement handle are released.
Warnings:

1. After resources are released, the statement identifier cannot be referenced by a
cursor, or by the EXECUTE statement, until you prepare the statement again.

444

SQL Management

Tips:

1. Free the statement if it is not needed anymore, this saves resources on the
database client and database server side.

Example:

01 FUNCTION update_customer_name(key, name)

02 DEFINE key INTEGER

03 DEFINE name CHAR(10)

04 PREPARE s1 FROM "UPDATE customer SET name=? WHERE customer_num=?""
05 EXECUTE s1 USING name, key

06 FREE s1

07 END FUNCTION

EXECUTE IMMEDIATE

Purpose:
This instruction performs a simple SQL execution without SQL parameters or result set.
Syntax:
EXECUTE IMMEDIATE sgltext
Notes:

1. sqltext is a string expression containing the SQL statement to be executed.
Usage:

The EXECUTE IMMEDIATE instruction passes an SQL statement to the database server
for execution in the current database connection.

The SQL statement must be a single statement without parameters, returning no result
set.

This instruction performs the functions of PREPARE, EXECUTE and FREE in one step.
Warnings:

1. The SQL statement cannot contain SQL parameters.
2. The SQL statement must not produce a result set.

Example:

01 MAIN

445

Genero Business Development Language

02 DATABASE stores
03 EXECUTE IMMEDIATE "UPDATE tab SET col="aaa" WHERE key=345"
04 END MAIN

446

SQL Management

Database Result Set Processing (Cursor)

Summary:

What is a database result set?
Cursor declaration (DECLARE)
Opening cursors (OPEN)

Retrieving data (FETCH)

Closing cursors (CLOSE)

Freeing cursors (FREE)

Browsing rows in a loop (FOREACH)

See also: Transactions, Positioned Updates, Static SQL, Dynamic SQL, SQL Errors.

What is a database result set?

A Database Result Set is a set of rows generated by an SQL statement that produces
rows, such as SELECT. The result set is maintained by the database server. In a
program, you handle a result set with a Database Cursor.

First you must declare the database cursor with the DECLARE instruction. This
instruction sends the SQL statement to the database server for parsing, validation and to
generate the execution plan.

Fi5L Progran

Dratab ace
Cotdectior

Chrsor ©1

LECLARE C1 FEOM SELECT ... I

The result set is produced after execution of the SQL statement, when the database

cursor is associated with the result set by the OPEN instruction. At this point, no data
rows are transmitted to the program. You must use the FETCH instruction to retrieve
data rows from the database server.

447

Genero Business Development Language

Fi5L Progran

Dratah ace
Cottectio

|IZ.‘1.1IS|:|II31 |—| OPEH C1 I—

FETCH C1INTO
V1, W, W, Ve

|

When finished with the result set processing, you must CLOSE the cursor to release the
resources allocated for the result set on the database server. The cursor can be re-
opened if needed. If the SQL statement is no longer needed, you can free the resources
allocated to statement execution with the FREE instruction.

FiGL Program

Dratabace
Cormection

Chrsor C1 |—| CLOSEC1 l—

The scope of reference of a database cursor is local to a module, so a cursor that was
declared in one source file cannot be referenced in a statement in another file.

The language supports sequential and scrollable cursors. Sequential cursors, which are
unidirectional, are used to retrieve rows for a report, for example. Scrollable cursors
allow you to move backwards or to an absolute or relative position in the result set.
Specify whether a cursor is scrollable with the SCROLL option of the DECLARE
instruction.

448

SQL Management

DECLARE

Purpose:

This instruction associates a database cursor with an SQL statement in the current
connection.

Syntax 1: Cursor declared with a static SQL statement.

DECLARE cid [SCROLL] CURSOR [WITH HOLD] FOR select-statement

Syntax 2: Cursor declared with a prepared statement.

DECLARE cid [SCROLL] CURSOR [WITH HOLD] FOR sid

Syntax 3: Cursor declared with a string expression.

DECLARE cid [SCROLL] CURSOR [WITH HOLD] FROM expr
Notes:

cid is the identifier of the database cursor.

select-statement is a SELECT statement defined in Static SQL.

sid is the identifier of a prepared SQL statement.

expr is any expression that evaluates to a string.

In all supported syntaxes, you can use the ? question mark as a parameter
placeholder.

arwnNPE

Warnings:

1. The maximum number of declared cursors in a single program is limited by the
database server and the available memory. Make sure that you free the
resources when you no longer need the declared cursor.

2. The identifier of a cursor that was declared in one module cannot be referenced
from another module.

3. When declaring a cursor with a static select-statement, the statement can include
an INTO clause. However, this is not recommended, to be consistent with
prepared statements. If you prepare the statement, you must omit the INTO
clause in the SQL text provided to the PREPARE instruction and use the INTO
clause of the FETCH statement to retrieve the values from the result set.

4. You can add the FOR UPDATE clause in the SELECT statement to declare an
update cursor. You can use the update cursor to modify (update or delete) the
current row.

5. Use the WITH HOLD option carefully, because this feature is specific to IBM
Informix servers. Other database servers do not behave as Informix does with
this type of cursor. For example, if the SELECT is not declared FOR UPDATE, most

449

Genero Business Development Language

database servers keep cursors open after the end of a transaction, but IBM DB2
automatically closes all cursors when the transaction is rolled back.

Usage:

The DECLARE instruction allocates resources for an SQL statement handle, in the context
of the current connection. The SQL text is sent to the database server for parsing,
validation and to generate the execution plan.

After declaring the cursor, you can use the OPEN instruction to execute the SQL
statement and produce the result set.

DECLARE must precede any other statement that refers to the cursor during program
execution.

The scope of reference of the cid cursor identifier is local to the module where it is
declared.

Resources allocated by the DECLARE can be released later by the FREE instruction.

Forward only cursors

If you use only the DECLARE CURSOR keywords, you create a sequential cursor, which
can fetch only the next row in sequence from the result set. The sequential cursor can
read through the result set only once each time it is opened. If you are using a
sequential cursor for a select cursor, on each execution of the FETCH statement, the
database server returns the contents of the current row and locates the next row in the
result set.

Example 1: Declaring a cursor with a static SELECT statement.

01 MAIN

02 DATABASE stores

03 DECLARE c1 CURSOR FOR SELECT * FROM customer
04 END MAIN

Example 2: Declaring a cursor with a prepared statement.

01 MAIN
02 DEFINE key INTEGER
03 DEFINE cust RECORD

04 num INTEGER,
05 name CHAR(50)
06 END RECORD

07 DATABASE stores

08 PREPARE s1

09 FROM "SELECT customer_num, cust_name FROM customer WHERE
customer_num>?"

10 DECLARE cl1 CURSOR FOR si1

11 LET key=101

12 FOREACH cl1 USING key INTO cust.*

450

SQL Management

13 DISPLAY cust.*
14 END FOREACH
15 END MAIN

Scrollable cursors

Use the DECLARE SCROLL CURSOR keywords to create a scrollable cursor, which can
fetch rows of the result set in any sequence. Until the cursor is closed, the database
server retains the result set of the cursor in a static data set (for example, in a temporary
table like Informix). You can fetch the first, last, or any intermediate rows of the result set
as well as fetch rows repeatedly without having to close and reopen the cursor. On a
multi-user system, the rows in the tables from which the result set rows were derived
might change after the cursor is opened and a copy of the row is made in the static data
set. If you use a scroll cursor within a transaction, you can prevent copied rows from
changing, either by setting the isolation level to Repeatable Read or by locking the entire
table in share mode during the transaction. Scrollable cursors cannot be declared FOR
UPDATE.

The DECLARE [SCROLL] CURSOR FROM syntax allows you to declare a cursor directly
with a string expression, so that you do not have to use the PREPARE instruction. This
simplifies the source code and speeds up the execution time for non-Informix databases,
because the SQL statement is not parsed twice.

Example 3: Declaring a scrollable cursor with string expression.

01 MAIN
02 DEFINE key INTEGER
03 DEFINE cust RECORDs

04 num INTEGER,
05 name CHAR(50)
06 END RECORD

07 DATABASE stores

08 DECLARE cl1 SCROLL CURSOR

09 FROM *"SELECT customer_num, cust_name FROM customer WHERE
customer_num>?"

10 LET key=101

11 FOREACH c1 USING key INTO cust.*

12 DISPLAY cust.*
13 END FOREACH
14 END MAIN

Hold cursors

Informix only: Use the WITH HOLD option to create a hold cursor. A hold cursor allows
uninterrupted access to a set of rows across multiple transactions. Ordinarily, all cursors
close at the end of a transaction. A hold cursor does not close; it remains open after a
transaction ends. A hold cursor can be either a sequential cursor or a scrollable cursor.
Hold cursors are only supported by Informix database engines.

You can use the ? question mark place holders with prepared or static SQL statements,
and provide the parameters at execution time with the USING clause of the OPEN or
FOREACH instructions.

451

Genero Business Development Language

Example 4: Declaring a hold cursor with ? parameter place holders.

01 MAIN
02 DEFINE key INTEGER
03 DEFINE cust RECORDs

04 num INTEGER,
05 name CHAR(50)
06 END RECORD

07 DATABASE stores

08 DECLARE c1 CURSOR WITH HOLD

09 FOR SELECT customer_num, cust_name FROM customer WHERE
customer_num > ?

10 LET key=101

11 FOREACH c1 USING key INTO cust.*

12 BEGIN WORK

13 UPDATE cust2 SET name=cust.cust_name WHERE num=cust.num
14 COMMIT WORK

15 END FOREACH

16 END MAIN

OPEN

Purpose:

Executes the SQL statement associated with a database cursor declared in the same
connection.

Syntax:
OPEN cid

[USING pvar {INJOUT]INOUT} [,.-.]1 1
[WITH REOPTIMIZATION]

Notes:
1. cid is the identifier of the database cursor.
2. pvar is a program variable, a record, or an array used as a parameter buffer to
provide SQL parameter values.

Usage:

The OPEN instruction executes the SQL statement of a declared cursor. The result set is
produced on the server side and rows can be fetched.

The USING clause is required to provide the SQL parameters as program variables, if the

cursor was declared with a prepared statement that includes (?) question mark
placeholders.

452

SQL Management

A subsequent OPEN statement closes the cursor and then reopens it. When the database
server reopens the cursor, it creates a new result set, based on the current values of the
variables in the USING clause. If the variables have changed since the previous OPEN
statement, reopening the cursor can generate an entirely different result set.

The IN, OUT or INOUT options can be used to call stored procedures having input / output
parameters and generating a result set. Use the IN, OUT or INOUT options to indicate if a
parameter is respectively for input, output or both. For more details about stored
procedure calls, see SQL Programming.

Sometimes, query execution plans need to be re-optimized when SQL parameter values
change. Use the WITH REOPTIMIZATION clause to indicate that the query execution plan
has to be re-optimized on the database server (this operation is normally done during
the DECLARE instruction). If this option is not supported by the database server, it is
ignored.

In a IBM Informix database that is ANSI-compliant, you receive an error code if you try to
open a cursor that is already open. Informix only!

With the CLOSE instruction, you can release resources allocated for the result set on the
database server.

Warnings:

1. You cannot use string or numeric constants in the USING list. All elements must
be program variables.

2. The database server evaluates the values that are named in the USING clause of
the OPEN statement only when it opens the cursor. While the cursor is open,
subsequent changes to program variables in the OPEN clause do not change the
result set of the cursor; you must re-open the cursor to re-execute the statement.

3. If you release cursor resources with a FREE instruction, you cannot use the
cursor unless you declare the cursor again.

4. The IN, OUT or INOUT options can only be used for simple variables, you cannot
specify those options for a complete record with the record.* notation.

Example:

01 MAIN

02 DEFINE k INTEGER

03 DEFINE n VARCHAR(50)
04 DATABASE stores

05 DECLARE cl1 CURSOR FROM *SELECT cust_name FROM customer WHERE
cust_id>?"

06 LET k = 102

07 OPEN c1 USING k

08 FETCH c1 INTO n

09 LET k = 103

10 OPEN c1 USING k

11 FETCH c1 INTO n

12 END MAIN

453

Genero Business Development Language

FETCH

Purpose:

Moves a cursor to a new row in the corresponding result set and retrieves the row values
into fetch buffers.

Syntax:

FETCH [direction] cid [INTO fvar [,.--1]

where direction is one of:

{
NEXT
1 { PREVIOUS | PRIOR }
| CURRENT
| FIRST
| LAST
ABSOLUTE position
RELATIVE offset

1
1
}

Notes:
1. cid is the identifier of the database cursor.
2. fvaris a program variable, a record or an array used as a fetch buffer to receive a
row value.
3. direction options different from NEXT can only be used with scrollable cursors.
4. position is an positive integer expression.
5. offset is a positive or negative integer expression.
Usage:

The FETCH instruction retrieves a row from a result set of an opened cursor. The cursor
must be opened before using the FETCH instruction.

The INTO clause can be used to provide the fetch buffers that receive the result set
column values.

A sequential cursor can fetch only the next row in sequence from the result set.
The NEXT clause (the default) retrieves the next row in the result set. If the row pointer
was on the last row before executing the instruction, the SQL Code is set to 100

(NOTFOUND), and the row pointer remains on the last row. (if you issue a FETCH
PREVIOUS at this time, you get the next-to-last row).

454

SQL Management

The PREVIOUS clause retrieves the previous row in the result set. If the row pointer was
on the first row before executing the instruction, the SQL Code is set to 100 (NOTFOUND),
and the row pointer remains on the first row. (if you issue a FETCH NEXT at this time, you
get the second row).

The CURRENT clause retrieves the current row in the result set.
The FIRST clause retrieves the first row in the result set.
The LAST clause retrieves the last row in the result set.

The ABSOLUTE clause retrieves the row at position in the result set. If the position is not
correct, the SQL Code is set to 100 (NOTFOUND). Absolute row positions are
numbered from 1.

The RELATIVE clause moves offset rows in the result set and returns the row at the
current position. The offset can be a negative value. If the offset is not correct, the SQL
Code is set to 100 (NOTFOUND). If offset is zero, the current row is fetched.

Warnings:

1. Fetching rows can have specific behavior when the cursor was declared FOR
UPDATE. See Positioned Updates for more details.

Example:

01 MAIN

02 DEFINE cnum INTEGER

03 DEFINE cname CHAR(20)

04 DATABASE stores

05 DECLARE c1 SCROLL CURSOR FOR SELECT customer_num, cust _name FROM
customer

06 OPEN c1

07 FETCH c1 INTO cnum, cname

08 FETCH LAST cl1 INTO cnum, cname

09 FETCH PREVIOUS c1 INTO cnum, cname
10 FETCH FIRST cl1 INTO cnum, cname

11 FETCH LAST cl1

12 FETCH FIRST cl1

13 END MAIN

CLOSE

Purpose:

Closes a database cursor and frees resources allocated on the database server for the
result set.

455

Genero Business Development Language

Syntax:

CLOSE cid
Notes:

1. cid is the identifier of the database cursor.
Usage:

The CLOSE instruction releases the resources allocated for the result set on the database
server.

After using the CLOSE instruction, you must re-open the cursor with OPEN before
retrieving values with FETCH.

Tips:

1. Close the cursor when the result set is no longer used, this saves resources on
the database client and database server side.

Example:

01 MAIN

02 DATABASE stores

03 DECLARE c1 CURSOR FOR SELECT * FROM customer
04 OPEN c1

05 CLOSE c1

06 OPEN c1

07 CLOSE c1

08 END MAIN

FREE

Purpose:

This instruction releases resources allocated to the database cursor with the DECLARE
instruction.

Syntax:

FREE cid
Notes:

1. cid is the identifier of the database cursor.

456

SQL Management

Usage:

The FREE instruction takes the name of a cursor as parameter.
All resources allocated to the database cursor are released.
The cursor should be explicitly closed before it is freed.
Warnings:

1. If you release cursor resources with this instruction, you cannot use the cursor
unless you declare the cursor again.

Tips:

1. Free the cursor when the result set is no longer used; this saves resources on
the database client and database server side.

Example:

01 MAIN

02 DEFINE i, j INTEGER
03 DATABASE stores

04 FOR i=1 TO 10

05 DECLARE cl1 CURSOR FOR SELECT * FROM customer
06 FOR j=1 TO 10
07 OPEN c1
08 FETCH c1
09 CLOSE c1
10 END FOR

11 FREE c1

12 END FOR

13 END MAIN
FOREACH

Purpose:

A FOREACH block applies a series of actions to each row of data that is returned from a
database cursor.

Syntax:

FOREACH cid
[USING pvar {INJOUTJINOUT} [,---11

[INTO fvar [,.--11
[WITH REOPTIMIZATION]

{

statement

457

Genero Business Development Language

CONTINUE FOREACH
EXIT FOREACH

1
1
3+
---]
END FOREACH

=

Notes:

1. cid is the identifier of the database cursor.

2. pvaris a program variable, a record or an array used as a parameter buffer to
provide SQL parameter values.

3. fvaris a program variable, a record or an array used as a fetch buffer to receive a
row value.

Usage:

Use the FOREACH instruction to retrieve and process database rows that were selected
by a query. This instruction is equivalent to using the OPEN, FETCH and CLOSE cursor
instructions:

1. Open the specified cursor
2. Fetch the rows selected
3. Close the cursor (after the last row has been fetched)

You must declare the cursor (by using the DECLARE instruction) before the FOREACH
instruction can retrieve the rows. A compile-time error occurs unless the cursor was
declared prior to this point in the source module. You can reference a sequential cursor,
a scroll cursor, a hold cursor, or an update cursor, but FOREACH only processes rows in
sequential order.

The FOREACH statement performs successive fetches until all rows specified by the
SELECT statement are retrieved. Then the cursor is automatically closed. It is also closed
if a WHENEVER NOT FOUND exception handler within the FOREACH loop detects a
NOTFOUND condition (that is, SQL Code = 100).

The USING clause is required to provide the SQL parameter buffers, if the cursor was
declared with a prepared statement that includes (?) question mark placeholders.

The IN, OUT or INOUT options can be used to call stored procedures having input / output
parameters and generating a result set. Use the IN, OUT, or INOUT options to indicate if a

parameter is respectively for input, output, or both. For more details about stored
procedure calls, see SQL Programming.

The INTO clause can be used to provide the fetch buffers that receive the row values.

Use the WITH REOPTIMIZATION clause to indicate that the query execution plan has to
be re-optimized.

458

SQL Management

The CONTINUE FOREACH instruction interrupts processing of the current row and starts
processing the next row. The runtime system fetches the next row and resumes
processing at the first statement in the block.

The EXIT FOREACH instruction interrupts processing and ignores the remaining rows of
the result set.

Warnings:
1. Infinite loops may occur if the cursor preparation failed.

2. The IN, OUT, or INOUT options can only be used for simple variables; you cannot
specify those options for a complete record with the record.* notation.

Example:

01 MAIN

02 DEFINE clist ARRAY[200] OF RECORD
03 cnum INTEGER,

04 cnhame CHAR(50)

05 END RECORD

06 DEFINE 1 INTEGER

07 DATABASE stores

08 DECLARE cl1 CURSOR FOR SELECT customer_num, cust_name FROM
customer

09 LET 1=0

10 FOREACH cl1 INTO clist[i+1].*

11 LET i=i+1

12 DISPLAY clist[i]-*

13 END FOREACH

14 DISPLAY "‘Number of rows found: ™, i
15 END MAIN

459

Genero Business Development Language

SQL Positioned Updates

Summary:

e What is a Positioned Update?

o Declaring a cursor for update (DECLARE)

e Updating a row by cursor position (UPDATE ... WHERE CURRENT OF)
e Deleting a row by cursor position (DELETE ... WHERE CURRENT OF)
e Examples

See also: Transactions, Static SQL, Dynamic SQL, Result Sets, SQL Errors.

What is a Positioned Update?

When declaring a database cursor with a SELECT statement using a unique table and
including the FOR UPDATE keywords, you can update or delete database rows by using
the WHERE CURRENT OF keywords in the UPDATE or DELETE statements. Such an
operation is called Positioned Update or Positioned Delete.

Some database servers do not support hold cursors (WITH HOLD) declared with a
SELECT statement including the FOR UPDATE keywords. The SQL standards require ‘for
update' cursors to be automatically closed at the end of a transaction. Therefore, it is
strongly recommended that you use positioned updates in a transaction block.

Do not confuse positioned update with the use of SELECT FOR UPDATE statements that
are not associated with a database cursor. Executing SELECT FOR UPDATE statements is
supported by the language, but you cannot perform positioned updates since there is no
cursor identifier associated to the result set.

To perform a positioned update or delete, you must declare the database cursor with a
SELECT FOR UPDATE statement:

460

Fi5L Progran

Dratah ace
Cottectio

Chreor ©1 |

LECLARE C1 FEOM
SELECT ... FOE TFD'ATE

Then, start a transaction, open the cursor and fetch a row:

FiGL Progran

Dratabace
Cotection

| EEGIN 'WOEE |

OPEH C1

SQL Management

FETCH C1

|‘__,_/—*’

Finally, you update or delete the current row and you commit the transaction:

461

Genero Business Development Language

Fi5L Progran

Dratah ace
Cottectio

Chrsor &1

|: UPDATE ... WHEFE

CTUREEENT OF C1

| COMBIIT W ORE

DECLARE

Purpose:

Use this instruction to associate a database cursor with a SELECT statement to perform
positioned updates in the current connection.

Syntax:

DECLARE cid [SCROLL] CURSOR [WITH HOLD] FOR { select-statement | sid }

Notes:

1. cid is the identifier of the database cursor.

2. select-statement is a SELECT statement defined in Static SQL.

3. To perform positioned updates, the select-statement must include the FOR
UPDATE keywords.

4. sid is the identifier of a prepared SELECT statement including the FOR UPDATE

keywords.

See the DECLARE instruction description in Result Sets Processing.

DECLARE must precede any other statement that refers to the cursor during

program execution.

oo

Warnings:
1. The scope of reference of the cid cursor identifier is local to the module where it

is declared. Therefore, you must execute the DECLARE, UPDATE or DELETE
instructions in the same module.

462

SQL Management

2. Use the WITH HOLD option carefully, because this feature is specific to IBM
Informix servers. Other database servers do not behave as Informix does with
such cursors. For example, if the SELECT is not declared FOR UPDATE, most
database servers keep cursors open after the end of a transaction, but IBM DB2
automatically closes all cursors when the transaction is rolled back.

UPDATE ... WHERE CURRENT OF

Purpose:
Updates the current row in a result set of a database cursor declared for update.

Syntax:

UPDATE table-specification
SET
column = { variable | literal | NULL }

WHERE CURRENT OF cid

Notes:

1. table-specification identifies the target table (see UPDATE for more details).

2. column is a name of a table column.

3. variable is a program variable, a record or an array used as a parameter buffer to
provide values.

4. literal is any literal expression supported by the language.

5. cid is the identifier of the database cursor declared for update.

6. The UPDATE statement does not advance the cursor to the next row, so the
current row position remains unchanged.

Warnings:

1. The scope of reference of the cid cursor identifier is local to the module where it
is declared. Therefore, you must execute the DECLARE, UPDATE or DELETE
instructions in the same module.

2. There must be a current row in the result set. Make sure that the SQL status
returned by the last FETCH is equal to zero.

3. If the DECLARE statement that created the cursor specified one or more columns
in the FOR UPDATE clause, you are restricted to updating only those columns in a
subsequent UPDATE ... WHERE CURRENT OF statement.

463

Genero Business Development Language

DELETE ... WHERE CURRENT OF

Purpose:
Deletes the current row in a result set of a database cursor declared for update.

Syntax:

DELETE FROM table-specification
WHERE CURRENT OF cid

Notes:

1. table-specification identifies the target table (see DELETE for more details).

2. cid is the identifier of the database cursor declared for update.

3. After the deletion, no current row exists; you cannot use the cursor to delete or
update a row until you re-position the cursor with a FETCH statement.

Warnings:

1. The scope of reference of the cid cursor identifier is local to the module where it
is declared. Therefore, you must execute the DECLARE, UPDATE or DELETE
instructions in the same module.

2. There must be a current row in the result set. Make sure that the SQL status
returned by the last FETCH is equal to zero.

Examples

Example 1:

01 MAIN

02 DEFINE pname CHAR(30)
03 DATABASE stock

04 DECLARE uc CURSOR FOR

05 SELECT name FROM item WHERE key=123 FOR UPDATE

06 BEGIN WORK

07 OPEN uc

08 FETCH uc INTO pname

09 IF sqlca.sqlcode=0 THEN

10 LET pname = ""Dummy"

11 UPDATE item SET name=pname WHERE CURRENT OF uc
12 END IF

13 CLOSE uc

14 COMMIT WORK
15 FREE uc
16 END MAIN

464

SQL Management

SQL Insert Cursors

Summary:

e Whatis an Insert Cursor?

e Declaring the Insert Cursor (DECLARE)
¢ Initializing the Insert Cursor (OPEN)

e Adding Rows to the Buffer (PUT)

e Flushing the insert Buffer (FLUSH)

e Finalizing the Insert Cursor (CLOSE)

e Freeing Allocated Resources (FREE)

e Examples

See also: Transactions, Static SQL, Dynamic SQL, Result Sets, SQL Errors.

What is an Insert Cursor?

An Insert Cursor is a database cursor declared with a restricted form of the INSERT
statement, designed to perform buffered row insertion in database tables.

The insert cursor simply inserts rows of data; it cannot be used to fetch data. When an
insert cursor is opened, a buffer is created in memory to hold a block of rows. The buffer
receives rows of data as the program executes PUT statements. The rows are written to
disk only when the buffer is full. You can use the CLOSE, FLUSH, or COMMIT WORK
statement to flush the buffer when it is less than full. You must close an insert cursor to
insert any buffered rows into the database before the program ends. You can lose data if
you do not close the cursor properly.

When the database server supports buffered inserts, an insert cursor increases
processing efficiency (compared with embedding the INSERT statement directly). This
process reduces communication between the program and the database server and also
increases the speed of the insertions.

Before using the insert cursor, you must declare it with the DECLARE instruction using
an INSERT statement:

465

Genero Business Development Language

Fi5L Progran

Dratah ace
Cottectio

LECLAFRE C1 FEOM
IHMEERT ...

Once declared, you can open the insert cursor with the OPEN instruction. This
instruction prepares the insert buffer. When the insert cursor is opened, you can add
rows to the insert buffer with the PUT statement:

Fi5L Progran

Dratab ace
Cotdectior

| Carsor ©1 |—| OPEH C1 l—

PUT C1FEOM

V1, VR, VE, W

Rows are automatically added to the database table when the insert buffer is full. To
force row insertion in the table, you can use the FLUSH instruction:

466

SQL Management

Fi5L Progran

Dratah ace
Cottectio

Finally, when all rows are added, you can CLOSE the cursor and if you no longer need
it, you can de-allocate resources with the FREE instruction:

Fi5L Progran

Dratah ace
Cottectio

Chrsor ©1
CLOSE C1

{FLUSHAme freeded)

—| FEEE C1

By default, insert cursors must be opened inside a transaction block, with BEGIN WORK
and COMMIT WORK, and they are automatically closed at the end of the transaction. If
needed, you can declare insert cursors with the WITH HOLD clause, to allow
uninterrupted row insertion across multiple transactions. See example 3 at the bottom of

this page.

467

Genero Business Development Language

DECLARE

Purpose:
Declares a new insert cursor in the current database session.

Syntax:

DECLARE cid CURSOR [WITH HOLD] FOR { insert-statement | sid }
Notes:

1. cid is the identifier of the insert cursor.

2. insert-statement is an INSERT statement defined in Static SQL.

3. sid is the identifier of a prepared INSERT statement including (?) question mark

placeholders in the VALUES clause.

The INSERT statement is parsed, validated and the execution plan is created.

5. DECLARE must precede any other statement that refers to the cursor during
program execution.

6. The scope of reference of the cid cursor identifier is local to the module where it
is declared.

7. When declaring a cursor with a static insert-statement, the statement can include
a list of variables in the VALUES clause. These variables are automatically read by
the PUT statement; you do not have to provide the list of variables in that
statement. See Example 1 for more details.

8. When declaring a cursor with a prepared sid statement, the statement can
include (?) question mark placeholders for SQL parameters. In this case you
must provide a list of variables in the FROM clause of the PUT statement. See
Example 2 for more details.

9. Use the WITH HOLD option to declare cursors that have uninterrupted inserts
across multiple transactions.

10. Resources allocated by the DECLARE can be released later by the FREE
instruction.

»

Warnings:

1. The number of declared cursors in a single program is limited by the database
server and the available memory. Make sure that you free the resources when
you no longer need the declared insert cursor.

2. The identifier of a cursor that was declared in one module cannot be referenced
from another module.

468

SQL Management

OPEN

Purpose:
Opens an insert cursor in the current database session.

Syntax:

OPEN cid

1. cid is the identifier of the insert cursor.

2. A subsequent OPEN statement closes the cursor and then reopens it.

3. With the CLOSE instruction, you can release resources allocated for the insert
buffer on the database server.

Warnings:

1. When used with an insert cursor, the OPEN instruction cannot include a USING
clause.

2. If the insert cursor was not declared WITH HOLD option, the OPEN instruction
generates an SQL error if there is no current transaction started.

3. If you release cursor resources with a FREE instruction, you cannot use the
cursor unless you declare the cursor again.

PUT

Purpose:
Adds a new row to the insert cursor buffer in the current database session.
Syntax:
PUT cid FROM paramvar [,...]
Notes:
1. cid is the identifier of the insert cursor.
2. paramvar is a program variable, a record or an array used as a parameter buffer
to provide SQL parameter values.
Warnings:
1. If the insert cursor was not declared WITH HOLD option, the PUT instruction
generates an SQL error if there is no current transaction started.

2. If the insert buffer has no room for the new row when the statement executes, the
buffered rows are written to the database in a block, and the buffer is emptied. As

469

Genero Business Development Language

a result, some PUT statement executions cause rows to be written to the
database, and some do not.

FLUSH

Purpose:
Flushes the buffer of an insert cursor in the current database session.
Syntax:
FLUSH cid
Notes:
1. cid is the identifier of the insert cursor.
2. All buffered rows are inserted into the target table.
3. The insert buffer is cleared.

Warnings:

1. The insert buffer may be automatically flushed by the runtime system if there no
room when a new row is added with the PUT instruction.

CLOSE

Purpose:
Closes an insert cursor in the current database session.

Syntax:

CLOSE cid
Notes:

cid is the identifier of the insert cursor.

If rows are present in the insert buffer, they are inserted into the target table.
The insert buffer is discarded.

This instruction releases the resources allocated for the insert buffer on the
database server.

5. After using the CLOSE instruction, you must re-open the cursor with OPEN before
adding new rows with PUT / FLUSH.

PwpPE

470

SQL Management

FREE

Purpose:
Releases resources allocated for an insert cursor in the current database session.
Syntax:
FREE cid
Notes:
1. cid is the identifier of the insert cursor.
2. All resources allocated to the insert cursor are released.
3. The cursor should be explicitly closed before it is freed.

Warnings:

1. If you release cursor resources with this instruction, you cannot use the cursor
unless you declare the cursor again.

Examples

Example 1: Insert Cursor declared with a Static INSERT

01 MAIN
02 DEFINE i INTEGER
03 DEFINE rec RECORD

04 key INTEGER,
05 name CHAR(30)
06 END RECORD

07 DATABASE stock
08 DECLARE ic CURSOR FOR

09 INSERT INTO item VALUES (rec.*)
10 BEGIN WORK

11 OPEN ic

12 FOR i=1 TO 100

13 LET rec.key = 1

14 LET rec.name = "ltem #" || 1
15 PUT ic

16 IF 1 MOD 50 = O THEN

17 FLUSH ic

18 END IF

19 END FOR

20 CLOSE ic

21 COMMIT WORK
22 FREE ic

471

Genero Business Development Language

23 END MAIN

Example 2: Insert Cursor declared with a Prepared INSERT

01 MAIN
02 DEFINE i INTEGER
03 DEFINE rec RECORD

04 key INTEGER,
05 name CHAR(30)
06 END RECORD

07 DATABASE stock

08 PREPARE is FROM "INSERT INTO item VALUES (?,?)"
09 DECLARE ic CURSOR FOR 1is

10 BEGIN WORK

11 OPEN ic

12 FOR 1=1 TO 100

13 LET rec.key = 1

14 LET rec.name = "ltem #" || i
15 PUT ic FROM rec.*

16 IF 1 MOD 50 = O THEN

17 FLUSH ic

18 END IF

19 END FOR

20 CLOSE ic

21 COMMIT WORK
22 FREE ic

23 FREE 1is

24 END MAIN

Example 3: Insert Cursor declared with 'hold' option

01 MAIN

02 DEFINE name CHAR(30)

03 DATABASE stock

04 DECLARE ic CURSOR WITH HOLD FOR

05 INSERT INTO item VALUES (1,name)
06 OPEN ic

07 LET name = "lItem 1"

08 PUT ic

09 BEGIN WORK

10 UPDATE refs SET name="'xyz'" WHERE key=123
11 COMMIT WORK

12 PUT ic

13 PUT ic

14 FLUSH ic

15 CLOSE ic

16 FREE ic

17 END MAIN

472

SQL Management

I/O SQL Instructions

Summary:

Loading data from files (LOAD)

Writing data to files (UNLOAD)

See also: Connections.

LOAD

Purpose:

The LOAD instruction inserts data from a file into an existing table in the current database
connection.

Syntax:

LOAD FROM filename [DELIMITER delimiter]

~ INSERT INTO table-specification [(column [,...1) 1

insert-string

+

where table-specification is:

[dbname[@dbserver]:][owner.]table

Notes:

1.
2.

© o~

filename is the name of the file the data is read from.

delimiter is the character used as the value delimiter. If this clause is not
specified, the delimiter is defined by DBDELIMITER environment variable. If this
variable is not set, the default is a pipe.

The INSERT clause is a pseudo INSERT statement (without the VALUES clause),
where you can specify the list of columns in braces.

dbname identifies the database name. Informix only!

dbserver identifies the Informix database server (INFORMIXSERVER). Informix
only!

owner identifies the owner of the table, with optional double quotes. Informix
only!

table is the name of the database table.

column is a name of a table column.

insert-string is a program variable or a string literal containing the pseudo-
INSERT statement. This allows you to create the pseudo-INSERT statement at
runtime.

473

Genero Business Development Language

Warnings:

1. The number and the order of columns in the INSERT statement must match in
the input file.

2. You cannot use the PREPARE statement to preprocess a LOAD statement.

3. At this time, data type description of the input file fields is implicit; in order to
create the SQL parameter buffers to hold the field values for inserts, the LOAD
instruction uses the current database connection to get the column data types of
the target table. Those data types depend on the type of database server. For
example, IBM Informix DATE columns do not store the same data as the Oracle
DATE data type. Therefore, be careful when using this instruction; if your
application connects to different kinds of database servers, you may get data
conversion errors.

Tips:

1. LOAD provides better performance when the table that the INSERT INTO clause
references has no index, no constraint, and no trigger. If one or more triggers,
constraints, or indexes exist on the table, however, it is recommended that you
disable these objects if the database server allows such SQL operations. For
example, with IBM Informix, you can issue one of the following SQL statements:

o SET INDEX ... DISABLED
o0 SET CONSTRAINT ... DISABLED
o SET TRIGGER ... DISABLED

Usage:

The LOAD statement must include a pseudo-INSERT statement (either directly or as text
in a variable) to specify where to store the data. LOAD appends the new rows to the
specified table, synonym, or view, but does not overwrite existing data. It cannot add a
row that has the same key as an existing row.

Warning: The DELIMITER cannot be backslash or any hexadecimal digit (0-9, A-F,
a-f).

The variable or string following the LOAD FROM keywords must specify the name of a file
of ASCII characters (or characters that are valid for the client locale) that represent the
data values that are to be inserted. How data values in this input file should be
represented by a character string depends on the SQL data type of the receiving column
in table.

Data Type Input Format

CHAR, Values can have more characters than the declared
¥é§$HAR’ maximum length of the column, but any extra characters are

ignored. A backslash (\) is required before any literal
backslash or any literal delimiter character, and before any
NEWLINE character anywhere in character value. Blank
values can be represented as one or more blank characters
between delimiters, but leading blanks must not precede

474

SQL Management

other CHAR, VARCHAR, or TEXT values.

DATE In the default locale, values must be in month/day/year
format unless another format is specified by DBDATE
environment variable. You must represent the month as a 2-
digit number. You can use a 2-digit number for the year if
you are satisfied with the DBCENTURY setting. Values must
be actual dates; for example, February 30 is invalid.

DATETIME DATETIME values must be in the format:
year-month-day hour:minute:second.fraction
or a contiguous subset, without the DATETIME keyword or
qualifiers. Time units outside the declared column precision
can be omitted. The year must be a four-digit number; all
other time units (except fraction) require two digits.

INTERVAL INTERVAL values must be formatted:

year-month
or else

day hour:minute:second.fraction
or a contiguous subset thereof, without the INTERVAL
keyword or qualifiers. Time units outside the declared
column precision can be omitted. All time units (except year
and fraction) require two digits.

MONEY Values can include currency symbols, but these are not
required.

BYTE Values must be ASCII-hexadecimals; no leading or trailing
blanks.

SERIAL Values can be represented as 0 to tell the database server

to supply a new SERIAL value. You can specify a literal
integer greater than zero, but if the column has a unique
index, an error results if this number duplicates an existing
value.

Each set of data values in filename that represents a new row is called an input record.
The NEWLINE character must terminate each input record in filename. Specify only
values that the language can convert to the data type of the database column. For
database columns of character data types, inserted values are truncated from the right if
they exceed the declared length of the column.

NULL values of any data type must be represented by consecutive delimiters in the input
file; you cannot include anything between the delimiter symbols.

Each input record must contain the same number of delimited data values. If the INSERT
clause has no list of columns, the sequence of values in each input record must match
the columns of table in number and order. Each value must have the literal format of the
column data type, or of a compatible data type.

A file created by the UNLOAD statement can be used as input for the LOAD statement if
its values are compatible with the schema of table.

475

Genero Business Development Language

The statement expects incoming data in the format specified by environment variables
like DBFORMAT, DBMONEY, DBDATE, GL_DATE, and GL_DATETIME. The
precedence of these format specifications is consistent with forms and reports. If there is
an inconsistency, an error is reported and the LOAD is cancelled.

If LOAD is executed within a transaction, the inserted rows are locked, and they remain
locked until the COMMIT WORK or ROLLBACK WORK statement terminates the
transaction. If no other user is accessing the table, you can avoid locking limits and
reduce locking overhead by locking the table with the LOCK TABLE statement after the
transaction begins. This exclusive table lock is released when the transaction
terminates. Consult the documentation for your database server about the limit on the
number of locks available during a single transaction.

If the current database has no transaction log, a failing LOAD statement cannot remove
any rows that were loaded before the failure occurred. You must manually remove the
already loaded records from either the load file or from the receiving table, repair the
erroneous records, and rerun LOAD.

Regarding transaction, you can take one of the following actions when the database has
a transaction log:

¢ Run LOAD as a singleton transaction, so that any error causes the entire LOAD
statement to be automatically rolled back.

e Run LOAD within an explicit transaction with BEGIN WORK / COMMIT WORK, so
that a data error merely stops the LOAD statement in place with the transaction
still open.

Example:

01 MAIN

02 DATABASE stores

03 BEGIN WORK

04 DELETE FROM items

05 LOAD FROM "itemsOl.unl'™ INSERT INTO items
06 LOAD FROM "itemsO2.unl™ INSERT INTO items
07 COMMIT WORK

08 END MAIN

UNLOAD

Purpose:
The UNLOAD instruction copies data from a current database to a file.

Syntax:

UNLOAD TO filename [DELIMITER delimiter]
i

476

SQL Management

select-statement

select-string

hs
Notes:

1. filename is the name of the file the data is written to.

2. delimiter is the character used as the value delimiter. If this clause is not
specified, the delimiter is defined by the DBDELIMITER environment variable. If
this variable is not set, the default is a pipe.

3. select-statement is any kind of Static SELECT statement supported by the
language.

4. select-string is a program variable or a string literal containing the SELECT
statement to produce the rows. This allows you to create the SELECT statement
at runtime.

Warnings:

1. You cannot use the PREPARE statement to preprocess an UNLOAD statement.

2. When using a select-string, do not attempt to substitute question marks (?) in
place of host variables to make the SELECT statement dynamic, because this
usage has binding problems.

3. Atthis time, data type description of the output file fields is implicit; in order to
create the fetch buffers to hold the column values, the UNLOAD instruction uses
the current database connection to get the column data types of the generated
result set. Those data types depend on the type of database server. For
example, IBM Informix INTEGER columns are 4-bytes integer values, while
Oracle INTEGER data type is actually a NUMBER value. Therefore, you should
take care when using this instruction; if your application connects to different
kinds of database servers, you may get data conversion errors.

Usage:

The UNLOAD statement must include a SELECT statement (directly, or in a variable) to
specify what rows to copy into filename. UNLOAD does not delete the copied data.

Warning: The DELIMITER cannot be backslash or any hexadecimal digit (0-9, A-F,
a-f).

The filename identifies an output file in which to store the rows retrieved from the
database by the SELECT statement. In the default (U.S. English) locale, this file contains
only ASCII characters. (In other locales, output from UNLOAD can contain characters from
the code-set of the locale.)

A set of values in output representing a row from the database is called an output
record. A NEWLINE character (ASCII 10) terminates each output record.

477

Genero Business Development Language

The UNLOAD statement represents each value in the output file as a string of ASCII
characters, according to the declared data type of the database column:

Data Type

CHAR,
VARCHAR,
TEXT

DECIMAL,
FLOAT,
INTEGER,
MONEY,

SMALLFLOAT,

SMALLINT
DATE

DATETIME

INTERVAL

BYTE

Output Format

Trailing blanks are dropped from CHAR and TEXT (but not
from VARCHAR) values. A backslash (\) is inserted before
any literal backslash or delimiter character and before a
NEWLINE character in a character value.

Values are written as literals with no leading blanks. MONEY
values are represented with no leading currency symbol.
Zero values are represented as 0 for INTEGER or
SMALLINT columns, and as 0.00 for FLOAT,
SMALLFLOAT, DECIMAL, and MONEY columns.

Values are written in the format month/day/year unless
some other format is specified by the DBDATE environment
variable.

DATETIME values are formatted

year-month-day hour:minute:second.fraction
or a contiguous subset, without DATETIME keyword or
qualifiers. Time units outside the declared precision of the
database column are omitted.

INTERVAL values are formatted

year-month
or else as

day hour:minute:second.fraction
or a contiguous subset, without INTERVAL keyword or
qualifiers. Time units outside the declared precision of the
database column are omitted.

BYTE Values are written in ASCII hexadecimal form, without
any added blank or NEWLINE characters. The logical record
length of an output file that contains BYTE values can be
very long, and thus might be very difficult to print or to edit.

NULL values of any data type are represented by consecutive delimiters in the output
file, without any characters between the delimiter symbols.

The backslash symbol (\) serves as an escape character in the output file to indicate
that the next character in a data value is a literal. The UNLOAD statement automatically
inserts a preceding backslash to prevent literal characters from being interpreted as
special characters in the following contexts:

e The backslash character appears anywhere in the value.
e The delimiter character appears anywhere in the value.
¢ The NEWLINE character appears anywhere in a value.

478

SQL Management

Example:

01 MAIN

02 DEFINE var INTEGER

03 DATABASE stores

04 LET var = 123

05 UNLOAD TO "items.unl' SELECT * FROM items WHERE item_num > var
06 END MAIN

479

Genero Business Development Language

SQL Programming
Summary:

e 1. Programming
o 1.1 Database utility library
1.2 Implicit database connection
1.3 Managing transaction commands
1.4 Executing stored procedures
1.5 Cursors and Connections
o 1.6 SQL Error identification
e 2. Performance
o 2.1 Using dynamic SQL
o 2.2 Using transactions
o 2.3 Avoiding long transactions
o 2.4 Declaring prepared statements
o 2.5 Saving SQL resources
e 3. Portability
o 3.1 Database entities
3.2 Database users and security
3.3 Database creation statements
3.4 Data definition statements
3.5 Using portable data types
3.6 CHAR and VARCHAR types
3.7 Concurrent data access
3.8 The SQLCA register
3.9 Optimistic locking
3.10 Auto-incremented columns (SERIALS)
3.11 Informix SQL ANSI mode
3.12 Positioned Updates/Deletes
3.13 WITH HOLD and FOR UPDATE
3.14 String literals in SQL statements
3.15 Date and time literals in SQL statements
3.16 Naming database objects
3.17 Temporary tables
3.18 Outer joins
3.19 Sub-string expressions
3.20 Using ROWIDs
3.21 MATCHES operator
3.22 GROUP BY clause
3.23 LENGTHY() function
3.24 SQL Interruption

O 00O

O 0000000000000 0D0O0OO0OO0OO0OO0OO0OOo

See also: Connections, Transactions, Static SQL, Dynamic SQL, Result Sets, SQL
Errors, Programs.

480

SQL Management

1. Programming

1,1 Database utility library

The BDL library "fgldbutl.4gl" provides several utility functions. For example, this library
implements a function to get the type of the database engine at runtime. You will find this
library in the FGLDIR/src directory. See the source file for more details.

1.2 Implicit database connection

In BDL, the DATABASE statement can be used in two distinct ways, depending on the
context of the statement within its source module :

e To specify a default database : Typically used in a "GLOBALS" module, to define
variables with the LIKE clause, but it is also used for the INITIALIZE and
VALIDATE statements. Using the DATABASE statement in this way results in
that database being opened automatically at run time.

e To specify a current database : In MAIN or in a FUNCTION, used to connect to a
database. A variable can be used in this context (DATABASE varname).

A default database is almost always used, because many BDL applications contain
DEFINE ... LIKE statements. A problem occurs when the production database name
differs from the development database name, because the default database
specification will result in an automatic connection (just after MAIN):

01 DATABASE stock dev

02 DEFINE

03 p_cust RECORD LIKE customer.*
04 MAIN

05 DEFINE dbname CHAR(30)

06 LET dbname = "stockl"

07 DATABASE dbname

08 END MAIN

In order to avoid the implicit connection, you can use the SCHEMA instruction instead of
DATABASE:

01 SCHEMA stock_dev

02 DEFINE

03 p_cust RECORD LIKE customer.*
04 MAIN

05 DEFINE dbname CHAR(30)

06 LET dbname = "stockl"

07 DATABASE dbname

08 END MAIN

481

Genero Business Development Language

This instruction will define the database schema for compilation only, and will not make
an implicit connection at runtime.

1.3 Managing transaction commands

A BDL program can become very complex if a lot of nested functions do SQL
processing. When using a database supporting transactions, you must sometimes
execute all SQL statements in the same transaction block. This can be done easily by
centralizing transaction control commands in wrapper functions.

The fgldbutl.4gl library contains special functions to manage the beginning and the end
of a transaction with an internal counter, in order to implement nested function calls
inside a unique transaction.

Example:

01 MAIN

02 IF a() <> 0 THEN
03 ERROR ™

04 END IF

05 IF b() <> 0 THEN
06 ERROR ™. ._."
07 END IF

08 END MAIN

09

10 FUNCTION aQ

11 DEFINE s INTEGER

12 LET s = db_start_transaction()

13 UPDATE ...

14 LET s = SQLCA.SQLCODE

15 IF s = 0 THEN

16 LET s = b()

17 END IF

18 LET s = db_finish_transaction((s==0))
19 RETURN s

20 END FUNCTION

21

22 FUNCTION bQO

23 DEFINE s INTEGER

24 LET s db_start_transaction()

25 UPDATE ...

26 LET s = SQLCA.SQLCODE

27 LET s = db_Ffinish_transaction((s==0))
28 RETURN s

29 END FUNCTION

In this example, you see in the MAIN block that both functions a() and b() can be called
separately. However, the transaction SQL commands will be used only if needed: When
function a() is called, it starts the transaction, then calls b(), which does not start the
transaction since it was already started by a(). When function b() is called directly, it
starts the transaction.

482

SQL Management

The function db_finish_transaction() is called with the expression (s==0), which is
evaluated before the call. This allows you to write in one line the equivalent of the
following IF statement:

01 IF s==0 THEN

02 LET s = db_finish_transaction(l)
03 ELSE

04 LET s = db_finish_transaction(0)
05 END IF

1.4 Executing stored procedures
Specifying output parameters

Beginning with Genero version 2.00, it is how possible to specify OUTPUT parameters
to get values from stored procedures. While this new feature is generic, stored
procedures execution needs to be addressed specifically according to the database
type. There are different ways to execute a stored procedure. This section describes
how to execute stored procedures on the supported database engines.

Tip: In order to write reusable code, you should encapsulate each stored procedure
execution in a program function performing database-specific SQL based on a global
database type variable. The program function would just take the input parameters and
return the output parameters of the stored procedure, hiding database-specific execution
steps from the caller.

Stored procedures returning a result set

With some database servers it is possible to execute stored procedures that produce a
result set, and fetch the rows as normal SELECT statements, by using DECLARE, OPEN,
FETCH. Some databases can return multiple result sets and cursor handles declared in a
stored procedure as output parameters, but Genero supports only unique and
anonymous result sets. See below for examples.

Calling stored procedures with supported databases

Stored procedure call with Informix
Stored procedure call with Genero DB
Stored procedure call with Oracle
Stored procedure call with DB2 UDB
Stored procedure call with SQL Server
Stored procedure call with PostgreSQL
Stored procedure call with MySQL

483

Genero Business Development Language

Stored procedure call with Informix

Informix distinguishes stored procedures from stored functions. Both must be written in
the Informix stored procedure language called SPL.

Stored functions returning values

There is no output parameter concept for typical SPL stored procedures or functions. If
you want to return values from a database routine, you must use a stored function with a
RETURNING clause. Informix stored procedures do not return values.

To execute a stored function with Informix, you must use the EXECUTE FUNCTION SQL
instruction:

14 PREPARE stmt FROM "execute function procl(?)"

In order to retrieve returning values into program variables, you must use an INTO clause
in the EXECUTE instruction.

The following example shows how to call a stored function with Informix:

01 MAIN

02 DEFINE n INTEGER

03 DEFINE d DECIMAL(6,2)

04 DEFINE c VARCHAR(200)

05 DATABASE testl

06 EXECUTE IMMEDIATE "create function procl(pl integer)"
07 Il " returning decimal(6,2), varchar(200);"

08 11 define p2 decimal(6,2);"

09 11 define p3 varchar(200);"

10 1 let p2 = pl + 0.23;"

11 I let p3 = "Value = " || pl1;"
12 Il © return p2, p3;"

13 Il " end function;"

14 PREPARE stmt FROM "execute function procl(?)"

15 LET n = 111

16 EXECUTE stmt USING n INTO d, c
17 DISPLAY d

18 DISPLAY c

19 END MAIN

Stored procedure call with Genero DB

Genero DB implements stored procedures as a group of statements that you can call by
name. A subset of RDBMS-specific languages are supported by Genero DB; you can
write Genero DB stored procedures in Informix SPL, Oracle PL/SQL or SQL Server
Transact-SQL.

484

SQL Management

Stored procedures with output parameters

Genero DB stored procedures must be called with the input and output parameters
specification in the USING clause of the EXECUTE, OPEN or FOREACH instruction. As
in normal dynamic SQL, parameters must correspond by position, and the

IN/OUT/ INOUT options must match the parameter definition of the stored procedure.

To execute the stored procedure, you must use the CALL SQL instruction:

11 PREPARE stmt FROM *call procl(?,?,?)"

Here is a complete example creating and calling a stored procedure:

01 MAIN

02 DEFINE n INTEGER

03 DEFINE d DECIMAL(6,2)

04 DEFINE ¢ VARCHAR(200)

05 DATABASE testl

06 EXECUTE IMMEDIATE 'create procedure procl(pl in int, p2 out
number(6,2), p3 in out varchar2)"

07 Il ™ is begin”

08 Il * p2 :=pl + 0.23;"

09 Il * p3 = "Value = * || p1;"
10 Il "end;™

11 PREPARE stmt FROM "call procl(?,?,?)"

12 LET n = 111

13 EXECUTE stmt USING n IN, d OUT, c INOUT
14 DISPLAY d

15 DISPLAY c

16 END MAIN

Stored procedures producing aresult set

With Genero DB, you can execute stored procedures returning a result set. To do so,
you must declare a cursor and fetch the rows:

01 MAIN

02 DEFINE i, n INTEGER

03 DEFINE d DECIMAL(6,2)

04 DEFINE c VARCHAR(200)

05 DATABASE testl

06 CREATE TABLE tabl (cl INTEGER, c2 DECIMAL(6,2), c3 VARCHAR(200)

)

07 INSERT INTO tabl VALUES (1, 123.45, "aaaaaa”)

08 INSERT INTO tabl VALUES (2, 123.66, "bbbbbbbbb®)

09 INSERT INTO tabl VALUES (3, 444.77, "cccccc”)

10 EXECUTE IMMEDIATE "create procedure proc2 @key integer"
11 Il " as begin”

12 I select * from tabl where cl > @key"
13 Il * end”

14 DECLARE curs CURSOR FROM *‘call proc2(?)"
15 LET 1 =1
16 FOREACH curs USING i INTO n, d, c

485

Genero Business Development Language

17 DISPLAY n, d, c
18 END FOREACH
19 END MAIN

Stored procedures with output parameters and result set

It is possible to execute Genero DB stored procedures with output parameters and a
result set. The output parameter values are available after the OPEN cursor instruction:

01 OPEN curs USING n IN, d OUT, c INOUT
02 FETCH curs INTO rec.*

Stored procedure call with Oracle

Oracle supports stored procedures and stored functions as a group of PL/SQL
statements that you can call by name. Oracle stored functions are very similar to stored
procedures, except that a function returns a value to the environment in which it is
called. Functions can be used in SQL expressions.

Stored procedures with output parameters

Oracle stored procedures or stored functions must be called with the input and output
parameters specification in the USING clause of the EXECUTE, OPEN or FOREACH
instruction. As in normal dynamic SQL, parameters must correspond by position, and the
IN/OUT/INOUT options must match the parameter definition of the stored procedure.

To execute the stored procedure, you must include the procedure in an anonymous
PL/SQL block with BEGIN and END keywords:

11 PREPARE stmt FROM *begin procl(?,?,?); end;"

Remark: Oracle stored procedures do not specify the size of number and character
parameters. The size of output values (especially character strings) are defined by the
calling context (i.e. the data type of the variable used when calling the procedure). When
you pass a CHAR(10) to the procedure, the returning value will be filled with blanks to
reach a size of 10 bytes.

Warning: For technical reasons, the Oracle driver uses dynamic binding with
OCIBindDynamic(). The Oracle Call Interface does not support stored procedures
parameters with the CHAR data type when using dynamic binding. You must use
VARCHARZ2 instead of CHAR to define character string parameters for stored
procedures.

Here is a complete example creating and calling a stored procedure with output
parameters:

01 MAIN
02 DEFINE n INTEGER

486

SQL Management

03 DEFINE d DECIMAL(6,2)

04 DEFINE c VARCHAR(200)

05 DATABASE testl

06 EXECUTE IMMEDIATE "create procedure procl(pl in int, p2 in out
number, p3 in out varchar2)"

07 Il " is begin”

08 Il ™ p2 :=pl +0.23;"

09 Il " p3 = "vValue = * || to_char(pl);"
10 Il "end;"

11 PREPARE stmt FROM "begin procl(?,?,?); end;"
12 LET n = 111

13 EXECUTE stmt USING n IN, d INOUT, c INOUT

14 DISPLAY d

15 DISPLAY c

16 END MAIN

Stored functions with a return value

To execute the stored function returning a value, you must include the function in an
anonymous PL/SQL block with BEGIN and END keywords, and use an assignment
expression to specify the place holder for the returning value:

11 PREPARE stmt FROM *begin ? := funcl(?,?,?); end;"

Stored procedures producing a result set

Oracle supports result set generation from stored procedures with the concept of cursor
variables (REF CURSOR).

Warning: Genero does not support cursor references produced by Oracle stored
procedures or functions.

Stored procedure call with IBM DB2

IBM DB2 implements stored procedures as a saved collection of SQL statements, which
can accept and return user-supplied parameters. IBM DB2 stored procedures can also
produce one or more result sets. Beside stored procedures, IBM DB2 supports user
defined functions, typically used to define scalar functions returning a simple value which
can be part of SQL expressions.

Stored procedures with output parameters

IBM DB2 stored procedures must be called with the input and output parameters
specification in the USING clause of the EXECUTE, OPEN or FOREACH instruction. As
in normal dynamic SQL, parameters must correspond by position and the IN/OUT/INOUT
options must match the parameter definition of the stored procedure.

To execute the stored procedure, you must use the CALL SQL instruction:

487

Genero Business Development Language

11 PREPARE stmt FROM "call procl(?,?,?)"

Here is a complete example creating and calling a stored procedure with output
parameters:

01 MAIN

02 DEFINE n INTEGER

03 DEFINE d DECIMAL(6,2)

04 DEFINE c VARCHAR(200)

05 DATABASE testl

06 EXECUTE IMMEDIATE 'create procedure procl(in pl int, out p2
decimal (6,2), inout p3 varchar(20))"

07 Il " language sql begin"

08 Il © set p2 = pl + 0.23;"

09 Il * set p3 = "vValue = " || char(pl);"
10 Il “end"

11 PREPARE stmt FROM "call procl(?,?,?)"

12 LET n = 111

13 EXECUTE stmt USING n IN, d OUT, c INOUT
14 DISPLAY d

15 DISPLAY c

16 END MAIN

Stored procedures producing a result set

With DB2 UDB, you can execute stored procedures returning a result set. To do so, you
must declare a cursor and fetch the rows:

01 MAIN

02 DEFINE i, n INTEGER

03 DEFINE d DECIMAL(6,2)

04 DEFINE c VARCHAR(200)

05 DATABASE testl

06 CREATE TABLE tabl (cl INTEGER, c2 DECIMAL(6,2), c3 VARCHAR(200)

)

07 INSERT INTO tabl VALUES (1, 123.45, "aaaaaa”)

08 INSERT INTO tabl VALUES (2, 123.66, "bbbbbbbbb*")

09 INSERT INTO tabl VALUES (3, 444.77, "cccccc”)

10 EXECUTE IMMEDIATE "create procedure proc2(in key integer)"
11 Il " result sets 1"

12 Il © language sql*

13 Il ™ begin”

14 Il * declare cl1 cursor with return for"

15 - select * from tabl where cl > key;"
16 Il * open ci;"

17 Il " end”

18 DECLARE curs CURSOR FROM *‘call proc2(?)"

19 LET i1 =1
20 FOREACH curs USING 1 INTO n, d, c

21 DISPLAY n, d, c
22 END FOREACH
23 END MAIN

488

SQL Management

Stored procedures with output parameters and result set

It is possible to execute DB2 UDB stored procedures with output parameters and a
result set. The output parameter values are available after the OPEN cursor instruction:

01 OPEN curs USING n IN, d OUT, c INOUT
02 FETCH curs INTO rec.*

Stored procedure call with Microsoft SQL Server

SQL Server implements stored procedures, which are a saved collection of Transact-
SQL statements that can take and return user-supplied parameters. SQL Server stored
procedures can also produce one or more result sets.

Stored procedures with output parameters

SQL Server stored procedures must be called with the input and output parameters
specification in the USING clause of the EXECUTE, OPEN or FOREACH instruction. As
in normal dynamic SQL, parameters must correspond by position and the IN/OUT/INOUT
options must match the parameter definition of the stored procedure.

To execute the stored procedure, you must use an ODBC cal I escape sequence:

PREPARE stmt FROM *"{ call procl(?,?,?) }"

Here is a complete example creating and calling a stored procedure with output
parameters:

01 MAIN

02 DEFINE n INTEGER

03 DEFINE d DECIMAL(6,2)

04 DEFINE c VARCHAR(200)

05 DATABASE testl

06 EXECUTE IMMEDIATE "create procedure procl @vl integer, @v2
decimal (6,2) output, @v3 varchar(20) output™

07 Il " as begin"

08 Il * set @v2 = @vl + 0.23"

09 Il * set @v3 = "Value = " || cast(@vl as varchar)”
10 Il "end"

11 PREPARE stmt FROM "{ call procl(?,?,?) }"

12 LET n = 111

13 EXECUTE stmt USING n IN, d OUT, c OUT
14 DISPLAY d

15 DISPLAY c

16 END MAIN

489

Genero Business Development Language

Stored procedures producing a result set

With SQL Server, you can execute stored procedures returning a result set. To do so,
you must declare a cursor and fetch the rows.

Warning: The following example uses a stored procedure with a simple SELECT
statement. If the stored procedure contains additional Transat-SQL statements
such as SET or IF (which is the case in complex stored procedures), SQL Server
generates multiple result sets. By default the Genero MSV driver uses "Server
Cursors" to support multiple active SQL statements. But SQL Server stored
procedures generating multiple result sets cannot be used with Server Cursors:
The Server Cursor is silently converted to a "Default Result Set" cursor by the
ODBC driver. Since Default Result Set cursors do not support multiple active
statements, you cannot use another SQL statement while processing the results
of such stored procedure. You must CLOSE the cursor created for the stored
procedure before continuing with other SQL statements.

01 MAIN

02 DEFINE i, n INTEGER

03 DEFINE d DECIMAL(6,2)

04 DEFINE ¢ VARCHAR(200)

05 DATABASE testl

06 CREATE TABLE tabl (cl INTEGER, c2 DECIMAL(6,2), c3 VARCHAR(200)

)

07 INSERT INTO tabl VALUES (1, 123.45, “aaaaaa”)

08 INSERT INTO tabl VALUES (2, 123.66, “bbbbbbbbb*®)

09 INSERT INTO tabl VALUES (3, 444.77, "cccccc”)

10 EXECUTE IMMEDIATE "create procedure proc2 @key integer™
11 Il * as select * from tabl where cl > @key"

12 DECLARE curs CURSOR FROM *{ call proc2(?) }"
13 LET 1 =1
14 FOREACH curs USING 1 INTO n, d, c

15 DISPLAY n, d, c
16 END FOREACH
17 END MAIN

Stored procedures returning a cursor as output parameter

SQL Server supports "Cursor Output Parameters": A stored procedure can declare/open
a cursor and return a reference of the cursor to the caller.

Warning: SQL Server stored procedures returning a cursor as output parameter
are not supported. There are two reasons for this: The Genero language does not
have a data type to store a server cursor reference, and the underlying ODBC
driver does not support this anyway.

Stored procedures with return code
SQL Server stored procedures can return integer values. To get the return value of a

stored procedure, you must use an assignment expression in the ODBC call escape
sequence:

490

SQL Management

01 PREPARE stmt FROM "{ ? = call proc3(?,?,?) }"
Stored procedures with output parameters, return code and result set

With SQL Server stored procedures, you call stored procedures with a return code,
output parameters and producing a result set.

Warning: Return codes and output parameters are the last items returned to the
application by SQL Server; they are not returned until the last row of the result set
has been fetched, after the SQLMoreResults() ODBC function is called. If output
parameters are used, the SQL Server driver executes a SQLMoreResult() call when
closing the cursor instead of SQLCloseCursor(), to get the return code and output
parameter values from SQL Server.

01 MAIN

02 DEFINE r, i, n INTEGER

03 DEFINE d DECIMAL(6,2)

04 DEFINE c VARCHAR(200)

05 DATABASE testl

06 CREATE TABLE tabl (cl INTEGER, c2 DECIMAL(6,2), c3 VARCHAR(200)

)

07 INSERT INTO tabl VALUES (1, 123.45, “aaaaaa”)
08 INSERT INTO tabl VALUES (2, 123.66, "bbbbbbbbb®)
09 INSERT INTO tabl VALUES (3, 444.77, "cccccc”)

10 EXECUTE IMMEDIATE "create procedure proc3 @key integer output"
11 Il " as begin”

12 - set @Qkey = @key - 1"

13 - select * from tabl where cl > @key"
14 - return (@key * 3)"

15 Il " end”

16 DECLARE curs CURSOR FROM "{ ? = call proc3(?) }"

17 LET 1 =1
18 OPEN curs USING r INOUT, i1 INOUT
19 DISPLAY r, i

20 FETCH curs INTO n, d, c

21 FETCH curs INTO n, d, c

22 FETCH curs INTO n, d, c

23 DISPLAY r, 1

24 CLOSE curs

25 DISPLAY r, 1 -- Now the returned values are available

26 END MAIN

Warning: Return code and output parameter variables must be defined as INOUT in
the OPEN instruction.

Stored procedure call with PostgreSQL

PostgreSQL implements stored functions that can return values. If the function returns
more that one value, you must specify the returning values as function parameters with
the OUT keyword. If the function returns a unique value, you can use the RETURNS clause.

491

Genero Business Development Language

Warning: Pay attention to the function signature; PostgreSQL allows function
overloading. For example, func(int) and func(char) are two different functions. To
drop a function, you must specify the parameter type to identify the function
signature properly.

Stored functions with output parameters

To execute a stored function with PostgreSQL, you must use SELECT * FROM
function, as shown in the next line:

14 PREPARE stmt FROM *'select * from procl(?)"

In order to retrieve returning values into program variables, you must use an INTO clause
in the EXECUTE instruction.

The following example shows how to call a stored function with PostgreSQL.:

01 MAIN

02 DEFINE n INTEGER

03 DEFINE d DECIMAL(6,2)

04 DEFINE c VARCHAR(200)

05 DATABASE testl

06 EXECUTE IMMEDIATE "create function procl(pl integer, out p2
numeric(6,2), out p3 varchar(200))"

08 [l ™ as $$*

09 Il ©* begin”

10 [. p2 := pl + 0.23;"

11 - p3 := "Value = " || cast(pl as text);"
12 Il " end;”

13 Il ™ $$ language plpgsql™

14 PREPARE stmt FROM *select * from procl(?)"

15 LET n = 111

16 EXECUTE stmt USING n INTO d, c
17 DISPLAY d

18 DISPLAY c

19 END MAIN

Stored functions producing a result set

With PostgreSQL, you can execute stored procedures returning a result set. To do so,
you must declare a cursor and fetch the rows:

01 MAIN

02 DEFINE i, n INTEGER

03 DEFINE d DECIMAL(6,2)

04 DEFINE c VARCHAR(200)

05 DATABASE testl

06 CREATE TABLE tabl (cl INTEGER, c2 DECIMAL(6,2), c3 VARCHAR(200)

)

07 INSERT INTO tabl VALUES (1, 123.45, “aaaaaa”)
08 INSERT INTO tabl VALUES (2, 123.66, "bbbbbbbbb*)
09 INSERT INTO tabl VALUES (3, 444.77, "cccccc™)

10 EXECUTE IMMEDIATE "create function proc2(integer)”

492

SQL Management

11 Il " returns setof tabl"

12 Il " as $$"

13 Il ™ select * from tabl where cl1 > $1;"
14 Il " $$ language sqgl*

15 DECLARE curs CURSOR FROM "'select * from proc2(?)"

16 LET 1 =1
17 FOREACH curs USING 1 INTO n, d, c

18 DISPLAY n, d, c
19 END FOREACH
20 END MAIN

Stored functions with output parameters and result set

Warning: With PostgreSQL you cannot return output parameters and a result set
from the same stored procedure; both use the same technique to return values to
the client, in the context of result columns to be fetched.

Stored procedure call with MySQL

MySQL implements stored procedures and stored functions as a collection of SQL
statements that can take and return user-supplied parameters. Functions are very
similar to procedures, except that they return a scalar value and can be used in SQL
expressions.

Stored procedures with output parameters

Warning: Since MySQL C API (version 5.0) does not support an output parameter
specification, the IN/ OUT / INOUT technique cannot be used.

In order to return values from a MySQL stored procedure or stored function, you must
use SQL variables. There are three steps to execute the procedure or function:

1. With the SET SQL statement, create and assign an SQL variables for each
parameter.

2. CALL the stored procedure or stored function with the created SQL variables.

3. Perform a SELECT statement to return the SQL variables to the application.

In order to retrieve returning values into program variables, you must use an INTO clause
in the EXECUTE instruction.

The following example shows how to call a stored procedure with output parameters:
Warning: MySQL version 5.0 does not allow you to prepare the CREATE
PROCEDURE statement; you may need to execute this statement from the mysq|

command line tool.

Warning: MySQL version 5.0 cannot execute "SELECT @variable" with server-side
cursors. Since the Genero MySQL driver uses server-side cursors to support

493

Genero Business Development Language

multiple active result sets, it is not possible to execute the SELECT statement to
return output parameter values.

01 MAIN

02 DEFINE n INTEGER

03 DEFINE d DECIMAL(6,2)

04 DEFINE c VARCHAR(200)

05 DATABASE testl

06 EXECUTE IMMEDIATE "create procedure procl(pl integer, out p2
numeric(6,2), out p3 varchar(200))"

07 Il ™ no sgl begin*

08 I set p2 = pl + 0.23;"

09 - set p3 = concat("Vvalue = ", pl);"
10 Il end;"

11 LET n = 111

12 EXECUTE IMMEDIATE "'set @pl = ', n

13 EXECUTE IMMEDIATE '"'set @p2 = NULL"

14 EXECUTE IMMEDIATE "set @p3 = NULL"

15 EXECUTE IMMEDIATE “call procl(@pl, @p2, @p3)"
16 PREPARE stmt FROM "'select @p2, @p3"

17 EXECUTE stmt INTO d, c

18 DISPLAY d

19 DISPLAY ¢

20 END MAIN

Stored functions returning values

The following example shows how to retrieve the return value of a stored function with
MySQL

Warning: MySQL version 5.0 does not allow you to prepare the CREATE
FUNCTION statement; you may need to execute this statement from the mysql
command line tool.

01 MAIN

02 DEFINE n INTEGER

03 DEFINE ¢ VARCHAR(200)

04 DATABASE testl

05 EXECUTE IMMEDIATE 'create function funcl(pl integer)"

06 Il " no sql begin"
07 - return concat("Value = *, pl1);"
08 Il * end;”

09 PREPARE stmt FROM "select funcl(?)"
10 LET n = 111

11 EXECUTE stmt USING n INTO c

12 DISPLAY c

13 END MAIN

Stored procedures producing a result set

Warning: The MySQL version 5.0 stored procedures and stored functions cannot
return a result set.

494

SQL Management

1.5 Cursors and Connections

With Genero you can connect to several database sources from the same program by
using the CONNECT instruction. When connected, you can DECLARE cursors or
PREPARE statements, which can be used in parallel as long as you follow the rules.
This section describes how to use SQL cursors and SQL statements in a multiple-
connection program.

For convenience, the term Prepared SQL Statement and Declared Cursor will be
grouped as SQL handle; from an internal point of view, both concepts merge into a
unique SQL Handle, an object provided to manipulate SQL statements.

When you DECLARE a cursor or when you PREPARE a statement, you actually create an
SQL Handle; the runtime system allocates resources for that SQL Handle before
sending the SQL text to the database server via the database driver.

The SQL Handle is created in the context of the current connection, and must be used in
that context, until it is freed or re-created with another DECLARE or PREPARE. If you try to
use an SQL Handle in a different connection context than the one for which it was
created, you will get a runtime error.

To change the current connection context, you must use the SET CONNECTION
instruction. To set a specific connection, you must identify it by a name. To identify a
connection, you typically use the AS clause of the CONNECT instruction. If you don't use
the AS clause, the connection gets a default name based on the data source name.
Since this might change as the database name changes, it is best to use an explicit
name with the AS clause.

This small program example illustrates the use of two cursors with two different
connections:

01 MAIN

02 CONNECT TO "db1'™ AS 'si1™

03 CONNECT TO *'db2' AS *'s2"

04 SET CONNECTION ''s1"

05 DECLARE c1 CURSOR FOR SELECT tabl.* FROM tabl
06 SET CONNECTION ''s2"

07 DECLARE c2 CURSOR FOR SELECT tabl.* FROM tabl
08 SET CONNECTION *s1"

09 OPEN c1

10 SET CONNECTION ''s2'"

11 OPEN c2

12 -

13 END MAIN

The DECLARE and PREPARE instructions are a type of creator instructions; if an SQL
Handle is re-created in a connection other than the original connection for which it was
created, old resources are freed and new resources are allocated in the current
connection context.

495

Genero Business Development Language

This allows you to re-execute the same cursor code in different connection contexts, as
in the following example:

01 MAIN

02 CONNECT TO *'dbl1' AS *'s1
03 CONNECT TO **db2' AS "'s2"
04 SET CONNECTION *'s1™

05 IF checkForOrders() > 0 ...
06 SET CONNECTION "'s2"

05 IF checkForOrders() > 0 ...
08 .

09 END MAIN

10

11 FUNCTION checkForOrders(d)

12 DEFINE d DATE, i INTEGER

13 DECLARE c1 CURSOR FOR SELECT COUNT(*) FROM orders WHERE ord_date
=d

14 OPEN cl1

15 FETCH cl1 INTO i

16 CLOSE c1

17 FREE c1

18 RETURN i

19 END FUNCTION

If the SQL handle was created in a different connection, the resources used in the old
connection context are freed automatically, and new SQL Handle resources are
allocated in the current connection context.

1.6 SQL Error identification

You can centralize SQL error identification in a BDL function:

01 CONSTANT SQLERR_FATAL = -1
02 CONSTANT SQLERR_LOCK = -2
03 CONSTANT SQLERR_CONN = -3

(constants must be defined in GLOBALS)

04 FUNCTION identifySqlError()

05 CASE

06 WHEN SQLCA.SQLCODE == -201 OR SQLCA.SQLERRD[2] == ...
07 RETURN SQLERR_FATAL

08 WHEN SQLCA.SQLCODE == -263 OR SQLCA.SQLERRD[2] == ...
09 RETURN SQLERR_LOCK

10 -

11 END CASE
12 END FUNCTION

496

SQL Management

The generic Informix error code is stored in
SQLCA.SQLCODE register.

The native Database Provider error code is stored in
SQLCA.SQLERRD[2]
register.

If really needed, this would also allow adding a database specific test.

2. Performance

2.1 Using Dynamic SQL

Although BDL allows you to write SQL statements directly in the program source as a
part of the language (Static SQL), it is strongly recommended that you use Dynamic
SQL instead when you are executing SQL statements within large program loops.
Dynamic SQL allows you to PREPARE the SQL statements once and EXECUTE N
times, improving performance.

To perform Static SQL statement execution, the database interface must use the basic
API functions provided by the database vendor. These are usually equivalent to the
PREPARE and EXECUTE instructions. So when you write a Static SQL statement in your
BDL program, it is actually converted to a PREPARE + EXECUTE.

For example, the following BDL code:

01 FOR n=1 TO 100
02 INSERT INTO tab VALUES (n, c)
03 END FOR

is actually equivalent to:

01 FOR n=1 TO 100

02 PREPARE s FROM "™INSERT INTO tab VALUES (?, ?)"
03 EXECUTE s USING n, c

04 END FOR

To improve the performance of the preceding code, use a PREPARE instruction before
the loop and put an EXECUTE instruction inside the loop:

01 PREPARE s FROM "™INSERT INTO tab VALUES (?, ?)"
02 FOR n=1 TO 100
03 EXECUTE s USING n, c

497

Genero Business Development Language

04 END FOR

2.2 Using transactions

When you use an ANSI compliant RDBMS like Oracle or DB2, the database interface
must perform a COMMIT after each statement execution. This generates unnecessary
database operations and can slow down big loops. To avoid this implicit COMMIT, you
can control the transaction with BEGIN WORK / COMMIT WORK around the code
containing a lot of SQL statement execution.

For example, the following loop will generate 2000 basic SQL operations (1000
INSERTS plus 1000 COMMITs):

01 PREPARE s FROM "INSERT INTO tab VALUES (?, ?)"

01 FOR n=1 TO 100

03 EXECUTE s USING n, c -- Generates implicit COMMIT
04 END FOR

You can improve performance if you put a transaction block around the loop:

01 PREPARE s FROM "INSERT INTO tab VALUES (?, ?)"

02 BEGIN WORK

03 FOR n=1 TO 100

04 EXECUTE s USING n, c -- In transaction -> no implicit