

©2008 Four J’s Development Tools, Inc. www.4js.com

Genero Business
Development Language

User Guide
Version 2.11

Copyright © 2008 by Four J’s Development Tools, Inc. All rights reserved. All information, content,
design, and code used in this documentation may not be reproduced or distributed by any printed,
electronic, or other means without prior written consent of Four J’s Development Tools, Inc.

Genero® is a registered trademark of Four J’s Development Tools, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks.

• IBM, AIX, DB2, DYNIX, Informix, Informix-4GL and Sequent are registered trademark of
IBM Corporation.

• Digital is a registered trademark of Compaq Corporation.

• HP and HP-UX are registered trademarks of Hewlett Packard Corporation.

• Intel is a registered trademark of Intel Corporation.

• Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

• Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in the
United States, other countries, or both.

• Oracle, 8i and 9i are registered trademarks of Oracle Corporation.

• Red Hat is a registered trademark of Red Hat, Inc.

• Sybase is a registered trademark of Sybase Inc.

• Sun, Sun Microsystems, Java, JavaScript™, and Solaris are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries.

• All SPARC trademarks are trademarks or registered trademarks of SPARC International,
Inc. in the United States and other countries.

• UNIX is a registered trademark of The Open Group.

All other trademarks referenced herein are the property of their respective owners.

Note: This documentation is for Genero 2.11. See the corresponding on-line documentation at the
Web site http://www.4js.com/online_documentation for the latest updates. Please contact your
nearest support center if you encounter problems or errors in the on-line documentation.

iii

Table Of Contents
General

Introduction: BDL Concepts ..1
Documentation Conventions...15
Language Features...18
The Dynamic User Interface ...24
Installation and Setup ...35
Tools and Components...48
Frequently Asked Questions...58
New Features of the Language...66
1.3x Migration Issues ..99
2.0x Migration Issues ..110
2.1x Migration Issues ..120

Language Basics

Data Types..123
Literals ..140
Operators ..144
Expressions ..174
Exceptions ..181
Variables ...188
Constants..199
Records...202
Arrays..204
User Types..210
Data Conversions ...212
Built-in Classes ...214

Applications

Compiling Programs ...219
Programs ..226
Database Schema Files..250
Globals..259
Flow Control..262
Functions ..276
Reports ...279
Localization ...316
Localized Strings...326

Library

Built-in Functions ..334
Utility Functions...371
Windows DDE Support ...385
XML Utilities ..396

Genero Business Development Language

iv

SQL Management

Database Connections..397
Database Transactions ...423
Static SQL Statements..430
Dynamic SQL Management..440
Database Result Set Processing (Cursor) ..447
SQL Positioned Updates...460
SQL Insert Cursors ...465
I/O SQL Instructions..473
SQL Programming ..480

User Interface

The Interaction Model ...525
Using Windows and Forms ...535
Action Defaults..549
Presentation Styles ...555
Form Specification Files..578
Form Specification File Attributes ...649
Form Rendering ..704
Menus ...717
Displaying Data to Forms..726
Record Input ...732
Array Display...749
Array Input ..763
Query By Example ..792
Multiple Dialogs...806
Prompt for Values ...875
Displaying Messages ..881
Toolbars ..885
Topmenus ...891
StartMenus..898
Canvas..903
Message Files...908
MDI Windows..911
Front End Functions..914
Front End Protocol ..919

Built-in Classes

The Application class ..927
The Channel class ..930
The StringBuffer class...939
The StringTokenizer class ..944
The TypeInfo class..947
The Interface class..949
The Window class...955
The Form class ...959

Table of Contents

v

The Dialog class ...965
The ComboBox class..980
The DomDocument class..987
The DomNode class ...990
The NodeList class ...997
The SaxAttributes class ..999
The SaxDocumentHandler class ..1002
The XmlReader class..1006
The XmlWriter class..1009

Miscellaneous

Environment Variables..1013
The FGLPROFILE configuration file ...1030
The Debugger ...1035
The Profiler ...1063
Optimization ..1067
The Preprocessor ...1073
File Extensions..1084
Error Messages...1085
General Terms used in this documentation ..1145

BDL Tutorial

Genero BDL Tutorial Summary...1147
Tutorial Chapters ..1148
Tutorial Chapter 1: Overview ...1151
Tutorial Chapter 2: Using BDL ..1156
Tutorial Chapter 3: Displaying Data (Windows/Forms)...1164
Tutorial Chapter 4: Query by Example..1177
Tutorial Chapter 5: Enhancing the Form...1197
Tutorial Chapter 6: Add/Update/Delete...1209
Tutorial Chapter 7: Array Display..1225
Tutorial Chapter 8: Array Input..1238
Tutorial Chapter 9: Reports...1251
Tutorial Chapter 10: Localization ..1263
Tutorial Chapter 11: Master/Detail ..1272
Tutorial Chapter 12: Changing the User Interface Dynamically............................1296

ODI Adaptation Guides

ODI Adaptation Guide For Genero db 3.6x, 3.8x..1313
ODI Adaptation Guide For DB2 UDB 7.x, 8.x, 9x ...1347
ODI Adaptation Guide For Oracle 8.x, 9.x, 10.x, 11.x...1388
ODI Adaptation Guide For SQL Server 2000, 2005, 2008....................................1435
ODI Adaptation Guide For PostgreSQL 8.0.2, 8.1.x, 8.2.x, 8.3.x1472
ODI Adaptation Guide For MySQL 4.1.x, 5.0.x, 5.1.x ...1498
ODI Adaptation Guide For Sybase ASA 8.x ...1519

Genero Business Development Language

vi

Standard Extensions

File Management Class ..1547
Mathematical functions Class ...1569

User Extensions

Implementing C-Extensions ..1577
Genero FESQLC...1644

1

Introduction: BDL Concepts
Summary:

• Overview
• The Language
• Forms
• User Interface
• Compiling a BDL Application
• Deploying a BDL Application
• Resources for Programmers

Overview
You typically use Genero to build an interactive database application, a program that
handles the interaction between a user and a database. The database schema that
organizes data into relational tables gives shape to one side of the program. The needs
of your user shape the other side. You write the program logic that bridges the gap
between them.

An important feature of Genero BDL is the ease with which you can design applications
that allow the user to access and modify data in a database. The Genero BDL language
contains a set of SQL statements to manipulate the database, and interactive
instructions that provide simple record input, read-only list handling, updateable list
handling, and query by example (to search the database) using forms to facilitate
interaction.

Genero BDL is compiled to p-code, which can be interpreted on different platforms by
the Dynamic Virtual Machine (the Runtime system).

Genero Business Development Language

2

Separation of Business Logic and User Interface

Genero separates business logic and the user interface to provide maximum flexibility:

• The business logic is written in text files (.4gl source code modules). High-level
interactive instructions let you write a form controller in a few lines of code.

• Forms for the user interface are designed in a simple-to-understand and simple-
to-read form definition syntax..

• Action views (buttons, menu items, toolbar icons) in the form definition can
trigger actions defined in the business logic.

• Compiling a form definition file translates it into XML. The XML-based
presentation layer ensures that user interface development is completely
separated from deployment.

• The user interface can be manipulated at runtime, as a tree of objects called the
Abstract User Interface (AUI).

Portability - write once, deploy anywhere

Genero provides the ability to support different kinds of display devices using the same
source code. One production release supports all major versions of Unix, Linux,
Windows NT/2000/XP and Mac OS X. The same application can be displayed with a
graphical device (GUI mode) as well as on a simple dumb terminal (TUI mode).

A single code stream can be written to support HTML, Java, Windows, X.11, WML,
MacIntosh OS X and ASCII interfaces simultaneously.

General

3

Reports

You can easily design and generate Reports. The output from a report can be formatted
so that the eye of the reader can easily pick out the important facts. Page headers and
footers, with page numbers, can be defined. Data can be grouped together, with group
totals and subtotals shown. The output from a report can be sent to the screen, to a
printer, to a file, or (through a pipe) to another program, and report output can even be
redirected to an SAX filter in order to write XML.

Internationalization

Genero BDL supports multi-byte character sets by using the POSIX standard functions
of the C library. Genero BDL uses BYTE-semantics to specify the length of a character
string (i.e. CHAR(10) means 10 bytes). You must make sure that the database client

Genero Business Development Language

4

locale matches the runtime system locale. For more details about internationalization
support, see Localization.

The Localized Strings feature allows you to customize your application for specific
subsets of your user population, whether it is for a particular language or a particular
business segment.

User Extensions

When the standard Genero built-in functions and classes are not sufficient, you can write
your own plug-ins by using the Dynamic C Extensions. This allows you to implement
specific function libraries in C, which can be called from the BDL modules. Typical User
Extensions interface with C libraries to drive specific devices, such as barcode scanners
or biometric identification devices.

The Language
Genero BDL is a high-level, fourth generation language with an open, readable syntax
that encourages good individual or group programming style. You write your program
logic in text files, or program source modules, which are compiled and linked into
programs that can be executed by the Runtime system. Programs are easily enhanced
and extended. This makes it easy for programmers to become productive quickly, no
matter what programming languages they know. See Programs, Flow Control, Functions
for additional information.

Database access

• A set of SQL statements are included as part of the language syntax and can be
used directly in the source code, as a normal procedural instruction. The Static
SQL Statements are parsed and validated at compile time. At runtime, these
SQL statements are automatically prepared and executed by the runtime system.
Program variables are detected by the compiler and handled as SQL
parameters.

• Dynamic SQL management allows you to execute any SQL statement that is
valid for your database version, in addition to those that are included as part of
the language. The statement can be hard coded or created at runtime, with or
without SQL parameters, returning or not returning a result set.

• Through the native drivers of the Open Database Interface, the same Genero
program can open database connections to any of the supported databases.

For additional information, see SQL Programming.

Interactive Statements

Writing the code for interactive database applications has been simplified for you in
Genero BDL; single statements automatically compile into the lines of program code

General

5

required for the common tasks associated with such applications. These interactive
statements allow the program to respond to user input.

The DIALOG instruction allows parts of a form that have different functionality to be
handled simultaneously.

Displaying data to the user

In Genero, programs manipulate Window and Form objects to define
display areas for interactive statements within your program. The Abstract
User Interface (AUI) tree contains a definition of these objects. You can
open as many windows and forms as needed, subject only to the limits of
memory and the maximum number of open files on the platform you are
using.

The OPEN WINDOW statement creates and opens a new window on the
user's screen. The runtime system maintains a stack of all open windows.
When you execute this statement to open a new window, it is added to
the window stack and becomes the current window.

You can modify the window stack with the CURRENT WINDOW and
CLOSE WINDOW statements.

With the OPEN WINDOW ... WITH FORM statement you open a window
on the screen, load a compiled form from disk into memory, and make it
ready for use.

The interactive DISPLAY statement allows you to display program
variable data in the fields of a form, for example, and then turn control
over to the user for his subsequent action.

The interactive DISPLAY ARRAY and DIALOG statements allow the user
to view the contents of an array of records, scrolling the records on the
screen.

Allowing the user to enter and change data

The INPUT statement is an interactive statement (dialog) that enables the
fields in a form for input, waits while the user types data into the fields,
and proceeds after the user accepts or cancels the dialog. If the user
accepts the dialog, the input that is automatically assigned to program
variables can be used by your program to insert rows or change rows in a
database, for example.

The interactive INPUT ARRAY statement allows the user to alter the
contents of records in a screen array, and to insert and delete records.
Your program can control and monitor these changes.

Genero Business Development Language

6

The DIALOG statement allows both INPUT and INPUT ARRAY
functionality.

Allowing the user to Search a Database (Query by Example)

Genero BDL lets you take input from the user in more than one way;
instead of literal values for the program to process, your user can enter
search criteria for a query. The interactive CONSTRUCT and DIALOG
statements allow the user to enter a value or a range of values for one or
several form fields, and your program looks up the database rows that
satisfy the requirements. You provide a single program variable to hold
the result of the CONSTRUCT statement. Your program can combine this
Boolean expression string with other text, to form a complete SELECT
statement to fetch the desired database rows.

What you do with the fetched rows depends on the specific application.
Often the reason is to select rows to be viewed by the user. In this case,
the program could display each row individually in a form or grouped in a
screen array; or, you might choose a set of rows for a report or a set of
rows to be deleted or updated.

Responding to actions by the user

You can define a program routine (set of instructions) that is triggered by
the user's actions. The actions can be displayed to the user as action
views - buttons, toolbars, or pull-down menus in the application window.
When the user makes a selection, the corresponding action is executed.

The interactive MENU statement can be used to define the list of actions
that can be triggered. Or, the ON ACTION clause of interactive
instructions, such as INPUT, INPUT ARRAY, CONSTRUCT, DIALOG,
and DISPLAY ARRAY, can be used to specify the program routine to be
executed for a given action.

Common actions, such as accept (dialog validation) and cancel (dialog
cancellation), are already pre-defined for you in accordance with the
interactive instruction.

Action Defaults allow you to define default decoration attributes (text,
image) and functional attributes (accelerator keys) for the graphical
objects associated with actions.

Predefined functions and classes

The BDL language provides built-in functions to perform many basic tasks, as well as
built-in classes that can be used to manipulate the user interface. Dynamic C Extension
libraries are part of the standard package; see File Manipulation functions and
Mathematical functions.

General

7

Forms
The end-user of a program does not know about the database schema or your carefully
designed program logic. As the user sees it, the application screens, and the menus that
invoke them, are the application. The arrangement of fields, labels, and other form
objects, and the behavior of the form as the user presses different keys or buttons and
selects different menu options, create the personality of the program.

You can define the application screens, or forms, in text-based Form Specification Files
(.per) These form files are translated by the Form Compiler to produce the Runtime
Form Files (.42f) that are deployed in production environments. Since form files are
separate from the other parts of your program, the Runtime Form Files can be used with
different programs.

Unlike compiled program files, the translated Runtime Form Files are XML documents
that describe the form elements, enabling portability across display devices. The XML
file can also be written directly, or it can be generated or modified from your program
code using the methods provided with Genero Built-in Classes.

You can design your form to group objects in horizontal and vertical boxes, display it as
a folder of pages, and use menus, toolbars, or buttons to trigger actions. You can
associate an array of data in the program with an array of fields on the form (screen-
array), so the user can see multiple rows of data on the screen. In addition to the form
fields and screen records, your form can contain objects such as progressbars,
checkboxes, radiogroups, comboboxes, and images. See Form Specification Files for
additional information.

The appearance of form objects can be standardized using Presentation Styles and
Action Defaults.

Different parts of the form can be handled simultaneously using the BDL instruction
DIALOG.

The User Interface
What happens when a user executes a Genero BDL application? The Genero Runtime
System creates the Abstract User Interface tree, and the Genero Front End makes this
abstract tree visible on the Front End Client, such as the Genero Desktop Client, Genero
Web Client, and Genero Java Client. When a user interaction statement takes control of
the application, the copy of the tree on the Front End is automatically synchronized with
the Runtime system tree by the Front End Protocol, an internal protocol used by the
Runtime System.

Genero Business Development Language

8

The Genero BDL language provides Built-in Classes that implement methods to manage
the objects on the user's screen. Methods can be invoked by passing parameters and/or
returning values, allowing the User Interface to be modified completely at runtime.

Default XML files describe the appearance (decoration) of some of the graphic objects
on the user's screen. These files may be customized, or replaced with your own
versions.

• default.4ad - default decoration and accelerators for action views
• default.4st - default definition of presentation style attributes

A special StartMenu, used to start different programs on the application server where the
runtime system executes, can be defined in an XML file with the extension .4sm.

A set of XML Utilities are provided to allow you to create and modify XML documents.

Compiling a Genero BDL Application
Your Genero BDL program can consist of a single source code module, but generally
you will have multiple modules as well as form specification files and perhaps localized
string files. Database schema files are also required, if you have defined program data
types and variables in the terms of an existing database column or table by using the
DEFINE ... LIKE statement.

The tools that Genero provides to compile the various files that will make up your
application, and the file extensions of the source code and corresponding compiled files,
are listed below, and an explanation follows:

General

9

The compiled source code modules can be linked into a program that can be executed
by the Runtime System, or into a library that can be linked into other programs.

Database Schema Files - tool fgldbsch

Database Schema Files are used during program compilation to define data types,
default values, display attributes and validation rules for form fields and program
variables. You must generate database schema files each time the database structure
changes, before compiling any other parts of your application.

The SCHEMA statement in program source files and form files identifies the database
schema file to be used. The FGLDBPATH environment variable can be used to define a
list of directories where the compiler can find database schema files.

Genero Business Development Language

10

The Schema Extractor (fgldbsch) is the tool provided to generate the database schema
files from a real database. Database schema files are generated from the system tables.

Example:

fgldbsch -db <database_name>

It is important that the schema file of the development database corresponds to the
production database; otherwise, the elements defined in the compiled version of your
modules and forms will not match the table structures of the production database.

The primary file produced by the utility is:

 <database>.sch - the file containing the data type definition of all columns selected
during schema extraction.

Program Source Modules - tools fglcomp, fgllink, fgl2p

Genero BDL provides its own source code compiler, which generates hardware-
independent pseudo-machine code (P-code). This code is not directly executable by the
operating system: it is interpreted by the Genero BDL runtime system (a program named
fglrun, and called "runner").

The compiled P-code modules are binary. The files are not printable or editable as text.

• Tool fglcomp - Module compiler

This tool compiles a program source module into a p-code version. The
compiled module has an extension of .42m.

If a compilation error occurs, the text file <filename>.err flagging the
errors is created. You can display directly the compilation errors by using
the -M option.

Example:

fglcomp <modulename>.4gl

Running the program:

fglrun <modulename>.42m

If your program consists of more than one module, the modules must be
linked together prior to execution, using the fgllink tool.

• Tool fgllink - Module linker

This tool assembles multiple p-code modules compiled with fglcomp into a single
.42r program or a .42x library.

General

11

Example to create a program:

fgllink -o <programname>.42r <module1name>.42m <module2name>.42m
...

Running the program:

fglrun <programname>.42r

Example to create a library that can be linked into other programs:

fgllink -o <libraryname>.42x <module1name>.42m <module2name>.42m
...

• Tool fgl2p - As a convenience, fgl2p (the Program compiler) is provided to create
programs or libraries in one command line. It uses the fglcomp and the fgllink
tools to compile and link modules together. If compilation of any of the modules
fails, the file <modulename>.err is created.

Example to create a program:

fgl2p -o <programname>.42r <module1name>.42m
<module2name>.42m ...

Example to create a library:

fgl2p -o <libraryname>.42x <module1name>.42m
<module2name>.42m ...

Form Specification Files - tool fglform

Form specification files are used by the Form Compiler (fglform) to produce the Runtime
Form Files that are deployed in production environments. The form files have an
extension of .per . Unlike compiled program files, the generated Runtime Form File is an
XML document that describes the form elements. The Runtime Form Files have an
extension of .42f.

If a compilation error occurs, the text file <filename>.err flagging the errors is created.
You can directly display the compilation error by using the -M option.

Example:

fglform <formname>.per

C-like Source Preprocessor

The fgl preprocessor can be used with the 4gl compiler and the form compiler to
transform your sources before compilation, based on preprocessor directives. It allows

Genero Business Development Language

12

you to include other files, to define macros that will be expanded when used in the
source, and to compile conditionally.

See The FGL Preprocessor for details.

Localized String Files - tool fglmkstr

Source String Files (<filename>.str) containing the text of the Localized Strings that are
used in your application must be compiled to binary files in order to be used at runtime.
By default the runtime system expects that the Source String file will have the same
filename as your program. The compiled file has an extension of .42s.

Example:

fglmkstr <filename>.str

As an assistance in creating the Source String Files, the -m option of the fglcomp and
fglform tools can be used to extract all the localized strings that are used in your source
code modules and forms.

Example:

fglcomp -m <modulename>.4gl

The output file will be <modulename>.str . This extracted file can be edited to assign text
to the localized strings, and combined with other extracted files into a single
<programname>.str file.

Note: Windows or Unix-based makefiles may be used to automate the process of
compiling and linking programs.

General

13

Deploying a Genero BDL Application

The following program files must be deployed at the user site:

• .42r, .42x, .42m - Executable programs and libraries, compiled modules
• .42f - Runtime Form Files
• .42s - compiled Localized String Files, if used in your applications
• .4sm - your custom Start Menu XML file, if created
• .4ad, .4st - these default XML files, provided with Genero, must be distributed

with the runtime system files; if you have customized these files, or created your
own versions, your versions must be deployed instead.

Front-end clients, such as Genero Desktop Client and Genero Web Client, make the
application available to the user.

The FGLPROFILE configuration file can be used to change the behavior of programs,
and environment variables can be set for Genero BDL.

Resources for Programmers

Documentation

This Business Development Language Manual (User Guide) is a complete guide to
Genero BDL language features, with explanations and sample code:

• Genero BDL Concepts - the following pages may be especially helpful in
understanding the concepts underlying Genero BDL:

o Dynamic User Interface

Genero Business Development Language

14

o Windows and Forms
o Programs
o Connections
o Transactions
o SQL Programming
o Compiling Programs
o Built-In Classes
o Presentation Styles

• The Business Development Language Tutorial - contains examples of basic
BDL program development, with sample code; see Summary

• Migrating to Genero BDL - the following pages may be especially helpful if you
are migrating an application from an earlier product:

o New Features
o Frequently Asked Questions
o Tools and Components
o Layout - Form Rendering
o 1.30 Migration Issues
o 2.00 Migration Issues

Note: The "Migration from I-4GL to Genero" section of the Four J's web site has
suggestions, plans, checklists, and migration case studies.

• Open Database Interface Adaptation guides - these pages are provided for
each relational database that Genero supports.

Code examples

• Short example programs in the demo subdirectory of the BDL software
installation directory illustrate the use of Genero BDL features. These programs
may be compiled and executed.

• The User Guide has extensive code samples.
• The Tutorial has code samples for each chapter with embedded comments.

Training

The Four J's web site lists the on-line and self-paced Genero training classes that are
offered. Instructor-led classes are also available; please call your regional sales office
for information.

General

15

Documentation Conventions
Summary:

• TUI Only Features
• De-supported Features
• Informix Specific Features
• Syntaxes
• Notes
• Warnings
• Tips
• Code Examples

TUI Only Features
TUI only features are marked with the red warning: TUI Only!

OPTIONS MENU LINE 3 TUI Only!

Elements marked with this flag must only be used in programs designed for text-based
terminals.

De-supported Features
Product features that are no longer supported are marked with the red warning: De-
supported!

The WIDGET="BMP" attribute De-supported!

Elements marked with this flag are no longer supported in the product.

Informix Specific Features
Features that are specific to Informix database servers are marked with the red warning:
Informix only!

Genero Business Development Language

16

DATABASE dbname@dbserver Informix only!

Elements marked with this flag work only with Informix database servers, and are not
recommended for multi-database programming.

Syntaxes
The term of 'syntax' is global and indicates the way to use a product function. For
example, it can be used to describe a language instruction or a system command:

Syntax:

CALL function ([parameter [,...]]) [RETURNING variable
[,...]]

Wildcard characters in syntax definitions are marked with an underscore:

Wildcards Description
[] Square braces indicate an optional element in the syntax.
{ | } Curly braces indicate a list of possible elements separated by a

pipe.
[...] Indicates that the previous element can appear more than once.
[,...] Previous element can appear more than once separated by a

comma.

Notes
Notes hold a list of technical remarks about the product function:

Notes:

1. identifier is the name of the variable to be defined.
2. datatype can be any data type except complex types like TEXT or

BYTE.
3. ...

General

17

Warnings
Warnings are important technical remarks, describing special behavior of the product
function:

Warnings:

1. When a DATE, DATETIME or INTERVAL constant cannot be
initialized correctly, it is set to NULL.

2. ...

Tips
Tips are hints to use the product function more efficiently:

Tips:

1. Do not include a NULL value in a Boolean expression.
2. ...

Code Examples
Code examples are written with line numbers and language syntax highlighting as
follows:

Example 1:

01 MAIN
02 DEFINE a1 ARRAY[100] OF INTEGER,
03 a2 ARRAY[10,20] OF RECORD
04 id INTEGER,
05 ...

Genero Business Development Language

18

Language Features
Summary:

• Introduction
• Lettercase Insensitivity
• Whitespace Separators
• Quotation Marks
• Statement Terminator
• Character Set
• Comments
• Program Components
• SQL Support
• Identifiers
• Preprocessor Directives

Introduction
BDL is an English-like programming language designed for creating relational database
applications.

The language includes high-level instructions to implement the user interface of the
applications, generate reports, and execute SQL statements to communicate with
database servers.

Lettercase Insensitivity
BDL is case insensitive, making no distinction between uppercase and lowercase letters,
except within quoted strings. Use pairs of double (") or single (') quotation marks in
the code to preserve the lettercase of character literals, filenames, and names of
database entities.

You can mix uppercase and lowercase letters in the identifiers that you assign to
language entities, but any uppercase letters in BDL identifiers are automatically shifted
to lowercase during compilation.

Tips:

1. It is strongly recommended that you define a naming convention for your
projects. For example, you can use underscore notation (get_user_name). If you
plan to use the Java notation (getUserName), do not forget that BDL is case
insensitive (getusername is the same identifier as getUserName).

General

19

Whitespace Separators
BDL is free-form, like C or Pascal, and generally ignores TAB characters, LINEFEED
characters, comments, and extra blank spaces between statements or statement
elements. You can freely use these whitespace characters to enhance the readability of
your source code.

Blank (ASCII 32) characters act as delimiters in some contexts. Blank spaces must
separate successive keywords or identifiers, but cannot appear within a keyword or
identifier. Pairs of double (") or single (') quotation marks must delimit any character
string that contains a blank (ASCII 32) or other whitespace character, such as
LINEFEED or RETURN.

Quotation Marks

In BDL, string literals are delimited by single (') or double (") quotation marks:

'Valid character string'
"Another valid character string"

Do not mix double and single quotation marks as delimiters of the same string. For
example, the following is not a valid character string:

'Not A valid character string"

In SQL statements, when accessing a non-Informix relational database, such as a DB2
database from IBM, double quotation marks might not be recognized as database object
name delimiters. In the SQL language, the standard specifications recommend that you
use single quotes for string literals and double quotes for database object identifiers like
table or column names.

To include literal quotation marks within a quoted string, precede each literal quotation
mark with the backslash (\), or else enclose the string between a pair of the opposite
type of quotation marks:

01 MAIN
02 DISPLAY "Type 'Y' if you want to reformat your disk."
03 DISPLAY 'Type "Y" if you want to reformat your disk.'
04 DISPLAY 'Type \'Y\' if you want to reformat your disk.'
05 END MAIN

A string literal can be written on multiple lines. The compiler merges lines by removing
the new-line character.

For more details, see String Literals.

Genero Business Development Language

20

Escape Symbols

The compiler treats a backslash (\) as the default escape symbol, and treats the
immediately following symbol as a literal, rather than as having special significance. To
specify anything that includes a literal backslash, enter double (\\) backslashes
wherever a single backslash is required. Similarly, use \\\\ to represent a literal double
backslash.

For more details, see String Literals.

Statement Terminator
BDL requires no statement terminators, but you can use the semicolon (;) as a
statement terminator in some cases, PREPARE and PRINT statements for example.

01 MAIN
02 DISPLAY "Hello, World" DISPLAY "Hello, World"
03 DISPLAY "Hello, World"; DISPLAY "Hello, World"
04 END MAIN

Character Set
The language requires the ASCII character set, but also supports characters from the
client locale in data values, identifiers, form specifications, and reports.

Comments
A comment is text in the source code to assist human readers, but which BDL ignores.
(This meaning of comment is unrelated to the COMMENTS attribute in a form, or to the
OPTIONS COMMENT LINE statement, both of which control on-screen text displays to
assist users of the application.)

You can indicate comments in any of several ways:

• A comment can begin with the left-brace ({) and end with the right-brace (})
symbol. These can be on the same line or on different lines.

• The pound (#) symbol (sometimes called the "sharp symbol") can begin a
comment that terminates at the end of the same line.

• You can use a pair of minus signs (--) to begin a comment that terminates at
the end of the current line. (This comment indicator conforms to the ANSI
standard for SQL.)

General

21

Warnings:

1. Within a quoted string, 4GL interprets comment indicators as literal characters,
rather than as comment indicators.

2. You cannot use braces ({ }) to nest comments within comments.
3. Comments cannot appear in the SCREEN section of a form specification file.
4. The # symbol cannot indicate comments in an SQL statement block, nor in the

text of a prepared statement.
5. You cannot specify consecutive minus signs (--) in arithmetic expressions,

because BDL interprets what follows as a comment. Instead, use a blank space
or parentheses to separate consecutive arithmetic minus signs.

6. The symbol that immediately follows the -- comment indicator must not be the
sharp (#) symbol, unless you intend to compile the same source file with the
Informix 4GL product.

Tips:

1. For clarity and to simplify program maintenance, it is recommended that you
document your code by including comments in your source files.

2. You can use comment indicators during program development to disable
statements without deleting them from your source code modules.

Program Components
BDL programs are built from source code files with the language compiler, form
compiler, and message compiler. Source code files can be:

• Form Specification Files (.per)
• Database Schema Files (.sch, .att, .val)
• Message Files (.msg)
• Source String Files (.str)
• Program Sources Files (.4gl)

In Form Specification Files, you define the layout of application screens. See Forms for
more details.

The Database Schema Files describe the structure of the database tables. See
Database Schema for more details.

The Message Files hold texts that can be loaded at runtime. Each text is identified by a
number. See Message Files for more details.

The Localized Strings allow you to customize application strings, which are loaded
automatically at runtime. Each string is identified by an identifier. See Localized Strings
for more details.

Genero Business Development Language

22

In Program Source Files, you define the structure of the program with instruction blocks (
like MAIN, FUNCTION or REPORT). The program starts from the MAIN block. The
instruction blocks contain BDL instructions that are be executed by the runtime system in
the order that they appear in the code. Program blocks cannot be nested, nor any
program block divided among more than one source code module.

Some BDL instructions can include other instructions. Such instructions are called
compound statements. Every compound statement of BDL supports the END keyword to
mark the end of the compound statement construct within the source code module. Most
compound statements also support the EXIT statement keywords, to transfer control of
execution to the statement that follows the END statement keywords, where statement is
the name of the compound statement. By definition, every compound statement can
contain at least one statement block, a group of one or more consecutive SQL
statements or other BDL statements. In the syntax diagram of a compound statement, a
statement block always includes this element.

SQL Support
A limited syntax of SQL is supported directly by the BDL compiler, so you can write
common SQL statements such as SELECT, INSERT, UPDATE or DELETE directly in
your source code:

01 MAIN
02 DEFINE n INTEGER, s CHAR(20)
03 DATABASE stores
04 LET s = "Sansino"
05 SELECT COUNT(*) INTO n FROM customer WHERE custname = s
06 DISPLAY "Rows found: " || n
07 END MAIN

For SQL statements that have a syntax that is not supported directly by the compiler, the
language provides SQL statement preparation from strings as in other languages.

01 MAIN
02 DEFINE txt CHAR(20)
03 DATABASE stores
04 LET txt = "SET DATE_FORMAT = YMD"
05 PREPARE sh FROM txt
06 EXECUTE sh
07 END MAIN

For more details about SQL statement preparation, see the Dynamic SQL Instructions.

General

23

Identifiers
A BDL identifier is a character string that is declared as the name of a program entity. In
the default (U.S. English) locale, every 4GL identifier must conform to the following rules:

• It must include at least one character, without any limitation in size.
• Only ASCII letters, digits, and underscore (_) symbols are valid.
• Blanks, hyphens, and other non-alphanumeric characters are not allowed.
• The initial character must be a letter or an underscore.
• Identifiers are not case sensitive, so my_Var and MY_vaR both denote the same

identifier.

Within non-English locales, however, BDL identifiers can include non-ASCII characters
in identifiers, if those characters are defined in the code set of the locale that
CLIENT_LOCALE specifies. In multibyte East Asian locales that support languages whose
written form is not alphabet-based, such as Chinese, Japanese, or Korean, an identifier
does not need to begin with a letter.

Preprocessor Directives
The language supports preprocessing instructions, which allow you to write macros and
conditional compilation rules:

01 &include "myheader.4gl"
02 FUNCTION debug(msg)
03 DEFINE msg STRING
04 &ifdef DEBUG
05 DISPLAY msg
06 &endif
07 END FUNCTION

See The Preprocessor for more details.

Genero Business Development Language

24

The Dynamic User Interface
Summary:

• Graphical rendering
• The Dynamic User Interface

o The concept
o When is the front-end synchronized?

• Connecting to the front-end
o Graphical and Text Mode
o Defining the Target Front End
o Front End Identification
o Warning: Security Issue
o Controlling Front End Connection
o Front End Connection Lost
o Front End Errors

• The Abstract User Interface
o What does the Abstract User Interface tree contain?
o Manipulating the Abstract User Interface
o XML Node Type and Attribute Names
o Actions in the Abstract user Interface tree
o The Front End Protocol

• Special Features
o Character Conversion Table
o Automatic front-end startup

See also: Form Files, Windows and Forms, Interaction Model.

Graphical rendering
In Genero, the user interface is designed to provide a real graphical look and feel,
compared to traditional Informix 4GL applications. However, graphical user interfaces
and especially windows management is not compatible with the traditional 4GL user
interface management, which was designed for character terminals. With the graphical
interface of Genero, you can, for example, display windows as real movable and
resizable windows, display labels with variable fonts, use toolbars and pull-down menus,
or show error messages in a status bar. But this requires you to adapt the code and
remove instructions like DISPLAY AT that make no sense in real GUI mode.

General

25

The Dynamic User Interface

The concept

The Dynamic User Interface (DUI) is a global concept for a new, open User Interface
programming toolkit and deployment components, based on the usage of XML
standards and built-in classes.

The purpose of the DUI is to support different kinds of display devices by using the same
source code, introducing an abstract definition of the user interface that can be
manipulated at runtime as a tree of user interface objects. This tree is called the Abstract
User Interface.

The Runtime System is in charge of the Abstract User Interface tree and the Front End
is in charge of making this abstract tree visible on the screen. The Front End gets a copy
of that tree which is automatically synchronized by the runtime by using the Front End
Protocol.

In development, application screens are defined by Form Specification Files. These files
are used by the Form Compiler to produce the Runtime Form Files that can be deployed
in production environments.

Genero Business Development Language

26

Architectural schema

The following schema describes the Dynamic User Interface concept, showing how the
Abstract User Interface tree is shared by the Runtime System and the Front End:

When is the front-end synchronized?

The Abstract User Interface tree on the front-end is synchronized with the Runtime
System AUI tree when a user interaction instruction takes the control. This means that
the user will not see any display as long as the program is doing batch processing, until
an interactive statement is reached.

For example, the following program shows nothing:

01 MAIN
02 DEFINE cnt INTEGER
03 OPEN WINDOW w WITH FORM "myform"
04 FOR cnt=1 TO 10
05 DISPLAY BY NAME cnt
06 SLEEP 1
07 END FOR
08 END MAIN

If you want to show something on the screen while the program is running in a batch
procedure, you must force synchronization with the front-end, by calling the refresh()
method of the Interface built-in class:

01 MAIN
02 DEFINE cnt INTEGER
03 OPEN WINDOW w WITH FORM "myform"
04 FOR cnt=1 TO 10
05 DISPLAY BY NAME cnt
06 CALL ui.Interface.refresh() -- Sync the front-end!

General

27

07 SLEEP 1
08 END FOR
09 END MAIN

Connecting to the front-end

Graphical and Text Mode

By default, a Genero BDL application executes in graphical mode (GUI). However, you
can run the applications in dumb terminals by using the text-based display, called text
mode (TUI). To run the application in TUI mode, set the FGLGUI environment variable to
zero.

Defining the Target Front-End

In GUI mode, when the first interactive instruction like MENU or INPUT is executed, the
runtime system establishes a tcp connection to the front-end. The front-end acts as a
graphical server for the runtime system.

On the runtime system side, the front-end is identified by the FGLSERVER environment
variable. This variable defines the hostname of the machine where the front-end resides,
and the number of the front-end instance to be used.

The syntax for FGLSERVER is hostname[:servernum]:

$ FGLSERVER=fox:1
$ fglrun myprog

The servernum parameter is a whole number that defines the instance of the front-end.
It is actually defining a tcp port number, starting from 6400. For example, if servernum
equals 2, the tcp port number used is 6402 (6400+2).

This is the standard/basic connection technique, but you can set up different types of
configurations; for example, to have the front-end connect to an application server via
ssh, to pass through firewalls over the internet. Refer to the front-end documentation for
more details.

Front-End Identification

The front-end can open a terminal session on the application server to start a program
from the user workstation. This is done by using a ssh, rlogin, or telnet terminal session.
When the terminal session is open, the front-end sends a couple of shell commands to
set environment variables like FGLSERVER before starting the Genero program to
display the application on the front-end where the terminal session was initiated.

Genero Business Development Language

28

In this configuration, front-end identification takes place. The front-end identification
prevents the display of application windows on a front-end that did not start the Genero
application on the server. If the front-end was not identified, it would result in an
important security problem, as anyone could run a fake application that could display on
any front-end and ask for a password.

Warning (Security Issue): Front-end identification is achieved by setting two
environment variables in the terminal session, which identify the front-end. The
runtime system sends the first identifier back when connecting to the front-end,
and the front-end sends the second id in the returning connection string. The
Front-end checks the first id, and refuses the connection if that id does not
correspond to the original id set in the terminal session. The runtime system
checks the second id send by the front-end in the connection string, and refuses
the connection if that id does not correspond to the environment variable set in
the terminal session. There can be a security hole if users can overwrite the
program or the shell script started by the front-end terminal session. It is then
possible to change the front-end identification environment variables and
FGLSERVER, in order to display the application on another workstation to read
confidential data. As long as basic application users do not have read and write
privileges on the program files, there is no risk. To make sure that program files
on the server side are protected from basic users, create a special user on the
server to manage the application program files, and give other users only read
access to those files. As long as basic users cannot modify programs on the
server side, there is no security issue.

Controlling Front-End Connection

If the front-end host machine is down or if its firewall drops connections for the port used
by Genero, the program will stop with an error after a given timeout.

The connection timeout can be specified with the following FGLPROFILE entry:

gui.connection.timeout = seconds

The default timeout is 30 seconds.

Front-End Connection Lost

When the runtime system waits for a user action, but the end user does not do anything,
the client sends a 'ping' event every 5 minutes to keep the tcp connection alive. This
situation can happen if the user leaves the workstation for a while without closing the
application.

If the client is not stopped properly (when killed by a system reboot, for example), the tcp
connection is lost and the runtime system does not receive any more 'ping' events from
the client. In this case, the runtime system waits for a specified time before it stops with
fatal error -8062.

By default, the runtime system waits for 600 seconds (10 minutes).

General

29

You can configure this timeout with an FGLPROFILE entry:

gui.protocol.pingTimeout = 800

Warning: If you set this timeout to a value lower than the ping delay of the front-
end, the program will stop with a fatal error after that timeout, even if the tcp
connection is still alive. For example, with a front-end having a ping delay of 5
minutes, the minimum value for this parameter should be about 330 seconds (5
minutes + 30 seconds to make sure the client ping arrives).

Front-End Errors

When the Front End receives an invalid order, it stops the application. The Runtime
System then stops and displays the following message:

Program stopped at 'xxx.4gl', line number yy.
FORMS statement error number -6313.
The UserInterface has been destroyed: <message>.

The following error messages can occur:

Message Description

Application was terminated by
user

The front-end has been stopped or the user
has clicked on the "Terminate application"
button.

Unexpected interface version
sent by the runtime system

The runtime system and the front-end
versions are not fully compatible.

The container 'container_name'
already exists

The same WCI container has been started
twice.

The container 'container_name'
was destroyed

The parent WCI container has been
stopped while some children are still
running

The container 'container_name'
doesn't exist

The WCI parent of the current child doesn't
exist.

Invalid AUI Tree: Multiple Start
Menu nodes

The AUI Tree contains two Start Menu
Nodes - should not happen.

The Abstract User Interface
The Abstract User Interface (AUI) is a DOM tree describing the objects of the User
Interface of a Program at a given time. A copy of the AUI tree is held by both the Front
End and the Runtime System. AUI Tree synchronization is automatically done by the
Runtime System using the Front End Protocol. The programs can manipulate the AUI
tree by using built-in classes and XML utilities.

Genero Business Development Language

30

What does the Abstract User Interface tree contain?

The Abstract User Interface defines a tree of objects organized by parent/child
relationship. The different kinds of user interface objects are defined by attributes. The
AUI tree can be serialized as text according to the XML standard notation.

The following example shows a part of an AUI tree defining a Toolbar serialized with the
XML notation:

<ToolBar>
 <ToolBarItem name="f5" text="List" image="list" />
 <ToolBarSeparator/>
 <ToolBarItem name="Query" text="Query" image="search" />
 <ToolBarItem name="Add" text="Append" image="add" />
 ...
</ToolBar>

Manipulating the Abstract User Interface tree

The objects of the Abstract User Interface tree can be queried and modified at runtime
with built-in classes like ui.Form, provided to manipulate form elements.

01 DEFINE w ui.Window
02 DEFINE f ui.Form
03 LET w = ui.Window.getCurrent()
04 LET f = w.getForm()
05 CALL f.setElementHidden("groupbox1",1)

In very special cases, you can also directly access the nodes of the AUI tree by using
DOM API classes like DomDocument and DomNode. To get the user interface nodes at
runtime, the language provides different kinds of API functions or methods, according to
the context. For example, to get the root of the Abstract User Interface tree, call the
ui.Interface.getRootNode() method. You can also get the current form node with
ui.Form.getNode() or search for an element by name with the ui.Form.findNode()
method.

XML Node Types and Attribute Names

By tradition BDL uses uppercase keywords, such as LABEL in form files, and the
examples in this documentation reflect that convention. The BDL language itself is not
case-sensitive. However, XML is case-sensitive, and by convention node types use
uppercase/lowercase combinations to indicate word boundaries. In BDL, therefore,
the nodes and attributes of an Abstract User Interface tree are handled as follows:

• Node types - the first letter of the node type is always capitalized. Subsequent
letters are lower-case, unless the type consists of multiple words joined together.

General

31

In that case, the first letter of each of the multiple words is capitalized (the
CamelCase convention). Examples: Label, FormField, DateEdit, Edit

• Attribute names - the first letter of the name is always lower-case; subsequent
letters are also lower-case, unless the name consists of multiple words joined
together. In that case, the first letter of each subsequent word is capitalized (the
Lower CamelCase convention). Examples: text, colName, width, tabIndex

• Attribute values - the values are enclosed in quotes, and BDL does not convert
them..

Warning: If you reference Nodes or Attributes in your BDL code, you must always
respect the naming conventions.

Actions in the Abstract User Interface tree

The Abstract User Interface identifies all possible actions that can be received by the
current interactive instruction with a list of Action nodes. The list of possible actions are
held by a Dialog node. An Action node is identified by the 'name' attribute and defines
common properties such as the accelerator key, default image, and default text.

Interactive elements are bound to Action nodes by the 'name' attribute. For example, a
Toolbar item (button) with the name 'cancel' is bound to the Action node having the
name 'cancel', which in turn defines the accelerator key, the default text, and the default
image for the button.

When an interactive element is used (such as a form field input, toolbar button click, or
menu option selection), an ActionEvent node is sent to the runtime system. The name of
the ActionEvent node identifies what Action occurred and the 'idRef' attribute indicates
the source element of the action.

See also Front End Events for more details.

Genero Business Development Language

32

The Front End Protocol

The Front End Protocol (FEP) is an internal protocol used by the Runtime System to
synchronize the Abstract User Interface representation on the Front End side. This
protocol defines a simple set of operations to edit the Abstract User Interface tree. This
protocol is based on a command processing principle (send command, receive answer)
and can be serialized to be transported over any network protocol, like HTTP for
example.

Both the Abstract User Interface and the Front End Protocol are public to allow third
parties to develop their own Front Ends. This enables applications to be deployed on
very specific Workstations.

Refer to Front End Protocol for more details about the operations supported by this
communication protocol.

Special Features
This section describes special features regarding the user interface domain:

• Character Conversion Table
• Automatic Front-End Startup

Character Conversion Table

Definition

By default, the runtime system expects that the operating system running the programs
uses the same character set as the operating system running the front-end. If the
character sets are different, you can set an FGLPROFILE configuration parameter to
enable character set mapping between the client and the runtime system, when using a
single-byte character set runtime system.

Warning: This feature is provided for backward compatibility. With the new
protocol, front-ends are able to identify the character set used by the runtime
system and automatically make the codeset conversion.

The following FGLPROFILE entry defines the character table conversion file:

gui.chartable = "relative-file-path"

The $FGLDIR/etc directory is searched for this file. The runtime system automatically
adds the ".ct" file extension.

General

33

Default value : NULL (no conversion).

Example:

gui.chartable = "iso/ansinogr"

The runtime system loads the character table from: $FGLDIR/etc/iso/ansinogr.ct

Warnings:

1. The runtime system automatically adds the ".ct" file extension.
2. Character set conversion does not occur when using TUI mode (FGLGUI=0).

Automatic front-end startup

Definition

The runtime system tries to open a connection to the graphical front-end according to
the FGLSERVER environment variable. This requires having the front-end already
started and listening to the TCP port defined according to FGLSERVER.

In some configurations, such as X11 workstations or METAFRAME/Citrix Winframe or
Microsoft Windows Terminal Server, each user may want to start his own front-end to
have a dedicated process. This can be done by starting the front-end automatically when
the Genero program executes, according to the DISPLAY (X11) or
SESSIONNAME/CLIENTNAME (WTSE) environment variables.

Usage:

By default the runtime system always tries to connect to a front-end according to
FGLSERVER. If this variable is not set, it tries to connect to the "localhost:0" GUI
server. If this still does not work, automatic front-end startup takes place, if the
gui.server.autostart.cmd FGLPROFILE entry is set.

Warning: If the gui.server.autostart.cmd entry is not defined, automatic front-
end startup does not occur.

To enable automatic front-end startup, you configure gui.server.autostart.* entries in
FGLPROFILE.

The 'cmd' entry can be used to define what command should be executed to start the
front-end:

gui.server.autostart.cmd = "gdc -p %d -q -M"

Here, %d will be replaced by the TCP port the front-end must listen to.

By default the runtime system waits for two seconds before it tries to connect to the
front-end. You can change this delay with the 'wait' entry:

Genero Business Development Language

34

gui.server.autostart.wait = 5 -- wait five seconds

The runtime system tries to connect to the front-end ten times. You can change this with
the 'repeat' entry:

gui.server.autostart.repeat = 3 -- repeat three times

The following FGLPROFILE entries can be used to define workstation id to front-end id
mapping:

gui.server.autostart.wsmap.max = 3
gui.server.autostart.wsmap.1.names = "fox:1.0,fox.sxb.4js.com:1.0"
gui.server.autostart.wsmap.2.names = "wolf:1.0,wolf.sxb.4js.com:1.0"
gui.server.autostart.wsmap.3.names = "wolf:2.0,wolf.sxb.4js.com:2.0"

The first 'wsmap.max' entry defines the maximum number of front-end identifiers to look
for. The 'wsmap.N.names' entries define a mapping for each GUI server, where N is the
front-end identifier. The value of those entries defines a comma-separated list of
workstation names to match.

On X11 configurations, a workstation is identified by the DISPLAY environment variable.
In the above example, "fox:1.0" identifies a workstation that will make the runtime start a
front-end with the number 1.

On Windows Terminal Server, the CLIENTNAME environment variable identifies the
workstation. If no corresponding front-end id can be found in the 'wsmap' entries, the
front-end number defaults to the id of the session defined by the SESSIONNAME
environment variable, plus one. The value of this variable has the form "protocol#id";
for example, "RDP-Tcp#4" would automatically define a front-end id of 5 (4+1).

Tips:

1. If the front-end processes are started on the same machine as the runtime
system, you do not need to set the FGLSERVER environment variable. This will
then default to 'localhost:id', where id will be detected according to the 'wsmap'
workstation mapping entries.

2. If the front-end is executed on a middle-tier machine that is different from the
application server, MIDHOST for example, you can set FGLSERVER to
"MIDHOST" without a GUI server id. The workstation mapping will automatically
find the id according to 'wsmap' settings.

3. Some clients, such as the Genero Desktop Client (GDC), raise the control panel
to the top of the window stack when you try to restart it. In this case the program
window might be hidden by the GDC control panel. To avoid this problem, you
can use the -M option to start the GDC in minimized mode.

General

35

Installation and Setup
This chapter includes instructions for installing Genero BDL on either UNIX or Windows
platforms.

Summary:

• 1. Supported Operating Systems
• 2. Hardware Requirements

o 2.1 Network Card
o 2.2 Memory and Processor
o 2.3 Disk Space

• 3. Software Requirements
o 3.1 Internet access
o 3.2 Database Client Software
o 3.3 C Compiler for C Extensions

• 4. Installing the Product
o 4.1 Genero BDL Packages
o 4.2 Pre-installation tasks
o 4.3 Running the installation program
o 4.4 Post-installation tasks

• 5. Licensing the Product
o 5.1 License Basics
o 5.2 Registering the license
o 5.3 Getting license information
o 5.4 Removing the license
o 5.5 Re-installing the license
o 5.6 The FGLDIR/lock directory
o 5.7 Using a license server

• 6. Upgrading the Product
o 6.1 Pre-upgrade tasks
o 6.2 Licensing an upgraded installation
o 6.3 Post-upgrade tasks

• 7. Operating System Specific Notes
o HP/UX
o IBM AIX
o Microsoft Windows
o SCO Unixware

See also: Tools and Components, Localization Support, Environment Variables.

1. Supported Operating Systems

Genero BDL is supported on a large brand of operating systems, such as Linux, IBM
AIX, HP-UX, SUN Solaris and Microsoft Windows.

Genero Business Development Language

36

Each Genero BDL package is identified with an operating system code (hpx1100,
w32vc71). You must install the Genero BDL package corresponding to the operating
system that you use.

For the detailed list of supported operating systems, please refer to the Four J's support
web site.

2. Hardware Requirements

Genero BDL does not require any particular hardware except a network card for license
control.

2.1 Network Card

A network card is required by the license manager. It is not possible to install Genero
BDL on a computer without a network card.

2.2 Memory and Processor

In a runtime environment, memory and processor requirements are dependent on the
number of users and the type of database server. Each DVM process requires 2 Mb to 6
Mb, based on the database client software. For example, a typical requirement for a 30
user runtime environment with an Informix database server is a 500 MHz processor with
512 Mb RAM.

2.3 Disk Space

According to the operating system and the type of installation (development or runtime
environment), the total disk space required can vary from 20 Mb to 25 Mb.

Warning: During installation, about 15 Mb are needed in the current temporary
directory.

3. Software Requirements

Genero BDL requires the following software to be installed on the system:

1. An internet access

General

37

2. The database client software
3. A C compiler if you need to compile C extensions

3.1 Internet access

In order to license the product online from the Four J's Web site (http://www.4js.com),
you need an Internet browser and an Internet connection.

3.2 Database Client Software

3.2.1 The database client software

To connect to a database server, you need the database client software to be installed
on the system where you run the BDL programs.

Below is a list of database client software examples:

• Informix CSDK (with ESQL/C)
• Genero db client (ODBC driver)
• DB2 Connect (with CLI)
• Oracle Client (with OCI)
• Microsoft SQL Server Client (with ODBC driver)
• PostgreSQL client (libpq)
• MySQL client (libmysqlclient)

3.2.2 The database client library must be a shared object

Starting with Genero 2.00, database drivers are provided as pre-linked shared libraries.
There is no need to link a runner or driver on site, but the database client software must
provide a shared library corresponding to the one used to link the driver. The table in the
next section lists supported database client software versions and the corresponding
shared libraries that must exist on the system.

3.2.3 Supported database client versions

This table shows the database drivers with the corresponding database client version
and shared libraries:

Driver
names

Database client software
version

Unix shared
libraries

Microsoft
Windows DLLs

dbmads3x Genero DB Client 3.x libaodbc.so aodbc.dll
dbmasa8x Sybase ASA Client 8.x libdblib8.so dblibtm.dll
dbmdb28x DB2 Client 8.x libdb2.so db2cli.dll

Genero Business Development Language

38

dbmdb29x DB2 Client 9.x libdb2.so db2cli.dll

dbmmsv8x SQL Server Client 8.x (SQL
Server 2000) N/A odbc32.dll /

SQLSRV32.DLL

dbmmsv9x SQL Server Client 9.x, old
driver (SQL Server 2005) N/A odbc32.dll /

SQLSRV32.DLL

dbmsnc9x
SQL Server Client 9.x,
native client (SQL Server
2005)

N/A odbc32.dll /
SQLNCLI.DLL

dbmftm9x SQL Server Client 9.x,
FreeTDS client libtdsodbc.so N/A

dbmifx9x Informix CSDK 2.80 and
higher

libifsql.so,
libifasf.so,
libifgen.so,
libifos.so,
libifgls.so,
libifglx.so

isqlt09a.dll

dbmora81x Oracle Client 8.1.x libclntsh.so oci.dll
dbmora82x Oracle Client 8.2.x libclntsh.so oci.dll
dbmora92x Oracle Client 9.2.x libclntsh.so oci.dll
dbmoraA1x Oracle Client 10.1.x libclntsh.so oci.dll
dbmoraA2x Oracle Client 10.2.x libclntsh.so oci.dll
dbmpgs81x PostgreSQL Client 8.1.x libpq.so libpq.dll
dbmpgs82x PostgreSQL Client 8.2.x libpq.so libpq.dll
dbmpgs83x PostgreSQL Client 8.3.x libpq.so libpq.dll
dbmmys50x MySQL Client 5.0.x libmysqlclient.so libmysql.dll
dbmmys51x MySQL Client 5.1.x libmysqlclient.so libmysql.dll
dbmmys60x MySQL Client 6.0.x libmysqlclient.so libmysql.dll
dbmmys61x MySQL Client 6.1.x libmysqlclient.so libmysql.dll

dbmodc3x Generic ODBC Client
(ODBC 3.x) libodbc.so odbc32.dll

See also Operating System Specific Notes.

3.3 C Compiler for C extensions

If you have C Extensions, you need a C compiler and linker to build the extension library.

For more details about C extensions, see "C Extensions" section in this documentation.

3.3.1 C compiler On UNIX platforms:

General

39

Warning: On UNIX platforms, you need a cc compiler on the system where you
create the C extension libraries. Some systems may not have a C compiler by
default. Make sure you have a C compiler on the system.

3.3.2 C compiler On Microsoft Windows platforms:

Warning: On Windows platforms, it is mandatory to install Microsoft Visual C++
version 7.1 or higher on the system where you create the C extension libraries.
You must install the appropriate Genero FGL package according to the version of
Visual C++ you have installed. For example, when using Visual C++ 8, you must
install the package marked by the w32vc80 operating system identifier.

4. Installing the Product

4.1 Genero BDL packages

The software is provided in self-extractible installation programs. On UNIX platforms, the
installation program is a shell script (with a .sh extension). On Windows platforms, it is
an executable program (with a .exe extension).

Genero BDL package files follow a specific naming convention:

fjs-product-version-osident.extension

where:

1. product is the product identifier.
2. version is the release number of the software (1.10.1a).
3. osident is the operating system identifier.
4. extension is sh on UNIX platforms and exe on Windows platforms.

Examples:

fjs-fgl-1.10.1a-a640510.sh
fjs-fgl-1.10.1a-lnxlc22.sh
fjs-fgl-1.10.1a-wnt0430.exe

4.2 Pre-installation tasks

Before launching the installation program, make sure:

Genero Business Development Language

40

1. You have a license number and a license key for Genero BDL development or
runtime.
See Licensing for more details.

2. You are using a supported operating system.
3. You are connected to the system as a user with sufficient privileges to install the

software in the target directory.
4. Your configuration matches all hardware requirements and software

requirements.
5. You have access to all needed DLLs (PATH) or shared libraries

(LD_LIBRARY_PATH).
6. You have set the environment variables for the database client software

(INFORMIXDIR/INFORMIXC, ORACLE_HOME, DB2DIR, PGDIR,
LD_LIBRARY_PATH).

7. You can use the C compiler if you need to create C Extensions.

Warning: Before starting the installation program, make sure that the database
client environment variables are set.

4.3 Running the installation program

The product is provided as an auto-extractible installation program (product files and
installation program are provided in the same file). The name of the package includes
the operating system type and version. Ensure the package name corresponds to your
system before starting the installation program.

4.3.1 Installing on UNIX platforms

On Unix platforms, Genero J's BDL is provided as an auto-extractible shell script.
Distribution files and installation program are provided in the same file.

The installation program has options. Display the installation program options using the -
h option:

$ /bin/sh fjs-fgl-1.10.1a-aix0430.sh -h

To perform the installation, run the auto-extractible shell script with the -i option:

$ /bin/sh fjs-fgl-1.10.1a-aix0430.sh -i

The installation program determines the operating system and checks that all the system
requirements are met before starting to copy the product files to your disk.

At this point, follow the online instructions.

4.3.2 Installing on Microsoft Windows platforms

General

41

On Microsoft Windows, Genero BDL is provided with a standard Windows setup
program. Distribution files and installation program are provided in the same file.

To perform the installation, login as a user with Administrator privileges and simply start
the executable program in the "Start" + "Run" window:

fjs-fgl-1.10.1a-wnt0430.exe

At this point, follow the online instructions.

4.4 Post-installation tasks

After installing the product, you can look at the files provided in FGLDIR/release
directory.

It is recommended that you first read the license terms provided in the "license.txt" file.
Read this file carefully before using the product in production.

The release notes are in the "readme.txt" file. This file contains important last-minute
information that may not be found in the documentation.

Development team changes are provided in the "changes.txt" file. This file contain
detailed technical information about changes in the BDL source. You should only
reference this file when you cannot find an answer in the "readme.txt" file.

According to the database server you want to connect to, you will need to set up the
correct database driver in FGLPROFILE. The default database driver is Informix. For
more details about database driver configuration, see Connections.

5. Licensing the Product

5.1 License basics

During the installation, you are prompted to license the software. A license must be
entered before you can use the product.

During the first installation, you need the license number and license number key
supplied with the product package. For example:

F4Z#X34006TG + GFAS9FD78XDT

When upgrading, the product is installed over the existing directory having a valid
license. You do not have to re-enter the license keys.

Genero Business Development Language

42

Warning: Neither the serial number nor the installation number will ever contain
the letter O: They can only contain the digit 0 (zero).

5.2 Registering the license

To perform a full licensing, you will be prompted for the license number and license
number key. An installation number will be generated from the license number and
license number key. Go to the http://www.4js.com web site to get the installation
number key (or contact your local Four J's support center if you fail to get the key from
the web site). Enter the installation number key to complete licensing.

You have 30 days to enter the installation number key. If you cannot get the installation
number key, you will have to complete the licensing manually by using the following
command:

$ fglWrt -k installation-number-key

5.3 Getting license information

The following command shows the current installation number:

$ fglWrt -a info

5.4 Removing a license

An existing license can be dropped using the following command:

$ fglWrt -d

5.5 Re-installing a license

To re-install a license, use the following command:

$ fglWrt –l

General

43

5.6 The FGLDIR/lock directory

When running a BDL program, the license manager uses the FGLDIR/lock directory to
store information (number of active users). This directory must have access rights for
any user running a BDL program. If it does not exist, it is automatically created.

By default, the FGLDIR/lock directory is created with rwxrwxrwx rights, to let any user
access the directory and create files. If you want to restrict the access to a specific group
or user, you can use the FGLWRTUMASK environment variable to force fglWrt to use a
specific mask when creating the lock directory:

$ FGLWRTUMASK="022"; export FGLWRTUMASK

Warning: The FGLWRTUMASK environment variable must be set for any user
executing BDL programs, because the FGLDIR/lock directory can be re-created by
any user at first BDL program execution.

5.7 Using a license server

You don't need to install a locale license with fglWrt if you can access a license server
on the network.

To make the runtime system use a license server, you must set the following
FGLPROFILE entries:

Configuration
parameter Description

flm.server =
"<hostname>" Defines the name of the license server machine
flm.license.number
= "<number>" The license number (see basics)
flm.license.key =
"<key>" The license key (see basics)

If needed, you can specify the following optional parameters:

Configuration
parameter Description

flm.service =
<port> TCP port number used by license server (default is 6399)

flm.check =
<count>

Number of iterations between two controls of the user list
(default is 10)

flm.ping =
<milliseconds>

Timeout (ms) for ping to detect license server machine
(default is 3000)

flm.ps = "<ps
command>"

Command to get the number of processes (default is "ps -
ae")

Genero Business Development Language

44

6. Upgrading the Product

6.1 Pre-upgrade tasks

1. Verify the FGLDIR environment is set to the directory you want to upgrade.
2. Verify the user rights (you should login as the owner of the current installed files)

and ensure all binaries can be overwritten.
3. Stop all running programs before starting the installation.

6.2 Licensing an upgraded installation

It is not necessary to re-enter the license of the product, as long the new version is
installed into an existing installation directory and the new version to be installed is not a
major version number change.

Warning: If you upgrade to a new release with a major version number change,
you will have to re-license the product again.

6.3 Post-upgrade tasks

When migrating to a major Genero FGL version (for example, from 1.20 to 1.33), you
must recompile the sources and form files. While recompilation is not needed when
migrating to minor versions (for example, from 1.32 to 1.33), it is recommended to
benefit from potential p-code optimizations of the new version.

If required, you may need to re-create the C Extension libraries. Starting with version
2.00 C extension libraries must be provided as dynamically loadable modules and thus
should not required a rebuild. However, if Genero C API header files have changed,
consider recompiling you C extensions. Check FGLDIR/include/f2c for C API header file
changes.

7. Operating System Specific Notes

HP/UX

Thread Local Storage in shared libraries

General

45

On HP/UX, the shared library loader cannot load libraries using Thread Local Storage
(TLS), like Oracle libclntsh. In order to use shared libraries with TLS, you must use the
LD_PRELOAD environment variable. For more details, search for "shl_load + Thread
Local Storage" on the HP support site.

PostgreSQL on HP/UX LP64

On HP/UX LP64, the PostgreSQL database driver should be linked with the libxnet
library if you want to use networking. You can force the usage of libxnet by setting the
LD_PRELOAD environment variable to /lib/pa20_64/libxnet.sl.

IBM AIX

LIBPATH environment variable

The LIBPATH environment variable defines the search path for shared libraries. Make
sure LIBPATH contains all required library directories, including the system library path
/lib and /usr/lib.

Shared libraries archives

On AIX, shared libraries are usually provided in .a archives containing the shared
object(s). For example, the DB2 client library libdb2.a contains both the 32 bit (shr.o) and
the 64 bit (shr_64.o) versions of the shared library. Not all products follow this rule: for
example Oracle 9.2 provides libclntsh.a with shr.o on 64 bit platforms, and Informix
provides both .a archives with static objects and .so shared libraries as on other
platforms...

The Genero database drivers are created with the library archives or with the .so shared
objects, according to the database type and version. No particular manipulation is
needed to use any supported database client libraries on this platform.

IBM provides a document describing linking on AIX systems. It is recommended that you
read this document.

http://www.ibm.com/servers/esdd/pdfs/aix_ll.pdf

The dump command

On IBM AIX, you can check the library dependencies with the dump command:

$ dump -Hv -X64 dbmora92x.so

Unloading shared libraries from memory

In production environments, AIX loads shared libraries into the system shared library
segment in order to improve program load time. Once a shared library is loaded, other

Genero Business Development Language

46

programs using the same library are just attached to that memory segment. This works
fine as long as you don't need to change the shared library (to replace it with a new
version for example).

Once a shared library is loaded by the system, you cannot copy the executable file
unless you unload the library from the system memory. Thus, you will probably need to
unload the Genero shared libraries before installing a new version of the software. This
problem occurs when installing in the same directory, but can also happen when
installing in a different directory. As shared libraries will have the same name, AIX will
not allow to load multiple versions of the same library. Therefore, before installing a new
version of Genero, make sure all shared libraries are unloaded from the system memory.

To get the list of shared libraries currently loaded into memory, use the genkld
command. The genld command collects the list of all processes and reports the list of
loaded objects corresponding to each process. Then, use the slibclean command to
unload a shared library from the system shared library segment.

POSIX Threads and shared libraries

When using a thread-enabled shared library like Oracle's libclntsh, the program using
the shared object must be linked with thread support, otherwise you can experience
problems (like segmentation fault when the runner program ends). IBM recommends
using the xlc_r compiler to link a program with pthread support.

By default, the runtime system provided for AIX platforms is linked with pthread support.

Microsoft Windows

Microsoft Visual C version

You need Microsoft Visual C++ compiler to create C Extensions. Make sure you have
installed the correct Genero package, according to the MSVC version you have installed
on your system. MSVC runtime libraries of different VC++ versions are not compatible.
Refer to the name of the Genero package to check the VC++ version compatibility.

Searching binary dependencies

Microsoft Visual C provides the dumpbin utility.

To check for DLL dependency, you can use the /dependents option:

C:\ dumpbin /dependents mylib.dll
Microsoft (R) COFF/PE Dumper Version 7.10.3077
Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file mylib.dll

File Type: EXECUTABLE IMAGE

General

47

Image has the following dependencies:

isqlt09a.dll
MSVCR71.dll
KERNEL32.dll

Summary

1000 .data
1000 .rdata
1000 .text

SCO Unixware

Supported locales

Unixware 7.1 only supports a subset of the UTF-8 character set, named ISO-10646-
Minimum-European-Subset. This character set does not include all characters defined
by UTF-8. Therefore, you can experience problems when running an application using
UTF-8 characters that are not in the ISO-10646-Minimum-European-Subset character
set.

Genero Business Development Language

48

Tools and Components
Summary:

• Product Information Viewer (fpi)
• Runtime System Program (fglrun)
• Form Compiler (fglform)
• Program Compiler (fgl2p)
• Module Compiler (fglcomp)
• Module Linker (fgllink)
• Message Compiler (fglmkmsg)
• Database Schema Extractor (fgldbsch)
• Localized String File Compiler (fglmkstr)

See also: Installation and Setup.

fpi

Purpose:

The fpi utility program is provided to display product information, such as the version
number.

Syntax:

fpi [options]

Notes:

1. options are described below.

Options:

Option Description
-V Displays version information for the tool.
-h Displays options for the tool. Short help.

-l Displays version information for all BDL tools and
components.

Usage:

This tool displays the product version number. This version number is useful if you need
to identify the installed software. For example, you must reference the product version
when you declare a bug.

General

49

fglrun

Purpose:

The fglrun tool is the runtime system program that executes p-code BDL programs.

Syntax:

fglrun [options] program[.42r] [argument [...]]

Notes:

1. options are described below.
2. program.42r is the program name.
3. argument is a program argument passed to the program.
4. The .42r form file extension is optional.

Options:

Option Description
-V Display version information for the tool.
-h Displays options for the tool. Short help.

-i { mbcs } Displays information. -i mbcs displays information about
multi-byte character set settings.

-d Start in debug mode. See Debugger for more details.
-e extfile
[,...]

Specify a C-Extension module to be loaded. This option can
take a comma-separated list of extensions.

-l Link pcode nodules together, see Compiling Programs.
-o outfile Specify the output file for the link mode (-l option).

-b Displays compiler version information of the module, see
Compiling Programs.

-p Generate profiling information to stderr (UNIX only). See
Profiler for more details.

-s Displays size information in bytes about the module, see
Optimization.

-M Display a memory usage diagnostic when program ends, see
Optimization.

-m Check for memory leaks. If leaks are found, displays memory
usage diagnostic and stops with status 1, see Optimization.

Usage:

This tool executes BDL programs.

fglrun myprogram.42r -x 123

Genero Business Development Language

50

fglform

Purpose:

The fglform tool compiles form specification files into XML formatted files used by the
programs.

Syntax:

fglform [options] srcfile[.per]

Notes:

1. options are described below.
2. srcfile.per is the form specification file.
3. The .per form file extension is optional.

Warning:

1. All .per form specification files used by the program must be compiled before
usage.

Options:

Option Description
-V Display version information for the tool.
-h Displays options for the tool. Short help.

-i { mbcs } Displays information. -i mbcs displays information about
multi-byte character set settings.

-m Extract localized strings.

-M Write error messages to standard output instead of creating a
.err error file.

-W { all } Display warning messages. Only -W all option is supported
for now.

-E Preprocess only.
-p option Preprocessing option.

Here option can be one of:
- nopp: Disable preprocessing.
- noli: No line number information (only with -E option).
- fglpp: Use # syntax instead of & syntax.

-I path Provides a path to search for include files.
-D ident Defines the macro 'ident' with the value 1.

General

51

Usage:

This tool compiles a .per form specification file into a .42f compiled version:

fglform custform.per

The .42f compiled version is an XML formatted file used by BDL programs when a form
definition is loaded with the OPEN FORM or OPEN WINDOW WITH FORM instructions.

fglmkmsg

Purpose:

The fglmkmsg tool compiles message files into a binary version used by the BDL
programs.

Syntax:

fglmkmsg [options] srcfile [outfile]

Notes:

1. options are described below.
2. srcfile is the source message file.
3. outfile is the destination file.

Warning:

1. All .msg message files used by the program must be compiled before usage.

Options:

Option Description
-V Display version information for the tool.
-h Displays options for the tool. Short help.
-r msgfile De-compiles a binary message file.

Usage:

This tool compiles a .msg message file into a .iem compiled version:

fglmkmsg mess01.msg

For backward compatibility, you can specify the output file as second argument:

fglmkmsg mess01.msg mess01.iem

Genero Business Development Language

52

The .iem compiled version can be used by BDL programs, for example, when the HELP
clause is used in a MENU or INPUT instruction.

See message files for more details.

fglcomp

Purpose:

The fglcomp tool compiles BDL program sources files into a p-code version.

Syntax:

fglcomp [options] srcfile[.4gl]

Notes:

1. options are described below.
2. srcfile.4gl is the program source file.
3. The .4gl extension is optional.

Warnings:

1. The .42m p-code modules must be linked together with fgllink or fgl2p in order to
create a runable program.

Options:

Option Description
-V Display version information for the tool.
-h Displays options for the tool. Short help.

-i { mbcs } Displays information. -i mbcs displays information about
multi-byte character set settings.

-S Dump Static SQL statements found in the source.
-m Extract localized strings.

-M Write error messages to standard output instead of creating a
.err error file.

-W what Display warning messages. For a complete description, see
below.

-E Preprocess only.
-p option Preprocessing option.

Here option can be one of:
- nopp: Disable preprocessing.
- noli: No line number information (only with -E option).
- fglpp: Use # syntax instead of & syntax.

General

53

-G Produce .c and .h globals interface files for C Extensions.
-I path Provides a path to search for include files.
-D ident Defines the macro 'ident' with the value 1.

Usage:

This tool compiles a .4gl into a .42m p-code module that can be linked to other modules
to create a program or a library.

fglcomp customers.4gl

If a compilation error occurs, the tool generates a file that has the .err extension, with the
error message inserted at the line where the error occurred. You can change this
behavior by using the -M option to display the error message to the standard output.

To create a executable program, the fgllink or fgl2p tool must be used to link the .42m
compiled file with other modules.

The -W option

The -W option can be used to check for wrong language usage, that must be supported
for backward compatibility. When used, this option helps to write better source code.

The argument following -W option can be one of return, unused, stdsql, print, error
and all.

• Using -W all enables all warning flags.
• Using -W error makes the compiler stop if any warning is raised, as if an error

occurred.
• The -W unused option displays a message for all unused variables.
• The -W return option displays a warning if the same function returns different

number of values with several RETURN..
• The -W stdsql option displays a message for all non-portable SQL statements

or language instructions.
• The -W print option displays a message when the PRINT instruction is used

outside a REPORT.

The -W option also supports the negative form of arguments by using the no- prefix as
in: no-return, no-unused, no-stdsql. You might need to use these negative form in
order to disable some warning when using the -W all option:

fglcomp -Wall -Wno-stdsql customers.4gl

The order of warning arguments is important: switches will be enabled/disabled in the
order of appearance in the command line. Using the negative form of warning arguments
before -W all makes no sense.

Genero Business Development Language

54

fgllink

Purpose:

The fgllink tool assembles p-code modules compiled with fglcomp into a .42r program
or a .42x library.

Syntax:

To create a library:

fgllink [options] -o outfile.42x module.42m [...]

To create a program:

fgllink [options] -o outfile.42r { module.42m | library.42x } [...]

Notes:

1. options are described below.
2. outfile.42r is the name of the program to be created.
3. outfile.42x is the name of the library to be created.
4. module.42m is a p-code module compiled with fglcomp.
5. library.42x is the name of a library to be linked.

Options:

Option Description
-V Display version information for the tool.
-h Displays options for the tool. Short help.

-o outfile.ext Output file specification, where ext can be 42r for a program
or 42x for a library.

otheroption Other options are passed to fglrun for linking.

Usage:

This tool links .42m p-code modules together to create a .42x library or a .42r program
file.

fgllink -o myprog.42x module1.42m module2.42m lib1.42x

Note that fgllink is just a wrapper calling fglrun with the -l option.

fgl2p

Purpose:

General

55

The fgl2p tool compiles source files and assembles p-code modules into a .42r
program or a .42x library.

Syntax:

To create a library:

fgl2p [options] -o outfile.42x { pcodem.42m | srcfile.4gl } [...]

To create a program:

fgl2p [options] -o outfile.42r { pcodem.42m | srcfile.4gl | library.42x
} [...]

Notes:

1. options are described below.
2. outfile.42r is the name of the program to be created.
3. outfile.42x is the name of the library to be created.
4. pcodem.42m is a p-code module compiled with fglcomp.
5. source.4gl is a program source file.
6. library.42x is the name of a library to be linked.

Options:

Option Description
-V Display version information for the tool.
-h Displays options for the tool. Short help.
otheroption Other options are passed to the linker or compiler.

Usage:

This tool can compile .4gl source files and link .42m p-code modules together, to create
a .42x library or a .42r program file.

fgl2p -o myprog.42x module1.4gl module2.42m lib1.42x

This tool is provided for convenience, in order to create programs or libraries in one
command line. It uses the fglcomp and the fgllink tools to compile and link modules
together.

fgldbsch

Purpose

The Database schema extractor is the tool provided to generate the Database Schema
Files from an existing database.

Genero Business Development Language

56

Syntax:

fgldbsch -db dbname [options]

Notes:

1. dbname is the name of the database from which the schema is to be extracted.
2. options are described below.

Options:

Option Description
-V Display version information for the tool.
-h Displays options for the tool. Short help.
-H Display long help.
-v Enable verbose mode (display information messages).
-ct Display data type conversion tables.

-db dbname Specify the database as dbname. This option is required to
generate the schema files.

-dv dbdriver Specify the database driver to be used.
-un user Define the user name for database connection as user.
-up pswd Define the user password for database connection as pswd.
-ow owner Define the owner of the database tables as owner.

-cv string Specify the data type conversion rules by character positions
in string.

-of name Specify output files prefix, default is database name.
-tn tabname Extract the description of a specific table.

-ie Ignore tables with columns having data types that cannot be
converted.

-cu Generate upper case table and column names.
-cl Generate lower case table and column names.
-cc Generate case-sensitive table and column names.
-st Generate database system tables.

Usage:

The fgldbsch tool extracts the schema description for any database supported by the
product. For more details about generated schema files, see Database Schema Files.

fglmkstr

Purpose:

The fglmkstr tool compiles localized string files.

General

57

Syntax:

fglmkstr [options] source-file[.str]

Notes:

1. options are described below.
2. source-file is the .str string file. You can omit the file extension.

Options:

Option Description
-V Display version information for the tool.
-h Displays options for the tool. Short help.

Usage:

This tool is used to compile .str localized string files into .42s files.

For more details, see Localized Strings.

Genero Business Development Language

58

Frequently Asked Questions
This page contains questions frequently asked when migrating applications from BDL V3
to Genero BDL.

FAQ001: When using Genero, why do I have a different display than with BDL V3?
FAQ002: Why does an empty window always appear?
FAQ003: Why do some COMMAND KEY buttons no longer appear?
FAQ004: Why aren't the elements of my forms aligned properly?
FAQ005: Why doesn't the ESC key validate my input?
FAQ006: Why doesn't the CTRL-C key cancel my input?
FAQ007: Why do the gui.* FGLPROFILE entries have no effect?
FAQ008: Why do I get a link error when using the FGL_GETKEY() function?

FAQ001: When using Genero, why do I have a different display
than with BDL V3?

Explanation:

Genero introduces major Graphical User Interface enhancements that sometimes
require code modification. With BDL V3, application windows created with the OPEN
WINDOW instruction were displayed as static boxes in the main graphical window. In the
new GUI mode of Genero, application windows are displayed as independent, resizable
graphical windows.

Links: Dynamic User Interface, Windows, Application class.

FAQ002: Why does an empty window always appear?

Description:

An additional empty window appears when I explicitly create a window with OPEN
WINDOW (following the new window management rules).

01 MAIN
02 OPEN WINDOW w1 AT 1,1 WITH FORM "form1"
03 MENU "Example"
04 COMMAND "Exit"
05 EXIT MENU
06 END MENU
07 CLOSE WINDOW w1
08 END MAIN

General

59

Explanation:

In the new standard GUI mode, all Windows are displayed as real front-end windows,
including the default SCREEN Window. When an application starts, the runtime system
creates this default SCREEN Window, as in version 3. This is required because some
applications use the SCREEN Window to display forms (they do not use the OPEN
WINDOW instruction to create new windows). So, to facilitate V3 to Genero migration,
the runtime system must keep the default SCREEN window creation; otherwise, existing
applications would fail if their code was not modified.

Solution:

You can either execute a CLOSE WINDOW SCREEN at the beginning of the program,
to close the default window created by the runtime system, or use the OPEN FORM +
DISPLAY FORM instructions, to display the main form in the default SCREEN window.

Example:

01 MAIN
03 OPEN FORM f FORM "form1"
03 DISPLAY FORM f
04 MENU "Example"
05 COMMAND "Exit"
06 EXIT MENU
07 END MENU
08 END MAIN

FAQ003: Why do some COMMAND KEY buttons no longer
appear?

Description:

When creating a MENU with COMMAND KEY(keyname) "option" clause, the button for
keyname is no longer displayed:

01 MAIN
02 MENU "Example"
03 COMMAND "First"
04 EXIT PROGRAM
05 COMMAND KEY (F5) "Second"
06 EXIT PROGRAM
07 COMMAND KEY (F6) -- Third is a hidden option
08 EXIT PROGRAM
09 END MENU
10 END MAIN

Genero Business Development Language

60

Explanation:

In BDL Version 3, when using the MENU instruction, several buttons are displayed for
each clause of the type COMMAND KEY(keyname) "option": one for the menu option,
and others for each associated key.

When using Genero, for a named MENU option defined with COMMAND KEY, the buttons
of associated keys are no longer displayed (F5 in our example), because there is
already a button created for the named menu option. The so called "hidden menu
options" created by a COMMAND KEY(keyname) clause (F6 in our example) are not
displayed as long as you do not associate a label, for example with the
FGL_SETKEYLABEL() function.

FAQ004: Why aren't the elements of my forms aligned properly?

Description:

In my forms, I used to align labels and fields by character, for typical terminal display.
But now, when using the new LAYOUT section, some elements are not aligned as
expected. In the following example, the beginning of the field f001 is expected in the
column near the end of the digit-based text of the first line, but the field is actually
displayed just after the label "Name:":

01 DATABASE FORMONLY
02
03 LAYOUT
04 GRID {
05 01234567890123456789
06 Name: [f001]
07 }
08 END
09 END
10
11 ATTRIBUTES
12 f001 = formonly.field1 TYPE CHAR;
13 END

Explanation:

By default, BDL Genero displays form elements with proportional fonts, using layout
managers to align these elements inside the window. In some cases, this requires a
review of the content of form screens when using the new layout management, because
the layout is based on new alignment rules which are more abstract and automatic than
the character-based grids in Version 3.

In most cases, the form compiler is able to analyze the layout section of form
specification files in order to produce an acceptable presentation, but sometimes you will
have to touch the form files to give hints for the alignment of elements.

General

61

Solution:

In the above example, the field f001 is aligned according to the label appearing on the
same line. By adding one space before the field position, the form compiler will
understand that the field must be aligned to the text in the first line:

01 DATABASE FORMONLY
02
03 LAYOUT
04 GRID {
05 01234567890123456789
06 Name: [f001]
07 }
08 END
09 END
10
11 ATTRIBUTES
12 f001 = formonly.field1 TYPE CHAR;
13 END

In the next example, the fields are automatically aligned to the text in the first line:

01 DATABASE FORMONLY
02
03 LAYOUT
04 GRID {
05 First Last
06 Name: [f001] [f002]
07 }
08 END
09 END
10
11 ATTRIBUTES
12 f001 = formonly.field1 TYPE CHAR;
13 f002 = formonly.field2 TYPE CHAR;
14 END

FAQ005: Why doesn't the ESC key validate my input?

Description:

The traditional 4GL ESC key does not validate an INPUT, but cancels it instead!

Explanation:

To follow front end platform standards (like Microsoft Windows for example), Genero
must reserve the ESC key as the standard key to cancel the current interactive
statement.

Genero Business Development Language

62

Solution:

You can change the accelerator keys for the 'accept' action with Action Defaults.
However, is not recommended to change the defaults, because ESC is the standard key
to be used to cancel a dialog in GUI applications.

FAQ006: Why doesn't the CTRL-C key cancel my input?

Description:

The traditional 4GL CTRL-C key does not cancel an INPUT.

Explanation:

To follow front end platform standards (like Microsoft Windows for example), Genero
BDL must reserve the CTRL-C key as the standard key to copy the current selected text
to the clipboard, for cut and paste.

Solution:

You can change the accelerator keys for the 'cancel' action with Action Defaults.
However, is not recommended to change the defaults, because ESC is the standard key
to be used to cancel a dialog in GUI applications.

FAQ007: Why do the gui.* FGLPROFILE entries have no effect?

Description:

The gui.* and some other FGLPROFILE entries related to graphics no longer have
effect.

Explanation:

These entries are related to the old user interface. They are no longer supported. In
version 3, the gui.* entries were interpreted by the front end. As the user interface has
completely been re-designed, the gui.* entries have been removed, too .

Solution:

Review the definition of these entries and use the new possibilities of the Dynamic User
Interface.

Entry Replacement
menu.Style None, no longer

General

63

needed.

key.key-name.order None, no longer
needed.

Menu.defKeys None, no longer
needed.

InputArray.defKeys None, no longer
needed.

DisplayArray.defKeys None, no longer
needed.

Input.defKeys None, no longer
needed.

Construct.defKeys None, no longer
needed.

Prompt.defKeys None, no longer
needed.

Sleep.defKeys None, no longer
needed.

GetKey.defKeys None, no longer
needed.

gui.local.edit.* None, no longer
needed.

gui.preventClose.message
None, cancel action is
sent when the user
closes a window.

gui.chartable None, no longer
needed.

gui.whatch.delay None.
gui.useOOB.interrupt None.
gui.containerType None.
gui.containerName None.
gui.mdi.* None.
gui.screen.clientPositioning None.
gui.screen.size.* None.
gui.screen.x None.
gui.screen.incrx None.
gui.screen.y None.
gui.screen.incry None.
gui.screen.withwm None.
gui.workSpaceFrame.noList None.
gui.workSpaceFrame.screenArray.optimalStretchNone.
gui.workSpaceFrame.screenArray.compressed None.
gui.controlFrame.visible None.
gui.controlFrame.position None.
gui.controlFrame.scrollVisible None.
gui.controlFrame.scroll.* None.

Genero Business Development Language

64

gui.bubbleHelp.* None, front end
specific.

gui.directory.images None, front end
specific.

gui.toolbar.dir None, front end
specific.

gui.toolbar.* The new toolbar
definition.

gui.menu.* None.
gui.menuButton.* None.
gui.button.* None.
gui.empty.button.visible None.

gui.keyButton.* None, front end
specific.

gui.key.add_function None.
gui.key.interrupt None.
gui.key.doubleClick.left None.
gui.key.click.right None.
gui.key.num.translate None.

gui.key.copy None, front end
specific.

gui.key.paste None, front end
specific.

gui.key.cut None, front end
specific.

gui.form.foldertab.* None.
gui.key.forldertab.input.sendNextField None.
gui.key.foldertab.num.selection None.

gui.mswindow.button None, front end
specific.

gui.fieldButton.style None, front end
specific.

gui.BMPButton.style None, front end
specific.

gui.key.radiocheck.invokeexit None.

gui.entry.style None, front end
specific.

gui.interaction.inputarray.usehighlightcolor None, front end
specific.

gui.mswindow.scrollbar None, front end
specific.

gui.scrollbar.expandwindow None, front end
specific.

gui.statusbar.* None, front end
specific.

General

65

gui.display.* None.
gui.user.font.choice None.

FAQ008: Why do I get a link error when using the
FGL_GETKEY() function?

Description:

This function is no longer supported; it has been removed from the language.

Explanation:

That function waited for a key-press from the user, but this kind of interaction does not fit
into the new user interface protocol.

Solution:

Review the program and use standard interactive instructions to manage the interaction
with the user.
See the Dynamic User Interface concept.

Genero Business Development Language

66

New Features of the Language
• Product line 2.1x

o Version 2.11
o Version 2.10

Product line 2.0x

o Version 2.02
o Version 2.01
o Version 2.00

• Product line 1.3x
o Version 1.33
o Version 1.32
o Version 1.31
o Version 1.30

• Product line 1.2x
o Version 1.20

• Product line 1.1x
o Version 1.10

See also: FAQ List.

Version 2.11
• New database drivers
• Static SQL syntax extension

o Derived tables and derived column list
o New transaction isolation levels of Informix 11
o The CAST operator

• New preprocessor option to remove line number information
• Connecting to Oracle as SYSDBA or SYSOPER
• New methods for ui.ComboBox
• Make current row visible after sort in lists
• Reading pcode build information of older versions

New database drivers

The following database drivers are supported by Genero version 2.11:

• dbmpgs83x for a PostgreSQL 8.3.x client.
• dbmmys51x for a MySQL 5.1.x client.
• dbmftm90 for a FreeTDS 0.82 client connecting to SQL Server 2005.
• dbmsncA0 for a SQL Server Native client connecting to SQL Server 2008.
• dbmoraB1 for a Oracle 11g client.

General

67

Static SQL syntax extension

Derived tables and derived column list

Genero FGL static SQL syntax now supports derived tables and derived column lists in
the FROM clause, for example:

 SELECT * FROM (SELECT * FROM customers ORDER BY cust_num) AS
t(c1,c2,c3,...)

See database server documentation for more details about this SQL feature. Note that
Informix 11 does not support the full ANSI SQL 92 specification for derived columns,
while other databases like DB2 do. For this reason, fglcomp allows the ANSI standard
syntax.

New transaction isolation levels of Informix 11

The SET ISOLATION statement now supports the new Informix 11 clauses for the
COMMITTED READ option:

 SET ISOLATION TO COMMITTED READ [LAST COMMITTED] [RETAIN UPDATE
LOCKS]

When connecting to a non-Informix database, the LAST COMMITTED and RETAIN
UPDATE LOCKS are ignored; other databases do not support these options, and have
the same behavior as when these options are used with Informix 11.

The CAST operator

The CAST operator can now be used in static SQL statements:

 CAST (expression AS sql-data-type)

Note that only Informix data types are supported after the AS keyword.

New preprocessor option to remove line number information

You can now remove line number information with -p noln when preprocessing sources
to get a readable output:

 fglcomp -E -p noln mymodule.4gl

Connecting to Oracle as SYSDBA or SYSOPER

In order to execute database administration tasks, you can now connect to Oracle as
SYSDBA or SYSOPER with the CONNECT instruction:

 CONNECT TO "dbname" USER "scott/SYSDBA" USING "tiger"

Genero Business Development Language

68

New methods for ui.ComboBox

The ui.ComboBox class has been extended with new methods: getTextOf() and
getIndexOf().

Make current row visible after sort in lists

A new FGLPROFILE entry has been added to force the current row to be automatically
shown after a sort in a table:

 Dialog.currentRowVisibleAfterSort = 1

By default, the offset does not change and the current row may disappear from the
window. When this new parameter is used, the current row will always be visible. For
more details, see Runtime Configuration.

Reading pcode build information of older versions

The -b option of fglrun has been extended to recognize headers of pcode modules
compiled with older versions of FGL. For more details, see Compiling Programs.
Additionally, fglform now writes build information in the 42f files, to identify on the
production site what FGL version was used to compile forms.

Version 2.10
• Multiple Dialogs
• TRY/CATCH pseudo statement
• WHENEVER ... RAISE
• SQL Server Native Client driver
• Support for SPLITTER attribute
• Double-click in tables
• New X conversion code in fgldbsch
• SQL Interruption in database drivers
• NULL pointer exceptions can be trapped
• Client socket interface in Channels
• Stack trace
• GUI connection timeout
• Assigning a value to a TEXT variable
• New presentation styles
• fglrun -s option now displays more information
• fglrun -e option takes list of extensions
• Detecting data changes immediately
• Controlling data validation for actions
• New MINWIDTH, MINHEIGHT attribute in forms
• Avoid automatic temporary row in INPUT ARRAY
• New implicit navigation actions in INPUT ARRAY and DISPLAY ARRAY

General

69

• New DOM methods to serialize or parse strings
• New I/O methods to read/write TEXT or BYTE from/to files

Multiple Dialogs

A new DIALOG instruction handles different parts of a form simultaneously. See also
ui.Dialog class.

TRY/CATCH pseudo statement

The TRY/CATCH pseudo statement can handle exceptions raised by the runtime
system.

WHENEVER RAISE

Instructs the DVM that an uncaught exception will be handled by the caller of the
function. See Exceptions.

SQL Server Native Client driver

Support for SQL Server 2005 Native Client is now provided.

Support for SPLITTER attribute

HBox and VBox containers can now have a splitter. See also Layout Tags.

Double-click in tables

With the new DOUBLECLICK table attribute, it is now possible to send a specific action
when the user double-clicks on a row.

New X conversion code in fgldbsch

The fgldbsch tool now supports the X conversion code to ignore table columns of a
specific type. This is useful for ROWID-like columns such as SQL Server's
uniqueidentifier columns.

SQL Interruption in database drivers

Before version 2.10, SQL interruption was not supported well for Oracle, SQL Server,
DB2 and Genero db databases. SQL interruption is now available with all databases
providing an API to cancel a long-running query.

For more details, see SQL Programming.

Genero Business Development Language

70

NULL pointer exceptions can be trapped

Error -8083 will be raised if you try to call an object method with a variable that does not
reference an object (that contains NULL):

DEFINE x ui.Dialog
-- x is NULL
CALL x.setFieldActive("fieldname",FALSE) -- raises -8083

In previous versions, this raised a fatal NULL pointer error. This exception can now be
trapped with WHENEVER ERROR.

Client socket interface in Channels

The Channel class now provides a method to establish a client socket connection to a
server, with the new openClientSocket() method.

Stack trace

For debugging purpose, you can now get the stack trace of the program with the
Application.getStackTrace() method.

GUI Connection Timeout

It is now possible to define a timeout delay for front-end connections with the following
FGLPROFILE entry:

gui.connection.timeout = seconds

See Dynamic User Interface for more details.

Assigning a value to a TEXT variable

Before version 2.10, it was only possible to assign a TEXT to a TEXT variable. Now you
can assign STRING, CHAR and VARCHAR values to a TEXT variable. For more details
about data type conversions, see the Data Conversion Table.

New Presentation styles

Presentation Styles have been extended:

• The style attribute "position" for Windows can be set to "previous"
• TextEdit now has the "textSyntaxHighlight" attribute (value can be "per", more

to come...)
• All widgets can now use the "localAccelerators" global style attribute to interpret

standard navigation and editor keys (like Home/End) without firing an action that
uses the same keys as accelerators.

General

71

fglrun -s option now displays more information

The -s option of fglrun now reports more information about sizes. See Optimization for
more details.

fglrun -e option takes list of extensions

The fglrun -e option now supports a comma-separated list of extensions, and -e can be
specified multiple times:

fglrun -e ext1,ext2,ext3 -e ext4,ext5 myprogram

See C Extensions for more details.

Detecting data changes immediately

It is now possible to get an action event when the user modifies the value of a field, with
the predefined dialogtouched action.

Controlling data validation for actions

You can now use the validate="no" action default attribute to prevent data validation
when executing an action.

New MINWIDTH, MINHEIGHT attributes in forms

It is now possible to define a minimum width and height for forms with the MINWIDTH,
MINHEIGHT attributes.

Avoid automatic temporary row in INPUT ARRAY

With the new AUTO APPEND attribute, you can now avoid the automatic creation of a
temporary row in INPUT ARRAY.

New implicit navigation actions in INPUT ARRAY and DISPLAY
ARRAY

When a DISPLAY ARRAY or INPUT ARRAY is executed, the runtime system now
creates two more implicit actions to navigate in the list: firstrow and lastrow. In previous
versions, only nextrow and prevrow actions were created. You can now bind four
buttons to these actions to get a typical list navigation toolbar. Note that the default
action views are hidden for these navigation actions.

New DOM methods to serialize or parse strings

The parse() and toString() methods are now available for a DomNode object, and a
DomDocument object can be created with createFromString().

Genero Business Development Language

72

New I/O methods to read/write TEXT or BYTE from/to files

The TEXT and BYTE data types now support the methods readFile(fileName) and
writeFile(fileName).

Version 2.02
• New Static SQL Commands
• Global Variables in C Extensions
• Localization of runtime system error messages
• Debugger enhancement
• Tab index can be zero
• New FGLPROFILE entry for Oracle driver
• New FGLPROFILE entry to define temporary table emulation type

New Static SQL Commands

Some common SQL statements have been added to the static SQL syntax, such as
TRUNCATE TABLE, RENAME INDEX, CREATE / ALTER / DROP / RENAME
SEQUENCE. See Static SQL Commands.

Global Variables in C Extensions

You can now share global variables between the FGL source and the C Extension, by
using the -G option of fglcomp. See Global variables in C Extensions.

Localization of runtime system error messages

It is now possible to customize the runtime system error messages according to the
current locale. See Localization for more details.

Debugger enhancement

New debugger commands (ptype).

You can now avoid switching into debug mode with SIGTRAP (Unix) or CTRL-Break
(Windows) with the new fglrun.ignoreDebuggerEvent FGLPROFILE entry.

Tab index can be zero

You can now specify a TABINDEX of zero to exclude the form item from the tagging list.
See TABINDEX for more details.

General

73

New FGLPROFILE entry for Oracle driver

It is now possible to specify the SELECT statement producing the unique session
identifier which is used for temporary table names.
See Database vendor specific parameters for more details.

New FGLPROFILE entry to define temporary table emulation
type

To emulate Informix temporary tables, you can now set the temptables.emulation
parameter to use GLOBAL TEMPORARY TABLES instead of permanent tables.
See temporary table emulation for more details.

Version 2.01
• FESQLC compiler (V2)
• DB2 V9.x support
• PostgreSQL V 8.2.x support
• Extension of the form layout tag syntax
• Negative form of warning flags in fglcomp
• Run supports ComSpec variables on Windows

FESQLC compiler (V2)

ESQL/C Compiler. See FESQLC compiler (V2).

DB2 V9.x support

Support of DB2 V9.x. See DB2 V9.x support.

PostgreSQL V 8.2.x support

Support of PostgreSQL 8.2.x. See PostgreSQL V 8.2.x support.

Extension of the form layout tag syntax

The layout tag syntax in grids has been extended to support an ending tag to get better
control of form layout.

Negative form of warning flags in fglcomp

The fglcomp compiler now supports a negative form for warning arguments.

Genero Business Development Language

74

Run supports ComSpec variable on Windows

When using the RUN command, the ComSpec environment variable is now used under
Windows platforms.

Version 2.00
• Dynamic Runner Architecture
• User defined types
• New Widgets
• Extended Schema Files
• File Management Functions
• Math Functions
• Stored procedure calls
• Informix-like C API library
• Memory usage optimization
• The IMPORT instruction
• WIDTH and HEIGHT attributes in Images
• New debugger commands
• Improved Presentation Styles
• Compiler supports constraints in CREATE TABLE
• Automatic front-end startup
• New channel function to detect EOF
• Responding to CTRL_LOGOFF_EVENT on Windows
• New compiler warning options
• Fourth accelerator definition
• Conditional TTY attributes for all widgets
• New FGL_SETENV() built-in function
• Support for entities in XML reader and writer
• Schema extractor supports now Informix LVARCHAR

Dynamic Runner Architecture

Runner now uses shared libraries; you no longer need to link a runner. See Dynamic
Runner Architecture.

User defined types

You can now define your own data type with records or arrays. See User defined types.

New Widgets

New widgets have been added: SLIDER, SPINEDIT, TIMEEDIT.

General

75

Extended Schema Files

Database Schema files have been extended for Genero (FIELD item type). See
Extended Schema Files.

File Management Functions

File management function library provided as loadable extension. See File Management
Functions.

Math Functions

Mathematical function library provided as loadable extension. See Math Functions.

Stored procedure calls

It is now possible to call stored procedures with output parameters. See Stored
procedure calls.

Informix-like C API library

C extension support has been extended with Informix-like C API functions. See Informix-
like C API library.

Memory usage optimization

The runtime system now shares several static elements among all processes, reducing
the memory usage. The shared elements are: Data type definitions, string constants and
debug information. For example, when a program defines a string containing a long SQL
statement, all Genero processes will share the same string, which is allocated only once.

The IMPORT instruction

To declare a C extension module, you must now use the IMPORT instruction at the
beginning of a module.

WIDTH and HEIGHT attributes in Images

You can now specify the WIDTH and HEIGHT attributes for IMAGE form items, as a
replacement for PIXELWIDTH / PIXELHEIGHT.

New debugger commands

New commands have been added to the debugger (call, ignore).

Genero Business Development Language

76

Improved Presentation Styles

You can now specify pseudo selectors such as focus, active, inactive, input, display for
fields and odd / even states for table rows.

Some new style attributes were added:

• 'errorMessagePosition' can be used for Windows to define how the ERROR
message must be displayed;

• 'highlightTextColor' for tables allows you to change the color of the selected line;
• 'border' allows you to remove the border of some widgets like button, images;
• 'firstDayOfWeek' can be used for DateEdit widget to specify the first day of the

week in the calendar;
• The auto-selection behavior for ComboBoxes and RadioGroup can be changed

using 'autoSelectionStart'.

For more details, see Presentation Styles.

Compiler supports constraints in CREATE TABLE

It is now possible to specify primary key, foreign key and check constraints in static
CREATE TABLE statements:

 CREATE TABLE t1 (
 col1 INTEGER PRIMARY KEY,
 col2 CHAR(2),
 col3 DATE,
 FOREIGN KEY (col2) REFERENCES t2(col1)
)

Automatic front-end startup

In X11 or Windowse TSE environments, you can now automatically start up the front-
end with FGLPROFILE entries. See Dynamic User Interface for more details.

New channel function to detect EOF

The Channel class now has an isEof() method to detect end of file.

Responding to CTRL_LOGOFF_EVENT on Windows

It is now possible to ignore the CTRL_LOGOFF_EVENT events on Windows platforms.

New compiler warning options

The fglcomp compiler has new warning flags: See fglcomp for more details.

General

77

Fourth accelerator definition

You can now define a fourth accelerator for an action in actions defaults or in the form
files.

Conditional TTY attributes for all widgets

It is now possible to specify TTY attributes (COLOR, REVERSE) and conditional TTY
attributes (COLOR WHERE) for all type of fields.
See Form Specification Files and COLOR WHERE attribute for more details.

New FGL_SETENV() built-in function

A new built-in function has been added to set an environment variable: FGL_SETENV().

Support for entities in XML reader and writer

The XML reader and writer classes have been extended to properly support markup
language entities (like HTML's).

Schema extractor supports now Informix LVARCHAR

The fgldbsch tool can now extract database tables with LVARCHAR columns. The
LVARCHAR type is converted to VARCHAR2(n>255) in the .sch file.

Version 1.33
• TypeInfo class
• Generic ODBC support
• MySQL 5 support
• Genero DB 3.4 support
• PostgreSQL 8.1 support
• SQL Server 2005 support
• New license manager
• FESQLC compiler (V1)
• Binary mode in Channel class
• New header files for C extensions
• Block fetch with SQL Server
• Third accelerator definition

TypeInfo class

A class to serialize program variables. See TypeInfo class.

Genero Business Development Language

78

Generic ODBC support

A generic ODBC database driver is now available (code is odc). See Generic ODBC
support.

MySQL 5 support

MySQL version 5 is now supported. See MySQL 5. support.

Genero DB 3.4 support

Genero DB version 3.4 is now supported. See Genero DB support.

PostgreSQL 8.1 support

PostgreSQL version 8.1 is now supported. See PostgreSQL 8.1 support.

SQL Server 2005 support

Microsoft SQL Server 2005 is now supported. See SQL Server 2005 support.

New license manager

New license manager supporting strict licensing. See New license manager.

FESQLC compiler (V1)

ESQL/C compiler.

Binary mode in Channel class

The base.Channel class now supports a binary mode with the 'b' option, to control
CR/LF translation when using DOS files.

New header files for C extensions

Distribution of Datetime.h, Interval.h, loc_t.h header files in FGLDIR/include/f2c.

Block fetch with SQL Server

You can now pre-fetch rows by block with SQL Server to get better performance. Use
the following FGLPROFILE entry to specify the maximum number of rows the driver can
pre-fetch:

dbi.database.<dbname>.msv.prefetch.rows = <count>

General

79

See "Database vendor specific parameters" in Connections for more details.

Third accelerator definition

You can now define a third accelerator for an action in actions defaults or in the form
files.

Version 1.32
• PostgreSQL 8.0 support
• File transfer functions
• Debugger enhancement
• Preprocessor is now integrated in compilers

PostgreSQL 8.0 support

PostgreSQL version 8.0 is now supported (8.0.2 and higher). See PostgreSQL 8.0
support.

File transfer functions

Get/Put functions to transfer files from/to the front-end. See File transfer functions.

Debugger enhancement

New debugger commands (watch with condition, whatis).

Preprocessor is now integrated in compilers

The preprocessor is now part of the compilers and is always enabled. Preprocessing
directives start with an ampersand character (&).

Version 1.31
• Front-end Protocol Compression
• MySQL 4.1.x support
• Oracle 10g support
• Dynamic C extensions
• New built-in functions

Genero Business Development Language

80

• Interruption handling
• New Dialog method
• Front-end identification

Front-end Protocol Compression

Faster user interface communication. See Front-end Protocol Compression.

MySQL 4.1.x support

MySQL version 4.1.x is now supported, 3.23 is de-supported. See MySQL 4.1.x support.

Oracle 10g support

Oracle version 10g is now supported. See Oracle 10g support.

Dynamic C extensions

C extensions can be loaded dynamically, no need to re-link runner. See Dynamic C
extensions.

New built-in functions

The FGL_WIDTH built-in function computes the number of print columns needed to
represent a single or multi-byte character.

Interruption handling

Interruption handling with SSH port forwarding - only supported with GDC 1.31!

New Dialog method

New method ui.Form.setFieldStyle() to set a style for a field.

Front-end identification

Improved front-end identification when connecting to GUI client.

Version 1.30
• Preprocessor
• Layout Enhancements

General

81

• Presentation Styles
• Localization Support
• Action defaults in forms
• Dialog Control
• Sybase ASA Support
• PostgreSQL 7.4 support
• Build information in 42m modules
• MySQL 3.23 support for Windows platforms
• Upshift / Downshift in Comboboxes
• Message compiler does not require output file any longer
• Breakpoint in source code
• Row highlighting in tables
• Method base.Array.appendElement()
• Compiled Localized String file extension 42s
• Assignment operator
• New fglcomp option for SQL
• Compiler generates standard UPDATE syntax
• Defining color attributes for each table cell
• Form methods in ui.Window
• Method base.StringBuffer.replace()
• Methods base.Channel.readLine() and base.Channel.writeline()
• Dynamic arrays used as data model in INPUT ARRAY / DISPLAY ARRAY
• TITLE attribute for fields
• FGLLDPATH used during link
• Method ui.Dialog.setDefaultUnbuffered()
• Action Defaults applied by DVM
• DATEEDIT supports DBDATE & FORMAT
• New predefined action 'close'
• Tabbing order in TABLEs during INPUT ARRAY
• Preprocessor raises errors for invalid # macros
• ACCEPT xx instruction
• ACCEPT / CANCEL dialog attribute
• Preprocessor disabled by default
• INPUT ARRAY now has default 'append' action
• Linker option -O removed
• Method ui.Window.createForm()
• TopMenu attributes in .per
• Specifying real field size in forms
• Version number in UI protocol
• C-like source preprocessor
• MENU node available in BEFORE MENU
• New HBox tags
• Form layout extensions
• New Table definition attributes
• New ORIENTATION attribute for RADIOGROUPs
• Reviewed fglrun.setenv environment variables handling in FGLPROFILE
• MENU COMMAND generates lowercase action name
• Method ui.Interface.loadTopMenu()
• ON CHANGE fired on click
• New ui.Dialog built-in class
• New ui.Form methods

Genero Business Development Language

82

• Array sub-script operator now returns the sub-array
• Dynamic arrays passed by reference to functions
• Control MDI children with ui.Interface
• Cancel INSERT in AFTER INSERT
• Toolbar and Topenu now have the hidden attribute
• NEXT FIELD CURRENT

Preprocessor

Integrated preprocessor allows use of #include and #define/#ifdef macros. See
Preprocessor.

Layout Enhancements

New layout rules and form item attributes provide better control of form design. See
Layout Enhancements.

Presentation Styles

Decoration attribute can be defined in a style file to set fonts and colors. See
Presentation Styles.

Localization Support

Localization Support (multi-byte character sets). See Localization Support.

Action defaults in forms

Action defaults can be specified in forms. See Action defaults in forms.

Dialog Control

Dialog built-in class to provide better control over interactive instructions. See Dialog
Control.

Sybase ASA Support

New drivers to connect to Sybase Adaptive Server Anywhere V7 and V8. See Sybase
ASA Support

PostgreSQL 7.4 support

Support for PostgreSQL 7.4 with parameterized queries. See PostgreSQL 7.4 support.

General

83

Build information in 42m modules

The fglcomp compiler now adds build information in 42m modules. Compiler version of a
42m module can be checked on site by using the fglrun with the -b option:

$ fglrun -b module.42m
2004-05-17 10:42:05 1.30.2a-620.10 /devel/tests/module.4gl

MySQL 3.23 support for Windows platforms

A MySQL 3.23 driver is now provided for Windows platforms (was previously only
provided on Linux).

Upshift/Downshift in Comboboxes

COMBOBOX fields now support UPSHIFT and DOWNSHIFT attributes, to force
character case when QUERYEDITABLE is used.

Message compiler does not require output file any longer

The fglmkmsg tool now has the same behavior as other tools like fglcomp and fglform: If
you give only the source file, the message compiler uses the same file name for the
compiled output file, adding the .iem extension.

Breakpoint in source code

New BREAKPOINT instruction to stop a program at a given position when using the
debugger. It is ignored when not running in debug mode.

Row highlighting in tables

New TABLE presentation style attribute highlightCurrentRow, to indicate if the current
row must be highlighted in a specific mode. By default, the current row is highlighted
during a DISPLAY ARRAY.

Method base.Array.appendElement()

New method base.Array.appendElement(), to append an element at the end of a
dynamic array.

Compiled Localized String file extension = 42s

Compiled Localized String files now have the .42s extension. Previous extension was
.4ls.

Genero Business Development Language

84

Assignment Operator

New assignment operator := has been added to the language. You can now assign
variables in expressions:
IF (i := (j+1)) == 2 THEN

New fglcomp option for SQL

The fglcomp compiler now has a new option to detect non-standard SQL syntax:
fglcomp -W stdsql module.4gl

Compiler generates standard UPDATE syntax

The fglcomp compiler now converts static SQL updates like:

UPDATE tab SET (c1,c2)=(v1,c2) ...

to a standard syntax:

UPDATE tab SET c1=v1, c2=v2 ...

See also SQL Programming.

Defining color attributes for each table cell

The new method ui.Dialog.SetCellAttributes() lets you define colors for each cell of a
table.

Form methods in ui.Window

The ui.Window class provides new methods to create or get a form object.

Method base.StringBuffer.replace()

New method base.StringBuffer.replace(), to replace a sub-string in a string:

CALL s.replace("old","new",2)

Replaces two occurrences of "old" with "new"...

Methods base.Channel.readLine() and base.Channel.writeLine()

New methods to read/write complete lines in Channel built-in class: readLine() and
writeLine().

General

85

Dynamic arrays used as data model in INPUT ARRAY / DISPLAY
ARRAY

When using a dynamic array in INPUT ARRAY or DISPLAY ARRAY, the number of rows
is defined by the size of the dynamic array. The SET_COUNT() or COUNT attributes are
ignored.

TITLE attribute for fields

The new form field attribute TITLE can be used to specify a table column label with a
localized string.

FGLLDPATH used during link

The FGLLDPATH variable is now used during link

Method ui.Dialog.setDefaultUnbuffered()

New class method ui.Dialog.setDefaultUnbuffered() to set the default for the
UNBUFFERED mode.

Action Defaults applied by DVM

Action Defaults now applied at element creation by the runtime system. In previous
versions this was done dynamically by the front-end. Now, changing an action default
node at runtime has no effect on existing elements.

DATEEDIT supports DBDATE & FORMAT

The DATEEDIT field type now supports DBDATE/CENTURY settings and the FORMAT
attribute.

New predefined action 'close'

New default action 'close' to control Window closing. You can now write the following to
control window closing:

 ON ACTION close

See Windows and Forms.

Tabbing order in TABLEs during INPUT ARRAY

INPUT ARRAY using TABLE container now needs FIELD ORDER FORM attribute to
keep tabbing order consistent with visual order of columns.

Genero Business Development Language

86

Preprocessor raises errors for invalid # macros

If enabled, the preprocessor now raises an error when # comments are used in the
source. You must replace all # comments by -- comments before using the
preprocessor.

ACCEPT xx instruction

New instructions ACCEPT INPUT / ACCEPT CONSTRUCT / ACCEPT DISPLAY to
validate a dialog by program.

ON ACTION doit
 ACCEPT INPUT

ACCEPT / CANCEL dialog attribute

New dialog attribute ACCEPT / CANCEL to avoid creation of default actions 'accept' and
'cancel'.
See Record Input control instructions.

Preprocessor disabled by default

The Preprocessor is now disabled by default; there are no FGLPP / FGLPPOPTIONS
environment variables, you must use the -p option of fglcomp/fglform.

INPUT ARRAY now has default 'append' action

New default action 'append' in INPUT ARRAY. Allows you to add a row at the end of the
list.

Linker option -O removed

The linker option -O (optimize) is de-supported (was ignored before). You now get a
warning if you use this option.

Method ui.Window.createForm()

New method ui.Window.createForm() to create an empty form object in order to build
forms from scratch at runtime.

TopMenu attributes in .per

TopMenu definition in forms now allows attributes in parenthesis.

General

87

Specifying real field size in forms

The form layout syntax now allows you to specify the real width of form items. By default,
BUTTONEDIT, COMBOBOX and DATEEDIT get a real width as follows:

 if nbchars>2 : width = nbchars - 2; otherwise width = nbchars

(Here nbchars is the number of characters used in the layout definition.)

Now you can specify the real width by using a dash '-' in the tag:

 1234567
[f01 -] width = 5, grid cells used = 7

This works also in hbox tags and screen arrays.

Version number in UI protocol

User interface protocol is now controlled with a version number, to check compatibility
between the front end and runtime system.

C-like source preprocessor

New integrated preprocessor: The form and source compiler now integrates a
preprocessor! You can use macros as in C, such as #include, #define, #ifdef, etc.

MENU node available in BEFORE MENU

Important remark: Before build 530 the MENU has attached the WINDOW when
returning from the BEFORE MENU actions. Since build 530 the WINDOW must exist
before the MENU statement. So now the MENU node is available in the BEFORE MENU
block, but a WINDOW opened or made CURRENT in the BEFORE MENU block will
NOT be used.

New HBox tags

Layout GRID now accepts HBox tags to group items horizontally.

Form layout extensions

• Elements in grids now have cell columns and lines plus width & height.
• Form VERSION attribute to distinguish form revisions.
• Layout SPACING attribute to define space between widgets.
• The DEFAULT SAMPLE instruction.
• New form item attributes, like SAMPLE, JUSTIFY, SIZEPOLICY ...

Genero Business Development Language

88

New Table definition attributes

• You can now specify HIDDEN = USER as 'hidden to the user by default'.
• Table columns now have new attribute UNMOVABLE to avoid moving.
• WANTCOLUMNSANCHORED replaced by UNMOVABLECOLUMNS.
• WANTCOLUMNSVISIBLE replaced by UNHIDABLECOLUMNS.
• Tables now accept a WIDTH and HEIGHT attribute to specify a size.

New ORIENTATION attribute for RADIOGROUPs

RADIOGROUP fields now support the attribute ORIENTATION = { VERTICAL |
HORIZONTAL }.

Reviewed fglrun.setenv environment variables handling in
FGLPROFILE

Now, on Windows platforms only, the ix drivers automatically set standard Informix
environment variables with ifx_putenv(). Values are taken from the console environment
with getenv(). Additional variables can be specified with:

dbi.stdifx.environment.count = n
dbi.stdifx.environment.xx = "variable"

MENU COMMAND generates lowercase action name

The MENU COMMAND clause now generates action names in lowercase. This means,
when you define COMMAND "Open", it will bind to all actions views defined with the
name 'open'.

Method ui.Interface.loadTopMenu()

New ui.Interface.loadTopMenu() method to load a global topmenu.

ON CHANGE fired on click

The ON CHANGE block is now fired when the user clicks on a checkbox, radiogroup, or
changes the item in a combobox.

New ui.Dialog built-in class

New ui.Dialog built-in class available with the DIALOG keyword in all interactive
instructions. You can now activate/deactivate fields and actions during a dialog:

INPUT ...
 AFTER FIELD field1
 CALL DIALOG.setFieldActive("field2",rec.field1 IS NOT NULL)
 CALL DIALOG.setActionActive("check",rec.field1 IS NOT NULL)

General

89

New ui.Form methods

The ui.Form built-in class has new methods to handle form elements. The hidden
attribute is now also managed at the model level, this allows you to hide form fields by
name, instead of using the decoration node.

CALL myform.setElementHidden("formonly.field1",2)
CALL myform.setFieldHidden("field1",2) -- prefix is optional

Array sub-script operator now returns the sub-array

The [] array sub-script operator now returns the sub-array:

DEFINE a2 DYNAMIC ARRAY WITH DIMENSION 2 OF INTEGER
LET a2[5,10] = 123
DISPLAY a2.getLength() -- displays 5
DISPLAY a2[5].getLength() -- displays 10

Dynamic arrays passed by reference to functions

Dynamic arrays are now passed by reference to functions. You can change a dynamic
array in a function when it is passed as an argument.

Control MDI children with ui.Interface

New methods are provided in ui.Interface to control the MDI children.

CANCEL INSERT in AFTER INSERT

In INPUT ARRAY, CANCEL INSERT now supported in AFTER INSERT, to remove the
new added line when needed.

Toolbar and Topmenu now have the hidden attribute

Toolbar and Topmenu elements now have the hidden attribute so you can create them
and hide the options the user is not supposed to see.

Warning: Hiding a toolbar or topmenu option does not prevent the use of the accelerator
of the action. Use ui.Dialog.setActionActive()!

NEXT FIELD CURRENT

New keyword for NEXT FIELD: NEXT FIELD CURRENT. Gives control back to the
dialog instruction without moving to another field.

Genero Business Development Language

90

Version 1.20
• Debugger
• Program Profiler
• Localized Strings
• Unbuffered Dialogs
• Paged Display Array
• Action Defaults
• Client-side settings saved for each program
• APPEND ROW dialog attribute
• KEEP CURRENT ROW dialog attribute
• UNHIDABLE attribute for image and labels
• TERMINATE REPORT / EXIT REPORT
• TINYINT data type with SQL Server
• Toolbars can be defined in forms
• Topmenus can be defined in forms
• Build version number
• Get a help message text
• Set the current row
• Interruption handling
• StatusBar definition with style attribute
• Field order form
• Runtime system re-written in C
• Passing arrays as function parameter
• Compiler supports ANSI outer joins
• Methods for StringBuffer
• Default items created for COMBOBOX
• ON IDLE clause in dialogs
• Order of INPUT ARRAY trigger execution
• New ui.ComboBox class
• Predefined actions in lists: nextrow / prevrow
• FOREACH infinite loop
• Record comparison
• ON CHANGE trigger
• Program icon
• Form compilation warnings
• FORMAT attribute in LABELs
• SQLSTATE and SQLERRMESSAGE
• Front End Function calls
• New ui.Form built-in class
• TABINDEX for tabbing order
• LSTR operator
• SFMT operator
• ON ROW CHANGE trigger
• New StringTokenizer class
• Faster linker
• Global constants
• ON ACTION in MENUs
• New Application class
• New Channel class

General

91

• Predefined 'help' action

Debugger

Integrated debugger with gdb syntax to interface with graphical tools like ddd. See
Debugger.

Program Profiler

The Program Profiler can be used to generate statistics of program execution, to find the
bottlenecks in the source code.

Localized Strings

Internationalizes your application in different languages with localized strings.

Localized Strings are now supported. You can identify strings to be localized, with the %
notation:

 LAYOUT (TEXT= %"custlist")

See Localized Strings.

Unbuffered Dialogs

Interactive instructions support the UNBUFFERED mode, to synchronise data model
and view automatically. Dialogs can now use the UNBUFFERED attribute, that
simplifies INPUT, DISPLAY ARRAY and INPUT ARRAY coding; input/display buffer is
no longer used. When you set a variable, the value is automatically displayed to the
field. See Unbuffered Dialogs.

Paged Display Array

DISPLAY ARRAY can now work in buffered mode, to avoid loading a big array when you
have a lot of rows to display. The DISPLAY ARRAY instruction now has a new ON FILL
BUFFER block that can be used with dynamic arrays to feed the dialog with data rows
on demand. See Paged Display Array.

Action Defaults

Centralize default attributes for actions in Action Defaults files.

Client side settings saved for each program

Client side settings are now saved in registry according to the 'name' attribute of
UserInterface, which can be set with ui.Interface.setName() method. By default
UserInterface.name is not set to the name of the program.

Genero Business Development Language

92

APPEND ROW dialog attribute

New attribute APPEND ROW = TRUE/FALSE for INPUT ARRAY instruction. Defines if
the user is allowed to add rows at the end of the list.

KEEP CURRENT ROW dialog attribute

New attribute KEEP CURRENT ROW = TRUE/FALSE for DISPLAY ARRAY and INPUT
ARRAY instructions. Defines if the current row must remain highlighted when leaving the
dialog. The default is FALSE.

UNHIDABLE attribute for image and labels

Image and labels now support the UNHIDABLE attribute for table columns.

TERMINATE REPORT / EXIT REPORT

New report instructions TERMINATE REPORT / EXIT REPORT. Use the EXIT REPORT
statement to terminate a report within a REPORT definition. Both statements have the
following effects:
- Terminate the processing of the current report.
- Delete any intermediate files or temporary tables that were created while processing
the report.

TINYINT data type with SQL Server

SQL Server driver now supports the TINYINT data type.

Toolbars can be defined in forms

You can now define Toolbars in form specification files.

Topmenus can be defined in forms

You can now define Topmenus in form specification files.

Build version number

The FGL_GETVERSION() function returns the internal version number of the runtime
system.

Get a help message text

The FGL_GETHELP() function returns the message text for a give help number.

General

93

Set the current row

The FGL_SET_ARR_CURR() function changes the current row in DISPLAY ARRAY or
INPUT ARRAY.

Interruption handling

Users can now send an interruption request from the client to the program, to stop long
running queries, reports and other BDL procedures, by testing the int_flag variable. The
client is using an OOB signal.

StatusBar definition with style attribute

There is now a new window style attribute for statusbar layout specification. You can
now set statusBarType attribute in the 4st style file for Windows, in order to control the
display of status bars.

Field order form

New OPTIONS clause FIELD ORDER FORM provided to use the TABINDEX attribute to
define the field tabbing order. FIELD ORDER FORM can also be used at the dialog level
as dialog attribute.

Runtime system re-written in C

Runtime system has been re-written in pure C language, g++ 3.2 and corresponding gnu
libs (libstdc++, libsupc++, ...) are no longer needed; a runner can be linked with a native
cc compiler. See Installation and Setup.

Passing arrays as function parameter

Arrays can be passed as parameters, all elements are expanded.

Compiler supports now ANSI outer joins

You can now write static SQL statements using ANSI outer joins:

 SELECT .. FROM a LEFT OUTER JOIN b ON a.key=b.key

Methods for StringBuffer

New methods for StringBuffer class: base.StringBuffer.replaceAt() and
base.StringBuffer.insertAt().

Genero Business Development Language

94

Default items created for COMBOBOX

For COMBOBOX form items, a default ITEMS list is created by fglform when an
INCLUDE list is used.

ON IDLE clause in dialogs

The ON IDLE clause can be used to execute a block of instructions after a timeout.

Order of INPUT ARRAY trigger execution

New logical order of execution for INPUT ARRAY triggers:

1. BEFORE INPUT
2. BEFORE ROW
3. BEFORE INSERT
4. BEFORE FIELD

New ui.ComboBox class

New ui.ComboBox class has been added, to configure COMBOBOX fields at runtime.

Predefined actions in lists: nextrow / prevrow

DISPLAY ARRAY and INPUT ARRAY instructions now automatically use two predefined
actions nextrow and prevrow, which allow binding action views for navigation.

FOREACH infinite loop

FOREACH that raises an error no longer loops infinitely.

Record comparison

Operators equal (= or ==) and not equal (<> or !=) now can be used with records. All
members will be compared. If two members are NULL the result of this member
comparison results in TRUE.

ON CHANGE trigger

ON CHANGE field trigger in INPUT and INPUT ARRAY. Same as AFTER FIELD, but
only fired if the value has changed.

Program icon

New image attribute in UserInterface node, for the program icon. Can be set with
ui.Interface.setImage().

General

95

Form compilation warnings

New option -W for fglform to show warnings.

FORMAT attribute in LABELs

LABELs can now have a FORMAT attribute.

SQLSTATE and SQLERRMESSAGE

New SQLSTATE and SQLERRMESSAGE operators, to give SQL execution information.

Front End Function calls

You can now call predefined functions in the front-end, by using the
ui.Interface.frontCall()method.
See also Front End Functions.

New ui.Form built-in class

New ui.Form built-in class to handle forms.

TABINDEX for tabbing order

New TABINDEX field attribute to define the tabbing order in forms.

LSTR operator

New LSTR operator to get a localized string by name:

 DISPLAY LSTR("custno_comment")

SFMT operator

New SFMT operator to format strings with parameters:

 DISPLAY SFMT("Could not find %1 in %2.",filename,dirname)

ON ROW CHANGE trigger

New ON ROW CHANGE clause in INPUT ARRAY. This trigger will be executed if at
least one value in the row has been modified. The ON ROW CHANGE code is be
executed just before the AFTER ROW clause.

Genero Business Development Language

96

New StringTokenizer class

The StringTokenizer class can be used to parse strings for tokens.

Faster linker

Linker is now faster when having program modules with a huge number of functions.

Global constants

CONSTANTs can now be defined as GLOBALs.

ON ACTION in MENUs

MENU instruction now supports ON ACTION clause, to write abstract menus as simple
action handlers.

New Application class

The base.Application class provides an interface to the program properties.

New Channel class

New definition of the interface for Channels, now based on objects:

 DEFINE c base.Channel
 LET c = base.Channel.create()
 CALL c.openFile("data.txt","r")

Predefined 'help' action

New 'help' predefined action, to start help viewer for HELP clauses in dialog instructions.

 INPUT BY NAME HELP 12423 -- Creates action 'help'

Version 1.10
• Dynamic User Interface
• Interactive Instruction Extensions
• Built-in Classes
• Constant Definitions
• Extended Form Files
• Dynamic Arrays

General

97

• XML utilities
• STRING data type
• Defining MDI containers
• SCHEMA instruction

Dynamic User Interface

The Dynamic User Interface is the major new concept in Genero. It is the basement for
the new graphical user interface. See Dynamic User Interface.

Interactive Instruction Extensions

Classical interactive instructions such as INPUT, INPUT ARRAY, DISPLAY ARRAY,
CONSTRUCT have been extended with new control blocks and control instructions. See
Interactive Instruction Extensions.

Built-in Classes

The language supports now built-in classes, a new object-oriented way to program in
BDL. See Built-in Classes.

Constant Definitions

It is now possible to define constants, as in other languages. See Constant Definitions.

Extended Form Files

You can now define complex layouts with the extended PER files. See Extended Form
Files.

Dynamic Arrays

The language now supports dynamic arrays with automatic memory allocation. DISPLAY
ARRAY can now work in buffered mode, to avoid to load a big array when you have a lot
of rows to display. See Dynamic Arrays.

XML utilities

A set of XML Utilities are provided in the runtime library as built-in classes.

STRING data type

A new STRING data type is now available, to simplify utility function coding.

Genero Business Development Language

98

Defining MDI containers

Defining Window Containers (MDI) is a simple way to group programs.

SCHEMA instruction

The new SCHEMA instruction allows you to specific a database schema without having
an implicit connection when the program executes.

General

99

1.3x Migration Issues
This page describes migration issues when you are moving from version 1.2x to version
1.3x of Genero BDL.

Summary:

• Front-end compatibility
• HBox Tags
• HBox Tags limitations
• Elements inside HBoxes get their real sizes
• Width of ButtonEdit/DateEdit/ComboBox
• Default Sample
• SizePolicy for ComboBoxes
• Action Defaults at Form level
• MySQL 3.23 is desupported

Front-end compatibility
When migrating to a 1.3x runtime system, you need to upgrade all front-end clients to
any 1.3x version. Front-end clients and runtime systems are compatible if the major
version number and the first minor number are the same (X.Y?). A front-end of version
1.31 works with a 1.30 runtime system, but if you try to use a 1.20 client with a 1.30
runtime system, you will get an error message.

HBox tags
HBox Tags allow you to stack form items horizontally without being influenced by
elements above or below. In an HBox there is a free mix of Form Fields, labels, and
Spacer Items possible.

A typical usage of an HBox Tag is to have zip-code/city form fields side by side with
predictable spacing in-between.

The "classic" layout would look like the following form definition:

<G "User Data(version 1.20)" >
 Last Name [l_name]First Name[f_name]
 Street [street]
 City [city]Zip Code[zip]
 Phone(private)[phone] At work []
 Code [aa]-[ab]-[ac]

Genero Business Development Language

100

In the screenshot you will notice that the distance between "l_name" and "First Name"
is smaller than between "First Name" and "f_name". How can this be? Two lines below
there is the "zip" field which affects this distance.

If we put HBox Tags around the fields we want to group horizontally together, we get the
predictable spacing between "l_name", "First Name" and "f_name".

<G "User Data in HBoxes stacked" >
Last Name [l_nameh :"First Name":f_nameh]
Street [streeth :]
City [cityh :"Zip Code":ziph :]
Phone(private)[phoneh :"At work":phonewh :]
Code [ba:"-":bb:"-":bc:]

Here "l_nameh","First Name" and "f_nameh" are together in one HBox; the ":" colon
acts as a separator between the 3 elements.

The width of an element is calculated from the space between "[" and ":" (width of
cityh is 14), or from the space between ":" and ":" (width of "bb" is 2), or from the
space between ":" and "]" (width of "f_nameh" is 16). The "zip" field in the version 1.20
example has a width of five and the "ziph" field has also a width of five.

In the second Groupbox in the screenshot you will notice that the HBox is smaller than
the first one, even though it uses two characters more in the screen definition. The
reason is that each HBox occupies only ONE cell in the parent grid, and the content in
one HBox is independent of the content in another HBox. This relaxes the parent grid; it
has to align only the edges of the HBoxes and the labels left of the HBoxes. The two
extra characters in the Form file for the second Group come from the fact that the labels
need quoting to distinguish them from field definitions. Of course, you could use a Label
field if the two extra characters are unwanted (which is done in the third Groupbox).

The third Groupbox shows how the alignment in an HBox can be affected by putting
empty elements (: :) inside the HBox Tag:

<G "User Data in HBoxes right part right aligned" >
Last Name [l_nameh2 : :lfirsth2:f_nameh2]
Street [streeth2]
City [cityh2 : :lzip:ziph2]
Phone(private)[phoneh2 : :latw:phonewh2]
Code [ca: "-" :cb: "-" :cc]

Between "l_nameh2" and "lfirsth2" there are two ":" signs with a white space
between them. This means: put a Spacer Item between l_nameh2 and lfirsth2, which
gets all the additional space if the HBox is bigger than the sum of l_nameh2, lfirsth2
and f_nameh2. The number of spaces, however, has no effect. The spacer item between
cityh2 and lzip has the same force as the spacer between l_nameh2 and lfirsth2.

You can treat a spacer item like a spring. The spacer item between cityh2 and lzip
presses cityh2 to the left-hand side, and the rest of the fields to the right-hand side. In
the "Code" line there is more than one spacer item; they share the additional space

General

101

among them. (The "Code" HBox sample in the third line is only to show how spacer items
work; we always advise using "Code" as in the second Groupbox, or to use a picture)

In general we advise using the approach shown in the second Groupbox: stack the items
horizontally by replacing field ends with ":". This is the easy way to remove unwanted
horizontal spacing.

The resulting screenshot:

HBox Tags limitations
• HBox Tags don't work for fields of Screen Arrays or Tables; you will get a form

compiler error. The reason is that the current AUI structure does not allow this.

Genero Business Development Language

102

The front end needs a Matrix element directly in a Grid or a ScrollGrid to
perform the necessary positioning calculations for the individual fields.

Elements inside HBoxes get their real sizes
A big advantage in using elements in an HBox is that the fields get their real sizes
according to the .per definition.

LAYOUT
GRID
{
<G g1 >
[a] single Edit Field

<G g2 >
 MMMMM
[b] The large label expands the Edit Field

<G g3 >
 MMMMM
[c :]The large label has no influence on the Edit width

}
END
END
ATTRIBUTES
EDIT a = formonly.a, sample="0", default="12345";
EDIT b = formonly.b, sample="0", default="12345";
EDIT c = formonly.c, sample="0", default="12345";
END

In the second Groupbox, the edit field is expanded to be as large as the label above;
using an HBox prevents this:

General

103

Note: in this example, we use a sample of "0" to display exactly five numbers.

Width of ButtonEdit/DateEdit/ComboBox
The problem with BUTTONEDIT, DATEEDIT and COMBOBOX in previous versions is
that a field [b] got the width 3, the same width as an edit field with the same layout.

For example:

LAYOUT
GRID
{
 [e]
 [b]
}
END
END
ATTRIBUTES
EDIT e=formonly.e;
BUTTONEDIT b=formonly.b;
END

In this example, the outer (visual) width of both elements was the same, but the edit
portion of "b" was much smaller, because the button did not count at all. (In practice this
meant that on average only one and a half characters of "b" was visible). However, you
could input 3 characters! This made a BUTTONEDIT where you could see only one
character and input only one character without tricks impossible.

Now, for the Button, the Form Compiler subtracts two character positions from the width
of BUTTONEDIT/COMBOBOX/DATEEDIT. This is possible because now the form compiler
differentiates the width of the widget from the width of the entry part.

In fact, there is no visual difference between version 1.20 and 1.30 regarding this
example, but in version 1.30 you can only enter one character, which is visually more
correct.

In the example the BUTTONEDIT aligns with the Edit; that's why the Edit part of the
BUTTONEDIT is usually still a bit bigger than one character (this depends on the button
size, but if a button edit is contained by an HBox, it will get the exact size of "width"
multiplied by the average character pixel width.

To express the BUTTONEDIT/COMBOBOX/DATEEDIT layout more visually, it is possible to
specify:

 [e]
 [b-]

Genero Business Development Language

104

the "-" sign marks the end of the edit portion and the beginning of the button portion (
edit width ="1", widget width ="3").

The two characters are also subtracted for a BUTTONEDIT which is child of an HBox.

 [b :]

gets also width="1" , but no widget width, because the HBox stacks the elements
horizontally without needing widget width definition.

The two extra characters are only used to show the real size relations more WYSIWYG,
and to have the same calculation as in a field without an HBox parent.

 [e1:e2:e3:]
 [b1 :b2 :b3]

shows that three BUTTONEDIT fields are much larger than three EDIT fields with the same
width.

You can even write:

 [e1:e2:e3:]
 [b1- :b2- :b3-]

or:

 [e1:e2:e3:]
 [b1-:b2-:b3-]

to use slim buttons and

 [e1:e2:e3:]
 [b1- :b2- :b3-]

if one uses large buttons to get the maximum WYSIWYG effect.

Please note that buttons do not grow if two characters "- " is expanded to three
characters "- "; the button always computes its size from the image used, it's just to
reserve more space in the form to match the real size.

Default Sample
If no SAMPLE attribute is specified in the form files, the client uses an algorithm to
compute the field width. In this case, a very pessimistic algorithm is used to compute the
field widths: The client assumes a default SAMPLE of "M" for the first six characters and
then "0" for the subsequent characters and applies this algorithm to all fields, except
some field types like DATEEDIT fields.

General

105

The default algorithm tends to produce larger forms compared to forms used in BDL V3
and very first versions of Genero. Do not hesitate to modify the SAMPLE attribute in the
form file, to make your fields shorter.

If you do not want to touch all your forms, a more tailored automatic solution would be to
specify a ui.form.setDefaultInitiallizer() function, to set the SAMPLE depending on the
AUI tag. In the following example small UPSHIFT fields get a sample of "M"; all other
fields get a sample of "0". This will preserve the original width for UPSHIFT fields,
however numeric and normal String fields will get the sample of "0" and make the
overall width of the form smaller.

Program:

this demo program shows how to affect the "sample" attribute in a
ui.form.setDefaultInitializer function
the main concern is to set a default sample of "0" and to
correct the sample attribute for small UPSHIFT fields to "M"
to be able to display full uppercase letter for fields with a small
width

MAIN
 DEFINE three_char_upshift CHAR(3)
 DEFINE three_digit_number Integer
 DEFINE longstring CHAR(100)
 CALL ui.form.setDefaultInitializer("myinit")
 OPEN form f from "sampletest2"
 DISPLAY form f
 INPUT BY NAME three_char_upshift,three_digit_number,longstring
END MAIN

FUNCTION myInit(f)
 DEFINE f ui.Form
 CALL checkSampleRecursive(f.getNode())
END FUNCTION

FUNCTION checkSampleRecursive(node)
 DEFINE node,child om.DomNode
 LET child= node.getFirstChild()
 WHILE child IS NOT NULL
 CALL checkSampleRecursive(child)
 CALL setSample(child)
 LET child=child.getNext()
 END WHILE
END FUNCTION

FUNCTION setSample(node)
 DEFINE node,parent om.DomNode
 LET parent=node.getParent()
 -- only set the "sample" for FormFields in this example
 IF parent.getTagName()<>"FormField" THEN
 RETURN
 END IF
 IF node.getAttribute("shift")="up" AND node.getAttribute("width")<=6
THEN
 CALL node.setAttribute("sample","M")

Genero Business Development Language

106

 ELSE
 CALL node.setAttribute("sample","0")
 END IF
 DISPLAY "set sample attribute of ",node.getId()," to
\"",node.getAttribute("sample"),"\""
END FUNCTION

Form File:

LAYOUT(text="sampletest2")
GRID
{
 <G
sampletest
 >
 3 Letter Code: [a] 3 digit code:[b] Description:[longstring]

 <G "What can be
seen" >
 There is no default sample set in this form, but due to a
 ui.form.setDefaultInitializer function, small UPSHIFT fields
 are adjusted to a sample of "M", all other fields get the sample "0"

 1. The 3 letter code should show up exactly "MMM" because of the
applied sample="M"
 2. The 3 letter digit code should show up exactly "123" without
additional spacing
}
END
END
ATTRIBUTES
EDIT a=formonly.three_char_upshift,UPSHIFT,default="MMM";
EDIT b=formonly.three_digit_number,default="123";
EDIT longstring=formonly.longstring,UPSHIFT,default="DESCRIPTION OF THE
ITEM",SCROLL;
END

Please refer to the SAMPLE documentation for more information.

General

107

Size Policy for comboboxes

COMBOBOX items were VERY special in previous versions because they adapted their
size to the maximum item of the value list. On one hand, this is very convenient because
the programmer doesn't have to find the biggest string in the value list, and to estimate
how large it will be on the screen (with proportional fonts the string with the highest
number of characters is not automatically the largest string). On the other hand, this
behavior often led to an unpredictable layout if the programmer didn't reserve enough
space for the COMBOBOX.

The SIZEPOLICY attribute gives better control of the result.

<G "Combo makes edit2 too big" >
 [edit1]
 [combo]
 [edit2]
...
ATTRIBUTES
EDIT edit1=formonly.edit1;
COMBOBOX combo=formonly.combo,
 ITEMS=((0,"Veeeeeeeery Loooooooooooooooong Item"),(1,"hallo")),
 DEFAULT=0;
EDIT edit2=formonly.edit2;
END

In this case, the "combo" field gets very large as does "edit2", because it ends in the
same grid column. It will confuse the end user if he can input only eight characters and
the field is apparently much bigger. Two possibilities exist to surround this:

Use an HBox to prevent the edit2 from growing, and use HBoxes for all fields which
start together with combo and are as large or bigger than combo

<G "Edit2 in HBox doesn't grow" >
[edit1]
[combo :]
[edit2 :]
...

Genero Business Development Language

108

Use the new SIZEPOLICY attribute, and set it to fixed to prevent combo from getting
bigger than the initial six characters (6+Button)

<G "Combo has a fixed size" >
...
[combo]
[edit2]
...
ATTRIBUTES
...
COMBOBOX combo=formonly.combo,
 ITEMS = ((0,"Veeeeeeeery Looooooooooooooooong Item"),(1,"hallo")),
 DEFAULT=0, SIZEPOLOCY=FIXED ;
....

Note that in this example the edit2 dictates the maximum size of combo, because even
if the SIZEPOLICY is fixed, the elements are aligned by the Grid.

To prevent this and have exactly six characters (numbers) in the ComboBox, you need
to decouple combo from edit2 by using an HBox.

<G "Combo has a fixed size,sample 0,in HBox" >
...
Combo [combo :]
Edit2 [edit2 :]
...
COMBOBOX combo=formonly.combo,
 ITEMS = ((0,"12345678 Looooooooooooooooong Item"),(1,"hallo")),
 DEFAULT=0, SIZEPOLICY=FIXED, SAMPLE="0";

General

109

Now the wanted six numbers are displayed and combo does not grow to the size of
edit2.

Please refer to the SIZEPOLICY documentation for more information.

Action Defaults at Form level
It is now possible to define action defaults in forms. In previous versions you had to
define a global action default file; this works for defining common global action attributes,
but there is a need to define specific action attributes in some forms. A typical zoom
window may have search and navigation actions, while data input windows need to
define add/delete/update actions instead.

It is now possible to define an action default section in the form file, and you can also
load action defaults with ui.Form.loadActionDefaults().

Tips:

1. Use the preprocessor to include action default sections in your forms.

MySQL 3.23 is de-supported
Version 1.32 supports MySQL 3.23.x, but there is no support for recent MySQL
versions.

Version 1.33 now de-supports MySQL 3.23.x, but supports MySQL 4.1.2 and higher
(5.0).

For technical reasons, MySQL 4.0.x cannot be supported.

Genero Business Development Language

110

2.0x Migration Issues
This page describes migration issues when you are moving from version 1.xx to version
2.0x of Genero BDL.

Summary:

1. De-supported platforms
2. fglmkrtm installation tool removed
3. fglinstall installation tool removed
4. Runner creation is no longer needed
5. Linking the utility functions library
6. Static C Extensions are de-supported
7. Dynamic C Extensions usage changes
8. WantColumnsAnchored attribute is de-supported
9. PixelWidth / PixelHeight attributes are de-supported
10. Pre-fetch parameters with Oracle
11. PostgreSQL 7 is de-supported
12. Adabas D is de-supported
13. Preprocessor directive syntax changed
14. Static SQL cache is removed
15. Connection database schema specification
16. FGLDBSCH schema extraction tool
17. Global and module variables using the same name
18. Connection Parameters in FGLPROFILE when using Informix
19. SQL Server 7 is de-supported
20. OPEN USING followed by FOREACH
21. Inconsistent USING clauses
22. FESQLC not provided in 2.00
23. Usage of RUN IN FORM MODE
24. TTY and COLOR WHERE attribute

1. De-supported platforms
The following platforms are no longer supported by Genero BDL 2.0x:

• SUN Solaris 8-bit and 32-bit.
• IBM AIX 4.3.3 and AIX 32-bit.
• SCO Unixware lower than 7.1.3.

For information about supported platforms, please refer to the Installation and Setup
section of this manual.

General

111

2. Setup installation tool removed
The fglmkrtm tool has been removed from the distribution. This tool was provided in
previous versions to create a fglrun runner with the correct database driver. In version
2.0x, database drivers are now always loaded dynamically. Refer to Connections for
more details about database driver configuration.

3. fglinstall installation tool removed
The fglinstall tool has been removed from the distribution. This tool was provided in
previous versions to compile product message files, form files, and program modules
provided in the distribution. The compiled versions of all these files are now included in
the package.

4. Runner creation is no longer needed
In version 2.0x, you do not need to build a runner. The architecture is now based on
shared libraries (or DLLs on Windows), and the database drivers are automatically
loaded according to FGLPROFILE configuration parameters.

If you have C Extensions, you must re-build them as shared libraries. Refer to C
Extensions for more details.

Warning: Database vendor client libraries (libclntsh, libcli, libpq, libaodbc) must
be provided as shared objects (or DLL on Windows).

5. Linking the utility functions library
In version 1.3x, some utility functions (canvas draw* and database db_* functions) were
linked automatically to the 42r program when using fglrun -l or fgllink. These functions
are implemented in the fgldraw.4gl and fgldbutl.4gl modules, which were linked in the
libfgl.42x library and loaded automatically at runtime by fglrun.

In version 2.0x, all utility functions are now in the libfgl4js.42x library. So, if you use the
draw* or db_* utility functions, you must now add the libfgl4js.42x library explicitly when
using fglrun -l or fgllink, or you can use the fgl2p tool to link .42r programs. The fgl2p tool
links the program with the libfgl4js.42x library by default.

Refer to Utility Functions for more details.

Genero Business Development Language

112

6. Static C Extensions are de-supported
In version 2.0x, Static C Extensions must be re-written as Dynamic C Extensions.

Refer to C Extensions for more details.

7. Dynamic C Extensions usage changes
In version 1.3x, you must use FGLPROFILE entries to specify Dynamic C Extensions to
be loaded at runtime.

In version 2.0x, Dynamic C Extensions are automatically loaded according to IMPORT
instructions. The FGLPROFILE entries are no longer used.

Warning: Global variables (userData) can no longer be shared between the
runtime system and the C extensions. You must use functions to pass global
variable values.

There is no longer a need to define the FGL_API_MAIN macro in the extension interface
file.

All C data type definitions are now centralized in the fglExt.h header file, header files like
Date.h, MyDecimal.h have been removed from the distribution.

Refer to C Extensions for more details.

8. WantColumnAnchored attribute is de-supported

In version 1.3x, the WANTCOLUMNSANCHORED attribute was undocumented but still
supported by the language, to simplify migration from 1.20.

In version 2.0x, the WANTCOLUMNSANCHORED attribute is de-supported; you must use
UNMOVABLECOLUMNS to specify that table columns cannot be moved around by the
user.

9. PixelWidth / PixelHeight attribute is de-supported

In version 1.3x, the PIXELWIDTH and PIXELHEIGHT attributes were used to specify the
real size of an IMAGE form item.

General

113

In version 2.0x, you must use the WIDTH and HEIGHT attributes to specify the size of
an image:

In the .per form file:

01 IMAGE img1 = FORMONLY.image1, HEIGHT = 100 PIXELS, WIDTH = 100
PIXELS;

The PIXELWIDTH and PIXELHEIGHT attributes are still supported by the form compiler,
but are deprecated and will be removed in a future version.

10. Pre-fetch parameters with Oracle
Pre-fetch parameters allow an application to automatically fetch rows from the Oracle
database when opening a cursor.

In version 1.3x, the default pre-fetch parameters are 50 rows and 65535 bytes for the
pre-fetch buffer. Some customers experienced a huge memory usage with those default
values, when using a lot of cursors: It appears that the Oracle client is allocating a buffer
of pre-fetch.memory (i.e. 64 Kbytes) for each cursor.

In version 2.0x, the default is 10 rows and 0 (zero) bytes for the pre-fetch buffer
(memory), meaning that memory is not included in computing the number of rows to pre-
fetch.

For more details, refer to Connections.

11. PostgreSQL 7 is de-supported
Version 1.3x supports PostgreSQL 7.1.x, 7.2.x, 7.3.x, 7.4.x.

Version 2.0x now de-supports all PostgreSQL versions 7, but supports PostgreSQL 8
and higher.

Remark: PostgreSQL 8 is available on Windows platforms.

12. Adabas D is de-supported
Version 2.0x no longer supports Adabas D 12.

Genero Business Development Language

114

13. Preprocessor directive syntax changed
In version 1.3x, the preprocessor directives start with a (#) sharp character, to be
compliant with standard preprocessors (like cpp). This caused too many conflicts with
standard language comments that use the same character:

01 #include "myheader.4gl"
02 # This is a comment

In version 2.0x, the preprocessor directives start with an ampersand character (&):

01 &include "myheader.4gl"
02 FUNCTION debug(msg)
03 DEFINE msg STRING
04 &ifdef DEBUG
05 DISPLAY msg
06 &endif
07 END FUNCTION

The preprocessor is now integrated in the compiler, to achieve faster compilation.

Warning: To simplify the migration, the # sharp character is still supported when
using the -p fglpp option of compiler. However, you should review your source
code and use the & character instead; # sharp will be de-supported in a future
version.

14. Static SQL cache is removed
In version 1.3x, the size of the static SQL cache is defined by a FGLPROFILE entry:

dbi.sql.static.optimization.cache.size = max

This entry was provided to optimize SQL execution without touching code using a lot of
static SQL statements, especially when using non-Informix databases where the
execution of static SQL statements is slower than with Informix. This is useful for fast
migrations, but there were a lot of side effects and unexpected errors (refer to
"Connections" in 1.3x documentation for more details).

In version 2.0x, the Static SQL Cache has been removed for the reasons described
above. Programs continue to run without changing the code, but if you want to optimize
program execution, you must use Dynamic SQL (PREPARE + EXECUTE) as described
in "SQL Programming".

General

115

15. Connection database schema specification
Version 1.3x has an FGLPROFILE entry to specify the database schema at runtime:

dbi.database.dbname.schema = "schema-name"

This entry could be used to select the native database schema after connecting to the
server, for Oracle and Db2 only.

In version 2.0x, this entry is now specific to the Oracle and Db2 database driver
configuration parameters:

dbi.database.dbname.ora.schema = "schema-name"
dbi.database.dbname.db2.schema = "schema-name"

For other database servers, this configuration parameter is not defined.

Warning: It is no longer possible to specify the "schema" parameter in the
connection string (dbname+schema='name').

For more details, refer to Connections.

16. FGLDBSCH schema extraction tool
Unique tool

Version 1.3x provides two schema extractors: fglschema and fgldbsch. The first can only
extract schemas from Informix databases, while the second one can extract schemas
from all supported databases.

In version 2.0x, the fgldbsch tool has been extended to support the old fglschema
options, and fglschema has been replaced by a simple script calling fgldbsch. When you
call fglschema, you actually call fgldbsch. We recommend that you use fgldbsch with its
specific options.

System tables

In 2.0x, fgldbsch does not extract system tables by default. You must specify the -st
option to get the system tables description in the schema files.

Remote synonyms

The original fglschema tool was searching for remote synonyms with Informix
databases. The fgldbsch tool of 2.0x does not search for remote synonyms.

Public and private synonyms

Genero Business Development Language

116

Since bug fix #5021 (build 620.313), fgldbsch does not extract private synonyms
anymore. Only public synonyms are extracted. The .sch schema files do not contain
table owners, and if two private synonyms have the same names, there is no way to
distinguish them in the schema files. Therefore, to avoid any mistakes, private synonyms
are not extracted anymore.

See also: Database Schema.

17. Global and module variables using the same name
An important compiler bug has been fixed in 2.0x. This bug is referenced as #5752:
When you declare a module variable with the same name as a global variable, a
compilation error must be thrown.

This is critical to avoid confusion with the variable usage:

01 GLOBALS
02 DEFINE level INTEGER
03 END GLOBALS
01 GLOBALS "globals.4gl"
02 DEFINE level INTEGER
03 FUNCTION func1()
04 LET level = 123 -- is this the global or the module variable?
05 END FUNCTION

In version 1.3x, the compiler did not detect this and the module variable was used, but
one might want to use the global variable instead!

If you have module variables defined with the same name as global variables, the
compiler now raises the following error:

-4319: The symbol 'variable-name' has been defined more than once.

You can easily fix this by renaming the module variable. There is no risk to do this
modification, since the module variable was used in 1.3x, not the global variable.

Remark: The compiler now also detects duplicate global variable declaration. Just
remove the duplicated lines in your source.

18. Connection parameters in FGLPROFILE when using
Informix
In version 1.3x, the dbi.database.* connection parameters defined in FGLPROFILE are
ignored by the Informix drivers.

General

117

In version 2.0x, the dbi.database.* connection parameters defined in FGLPROFILE are
used by the Informix driver, as well as other database vendor drivers. For example, if
you connect to the database "stores", and you have the following entries defined, the
driver tries to connect as "user1" with password "alpha":

dbi.database.stores.username = "user1"
dbi.database.stores.password = "alpha"

You typically get SQL errors -387 or -329 when the wrong database login or the wrong
database name is used.

For more details, refer to Connections.

19. SQL Server 7 desupported
In version 2.0x, Microsoft SQL Server 7 is no longer supported. Microsoft support of
this version ended the first of January 2006.

Only SQL Server 2000 and 2005 are supported by Genero 2.0x. You must upgrade
your server to one of these versions of SQL Server.

20. OPEN USING followed by FOREACH

Warning: This issue applies to non-Informix databases only.

In version 1.3x, you could use an OPEN USING instruction to specify the SQL
parameters of a following FOREACH:

01 PREPARE st1 FROM "SELECT * FROM tab WHERE col>?"
02 DECLARE cu1 CURSOR FOR st1
03 OPEN cu1 USING var
04 FOREACH cu1 INTO rec.*
05 DISPLAY rec.*
06 END FOREACH

In this case, the FOREACH instruction was reusing the parameters provided in the last
OPEN instruction. Supporting such a feature is complex and deters the proper
improvement of the database interface and database drivers. It was provided to support
compatibility with very old Informix 4GL compilers, but it is not proper SQL programming.

The database interface of version 2.0x has been rewritten for better performance. The
above usage of FOREACH is no longer supported.

To work around this issue, you can safely remove the OPEN instruction and put the
USING clause in the FOREACH instruction:

Genero Business Development Language

118

01 PREPARE st1 FROM "SELECT * FROM tab WHERE col>?"
02 DECLARE cu1 CURSOR FOR st1
03 FOREACH cu1 USING var INTO rec.*
04 DISPLAY rec.*
05 END FOREACH

21. Inconsistent USING clauses

Warning: This issue applies to non-Informix databases only.

In version 1.3x, it was possible to execute a prepared statement with the variable list
changing at each EXECUTE statement:

01 DEFINE var1 DECIMAL(6,2)
02 DEFINE var2 CHAR(10)
03 DEFINE var3 DATE
04 PREPARE st1 FROM "INSERT INTO tab1 VALUES (?. ?, ?)"
05 EXECUTE st1 USING var1, var2, var3
06 EXECUTE st1 USING var2, var3, var1 -- different order = different
data types

The database interface of version 2.0x has been rewritten for better performance.
Having data types changing at each execute is no longer supported.

Error -254 will be raised if different data types are used in subsequent EXECUTE
statements (with the same statement name).

22. FESQLC not provided in 2.00
Genero FGL version 1.33 has included an ESQL/C preprocessor named FESQLC. This
component provides both SQL support and C API functions to manipulate complex types
as dec_t.

Because of runtime system architecture changes, the FESQLC preprocessor could not
be shipped with 2.00. However, version 2.01 provides again the FESQLC tool. Note also
that version 2.00 implements Informix specific C API functions, to deploy your
application without the Informix client software. For more details about the supported C
API functions, have a look at the C Extensions page.

23. Usage of RUN IN FORM MODE
In version 1.3x, RUN...IN FORM MODE was recommended to run interactive
applications.

General

119

In version 2.0x, RUN ... IN LINE MODE is recommended to run interactive applications.
The RUN command should be used as follows (in both GUI and TUI mode):

1. When starting an interactive program, either use RUN ... IN LINE MODE or, if the
default mode is LINE MODE, use the RUN instruction without any option.

2. When starting a batch program that does not display any message, you should
use RUN ... IN FORM MODE.

For more details about the RUN options, see the RUN instruction.

24. TTY and COLOR WHERE attribute
In version 1.3x, only some field types like EDIT or TEXTEDIT could support TTY
attributes (COLOR, REVERSE), and the conditional COLOR WHERE attribute.

In version 2.0x, all type of fields now allow TTY attributes and the conditional COLOR
WHERE attribute. So when using any ATTRIBUTE(<tty-attribute>) in programs, all fields
will now be affected. For example, CHECKBOX and RADIOGROUP fields will now get a
colored background, while in 1.3x it was not the case.

Genero Business Development Language

120

2.1x Migration Issues
This page describes migration issues when you are moving from version 2.0x to version
2.1x of Genero BDL.

Summary:

1. De-supported platforms
2. New firstrow/lastrow implicit actions

1. De-supported platforms
The following platforms are no longer supported by Genero BDL 2.1x:

• AIX 32 bit (all versions)
• HP/UX 32 bit (all versions)
• SCO Open Server lower than 5.0.7.
• Microsoft Windows Visual C++ 6 (de-supported by Microsoft since September

2005).

For information about supported platforms, please refer to the Installation and Setup
section of this manual.

2. New firstrow/lastrow implicit actions
In prior versions, firstrow and lastrow actions were handled by the front-ends as local
actions. The firstrow and lastrow actions had the Home / End accelerators defined in the
default.4ad file. But these accelerators conflict with the Home/End field editor
accelerators if the controller is an INPUT ARRAY. The conflict was handled by the front-
ends. If the current dialog was a DISPLAY ARRAY, the front-end used Home/End as
navigation accelerators to move to the first or last row; when the current dialog was an
INPUT ARRAY, the front-end used Home/End as local text editor shortcuts to move to the
beginning or to the end of the text in the current field.

Version 2.10 now defines the firstrow and lastrow actions as server-side predefined
actions when using DISPLAY ARRAY or INPUT ARRAY. The default accelerators in the
FGLDIR/lib/defaults.4ad Action Defaults file are now Control-Home + Home for firstrow
and Control-End + End for lastrow. If the current widget is a text editor, the editor or
navigation accelerators (like Home and End) take precedence over the action
accelerators. This way, during an INPUT ARRAY, Home and End will be used as editor
accelerators.

If you have defined your own default.4ad file, you have probably kept the original
defaults for firstrow and lastrow actions as the accelerators Home and End. In this case,

General

121

only Home and End accelerators are defined for firstrow and lastrow actions. As a
result, the user cannot move to the first row or last row with Control-Home or Control-
End during INPUT ARRAY. To solve this problem, define the same accelerators for
firstrow and lastrow actions as in FGLDIR/lib/default.4ad.

You can use the Style "localAccelerators" to define how the field editor must behave. Set
to "yes" (by default), the local accelerators will be used (for instance, the Home key will
move the cursor to the beginning of the field). Set to "no", the action accelerators will
have higher priority (The Home key will change the current row to the first row).

123

Data Types
The data types supported by the language:

Data Type Description
String Data Types
CHAR Fixed size character strings
VARCHAR Variable size character strings
STRING Dynamic size character strings
Date and Datetime Data Types
DATE Simple calendar dates
DATETIME High precision date and hour data
INTERVAL High precision time intervals
Numeric Data Types
INTEGER 4 byte integer
SMALLINT 2 byte integer
FLOAT 8 byte floating point decimal
SMALLFLOAT 4 byte floating point decimal
DECIMAL High precision decimals
MONEY High precision decimals with currency formatting
Large Data Types
BYTE Large binary data (images)
TEXT Large text data (documents)

See also: Data Conversions, Variables, Programs.

CHAR data type

Purpose:

The CHAR data type is a fixed-length character string data type.

Syntax:

CHAR[ACTER] [(size)]

Notes:

1. CHAR and CHARACTER are synonyms.

Genero Business Development Language

124

2. size defines the length of the variable; the number of bytes allocated for the
variable. The upper limit is 65534.

3. When size is not specified, the default length is 1 character.

Usage:

CHAR variables are initialized to NULL in functions, modules and globals.

The size defines the number of bytes the variable can store. It is important to distinguish
bytes from characters, because in a multi-byte character set, one character may be
encoded on several bytes. For example, in the ISO-8859-1 character set, "forêt" uses 5
bytes, while in the UTF-8 multi-byte character set, the same word occupies 6 bytes,
because the "ê" letter is coded with two bytes.

CHAR variables are always filled with trailing blanks, but the trailing blanks are not
significant in comparisons:

01 MAIN
02 DEFINE c CHAR(10)
03 LET c = "abcdef"
04 DISPLAY "[", c ,"]" -- displays [abcdef]
05 IF c == "abcdef" THEN -- this is TRUE
06 DISPLAY "equals"
07 END IF
08 END MAIN

VARCHAR data type

Purpose:

The VARCHAR data type is a variable-length character string data type, with a maximum
size.

Syntax:

VARCHAR [(size, [reserve])]

Notes:

1. The size defines the maximum length of the variable; the maximum number of
bytes the variable can store. The upper limit is 65534.

2. reserve is not used, however its inclusion in the syntax for a VARCHAR variable is
permitted for compatibility with the SQL data type.

3. When size is not specified, the default length is 1 character.

Usage:

VARCHAR variables are initialized to NULL in functions, modules and globals.

Language Basics

125

The size defines the maximum number of bytes the variable can store. It is important to
distinguish bytes from characters, because in a multi-byte character set, one character
may be encoded on several bytes. For example, in the ISO-8859-1 character set, "forêt"
uses 5 bytes, while in the UTF-8 multi-byte character set, the same word occupies 6
bytes, because the "ê" letter is coded with two bytes.

VARCHAR variables store trailing blanks (i.e. "abc " is different from "abc"). Trailing
blanks are displayed or printed in reports, but they are not significant in comparisons:

01 MAIN
02 DEFINE vc VARCHAR(10)
03 LET vc = "abc " -- two trailing blanks
04 DISPLAY "[", vc ,"]" -- displays [abc]
05 IF vc == "abc" THEN -- this is TRUE
06 DISPLAY "equals"
07 END IF
08 END MAIN

When you insert character data from VARCHAR variables into VARCHAR columns in a
database table, the trailing blanks are kept. Likewise, when you fetch VARCHAR column
values into VARCHAR variables, trailing blanks are kept.

01 MAIN
02 DEFINE vc VARCHAR(10)
03 DATABASE test1
04 CREATE TABLE table1 (k INT, x VARCHAR(10))
05 LET vc = "abc " -- two trailing blanks
06 INSERT INTO table1 VALUES (1, vc)
07 SELECT x INTO vc FROM table1 WHERE k = 1
08 DISPLAY "[", vc ,"]" -- displays [abc]
09 END MAIN

Warning: In SQL statements, the behavior of the comparison operators when
using VARCHAR values differs from one database to the other. Informix is ignoring
trailing blanks, but most other databases take trailing blanks of VARCHAR values
into account. See SQL Programming for more details.

STRING data type

Purpose:

The STRING data type is a variable-length, dynamically allocated character string data
type, without limitation.

Syntax:

STRING

Genero Business Development Language

126

Usage:

The behavior of a STRING variable is similar to the VARCHAR data type. For example, as
VARCHAR variables, STRING variables have significant trailing blanks (i.e. "abc " is
different from "abc"). There is no size limitation, it depends on available memory.

STRING variables are initialized to NULL in functions, modules and globals.

The STRING data type is typically used to implement utility functions manipulating
character string with unknown size. It cannot be used to store SQL character string data,
because databases have rules that need a maximum size as for CHAR and VARCHAR
types.

Warning: The STRING data type cannot be used as SQL parameter of fetch buffer,
not can it be used as form field.

Variables declared with the STRING data type can use built-in class methods such as
getLength() or toUpperCase().

Methods:

Warning: The STRING methods are all based on byte-semantics. In a multi-byte
environment, the getLength() method returns the number of bytes, which can be
different from the number of characters.

Object Methods
Name Description
append(str STRING)
 RETURNING STRING

Returns a new string made by adding
str to the end of the current string.

equals(src STRING)
 RETURNING INTEGER

Returns TRUE if the string passed as
parameters matches the current
string. If one of the strings is NULL
the method returns FALSE.

equalsIgnoreCase(src STRING)
 RETURNING INTEGER

Returns TRUE if the string passed as
parameters matches the current
string, ignoring character case. If one
of the strings is NULL the method
returns FALSE.

getCharAt(pos INTEGER)
 RETURNING STRING

Returns the character at the byte
position pos (starts at 1). Returns
NULL if the position does not match a
valid character-byte position in the
current string or if the current string is
null.

getIndexOf(str STRING, spos
INTEGER)
 RETURNING INTEGER

Returns the position of the sub-string
str in the current string, starting from
byte position spos. Returns zero if the

Language Basics

127

sub-string was not found. Returns -1
if string is NULL.

getLength()
 RETURNING INTEGER

This method counts the number of
bytes, including trailing blanks. The
LENGTH() built-in function ignores
trailing blanks.

subString(spos INTEGER, epos
INTEGER)
 RETURNING STRING

Returns the sub-string starting at byte
position spos and ending at epos.
Returns NULL if the positions do not
delimit a valid sub-string in the
current string, or if the current string
is null.

toLowerCase()
 RETURNING STRING

Converts the current string to
lowercase. Returns NULL if the string
is null.

toUpperCase()
 RETURNING STRING

Converts the current string to
uppercase. Returns NULL if the string
is null.

trim()
 RETURNING STRING

Removes white space characters
from the beginning and end of the
current string. Returns NULL if the
string is null.

trimLeft()
 RETURNING STRING

Removes white space characters
from the beginning of the current
string. Returns NULL if the string is
null.

trimRight()
 RETURNING STRING

Removes white space characters
from the end of the current string.
Returns NULL if the string is null.

Example:

01 MAIN
02 DEFINE s STRING
03 LET s = "abcdef "
04 DISPLAY s || ". (" || s.getLength() || ")"
05 IF s.trimRight() = "abcdef" THEN
06 DISPLAY s.toUpperCase()
07 END IF
08 END MAIN

INTEGER data type

Purpose:

The INTEGER data type is used for storing large whole numbers.

Genero Business Development Language

128

Syntax:

INT[EGER]

Notes:

1. INT and INTEGER are synonyms.

Usage:

The storage of INTEGER variables is based on 4 bytes of signed data (= 32 bits). The
value range is from -2,147,483,647 to +2,147,483,647.

INTEGER variables are initialized to zero in functions, modules and globals.

Warning: The value -2,147,483,648 is reserved for the representation of NULL.

Example:

01 MAIN
02 DEFINE i INTEGER
03 LET i = 1234567
04 DISPLAY i
05 END MAIN

SMALLINT data type

Purpose:

The SMALLINT data type is used for storing small whole numbers.

Syntax:

SMALLINT

Notes:

1. Variables are initialized to zero in functions, modules and globals.
2. SMALLINT values can be converted to strings.

Usage:

The storage of SMALLINT variables is based on 2 bytes of signed data (= 16 bits). The
value range is from -32,767 to +32,767.

SMALLINT variables are initialized to zero in functions, modules and globals.

Language Basics

129

Warning: The value -32,768 is reserved for the representation of NULL.

Example:

01 MAIN
02 DEFINE i SMALLINT
03 LET i = 1234
04 DISPLAY i
05 END MAIN

FLOAT data type

Purpose:

The FLOAT data type stores values as double-precision floating-point binary numbers
with up to 16 significant digits.

Syntax:

{ FLOAT | DOUBLE PRECISION } [(precision)]

Notes:

1. FLOAT and DOUBLE PRECISION are synonyms.
2. The precision can be specified but it has no effect in programs.

Usage:

The storage of FLOAT variables is based on 8 bytes of signed data (= 64 bits), this type
is equivalent to the double data type in C.

FLOAT variables are initialized to zero in functions, modules and globals.

FLOAT values can be converted to strings according to the DBMONEY environment
variable (defines the decimal separator).

Tip: This data type it is not recommended for exact decimal storage; use the DECIMAL
data type instead.

Genero Business Development Language

130

SMALLFLOAT data type

Purpose:

The SMALLFLOAT data type stores values as single-precision floating-point binary
numbers with up to 8 significant digits.

Syntax:

{ SMALLFLOAT | REAL }

Notes:

1. SMALLFLOAT and REAL are synonyms.
2. SMALLFLOAT values can be converted to strings according to the DBMONEY

environment variable (which defines the decimal separator).

Usage:

The storage of SMALLFLOAT variables is based on 4 bytes of signed data (= 32 bits),
this type is equivalent to the float data type in C.

SMALLFLOAT variables are initialized to zero in functions, modules and globals.

SMALLFLOAT values can be converted to strings according to the DBMONEY environment
variable (defines the decimal separator).

Tip: This data type it is not recommended for exact decimal storage; use the DECIMAL
data type instead.

DECIMAL data type

Purpose:

The DECIMAL data type is provided to handle large numeric values with exact decimal
storage.

Syntax:

{ DEC[IMAL] | NUMERIC } [(precision[,scale])]

Notes:

1. DEC, DECIMAL and NUMERIC are synonyms.
2. precision defines the number of significant digits (limit is 32, default is 16).
3. scale defines the number of digits to the right of the decimal point.

Language Basics

131

4. When no scale is specified, the data type defines a floating point number.

Usage:

The DECIMAL data type must be used for storing number with fractional parts that must
be calculated exactly.

DECIMAL variables are initialized to NULL in functions, modules and globals.

The largest absolute value that a DECIMAL(p,s) can store without errors is 10p-s - 10s.
The stored value can have up to 30 significant decimal digits in its fractional part, or up
to 32 digits to the left of the decimal point.

When you specify both the precision and scale, you define a decimal with a fixed point
arithmetic. If the data type declaration specifies a precision but no scale, it defines a
floating-point number with precision significant digits. If the data type declaration
specifies no precision and scale, the default is DECIMAL(16), a floating-point number
with a precision of 16 digits.

DECIMAL values can be converted to strings according to the DBMONEY environment
variable (defines the decimal separator).

Warnings:

1. In ANSI-compliant databases, DECIMAL data types do not provide floating point
numbers. When you define a database column as DECIMAL(16), it is equivalent
to a DECIMAL(16,0) declaration. You should always specify the scale to avoid
mistakes.

2. When the default exception handler is used, if you try to assign a value larger
than the Decimal definition (for example, 12345.45 into DECIMAL(4,2)), no out
of range error occurs, and the variable is assigned with NULL. If WHENEVER
ANY ERROR is used, it raises error -1226. If you do not use WHENEVER ANY
ERROR, the STATUS variable is not set to -1226.

Example:

01 MAIN
02 DEFINE d1 DECIMAL(10,4)
03 DEFINE d2 DECIMAL(10,3)
04 LET d1 = 1234.4567
05 LET d2 = d1 / 3 -- Rounds decimals to 3 digits
06 DISPLAY d1, d2
07 END MAIN

Genero Business Development Language

132

MONEY data type

Purpose:

The MONEY data type is provided to store currency amounts with exact decimal storage.

Syntax:

MONEY [(precision[,scale])]

Notes:

1. precision defines the number of significant digits (limit is 32, default is 16).
2. scale defines the number of digits to the right of the decimal point.
3. When no scale is specified, it defaults to 2.

Usage:

The MONEY data type is provided to store currency amounts. Its behavior is similar to the
DECIMAL data type, with some important differences:

A MONEY variable is displayed with the currency symbol defined in the DBMONEY
environment variable.

You cannot define floating-point numbers with MONEY: If you do not specific the scale in
the data type declaration, it defaults to 2. If no precision / scale parameters are specified,
MONEY is interpreted as a DECIMAL(16,2).

Warning: See the DECIMAL data type.

DATE data type

Purpose:

The DATE data type stores calendar dates with a Year/Month/Day representation.

Syntax:

DATE

Usage:

Storage of DATE variables is based on a 4 byte integer representing the number of days
since 1899/12/31.

Language Basics

133

Because DATE values are stored as integers, you can use them in arithmetic
expressions: the difference of two dates returns the number of days. This is possible
(and portable) with language arithmetic operators, but should be avoided in SQL
statements, because not all databases support integer-based date arithmetic.

Data conversions, input and display of DATE values are ruled by environment settings,
such as the DBDATE and DBCENTURY environment variables.

Several built-in functions and constants are available such as MDY() and TODAY.

DATE variables are initialized to zero (=1899/12/31) in functions, modules and globals.

Tips:

1. Integers can represent dates as a number of days starting from 1899/12/31, and
can be assigned to dates. It is not recommended that you directly assign integers
to dates, however, for source code readability.

2. As Date-to-String conversion is based on an environment setting, it is not
recommended that you hardcode strings representing Dates.

Example:

01 MAIN
02 DEFINE d DATE
03 LET d = TODAY
04 DISPLAY d, " ", d+100
05 END MAIN

DATETIME data type

Purpose:

The DATETIME data type stores date and time data with time units from the year to
fractions of a second.

Syntax:

DATETIME qual1 TO qual2

where qual1 can be one of:

 YEAR
 MONTH
 DAY
 HOUR
 MINUTE
 SECOND
 FRACTION

Genero Business Development Language

134

and qual2 can be one of:

 YEAR
 MONTH
 DAY
 HOUR
 MINUTE
 SECOND
 FRACTION
 FRACTION(1)
 FRACTION(2)
 FRACTION(3)
 FRACTION(4)
 FRACTION(5)

Notes:

1. scale defines the number of significant digits of the fractions of a second.
2. qual1 and qual2 qualifiers define the precision of the DATETIME variable.

Usage:

The DATETIME data type stores an instance in time, expressed as a calendar date and
time-of-day.

The qual1 and qual2 qualifiers define the precision of the DATETIME variable. The
precision can range from a year through a fraction of second.

DATETIME arithmetic is based on the INTERVAL data type, and can be combined with
DATE values:

• Datetime +/- Datetime = Interval
• Datetime +/- Interval = Datetime
• Datetime +/- Date = Interval

The CURRENT operator provides current system date/time.

You can assign DATETIME variables with datetime literals with a specific notation.

DATETIME variables are initialized to NULL in functions, modules and globals.

DATETIME values can be converted to strings by the ISO format (YYYY-MM-DD
hh:mm:ss.fffff).

Example:

01 MAIN
02 DEFINE d1, d2 DATETIME YEAR TO MINUTE
03 LET d1 = CURRENT YEAR TO MINUTE
04 LET d1 = "1998-01-23 12:34"
05 DISPLAY d1, d2

Language Basics

135

06 END MAIN

INTERVAL data type

Purpose:

The INTERVAL data type stores spans of time as Year/Month or
Day/Hour/Minute/Second/Fraction units.

Syntax 1: year-month class interval

 INTERVAL YEAR[(precision)] TO MONTH
|INTERVAL YEAR[(precision)] TO YEAR
|INTERVAL MONTH[(precision)] TO MONTH

Syntax 2: day-time class interval

 INTERVAL DAY[(precision)] TO FRACTION[(scale)]
|INTERVAL DAY[(precision)] TO SECOND
|INTERVAL DAY[(precision)] TO MINUTE
|INTERVAL DAY[(precision)] TO HOUR
|INTERVAL DAY[(precision)] TO DAY

|INTERVAL HOUR[(precision)] TO FRACTION[(scale)]
|INTERVAL HOUR[(precision)] TO SECOND
|INTERVAL HOUR[(precision)] TO MINUTE
|INTERVAL HOUR[(precision)] TO HOUR

|INTERVAL MINUTE[(precision)] TO FRACTION[(scale)]
|INTERVAL MINUTE[(precision)] TO SECOND
|INTERVAL MINUTE[(precision)] TO MINUTE

|INTERVAL SECOND[(precision)] TO FRACTION[(scale)]
|INTERVAL SECOND[(precision)] TO SECOND

|INTERVAL FRACTION[(precision)] TO FRACTION[(scale)]

Notes:

1. precision defines the number of significant digits of the first qualifier, it must be
an integer from 1 to 9.
For YEAR, the default is 4. For all other time units, the default is 2.
For example, YEAR(5) indicates that the INTERVAL can store a number of years
with up to 5 digits.

Genero Business Development Language

136

Usage:

The INTERVAL data type stores a span of time, the difference between two points in time.
It can also be used to store quantities that are measured in units of time, such as ages
or times required for some activity.

The INTERVAL data type falls in two classes, which are mutually exclusive:

• Year-time intervals store a span of years, months or both.
• Day-time intervals store a span of days, hours, minutes, seconds and fraction of

seconds, or a contiguous subset of those units.

INTERVAL values can be negative.

INTERVAL arithmetic is possible, and can involve DATETIME values:

• Interval +/- Interval = Interval
• Datetime +/- Datetime = Interval
• Datetime +/- Interval = Datetime

You can assign INTERVAL variable with interval literals with a specific notation.

INTERVAL values can be converted to strings by using the ISO format (YYYY-MM-DD
hh:mm:ss.fffff).

Example:

01 MAIN
02 DEFINE i1 INTERVAL YEAR TO MONTH
03 DEFINE i2 INTERVAL DAY(5) TO MINUTE
04 LET i1 = "2342-4"
05 LET i2 = "23423 12:34"
06 DISPLAY i1, i2
07 END MAIN

BYTE data type

Purpose:

The BYTE data type stores any type of binary data, such as images or sounds.

Syntax:

BYTE

Language Basics

137

Usage:

A BYTE variable is actually a 'locator' for a large object stored in a file or in memory. The
BYTE data type is a complex type that cannot be used like simple types such as INTEGER
or CHAR: It is designed to handle a large amount of unstructured binary data. This type
has a theoretical limit of 2^31 bytes, but the practical limit depends from the resources
available to the process. You can use the BYTE data type to store, fetch or update the
contents of a BYTE database column when using Informix, or the content of a BLOB
column when using another type of database.

Warning: A BYTE variable must be initialized with the LOCATE instruction before
usage. You might want to free resources allocated to the BYTE variable with the
FREE instruction. Note that a FREE will remove the file if the LOB variable is
located in a file.

The LOCATE instruction basically defines where the large data object has to be stored (in
file or memory). This instruction will actually allow you to fetch a LOB into memory or into
a file, or insert a LOB from memory or from a file into the database.

Warning: When you assign a BYTE variable to another BYTE variable, the LOB data
is not duplicated, only the handler is copied.

Note that if you need to clone the large object, you can use the I/O built-in methods to
read/write data from/to a specific file. The large object can be located in memory or in a
file.

Methods:

Object Methods
Name Description

readFile(fileName STRING)
Reads data from a file and copies into
memory or to the file used by the
variables according to the LOCATE
statement issued on the object.

writeFile(fileName STRING)
Writes data from the variable
(memory or source file) to the
destination file passed as parameter.
The file is created if it does not exist.

Example:

01 MAIN
02 DEFINE b BYTE
03 DATABASE stock
04 LOCATE b IN MEMORY
05 SELECT bytecol INTO b FROM mytable
06 END MAIN

Genero Business Development Language

138

TEXT data type

Purpose:

The TEXT data type stores large text data.

Syntax:

TEXT

Usage:

A TEXT variable is actually a 'locator' for a large object stored in a file or in memory. The
TEXT data type is a complex type that cannot be used like basic character string types
such as VARCHAR or CHAR: It is designed to handle a large amount of text data. You can
use this data type to store, fetch or update the contents of a TEXT database column
when using Informix, or the content of a CLOB column when using another type of
database.

Warning: A TEXT variable must be initialized with the LOCATE instruction before
usage. You might want to free resources allocated to the TEXT variable with the
FREE instruction. Note that a FREE will remove the file if the LOB variable is
located in a file.

The LOCATE instruction basically defines where the large data object has to be stored (in
file or memory). This instruction will actually allow you to fetch a LOB into memory or into
a file, or insert a LOB from memory or from a file into the database.

Warning: When you assign a TEXT variable to another TEXT variable, the LOB data
is not duplicated, only the handler is copied.

You can assign TEXT variables to/from VARCHAR, CHAR and STRING variables.

Note that if you need to clone the large object, you can use the I/O built-in methods to
read/write data from/to a specific file. The large object can be located in memory or in a
file.

Methods:

Object Methods
Name Description

readFile(fileName STRING)
Reads data from a file and copies into
memory or to the file used by the
variables according to the LOCATE
statement issued on the object.

writeFile(fileName STRING)
Writes data from the variable
(memory or source file) to the
destination file passed as parameter.

Language Basics

139

The file is created if it does not exist.

Example:

01 MAIN
02 DEFINE t TEXT
03 DATABASE stock
04 LOCATE t IN FILE "/tmp/mytext.txt"
05 SELECT textcol INTO t FROM mytable
06 END MAIN

Genero Business Development Language

140

Literals
Summary:

• Integer Literals
• Decimal Literals
• String Literals
• Datetime Literals
• Interval Literals

See also: Variables, Data Types, Expressions.

INTEGER LITERALS

Purpose:

The language supports integer literals in base-10 notation, without blank spaces and
commas and without a decimal point.

Syntax:

[+|-] digit[...]

Notes:

1. digit is a digit character from '0' to '9'.

Warnings:

1. Integer literals are limited to the ranges of an INTEGER value.

Example:

01 MAIN
02 DEFINE n INTEGER
03 LET n = 1234567
04 END MAIN

DECIMAL LITERALS

Purpose:

The language supports decimal literals as a base-10 representation of a real number,
with an optional exponent notation.

Language Basics

141

Syntax:

[+|-] digit[...] dot digit[...] [{e|E} [+|-] digit[...]]

Notes:

1. dot is the decimal separator and is always a dot, independently from DBMONEY.
2. The E character is used to specify the exponent.

Example:

01 MAIN
02 DEFINE n DECIMAL(10,2)
03 LET n = 12345.67
04 LET n = -1.2356e-10
05 END MAIN

STRING LITERALS

Purpose:

The language supports string literals delimited by single quotes or double quotes.

Syntax 1 (using double quotes):

" alphanum [...] "

Syntax 2 (using single quotes):

' alphanum [...] '

Notes:

1. A string literal defines a character string constant, following the current character
set.

2. A string literal can be written on multiple lines, the compiler merges lines by
removing the new-line character.

3. The escape character is the back-slash character (\).
4. Quotes can be doubled to be included in strings.

Warnings:

1. An empty string ("") is equivalent to NULL.

Escape Sequences in string literals

A string literal can hold the following escape sequences:

Genero Business Development Language

142

1. \\ is a backslash character.
2. \" is a double-quote character.
3. \' is a single-quote character.
4. \n is a new-line character.
5. \r is a carriage-return character.
6. \0 is a null character.
7. \f is a form-feed character.
8. \t is a tab character.
9. \xNN is a character defined by the hexadecimal code NN.

Example:

01 MAIN
02 DISPLAY "Some text in double quotes"
03 DISPLAY 'Some text in single quotes'
04 DISPLAY "Escaped double quotes : \" "" "
05 DISPLAY 'Escaped single quotes : \' '' '
06 DISPLAY 'Insert a new-line character here: \n and continue with
text.'
07 DISPLAY "This is a text
08 on multiple
09 lines.\
10 You can insert a new-line with back-slash at the end of the
line."
11 IF "" IS NULL THEN DISPLAY 'Empty string is NULL' END IF
12 END MAIN

DATETIME LITERALS

Purpose:

The language supports datetime literals with the DATETIME () notation.

Syntax:

DATETIME (dtrep) qual1 TO qual2[(scale)]

Notes:

1. dtrep is the datetime value representation in normalized format (YYYY-MM-DD
hh:mm:ss.fffff).

2. qual1 and qual2 are the datetime qualifiers as described in the Datetime data
type.

Example:

01 MAIN
02 DEFINE d1 DATETIME YEAR TO SECOND
03 DEFINE d2 DATETIME HOUR TO FRACTION(5)

Language Basics

143

04 LET d1 = DATETIME (2002-12-24 23:55:56) YEAR TO SECOND
05 LET d2 = DATETIME (23:44:55.34532) HOUR TO FRACTION(5)
06 END MAIN

INTERVAL LITERALS

Purpose:

The language supports interval literals with the INTERVAL() notation.

Syntax:

INTERVAL (inrep) qual1[(precision)] TO qual2[(scale)]

Notes:

1. inrep is the interval value representation in normalized format (YYYY-MM or DD
hh:mm:ss.fffff).

2. qual1 and qual2 are the interval qualifiers as described in the Interval data type..

Example:

01 MAIN
02 DEFINE i1 INTERVAL YEAR TO MONTH
03 DEFINE i2 INTERVAL HOUR(5) TO SECOND
04 LET i1 = INTERVAL (345-5) YEAR TO MONTH
05 LET i2 = INTERVAL (34562:12:33) HOUR(5) TO SECOND
06 END MAIN

Genero Business Development Language

144

Operators
Summary:

• Definition
• Operator List
• Order of Precedence List
• General Warnings

See also: Variables, Data Types, Expressions, Literals.

Definition
The operators listed in this section can appear in Expressions. Expressions with several
operators are evaluated according to their precedence, from highest to lowest, as
described in the Order of Precedence List. Use parentheses to instruct the runtime
system to evaluate the expression in a different way than the default order of
precedence.

List of Operators

• Parentheses (())
• Associative Operators

o Membership (.)
• Assignment Operators

o Assignment (:=)
• Comparison Operators

o Is Null (IS NULL)
o Like (LIKE)
o Matches (MATCHES)
o Equal (==)
o Different (!= or <>)
o Lower (<)
o Lower or Equal (<=)
o Greater (>)
o Greater or Equal (>=)

• Logical Operators
o Not (NOT)
o And (AND)
o Or (OR)

• State Operators
o SQL State Code (SQLSTATE)
o SQL Error Message (SQLERRMESSAGE)

Language Basics

145

Numeric Operators

o Addition (+)
o Subtraction (-)
o Multiplication (*)
o Division (/)
o Exponentiation (**)
o Modulus (MOD)

• String Operators
o ASCII Char (ASCII)
o Concatenate (||)
o Append (,)
o Substring ([x,y])
o Formatting (USING)
o Clipped (CLIPPED)
o Spaces (SPACES)
o Localized String (LSTR)
o Replace (SFMT)

• Datetime Operators
o Current Datetime (CURRENT x TO y)
o Datetime Extensions (EXTEND(d, x TO y))
o Date Conversion (DATE)
o Time Conversion (TIME)
o Current Date (TODAY)
o Year of Date (YEAR(d))
o Month of Date (MONTH(d))
o Day of Date (DAY(d))
o Weekday of Date (WEEKDAY(d))
o Building a Date (MDY(m,d,y))
o Interval Unit (UNITS)

• Form Field Operators
o Field Buffer (GET_FLDBUF)
o Current Field (INFIELD)
o Field Modification (FIELD_TOUCHED)

Order of Precedence List
The following list describes the precedence order of operators. The P column defines the
precedence, from highest(14) to lowest(1). The A column defines the direction of
associativity (L=Left, R=Right, N=None). Some operators have the same precedence.

P Operator A Description Example
14 . (period) L Membership myrecord.member1

14 variable[] L Array index or character myarray[2,x,y]

Genero Business Development Language

146

subscripts

14 function() N Function call 1 +
myfunc(10,"abc")

13 UNITS L Single-qualifier interval (integer) UNITS DAY

12 + R Unary plus + number

12 - R Unary minus - number

11 ** L Exponentiation x ** 5

11 MOD L Modulus x MOD 2

10 * L Multiplication x * y

10 / L Division x / y

9 + L Addition x + y

9 - L Subtraction x - y

8 || L Concatenation "Amount:" || amount

7 LIKE R String comparison mystring LIKE "A%"

7 MATCHES R String comparison mystring MATCHES
"A*"

6 < L Less than var < 100

6 <= L Less then or equal to var <= 100

6 > L Greater than var > 100

6 >= L Greater than or equal to var >= 100

6 == L Equals var == 100

6 <> or != L Not equal to var <> 100

5 IS NULL L Test for NULL var IS NULL

4 NOT L Logical inverse NOT (a = b)

3 AND L Logical intersection expr1 AND expr2

2 OR L Logical union expr1 OR expr2

1 ASCII() R ASCII Character ASCII(32)

1 CLIPPED R Delete trailing blanks DISPLAY string
CLIPPED

1 COLUMN
(reports) R Begin line mode display PRINT COLUMN 32,

"a"

1 (integer)
SPACES R Insert blank spaces DISPLAY "a" (5)

SPACES

1 LSTR(string) R Load localized string DISPLAY
LSTR("str123")

1 SFMT(string
[,p[...]]) R Parameter replacement DISPLAY

SFMT("%1",123)

Language Basics

147

1 SQLSTATE R SQL State Code IF SQLSTATE="IX000"

1 SQLERRMESSAGE R SQL Error Message DISPLAY
SQLERRMESSAGE

1 USING R Format character string TODAY USING
"yy/mm/dd"

1 := L Assignment var := "abc"

General Warnings

Pure SQL Operators

The following operators are related to SQL syntax and not part of the language:

• BETWEEN expr AND expr
• IN (expr [, ..'])

Report Routine Operators

The following operators are only available in the FORMAT section of report routines:

• PAGENO
• WORDWRAP

See Report Definition for more details.

PARENTHESES

Purpose:

Parentheses are typically used to associate a set of values or expressions to override
the default order of precedence.

Syntax:

(expr operator expr [...])

Notes:

1. Typically used to change the precedence of operators.

Genero Business Development Language

148

Example:

01 MAIN
02 DEFINE n INTEGER
03 LET n = ((3 + 2) * 2)
04 IF n=10 AND (n<=0 OR n>=20) THEN
05 DISPLAY "OK"
06 END IF
07 END MAIN

MEMBERSHIP

Purpose:

The period membership operator specifies that its right-hand operand is a member of
the set whose name is its left-hand operand.

Syntax:

setname.element

Notes:

1. Typically used for record members.

Example:

01 MAIN
02 DEFINE rec RECORD
03 n INTEGER,
04 c CHAR(10)
05 END RECORD
06 LET rec.n = 12345
06 LET rec.c = "abcdef"
07 END MAIN

ASSIGNMENT

Purpose:

The := assignment operator sets a value to the left-hand operand, which must be a
variable.

Syntax:

variable := value

Language Basics

149

Notes:

1. Do not confuse with the LET instruction.
2. The left-hand operand must be a variable.
3. The assignment operator can be used in expressions.
4. The assignment operator has the lowest precedence.

Example:

01 MAIN
02 DEFINE var1, var2 INTEGER
03 -- 1. Evaluates 2*5
04 -- 2. Sets var2 to 10
05 -- 3. Then affects var1 with 10
06 LET var1 = var2:=2*5
07 END MAIN

IS NULL

Purpose:

The IS NULL operator is provided to test whether a value is NULL.

Syntax:

IS NULL

Notes:

1. Applies to most Data Types, except complex types like BYTE and TEXT.

Example:

01 MAIN
02 DEFINE n INTEGER
03 LET n = 257
04 IF n IS NULL THEN
05 DISPLAY "Something is wrong here"
06 END IF
07 END MAIN

EQUAL

Purpose:

The == operator evaluates whether two expressions or two records are identical.

Genero Business Development Language

150

Syntax 1: Expression comparison

expr == expr

Syntax 2: Record comparison

record1.* == record2.*

Notes:

1. Syntax 1 applies to most Data Types, except complex types like BYTE and
TEXT.

2. expr can be any expression supported by the language.
3. Syntax 2 allows you to compare all members of records having the same

structure.
4. record1 and record2 are records with the same structure.
5. A single equal sign (=) can be used as an alias for this operator.

Usage:

When comparing expressions using the first syntax, the result of the operator is FALSE
when one of the operands is NULL.

When comparing two records using the second syntax, the runtime system compares all
corresponding members of the records. If a pair of members are different, the result of
the operator is FALSE. When two corresponding members are NULL, they are
considered as equal.

Example:

01 MAIN
02 IF 256==257 THEN
03 DISPLAY "Something is wrong here"
04 END IF
05 END MAIN

DIFFERENT

Purpose:

The != operator evaluates whether two expressions or two records are different.

Syntax 1: Expression comparison

expr != expr

Language Basics

151

Syntax 2: Record comparison

record1.* != record2.*

Notes:

1. Syntax 1 applies to most Data Types, except complex types like BYTE and
TEXT.

2. expr can be any expression supported by the language.
3. Syntax 2 allows you to compare all members of records having the same

structure.
4. record1 and record2 are records with the same structure.
5. An alias exists for this operator: <>

Usage:

When comparing expressions with the first syntax, the result of the operator is FALSE
when one of the operands is NULL.

When comparing two records with the second syntax, the runtime system compares all
corresponding members of the records. If one pair of members are different, the result of
the operator is TRUE. When two corresponding members are NULL, they are
considered as equal.

Example:

01 MAIN
02 IF 256 != 257 THEN
03 DISPLAY "This seems to be true"
04 END IF
05 END MAIN

LOWER

Purpose:

The < operator is provided to test whether a value or expression is lower than another.

Syntax:

expr < expr

Warnings:

1. Applies to most Data Types, except complex types like BYTE and TEXT.

Genero Business Development Language

152

LOWER OR EQUAL

Purpose:

The <= operator is provided to test whether a value or expression is lower than or equal
to another.

Syntax:

expr <= expr

Warnings:

1. Applies to most Data Types, except complex types like BYTE and TEXT.

GREATER

Purpose:

The > operator is provided to test whether a value or expression is greater than another.

Syntax:

expr > expr

Warnings:

1. Applies to most Data Types, except complex types like BYTE and TEXT.

GREATER OR EQUAL

Purpose:

The >= operator is provided to test whether a value or expression is greater than or
equal to another.

Syntax:

expr >= expr

Warnings:

1. Applies to most Data Types, except complex types like BYTE and TEXT.

Language Basics

153

NOT

Purpose:

The NOT operator is a typical logical NOT used to invert a Boolean expression.

Syntax:

NOT boolexpr

Example:

01 MAIN
02 IF NOT (256 != 257) THEN
03 DISPLAY "Something is wrong here"
04 END IF
05 END MAIN

AND

Purpose:

The AND operator is the logical intersection operator.

Syntax:

boolexpr AND boolexpr

Example:

01 MAIN
02 IF 256!=257 AND 256=257 THEN
03 DISPLAY "Sure?"
04 END IF
05 END MAIN

OR

Purpose:

The OR operator is the logical union operator.

Genero Business Development Language

154

Syntax:

boolexpr OR boolexpr

Example:

01 MAIN
02 IF TRUE OR FALSE THEN
03 DISPLAY "Must be true!"
04 END IF
05 END MAIN

SQLSTATE

Purpose:

The SQLSTATE operator returns the ANSI/ISO SQLSTATE code when an SQL error
occurred.

Syntax:

SQLSTATE

Warnings:

1. The SQLSTATE error code is a standard ANSI specification, but not all database
engines support this feature. Check the database server documentation for more
details.

Example:

01 MAIN
02 DATABASE stores
03 WHENEVER ERROR CONTINUE
04 SELECT foo FROM bar
05 DISPLAY SQLSTATE
06 END MAIN

SQLERRMESSAGE

Purpose:

The SQLERRMESSAGE operator returns the error message if an SQL error occurred.

Language Basics

155

Syntax:

SQLERRMESSAGE

Example:

01 MAIN
02 DATABASE stores
03 WHENEVER ERROR CONTINUE
04 SELECT foo FROM bar
05 DISPLAY SQLERRMESSAGE
06 END MAIN

ASCII

Purpose:

The ASCII operator returns the character corresponding to the ASCII code passed as a
parameter.

Syntax:

ASCII intexpr

Notes:

1. intexpr is an integer expression..
2. Typically used to generate a non-printable character such as NewLine or

Escape.
3. In a default (U.S. English) locale, this is the logical inverse of the ORD() built-in

function.

Warnings:

1. This is not a function, but a real operator (it can, for example, be used as a
function parameter).

Tips:

1. Often used with parentheses (ASCII(n)), but these are not needed.

Example:

01 MAIN
02 DISPLAY ASCII 65, ASCII 66, ASCII 7
03 END MAIN

Genero Business Development Language

156

LIKE

Purpose:

The LIKE operator returns TRUE if a string matches a given mask.

Syntax:

expression [NOT] LIKE mask [ESCAPE "char"]

Warnings:

1. Do not confuse with the LIKE clause of the DEFINE instruction.
2. LIKE operators used in SQL statements are evaluated by the database server.

This may have a different behavior than the LIKE operator of the language.

Notes:

1. expression is any character string expression.
2. mask is a character string expression defining the filter.
3. char is a single char specifying the escape symbol.

Usage:

The mask can be any combination of characters, including the % and _ wildcards:

• The % percent character matches any string of zero or more characters.
• The _ underscore character matches any single character.

The ESCAPE clause can be used to define an escape character different from the default
backslash. It must be enclosed in single or double quotes.

A backslash (or the escape character specified by the ESCAPE clause) makes the
operator treat the next character as a literal character, even if it is one of the special
symbols in the above list. This allows you to search for %, _ or \ characters.

Example:

01 MAIN
02 IF "abcdef" LIKE "a%e_" THEN
03 DISPLAY "yes"
04 END IF
05 END MAIN

Language Basics

157

MATCHES

Purpose:

The MATCHES operator returns TRUE if a string matches a given mask.

Syntax:

expression [NOT] MATCHES mask [ESCAPE "char"]

Notes:

1. expression is any character string expression.
2. mask is a character string expression defining the filter.
3. char is a single char specifying the escape symbol.

Usage:

The mask can be any combination of characters, including the *, ? and [] wildcards:

• The * star character matches any string of zero or more characters.
• The ? question mark matches any single character.
• The [] brackets match any enclosed character. A hyphen (-) between

characters means a range of characters. An initial caret (^) matches any
character that is not listed.

The ESCAPE clause can be used to define an escape character different from the default
backslash. It must be enclosed in single or double quotes.

A backslash (or the escape character specified by the ESCAPE clause) makes the
operator treat the next character as a literal character, even if it is one of the special
symbols in the above list. This allows you to search for *, ? or \ characters.

Example:

01 MAIN
02 IF "abcdef" NOT MATCHES "b*[a-z]" THEN
03 DISPLAY "yes"
04 END IF
05 END MAIN

CONCATENATE

Purpose:

The || operator is the concatenation operator that produces a string expression.

Genero Business Development Language

158

Syntax:

expr || expr

Notes:

1. expr can be a character, numeric or date time expression.
2. This operator has a high precedence; it can be used in parameters for function

calls.
3. The precedence of this operator is higher than LIKE and MATCHES, but less

than arithmetic operators. For example, a || b + c is equivalent to
(a||(b+c)).

Warnings:

1. If any of the members of a concatenation expression is NULL, the result string
will be NULL.

Example:

01 MAIN
02 DISPLAY "Length: " || length("ab" || "cdef")
03 END MAIN

APPEND

Purpose:

The , operator appends a value to a string.

Syntax:

charexpr , expr

Notes:

1. Can only be used in LET and DISPLAY instructions.
2. In earlier versions this was the only way to concatenate strings; use the ||

operator instead.

Example:

01 MAIN
02 DISPLAY "Today:", TODAY, " and a number: ", 12345.67
03 END MAIN

Language Basics

159

SUBSTRING

Purpose:

The [] operator is provided to extract a sub-string from a character variable.

Syntax:

charvar [start [, end]]

Notes:

1. start defines the position of the first character of the sub-string to be extracted.
2. end defines the position of the last character of the sub-string to be extracted.
3. If end is not specified, only one character is extracted.

Warnings:

1. Sub-strings expressions in SQL statements are evaluated by the database
server. This may have a different behavior than the sub-string operator of the
language.

Example:

01 MAIN
02 DEFINE s CHAR(10)
03 LET s = "abcdef"
04 DISPLAY s[3,4]
05 END MAIN

USING

Purpose:

The USING operator converts datetime and numeric values into a string with a formatting
mask.

Syntax:

expr USING "format"

Notes:

1. format defines the formatting mask to be used; see below for more details.

Genero Business Development Language

160

Warnings:

1. The formatting characters of USING are not identical to those that you can
specify in the format strings of FORMAT and PICTURE form field attributes.

Formatting symbols for numbers:

Character Description
* Fills with asterisks any position that would otherwise be blank.
& Fills with zeros any position that would otherwise be blank.
This does not change any blank positions in the display.
< Causes left alignment.

, (comma)

Defines the position of the thousands separator. The
thousands separator is not displayed if there are no digits to
the left. By default, the thousands separator is a comma, but it
can be another character as defined by DBFORMAT.

. (period)

Defines the position of the decimal separator. Only a single
decimal separator may be specified. By default, the decimal
separator is a period, however it can be another character as
defined by DBMONEY or DBFORMAT.

- Displays a minus sign for negative numbers.
+ Displays a plus sign for positive numbers.

$ This is the placeholder for the front specification of DBMONEY
or DBFORMAT.

(Displayed as left parentheses for negative numbers
(accounting parentheses).

) Displayed as right parentheses for negative numbers
(accounting parentheses).

Formatting symbols for dates:

Character Description
dd Day of the month as a 2-digit integer.

ddd Three-letter English-language abbreviation of the day of the
week, for example, Mon, Tue.

mm Month as a 2-digit integer.

mmm Three-letter English-language abbreviation of the month, for
example, Jan, Feb.

yy Year, as a 2-digits integer representing the 2 trailing digits.
yyyy Year as a 4-digit number.

Language Basics

161

Example:

01 MAIN
02 DEFINE d DECIMAL(12,2)
03 LET d = -12345678.91
04 DISPLAY d USING "$-##,###,##&.&&"
05 DISPLAY TODAY USING "yyyy-mm-dd"
06 END MAIN

CLIPPED

Purpose:

The CLIPPED operator removes trailing blanks of a string expression.

Syntax:

charexpr CLIPPED

Example:

01 MAIN
02 DISPLAY "Some text " CLIPPED
03 END MAIN

SPACES

Purpose:

The SPACES operator returns a character string with blanks.

Syntax:

intexpr SPACES

Warnings:

1. intexpr is an integer expression.
2. "SPACE" is an alias for this operator.

Example:

01 MAIN
02 DISPLAY 20 SPACES || "xxx"
03 END MAIN

Genero Business Development Language

162

LSTR

Purpose:

The LSTR operator returns a Localized String corresponding to the identifier passed as
parameter.

Syntax:

LSTR(strexpr)

Warnings:

1. strexpr is a string expression.

Example:

01 MAIN
02 DISPLAY LSTR ("str"||123) -- loads string 'str123'
03 END MAIN

SFMT

Purpose:

The SFMT operator returns a string after replacing the parameter.

Syntax:

SFMT(strexpr [, param [...]])

Warnings:

1. strexpr is a string expression.
2. param is any valid expression used to replace parameter place holders (%n).

Usage:

The SFMT() operator can be used with parameters that will be automatically set in the
string at the position defined by parameter place holders. The parameters used with the
SFMT() operator can be any valid expressions. Numeric and date/time expressions are
evaluated to strings according to the current format settings (DBDATE, DBMONEY).

Language Basics

163

A place holder a is special marker in the string, that is defined by the percent character
followed by the parameter number. For example, %4 represents the parameter #4. You
are allowed to use the same parameter place holder several times in the string. If you
want to use the percent sign in the string, you must escape it with %%.

Example:

01 MAIN
02 DEFINE n INTEGER
03 LET n = 234
04 DISPLAY SFMT("Order #%1 has been %2.",n,"deleted")
05 END MAIN

ADDITION

Purpose:

The + operator adds a number to another.

Syntax:

numexpr + numexpr

Example:

01 MAIN
02 DISPLAY 100 + 200
03 END MAIN

SUBTRACTION

Purpose:

The - operator subtracts a number from another.

Syntax:

numexpr - numexpr

Example:

01 MAIN
02 DISPLAY 100 - 200
03 END MAIN

Genero Business Development Language

164

MULTIPLICATION

Purpose:

The * operator multiplies a number with another.

Syntax:

numexpr * numexpr

Example:

01 MAIN
02 DISPLAY 100 * 200
03 END MAIN

DIVISION

Purpose:

The / operator divides a number by another.

Syntax:

numexpr / numexpr

Example:

01 MAIN
02 DISPLAY 100 / 200
03 END MAIN

EXPONENTIATION

Purpose:

The ** operator returns a value calculated by raising the left-hand operand to a power
corresponding to the integer part of the right-hand operand.

Syntax:

numexpr ** intexpr

Language Basics

165

Example:

01 MAIN
02 DISPLAY 2 ** 8
03 END MAIN

MODULUS

Purpose:

The MOD operator returns the remainder, as an integer, from the division of the integer
part of two numbers.

Syntax:

intexpr MOD intexpr

Example:

01 MAIN
02 DISPLAY 256 MOD 16
03 DISPLAY 26.51 MOD 2.7
04 END MAIN

CURRENT

Purpose:

The CURRENT operator returns the current date and time according to the qualifier.

Syntax:

CURRENT qual1 TO qual2[(scale)]

Notes:

1. qual1, qual2 and scale define the date time qualifier; see the DATETIME data
type for more details.

Example:

01 MAIN
02 DISPLAY CURRENT YEAR TO FRACTION(4)
03 DISPLAY CURRENT HOUR TO SECOND
04 END MAIN

Genero Business Development Language

166

EXTEND

Purpose:

The EXTEND operator adjusts a date time value according to the qualifier.

Syntax:

EXTEND (dtexpr, qual1 TO qual2[(scale)])

Notes:

1. This operator is used to convert a date time expression to a DATETIME value
with a different precision.

2. dtexpr is a date or datetime expression. If it is a character string, it must consist
of valid and unambiguous time-unit values and separators, but with these
restrictions:

o It cannot be a character string in date format, such as "12/12/99".
o It cannot be an ambiguous numeric datetime value, such as "05:06" or

"05".
o It cannot be a time expression that returns an INTERVAL value.

3. qual1, qual2 and scale define the date time qualifier, see the DATETIME data
type for more details.

4. The default qualifier is YEAR TO DAY.

Example:

01 MAIN
02 DISPLAY EXTEND (TODAY, YEAR TO FRACTION(4))
03 END MAIN

DATE

Purpose:

The DATE operator converts a character expression, an integer or a datetime to a date
value.

Syntax:

DATE [(dtexpr)]

Notes:

1. dtexpr is a character string, an integer or a datetime expression.

Language Basics

167

2. This operator is used to convert a character string, an integer or a date time
value to a DATE value.

3. When dtexpr is a character string expression, it must properly formatted
according to datetime format settings like DBDATE.

4. If dtexpr is an integer expression, it is used as the number of days since
December 31, 1899.

5. If you supply no operand, it returns a character representation of the current date
in the format "weekday month day year".

Example:

01 MAIN
02 DISPLAY DATE (34000)
03 DISPLAY DATE ("12/04/1978")
04 DISPLAY DATE (CURRENT)
05 END MAIN

TIME

Purpose:

The TIME operator converts the time-of-day portion of its datetime operand to a
character string.

Syntax:

TIME [(dtexpr)]

Notes:

1. dtexpr is a datetime expression.
2. This operator converts a date time expression to a character string representing

the time-of-day part of its operand.
3. The format of the returned string is always "hh:mm:ss".
4. If you supply no operand, it returns a character representation of the current time.

Example:

01 MAIN
02 DISPLAY TIME (CURRENT)
03 END MAIN

Genero Business Development Language

168

TODAY

Purpose:

The TODAY operator returns the current calendar date.

Syntax:

TODAY

Notes:

1. Reads current system clock and returns a DATE value that represents the
current calendar date.

Tips:

1. See also the CURRENT operator that returns current date and time.

Example:

01 MAIN
02 DISPLAY TODAY
03 END MAIN

YEAR

Purpose:

The YEAR operator extracts the year of a date time expression.

Syntax:

YEAR (dtexpr)

Notes:

1. dtexpr is a date or datetime expression.
2. Returns an integer corresponding to the year portion of its operand.

Example:

01 MAIN
02 DISPLAY YEAR (TODAY)
03 DISPLAY YEAR (CURRENT)
04 END MAIN

Language Basics

169

MONTH

Purpose:

The MONTH operator extracts the month of a date time expression.

Syntax:

MONTH (dtexpr)

Notes:

1. dtexpr is a date or datetime expression.
2. Returns a positive whole number between 1 and 12 corresponding to the month

of its operand.

Example:

01 MAIN
02 DISPLAY MONTH (TODAY)
03 DISPLAY MONTH (CURRENT)
04 END MAIN

DAY

Purpose:

The DAY operator extracts the day of the month of a date time expression.

Syntax:

DAY (dtexpr)

Notes:

1. dtexpr is a date or datetime expression.
2. Returns a positive whole number between 1 and 31 corresponding to the day of

the month of its operand.

Example:

01 MAIN
02 DISPLAY DAY (TODAY)
03 DISPLAY DAY (CURRENT)
04 END MAIN

Genero Business Development Language

170

WEEKDAY

Purpose:

The WEEKDAY operator extracts the day of the week of a date time expression.

Syntax:

WEEKDAY (dtexpr)

Notes:

1. dtexpr is a date or datetime expression.
2. Returns a positive whole number between 0 and 6 corresponding to the day of

the week implied by its operand.
3. The integer 0 (Zero) represents Sunday.

Example:

01 MAIN
02 DISPLAY WEEKDAY (TODAY)
03 DISPLAY WEEKDAY (CURRENT)
04 END MAIN

MDY

Purpose:

The MDY operator builds a date value with 3 integers representing the month, day and
year.

Syntax:

MDY (intexpr1, intexpr2, intexpr3)

Notes:

1. intexpr1 is an integer representing the month (from 1 to 12).
2. intexpr2 is an integer representing the day (from 1 to 28, 29, 30 or 31 depending

on the month).
3. intexpr3 is an integer representing the year (four digits).
4. The result is a DATE value.

Language Basics

171

Example:

01 MAIN
02 DISPLAY MDY (12, 3+2, 1998)
03 END MAIN

UNITS

Purpose:

The UNITS operator converts an integer expression to an interval value.

Syntax:

intexpr UNITS qual[(scale)]

Notes:

1. intexpr is an integer expression.
2. qual is one of the unit specifiers of a DATETIME qualifier.
3. The result is a INTERVAL value.

Example:

01 MAIN
02 DEFINE d DATE
03 LET d = TODAY + 200
04 DISPLAY (d - TODAY) UNITS DAY
05 END MAIN

GET_FLDBUF

Purpose:

The GET_FLDBUF operator returns as character strings the current values of the specified
fields.

Syntax:

GET_FLDBUF ([group.]field [,...])

Notes:

1. group can be a table name, a screen record, a screen array or 'formonly'.
2. field is the name of the screen field.

Genero Business Development Language

172

3. Typically used to get the value of a screen field before the input buffer is copied
into the associated variable.

4. If multiple fields are specified between parentheses, you must use the
RETURNING clause.

5. When used in a INPUT ARRAY instruction, the runtime system assumes that you
are referring to the current row.

Warnings:

1. The values returned by this operator are context dependent; it must be used
carefully. If possible, use the variable associated to the input field instead.

Example:

01 ...
02 LET v = GET_FLDBUF(customer.custname)
03 CALL GET_FLDBUF(customer.*) RETURNING rec_customer.*
04 ...

INFIELD

Purpose:

The INFIELD operator returns TRUE if its operand is the identifier of the current screen
field.

Syntax:

INFIELD ([group.]field)

Notes:

1. group can be a table name, a screen record, a screen array or 'FORMONLY'.
2. field is the name of the field in the form.
3. Typically used to check for the current field in a CONSTRUCT, INPUT or INPUT

ARRAY instruction.
4. When used in an INPUT ARRAY instruction, the runtime system assumes that

you are referring to the current row.

Example:

01 ...
02 INPUT ...
03 IF INFIELD(customer.custname) THEN
04 MESSAGE "The current field is customer's name."
05 ...

Language Basics

173

FIELD_TOUCHED

Purpose:

The FIELD_TOUCHED operator returns TRUE if the value of a screen field has changed
since the beginning of the interactive instruction.

Syntax:

FIELD_TOUCHED ([group.]field [,...])

Notes:

1. group can be a table name, a screen record, a screen array or 'FORMONLY'.
2. field is the name of the field in the form.
3. Typically used to check if the value of a field was edited..
4. When used in an INPUT ARRAY instruction, the runtime system assumes that

you are referring to the current row.

Warnings:

1. After a DISPLAY instruction, the modified field is marked as 'touched'.
2. Do not confuse with FGL_BUFFERTOUCHED; in that function, the flag is reset

when entering a new field.

Usage:

For more details about the FIELD_TOUCHED operator usage and the understand the
"touched flag" concept, see the Touched Flag section of the DIALOG instruction.

Example:

01 ...
02 AFTER INPUT
03 IF FIELD_TOUCHED(customer.custname) THEN
04 MESSAGE "Customer name was changed."
05 ...

Genero Business Development Language

174

Expressions
Summary:

• Definition
• Boolean Expressions
• Integer Expressions
• Number Expressions
• String Expressions
• Date Expressions
• Datetime Expressions
• Interval Expressions

See also: Variables, Data Types, Literals, Constants.

Definition

What is an Expression?

An Expression is a sequence of operands, operators, and parentheses that the runtime
system can evaluate as a single value.

Expressions can include the following components:

• Operators, as described in the Operators section.
• Parentheses, to overwrite precedence of operators.
• Operands, including the following:

o Variables
o Constants
o Functions (returning a single value)
o Literal values
o Other expressions

Differences Between BDL and SQL Expressions

Expressions in SQL statements are evaluated by the database server, not by the
runtime system. The set of operators that can appear in SQL expressions resembles the
set of BDL operators, but they are not identical. A program can include SQL operators,
but these are restricted to SQL statements. Similarly, most SQL operands are not valid
in BDL expressions. The SQL identifiers of databases, tables, or columns can appear in
a LIKE clause or field name in BDL statements, provided that these SQL identifiers
comply with the naming rules of BDL. Here are some examples of SQL operands and
operators that cannot appear in other BDL expressions:

• SQL identifiers, such as column names
• The SQL keywords USER and ROWID

Language Basics

175

• Built-in or aggregate SQL functions that are not part of BDL
• The BETWEEN and IN operators
• The EXISTS, ALL, ANY, or SOME keywords of SQL expressions

Conversely, you cannot include BDL specific operators in SQL expressions, as for
example:

• Arithmetic operators for exponentiation (**) and modulus (MOD)
• String operators ASCII, COLUMN, SPACE, SPACES, and WORDWRAP
• Field operators FIELD_TOUCHED(), GET_FLDBUF(), and INFIELD()
• The report operators LINENO and PAGENO

Parentheses in BDL Expressions

You can use parentheses as you would in algebra to override the default order of
precedence of operators. In mathematics, this use of parentheses represents the
"associative" operator. It is, however, a convention in computer languages to regard this
use of parentheses as delimiters rather than as operators. (Do not confuse this use of
parentheses to specify operator precedence with the use of parentheses to enclose
arguments in function calls or to delimit other lists.)

In the following example, the variable y is assigned the value of 2:

 LET y = 15 MOD 3 + 2

In the next example, however, y is assigned the value of 0 because the parentheses
change the sequence of operations:

 LET y = 15 MOD (3 + 2)

Boolean Expressions

A Boolean expression is one that evaluates to an INTEGER value that can be TRUE,
FALSE and in some cases, NULL.

Notes:

1. Boolean expressions are a combination of Logical Operators and Boolean
comparisons based on Comparison Operators.

2. Boolean expressions are based on the INTEGER data type for evaluation.
3. Any integer value different from zero is defined as true, while zero is defined as

false.
4. Use an INTEGER variable to store the result of a Boolean expression.
5. If an expression that returns NULL is the operand of the IS NULL operator, the

value of the Boolean expression is TRUE.

Genero Business Development Language

176

6. If you include a Boolean expression in a context where the runtime system
expects a number, the expression is evaluated, and is then converted to an
integer by the rules: TRUE = 1 and FALSE = 0.

7. The Boolean expression evaluates to TRUE if the value is a non-zero real number
or any of the following items:

o Character string representing a non-zero number
o Non-zero INTERVAL
o Any DATE or DATETIME value
o A TRUE value returned by a Boolean function like INFIELD()
o The built-in integer constant TRUE

8. If a Boolean expression includes an operand whose value is not an integer data
type, the runtime system attempts to convert the value to an integer according to
the data conversion rules.

Example:

01 MAIN
02 DEFINE r, c INTEGER
03 LET c = 4
03 LET r = TRUE!=FALSE AND (c=2 OR c=4)
04 IF (r AND canReadFile("config.txt")) THEN
05 DISPLAY "OK"
06 END IF
07 END MAIN

Warnings:

1. A Boolean expression evaluates to NULL if the value is NULL and the expression
does not appear in any of the following contexts:

o The IS [NOT] NULL test.
o Boolean Comparisons.
o Any conditional statement (IF, CASE, WHILE).

2. The syntax of Boolean expressions in BDL is not the same as Boolean conditions
in SQL statements.

3. Boolean expressions in CASE, IF, or WHILE statements return FALSE if any
element of the comparison is NULL, except for operands of the IS NULL and the
IS NOT NULL operator. See Boolean Operators for more information about
individual Boolean operators and Boolean expressions.

Integer Expressions

An Integer expression is one that evaluates to a whole number.

Notes:

1. The data type of the expression result can be SMALLINT or INTEGER.
2. The operands must be one of:

o An integer literal

Language Basics

177

o A variable or constant of type SMALLINT or INTEGER
o A function returning a single integer value
o A Boolean expression
o The result of a DATE subtraction

3. If an integer expression includes an operand whose value is not an integer data
type, the runtime system attempts to convert the value to an integer according to
the data conversion rules.

Example:

01 MAIN
02 DEFINE r, c INTEGER
03 LET c = 4
04 LET r = c * (2 + c MOD 4) / getRowCount("customers")
05 END MAIN

Warnings:

1. If an element of an integer expression is NULL, the expression is evaluated to
NULL.

Number Expressions

A Number expression is one that evaluates to a number data type.

Notes:

1. The data type of the expression result can be SMALLINT, INTEGER, DECIMAL,
SMALLFLOAT or FLOAT.

2. The operands must be one of:
o An integer literal
o A decimal literal
o A variable or constant of numeric data type
o A function returning a single numeric value
o A Boolean expression
o The result of a DATE subtraction

3. If a number expression includes an operand whose value is not a numeric data
type, the runtime system attempts to convert the value to a number according to
the data conversion rules.

Example:

01 MAIN
02 DEFINE r, c DECIMAL(10,2)
03 LET c = 456.22
04 LET r = c * 2 + (c / 4.55)
05 END MAIN

Genero Business Development Language

178

Warnings:

1. If an element of a number expression is NULL, the expression is evaluated to
NULL.

String Expressions

A String expression is one that includes at least one character string value and that
evaluates to the STRING data type.

Notes:

1. The data type of the expression result is STRING.
2. At least one of the operands must be one of:

o A string literal.
o A variable or constant of type CHAR, VARCHAR or STRING.
o A function returning a single character value

3. Other operands whose values are not character string data types are converted
to strings according to the data conversion rules.

Example:

01 MAIN
02 DEFINE r, c VARCHAR(100)
03 LET c = "abcdef"
04 LET r = c[1,3] || ": " || TODAY USING "YYYY-MM-DD" || " " ||
length(c)
05 END MAIN

Warnings:

1. If an element of an integer expression is NULL, the expression is evaluated to
NULL.

2. An empty string ("") is equivalent to NULL.

Date Expressions

A Date expression is one that evaluates to a DATE data type.

Notes:

1. The data type of the expression result is a DATE value.
2. The operands must be one of:

o A string literal that can be evaluated to a Date according to DBDATE
o A variable or constant of type DATE

Language Basics

179

o A function returning a single Date value
o A unary + or - associated to an Integer expression representing a number

of days
o The TODAY constant
o A CURRENT expression with YEAR TO DAY qualifiers
o An EXTEND expression with YEAR TO DAY qualifiers

3. If a date expression includes an operand whose value is not a date data type, the
runtime system attempts to convert the value to a date value according to the
data conversion rules.

Example:

01 MAIN
02 DEFINE r, c DATE
03 LET c = TODAY + 4
04 LET r = (c - 2)
05 END MAIN

Warnings:

1. If an element of an integer expression is NULL, the expression is evaluated to
NULL.

Datetime Expressions

A Datetime expression is one that evaluates to a DATETIME data type.

Notes:

1. The data type of the expression result is a DATETIME value.
2. The operands must be one of:

o A datetime literal
o A string literal representing a Datetime with the ISO format YYYY-MM-DD

hh:mm:ss.fffff
o A variable or constant of DATETIME type
o A function returning a single Datetime value
o A unary + or - associated to an Interval expression
o A CURRENT expression
o An EXTEND expression

3. If a datetime expression includes an operand whose value is not a datetime data
type, the runtime system attempts to convert the value to a datetime value
according to the data conversion rules.

Example:

01 MAIN
02 DEFINE r, c DATETIME YEAR TO SECOND
03 LET c = CURRENT YEAR TO SECOND

Genero Business Development Language

180

04 LET r = c + INTERVAL(234-02) YEAR TO MONTH
05 END MAIN

Warnings:

1. If an element of an integer expression is NULL, the expression is evaluated to
NULL.

Interval Expressions

An Interval expression is one that evaluates to a INTERVAL data type.

Notes:

1. The data type of the expression result is a INTERVAL value.
2. The operands must be one of:

o An interval literal
o A string literal representing an Interval with the ISO format YYYY-MM-DD

hh:mm:ss.fffff
o An integer expression using the UNITS operator
o A variable or constant of INTERVAL type
o A function returning a single Interval value
o The result of a DATETIME subtraction

3. If an interval expression includes an operand whose value is not an interval data
type, the runtime system attempts to convert the value to an interval value
according to the data conversion rules.

Example:

01 MAIN
02 DEFINE r, c INTERVAL HOUR TO MINUTE
03 LET c = "12:45"
04 LET r = c + (DATETIME(14-02) HOUR TO MINUTE - DATETIME(10-43)
HOUR TO MINUTE)
05 END MAIN

Warnings:

1. If an element of an integer expression is NULL, the expression is evaluated to
NULL.

Language Basics

181

Exceptions
Summary:

• Exceptions handling
• Exception Actions
• Exception Types
• Exception Classes
• Exceptions handler (WHENEVER)
• Exception blocks (TRY/CATCH)
• Handling SQL Errors
• Tracing exceptions
• Examples

o Example 1 - WHENEVER ERROR CALL
o Example 2 - WHENEVER ERROR CONTINUE / STOP
o Example 3 - TRY / CATCH
o Example 4 - WHENEVER + TRY CATCH
o Example 5 - WHENEVER ERROR RAISE

See also: Flow Control, Fgl Errors.

Exception handling
If an instructions executes abnormally, the runtime system throws exceptions that can be
handled by the program. Actions can be taken based on the class of the exception.
There is no way to raise exceptions explicitly; only the runtime system can throw
exceptions. Runtime errors (i.e. exceptions) can be trapped by a WHENEVER exception
handler or by a TRY / CATCH block.

Exception Actions
There are five actions that can be executed if an exception is raised:

STOP

The program is immediately terminated. A message is displayed to the standard
error with the location of the related statement, the error number, and the details
of the exception.

CONTINUE

The program continues normally (the exception is ignored).

Genero Business Development Language

182

CALL name

The function name is called by the runtime system. The function can be defined
in any module, and must have zero parameters and zero return values. The
STATUS variable will be set to the corresponding error number.

GOTO name

The program execution continues at the label identified by name.

RAISE

This statement instructs the DVM that an exception raised will not be handled by
the local function, but by the calling function. If an exception is raised, the current
function will return and the exception handling is left to the caller function.

Exception Types
There are four types of exceptions, defining the kind of errors that can occur:

Type Reason Examples

ET_STATEMENT Error occurred in a statement. DISPLAY AT invalid
coordinates.

ET_EXPRESSION Expression evaluation error. Division by zero.

ET_NOTFOUND An SQL statement returns
status NOTFOUND.

FETCH when cursor is on last
row.

ET_WARNING An SQL statement sets
sqlca.sqlawarn flag.

Fetched CHAR value has been
truncated.

Exception Classes
The exception classes indirectly define the exception type:

Class Related Exception Type (defines the
error reason) Default Action

ERROR ET_STATEMENT STOP
ANY ERROR ET_STATEMENT and ET_EXPRESSION CONTINUE
NOT FOUND ET_NOTFOUND CONTINUE
WARNING ET_WARNING CONTINUE

Language Basics

183

WHENEVER

The WHENEVER instruction defines exception handling in a program module, by
associating an exception class with an exception action.

Syntax:

WHENEVER [ANY] ERROR { CONTINUE | STOP | CALL function | RAISE | GOTO
label }

Notes:

1. function can be any function name defined in the program.
2. label can be any label defined in the current module.
3. Exception classes ERROR and SQLERROR are synonyms (compatibility issue).
4. Actions for classes ERROR, WARNING and NOT FOUND can be set independently.

Tips:

1. For SQL instructions that can potentially generate errors, it is recommended that
you define an exception handler locally; errors in the rest of the program can be
handled by the default exception handler. See example 2 for more details.

Warning: The scope of a WHENEVER instruction is similar to a C pre-processor
macro. It is local to the module and valid until the end of the module, unless a new
WHENEVER instruction is encountered by the compiler.

TRY - CATCH pseudo statement

Any FGL statement in the TRY block will be executed until an exception is thrown. After
an exception the program execution continues in the CATCH block. If no CATCH block is
provided, the execution continues after END TRY.

Without an exception the program continues after END TRY.

TRY can be compared with WHENEVER ERROR GOTO label.

The next two code fragments have similar behavior:

01 -- Exception handling using TRY CATCH
02 TRY
03 -- fgl-statements
04 CATCH
05 -- fgl-statements catching the error
06 END TRY

Genero Business Development Language

184

01 -- traditional fgl using WHENEVER ERROR GOTO
02 WHENEVER ERROR GOTO catch_error
03 -- fgl-statements
04 GOTO no_error
05 LABEL catch_error:
06 WHENEVER ERROR STOP
07 -- fgl-statements catching the error
08 LABEL no_error

The TRY statement can be nested in other TRY statements.

The TRY statement is a pseudo statement, because it does not instruct the compiler to
generate code. It is not possible to set a debugger break point at TRY, CATCH or END TRY.

Handing SQL Errors
After executing an SQL statement, you can query STATUS, SQLSTATE,
SQLERRMESSAGE and the SQLCA record to get the description of the error. When the
statement has been executed with errors, STATUS and SQLCA.SQLCODE contain the
SQL Error Code. If no error occurs, STATUS and SQLCA.SQLCODE are set to zero.

You control the result of an SQL statement execution by using the WHENEVER ERROR
exception handler:

01 MAIN
02
03 DATABASE stores
04
05 WHENEVER ERROR CONTINUE
06 SELECT COUNT(*) FROM customer
07 IF sqlca.sqlcode THEN
08 ERROR "SQL Error occurred:", sqlca.sqlcode
09 END IF
10 WHENEVER ERROR STOP
11
12 END MAIN

The SQL Error Codes are not standard. For example, ORACLE returns 903 when a
table name does not exist.

By convention, the STATUS and SQLCA.SQLCODE variables always use IBM Informix
SQL Error Codes. When using IBM Informix, both STATUS and SQLCA.SQLCODE
variables contain the native Informix error code. When using other database servers, the
database interface automatically converts native SQL Error Codes to IBM Informix Error
Codes. If no equivalent Informix Error Code can be found, the interface returns -6372 in
SQLCA.SQLCODE.

If an SQL error occurs when using IBM Informix, the SQLCA variable is filled with
standard information as described in the Informix documentation. When using other

Language Basics

185

database servers, the native SQL Error Code is available in the SQLCA.SQLERRD[2]
register. SQL Error Codes in SQLCA.SQLERRD[2] are always negative, even if the
database server defines positives SQL Error Codes. Additionally, if the target database
API supports ANSI SQL states, the SQLSTATE code is returned in SQLCA.SQLERRM.

The NOTFOUND (100) execution status is returned after a FETCH, when no rows are
found.

See also: Connections.

Tracing exceptions
Exceptions will be automatically logged in a file by the runtime system if all the following
conditions are true:

• The STARTLOG function has been previously called to specify the name of the
exception logging file.

• The exception action is set to CALL, GOTO or STOP. Exceptions are not logged
when the action is CONTINUE.

• The exception class is an ERROR, ANY ERROR or WARNING. NOT FOUND
exceptions cannot be logged.

Each log entry contains:

• The system-time
• The location of the related FGL statement (source-file, line)
• The error-number
• The text of the error message, giving human-readable details for the exception

Examples

Example 1:

01 MAIN
02 WHENEVER ERROR CALL error_handler
03 DATABASE stores
04 SELECT dummy FROM systables WHERE tabid=1
05 END MAIN
06
07 FUNCTION error_handler()
08 DISPLAY "Error:", STATUS
09 EXIT PROGRAM 1
10 END FUNCTION

Genero Business Development Language

186

Example 2:

01 MAIN
02 DEFINE tabname VARCHAR(50)
03 DEFINE rowcount INTEGER
04
05 # In the DATABASE statement, no error should occur.
06 DATABASE stores
07
08 # But in the next procedure, user may enter a wrong table.
09 WHENEVER ERROR CONTINUE
10 PROMPT "Enter a table name:" FOR tabname
11 LET sqlstmt = "SELECT COUNT(*) FROM " || tabname
12 PREPARE s FROM sqlstmt
13 IF sqlca.sqlcode THEN
14 ERROR "SQL Error occurred:", sqlca.sqlcode
15 END IF
16 EXECUTE s INTO rowcount
17 IF sqlca.sqlcode THEN
18 ERROR "SQL Error occurred:", sqlca.sqlcode
19 END IF
20 WHENEVER ERROR STOP
21
22 END MAIN

Example 3:

01 MAIN
02 TRY
03 DATABASE invalid_database_name
04 DISPLAY "Will not be displayed"
05 CATCH
06 DISPLAY "Exception caught, status = ", status USING "----&"
07 END TRY
08 END MAIN

Example 4:

01 MAIN
02 DEFINE i INTEGER
03 WHENEVER ANY ERROR CALL foo
04 TRY
05 DISPLAY "Next exception should be handled by the CATCH
statement"
06 LET i = i / 0
07 CATCH
08 DISPLAY "Exception caught, status = ", status USING "----&"
09 END TRY
10 -- The previous error handler is restored after the TRY - CATCH
block
11 LET status = 0
12 DISPLAY "Next exception should be handled by the foo function"
13 LET i = i / 0
14 END MAIN

Language Basics

187

15
16 FUNCTION foo()
17 DISPLAY "foo called, status = ", status USING "----&"
18 END FUNCTION

Example 5:

01 MAIN
02 DEFINE i INTEGER
03 WHENEVER ANY ERROR CALL exception_handler
04 DISPLAY "Next function call will generate an exception"
05 DISPLAY "This exception should be handled by the function
exception_handler"
06 DISPLAY do_exception(100, 0)
07 WHENEVER ANY ERROR STOP
08 END MAIN
09
10 FUNCTION do_exception(a, b)
11 DEFINE a, b INTEGER
12 WHENEVER ANY ERROR RAISE
13 RETURN a / b
14 END FUNCTION
15
16 FUNCTION exception_handler()
17 DISPLAY "Exception caught, status = ", status USING "----&"
18 END FUNCTION

Genero Business Development Language

188

Variables
Summary:

• Definition
• Defining Variables (DEFINE)
• Declaration Context
• Structured Types
• Database Types
• User Types
• Default Values
• Variable Initialization (INITIALIZE)
• LOB Data Localization (LOCATE)
• LOB Data Release (FREE)
• Assigning Values (LET)
• Data Validation (VALIDATE)
• Examples

See also: Records, Arrays, Data Types, Constants, User Types.

Definition

A variable is a program element that can hold volatile data. The following list
summarizes variables usage:

• You must DEFINE variables before use.
• After definition, variables have default values according to the data type.
• The scope of a variable can be global, local to a module, or local to a function.
• You can define structured variables with records and arrays.
• Variables can be initialized with the INITIALIZE instruction.
• Variables can be assigned with the LET instruction.
• Variables can be validated with the VALIDATE instruction.
• Variables can be used as parameters or fetch buffers in Static or Dynamic SQL

statements.
• Variables can be used as input or display buffers in interactive instructions such

as INPUT, INPUT ARRAY, DISPLAY ARRAY, CONSTRUCT.

DEFINE

Purpose:

A variable contains volatile information of a specific data type.

Language Basics

189

Syntax:

DEFINE identifier [,...] { type | LIKE [dbname:]tabname.colname }

Notes:

1. identifier is the name of the variable to be defined. See Identifiers for naming
rules.

2. type can be any data type supported by the language, a record definition, an
array definition, a user type, or a built-in class.

3. When using the LIKE clause, the data type is taken from the schema file.
Columns defined as SERIAL are converted to INTEGER.

4. dbname identifies a specific database schema file.
5. tabname.colname can be any column reference defined in the database schema

file.

Usage:

A variable is a named location in memory that can store a single value, or an ordered set
of values. Variables can be global to the program, local to a module, or local to a
function.

You cannot reference any program variable before it has been declared by the DEFINE
statement.

Tips:

1. To write well-structured programs, it is recommended that you not use global
variables. If you need persistent data storage during a program's execution, use
variables local to the module and give access to them with functions.

Warnings:

1. When defining variables with the LIKE clause, the data types are taken from the
schema file during compilation. Make sure that the schema file of the
development database corresponds to the production database; otherwise the
variables defined in the compiled version of your modules will not match the table
structures of the production database.

Declaration Context

The DEFINE statement declares the identifier of one or more variables. There are two
important things to know about these identifiers:

• Where in the program can they be used? The answer defines the scope of
reference of the variable. A point in the program where an identifier can be used

Genero Business Development Language

190

is said to be in the scope of the identifier. A point where the identifier is not
known is outside the scope of the identifier.

• When is storage for the variable allocated? Storage can be allocated either
statically, when the program is loaded to run (at load time), or dynamically, while
the program is executing (at runtime).

The context of its declaration in the source module determines where a variable can be
referenced by other language statements, and when storage is allocated for the variable
in memory. The DEFINE statement can appear in three contexts:

1. Within a FUNCTION, MAIN, or REPORT program block, DEFINE declares local
variables, and causes memory to be allocated for them. These DEFINE
declarations of local variables must precede any executable statements within
the same program block.

o The scope of reference of a local variable is restricted to the same
program block. The variable is not visible elsewhere.

o Storage for local variables is allocated when its FUNCTION, REPORT, or
MAIN block is entered during execution. Functions can be called
recursively, and each recursive entry creates its own set of local
variables. The variable is unique to that invocation of its program block.
Each time the block is entered, a new copy of the variable is created.

2. Outside any FUNCTION, REPORT, or MAIN program block, the DEFINE statement
declares names and data types of module variables, and causes storage to be
allocated for them. These declarations must appear before any program blocks.

o Scope of reference is from the DEFINE statement to the end of the same
module. The variable, however, is not visible within this scope in program
blocks where a local variable has the same identifier.

o Memory for variables of modules is allocated statically, when the program
starts.

3. Inside a GLOBALS block, the DEFINE statement declares global variables.
o Scope of reference is global to the whole program.
o The memory for global variables is allocated statically, when the program

starts.
o Multiple GLOBALS blocks can be defined for a given module. Use one

module to declare all global variables and reference that module within
other modules by using the GLOBALS "filename.4gl" statement as the
first statement in the module, outside any program block.

A compile-time error occurs if you declare the same name for two variables that have the
same scope. You can, however, declare the same name for variables that differ in their
scope. For example, you can use the same identifier to reference different local
variables in different program blocks.

You can also declare the same name for two or more variables whose scopes of
reference are different but overlapping. Within their intersection, the compiler interprets
the identifier as referencing the variable whose scope is smaller, and therefore the
variable whose scope is a superset of the other is not visible.

Language Basics

191

If a local variable has the same identifier as a global variable, then the local variable
takes precedence inside the program block in which it is declared. Elsewhere in the
program, the identifier references the global variable.

A module variable can have the same name as a global variable that is declared in a
different module. Within the module where the module variable is declared, the module
variable takes precedence over the global variable. Statements in that module cannot
reference the global variable.

A module variable cannot have the same name as a global variable that is declared in
the same module.

If a local variable has the same identifier as a module variable, then the local identifier
takes precedence inside the program block in which it is declared. Elsewhere in the
same source-code module, the name references the module variable.

Structured Types

You can use the RECORD or ARRAY keywords to declare a structured variable.

For example:

01 MAIN
02 DEFINE myarr ARRAY[100] OF RECORD
03 id INTEGER,
04 name VARCHAR(100)
05 END RECORD
06 LET myarr[2].id = 52
07 END MAIN

For more detail, refer to Arrays and Records.

Database Types

You can use the LIKE keyword to declare a variable that has the same data type as a
specified column in a database schema.

For example:

01 SCHEMA stores
02 DEFINE cname LIKE customer.cust_name
03 MAIN
05 DEFINE cr RECORD LIKE customer.*
06 END MAIN

The following rules apply when using the LIKE keyword:

Genero Business Development Language

192

• A SCHEMA statement must define the database name identifying the database
schema files to be used.

• The column data types are read from the schema file during compilation, not at
runtime. Make sure that your schema files correspond exactly to the production
database.

• The database schema files must exist and must be available as specified in the
FGLDBPATH variable.

• The column data type defined by the database schema must be supported by the
language. For more detail about supported types, refer to Data Types.

• When using database views, the column cannot be based on an aggregate
function like SUM().

• If LIKE references a SERIAL column, the new variable is of the INTEGER data
type.

• The table qualifier must specify owner if table.column is not a unique column
identifier within its database, or if the database is ANSI-compliant and any user of
your application is not the owner of table.

To understand how to generate database schema files with the schema extractor tool,
refer to Database Schema Files

User Types

Variables can be defined with a user type:

01 TYPE custlist DYNAMIC ARRAY OF RECORD LIKE customer.*
02 MAIN
03 DEFINE cl custlist
04 END MAIN

The scope of a user type can be global, local to a module or local to a function.
Variables can be defined with a user type defined in the same scope, or in a higher level
of scope.

Default Values

After a variable is defined, it is automatically initialized by the runtime system to a default
value based on the data type. The following table shows all possible default values that
variables can take:

Data Type Default Value
CHAR NULL
VARCHAR NULL
STRING NULL
INTEGER Zero

Language Basics

193

SMALLINT Zero
FLOAT Zero
SMALLFLOAT Zero
DECIMAL NULL
MONEY NULL
DATE 1899-12-31 (= Zero in number of days)
DATETIME NULL
INTERVAL NULL
TEXT NULL, See LOCATE
BYTE NULL, See LOCATE

INITIALIZE

Purpose:

The INITIALIZE instruction assigns NULL or default values to variables.

Syntax:

INITIALIZE target [,...] { TO NULL | LIKE {table.*|table.column} }

Notes:

1. target is the name of the variable to be initialized.
2. target can be a simple variable, a record, a record member, an array or an array

element.
3. If target is a record, you must use the star notation to reference all record

members in the initialization.
4. table.column can be any column reference defined in the database schema files.

Usage:

The TO NULL clause initializes the variable to NULL.

When initializing a static or dynamic array TO NULL, all elements will be initialized to
NULL. Note that dynamic arrays will keep the same number of elements (i.e. they are
not cleared).

The LIKE clause initializes the variable to the default value defined in the database
schema validation file. This clause works only by specifying the table.column schema
entry corresponding to the variable.

To initialize a complete record, you can use the star to reference all members:

Genero Business Development Language

194

01 INITIALIZE record.* LIKE table.*

Warnings:

1. You cannot initialize variables defined with a complex data type (like TEXT or
BYTE) to a non-NULL value.

Example:

01 DATABASE stores
02 MAIN
03 DEFINE cr RECORD LIKE customer.*
04 DEFINE a1 ARRAY[100] OF INTEGER
05 INITIALIZE cr.cust_name TO NULL
06 INITIALIZE cr.* LIKE customer.*
07 INITIALIZE a1 TO NULL
08 INITIALIZE a1[10] TO NULL
09 END MAIN

VALIDATE

Purpose:

The VALIDATE statement tests whether the value of a variable is within the range of
values for a corresponding column in database schema files.

Syntax:

VALIDATE target [,...] LIKE {table.*|table.column}

Notes:

1. target is the name of the variable to be validated.
2. target can be a simple variable, a record, or an array element.
3. If target is a record, you can use the star to reference all record members in the

validation.
4. Values are compared to the value defined in the database schema validation file.
5. table.column can be any column reference defined in the database schema file.

Errors:

1. If the value does not match any value defined in the INCLUDE attribute of the
corresponding column, the runtime system raises an exception with error code -
1321.

Language Basics

195

Warnings:

1. The LIKE clause requires the IBM Informix upscol utility to populate the
syscolval table. See the database schema files for more details. Informix only!

2. You cannot initialize variables defined with a complex data type (like TEXT or
BYTE) to a non-NULL value.

Example:

01 DATABASE stores
02 MAIN
03 DEFINE cname LIKE customer.cust_name
04 LET cname = "aaa"
05 VALIDATE cname LIKE customer.cust_name
06 END MAIN

LET

Purpose:

The LET statement assigns a value to a variable, or a set of values to a record.

Syntax:

LET target = expression

Notes:

1. target is the name of the variable to be assigned.
2. target can be a simple variable, a record, or an array element.
3. expression is any valid expression supported by the language
4. The runtime system applies data type conversion rules if the data type of

expression does not correspond to the data type of target.
5. If target is a record, you can use the star to reference all record members in the

validation, and expressions can also use this notation (record.*).

Warnings:

1. Variables defined with a complex data type (like TEXT or BYTE) can only be
assigned to NULL.

2. For more detail, refer to the assignment operator.

Example:

01 DATABASE stores
02 MAIN
03 DEFINE c1, c2 RECORD LIKE customer.*
04 LET c1.* = c2.*

Genero Business Development Language

196

05 END MAIN

LOCATE

Purpose:

The LOCATE statement specifies where to store data of TEXT and BYTE variables.

Syntax:

LOCATE target [,...] IN { MEMORY | FILE filename }

Notes:

1. Defining the location of large object data is mandatory before usage.
2. target is the name of a TEXT or BYTE variable to be located.
3. target can be a simple variable, a record member, or an array element.
4. filename is a string expression defining the name of a file.
5. The IN MEMORY clause specifies that the large object data must be located in

memory.
6. The IN FILE clause specifies that the large object data must be located in a file.
7. After defining the data storage, the variable can be used as a parameter or as a

fetch buffer in SQL statements.
8. You can free the resources allocated to the large object variable with the FREE

instruction.

Warnings:

1. You cannot use a large object variable if the data storage location is not defined.

Example:

01 MAIN
02 DEFINE ctext1, ctext2 TEXT
03 DATABASE stock
04 LOCATE ctext1 IN MEMORY
05 LOCATE ctext2 IN FILE "/tmp/data1.txt"
06 CREATE TABLE lobtab (key INTEGER, col1 TEXT, col2 TEXT)
06 INSERT INTO lobtab VALUES (123, ctext1, ctext2)
07 END MAIN

Language Basics

197

FREE

Purpose:

The FREE statement releases resources allocated to store the data of TEXT and BYTE
variables.

Syntax:

FREE target

Notes:

1. target is the name of a TEXT or BYTE variable to be freed.
2. target can be a simple variable, a record member, or an array element.
3. If the variable was located in memory, the runtime system releases the memory.
4. If the variable was located in a file, the runtime system deletes the named file.
5. For variables declared in a local scope of reference, the resources are

automatically freed by the runtime system when returning from the function or
MAIN block.

Warnings:

1. After freeing a large object, you must LOCATE the variable again before usage.

Example:

01 MAIN
02 DEFINE ctext TEXT
03 DATABASE stock
03 LOCATE ctext IN FILE "/tmp/data1.txt"
04 SELECT col1 INTO ctext FROM lobtab WHERE key=123
05 FREE ctext
06 END MAIN

Examples

Example 1: Function variables

01 FUNCTION myfunc()
02 DEFINE i INTEGER
03 FOR i=1 TO 10
04 DISPLAY i
05 END FOR
06 END FUNCTION

Genero Business Development Language

198

Example 2: Module variables

01 DEFINE s VARCHAR(100)
02
03 FUNCTION myfunc()
04 DEFINE i INTEGER
05 FOR i=1 TO 10
06 LET s = "item #" || i
07 END FOR
08 END FUNCTION

Example 3: Global variables

File "myglobs.4gl":

01 GLOBALS
02 DEFINE userid CHAR(20)
03 DEFINE extime DATETIME YEAR TO SECOND
04 END GLOBALS

File "mylib.4gl":

01 GLOBALS "myglobs.4gl"
02
03 DEFINE s VARCHAR(100)
04
05 FUNCTION myfunc()
06 DEFINE i INTEGER
07 DISPLAY "User Id = " || userid
08 FOR i=1 TO10
09 LET s = "item #" || i
10 END FOR
11 END FUNCTION

File "mymain.4gl":

01 GLOBALS "myglobs.4gl"
02
03 MAIN
04 LET userid = fgl_getenv("LOGNAME")
05 LET extime = CURRENT YEAR TO SECOND
06 CALL myfunc()
07 END MAIN

Language Basics

199

Constants
Summary:

• Definition
• Examples

See also: Variables, Records, Data Types, User Types.

Definition

Purpose:

A constant defines a read-only value identified by a name.

Syntax:

CONSTANT identifier [datatype] = value [,...]

Notes:

1. identifier is the name of the constant to be defined.
2. datatype can be any data type except complex types like TEXT or BYTE.
3. value can be an integer literal, a decimal literal, or a string literal. value cannot be

NULL.

Usage:

You can declare a constant to define a static value that can be used in other instructions.
Constants can be global, local to a module, or local to a function.

When declaring a constant, the data type specification can be omitted. The literal value
automatically defines the data type:

01 CONSTANT c1 = "Drink" -- Declares a STRING constant
02 CONSTANT c2 = 4711 -- Declares an INTEGER constant

However, in some cases, you may need to specify the data type:

01 CONSTANT c1 SMALLINT = 12000 -- Would be an INTEGER by default

Constants can be used in variable, records, and array definitions:

01 CONSTANT n = 10
02 DEFINE a ARRAY[n] OF INTEGER

Genero Business Development Language

200

Constants can be used at any place in the language where you normally use literals:

01 CONSTANT n = 10
02 FOR i=1 TO n

Constants can be passed as function parameters, and returned from functions.

Warnings:

1. A constant cannot be used in the ORDER BY clause of a static SELECT statement,
because the compiler considers identifiers after ORDER BY as part of the SQL
statement (i.e. column names), not as constants.
 CONSTANT position = 3
 SELECT * FROM table ORDER BY position

2. Automatic date type conversion can take place in some cases:
 CONSTANT c1 CHAR(10) = "123"
 CONSTANT c2 CHAR(10) = "abc"
 DEFINE i INTEGER
 FOR i=1 TO c1 # Constant "123" is be converted to 123
 FOR i=1 TO c2 # Constant "abc" is converted to zero!

3. Character constants defined with a string literal that is longer than the length of
the datatype are truncated:
 CONSTANT s CHAR(3) = 'abcdef'
 DISPLAY s # Displays "abc"

4. The compiler throws an error when the symbol used as a constant is not defined:
 DEFINE s CHAR(c) # Error, c is not defined!

5. The compiler throws an error when the symbol used as a constant is a variable:
 DEFINE c INTEGER
 DEFINE s CHAR(c) # Error, c is a variable!

6. The compiler throws an error when you try to assign a value to a constant:
 CONSTANT c INTEGER = 123
 LET c = 345 # Error, c is a constant!

7. The compiler throws an error when the symbol used is not defined as an integer
constant:
 CONSTANT c CHAR(10) = "123"
 DEFINE s CHAR(c) # Error, c is not an integer!

Tips:

1. Define common special characters with constants:
 CONSTANT C_ESC = '\x1b'
 CONSTANT C_TAB = '\t'
 CONSTANT C_CR = '\r'
 CONSTANT C_LF = '\n'
 CONSTANT C_CRLF = '\r\n'

Language Basics

201

Examples

Example 1:

01 CONSTANT c1 ="Drink", # Declares a STRING constant
02 c2 = 4711, # Declares an INTEGER constant
03 n = 10, # Declares an INTEGER constant
04 x SMALLINT = 1 # Declares a SMALLINT constant
05 DEFINE a ARRAY[n] OF INTEGER
06 MAIN
07 CONSTANT c1 = "Hello"
08 DEFINE i INTEGER
09 FOR i=1 TO n
10 ...
11 END FOR
12 DISPLAY c1 || c2 # Displays "Hello4711"
13 END MAIN

Genero Business Development Language

202

Records
Summary:

• Definition
• Examples

See also: Variables, Arrays, Data Types, Database Schema File.

Definition

Purpose:

A record defines a structured variable.

Syntax 1:

RECORD
 member { type | LIKE [dbname:]tabname.colname }
 [,...]
END RECORD

Syntax 2:

RECORD LIKE [dbname:]tabname.*

Notes:

1. member is an identifier for a record member variable.
2. type can be any data type, a record definition, or an array definition.
3. dbname identifies a specific database schema file.
4. tabname identifies a database table defined in the database schema file.
5. colname identifies a database column defined in the database schema file.

Usage:

A record is an ordered set of variables (called members), where each member can be of
any data type, a record, or an array. Records whose members correspond in number,
order, and data type compatibility to a database table can be useful for transferring data
from the database to the screen, to reports, or to functions. In the first form (Syntax 1),
record members are defined explicitly. In the second form (Syntax 2), record members
are created implicitly from the table definition in the database schema file. The columns
defined as SERIAL are converted to INTEGER.

Warning: When using the LIKE clause, the data types are taken from the database
schema file during compilation. Make sure that the database schema file of the
development database corresponds to the production database, otherwise the

Language Basics

203

records defined in the compiled version of your programs will not match the table
structures of the production database. Statements like SELECT * INTO record.*
FROM table would fail.

In the rest of the program, record members are accessed by a dot notation
(record.member). The notation record.member refers to an individual member of a
record. The notation record.* refers to the entire list of record members. The notation
record.first THRU record.last refers to a consecutive set of members. (THROUGH is
a synonym for THRU).

Records can be used as function parameters, and can be returned from functions.

It is possible to compare records having the same structure with the equal operator:
record1.* = record2.*

Examples

Example 1:

01 MAIN
02 DEFINE rec RECORD
03 id INTEGER,
04 name VARCHAR(100),
05 birth DATE
06 END RECORD
07 LET rec.id = 50
08 LET rec.name = 'Scott'
09 LET rec.birth = TODAY
10 DISPLAY rec.*
11 END MAIN

Example 2:

01 SCHEMA stores
02 DEFINE cust RECORD LIKE customer.*
03 MAIN
04 SELECT * INTO cust.* FROM customer WHERE customer_num=2
05 DISPLAY cust.*
06 END MAIN

Genero Business Development Language

204

Arrays
Summary:

• Syntax
• Usage
• Examples

See also: Variables, Records, Data Types.

Syntax

Purpose:

Arrays can store a one-, two- or three-dimensional array of elements.

Syntax 1: Static array definition

ARRAY [size [,size [,size]]] OF datatype

Syntax 2: Dynamic array definition

DYNAMIC ARRAY [WITH DIMENSION rank] OF datatype

Notes:

1. size can be an integer literal or an integer constant. The upper limit is 65535.
2. rank can be an integer literal of 1, 2, or 3. Default is 1.
3. datatype can be any data type or a record definition.

Methods:

Object Methods
Name Description

appendElement()
Adds a new element at the end of a
dynamic array. This method has no
effect on a static array.

clear()
Removes all elements in a dynamic
array. Sets all elements to NULL in a
static array.

deleteElement(INTEGER)

Removes an element at the given
position. In a static or dynamic array,
the elements after the given position
are moved up. In a dynamic array,
the number of elements is

Language Basics

205

decremented by 1.
getLength()
 RETURNING INTEGER

Returns the length of a one-
dimensional array.

insertElement(INTEGER)

Inserts a new element at the given
position. In a static or dynamic array,
the elements after the given position
are moved down. In a dynamic array,
the number of elements is
incremented by 1.

Usage

Arrays can store a one-, two- or three-dimensional array of variables, all of the same
type. These can be any of the supported data types or a record definition, but it cannot
be another array (ARRAY .. OF ARRAY).

The first syntax (ARRAY[i[,j[,k]]]) defines traditional static arrays, which are defined
with an explicit size for all dimensions. Static arrays have a size limit. The biggest static
arrays size you can define is 65535.

Warning: Because of backward compatibility with Informix 4gl, all elements of
static arrays are initialized, even if the array is not used. Therefore, it is not
recommended that you define huge static arrays, as they can use a lot of memory.

The second syntax (DYNAMIC ARRAY) defines arrays with a variable size. Dynamic arrays
have no theoretical size limit. The elements of dynamic arrays are allocated
automatically by the runtime system, according to the indexes used.

01 MAIN
02 DEFINE a1 ARRAY[100] OF INTEGER -- This is a static array
03 DEFINE a2 DYNAMIC ARRAY OF INTEGER -- This is a dynamic array
04 LET a1[50] = 12456
05 LET a2[5000] = 12456 -- Automatic allocation for element 5000
06 LET a1[5000] = 12456 -- Runtime error!
07 END MAIN

Warning: A dynamic array element is allocated before it is used. For example,
when you assign array element with the LET instruction, if the element does not
exist, it is created automatically. This is also true when using a dynamic array in a
FOREACH loop.

The elements of an array variable can be of any data type except an array definition, but
an element can be a record that contains an array member.

01 MAIN
02 DEFINE arr ARRAY[50] OF RECORD
03 key INTEGER,

Genero Business Development Language

206

04 name CHAR(10),
05 address VARCHAR(200),
06 contacts ARRAY[50] OF VARCHAR(20)
07 END RECORD
08 LET arr[1].key = 12456
09 LET arr[1].name = "Scott"
10 LET arr[1].contacts[1] = "Bryan COX"
11 LET arr[1].contacts[2] = "Courtney FLOW"
12 END MAIN

A single array element can be referenced by specifying its coordinates in each
dimension of the array.

Warning: For Informix 4gl compatibility, the compiler allows the .* notation to
assign a dynamic array with a record structure to another dynamic array with the
same structure, but the behavior is not clearly specified. Unlike simple records,
the array is actually copied by reference. We strongly discourage to use the .*
notation with dynamic arrays.

You cannot specify a static array as an argument or as a returned value of a function.
However, dynamic arrays can be used as function parameter and will be passed by
reference (i.e. the dynamic array can be modified inside the called function, and the
caller will see the modifications).

In the DEFINE section of a REPORT statement, formal arguments cannot be declared as
arrays, nor as record variables that contain array members.

If you reference an array element in an r-value, with an index outside the allocated
dimensions, you get a -1326 runtime error:

01 MAIN
02 DEFINE a DYNAMIC ARRAY OF INTEGER
03 LET a[50] = 12456
04 DISPLAY a[100] -- Runtime error
05 END MAIN

Arrays can be queried with the getLength() method, to get the number of allocated
elements:

01 MAIN
02 DEFINE a DYNAMIC ARRAY OF INTEGER
03 LET a[5000] = 12456
04 DISPLAY a.getLength()
05 END MAIN

You can insert a new element at a given position with the insertElement() method.
The new element will be initialized to NULL. All subsequent elements are moved down
by an offset of +1. Dynamic arrays will grow by 1, while static arrays will lose the last
element:

01 MAIN
02 DEFINE a DYNAMIC ARRAY OF INTEGER

Language Basics

207

03 LET a[10] = 11
04 CALL a.insertElement(10)
05 LET a[10] = 10
06 DISPLAY a.getLength() -- shows 11
07 DISPLAY a[10] -- shows 10
08 DISPLAY a[11] -- shows 11
09 END MAIN

You can append a new element at the end of a dynamic array with the
appendElement() method. The new element will be initialized to NULL. Dynamic arrays
will grow by 1, while static arrays will not be affected by this method:

01 MAIN
02 DEFINE a DYNAMIC ARRAY OF INTEGER
03 LET a[10] = 10
04 CALL a.appendElement()
05 LET a[a.getLength()] = a.getLength()
06 DISPLAY a.getLength() -- shows 11
07 DISPLAY a[10] -- shows 10
08 DISPLAY a[11] -- shows 11
09 END MAIN

The deleteElement() method can be used to remove elements from a static or
dynamic array. Subsequent elements are moved up by an offset of -1. Dynamic arrays
will shrink by 1, while static arrays will have NULLs in the last element.

01 MAIN
02 DEFINE a DYNAMIC ARRAY OF INTEGER
03 LET a[10] = 9
04 CALL a.deleteElement(5)
06 DISPLAY a.getLength() -- shows 9
07 DISPLAY a[9] -- shows 9
08 END MAIN

You can clear an array with the clear() method. When used on a static array, this
method sets all elements to NULL. When used on a dynamic array, it removes all
elements:

01 MAIN
02 DEFINE a DYNAMIC ARRAY OF INTEGER
03 LET a[10] = 11
04 DISPLAY a.getLength() -- shows 10
05 CALL a.clear()
06 DISPLAY a.getLength() -- shows 0
07 END MAIN

When used as a function parameter, static arrays are passed by value, while dynamic
arrays are passed by reference:

01 MAIN
02 DEFINE a DYNAMIC ARRAY OF INTEGER
03 CALL fill(a)
04 DISPLAY a.getLength() -- shows 2

Genero Business Development Language

208

05 END MAIN
06 FUNCTION fill(x)
07 DEFINE x DYNAMIC ARRAY OF INTEGER
08 CALL x.appendElement()
09 CALL x.appendElement()
10 END FUNCTION

Array methods can be used on two- and three-dimensional arrays with the brackets
notation:

01 MAIN
02 DEFINE a2 DYNAMIC ARRAY WITH DIMENSION 2 OF INTEGER
03 DEFINE a3 DYNAMIC ARRAY WITH DIMENSION 3 OF INTEGER
04 LET a2[50,100] = 12456
05 LET a2[51,1000] = 12456
06 DISPLAY a2.getLength() -- shows 51
07 DISPLAY a2[50].getLength() -- shows 100
08 DISPLAY a2[51].getLength() -- shows 1000
09 LET a3[50,100,100] = 12456
10 LET a3[51,101,1000] = 12456
11 DISPLAY a3.getLength() -- shows 51
12 DISPLAY a3[50].getLength() -- shows 100
13 DISPLAY a3[51].getLength() -- shows 101
14 DISPLAY a3[50,100].getLength() -- shows 100
15 DISPLAY a3[51,101].getLength() -- shows 1000
16 CALL a3[50].insertElement(10) -- inserts at 50,10
17 CALL a3[50,10].insertElement(1)-- inserts at 50,10,1
18 END MAIN

Examples

Example 1: Using static and dynamic arrays.

01 MAIN
02 DEFINE a1 DYNAMIC ARRAY OF INTEGER
03 DEFINE a2 DYNAMIC ARRAY WITH DIMENSION 2 OF INTEGER
04 DEFINE a3 ARRAY[10,20] OF RECORD
05 id INTEGER,
06 name VARCHAR(100),
07 birth DATE
08 END RECORD
09 LET a1[5000] = 12456
10 LET a2[5000,300] = 12456
11 LET a3[5,1].id = a1[50]
12 LET a3[5,1].name = 'Scott'
13 LET a3[5,1].birth = TODAY
14 END MAIN

Example 2: Here is the recommended way to fetch rows into a dynamic array.

01 SCHEMA stores
02 MAIN

Language Basics

209

03 DEFINE a DYNAMIC ARRAY OF RECORD LIKE customer.*
04 DEFINE r RECORD LIKE customer.*
05 DATABASE stores
06 DECLARE c CURSOR FOR SELECT * FROM customer
07 FOREACH c INTO r.*
08 CALL a.appendElement()
09 LET a[a.getLength()].* = r.*
10 END FOREACH
11 DISPLAY "Rows found: ", a.getLength()
12 END MAIN

Genero Business Development Language

210

User Types
Summary:

• Definition
• Examples

See also: Variables, Records, Data Types, Constants.

Definition

Purpose:

A user type is a data type based on built-in types, records or arrays.

Syntax:

TYPE identifier definition

Notes:

1. identifier is the name of the user type to be defined.
2. definition is any data type, record structure, or array definition supported by the

language.

Usage:

You can define a user type as a synonym for an existing data type, or as a shortcut for
records and array structures.

After declaring a user type, it can be used as a normal data type to define variables.

The scope of a user type is the same as for variables and constants. Types can be
global, local to a module, or local to a function.

Examples

Example 1:

01 TYPE customer RECORD
02 cust_num INTEGER,
03 cust_name VARCHAR(50),
04 cust_addr VARCHAR(200)
05 END RECORD

Language Basics

211

06 DEFINE c customer

Example 2:

The following example defines the user type in a globals file and then uses the type in a
report program:

01 -- typeglobals.4gl
02
03 GLOBALS
04 TYPE rpt_order RECORD
05 order_num INTEGER,
06 store_num INTEGER,
07 order_date DATE,
08 fac_code CHAR(3)
09 END RECORD
10 END GLOBALS

01 -- report1.4gl
02
03 GLOBALS "typeglobals.4gl"
04
05 MAIN
06 DEFINE o rpt_order
07 CONNECT TO "custdemo"
08 DECLARE order_c CURSOR FOR
09 SELECT order_num,
10 store_num,
11 order_date,
12 fac_code
13 FROM orders
14 START REPORT order_list
15 FOREACH order_c INTO o.*
16 OUTPUT TO REPORT order_list(o.*)
17 END FOREACH
18 FINISH REPORT order_list
19 DISCONNECT CURRENT
20 END MAIN
21
22 REPORT order_list(ro)
23 DEFINE ro rpt_order
24
25 FORMAT
26 ON EVERY ROW
27 PRINT ro.order_num,
...

Genero Business Development Language

212

Data Conversions
Summary:

• Data Conversion
• Conversion table

See also: Data Types.

Data Conversion

The runtime system performs data conversion implicitly without objection, as long as the
data conversion is valid. For example, when you assign a number expression to a
character variable, the runtime system converts the resulting number to a literal string.

Conversion rules apply to variable assignment, function parameters, and returned
values.

Data conversions from or to character string values involve environment and locale
settings like DBDATE, DBFORMAT.

When using the default exception handler, if a conversion error occurs, STATUS is zero
and the target is set to zero for SMALLINT, INTEGER, SMALLFLOAT and FLOAT data types
or NULL for all other data types.

Warning: The global STATUS variable is not set when a conversion error occurs
unless you have enabled ANY ERROR detection with the WHENEVER instruction.

Conversion Table

The following table shows which pairs of data types are compatible.

Conversion table:

Columns represent source data types and lines represent receiving data types.
 char varchar string integer smallint float smallfloat decimal money date datetime interval text byte

char 1 1 1 1 1 1 1 1 1, 8 1, 9 1 1 15 15
varchar 1 1 1 1 1 1 1 1 1, 8 1, 9 1 1 15 15
string 1 1 1 1 1 1 1 1 1, 8 1, 9 1 1 15 15
integer 2, 3 2, 3 2, 3 3, 4 3, 4 3, 4 3, 4 11 15 15 15 15
smallint 2, 3 2, 3 2, 3 3 3, 4 3, 4 3, 4 3, 4 3, 15 15 15 15

Language Basics

213

11

float 2,
3, 5 2, 3, 5 2, 3,

5 10 10 3 3 11 15 15 15 15

smallfloat 2,
3, 5 2, 3, 5 2, 3,

5 5, 10 10 5 3, 5 3, 5 5,
11 15 15 15 15

decimal 2,
3, 6 2, 3, 6 2, 3,

6 3 3 3, 6 3, 6 3, 6 3, 6 3,
11 15 15 15 15

money 2,
3, 6 2, 3, 6 2, 3,

6 3 3 3, 6 3, 6 3, 6 3, 6 3,
11 15 15 15 15

date 2 2 2 11 11 3,4,11 3,4,11 3,4,11 3,4,11 12, 14 15 15 15

datetime 2 2 2 15 15 15 15 15 15 13,
14 7, 14 15 15 15

interval 2 2 2 15 15 15 15 15 15 15 15 3, 7 15 15
text 1 1 1 15 15 15 15 15 15 15 15 15 15
byte 15 15 15 15 15 15 15 15 15 15 15 15 15

Notes:

1. If the result of converting a value to a character string is longer than the receiving
variable, the character string is truncated from the right.

2. Character string values must depict a literal of the receiving data type.
3. If the value exceeds the range of the receiving data type, an overflow error

occurs.
4. Any fractional part of the value is truncated.
5. If the passed value contains more significant digits than the receiving data type

supports, low-order digits are discarded.
6. If the passed value contains more fractional digits than the receiving data type

supports, low-order digits are discarded.
7. Differences in qualifiers can cause truncation from the left or right.
8. DBMONEY and DBFORMAT control the format of the converted string.
9. DBFORMAT, DBDATE, or GL_DATE controls the format of the result.
10. Rounding errors can produce an assigned value with fractional parts.
11. An integer value corresponding to a count of days is assigned.
12. An implicit EXTEND(value, YEAR TO DAY) is performed.
13. The DATE becomes a DATETIME YEAR TO DAY literal before assignment.
14. If the passed value has less precision than the receiving variable, any missing

time unit values are obtained from the system clock.
15. Unsupported conversion.

Genero Business Development Language

214

Built-in Classes
Summary:

• Purpose
• Syntax
• Usage

o base Package classes
o ui Package classes
o om Package classes
o utils Package classes
o os Package classes
o Class and Object Methods
o Working with Objects

See also: Variables, Functions.

Purpose

Built-in classes, grouped into packages, are predefined object templates that are
provided by the runtime system. Each class contains methods that interact with a
specific program object, allowing you to change the appearance or behavior of the
object. The classes provide the benefits of OOP programming in 4GL.

Syntax

Syntax 1: Defining an object

obj package.classname

Syntax 2: Using a class method

package.classname.method

Syntax 3: Using an object method

obj.method

Notes:

1. obj is the name of the variable defined for the object
2. package is the name of the package the class comes from.
3. classname is the name of the built-in class.
4. method is the name of the method

Language Basics

215

Usage

Package: base

Classes Purpose
Application Provides an interface to the application internals
Channel Provides basic read/write functionality

(files/communication)
StringBuffer Allows manipulation of character strings
StringTokenizer Allows parsing of strings to extract tokens
TypeInfo Provides serialization of program variables

Package: ui

Classes Purpose
Interface Provided to manipulate the user interface
Window Provides an interface to the Window objects
Form Provides an interface to the forms used by the

program
Dialog Provides an interface to the interactive

instructions
ComboBox Provides an interface to the ComboBox formfield

view

Package: om

Classes Purpose
DomDocument Provides methods to manipulate a DOM data

tree
DomNode Provides methods to manipulate a node of a

DOM data tree
NodeList Holds a list of selected DomNode objects
SaxAttributes Provides methods to manipulate XML

element attributes
SaxDocumentHandler Provides methods to write an XML filter
XmlReader Provides methods to read and process a file

written in XML format
XmlWriter Provides methods to write XML documents

to different types of output

Genero Business Development Language

216

Package: util

Classes Purpose
Math Provides an interface for mathematical functions

The util package is a Dynamic C Extension library; part of the standard package. To use
the Math class, you must import the library in your program:

Package: os

Classes Purpose
Path Provides functions to manipulate files and

directories on the machine where the BDL
program executes

The os package is a Dynamic C Extension library; part of the standard package. To use
the Path class, you must import the library in your program:

Methods

There are two types of methods: Class Methods and Object Methods. Methods can be
invoked like global functions, by passing parameters and/or returning values.

Class Methods - you call these methods using the class identifier (package name +
class name) as the prefix, with a period as the separator.

01 CALL ui.Interface.refresh()

The method refresh() is a Class Method of the Interface class, which is part of the ui
package.

Object Methods - To use these methods, the object must exist. After an object has
been created, you can call the Object Methods in the class by using the object variable
as a prefix, with a period as the separator:

01 LET b = n.getDocumentElement()

The method getDocumentElement() is an Object Method of the class to which the n
object belongs.

Working with Objects

To handle an object in your program, you

Language Basics

217

• define an object variable using the class identifier.
• instantiate the object (create it) before using it. You usually instantiate objects

with a Class Method.
• once the object exists, you can call the Object methods of the class.

O1 DEFINE n om.DomDocument, b DomNode
02 LET n = om.DomDocument.create("Stock")
03 LET b = n.getDocumentElement()

The object n is instantiated using the create() Class Method of the DomDocument
class. The object b is instantiated using the getDocumentElement() Object method of
the DomDocument class. This method returns the DomNode object that is the root node
of the DomDocument object n.

The object variable only contains the reference to the object. For example, when passed
to a function, only the reference to the object is copied onto the stack.

You do not have to destroy objects. This is done automatically by the runtime system for
you, based on a reference counter.

01 MAIN
02 DEFINE d om.DomDocument
03 LET d = om.DomDocument.create("Stock") -- Reference counter = 1
05 END MAIN -- d is removed, reference counter = 0 => object is
destroyed.

You can pass object variables to functions or return them from functions. Objects are
passed by reference to functions. In the following example, the function creates the
object and returns its reference on the stack:

01 FUNCTION createStockDomDocument()
02 DEFINE d om.DomDocument
03 LET d = om.DomDocument.create("Stock") -- Reference counter = 1
04 RETURN d
05 END FUNCTION -- Reference counter is still 1 because d is on the
stack

Another part of the program can get the result of that function and pass it as a parameter
to another function.

Example:

01 MAIN
02 DEFINE x om.DomDocument
03 LET x = createStockDomDocument()
04 CALL writeStockDomDocument(x)
05 END MAIN
06
07 FUNCTION createStockDomDocument()
08 DEFINE d om.DomDocument
09 LET d = om.DomDocument.create("Stock")

Genero Business Development Language

218

10 RETURN d
11 END FUNCTION
12
13 FUNCTION writeStockDomDocument(d)
14 DEFINE d om.DomDocument
15 DEFINE r om.DomNode
16 LET r = d.getDocumentElement()
17 CALL r.writeXml("Stock.xml")
18 END FUNCTION

Applications

219

Compiling Programs
Summary:

• Compiling Source Code
• Creating Libraries
• Linking Programs
• Using Makefiles
• Getting Build Information

See also: Tools, Form Files, Message Files, Localized Strings.

Compiling Source Code
Source code modules (4gl) must be compiled to p-code modules (42m) with the fglcomp
tool. Compiled p-code modules are portable; you can compile a module on a Windows
platform and install it on a Unix production machine.

The following lines show a compilation in a Unix shell session:

$ cat xx.4gl
main
 display "hello"
end main

$ fglcomp xx.4gl

$ ls -s xx.42m
 4 xx.42m

If an error occurs, the compiler writes an error file with the .err extension.

$ cat xx.4gl
main
 let x = "hello"
end main

$ fglcomp xx.4gl
Compilation was not successful. Errors found: 1.
 The file xx.4gl has been written.

$ cat xx.err
main
 let x = "hello"
| The symbol 'x' does not represent a defined variable.
| See error number -4369.
end main

Genero Business Development Language

220

With the -M option, you can force the compiler to display an error message instead of
generating a .err error file:

$ fglcomp xx.4gl
xx.4gl:2:8 error:(-4369) The symbol 'x' does not represent a defined
variable.

By default, the compiler does not raise any warnings. You can turn on warnings with the
-W option:

$ cat xx.4gl
main
 database test1
 select count(*) from x, outer(y) where x.k = y.k
end main

$ fglcomp -W stdsql xx.4gl
xx.4gl:3: warning: SQL statement or language instruction with specific
SQL syntax.

When a warning is raised, you can use the -W error option to force the compiler to stop
as if an error was found.

For more details about warning options, see the fglcomp tool.

Creating Libraries
Compiled 42m modules can be grouped in a library file using the 42x extension.

Library linking is done with the fglrun tool by using the -l option. You can also use the
fgllink tool.

The following lines show a link procedure to create a library in a Unix shell session:

$ fglcomp fileutils.4gl
$ fglcomp userutils.4gl
$ fgllink -o libutils.42x fileutils.42m userutils.42m

When you create a library, all functions of the 42m modules used in the link command
are registered in the 42x file.

Warning: The 42x library file does not contain the 42m files. When deploying your
application, you must provide all p-code modules as well as 42f, 42r and 42x files.

The 42x libraries are typically used to link the final 42r programs:

$ fglcomp mymain.4gl
$ fgllink -o myprog.42r mymain.42m libutils.42x

Applications

221

Note that 42r programs must be re-linked if the content of 42x libraries have changed. In
the above example, if a function of the userutils.4gl source file was removed, you must
recompile userutils.4gl, re-link the libutils42x library and re-link the myprog.42r
program.

If you are using C Extensions, you may need to use the -e option to specify the list of
extension modules if the IMPORT keyword is not used:

$ fgllink -e extlib,extlib2,extlib3 -o libutils.42x fileutils.42m
userutils.42m

Linking Programs
Genero programs are created by linking several 42m modules and/or 42x libraries
together, to produce a file with the 42r extension.

Program linking is done with the fglrun tool by using the -l option. You can also use the
fgllink tool.

Warning: The 42r program file does not contain the 42m files. When deploying
your application, you must provide all p-code modules as well as 42f, 42r and 42x
files.

The following lines show a link procedure to create a library in a Unix shell session:

$ fglcomp main.4gl
$ fglcomp store.4gl
$ fgllink -o stores.42r main.42m store.42m

By default, if you do not specify an absolute path for a file, the linker searches for 42m
modules and 42x libraries in the current directory.

Additionally, you can specify a search path with the FGLLDPATH environment variable:

$ FGLLDPATH=/usr/dev/lib/maths:/usr/dev/lib/utils
$ export FGLLDPATH
$ ls /usr/dev/lib/maths
mathlib1.42x
mathlib2.42x
mathmodule11.42m
mathmodule12.42m
mathmodule22.42m
$ ls /usr/dev/lib/utils
fileutils.42m
userutils.42m
dbutils.42m
$ fgllink -o myprog.42r mymodule.42m mathlib1.42x fileutils.42m

Genero Business Development Language

222

In this example the linker will find the specified files in the /usr/dev/lib/maths and
/usr/dev/lib/utils directories defined in FGLLDPATH.

If you are using C Extensions, you may need to use the -e option to specify the list of
extension modules if the IMPORT keyword is not used:

$ fgllink -e extlib,extlib2,extlib3 -o stores.42r main.42m store.42m

Warning: If none of the functions of a module are used by a program, the
complete module is excluded when the program is linked. This may cause
undefined function errors at runtime, such as when a function is only used in a
dynamic call (an initialization function, for example.)

The following case illustrates this behavior:

$ cat x1.4gl
function fx1A()
end function
function fx2A()
end function

$ cat x2.4gl
function fx2A()
end function
function fx2B()
end function

$ cat prog.4gl
main
 call fx1A()
end main

$ fglcomp x1.4gl
$ fglcomp x2.4gl
$ fglcomp prog.4gl

$ fgllink -o lib.42x x1.42m x2.42m

$ fgllink -o prog.42r prog.42m lib.42x

Here, module x1.42m will be included in the program, but module x2.42m will not. At
runtime, any dynamic call to fx2A() or fx2B() will fail.

The link process searches recursively for the functions used by the program. For
example, if the MAIN block calls function FA in module MA, and FA calls FB in module
MB, all functions from module MA and MB will be included in the 42r program definition.

Applications

223

Using Makefiles
Most UNIX platforms provide the make utility program to compile projects. The make
program is an interpreter of Makefiles. These files contain directives to compile and link
programs and/or generate other kind of files.

When developing on Microsoft Windows platforms, you may use the NMAKE utility
provided with Visual C++, however this tool does not have the same behavior as the
Unix make program. To have a compatible make on Windows, you can install a GNU
make or third party Unix tools such as Cygwin.

For more details about the make utility, see the platform-specific documentation.

The follow example shows a typical Makefile for Genero applications:

#--
Generic makefile rules to be included in Makefiles

.SUFFIXES: .42s .42f .42m .42r .str .per .4gl .msg .hlp

FGLFORM=fglform -M
FGLCOMP=fglcomp -M
FGLLINK=fglrun -l
FGLMKMSG=fglmkmsg
FGLMKSTR=fglmkstr
FGLLIB=$$FGLDIR/lib/libfgl4js.42x

all::

.msg.hlp:
 $(FGLMKMSG) $*.msg $*.hlp

.str.42s:
 $(FGLMKSTR) $*.str $*.42s

.per.42f:
 $(FGLFORM) $*.per

.4gl.42m:
 $(FGLCOMP) $*.4gl

clean::
 rm -f *.hlp *.42? *.out

#-----------------------------
Makefile example

include Makeincl

FORMS=\
 customers.42f\
 orderlist.42f\
 itemlist.42f

Genero Business Development Language

224

MODULES=\
 customerInput.42m\
 zoomOrders.42m\
 zoomItems.42m

customer.42x: $(MODULES)
 $(FGLLINK) -o customer.42x $(MODULES)
all:: customer.42x $(FORMS)

Getting Build Information
The compiler version used to build the 42m modules must be compatible to the runtime
system used to execute the programs. The fglcomp compiler writes version information
in the generated 42m files. This can be useful on site, if you need to check the version of
the compiler that was used to build the 42m nodules.

To extract build information, run fglrun with the -b option:

$ fglrun -b mymodule.42m
2.11.01-1161.12 /home/devel/stores/mymodule.4gl 15

The output shows the following fields:

1. The product version and build number (2.11.01-1161.12).
2. The full path of the source file (/home/devel/stores/mymodule.4gl).
3. The internal identifier of the pcode version.

Tip: Since version 2.11, fglrun -b can read the header of pcode modules compiled
with older versions of fglcomp and display version information for such old
modules. If fglrun cannot recognize a pcode module, it returns with an execution
status is different from zero.

When reading build information of a 42x or 42r file, fglrun scans all modules used to
build the library or program. You will see different versions in the first column if the
modules where compiled with different versions of fglcomp. Note however that it's not
recommended to end up with mixed versions on a production site:

$ fglrun -b myprogram.42r
2.11.01-1161.12 /home/devel/stores/mymodule1.4gl 15
2.10.02-1148.36 /home/devel/stores/mymodule2.4gl 15
2.11.01-1161.12 /home/devel/stores/mymodule3.4gl 15

Warning: Before release 2.10, the 42m p-code files were also stamped with a
compilation timestamp. This timestamp information is no longer written to p-code
files, allowing 42m file comparison, checksum creation, or storage of 42m file in
versioning tools; the same p-code data is now generated after successive
compilations.

Applications

225

To check the version of the runtime system, run fglrun with the -V option.

Genero Business Development Language

226

Programs
Summary:

• Runtime Configuration
• The MAIN block
• Signal Handling (DEFER)
• The STATUS variable
• The INT_FLAG variable
• The QUIT_FLAG variable
• Importing modules (IMPORT)
• Program Options (OPTIONS)

o OPTIONS form-element LINE
o OPTIONS DISPLAY ATTRIBUTES
o OPTIONS INPUT ATTRIBUTES
o OPTIONS INPUT WRAP
o OPTIONS ON TERMINATE
o OPTIONS ON CLOSE APPLICATION
o OPTIONS HELP FILE
o OPTIONS FIELD ORDER
o OPTIONS control keys
o OPTIONS RUN IN

• Running Programs (RUN)
• Stop Program Execution (EXIT PROGRAM)
• Database Schema Specification (SCHEMA)
• The NULL Constant
• The TRUE Constant
• The FALSE Constant
• The NOTFOUND Constant
• The BREAKPOINT instruction
• Setting Key Labels
• Responding to CTRL_LOGOFF_EVENT

See also: Compiling Programs, Preprocessor, Database Schema Files, Flow Control,
The Application class, Localized Strings.

Runtime Configuration

You can control the behavior of the runtime system with some FGLPROFILE
configuration parameters.

Intermediate field trigger execution

Dialog.fieldOrder = {true|false}

When this parameter is set to true, intermediate triggers are executed. As the user
moves to a new field with a mouse click, the runtime system executes the BEFORE

Applications

227

FIELD / AFTER FIELD triggers of the input fields between the source field and the
destination field. When the parameter is set to false, intermediate triggers are not
executed.

For new applications, it is recommended that you set the parameter to false. GUI
applications allow users to jump from one field to any other field of the form by using the
mouse. Therefore, it makes no sense to execute the BEFORE FIELD / AFTER FIELD
triggers of intermediate fields.

Important note: The default setting for the runtime system is false; while the default
setting in FGLPROFILE for Dialog.fieldOrder is true. As a result, the overall setting
after installation is true. To modify the behavior of intermediate field trigger execution,
change the setting of Dialog.fieldOrder in FGLPROFILE to false.

Warning: The Dialog.fieldOrder configuration parameter is ignored when the
dialog uses the FIELD ORDER FORM option.

Make current row visible after sort in tables

Dialog.currentRowVisibleAfterSort = {true|false}

When this parameter is set to true, the offset of table page is automatically adapted to
show the current row after a sort. By default, the offset is not changed and current row
may not be visible after sorting rows of a table. Changing this parameter has no impact
on existing code, it is just an indicator to force the dialog to shift to the page of rows
having the current row, as if the end-user had scrollbar. You can use this parameter to
get the same behavior as well known e-mail readers.

The MAIN block

Purpose:

The MAIN block is the starting point of the application. When the runtime system
executes a program, after some initialization, it gives control to this program block.

Syntax:

MAIN
 [define-statement | constant-statement]
 { [defer-statement] | fgl-statement | sql-statement }
 [...]
END MAIN

Notes:

1. define-statement defines function arguments and local variables.
2. constant-statement can be used to declare local constants.

Genero Business Development Language

228

3. defer-statement defines how to handle signals in the program.
4. fgl-statement is any instruction supported by the language.
5. sql-statement is any static SQL instruction supported by the language.

Signal Handling

Purpose:

The DEFER instruction allows you to control the behavior of the program when an
interruption or quit signal has been received.

Syntax:

DEFER { INTERRUPT | QUIT }

Warnings:

1. DEFER INTERRUPT and DEFER QUIT instructions can only appear in the MAIN
block.

2. Once deferred, you cannot reset to the default behavior.

Usage:

DEFER INTERRUPT indicates that the program must continue when it receives an
interrupt signal. By default, the program stops when it receives an interrupt signal.

When an interrupt signal is caught by the runtime system and DEFER INTERRUPT is
used, the INT_FLAG global variable is set to TRUE by the runtime system.

Interrupt signals are raised on terminal consoles when the user presses a key like
CTRL-C, depending on the stty configuration. When a BDL program is displayed through
a front end, no terminal console is used; therefore, users cannot send interrupt signals
with the CTRL-C key. To send an interruption request from the front end, you must
define an 'interrupt' action view. For more details, refer to Interruption Handling in the
Dynamic User Interface.

DEFER QUIT indicates that the program must continue when it receives a quit signal. By
default, the program stops when it receives a quit signal.

When a quit signal is caught by the runtime system and DEFER QUIT is used, the
QUIT_FLAG global variable is set to TRUE by the runtime system.

Applications

229

STATUS

Purpose:

STATUS is a predefined variable that contains the execution status of the last instruction.

Syntax:

STATUS

Definition:

DEFINE STATUS INTEGER

Notes:

1. The data type of STATUS is INTEGER.
2. STATUS is typically used with WHENEVER ERROR CONTINUE (or CALL).
3. STATUS is set by expression evaluation errors only when WHENEVER ANY ERROR is

used.
4. After an SQL statement execution, STATUS contains the value of

SQLCA.SQLCODE. Use SQLCA.SQLCODE for SQL error management, and
STATUS for 4gl errors.

Warnings:

1. STATUS is updated after any instruction execution. A typical mistake is to test
STATUS after a DISPLAY STATUS instruction, written after an SQL statement.

2. While STATUS can be modified by hand, it is not recommended, as STATUS may
become read-only in a later release.

Example:

01 MAIN
02 DEFINE n INTEGER
03 WHENEVER ANY ERROR CONTINUE
04 LET n = 10/0
05 DISPLAY STATUS
06 END MAIN

INT_FLAG

Purpose:

INT_FLAG is a predefined variable that is automatically set to TRUE when the user
presses the interruption key.

Genero Business Development Language

230

Syntax:

INT_FLAG

Definition:

DEFINE INT_FLAG INTEGER

Notes:

1. The data type of INT_FLAG is INTEGER.
2. INT_FLAG is typically used with DEFER INTERRUPT.
3. INT_FLAG is set to TRUE when an interruption event is detected by the runtime

system. The interruption event is raised when the user presses the interruption
key.

4. If DEFER INTERRUPT is enabled and the interruption event arrives during a
procedural instruction (FOR loop), the runtime system sets INT_FLAG to TRUE; it is
up to the programmer to manage the interruption event (stop or continue with the
procedure).

5. If DEFER INTERRUPT is enabled and the interruption event arrives during an
interactive instruction (INPUT, CONSTRUCT), the runtime system sets INT_FLAG to
TRUE and exits from the instruction. It is recommended that you test INT_FLAG
after an interactive instruction to check whether the input has been cancelled.

Warnings:

1. Once INT_FLAG is set to TRUE, it must be reset to FALSE to detect a new
interruption event. It is the programmer's responsibility to reset the INT_FLAG to
FALSE.

Example:

01 MAIN
02 DEFINE n INTEGER
03 DEFER INTERRUPT
04 LET INT_FLAG = FALSE
05 FOR n = 1 TO 1000
06 IF INT_FLAG THEN EXIT FOR END IF
07 ...
08 END FOR
09 END MAIN

QUIT_FLAG

Purpose:

QUIT_FLAG is a predefined variable that is automatically set to TRUE when a 'quit event'
arrives.

Applications

231

Syntax:

QUIT_FLAG

Definition:

DEFINE QUIT_FLAG INTEGER

Notes:

1. The data type of QUIT_FLAG is INTEGER.
2. QUIT_FLAG is typically used with DEFER QUIT.
3. QUIT_FLAG is set to TRUE when a quit event is detected by the runtime system.

The quit event is raised when the user presses the QUIT signal key
(Control+Backslash).

4. If DEFER QUIT is enabled and the quit event arrives during a procedural
instruction (FOR loop), the runtime system sets QUIT_FLAG to TRUE. It is the
programmer's responsibility to manage the quit event (whether to stop or
continue with the procedure).

5. If DEFER QUIT is enabled and the quit event arrives during an interactive
instruction (INPUT, CONSTRUCT), the runtime system sets QUIT_FLAG to TRUE and
exits from the instruction. It is recommended that you test QUIT_FLAG after an
interactive instruction to check whether the input has been cancelled.

Warnings:

1. Once QUIT_FLAG is set to TRUE, it must be reset to FALSE to detect a new quit
event. It is the programmer's responsibility to reset the QUIT_FLAG to FALSE.

Example:

01 MAIN
02 DEFER QUIT
03 LET QUIT_FLAG = FALSE
04 INPUT BY NAME ...
05 IF QUIT_FLAG THEN
06 ...
07 END IF
08 END MAIN

Importing modules

Purpose:

The IMPORT instruction declares a C extension to be used by the current module.

Genero Business Development Language

232

Syntax:

IMPORT filename [,...]

Notes:

1. filename is the identifier (without the file extension) of the module to be loaded.

Usage:

The IMPORT instruction must be used to declare a C extension implementing functions or
variables used by the current module.

Modules declared with the IMPORT instruction do not have to be linked to create a
program. The runtime system automatically loads dependent modules.

The FGLLDPATH environment variable specifies the directories to search for the
modules.

By default, the runtime system tries to load a module with the name userextension, if it
exists. This simplifies the migration of existing C extensions; you just need to create a
shared library named userextension.so (or userextension.dll on Windows), and copy the
file to one of the directories defined in FGLLDPATH.

Warnings:

1. The IMPORT instruction must be the first instruction in the current module. If you
specify this instruction after DEFINE, CONSTANT or GLOBALS, you will get a syntax
error.

2. The compiler converts the module name specified by IMPORT to lowercase letters
(if you write IMPORT MyModule, the name is stored as "mymodule" in the pcode.)
When the module is loaded at runtime, the filename must match the lowercase
name. Therefore, you must always use lowercase filenames for modules. Using
lowercase filenames also simplifies distribution on platforms like Windows, where
filenames are not case-sensitive.

Example:

01 IMPORT mylib1, mylib2
02 DEFINE filename STRING
03 MAIN
04 CALL func1() -- function defined in mylib1
05 END MAIN

See also: C Extensions.

Applications

233

Program Options

Purpose:

The OPTIONS instruction allows you to change default program options.

Syntax:

OPTIONS
{ INPUT [NO] WRAP
| HELP FILE help-filename
| INPUT ATTRIBUTE ({FORM|WINDOW|input-attributes})
| DISPLAY ATTRIBUTE ({FORM|WINDOW|display-attributes})
| SQL INTERRUPT {ON|OFF}
| FIELD ORDER {CONSTRAINED|UNCONSTRAINED|FORM}
| ON TERMINATE SIGNAL CALL user-function
| ON CLOSE APPLICATION {CALL user-function|STOP}
| RUN IN {FORM|LINE} MODE
| MESSAGE LINE line-value TUI Only!
| COMMENT LINE {OFF|line-value} TUI Only!
| PROMPT LINE line-value TUI Only!
| ERROR LINE line-value TUI Only!
| FORM LINE line-value TUI Only!
| INSERT KEY key-name TUI Only!
| DELETE KEY key-name TUI Only!
| NEXT KEY key-name TUI Only!
| PREVIOUS KEY key-name TUI Only!
| ACCEPT KEY key-name TUI Only!
| HELP KEY key-name TUI Only!
} [,...]

Notes:

1. The effect of the OPTIONS instruction is global for the entire program.
2. Most program options can be changed during the program execution.

Usage:

A program can include several OPTIONS statements. If these statements conflict in their
specifications, the OPTIONS statement most recently encountered at runtime prevails.
OPTIONS can specify the following features of other statements (such as CONSTRUCT,
DISPLAY, DISPLAY ARRAY, DISPLAY FORM, ERROR, INPUT, INPUT ARRAY,
MESSAGE, OPEN FORM, OPEN WINDOW, PROMPT and RUN):

• Positions of the reserved lines
• Input and display attributes
• Logical key assignments
• The name of the Help file
• SQL statement interruption
• Field traversal constraints

Genero Business Development Language

234

• Default screen display mode

Defining the default position of reserved lines TUI Only!

The following options define the positions of reserved lines in TUI mode. Is it not
recommended that you use these options in GUI mode, as most have no effect on the
display.

• COMMENT LINE specifies the position of the Comment line. The comment line
displays messages defined with the COMMENT attribute in the form specification
file. The default is (LAST-1) for the SCREEN, and LAST for all other windows.
You can hide the comment line with COMMENT LINE OFF.

• ERROR LINE specifies the position on the screen of the Error line that displays the
text of the ERROR statement. The default is the LAST line of the SCREEN.

• FORM LINE specifies the position of the first line of a form. The default is
(FIRST+2), or line 3 of the current window.

• MENU LINE specifies the position of the Menu line. This displays the menu name
and options, as defined by the MENU statement. The default is the FIRST line in
the window.

• MESSAGE LINE specifies the position of the Message line. This reserved line
displays the text of the MESSAGE statement. The default is (FIRST+1), or line 2
of the current window.

• PROMPT LINE specifies the position of the Prompt line where the text of PROMPT
statements is displayed. The default value is the FIRST line in the window.

You can specify any of the following positions for each reserved line:

Expression Description
FIRST The first line of the screen or window.
FIRST + integer A relative line position from the first line.
integer An absolute line position in the screen or window.
LAST - integer A relative line position from the last line.
LAST The last line of the screen or window.

Defining the default display and the input attributes

Any attribute defined by the OPTIONS statement remains in effect until the runtime
system encounters a statement that redefines the same attribute. This can be another
OPTIONS statement, or an ATTRIBUTE clause in one of the following statements:

• CONSTRUCT, INPUT, DISPLAY, DIALOG, INPUT ARRAY or DISPLAY ARRAY
• OPEN WINDOW

The ATTRIBUTE clause in these statements only redefines the attributes temporarily.
After the window closes (in the case of an OPEN WINDOW statement) or after the
statement terminates (in the case of a CONSTRUCT, INPUT, DISPLAY, DIALOG,

Applications

235

INPUT ARRAY, or DISPLAY ARRAY statement), the runtime system restores the
attributes from the most recent OPTIONS statement.

The FORM keyword in INPUT ATTRIBUTE or DISPLAY ATTRIBUTE clauses instructs the
runtime system to use the input or display attributes of the current form. Similarly, you
can use the WINDOW keyword of the same clauses to instruct the program to use the
input or display attributes of the current window. You cannot combine the FORM or
WINDOW attributes with any other attributes.

The following table shows the valid input-attributes and display-attributes:

Attribute Description
BLACK, BLUE, CYAN, GREEN,
MAGENTA, RED, WHITE,
YELLOW

The color of the displayed text.

BOLD, DIM, INVISIBLE,
NORMAL The font attribute of the displayed text.
REVERSE, BLINK, UNDERLINE The video attribute of the displayed text.

Defining the form input loop

The tab order in which the screen cursor visits fields of a form is that of the field list of
currently executing CONSTRUCT, INPUT, and INPUT ARRAY statements, unless the
tab order has been modified by a NEXT FIELD clause. By default, the interactive
statement terminates if the user presses RETURN in the last field (or if the entered data
fills the last field and that field has the AUTONEXT attribute).

The INPUT WRAP keywords change this behavior, causing the cursor to move from the
last field to the first, repeating the sequence of fields until the user presses the Accept
key. The INPUT NO WRAP option restores the default input loop behavior.

Application Termination

The OPTIONS ON TERMINATE SIGNAL CALL function defines the function that must be
called when the application receives the SIGTERM signal. With this option, you can
control program termination - for example, by using ROLLBACK WORK to cancel all
pending SQL operations. If this statement is not called, the program is stopped with an
exit value of SIGTERM (15).

On Microsoft Windows platforms, the function will be called in the following cases:

• The console window that the program was started from is closed.
• The current user session is terminated (i.e. the user logs off).
• The system is shut down.

Genero Business Development Language

236

Front-End Termination

The OPTIONS ON CLOSE APPLICATION CALL function can be used to execute specific
code when the front-end stops. For example, when the client program is stopped, when
the user session is ended, or when the workstation is shut down.

Before stopping, the front-end sends a internal event that is trapped by the runtime
system. When a callback function is specified with the above program option command,
the application code that was executing is canceled, and the callback function is
executed before the program stops.

You typically do a ROLLBACK WORK, close all files, and release all resources in that
function.

The default is OPTIONS ON CLOSE APPLICATION STOP. This instructs the runtime
system to stop without any error message if the front end program is stopped.

Note that a front-end program crash or network failure is not detected and cannot be
handled by this instruction.

Defining the message file

The HELP FILE clause specifies an expression that returns the filename of a help file.
This filename can also include a pathname. Messages in this file can be referenced by
number in form-related statements, and are displayed at runtime when the user presses
the Help key.

By default, message files are searched in the current directory, then DBPATH
environment variable is scanned to find the file.

See also Message Files.

Defining field tabbing order

In an INPUT, INPUT ARRAY or CONSTRUCT, by default, the tabbing order is defined
by the list of fields used by the program instruction. This corresponds to FIELD ORDER
CONSTRAINED.

When using FIELD ORDER UNCONSTRAINED, the UP ARROW and DOWN ARROW keys
will move the cursor to the field above or below, respectively. Use the FIELD ORDER
CONSTRAINED option to restore the default behavior of the UP ARROW and DOWN
ARROW keys (moving the cursor to the previous or next field, respectively).

Warning: The UNCONSTRAINED option can only be supported in TUI mode, with a
simple form layout. It is not recommended to use this option: it is supported for
backward compatibility only.

Applications

237

When you specify FIELD ORDER FORM, the tabbing order is defined by the TABINDEX
attributes of the current form fields. This allows you to define a tabbing order specific to
the layout of the form, independent of the program instruction:

Form file:

01 LAYOUT
02 GRID
03 {
04 First name: [f001]
05 Last name: [f002]
06 }
07 END
08 END
09 ATTRIBUTES
10 EDIT f001 = FORMONLY.fname, TABINDEX = 1;
11 EDIT f002 = FORMONLY.lname, TABINDEX = 2;
12 END

Program file:

01 MAIN
02 DEFINE fname, lname CHAR(20)
03 OPTIONS FIELD ORDER UNCONSTRAINED
04 OPEN FORM f1 FROM "f1"
05 DISPLAY FORM f1
06 INPUT BY NAME fname, lname
07 END MAIN

Defining control keys TUI Only!

The OPTIONS instruction can specify physical keys to support logical key functions in the
interactive instructions.

Warning: The physical key definition options are only provided for backward
compatibility with the character mode. These as not supported in GUI mode. Use
the Action Defaults to define accelerator keys for actions.
In TUI mode, action defaults accelerators are ignored.

Description of the keys:

• The ACCEPT KEY specifies the key that validates a CONSTRUCT, INPUT,
DIALOG, INPUT ARRAY, or DISPLAY ARRAY statement.
The default ACCEPT KEY is ESCAPE.

• The DELETE KEY specifies the key in INPUT ARRAY statements that deletes a
screen record.
The default DELETE KEY is F2.

• The INSERT KEY specifies the key that opens a screen record for data entry in
INPUT ARRAY.
The default INSERT KEY is F1.

Genero Business Development Language

238

• The NEXT KEY specifies the key that scrolls to the next page of a program array
of records in an INPUT ARRAY or DISPLAY ARRAY statement.
The default NEXT KEY is F3.

• The PREVIOUS KEY specifies the key that scrolls to the previous page of program
records in an INPUT ARRAY or DISPLAY ARRAY statement.
The default PREVIOUS KEY is F4.

• The HELP KEY specifies the key to display help messages.
The default HELP KEY is CONTROL-W.

You can specify the following keywords for the physical key names:

Key Name Description

ESC or ESCAPE The ESC key (not recommended, use ACCEPT
instead).

INTERRUPT The interruption key (on UNIX, interruption signal).
TAB The TAB key (not recommended).

CONTROL-char A control key where char can be any character
except A, D, H, I, J, K, L, M, R, or X

F1 through F255 A function key.
LEFT The left arrow key.
RETURN or ENTER The return key.
RIGHT The right arrow key.
DOWN The down arrow key.
UP The up arrow key.
PREVIOUS or PREVPAGE The previous page key.
NEXT or NEXTPAGE The next page key.

You might not be able to use other keys that have special meaning to your version of the
operating system. For example, CONTROL-C, CONTROL-Q, and CONTROL-S specify
the Interrupt, XON, and XOFF signals on many UNIX systems.

Setting default screen modes

When using character terminals, BDL recognizes two screen display modes: line mode
(IN LINE MODE) and formatted mode (IN FORM MODE). The OPTIONS and RUN
statements can explicitly specify a screen mode. The OPTIONS statement can set
separate defaults for these statements.

After IN LINE MODE is specified, the terminal is in the same state (in terms of stty
options) as when the program began. This usually means that the terminal input is in
cooked mode, with interruption enabled, and input not available until after a newline
character has been typed.

The IN FORM MODE keywords specify raw mode, in which each character of input
becomes available to the program as it is typed or read.

Applications

239

By default, a program operates in line mode, but so many statements take it into
formatted mode (including OPTIONS statements that set keys, DISPLAY, OPEN
WINDOW, DISPLAY FORM, and other screen interaction statements), that typical
programs are actually in formatted mode most of the time.

When the OPTIONS statement specifies RUN IN FORM MODE, the program remains in
formatted mode if it currently is in formatted mode, but it does not enter formatted mode
if it is currently in line mode.

When the OPTIONS statement specifies RUN IN LINE MODE, the program remains in line
mode if it is currently in line mode, and it switches to line mode if it is currently in
formatted mode.

The RUN instruction

Purpose:

The RUN instruction creates a new process and executes the command passed as an
argument.

Syntax:

RUN command
 [IN {FORM|LINE} MODE]
 [RETURNING variable | WITHOUT WAITING]

Notes:

1. command is a string expression containing the command to be executed.
2. variable is an integer variable receiving the execution status of the command.

Warnings:

1. The execution status in the RETURNING clause is system dependent. See below
for more details.

Usage:

The RUN instruction executes an operating system command line; you can even run a
second application as a secondary process. When the command terminates, the runtime
system resumes execution.

Defining the command execution shell

In order to execute the command line, the RUN instruction uses the OS-specific shell
defined in the environment of the current user. On UNIX, this is defined by the SHELL
environment variable. On Windows, this is defined by COMSPEC. Note that on

Genero Business Development Language

240

Windows, the program defined by the COMSPEC variable must support the /c option as
CMD.EXE.

Waiting for the sub-process

By default, the runtime system waits for the end of the execution of the command.

Unless you specify WITHOUT WAITING, the RUN instruction also does the following:

1. Causes execution of the current program to pause.
2. Displays any output from the specified command in a new window.
3. After that command completes execution, closes the new window and restores

the previous display in the screen.

If you specify WITHOUT WAITING, the specified command line is executed as a
background process, and generally does not affect the visual display. This clause is
useful if you know that the command will take some time to execute, and your program
does not need the result to continue. It is also used in GUI mode to start another Genero
program. In TUI mode, you must not use this clause because two programs cannot run
simultaneously on the same terminal.

Catching the execution status

The RETURNING clause saves the termination status code of the command that RUN
executes in a program variable of type SMALLINT. You can then examine this variable
in your program to determine the next action to take. A status code of zero usually
indicates that the command has terminated normally. Non-zero exit status codes usually
indicate that an error or a signal caused execution to terminate.

Warning: The execution status provided by the RETURNING clause is platform-
dependent. On Unix systems, the value is composed of two bytes having different
meanings. On Windows platforms, the execution status is usually zero for
success, not zero if an error occurred.

On Unix systems, the lower byte (x mod 256) of the return status defines the termination
status of the RUN command. The higher byte (x / 256) of the return status defines the
execution status of the program. On Windows systems, the value of the return status
defines the execution status of the program.

IN LINE MODE and IN FORM MODE

By default, programs operate in LINE MODE, but as many statements take it into FORM
MODE (including OPTIONS statements that set keys, DISPLAY, OPEN WINDOW,
DISPLAY FORM, and other screen interaction statements), typical programs are actually
in FORM MODE most of the time.

According to the type of command to be executed, you may need to use the IN
{LINE|FORM} MODE clause with the RUN instruction. It defines how the terminal or the
graphical front-end behaves when running the child process.

Applications

241

Besides RUN, the OPTIONS, START REPORT, and REPORT statements can explicitly
specify a screen mode. If no screen mode is specified in the RUN command, the current
value from the OPTIONS statement is used. This is, by default, IN LINE MODE. The
default screen mode for PIPE specifications in REPORT is IN FORM MODE.

When the RUN statement specifies IN FORM MODE, the program remains in form mode if
it is currently in form mode, but it does not enter form mode if it is currently in line mode.
When the prevailing RUN option specifies IN LINE MODE, the program remains in line
mode if it is currently in line mode, and it switches to line mode if it is currently in form
mode. This also applies to the PIPE option.

Typically, if you need to run another interactive program, you must use the IN LINE
MODE clause:

• In a TUI mode, the terminal is in the same state (in terms if tty options) as when
the program began. Usually the terminal input is in cooked mode, with interrupts
enabled and input not becoming available until after a new-line character is
typed.

• In a Graphical UI, if the WITHOUT WAITING clause in used, the front-end is
warned before the child process is started (this causes a first network round-trip)
After the child is started, the front-end is warned that the command was executed
(second network round-trip). If the RUN command must wait for child termination
(i.e. no WITHOUT WAITING clause is used), no particular action is taken.

However, if you want to execute a sub-process running silently (batch program without
output), you must use the IN FORM MODE clause:

• In a TUI mode, the screen stays in form mode if it was in form mode, which
saves a clear / redraw of the screen. The FORM mode specifies the terminal raw
mode, in which each character of input becomes available to the program as it is
typed or read.

• In a Graphical UI, no particular action is taken to warn the front-end (there is no
need to warn the front-end for batch program execution).

Tip: To summarize, the FORM MODE must be used to optimize programs, if the
child program does not do any output. If the child program uses interactive
instructions, displays messages to the terminal, or if you don't known what it
does, just use the RUN instruction in LINE MODE (which is the default).

It is recommended that you use functions to encapsulate child program and system
command execution:

01 MAIN
02 DEFINE result SMALLINT
03 CALL runApplication("app2 -p xxx")
04 CALL runBatch("ls -l", FALSE) RETURNING result
05 CALL runBatch("ls -l > /tmp/files", TRUE) RETURNING result
06 END MAIN
07
08 FUNCTION runApplication(pname)

Genero Business Development Language

242

09 DEFINE pname, cmd STRING
10 LET cmd = "fglrun " || pname
11 IF fgl_getenv("FGLGUI") == 1 THEN
12 RUN cmd WITHOUT WAITING
13 ELSE
14 RUN cmd
15 END IF
16 END FUNCTION
17
18 FUNCTION runBatch(cmd, silent)
19 DEFINE cmd STRING
20 DEFINE silent STRING
21 DEFINE result SMALLINT
22 IF silent THEN
23 RUN cmd IN FORM MODE RETURNING result
24 ELSE
25 RUN cmd IN LINE MODE RETURNING result
26 END IF
27 IF fgl_getenv("OS") MATCHES "Win*" THEN
28 RETURN result
29 ELSE
30 RETURN (result / 256)
31 END IF
32 END FUNCTION

EXIT PROGRAM

Purpose:

The EXIT PROGRAM instruction terminates the execution of the program.

Syntax:

EXIT PROGRAM [exit-code]

Notes:

1. exit-code is a valid integer expression that can be read by the process which
invoked the program.

2. Usually, exit-code will be zero by default for normal, errorless termination.

Warnings:

1. exit-code is converted into a positive integer between 0 and 255 (8 bits).

Example:

01 MAIN
02 DISPLAY "Emergency exit."
03 EXIT PROGRAM (-1)

Applications

243

04 DISPLAY "This will never be displayed !"
05 END MAIN

Database Schema Specification

Purpose:

Database Schema Specification identifies the database schema files to be used for
compilation.

Syntax 1:

SCHEMA dbname

Syntax 2:

[DESCRIBE] DATABASE dbname

Notes:

1. The SCHEMA instruction defines the database schema files to be used for
compilation.

2. dbname identifies the name of the database schema file to be used.
3. The database name must be expressed explicitly and not as a variable.
4. Use this instruction outside any program block, before a variable declaration with

DEFINE LIKE instructions. It must precede any program block in each module
that includes a DEFINE…LIKE declaration or INITIALIZE…LIKE and
VALIDATE…LIKE statements. It must precede any GLOBALS…END GLOBALS block. It
must also precede any DEFINE…LIKE declaration of module variables.

5. The [DESCRIBE] DATABASE instruction defines both the database schema files
for compilation and the default database to connect to at runtime when the MAIN
block is executed.

Warnings:

1. [DESCRIBE] DATABASE is supported for backward compatibility, but it is strongly
recommended that you use SCHEMA instead. The SCHEMA instruction defines only
the database schema for compilation, and not the default database to connect to
at runtime, which can have a different name than the development database.

Example:

01 SCHEMA dbdevelopment -- Compilation database schema
02 DEFINE rec RECORD LIKE customer.*
03 MAIN
04 DATABASE dbproduction -- Runtime database specification
05 SELECT * INTO rec.* FROM customer WHERE custno=1
06 END MAIN

Genero Business Development Language

244

NULL Constant

Purpose:

The NULL constant is provided as "nil" value.

Syntax:

NULL

Notes:

1. When comparing variables to NULL, use the IS NULL operator, not the equal
operator.

2. If an element of an expression is NULL, the expression is evaluated to NULL.

Warnings:

1. Variables are initialized to NULL or to zero according to their data type.
2. Empty character string literals ("") are equivalent to NULL.
3. NULL cannot be used with the = equal comparison operation, you must use IS

NULL.

Example:

01 MAIN
02 DEFINE s CHAR(5)
03 LET s = NULL
04 DISPLAY "s IS NULL evaluates to:"
05 IF s IS NULL THEN
06 DISPLAY "TRUE"
07 ELSE
08 DISPLAY "FALSE"
09 END IF
10 END MAIN

TRUE Constant

Purpose:

The TRUE constant is a predefined boolean value that evaluates to 1.

Syntax:

TRUE

Applications

245

Example:

01 MAIN
02 IF FALSE = TRUE THEN
03 DISPLAY "Something wrong here"
04 END IF
05 END MAIN

FALSE Constant

Purpose:

The FALSE constant is a predefined boolean value that evaluates to 0.

Syntax:

FALSE

Example:

01 FUNCTION isodd(value)
02 DEFINE value INTEGER
03 IF value MOD 2 = 1 THEN
04 RETURN TRUE
05 ELSE
06 RETURN FALSE
07 END IF
08 END FUNCTION

NOTFOUND Constant

Purpose:

The NOTFOUND constant is a predefined integer value that evaluates to 100.

Syntax:

NOTFOUND

Notes:

1. This constant is used to test the execution status of an SQL statement returning
a result set, to check whether rows have been found.

Genero Business Development Language

246

Example:

01 MAIN
02 DATABASE stores
03 SELECT tabid FROM systables WHERE tabid = 1
04 IF SQLCA.SQLCODE = NOTFOUND THEN
05 DISPLAY "No row was found"
06 END IF
07 END MAIN

BREAKPOINT

Purpose:

The BREAKPOINT instruction sets a program breakpoint when running in debug mode.

Syntax:

BREAKPOINT

Usage:

Normally, to set a breakpoint when you debug a program, you must use the break
command of the debugger. But in some situations, you might need to set the breakpoint
programmatically. Therefore, the BREAKPOINT instruction has been added to the
language.

When you start fglrun in debug mode, if the program flow encounters a BREAKPOINT
instruction, the program execution stops and the debug prompt is displayed, to let you
enter a debugger command.

The BREAKPOINT instruction is ignored when not running in debug mode.

Example:

01 MAIN
02 DEFINE i INTEGER
03 LET i=123
04 BREAKPOINT
05 DISPLAY i
06 END MAIN

Applications

247

Setting Key Labels

Purpose:

This feature allows you to define the labels of keys, to show a specific text in the default
action button created for the key.

Syntax 1: In FGLPROFILE

key.key-name.text = "label"

Syntax 2: At the program level

CALL FGL_SETKEYLABEL("key-name", "label")

Syntax 3: At the form level

KEYS
key-name = "label"
[...]
[END]

Syntax 4: At the dialog level

CALL FGL_DIALOG_SETKEYLABEL("key-name", "label")

Syntax 5: At the field level

KEY key-name = "label"

Notes:

1. key-name is the name of the key as defined below.

Warning:

1. This feature is provided for backward compatibility.

Usage:

Traditional 4GL applications use a lot of function keys and/or control keys to manage
user actions. For example, in the following interactive dialog, the function key F10 is
used to show a detail window:

01 INPUT BY NAME myrecord.*
02 ON KEY (F10)
03 CALL ShowDetail()
04 END INPUT

Genero Business Development Language

248

For backward compatibility, the language allows you to specify a label to be displayed in
a default action button created specifically for the key.

By default, if you do not specify a label, no action button is displayed for a function key
or control key.

The following table shows the key names recognized by the runtime system:

Key Name Description
f1 to f255 Function keys.
control-a to
control-z Control keys.

accept Validation key.
interrupt Cancellation key.
insert The insert key when in an INPUT ARRAY.
delete The delete key when in an INPUT ARRAY.
help The help key.

You can define key labels at different levels, from the default settings to a specific field,
to show a specific label for the key when the focus is in that field. The order of
precedence for key label definition is the following:

1. The label defined with the KEY attribute of the form field.
2. The label defined for the current dialog, using the FGL_DIALOG_SETKEYLABEL

function.
3. The label defined in the KEYS section of the form specification file.
4. The label defined as default for a program, using the FGL_SETKEYLABEL

function.
5. The label defined in the FGLPROFILE configuration file (key.key-name.text

entries).

You can query the label defined at the program level with the FGL_GETKEYLABEL
function and, for the current interactive instruction, with the
FGL_DIALOG_GETKEYLABEL function.

Responding to CTRL_LOGOFF_EVENT

Purpose:

On Windows platforms, when the user disconnects, the system sends a
CTRL_LOGOFF_EVENT event to all console applications. When the DVM receives this
event, it stops immediately (a simple exit(0) system call is done).

On a Windows Terminal Server, if an Administrator user closes his session, a
CTRL_LOGOFF_EVENT is sent to all console applications started by ANY user

Applications

249

connected to the machine (even if these applications were not started by the
Administrator).

To prevent the DVM from stopping on a logoff event, you can use the
fglrun.ignoreLogoffEvent entry in the FGLPROFILE configuration file. If this entry is
set to true, the CTRL_LOGOFF_EVENT event is ignored by the DVM.

fglrun.ignoreLogoffEvent = true

As a result, when the Administrator user disconnects on a Windows Terminal Server,
programs started by remote users would not stop.

Genero Business Development Language

250

Database Schema Files
Summary:

• What are Database Schema Files?
• Database Schema Extractor
• Schema Files

o Column Definition File (.sch)
o Column Validation File (.val)
o Column Video Attributes File (.att)

See also: Forms, Programs, Variables, fgldbsch

Definition of Database Schema Files

Database Schema Files hold the definition of the database tables and columns. The
schema files contain the column data types, validation rules, form item types, and
display attributes for columns.

The schema files are typically used to centralize column data types to define program
variables, as well as display attributes which are normally specified in the form
specification file.

The database schema files are generated with the fgldbsch tool from the system tables
of an existing database.

In program sources or form specification files, you must specify the database schema
file with the SCHEMA instruction. The FGLDBPATH environment variable can be used
to define a list of directories where the compiler can find database schema files.

Warning: The data types, display attributes, and validation rules are taken from
the Database Schema Files during compilation. Make sure that the schema files of
the development database correspond to the production database, otherwise the
elements defined in the compiled version of your modules and forms will not
match the table structures of the production database.

Program variables can be defined with the LIKE keyword to get the data type defined in
the schema files:

01 SCHEMA stores
02 MAIN
03 DEFINE custrec RECORD LIKE customer.*
04 DEFINE name LIKE customer.cust_name
05 ...
06 END MAIN

Applications

251

Form fields defined with the FIELD item type can get the form item type from the schema
files:

01 SCHEMA stores
02 LAYOUT
03 GRID
04 {
05 [f001]
06 }
07 TABLES
08 customer
09 END
10 ATTRIBUTES
11 FIELD f001 = customer.cust_name;
12 END

Note: For handling uppercase characters in the database name you must quote the
name: SCHEMA "myDatabase"

Database Schema Extractor

See also: fgldbsch

The fgldbsch tool extracts the schema description for any database supported by the
product. Schema information is extracted from the database specific system tables. The
database type is automatically detected after connection; you do not have to specify any
database server type.

fgldbsch -db test1 -un scott -up fourjs -v -ie

The database system must be available and the database client environment must be
set properly in order to generate the schema files.

You must run fgldbsch with the -db dbname option to identify the database to which to
connect. The dbname and related options could be present in the FGLPROFILE file. See
Indirect database specification method in Database Connections. Otherwise, related
options have to be provided with the fgldbsch command.

If the operating system user is not the database user, you can provide a database login
and password with the -un and -up options.

The database driver can be specified with the -dv dbdriver option, if the default driver
is not appropriate.

The BDL compiler expects FGL data types in the schema file. While most data types
correspond to Informix SQL data types, non-Informix databases can have different data
types. Therefore, data types are generated from the system catalog tables according to
some conversion rules. You can control the conversion method with the -cv option.

Genero Business Development Language

252

Each character position of the string passed by this option corresponds to a line in the
conversion table. You must give a conversion code for each data type (for example: -cv
AABAAAB). Run the tool with the -ct option to see the conversion tables. When using X
as conversion code, the columns using the corresponding data types will be ignored and
not written to the .sch file. This is particularly useful in the case of auto-generated
columns like SQL Server's uniqueidentifier data type, when using a DEFAULT NEWID()
clause.

With some databases, the owner of tables is mandatory to extract a schema, otherwise
you would get multiple definitions of the same table in the .sch schema file. To prevent
such mistakes, you can specify the schema owner with the -ow owner option. If this
option is not used, fgldbsch will use the login name passed with the -un user option.

By default fgldbsch does not generate system table definitions. Use the -st option to
extract schema information of system tables.

Warning: The fgldbsch tool in BDL v1.3x provides the -ns option to generate
without the database system tables. This option is no longer supported in the
fgldbsch tool in BDL v2.xx and is replaced by the -st option to generate with the
database system tables.

Use the -tn tabname option to extract schema information of a specific table. You may
use the -of name option to generate files with a different name than the default name
(the name of the database specified with the -db option).

By default, table and column names are converted to lower case letters to enforce
compatibility with Informix. You can force lower case, upper case or case-sensitive
generation by using the -cl, -cu or -cc options.

Warning: When using an Informix database, fgldbsch extracts synonyms. By
default, only PUBLIC synonyms are extracted to avoid duplicates in the .sch file
when the same name is used by several synonyms by different owners. If you
want to extract PRIVATE synonyms, you must use the -ow option to specify the
owner of the tables and synonyms.

Schema Files

Column Definition File (.sch)

The .sch file contains the data types of table columns.

Example:

01 customer^customer_num^258^4^1
02 customer^customer_name^256^50^2

Applications

253

03 customer^customer_address^0^100^3
04 order^order_num^258^4^1
05 order^order_custnum^258^4^2
06 order^order_date^263^4^3
07 order^order_total^261^1538^4

Description:

The data type of program variables or form fields used to hold data of a given database
column must match the data type used in the database. BDL simplifies the definition of
these elements by centralizing the information in external .sch files, which contain
column data types.

In form files, you can directly specify the table and column name in the field definition in
the ATTRIBUTES section of forms.

In programs, you can define variables with the data type of a database column by using
the LIKE keyword.

Warnings:

1. As column data types are extracted from the database system tables, you may
get different results with different database servers. For example, Informix
provides the DATE data type to store simple dates in year, month, and day
format (= BDL DATE), while Oracle stores DATEs as year to second (= BDL
DATETIME YEAR TO SECOND).

The following table describes the fields you will find in a row of the .sch file:

Pos Type Description
1 STRING Database table name.
2 STRING Column name.
3 SMALLINT Coded column data type. If the column is NOT NULL, you

must add 256 to the value.
4 SMALLINT Coded data type length.
5 SMALLINT Ordinal position of the column in the table.
6 STRING Default value of the database column.

The value can be a simple numeric constant (1234.56) or a
string delimited by single quotes ('abcdef').

7 STRING Default form item type.
The value can be one of the form item types (Edit, ButtonEdit,
ComboBox, and so on).

Next table shows the data types that can be represented in the .sch schema file:

Data type
name

Data
type
code

Data type length (field #4)
This is a SMALLINT value encoding the length or
composite length of the type.

Genero Business Development Language

254

(field
#3)

CHAR 0 Maximum number of characters.
SMALLINT 1 Fixed length of 2
INTEGER 2 Fixed length of 4
FLOAT 3 Fixed length of 8
SMALLFLOAT 4 Fixed length of 4
DECIMAL 5 The length is computed using the following formula:

length = (precision * 256) + scale
SERIAL 6 Fixed length of 4
DATE 7 Fixed length of 4
MONEY 8 Same as DECIMAL
Unused 9
DATETIME 10 To code the qualifiers, the length is computed using the

following formula:
length = (prec * 256) + (qual1 * 16) + qual2
where prec is the precision of the last qualifier and qual1
/ qual2 identify qualifiers according to the following list:

0 = YEAR
2 = MONTH
4 = DAY
6 = HOUR
8 = MINUTE
10 = SECOND
11 = FRACTION(1)
12 = FRACTION(2)
13 = FRACTION(3)
14 = FRACTION(4)
15 = FRACTION(5)

BYTE 11 Length of descriptor
TEXT 12 Length of descriptor
VARCHAR 13 If length is positive:

length = (min_space * 256) + max_size
If length is negative:
length + 65536 = (min_space * 256) + max_size

INTERVAL 14 Same as DATETIME
NCHAR 15 Same as CHAR
NVARCHAR 16 Same as VARCHAR
INT8 17 Fixed length of 8
SERIAL8 18 Fixed length of 8
SET (Unused) 19
MULTISET
(Unused)

20

LIST (Unused) 21
Unnamed ROW
(Unused)

22

Variable-length 40

Applications

255

opaque type
VARCHAR2 201 Maximum number of characters.
Named ROW
(Unused)

4118

Column Validation File (.val)

The .val file holds functional and display attributes of columns.

Example:

01 customer^customer_name^STYLE^"important"^
02 customer^customer_name^SHIFT^UP^
03 customer^customer_name^COMMENTS^"Name of the customer"^
04 order^order_date^DEFAULT^TODAY^
05 order^order_date^COMMENTS^"Creation date of the order"^

Description:

The .val file holds default attributes and validation rules for database columns.

In form files, the attributes are taken from the .val file as defaults if the corresponding
attribute is not explicitly specified in the field definition of the ATTRIBUTES section.

In programs, you can validate variable values in accordance with the INCLUDE attribute
by using the VALIDATE instruction.

The .val file can be generated by fgldbsch from the Informix-specific syscolval table, or
can be edited by an external column attributes editor.

The following table describes the structure of the .val file:

Pos Type Description
1 STRING Database table name.
2 STRING Column name.
3 STRING Column property name.
4 STRING Column property value.

The supported attribute definitions are:

Attribute Name Description

ACTION Defines the ACTION attribute.
Value must be an identifier.

AUTONEXT Defines the AUTONEXT attribute.
When this attribute is defined, value is YES.

Genero Business Development Language

256

AUTOSCALE Defines the AUTOSCALE attribute.
When this attribute is defined, value is YES.

CENTURY Defines the CENTURY attribute.
The value must be one of: R, C, F, or P.

COLOR Defines the COLOR attribute.
The value is a color identifier (RED, GREEN, BLUE, ...)

COMMENTS Defines the COMMENTS attribute.
The value is a quoted string or Localized String (%"xxx").

DEFAULT Defines the DEFAULT attribute.
Number, quoted string or identifier (TODAY).

FORMAT Defines the FORMAT attribute.
The value is a quoted string.

HEIGHT
Defines the HEIGHT attribute.
The value is an integer followed by: { CHARACTERS, COLUMNS,
LINES, POINTS, or PIXELS }

IMAGE Defines the IMAGE attribute.
The value is a quoted string.

INCLUDE
Defines an include list as the INCLUDE attribute.
Value must be a list: (value [,...]), where value can be a
number, quoted string or identifier (TODAY).

INITIALIZER Defines the INITIALIZER attribute.
Value must be an identifier.

INVISIBLE Defines the INVISIBLE attribute.
When this attribute is defined, value is YES.

ITEMS
Defines the VALUEUNCHECKED attribute.
The value must be a list: (item [,...]), where item can be a
number, a quoted string or (value,"label").

ITEMTYPE

Defines the Form Item Type to be used when the column is
used as FIELD in forms.
Value must be an identifier defining the item type (case
sensitive!):
Edit, ButtonEdit, Label, Image, DateEdit, TextEdit,
ComboBox, RadioGroup, CheckBox, Slider, SpinEdit,
TimeEdit, ProgressBar

JUSTIFY Defines the JUSTIFY attribute.
The value must be one of: LEFT, CENTER or RIGHT.

ORIENTATION Defines the ORIENTATION attribute.
The value must be one of: VERTICAL or HORIZONTAL.

PICTURE Defines the PICTURE attribute.
The value is a quoted string.

SAMPLE Defines the SAMPLE attribute.
The value is a quoted string.

SCROLL Defines the SCROLL attribute.
When this attribute is defined, value is YES.

Applications

257

SCROLLBARS Defines the SCROLLBARS attribute.
The value must be one of: X, Y or BOTH.

SHIFT Corresponds to the UPSHIFT and DOWNSHIFT attributes.
Values can be UP or DOWN.

SIZEPOLICY Defines the SIZEPOLICY attribute.
The value must be one of: INITIAL, DYNAMIC or FIXED.

STEP Defines the STEP attribute.
The value must be an integer.

STRECH Defines the STRETCH attribute.
The value must be one of: X, Y or BOTH.

STYLE Defines the STYLE attribute.
The value is a quoted string.

TAG Defines the TAG attribute.
The value is a quoted string.

TEXT Defines the TEXT attribute.
The value is a quoted string or Localized String (%"xxx").

TITLE Defines the TITLE attribute.
The value is a quoted string or Localized String (%"xxx").

VALUEMIN Defines the VALUEMIN attribute.
The value must be an integer.

VALUEMAX Defines the VALUEMAX attribute.
The value must be an integer.

VALUECHECKED Defines the VALUECHECKED attribute.
The value must be an number or a quoted string.

VALUEUNCHECKED Defines the VALUEUNCHECKED attribute.
The value must be an number or a quoted string.

VERIFY Defines the VERIFY attribute.
When this attribute is defined, value is YES.

WANTTABS Defines the WANTTABS attribute.
When this attribute is defined, value is YES.

WANTNORETURNS Defines the WANTNORETURNS attribute.
When this attribute is defined, value is YES.

WIDTH
Defines the WIDTH attribute.
The value is an integer followed by: { CHARACTERS, COLUMNS,
LINES, POINTS, or PIXELS }

Column Video Attributes File (.att)

The .att file contains the default video attributes of columns.

This file is generated by fgldbsch from the Informix-specific syscolatt table.

Genero Business Development Language

258

The following table describes the structure of the .val file:

Pos Type Description
1 STRING Database table name.
2 STRING Column name.
3 SMALLINT Ordinal number of the attribute record.
4 STRING COLOR attribute (coded).
5 CHAR(1) INVERSE attribute (y/n).
6 CHAR(1) UNDERLINE attribute (y/n).
7 CHAR(1) BLINK attribute (y/n).
8 CHAR(1) LEFT attribute (y/n).
9 STRING FORMAT attribute.
10 STRING Condition.

Warning: This feature is supported for compatibility with Informix 4GL only.

Applications

259

Globals
Summary:

• Definition
• Examples

See also: Variables, Arrays, Records, Constants, Programs

Definition

Purpose:

The GLOBALS instruction declares modular variables that can be exported to other
program modules.

Syntax 1: Global block declaration

GLOBALS
 declaration-statement
 [,...]
END GLOBALS

Syntax 2: Importing global variables

GLOBALS "filename"

Notes:

1. In Syntax 1, declaration-statement is a variable or constant declaration.
2. In Syntax 2, filename is the name of a file containing the definition of global

variables. Use this syntax to include a global declarations in the current module.

Warnings:

1. If you modify filename, you must recompile all the modules that include filename.
2. Do not declare a variable outside a GLOBALS…END GLOBALS block in a GLOBALS

file.
3. Avoid confusing function names and global variables names
4. Avoid declaring the same global variable twice when including multiple GLOBALS

files.

Usage:

In general, a program variable is in scope only in the same FUNCTION, MAIN, or
REPORT program block in which it was declared.

Genero Business Development Language

260

To extend the visibility of one or more module variables beyond the source module in
which they are declared, you must take the following steps:

1. Declare variables in GLOBALS…END GLOBALS declarations in files containing only
GLOBALS, DEFINE, and DATABASE statements (but no executable statements).

2. Specify the files in GLOBALS "filename" statements in each additional source
module that includes statements referencing the variables.

The filename must contain the .4gl suffix. It can be a a relative or an absolute path. To
specify a path, the slash (/) directory separator can be used for Unix and Windows
platforms.

If a local variable has the same name as another variable that you declare in the
GLOBALS statement, only the local variable is visible within its scope of reference.

Each variable declared in a GLOBALS ... END GLOBALS block becomes a global
variable.

You can declare several GLOBALS blocks in the same module.

A GLOBALS file must not contain any executable statement.

You do not compile the source file containing the GLOBALS block.

You can declare several GLOBALS "filename" in the same module.

Although you can include multiple GLOBALS…END GLOBALS statements in the same
application, do not declare the same identifier as the name of a variable within the
DEFINE statements of more than one GLOBALS declaration. Even if several declarations
of a global variable defined in multiple places are identical, declaring any global variable
more than once can result in compilation errors or unpredictable runtime behavior.

A GLOBALS block can hold GLOBALS "filename" instructions. In such case, the specified
files will be included recursively.

Tips:

1. Use only a few global variables, too much globals makes the source code difficult
to maintain and denies reusability.

2. There is no need to compile filename, but compiling filename might be useful to
detect syntax errors.

3. To improve the readability of your source code, prefix global variables by "g_".
4. Global variables are often used as constants.
5. Global arrays allow a function to access the array modified by another function.

Applications

261

Examples

Example 1: Multiple GLOBALS file

labels.4gl : This module defines the text that should be displayed on the screen

01 GLOBALS
02 CONSTANT g_lbl_val = "Index:"
03 CONSTANT g_lbl_idx = "Value:"
04 END GLOBALS

globals.4gl : Declares a global array and a constant containing its size

01 GLOBALS "labels.4gl" -- this statement could be line 2 of main.4gl
02 GLOBALS
03 DEFINE g_idx ARRAY[100] OF CHAR(10)
04 CONSTANT g_idxsize = 100
05 END GLOBALS

database.4gl : This module could be dedicated to database access

01 GLOBALS "globals.4gl"
02 FUNCTION get_id()
03 DEFINE li INTEGER
04 FOR li = 1 TO g_idxsize -- this could be a FOREACH statement
05 LET g_idx[li] = g_idxsize - li
06 END FOR
07 END FUNCTION

main.4gl : Fill in the global array and display the result

01 GLOBALS "globals.4gl"
02 MAIN
03 DISPLAY "Initializing constant values for this application..."
05 DISPLAY "Filling the data from function get_idx in module
database.4gl..."
06 CALL get_id()
07 DISPLAY "Retrieving a few values from g_idx"
08 CALL display_data()
09 END MAIN
10 FUNCTION display_data()
11 DEFINE li INTEGER
12 LET li = 1
13 WHILE li <= 10 AND li <= g_idxsize
14 DISPLAY g_lbl_idx CLIPPED || li || " " || g_lbl_val CLIPPED ||
g_idx[li]
15 LET li = li + 1
16 END WHILE
17 END FUNCTION

Genero Business Development Language

262

Flow Control
Summary:

• Invoking a function (CALL)
• Returning from a function (RETURN)
• Conditional cases (CASE)
• Continuing a block (CONTINUE instruction)
• Leaving a block (EXIT instruction)
• Iterative loop (FOR)
• Labeled transfer (GOTO)
• Conditional block (IF)
• Statement label (LABEL)
• Suspending execution (SLEEP)
• Conditional loop (WHILE)

See also: Programs, Functions, Reports, Expressions

CALL

Purpose:

The CALL instruction invokes a specified function.

Syntax:

CALL function ([parameter [,...]]) [RETURNING variable [,...]]

Notes:

1. function is the name of a built-in function or the name of the function defined in
one of the modules of the program.

2. parameter can be a variable, a literal, a constant or any valid expression.
3. parameters are separated by a comma ' , '.
4. The RETURNING clause assigns values returned by the function to variables in the

calling routine.
5. variable is a variable receiving a value returned by the function.
6. The RETURNING clause is only needed when the function returns parameters.
7. A function returning a single parameter can be used in expressions.

Tips:

1. You can use a double-pipe operator ' || ' to pass the concatenation of character
expressions as a parameter.

Applications

263

Warnings:

1. The value of a receiving variable may be different from the value returned by the
function, following the data conversion rules.

Example 1: Function returning a single value

01 MAIN
02 DEFINE var1 CHAR(10)
03 DEFINE var2 CHAR(2)
04 LET var1 = foo()
05 DISPLAY "var1 = " || var1
06 CALL foo() RETURNING var2
07 DISPLAY "var2 = " || var2
08 END MAIN
09
10 FUNCTION foo()
11 RETURN "Hello"
12 END FUNCTION

Example 2: Function returning several values

01 MAIN
02 DEFINE var1 CHAR(15)
03 DEFINE var2 CHAR(15)
04 CALL foo() RETURNING var1, var2
05 DISPLAY var1, var2
06 END MAIN
07
08 FUNCTION foo()
09 DEFINE r1 CHAR(15)
10 DEFINE r2 CHAR(15)
11 LET r1 = "return value 1"
12 LET r2 = "return value 2"
13 RETURN r1, r2
14 END FUNCTION

Example 3: Function and records

01 MAIN
02 DEFINE r1 RECORD
03 id1 INTEGER,
04 id2 INTEGER,
05 name CHAR(30)
06 END RECORD
07 CALL get_name(NULL, NULL, NULL) RETURNING r1.*
08 CALL get_name(NULL, r1.id2, r1.name) RETURNING r1.*
09 CALL get_name(r1.*) RETURNING r1.*
10 DISPLAY r1.name
11 CALL get_name(1, 2, "John") RETURNING r1.id2, r1.id1, r1.name
12 DISPLAY r1.name
13 END MAIN
14
15 FUNCTION get_name(code1, code2, name)

Genero Business Development Language

264

16 DEFINE code1 INTEGER
17 DEFINE code2 INTEGER
18 DEFINE name CHAR(30)
19 IF code1 IS NULL THEN
20 LET name = "ERROR:code1 is NULL"
21 LET code2 = NULL
22 ELSE
23 IF code2 IS NULL THEN
24 LET name = "ERROR:code2 is NULL"
25 LET code1 = NULL
26 ELSE
27 IF name IS NULL THEN
28 LET name = "SMITH"
29 END IF
30 END IF
31 END IF
32 RETURN code1, code2, name
33 END FUNCTION

RETURN

Purpose:

The RETURN instruction transfers the control back from a function with optional return
values.

Syntax:

RETURN [value [,...]]

Notes:

1. value can be a variable, a literal, a constant or any valid expression.
2. Record members can be returned with the .* or THRU notation. Each member is

returned as an independent variable.
3. A function may have several RETURN points (not recommended in structured

programming) but they must all return the same number of values.
4. The number of returned values must correspond to the number of variables listed

in the RETURNING clause of the CALL statement invoking this function.

Warnings:

1. A function cannot return an array.

Example:

01 MAIN
02 DEFINE forname, surname CHAR(10)
03 CALL foo(NULL) RETURNING forname, surname

Applications

265

04 DISPLAY forname CLIPPED, " ", upshift(surname) CLIPPED
05 CALL foo(1) RETURNING forname, surname
06 DISPLAY forname CLIPPED, " ", upshift(surname) CLIPPED
07 END MAIN
08
09 FUNCTION foo(code)
10 DEFINE code INTEGER
11 DEFINE person RECORD
12 name1 CHAR(10),
13 name2 CHAR(20)
14 END RECORD
15 IF code IS NULL THEN
16 RETURN NULL, NULL
17 ELSE
18 LET person.name1 = "John"
19 LET person.name2 = "Smith"
20 RETURN person.*
21 END IF
22 END FUNCTION

CASE

Purpose:

The CASE instruction specifies statement blocks that must be executed conditionally.

Syntax 1:

CASE expression-1
 WHEN expression-2
 { statement | EXIT CASE }
 [...]
 [OTHERWISE
 { statement | EXIT CASE }
 [...]
]
END CASE

Syntax 2:

CASE
 WHEN boolean-expression
 { statement | EXIT CASE }
 [...]
 [OTHERWISE
 { statement | EXIT CASE }
 [...]
]
END CASE

Genero Business Development Language

266

Notes:

1. expression-1 is any expression supported by the language.
2. expression-2 is an expression that is tested against expression-1. expression-1

and expression-2 should have the same data type.
3. boolean-expression is any boolean expression supported by the language.
4. statement is any instruction supported by the language.
5. In a CASE flow control block, the first matching WHEN block is executed. If there is

no matching WHEN block, then the OTHERWISE block is executed.
6. If there is no matching WHEN block and no OTHERWISE block, then the program

control jumps to the statement following the END CASE keyword.
7. The EXIT CASE statement transfers the program control to the statement

following the END CASE keyword.
8. There is an implicit EXIT CASE statement at the end of each WHEN block and at

the end of the OTHERWISE block.

Warnings:

1. A NULL expression is considered as FALSE: When doing a CASE expr ... WHEN
[NOT] NULL using the syntax 1, it always evaluates to FALSE. Use syntax 2 as
CASE ... WHEN expr IS NULL to test if an expression is null.

2. Make sure that expression-2 is not a boolean expression when using the first
syntax. The compiler will not raise an error in this case, but you might get
unexpected results at runtime.

3. If there is more than one expression-2 matching expression-1 (syntax 1), or if
two boolean expressions (syntax 2) are true, only the first matching WHEN block
will be executed.

4. The OTHERWISE block must be the last block of the CASE instruction.

Example 1: First syntax

01 MAIN
02 DEFINE v CHAR(10)
03 LET v = "C1"
04 CASE v
05 WHEN "C1"
06 DISPLAY "Value is C1"
07 WHEN "C2"
08 DISPLAY "Value is C2"
09 WHEN "C3"
10 DISPLAY "Value is C3"
11 OTHERWISE
12 DISPLAY "Unexpected value"
13 END CASE
14 END MAIN

Example 2: Second syntax

01 MAIN
02 DEFINE v CHAR(10)
03 LET v = "C1"

Applications

267

04 CASE
05 WHEN (v="C1" OR v="C2")
06 DISPLAY "Value is either C1 or C2"
06 WHEN (v="C3" OR v="C4")
07 DISPLAY "Value is either C3 or C4"
08 OTHERWISE
09 DISPLAY "Unexpected value"
10 END CASE
11 END MAIN

CONTINUE

Purpose:

The CONTINUE instruction transfers the program execution from a statement block to
another location in the compound statement that is currently being executed.

Syntax:

CONTINUE { FOR | FOREACH | MENU | CONSTRUCT | INPUT | WHILE }

Notes:

1. CONTINUE instruction can only be used within the statement block specified
by instruction. For example, CONTINUE FOR can only be used within a FOR
... END FOR statement block.

2. The CONTINUE FOR, CONTINUE FOREACH, or CONTINUE WHILE keywords cause
the current FOR, FOREACH, or WHILE loop (respectively) to begin a new cycle
immediately. If conditions do not permit a new cycle, however, the looping
statement terminates.

3. The CONTINUE CONSTRUCT and CONTINUE INPUT statements cause the program
to skip all subsequent statements in the current control block. The screen cursor
returns to the most recently occupied field in the current form, giving the user
another chance to enter data in that field.

4. The CONTINUE MENU statement causes the program to ignore the remaining
statements in the current MENU control block and redisplay the menu. The user
can then choose another menu option.

Tips:

1. CONTINUE INPUT is valid in INPUT and INPUT ARRAY statements.

Example:

01 MAIN
02 DEFINE i INTEGER
03 LET i = 0
04 WHILE i < 5

Genero Business Development Language

268

05 LET i = i + 1
06 DISPLAY "i=" || i
07 CONTINUE WHILE
08 DISPLAY "This will never be displayed !"
09 END WHILE
10 END MAIN

FOR

Purpose:

The FOR instruction executes a statement block a specified number of times.

Syntax:

FOR counter = start TO finish [STEP value]
 statement
 [...]
END FOR

Notes:

1. counter is a variable of type INTEGER or SMALLINT that serves as an index for
the FOR statement block.

2. start is an integer expression used to set an initial counter value.
3. finish is any valid integer expression used to specify an upper limit for counter.
4. value is any valid integer expression whose value is added to counter after each

iteration of the statement block.
5. When the STEP keyword is not given, counter is incremented by 1.
6. statement is any instruction supported by the language.
7. If value is less than 0, counter is decreased. In this case, start should be higher

than finish.

Usage:

The FOR instruction block executes the statements up to the END FOR keyword a
specified number of times, or until EXIT FOR terminates the FOR statement.

The runtime system maintains the counter, whose value changes on each pass through
the statement block. On the first iteration through the loop, this counter is set to the initial
expression at the left of the TO keyword. For all further iterations, the value of the
increment expression in the STEP clause specification (1 by default) is added to the
counter in each pass through the block of statements. When the sign of the difference
between the values of counter and the finish expression at the right of the TO keyword
changes, the runtime system exits from the FOR loop.

The FOR loop terminates after the iteration for which the left- and right-hand expressions
are equal. Execution resumes at the statement following the END FOR keywords. If either

Applications

269

expression returns NULL, the loop cannot terminate, because the Boolean expression
"left = right" cannot become TRUE.

Tips:

1. If the FOR loop includes one or more SQL statements that modify the database,
then it is advisable that the entire FOR loop be within a transaction. You may also
PREPARE the SQL statements before the loop to increase performance.

Warnings:

1. counter MUST be of type INTEGER or SMALLINT.
2. value = 0 causes an unending loop unless there is an adequate EXIT FOR

statement.
3. NULL for start, finish or value is treated as 0. There is no way to catch this as an

error.
4. If statement modifies the value of counter, you might get unexpected results at

runtime. In this case, it is recommended that you use a WHILE loop instead.
5. It is highly recommended that you ensure that statement does not modify the

values of start, finish and/or value.

Example:

01 MAIN
02 DEFINE i, i_min, i_max INTEGER
03 LET i_min = 1
04 LET i_max = 10
05 DISPLAY "Look how well I can count from " || i_min || " to " ||
i_max
06 DISPLAY "I can count forwards..."
07 FOR i = i_min TO i_max
08 DISPLAY i
09 END FOR
10 DISPLAY "... and backwards!"
11 FOR i = i_max TO i_min STEP -1
12 DISPLAY i
13 END FOR
14 END MAIN

GOTO

Purpose:

The GOTO instruction transfers program control to a labeled line within the same program
block.

Genero Business Development Language

270

Syntax:

GOTO [:] label-id

Notes:

1. label-id is the name of the LABEL statement to jump to.
2. The label can be defined before or after the GOTO statement.

Tips:

1. GOTO statements can reduce the readability of your program source and result in
infinite loops. It is recommended that you use FOR, WHILE, IF, CASE, CALL
statements instead.

2. The GOTO statement can be used in a WHENEVER statement to handle
exceptions.

Warnings:

1. The LABEL and GOTO statements must use the label-id within a single MAIN,
FUNCTION, or REPORT program block.

Example:

01 MAIN
02 DEFINE exit_code INTEGER
03 DEFINE l_status INTEGER
04 WHENEVER ANY ERROR GOTO _error
05 DISPLAY 1/0
06 GOTO _noerror
07 LABEL _error:
08 LET l_status = STATUS
09 DISPLAY "The error number ", l_status, " has occurred."
10 DISPLAY "Description : ", err_get(l_status)
11 LET exit_code = -1
12 GOTO :_exit
13 LABEL _noerror:
14 LET exit_code = 0
15 GOTO _exit
16 LABEL _exit:
17 EXIT PROGRAM (exit_code)
18 END MAIN

EXIT

Purpose:

The EXIT instruction transfers control out of a control structure (a block, a loop, a CASE
statement, or an interface instruction).

Applications

271

Syntax:

EXIT { CASE | FOR | MENU | CONSTRUCT | FOREACH | REPORT | DISPLAY |
INPUT | WHILE }

Notes:

1. The EXIT instruction instruction must be used inside the control structure
specified by instruction. For example, EXIT FOR can only appear inside a FOR
... END FOR program structure.

2. EXIT DISPLAY exits the DISPLAY ARRAY instruction and EXIT INPUT exits both
INPUT and INPUT ARRAY blocks.

Tips:

1. To exit a function, use the RETURN instruction.
2. To exit a program, use the EXIT PROGRAM instruction.

Example:

01 MAIN
02 DEFINE i INTEGER
03 LET i = 0
04 WHILE TRUE
05 DISPLAY "This is an infinite loop. How would you get out of here
?"
06 LET i = i + 1
07 IF i = 100 THEN
08 EXIT WHILE
09 END IF
10 END WHILE
11 DISPLAY "Well done."
12 END MAIN

IF

Purpose:

The IF instruction executes a group of statements conditionally.

Syntax:

IF condition THEN
 statement
 [...]
[ELSE
 statement
 [...]

Genero Business Development Language

272

]
END IF

Notes:

1. condition is any boolean expression supported by the language.
2. statement is any instruction supported by the language.

Usage:

If condition is TRUE, the runtime system executes the block of statements following the
THEN keyword, until it reaches either the ELSE keyword or the END IF keywords and
resumes execution after the END IF keywords.

If condition is FALSE, the runtime system executes the block of statements between the
ELSE keyword and the END IF keywords. If ELSE is absent, it resumes execution after
the END IF keywords.

Tips:

1. To test the equality of integer expressions, both " = " and " == " operators may be
used. IF 5 = 5 THEN ... can be written IF 5 == 5 THEN ...

Warnings:

1. A NULL expression is considered as FALSE. Use the IS NULL keyword to test if
an expression is null.

Example:

01 MAIN
02 DEFINE name CHAR(20)
03 LET name = "John Smith"
04 IF name MATCHES "John*" THEN
05 DISPLAY "The first name is too common to be displayed."
06 IF name MATCHES "*Smith" THEN
07 DISPLAY "Even the last name is too common to be displayed."
08 END IF
09 ELSE
10 DISPLAY "The name is " || name || "."
11 END IF
12 END MAIN

Applications

273

LABEL

Purpose:

The LABEL instruction declares a statement label, making the next statement one to
which a GOTO statement can transfer program control.

Syntax:

LABEL label-id:

Notes:

1. label-id is a unique identifier in a MAIN, REPORT, or FUNCTION program block.
2. The label-id must be followed by a colon (:).

Example:

01 MAIN
02 DISPLAY "Line 2"
03 GOTO line5
04 DISPLAY "Line 4"
05 LABEL line5:
06 DISPLAY "Line 6"
07 END MAIN

SLEEP

Purpose:

The SLEEP instruction causes the program to pause for the specified number of seconds.

Syntax:

SLEEP seconds

Notes:

1. seconds is a valid integer expression.

Warnings:

1. If seconds < 0 or second IS NULL, the program does not stop.

Example:

01 MAIN

Genero Business Development Language

274

02 DISPLAY "Please wait 5 seconds..."
03 SLEEP 5
04 DISPLAY "Thank you."
05 END MAIN

WHILE

Purpose:

The WHILE statement executes a block of statements while a condition that you specify
in a boolean expression is true.

Syntax:

WHILE b-expression
 statement
 [...]
END WHILE

Notes:

1. b-expression is any valid boolean expression.
2. statement is any instruction supported by the language.

Usage:

If b-expression is TRUE, the runtime system executes the statements that follow it, down
to the END WHILE keyword. The runtime system again evaluates the b-expression, and if
it is still TRUE, the runtime system executes the same statement block. The runtime
system usually stops when b-expression becomes FALSE or statement is EXIT WHILE.

If b-expression is FALSE, the runtime system passes control to the statement that follows
END WHILE.

Tips:

1. If b-expression is complex, it is much better to define a boolean [INTEGER or
CHAR(1)] variable that takes the result of b-expression and use this variable for
b-expression.

2. A WHILE loop can replace a FOR loop : FOR i = 1 TO 5 ; ... ; END FOR is
equivalent to LET i = 1 ; WHILE i <= 5 ; ... ; LET i = i + 1 ; END
WHILE

3. In order to avoid unending loops, make sure that either statement will cause b-
expression to be FALSE, or that the EXIT WHILE statement will be executed.

Applications

275

Example:

01 MAIN
02 DEFINE lval INTEGER
03 DEFINE lmin INTEGER
04 DEFINE lmax INTEGER
05 DEFINE lnb INTEGER
06 DEFINE lcnt INTEGER
07 DEFINE lguess INTEGER
08 DISPLAY "NumberGuess program"
09 LET lnb = 20
10 LET lmin = 0
11 LET lmax = 1000
12 LET lval = 753 --random value between lmin and lmax
13 DISPLAY "Guess a number between " || lmin || " and " || lmax
14 LET lguess = (lmax - lmin) / 2
15 LET lcnt = 1
16 WHILE lguess <> lval AND lcnt < lnb
17 DISPLAY "\n Attempt number " || lcnt
18 DISPLAY " Your guess is " || lguess || ", hopefully between "
|| lmin || " and " || lmax
19 IF lval > lguess THEN
20 DISPLAY " Try higher."
21 LET lmin = lguess
22 ELSE
23 DISPLAY " Try lower."
24 LET lmax = lguess
25 END IF
26 LET lguess = lmin + (lmax - lmin) / 2
27 LET lcnt = lcnt + 1
28 END WHILE
29 IF lcnt >= lnb THEN
30 DISPLAY "Sorry, the maximum number of attempts has been
reached. The number was " || lval
31 ELSE
32 DISPLAY "Well done. You have found the number " || lval || " in
" || lcnt || " attempts."
33 END IF
34 END MAIN

Genero Business Development Language

276

Functions
Summary:

• Definition
• Usage
• Examples

See also: Variables, Data Types, Flow Control

Definition

Purpose:

The FUNCTION statement defines a named program block containing a set of statements
to be executed when the function is invoked.

Syntax:

FUNCTION function-name ([argument [,...]])
 [define-statement | constant-statement]
 { fgl-statement | sql-statement | return-statement } [...]
END FUNCTION

where return-statement is:

RETURN expression [,...]

Notes:

1. function-name is the identifier that you declare for this function and must be
unique among all the names of functions or reports in the same program.

2. argument is the name of a formal argument to this function. Its scope of
reference is local to the function.

3. define-statement is used to define function arguments and local variables.
4. constant-statement can be used to declare local constants.
5. fgl-statement is any instruction supported by the language.
6. sql-statement is any static SQL instruction supported by the language.
7. expression is any expression supported by the language.

Usage

The FUNCTION block both declares and defines a function. The function declaration
specifies the identifier of the function and the identifiers of its formal arguments (if any).

Applications

277

A FUNCTION block cannot appear within the MAIN block, in a REPORT block, or within
another FUNCTION block.

The data type of each formal argument of the function must be specified by a DEFINE
statement that immediately follows the argument list. The actual argument in a call to the
function need not be of the declared data type of the formal argument. If data type
conversion is not possible, a runtime error occurs.

Function arguments are passed by value (i.e. value is copied on the stack) for basic data
types and records, while dynamic arrays and objects are passed by reference (i.e. a
handle to the original data is copied on the stack and thus allows modification of the
original data inside the function).

Local variables are not visible in other program blocks. The identifiers of local variables
must be unique among the variables that are declared in the same FUNCTION
definition. Any global or module variable that has the same identifier as a local variable,
however, is not visible within the scope of the local variable.

A function that returns one or more values to the calling routine must include the return-
statement. Values specified in RETURN must correspond in number and position, and
must be of the same or of compatible data types, to the variables in the RETURNING
clause of the CALL statement. If the function returns a single value, it can be invoked as
an operand within a expression. Otherwise, you must invoke it with the CALL statement
with a RETURNING clause. An error results if the list of returned values in the RETURN
statement conflicts in number or in data type with the RETURNING clause of the CALL
statement that invokes the function.

Any GOTO or WHENEVER ERROR GOTO statement in a function must reference a
statement label within the same FUNCTION block.

A function can invoke itself recursively with a CALL statement.

Warnings:

1. If no argument is specified, an empty argument list must still be supplied,
enclosed between the parentheses.

2. If the name is also the name of a built-in function, an error occurs at link time,
even if the program does not reference the built-in function.

Examples

Example 1:

01 FUNCTION findCustomerNumber(name)
02 DEFINE name CHAR(50)
03 DEFINE num INTEGER

Genero Business Development Language

278

04 CONSTANT sqltxt = "SELECT cust_num FROM customer WHERE cust_name =
?"
05 PREPARE stmt FROM sqltxt
06 EXECUTE stmt INTO num USING name
07 IF SQLCA.SQLCODE = 100 THEN
08 LET num =-1
09 END IF
10 RETURN num
11 END FUNCTION

Applications

279

Reports
Summary:

• What are reports?
• Report Engine Configuration
• Report Driver Instructions
• Report Routine Structure
• Statements in Report Routine
• Report Routine Prototype
• Two-Pass Reports
• Report Instructions

o EXIT REPORT
o PRINT
o PRINTX
o NEED
o PAUSE
o SKIP

• Report Operators
o COLUMN
o LINENO
o PAGENO
o SPACES
o WORDWRAP
o USING
o ASCII

• Report Aggregate Functions
o COUNT(*)
o PERCENT(*)
o SUM()
o AVG()
o MIN()
o MAX()

See also: Programs, Variables, Result set

Definition

A report can arrange and format the data according to your instructions and display the
output on the screen, send it to a printer, or store it as a file for future use.

To implement a report, a program must include two distinct components:

• The Report Driver specifies what data the report includes.
• The Report Routine formats the data for output.

Genero Business Development Language

280

The Report Driver retrieves the specified rows from a database, stores their values in
program variables, and sends these - one input record at a time - to the Report Routine.
After the last input record is received and formatted, the runtime system calculates any
aggregate values based on all the data and sends the entire report to some output
device.

By separating the two tasks of data retrieval and data formatting, the runtime system
simplifies the production of recurrent reports and makes it easy to apply the same report
format to different data sets.

The report engine supports the following features:

• The option to display report output to the screen for editing.
• Full control over page layout for your report, including first page header and

generic page headers, page trailers, columnar presentation, and special
formatting before groups and after groups sorted by value.

• Facilities for creating the report either from the rows returned by a cursor or from
input records assembled from any other source, such as output from several
different SELECT statements through the Report Driver.

• Control blocks to manipulate data from a database cursor on a row-by-row basis,
either before or after the row is formatted by the report.

• Aggregate functions that can calculate and display frequencies, percentages,
sums, averages, minimum, and maximum values.

• The USING operator and other built-in functions and operators for formatting and
displaying information in output from the report.

• The WORDWRAP operator to format long character strings that occupy multiple lines
of output from the report.

• The option to update the database or execute any sequence of SQL and other
statements while writing a report, if the intermediate values calculated by the
report meet specified criteria; for example, to write an alert message containing a
second report.

Applications

281

• Stopping a report in the report definition code, with EXIT REPORT or
TERMINATE REPORT.

The report engine supports one-pass reports and two-pass reports. The one-pass
requires sorted data to be produced by the report driver in order to handle before/after
groups properly. The two-pass record handles sort internally and does not need sorted
data from the report driver. During the first pass, the report engine sorts the data and
stores the sorted values in a temporary file in the database. During the second pass, it
calculates any aggregate values and produces output from data in the temporary files.

Report Engine Configuration

By default, GROUP aggregate functions such as SUM() return a NULL value if all items
values are NULL. You can force the report engine to return a zero decimal value with the
following FGLPROFILE setting:

Report.aggregateZero = {true|false}

When this entry is set to true, aggregate functions return zero when all values are NULL.

Default value is : false (Aggregate functions evaluate to NULL if all items are NULL)

The Report Driver

The Report Driver invokes the report, retrieves data, and sends the data (as input
records) to be formatted by the REPORT program block (or routine). A Report Driver can
be part of the MAIN program block, or it can be in one or more functions. The report
driver typically consists of a loop (such as WHILE, FOR, or FOREACH) with the
following statements to process the report:

Instruction Description
START REPORT This statement is required to instantiate the report

driver.
OUTPUT TO
REPORT

Provide data for one row to the report driver.

FINISH REPORT Normal termination of the report.
TERMINATE
REPORT

Cancels the processing of the report.

Genero Business Development Language

282

Usage:

A report driver is started by the START REPORT instruction. Once started, data can be
given to the report driver through the OUTPUT TO REPORT statement. To instruct the
report engine to terminate output processing, use the FINISH REPORT instruction.

It is possible to manage several report drivers at the same time. It is even possible to
invoke a report driver inside a REPORT program block, which is different from the current
driver.

The programmer must make sure that the runtime system will always execute these
instructions in the following order:

1. START REPORT
2. OUTPUT TO REPORT
3. FINISH REPORT

Example:

01 DATABASE stores7
02 MAIN
03 DEFINE rcust RECORD LIKE customer.*
04 DECLARE cu1 CURSOR FOR SELECT * FROM customer
05 START REPORT myrep
06 FOREACH cu1 INTO rcust.*
07 OUTPUT TO REPORT myrep(rcust.*)
08 END FOREACH
09 FINISH REPORT myrep
10 END MAIN

START REPORT

Syntax:

START REPORT report-name
 [
 TO
 {
 SCREEN
 | PRINTER
 | FILE filename
 | PIPE program { IN FORM MODE | IN LINE MODE }
 | OUTPUT
 {
 "SCREEN"
 | "PRINTER"
 | "FILE" DESTINATION filename
 | "PIPE { IN FORM MODE | IN LINE MODE }" DESTINATION program
 | variable [DESTINATION { program | filename }]
 }

Applications

283

 }
]
 [
 WITH
 {
 [LEFT MARGIN = m-left [,]]
 [RIGHT MARGIN = m-right [,]]
 [TOP MARGIN = m-top [,]]
 [BOTTOM MARGIN = m-bottom [,]]
 [PAGE LENGTH = m-length [,]]
 [TOP OF PAGE = c-top [,]]
 }
]
]

Notes:

1. The START REPORT statement supersedes any clause in the output section of the
report definition.

2. report-name is a report that has been defined as a REPORT routine.
3. filename is a string expression specifying the file that receives output.
4. program is a string expression specifying a program, a shell script, or a

command line to receive output.
5. variable is a variable of type STRING that specifies one of: SCREEN, PRINTER,

FILE, PIPE, PIPE IN LINE MODE, PIPE IN FORM MODE. If PRINTER is specified,
the DBPRINT environment variable specifies which printer.

6. The values corresponding to a margin and page length must be valid integer
expressions.

7. The margins can be defined in any order, but a comma "," is required to separate
two page dimensions statements.

8. The comma "," cannot appear before the first or after the last page dimensions
statements.

9. m-left is the left margin in number of characters.
10. m-right is the right margin in number of characters.
11. m-top is the top margin in number of lines.
12. m-bottom is the bottom margin in number of lines.
13. c-top is a string that defines the page-eject character sequence.

Tips:

1. The START REPORT statement is handy to dynamically set up the destination and
/ or page setup of a report.

Warnings:

1. If a START REPORT statement references a report that is already running, the
report is reinitialized; any output might be unpredictable.

Genero Business Development Language

284

OUTPUT TO REPORT

Syntax:

OUTPUT TO REPORT report-name (parameters)

Notes:

1. report-name is the name of the report to which the parameters should be sent.
2. parameters is the data that needs to be sent to the report. As in a function call,

parameters must match the DEFINE section of the report routine.

Warnings:

1. At compile time, the number of parameters is not checked against the DEFINE
section of the report routine. This is a known behavior of the language.

FINISH REPORT

Syntax:

FINISH REPORT report-name

Notes:

1. report-name is the name of the report to be ended.
2. FINISH REPORT must be the last statement in the report driver.

Usage:

FINISH REPORT closes the report driver. Therefore, it must be the last statement in the
report driver and must follow a START REPORT statement that specifies the name of the
same report.

FINISH REPORT does the following:

1. Completes the second pass, if report is a two-pass report. These 'second pass'
activities handle the calculation and output of any aggregate values that are
based on all the input records in the report, such as COUNT(*) or PERCENT(*)
with no GROUP qualifier.

2. Executes any AFTER GROUP OF control blocks.
3. Executes any PAGE HEADER, ON LAST ROW, and PAGE TRAILER control blocks to

complete the report.
4. Copies data from the output buffers of the report to the destination.
5. Closes the Select cursor on any temporary table that was created to order the

input records or to perform aggregate calculations.

Applications

285

TERMINATE REPORT

Syntax:

TERMINATE REPORT report-name

Notes:

1. report-name is the name of the report to be canceled.

Usage:

TERMINATE REPORT cancels the report processing. It is typically used when the program
(or the user) becomes aware that a problem prevents the report from producing part of
its intended output, or when the user interrupted the report processing.

TERMINATE REPORT has the following effects:

• Terminates the processing of the current report.
• Deletes any intermediate files or temporary tables that were created in

processing the report.

The EXIT REPORT instruction has the same effect, except that it can be used inside the
report definition.

Report Definition

Syntax:

REPORT report-name (argument-list)
 [define-section]
 [output-section]
 [sort-section]
 [format-section]
END REPORT

where define-section is a function parameter definition using the DEFINE instruction.
You usually define one or more record variables:

DEFINE variable RECORD
 member data-type
 [,...]
 END RECORD

where output-section is:

Genero Business Development Language

286

OUTPUT
[
 REPORT TO
 {
 SCREEN
 | PRINTER
 | [FILE] filename
 | PIPE [IN FORM MODE | IN LINE MODE] program
 }
]
[
 [WITH]
 [LEFT MARGIN m-left]
 [RIGHT MARGIN m-right]
 [TOP MARGIN m-top]
 [BOTTOM MARGIN m-bottom]
 [PAGE LENGTH m-length]
 [TOP OF PAGE c-top]
]

where sort-section is:

ORDER [EXTERNAL] BY variable-list

where format-section is:

FORMAT EVERY ROW

or:

FORMAT
{
 [FIRST] PAGE HEADER
 | ON EVERY ROW
 | BEFORE GROUP OF variable
 | AFTER GROUP OF variable
 | PAGE TRAILER
 | ON LAST ROW
}
 [fgl-statement | sql-statement | report-statement]
 [...]
 [...]

Notes:

1. The define-section declares the data types of local variables used within the
report, and of any variables (the input records) that are passed as arguments to
the report by the calling statement. Reports without arguments or local variables
do not require a DEFINE section.

2. The output-section can set margin and page size values, and can also specify
where to send the formatted output. Output from the report consists of
successive pages, each containing a fixed number of lines whose margins and
maximum number of characters are fixed.

Applications

287

3. The sort-section specifies how the rows have to be sorted. The specified sort
order determines the order in which the runtime system processes any GROUP OF
control blocks in the FORMAT section.

4. The format-section is required. It specifies the appearance of the report, including
page headers, page trailers, and aggregate functions of the data. It can also
contain control blocks that specify actions to take before or after specific groups
of rows are processed. (Alternatively, it can produce a default report by only
specifying FORMAT EVERY ROW).

Usage:

The report definition formats input records. Like the FUNCTION or MAIN statement, it is a
program block that can be the scope of local variables. It is not, however, a function; it is
not reentrant, and CALL cannot invoke it. The report definition receives data from its
driver in sets called input records. These records can include program records, but other
data types are also supported. Each input record is formatted and printed as specified by
control blocks and statements within the report definition. Most statements and functions
can be included in a report definition, and certain specialized statements and operators
for formatting output can appear only in a report definition.

Like MAIN or FUNCTION, the report definition must appear outside any other program
block. It must begin with the REPORT statement and must end with the END REPORT
keywords.

Some statements are prohibited in a REPORT program control block.

The DEFINE Section

Syntax:

See the DEFINE statement.

Usage:

This section declares a data type for each formal argument in the REPORT prototype and
for any additional local variables that can be referenced only within the REPORT program
block. The DEFINE section is required if you pass arguments to the report or if you
reference local variables in the report.

For declaring local variables, the same rules apply to the DEFINE section as to the
DEFINE statement in MAIN and FUNCTION program blocks. Two exceptions, however,
restrict the data types of formal arguments:

• Report arguments cannot be of type ARRAY.
• Report arguments cannot be records that include ARRAY members.

Genero Business Development Language

288

Data types of local variables that are not formal arguments are unrestricted. You must
include arguments in the report prototype and declare them in the DEFINE section, if any
of the following conditions is true:

• If you specify FORMAT EVERY ROW to create a default report, you must pass all the
values for each record of the report.

• If an ORDER BY section is included, you must pass all the values that ORDER BY
references for each input record of the report.

• If you use the AFTER GROUP OF control block, you must pass at least the
arguments that are named in that control block.

• If an aggregate that depends on all records of the report appears anywhere
except in the ON LAST ROW control block, you must pass each of the records of
the report through the argument list.

Aggregates dependent on all records include:

• GROUP PERCENT(*) (anywhere in a report).
• Any aggregate without the GROUP keyword (anywhere outside the ON LAST ROW

control block).

If your report calls an aggregate function, an error might result if any argument of an
aggregate function is not also a format argument of the report. You can, however, use
global or module variables as arguments of aggregates if the value of the variable does
not change while the report is executing.

A report can reference variables of global or module scope that are not declared in the
DEFINE section. Their values can be printed, but they can cause problems in aggregates
and in BEFORE GROUP OF and AFTER GROUP OF clauses. Any references to non-local
variables can produce unexpected results, however, if their values change while a two-
pass report is executing.

The OUTPUT Section

Syntax:

OUTPUT
[
 REPORT TO
 {
 SCREEN
 | PRINTER
 | [FILE] filename
 | PIPE [IN FORM MODE | IN LINE MODE] program
 }
]
[
 [WITH]
 [LEFT MARGIN m-left]

Applications

289

 [RIGHT MARGIN m-right]
 [TOP MARGIN m-top]
 [BOTTOM MARGIN m-bottom]
 [PAGE LENGTH m-length]
 [TOP OF PAGE c-top]
]

Notes:

1. This section is superseded by any corresponding START REPORT specifications.
Any output destination or page setup definition may be overridden by the report
driver with the START REPORT instruction.

2. program is a string literal, global, or constant specifying the name of a program,
shell script, command receiving the output.

3. filename is a string literal, global, or constant specifying the file which receives
the output of the report.

4. m-left is the left margin in number of characters.
5. m-right is the right margin in number of characters.
6. m-top is the top margin in number of lines.
7. m-bottom is an integer the bottom margin in number of lines.
8. c-top is a string that defines the page-eject character sequence.

Usage:

The OUTPUT section can specify the destination and dimensions for output from the
report and the page-eject sequence for the printer. If you omit the OUTPUT section, the
report uses default values to format each page. This section is superseded by any
corresponding START REPORT specifications.

The OUTPUT section can direct the output from the report to a printer, file, or pipe, and
can initialize the page dimensions and margins of report output. If PRINTER is specified,
the DBPRINT environment variable specifies which printer.

The START REPORT statement of the report driver can override all of these specifications
by assigning another destination in its TO clause or by assigning other dimensions,
margins, or another page-eject sequence in the WITH clause.

Because the size specifications for the dimensions and margins of a page of report
output that the OUTPUT section can specify must be literal integers, you might prefer to
reset these values in the START REPORT statement, where you can use variables to
assign these values dynamically at runtime.

Genero Business Development Language

290

The ORDER BY Section

Purpose:

This section specifies how the variables of the input records are to be sorted. It is
required if the report driver does not send sorted data to the report. The specified sort
order determines the order in which the runtime system processes any GROUP OF control
blocks in the FORMAT section.

Syntax:

ORDER [EXTERNAL] BY variable [DESC | ASC] [,...]

Notes:

1. The EXTERNAL keyword specifies that the data is sent to the report in a sorted
order. Without the EXTERNAL keyword, the report driver sorts the data before
sending it to the report program block.

2. variable identifies one of the variables passed to the report routine to be used for
sorting rows. The variables must be separated by a comma.

3. The DESC or ASC options defines the sort order

Usage:

The ORDER BY section specifies a sort list for the input records. Include this section if
values that the report definition receives from the report driver are significant in
determining how BEFORE GROUP OF or AFTER GROUP OF control blocks will process the
data in the formatted report output.

If you omit the ORDER BY section, the runtime system processes input records in the
order received from the report driver and processes any GROUP OF control blocks in their
order of appearance in the FORMAT section. If records are not sorted in the report driver,
the GROUP OF control blocks might be executed at random intervals (that is, after any
input record) because unsorted values tend to change from record to record.

If you specify only one variable in the GROUP OF control blocks, and the input records are
already sorted in sequence on that variable by the SELECT statement, you do not need to
include an ORDER BY section in the report.

Specify ORDER EXTERNAL BY if the input records have already been sorted by the
SELECT statement. The list of variables after the keywords ORDER EXTERNAL BY control
the execution order of GROUP BY control blocks.

Without the EXTERNAL keyword, the report is a two-pass report, meaning that the report
engine processes the set of input records twice. During the first pass, the report engine
sorts the data and stores the sorted values in a temporary file in the database. During
the second pass, it calculates any aggregate values and produces output from data in
the temporary files.

Applications

291

With the EXTERNAL keyword, the report engine only needs to make a single pass through
the data: it does not need to build the temporary table in the database for sorting the
data. Specifying EXTERNAL to instruct the report engine not to sort the records again
might result in an improvement in performance.

The FORMAT Section

Purpose:

A report definition must contain a FORMAT section. The FORMAT section determines how
the output from the report will look. It works with the values that are passed to the
REPORT program block through the argument list or with global or module variables in
each record of the report. In a source file, the FORMAT section begins with the FORMAT
keyword and ends with the END REPORT keywords.

Syntax:

Default format:

FORMAT EVERY ROW

Custom format:

FORMAT
 control-block
 [fgl-statement | sql-statement | report-statement]
 [...]
 [...]

where control-block can be one of:

{
[FIRST] PAGE HEADER
| ON EVERY ROW
| BEFORE GROUP OF variable
| AFTER GROUP OF variable
| PAGE TRAILER
| ON LAST ROW
}

Notes:

1. fgl-statement is any language instruction supported in the report routine.
2. sql-statement is any SQL statement supported by the language.
3. report-statement is any report-specific instruction.

Genero Business Development Language

292

Usage:

The FORMAT section is made up of the following Control Blocks:

• FIRST PAGE HEADER
• PAGE HEADER
• PAGE TRAILER
• BEFORE GROUP OF
• AFTER GROUP OF
• ON EVERY ROW
• ON LAST ROW

If you use the FORMAT EVERY ROW, no other statements or control blocks are valid. The
EVERY ROW keywords specify a default output format, including every input record that is
passed to the report.

Control blocks define the structure of a report by specifying one or more statements to
be executed when specific parts of the report are processed.

If a report driver includes START REPORT and FINISH REPORT statements, but no data
records are passed to the report, no control blocks are executed. That is, unless the
report executes an OUTPUT TO REPORT statement that passes at least one input record
to the report; then neither the FIRST PAGE HEADER control block nor any other control
block is executed

Apart from BEFORE GROUP OF and AFTER GROUP OF, each control block must appear
only one time.

More complex FORMAT sections can contain control blocks like ON EVERY ROW or BEFORE
GROUP OF, which contain statements to execute while the report is being processed.
Control blocks can contain report execution statements and other executable
statements.

See also statements and report format section.

A control block may invoke most fgl-statements and sql-statements, except those listed
in prohibited statements.

The BEFORE/AFTER GROUP OF control blocks can include aggregate functions to instruct
the report engine to automatically compute such values.

A report-statement is a statement specially designed for the report format section. It
cannot be used in any other part of the program.

The sequence in which the BEFORE GROUP OF and AFTER GROUP OF control blocks are
executed depends on the sort list in the ORDER BY section, regardless of the physical
sequence in which these control blocks appear within the FORMAT section.

Applications

293

FORMAT EVERY ROW

A report routine written with FORMAT EVERY ROW formats the report in a simple default
format, containing only the values that are passed to the REPORT program block through
its arguments, and the names of the arguments. You cannot modify the EVERY ROW
statement with any of the statements listed in report execution statements, and neither
can you include any control blocks in the FORMAT section.

The report engine uses as column headings the names of the variables that the report
driver passes as arguments at runtime. If all fields of each input record can fit
horizontally on a single line, the default report prints the names across the top of each
page and the values beneath. Otherwise, it formats the report with the names down the
left side of the page and the values to the right, as in the previous example. When a
variable contains a null value, the default report prints only the name of the variable, with
nothing for the value.

The following example is a brief report specification that uses FORMAT EVERY ROW. We
assume here that the cursor that retrieved the input records for this report was declared
with an ORDER BY clause, so that no ORDER BY section is needed in this report definition:

01 DATABASE stores7
02
03 REPORT simple(order_num, customer_num, order_date)
04
05 DEFINE order_num LIKE orders.order_num,
06 customer_num LIKE orders.customer_num,
07 order_date LIKE orders.order_date
08
09 FORMAT EVERY ROW
10
11 END REPORT

The above example would produce the following output:

order_num customer_num order_date
 1001 104 01/20/1993
 1002 101 06/01/1993
 1003 104 10/12/1993
 1004 106 04/12/1993
 1005 116 12/04/1993
 1006 112 09/19/1993
 1007 117 03/25/1993
 1008 110 11/17/1993
 1009 111 02/14/1993
 1010 115 05/29/1993
 1011 104 03/23/1993
 1012 117 06/05/1993

Genero Business Development Language

294

FIRST PAGE HEADER

This control block specifies the action that the runtime system takes before it begins
processing the first input record. You can use it, for example, to specify what appears
near the top of the first page of output from the report.

Because the runtime system executes the FIRST PAGE HEADER control block before
generating any output, you can use this control block to initialize variables that you use
in the FORMAT section.

If a report driver includes START REPORT and FINISH REPORT statements, but no data
records are passed to the report, this control block is not executed. That is, unless the
report executes an OUTPUT TO REPORT statement that passes at least one input record
to the report, neither the FIRST PAGE HEADER control block nor any other control block is
executed.

As its name implies, you can also use a FIRST PAGE HEADER control block to produce a
title page as well as column headings. On the first page of a report, this control block
overrides any PAGE HEADER control block. That is, if both a FIRST PAGE HEADER and a
PAGE HEADER control block exist, output from the first appears at the beginning of the
first page, and output from the second begins all subsequent pages.

The TOP MARGIN (set in the OUTPUT section) determines how close the header appears
to the top of the page.

Warnings:

1. You cannot include a SKIP integer LINES statement inside a loop within this
control block.

2. The NEED statement is not valid within this control block.
3. If you use an IF…THEN…ELSE statement within this control block, the number of

lines displayed by any PRINT statements following the THEN keyword must be
equal to the number of lines displayed by any PRINT statements following the
ELSE keyword.

4. If you use a CASE, FOR, or WHILE statement that contains a PRINT statement
within this control block, you must terminate the PRINT statement with a
semicolon (;). The semicolon suppresses any LINEFEED characters in the loop,
keeping the number of lines in the header constant from page to page.

5. You cannot use a PRINT filename statement to read and display text from a file
within this control block

Corresponding restrictions also apply to CASE, FOR, IF, NEED, SKIP, PRINT, and WHILE
statements in PAGE HEADER and PAGE TRAILER control blocks.

Applications

295

PAGE HEADER

This control block is executed whenever a new page is added to the report. The PAGE
HEADER control block specifies the action that the runtime takes before it begins
processing each page of the report. It can specify what information, if any, appears at
the top of each new page of output from the report.

The TOP MARGIN specification (in the OUTPUT section) affects how many blank lines
appear above the output produced by statements in the PAGE HEADER control block.

You can use the PAGENO operator in a PRINT statement within a PAGE HEADER control
block to automatically display the current page number at the top of every page.

The FIRST PAGE HEADER control block overrides this control block on the first page of a
report.

New group values can appear in the PAGE HEADER control block when this control block
is executed after a simultaneous end-of-group and end-of-page situation.

The runtime system delays the processing of the PAGE HEADER control block until it
encounters the first PRINT, SKIP, or NEED statement in the ON EVERY ROW, BEFORE
GROUP OF, or AFTER GROUP OF control block. This order guarantees that any group
columns printed in the PAGE HEADER control block have the same values as the columns
printed in the ON EVERY ROW control block.

Warnings:

1. Warnings that apply to FIRST PAGE HEADER also apply to PAGE HEADER.

PAGE TRAILER

The PAGE TRAILER control block specifies what information, if any, appears at the
bottom of each page of output from the report.

The runtime system executes the statements in the PAGE TRAILER control block before
the PAGE HEADER control block when a new page is needed. New pages can be initiated
by any of the following conditions:

• PRINT attempts to print on a page that is already full.
• SKIP TO TOP OF PAGE is executed.
• SKIP n LINES specifies more lines than are available on the current page.
• NEED specifies more lines than are available on the current page.

You can use the PAGENO operator in a PRINT statement within a PAGE TRAILER control
block to automatically display the page number at the bottom of every page, as in the
following example:

Genero Business Development Language

296

01 PAGE TRAILER
02 PRINT COLUMN 28, PAGENO USING "page <<<<"

The BOTTOM MARGIN specification (in the OUTPUT section) affects how close to the
bottom of the page the output displays the page trailer.

Warnings:

1. Warnings that apply to FIRST PAGE HEADER also apply to PAGE TRAILER.

BEFORE/AFTER GROUP OF

The BEFORE/AFTER GROUP OF control blocks specify what action the runtime system
takes respectively before or after it processes a group of input records. Group hierarchy
is determined by the ORDER BY specification in the SELECT statement or in the report
definition.

A group of records is all of the input records that contain the same value for the variable
whose name follows the AFTER GROUP OF keywords. This group variable must be
passed through the report arguments. A report can include no more than one AFTER
GROUP OF control block for any group variable.

When the runtime system executes the statements in a BEFORE/AFTER GROUP OF
control block, the report variables have the values from the first / last record of the new
group. From this perspective, the BEFORE/AFTER GROUP OF control block could be
thought of as the "on first / last record of group" control block.

Each BEFORE GROUP OF block is executed in order, from highest to lowest priority, at the
start of a report (after any FIRST PAGE HEADER or PAGE HEADER control blocks, but
before processing the first record) and on these occasions:

• Whenever the value of the group variable changes (after any AFTER GROUP OF
block for the old value completes execution)

• Whenever the value of a higher-priority variable in the sort list changes (after any
AFTER GROUP OF block for the old value completes execution)

The runtime system executes the AFTER GROUP OF control block on these occasions:

• Whenever the value of the group variable changes.
• Whenever the value of a higher-priority variable in the sort list changes.
• At the end of the report (after processing the last input record but before the

runtime system executes any ON LAST ROW or PAGE TRAILER control blocks). In
this case, each AFTER GROUP OF control block is executed in ascending priority.

How often the value of the group variable changes depends in part on whether the input
records have been sorted by the SELECT statement:

Applications

297

• If records are already sorted, the BEFORE/AFTER GROUP OF block executes
before the runtime system processes the first record of the group.

• If records are not sorted, the BEFORE GROUP OF block might be executed after
any record because the value of the group variable can change with each record.
If no ORDER BY section is specified, all BEFORE/AFTER GROUP OF control blocks
are executed in the same order in which they appear in the FORMAT section. The
BEFORE/AFTER GROUP OF control blocks are designed to work with sorted data.

You can sort the records by specifying a sort list in either of the following areas:

• An ORDER BY section in the report definition
• The ORDER BY clause of the SELECT statement in the report driver

To sort data in the report definition (with an ORDER BY section), make sure that the name
of the group variable appears in both the ORDER BY section and in the BEFORE GROUP OF
control block.

To sort data in the ORDER BY clause of a SELECT statement, perform the following tasks:

• Use the column name in the ORDER BY clause of the SELECT statement as the
group variable in the BEFORE GROUP OF control block.

• If the report contains BEFORE or AFTER GROUP OF control blocks, make sure that
you include an ORDER EXTERNAL BY section in the report to specify the
precedence of variables in the sort list.

If you specify sort lists in both the report driver and the report definition, the sort list in
the ORDER BY section of the REPORT takes precedence.
When the runtime system starts to generate a report, it first executes the BEFORE GROUP
OF control blocks in descending order of priority before it executes the ON EVERY ROW
control block. If the report is not already at the top of the page, the SKIP TO TOP OF
PAGE statement in a BEFORE GROUP OF control block causes the output for each group to
start at the top of a page.

If the sort list includes more than one variable, the runtime system sorts the records by
values in the first variable (highest priority). Records that have the same value for the
first variable are then ordered by the second variable and so on until records that have
the same values for all other variables are ordered by the last variable (lowest priority) in
the sort list.

The ORDER BY section determines the order in which the runtime system processes
BEFORE GROUP OF and AFTER GROUP OF control blocks. If you omit the ORDER BY
section, the runtime system processes any GROUP OF control blocks in the lexical order
of their appearance within the FORMAT section.

If you include an ORDER BY section, and the FORMAT section contains more than one
BEFORE GROUP OF or AFTER GROUP OF control block, the order in which these control
blocks are executed is determined by the sort list in the ORDER BY section. In this case,

Genero Business Development Language

298

their order within the FORMAT section is not significant because the sort list overrides their
lexical order.

The runtime system processes all the statements in a BEFORE GROUP OF or AFTER
GROUP OF control block on these occasions:

• Each time the value of the current group variable changes.
• Each time the value of a higher-priority variable changes. How often the value of

the group variable changes depends in part on whether the input records have
been sorted. If the records are sorted, AFTER GROUP OF executes after the
runtime system processes the last record of the group of records; BEFORE GROUP
OF executes before the runtime system processes the first records with the same
value for the group variable. If the records are not sorted, the BEFORE GROUP OF
and AFTER GROUP OF control blocks might be executed before and after each
record because the value of the group variable might change with each record.
All the AFTER GROUP OF and BEFORE GROUP OF control blocks are executed in
the same lexical order in which they appear in the FORMAT section.

In the AFTER GROUP OF control block, you can include the GROUP keyword to qualify
aggregate report functions like AVG(), SUM(), MIN(), or MAX():

01 AFTER GROUP OF r.order_num
02 PRINT r.order_date, 7 SPACES,
03 r.order_num USING"###&", 8 SPACES,
04 r.ship_date, " ",
05 GROUP SUM(r.total_price) USING"$$$$,$$$,$$$.&&"
06 AFTER GROUP OF r.customer_num
07 PRINT 42 SPACES, "-------------------"
08 PRINT 42 SPACES, GROUP SUM(r.total_price) USING"$$$$,$$$,$$$.&&"

Using the GROUP keyword to qualify an aggregate function is only valid within the AFTER
GROUP OF control block. It is not valid, for example, in the BEFORE GROUP OF control
block.

After the last input record is processed, the runtime system executes the AFTER GROUP
OF control blocks before it executes the ON LAST ROW control block.

ON EVERY ROW

The ON EVERY ROW control block specifies the action to be taken by the runtime system
for every input record that is passed to the report definition.

The runtime system executes the statements within the ON EVERY ROW control block for
each new input record that is passed to the report. The following example is from a
report that lists all the customers, their addresses, and their telephone numbers across
the page:

Applications

299

01 ON EVERY ROW
02 PRINT r.fname, " ", r.lname, " ",
03 r.address1, " ", r.cust_phone

The runtime system delays processing the PAGE HEADER control block (or the FIRST
PAGE HEADER control block, if it exists) until it encounters the first PRINT, SKIP, or NEED
statement in the ON EVERY ROW control block.

If a BEFORE GROUP OF control block is triggered by a change in the value of a variable,
the runtime system executes all appropriate BEFORE GROUP OF control blocks (in the
order of their priority) before it executes the ON EVERY ROW control block. Similarly, if
execution of an AFTER GROUP OF control block is triggered by a change in the value of a
variable, the runtime system executes all appropriate AFTER GROUP OF control blocks (in
the reverse order of their priority) before it executes the ON EVERY ROW control block.

ON LAST ROW

The ON LAST ROW control block specifies the action that the runtime system is to take
after it processes the last input record that was passed to the report definition and
encounters the FINISH REPORT statement.

The statements in the ON LAST ROW control block are executed after the statements in
the ON EVERY ROW and AFTER GROUP OF control blocks if these blocks are present.

When the runtime system processes the statements in an ON LAST ROW control block,
the variables that the report is processing still have the values from the final record that
the report processed. The ON LAST ROW control block can use aggregate functions to
display report totals.

Statements in Report Definition Routine

Prohibited Statements

Language statements that have no meaning inside a report definition routine are
prohibited. The following table shows some of the statements that are not valid within
any control block of the FORMAT section of a REPORT program block:

CONSTRUCT FUNCTION MENU
DEFER INPUT PROMPT
DEFINE INPUT ARRAY REPORT
DISPLAY ARRAY MAIN RETURN

Genero Business Development Language

300

A compile-time error is issued if you attempt to include any of these statements in a
control block of a report. You can call a function that includes some of these statements,
but this is not recommended.

Report Control Statements

The following statements can appear only in control blocks of the FORMAT section of a
report definition:

Statement Effect
EXIT
REPORT

Cancels processing of the report from within the report definition.

NEED Forces a page break unless some specified number of lines is
available on the current page of the report.

PAUSE Allows the user to control scrolling of screen output (This
statement has no effect if output is sent to any destination
except the screen.)

PRINT Appends a specified item to the output of the report.
SKIP Inserts blank lines into a report or forces a page break.

The Report Prototype

When defining a report routine, the report name must immediately follow the REPORT
keyword. The name must be unique among function and report names within the
program. Its scope is the entire program.

The list of formal arguments of the report must be enclosed in parentheses and
separated by commas. These are local variables that store values that the calling routine
passes to the report. The compiler issues an error unless you declare their data types in
the subsequent DEFINE section. You can include a program record in the formal
argument list, but you cannot append the .* symbols to the name of the record.
Arguments can be of any data type except ARRAY, or a record with an ARRAY member.

When you call a report, the formal arguments are assigned values from the argument list
of the OUTPUT TO REPORT statement. These actual arguments that you pass must
match, in number and position, the formal arguments of the REPORT routine. The data
types must be compatible, but they need not be identical. The runtime system can
perform some conversions between compatible data types.

The names of the actual arguments and the formal arguments do not have to match.

You must include the following items in the list of formal arguments:

• All the values for each row sent to the report in the following cases:
o If you include an ORDER BY section or GROUP PERCENT(*) function

Applications

301

o If you use a global aggregate function (one over all rows of the report)
anywhere in the report, except in the ON LAST ROW control block

o If you specify the FORMAT EVERY ROW default format
• Any variables referenced in the following group control blocks:

o AFTER GROUP OF
o BEFORE GROUP OF

Two-Pass Reports

The report engine supports one-pass reports and two-pass reports. The one-pass report
requires sorted data to be produced by the report driver in order to handle before/after
groups properly. The two-pass report handles sorts internally and does not need sorted
data from the report driver. During the first pass, the report engine sorts the data and
stores the sorted values in a temporary file in the database. During the second pass, it
calculates any aggregate values and produces output from data in the temporary files.

A report is defined as a two-pass report if it includes any of the following items:

• An ORDER BY section without the EXTERNAL keyword.
• The GROUP PERCENT(*) aggregate function anywhere in the report.
• Any aggregate function that has no GROUP keyword in any control block other

than ON LAST ROW.

Two-pass reports create temporary tables. The FINISH REPORT statement uses values
from these tables to calculate any global aggregates, and then deletes the tables.

Warnings:

1. A two-pass report is one that creates a temporary table. Therefore, the report
engine requires that the program be connected to a database when the report
runs. Make sure that the database server and the database driver supports
temporary table creation and indexes creation on temporary tables.

EXIT REPORT

Syntax:

EXIT REPORT

Usage:

EXIT REPORT cancels the report processing. It must appear in the FORMAT section of
the report definition. It is useful after the program (or the user) becomes aware that a
problem prevents the report from producing part of its intended output.

Genero Business Development Language

302

EXIT REPORT has the following effects:

• Terminates the processing of the current report.
• Deletes any intermediate files or temporary tables that were created in

processing the report.

You cannot use the RETURN statement as a substitute for EXIT REPORT. An error is
issued if RETURN is encountered within the definition of a report.

PRINT

Syntax:

PRINT
 {
 expression
 | COLUMN left-offset
 | PAGENO
 | LINENO
 | ns SPACES
 | [GROUP] COUNT(*) [WHERE condition]
 | [GROUP] PERCENT(*) [WHERE condition]
 | [GROUP] AVG(variable) [WHERE condition]
 | [GROUP] SUM(variable) [WHERE condition]
 | [GROUP] MIN(variable) [WHERE condition]
 | [GROUP] MAX(variable) [WHERE condition]
 | char-expression WORDWRAP [RIGHT MARGIN rm]
 | FILE "file-name"
 } [,...]
 [;]

Notes:

1. expression is any legal language expression.
2. left-offset is described in COLUMN.
3. ns is described in SPACES.
4. char-expression is a string expression or a TEXT variable.
5. file-name is a string expression, or a quoted string, that specifies the name of a

text file to include in the output from the report.

Warnings:

1. You cannot use PRINT to display a BYTE value. The string "<byte value>" is the
only output from PRINT of any object that is not of the TEXT data type.

Usage:

This statement can include character data in the form of an ASCII file, a TEXT variable,
or a comma-separated expression list of character expressions in the output of the

Applications

303

report. (For TEXT variable or filename, you cannot specify additional output in the same
PRINT statement.) You cannot display a BYTE value. Unless its scope of reference is
global or the current module, any program variable in expression list must be declared in
the DEFINE section.

The PRINT FILE statement reads the contents of the specified filename into the report,
beginning at the current character position. This statement permits you to insert a
multiple-line character string into the output of a report. If file-name stores the value of a
TEXT variable, the PRINT FILE file-name statement has the same effect as specifying
PRINT text-variable. (But only PRINT variable can include the WORDWRAP
operator)

PRINT statement output begins at the current character position, sometimes called
simply the current position. On each page of a report, the initial default character position
is the first character position in the first line. This position can be offset horizontally and
vertically by margin and header specifications and by executing any of the following
statements:

• The SKIP statement moves it down to the left margin of a new line.
• The NEED statement can conditionally move it to a new page.
• The PRINT statement moves it horizontally (and sometimes down).

Unless you use the keyword CLIPPED or USING, values are displayed with widths
(including any sign) that depend on their declared data types.

Data Type Default Print With
BYTE N/A
CHAR Length of character data type declaration.
DATE DBDATE dependant, 10 if DBDATE = "MDY4/"
DATETIME From 2 to 25, as implied in the data type declaration.
DECIMAL (2 + p + s), where p is the precision and s is the

scale from the data type declaration.
FLOAT 14
INTEGER 11
INTERVAL From 3 to 25, as implied in the data type declaration.
MONEY (2 + c + p + s), where c is the length of the currency

defined by DBMONEY and p is the precision and s is
the sacle from the data type declaration.

NCHAR Length of character data type declaration.
NVARCHAR Length current value in the variable.
SMALLFLOAT 14
SMALLINT 6
STRING Length current value in the variable.
TEXT Length current value in the variable.
VARCHAR Length current value in the variable.

Genero Business Development Language

304

Unless you specify the FILE or WORDWRAP option, each PRINT statement displays output
on a single line. For example, this fragment displays output on two lines:

01 PRINT fname, lname
02 PRINT city, ", ", state, " ", zipcode

If you terminate a PRINT statement with a semicolon, however, you suppress the implicit
LINEFEED character at the end of the line. The next example has the same effect as the
PRINT statements in the previous example:

01 PRINT fname;
02 PRINT lname
03 PRINT city, ", ", state, " ", zipcode

The expression list of a PRINT statement returns one or more values that can be
displayed as printable characters. The expression list can contain report variables, built-
in functions and operators. Some of these can appear only in a REPORT program block
such as PAGENO, LINENO, PERCENT.

If the expression list applies the USING operator to format a DATE or MONEY value, the
format string of the USING operator takes precedence over the DBDATE, DBMONEY,
and DBFORMAT environment variables.

Aggregate report functions summarize data from several records in a report. The syntax
and effects of aggregates in a report resemble those of SQL aggregate functions but are
not identical.

The expression (in parentheses) that SUM(), AVG(), MIN(), or MAX() takes as an
argument is typically of a number or INTERVAL data type; ARRAY, BYTE, RECORD,
and TEXT are not valid. The SUM(), AVG(), MIN(), and MAX() aggregates ignore
input records for which their arguments have null values, but each returns NULL if every
record has a null value for the argument.

The GROUP keyword is an optional keyword that causes the aggregate function to include
data only for a group of records that have the same value for a variable that you specify
in an AFTER GROUP OF control block. An aggregate function can only include the
GROUP keyword within an AFTER GROUP OF control block.

The optional WHERE clause allows you to select among records passed to the report, so
that only records for which the Boolean expression is TRUE are included.

Example:

The following example is from the FORMAT section of a report definition that displays
both quoted strings and values from rows of the customer table:

01 FIRST PAGE HEADER
02 PRINT COLUMN 30, "CUSTOMER LIST"
03 SKIP 2 LINES
04 PRINT "Listings for the State of ", thisstate

Applications

305

05 SKIP 2 LINES
06 PRINT "NUMBER", COLUMN 12, "NAME", COLUMN 35, "LOCATION",
07 COLUMN 57, "ZIP", COLUMN 65, "PHONE"
08 SKIP 1 LINE
09 PAGE HEADER
10 PRINT "NUMBER", COLUMN 12, "NAME", COLUMN 35, "LOCATION",
11 COLUMN 57, "ZIP", COLUMN 65, "PHONE"
12 SKIP 1 LINE
13 ON EVERY ROW
14 PRINT customer_num USING "###&", COLUMN 12, fname CLIPPED,
15 1 SPACE, lname CLIPPED, COLUMN 35, city CLIPPED, ", ",
16 state, COLUMN 57, zipcode, COLUMN 65, phone

PRINTX

Syntax:

PRINTX [NAME = identifier] expression

Notes:

1. identifier is the name to be used in the XML node.
2. expression is any legal language expression.

Usage:

The PRINTX statement is similar to PRINT, except that it prints data in XML format.

You typically write a complete report with PRINTX statements, to generate an XML
output.

You can redirect the report output into a SAX document handler by calling the
fgl_report_set_document_handler().

Note that unlike normal PRINT instructions, the PRINTX outputs both TEXT and BYTE
data. The BYTE data is encoded to Base64 before output.

NEED

Syntax:

NEED n LINE[S]

Notes:

1. n is the number of lines.

Genero Business Development Language

306

Usage:

This statement has the effect of a conditional SKIP TO TOP OF PAGE statement, the
condition being that the number to which the integer expression evaluates is greater
than the number of lines that remain on the current page.

The NEED statement can prevent the report from dividing parts of the output that you
want to keep together on a single page. In the following example, the NEED statement
causes the PRINT statement to send output to the next page unless at least six lines
remain on the current page:

01 AFTER GROUP OF r.order_num
02 NEED 6 LINES
03 PRINT " ", r.order_date, " ", GROUP SUM(r.total_price)

The LINES value specifies how many lines must remain between the line above the
current character position and the bottom margin for the next PRINT statement to
produce output on the current page. If fewer than LINES remain on the page, the report
engine prints both the PAGE TRAILER and the PAGE HEADER.

The NEED statement does not include the BOTTOM MARGIN value when it compares LINES
to the number of lines remaining on the current page. NEED is not valid in FIRST PAGE
HEADER, PAGE HEADER, or PAGE TRAILER blocks.

PAUSE Console Only!

Syntax:

PAUSE ["comment"]

Notes:

1. comment is an optional comment to be displayed.

Usage:

Output is sent by default to the screen unless the START REPORT statement or the
OUTPUT section specifies a destination for report output.

The PAUSE statement can be executed only if the report sends its output to the screen. It
has no effect if you include a TO clause in either of these contexts:

• In the OUTPUT section of the report definition.
• In the START REPORT statement of the report driver.

Applications

307

Include the PAUSE statement in the PAGE HEADER or PAGE TRAILER block of the
report. For example, the following code causes the runtime system to skip a line and
pause at the end of each page of report output displayed on the screen:

01 PAGE TRAILER
02 SKIP 1 LINE
03 PAUSE "Press return to continue"

SKIP

Syntax:

SKIP { n LINE[S] | TO TOP OF PAGE }

Notes:

1. n is the number of lines.
2. The LINE and LINES keywords are synonyms in the SKIP statement.

Warnings:

1. The SKIP n LINES statement cannot appear within a CASE statement, a FOR
loop, or a WHILE loop.

2. The SKIP TO TOP OF PAGE statement cannot appear in a FIRST PAGE
HEADER, PAGE HEADER or PAGE TRAILER control block.

Usage:

The SKIP statement allows you to insert blank lines into report output or to skip to the top
of the next page as if you had included an equivalent number of PRINT statements
without specifying any expression list.

Output from any PAGE HEADER or PAGE TRAILER control block appears in its usual
location.

Example:

01 FIRST PAGE HEADER
02 PRINT "Customer List"
03 SKIP 2 LINES
04 PRINT "Number Name Location"
05 SKIP 1 LINE
06 PAGE HEADER
07 PRINT "Number Name Location"
08 SKIP 1 LINE
09 ON EVERY ROW
10 PRINT r.customer_num, r.fname, r.city

Genero Business Development Language

308

COLUMN

Syntax:

COLUMN p

Notes:

1. p is the column position (starts at 1).

Usage:

COLUMN specifies the position in the current line of a report where output of the next
value in a PRINT statement begins.

The COLUMN operator can appear in PRINT statements to move the character position
forward within the current line.

The operand must be a non-negative integer that specifies a character position offset
(from the left margin) no greater than the line width (that is, no greater than the
difference (right margin - left margin). This designation moves the character position to a
left-offset, where 1 is the first position after the left margin. If current position is greater
than the operand, the COLUMN specification is ignored.

Example:

01 FIRST PAGE HEADER
02 PRINT "Customer List"
03 PRINT "Number", COLUMN 12,"Name", COLUMN 35,"Location"
04 PAGE HEADER
05 PRINT "Number", COLUMN 12,"Name", COLUMN 35,"Location"
06 ON EVERY ROW
07 PRINT customer_num, COLUMN 12,fname, COLUMN 35,city

LINENO

Syntax:

LINENO

Usage:

This operator takes no operand but returns the value of the line number of the report line
that is currently printing. The report engine calculates the line number by calculating the
number of lines from the top of the current page, including the TOP MARGIN.

Applications

309

Example:

In the following example, a PRINT statement instructs the report to calculate and display
the current line number, beginning in the tenth character position after the left margin:

01 ON EVERY ROW
02 IF LINENO > 9 THEN
03 PRINT COLUMN 10, "Line:", LINENO USING "<<<"
04 END IF

PAGENO

Syntax:

PAGENO

Usage:

This operator takes no operand but returns the number of the page the report engine is
currently printing.

You can use PAGENO in the PAGE HEADER or PAGE TRAILER block, or in other control
blocks to number the pages of a report sequentially.

Example:

If you use the SQL aggregate COUNT(*) in the SELECT statement to find how many
records are returned by the query, and if the number of records that appear on each
page of output is both fixed and known, you can calculate the total number of pages, as
in the following example:

01 FIRST PAGE HEADER
02 SELECT COUNT(*) INTO cnt FROM customer
03 LET y = cnt/50 -- Assumes 50 records per page
04 ON EVERY ROW
05 PRINT COLUMN 10, r.customer_num, ...
06 PAGE TRAILER
07 PRINT PAGE PAGENO USING "<<" OF cnt USING "<<"

If the calculated number of pages was 20, the first page trailer would be:

Page 1 of 20

PAGENO is incremented with each page, so the last page trailer would be:

Page 20 of 20

Genero Business Development Language

310

SPACES

Syntax:

n SPACES

Notes:

1. n is the number of spaces.

Usage:

This operator returns a string of blanks, equivalent to a quoted string containing the
specified number of blanks.

In a PRINT statement, these blanks are inserted at the current character position.

Its operand must be an integer expression that returns a positive number, specifying an
offset (from the current character position) no greater than the difference (right margin -
current position). After PRINT SPACES has executed, the new current character position
has moved to the right by the specified number of characters.

Outside PRINT statements, SPACES and its operand must appear within parentheses: (n
SPACES).

Example:

01 ON EVERY ROW
02 LET s = (6 SPACES), "=ZIP"
03 PRINT r.fname, 2 SPACES, r.lname, s

WORDWRAP

Syntax:

WORDWRAP [RIGHT MARGIN tm]

Notes:

1. tm defines the temporary right margin.

Usage:

The WORDWRAP operator automatically wraps successive segments of long character
strings onto successive lines of report output. Any string value that is too long to fit

Applications

311

between the current position and the right margin is divided into segments and displayed
between temporary margins:

• The current character position becomes the temporary left margin.
• Unless you specify RIGHT MARGIN, the right margin defaults to 132, or to the size

value from the RIGHT MARGIN clause of the OUTPUT section or START
REPORT instruction.

Specify WORDWRAP RIGHT MARGIN tm to set a temporary right margin, counting from the
left edge of the page. This value cannot be smaller than the current character position or
greater than right margin defined for the report. The current character position becomes
the temporary left margin. These temporary values override the specified or default left
and right margins of the report.

After the PRINT statement has executed, any explicit or default margins defined in the
RIGHT MARGIN clause of the OUTPUT section or START REPORT instruction are
restored.

The following PRINT statement specifies a temporary left margin in column 10 and a
temporary right margin in column 70 to display the character string that is stored in the
variable called mynovel:

01 PRINT COLUMN 10, mynovel WORDWRAP RIGHT MARGIN 70

The data string can include printable ASCII characters. It can also include the TAB
(ASCII 9), LINEFEED (ASCII 10), and ENTER (ASCII 13) characters to partition the
string into words that consist of sub-strings of other printable characters. Other
nonprintable characters might cause runtime errors. If the data string cannot fit between
the margins of the current line, the report engine breaks the line at a word division, and
pads the line with blanks at the right.

From left to right, the report engine expands any TAB character to enough blank spaces
to reach the next tab stop. By default, tab stops are in every eighth column, beginning at
the left-hand edge of the page. If the next tab stop or a string of blank characters
extends beyond the right margin, the report engine takes these actions:

1. Prints blank characters only to the right margin.
2. Discards any remaining blanks from the blank string or tab.
3. Starts a new line at the temporary left margin.
4. Processes the next word.

The report engine starts a new line when a word plus the next blank space cannot fit on
the current line. If all words are separated by a single space, this action creates an even
left margin. The following rules are applied (in descending order of precedence) to the
portion of the data string within the right margin:

• Break at any LINEFEED, or ENTER, or LINEFEED, ENTER pair.
• Break at the last blank (ASCII 32) or TAB character before the right margin.
• Break at the right margin, if no character farther to the left is a blank, ENTER,

TAB, or LINEFEED character.

Genero Business Development Language

312

The report engine maintains page discipline under the WORDWRAP option. If the string is
too long for the current page, the report engine executes the statements in any page
trailer and header control blocks before continuing output onto a new page.

For Japanese locales, a suitable break can also be made between the Japanese
characters. However, certain characters must not begin a new line, and some characters
must not end a line. This convention creates the need for KINSOKU processing, whose
purpose is to format the line properly, without any prohibited word at the beginning or
ending of a line.

Reports use the wrap-down method for WORDWRAP and KINSOKU processing. The
wrap-down method forces down to the next line characters that are prohibited from
ending a line. A character that precedes another that is prohibited from beginning a line
can also wrap down to the next line. Characters that are prohibited from beginning or
ending a line must be listed in the locale. 4GL tests for prohibited characters at the
beginning and ending of a line, testing the first and last visible characters. The KINSOKU
processing only happens once for each line. That is, no further KINSOKU processing
occurs, even if prohibited characters are still on the same line after the first KINSOKU
processing.

COUNT

Syntax:

[GROUP] COUNT(*) [WHERE condition]

Usage:

This aggregate returns the total number of records qualified by the optional WHERE
condition.

Warnings:

1. You must include the (*) symbol.

Example:

The following fragment of a report definition uses the AFTER GROUP OF control block
and GROUP keyword to form sets of records according to how many items are in each
order. The last PRINT statement calculates the total price of each order, adds a shipping
charge, and prints the result. Because no WHERE clause is specified here, GROUP SUM(
) combines the total_price of every item in the group included in the order.

01 AFTER GROUP OF number
02 SKIP 1 LINE
03 PRINT 4 SPACES, "Shipping charges for the order: ",
04 ship_charge USING "$$$$.&&"

Applications

313

05 PRINT 4 SPACES, "Count of small orders: ",
06 GROUP COUNT(*) WHERE total_price < 200.00 USING "##,###"
07 SKIP 1 LINE
08 PRINT 5 SPACES, "Total amount for the order: ",
09 ship_charge + GROUP SUM(total_price) USING "$$,$$$,$$$.&&"

PERCENT

Syntax:

[GROUP] PERCENT(*) [WHERE condition]

Usage:

This aggregate returns the percentage of the total number of records qualified by the
optional WHERE condition.

Warnings:

1. You must include the (*) symbol.

SUM

Syntax:

[GROUP] SUM(expression) [WHERE condition]

Usage:

This aggregate evaluates as the total of expression among all records or among records
qualified by the optional WHERE clause and any GROUP specification.

Warnings:

1. If one of the values is NULL, it is ignored.
2. By default, if all values are NULL, the result of the aggregate is NULL. See also:

Report Engine Configuration.

Genero Business Development Language

314

AVG

Syntax:

[GROUP] AVG(expression) [WHERE condition]

Usage:

This aggregate evaluates as the average (that is, the arithmetic mean value) of
expression among all records or among records qualified by the optional WHERE clause
and any GROUP specification.

Warnings:

1. If one of the values is NULL, it is ignored.
2. By default, if all values are NULL, the result of the aggregate is NULL. See also:

Report Engine Configuration.

MIN

Syntax:

[GROUP] MIN(expression) [WHERE condition]

Usage:

For number, currency, and interval values, MIN(expression) returns the minimum value
for expression among all records or among records qualified by the WHERE clause and
any GROUP specification. For DATETIME or DATE data values, greater than means later
and less than means earlier in time. Character strings are sorted according to their first
character. If your program is executed in the default (U.S. English) locale, for character
data types, greater than means after in the ASCII collating sequence, where a> A> 1,
and less than means before in the ASCII sequence, where 1< A< a.

MAX

Syntax:

[GROUP] MAX(expression) [WHERE condition]

Usage:

For number, currency, and interval values, MAX(expression) returns the maximum
value for expression among all records or among records qualified by the WHERE clause

Applications

315

and any GROUP specification. For DATETIME or DATE data values, greater than means
later and less than means earlier in time. Character strings are sorted according to their
first character. If your program is executed in the default (U.S. English) locale, for
character data types, greater than means after in the ASCII collating sequence, where
a> A> 1, and less than means before in the ASCII sequence, where 1< A< a.

Genero Business Development Language

316

Localization
Summary:

• Localization Support
• Writing Programs
• Runtime System Settings

o Language Settings
o Numeric and Currency Settings
o Date and Time Settings

• Database Client Settings
• Front-end Settings
• Runtime System Messages
• Troubleshooting

o Locale settings (LANG) corrupted on Microsoft platforms
o A form is displayed with invalid characters
o Checking the locale configuration on UNIX platforms
o Verifying if the locale is properly supported by the runtime system
o How to retrieve the list of available locales on the system
o How to retrieve the list of available codesets on the system
o Using the charmap.alias file when client has different codeset names

See also: Localized Strings

Localization Support

Localization Support allows you to write BDL programs that follow a specific language
and cultural rules. This includes single and multi-byte character set support, language-
specific messages, as well as lexical/numeric/currency conventions.

Localization Support is based on the POSIX system libraries handling the locale. A
locale is a set of language and cultural rules.

A BDL program needs to be able to determine its locale and act accordingly to be
portable to different cultures.

Writing Programs

Runtime character set must match development character set

When writing a form or program source file, you use a specific character set. This
character set depends upon the text editor or operating system settings you are using on
the development platform. For example, when writing a string constant in a 4gl module,
containing Arabic characters, you probably use the ISO-8859-6 character set. The

Applications

317

character set used used at runtime (during program execution) must match the character
set used to write programs.

At runtime, a Genero program can only work in a specific character set. However, by
using Localized Strings, you can start multiple instances of the same compiled program
using different locales. For a given program instance the character set used by the
strings resource files must correspond to the locale. Make sure the string identifiers use
ASCII only.

Byte length semantics vs Character length semantics

Genero BDL uses byte length semantics: When defining a character data type like
CHAR(n) or VARCHAR(n), n represents as a number of bytes, not a number of
characters. In a single-byte character set like ISO-8859-1, any character is encoded on a
unique byte, so the number of bytes equals the number of characters. But in a multi-byte
character set, encoding requires more that one byte, so the number of bytes to store a
multi-byte string is bigger as the number of characters. For example, in a BIG5
encoding, one Chinese character needs 2 bytes, so if you want to hold a BIG5 string
with a maximum of 10 Chinese characters, you must define a CHAR(20). When using a
variable-length encoding like UTF-8, characters can take one, two or more bytes, so you
need to choose the right average to define CHAR or VARCHAR variables.

The definition of database columns using CHAR, VARCHAR, NCHAR and NVARCHAR
types varies from one database vendor to another. Some use byte length semantics,
other use character length semantics, and other provide both ways. For example,
Informix uses bytes only; Oracle supports byte "CHAR(10 BYTE)" or character
"CHAR(10 CHAR)" length semantics. SQL Server uses a single-byte character set for
CHAR/VARCHAR and uses a 2-length Unicode character set (UCS-2) for NCHAR and
NVARCHAR.

Other SQL elements like functions and operators are affected by the length semantic.
For example, Informix LENGTH() function always returns a number of bytes, while
Oracle's LENGTH() function returns a number of characters (use LENGTHB() to get the
number of bytes with Oracle).

It is important to understand properly how the database servers handle multi-byte
character sets. Check your database server reference manual: In most documentations
you will find a "Localization" chapter which describes those concepts in detail.

For portability, we recommend to use byte length semantic based character data types
in databases, because this corresponds to the length semantics used by Genero BDL
(this is important when declaring variables by using DEFINE LIKE, which is based on
database schemas).

Genero Business Development Language

318

Runtime System Settings

This section describes the settings defining the locale, changing the behavior of the
runtime system.

Language Settings

The LANG environment variable defines the global settings for the language used by the
application. This variable changes the behavior of the character handling functions, such
as UPSHIFT, DOWNSHIFT. It also changes the handling of multi-byte characters.
Invalid settings of LANG will cause compilation errors if a source file contains multi-byte
characters.

With the LANG environment variable, you define the language, the territory (country)
and the codeset (character set) to be used. The format of the value is normalized as
follows, but may be specific on some operating systems:

language[_territory[.codeset]]

Warning: Most operating system vendors define specific set of values for the
language, territory and codeset. For example, on a UNIX platform, you typically set
"en_US.ISO8859-1" for a US English locale, while Microsoft Windows supports
"English_USA.1252", or "en_us.1252". For more details about supported locales,
please refer to the operating system documentation (search for the 'setlocale'
function).

See also Troubleshooting to learn how to check if a locale is properly set, and list the
locales installed on your system.

Numeric and Currency Settings

To perform decimal to/from string conversions, the runtime system uses the DBMONEY
or DBFORMAT environment variables. These variables define hundreds / decimal
separators and currency symbols for MONEY data types.

The LC_MONETARY and LC_NUMERIC standard environment variables, defining
numeric and monetary rules, are ignored.

Date and Time Settings

To perform date to/from string conversions, the runtime system uses by default the
DBDATE environment variable. When assigning a string to a date variable, the standard
environment variable LC_TIME is ignored.

When using the FORMAT field attribute or the USING operator to format dates with
abbreviated day and month names - by using ddd / mmm markers - the system uses
English-language based texts for the conversion. This means, day (ddd) and month
(mmm) abbreviations are not localized according to the locale settings, they will always
be in English.

Applications

319

Database Client Settings

This section describes the settings defining the locale for the database client.

Each database vendor has its own locale settings.

Warning: You must properly configure the database client locale in order to
send/receive data to the database server, according to the locale used by your
application. Both database client locale and application locale settings must
match (you cannot have a database client locale in Japanese and a runtime locale
in Chinese).

Here is the list of environment variables defining the locale used by the application, for
each supported database client:

Database Client Settings
Genero DB The character set used by the client is defined by the

characterset ODBC DSN configuration parameter. If
this parameter is not set, it defaults to ASCII.
Before version 3.80, the character set was defined by
the ANTS_CHARSET environment variable.

Oracle The client locale settings can be set with environment
variables like NLS_LANG, or after connection, with the
ALTER SESSION instruction. By default, the client
locale is set from the database server locale.

Informix The client locale is defined by the CLIENT_LOCALE
environment variable. For backward compatibility, if
CLIENT_LOCALE is not defined, other settings are used
if defined (DBDATE / DBTIME / GL_DATE /
GL_DATETIME, as well as standard LC_* variables).

IBM DB2 The client locale is defined by the DB2CODEPAGE
profile variable. You must set this variable with the
db2set command. If DB2CODEPAGE is not set, DB2
uses the operating system code page on Windows and
the LANG environment variable on Unix.

Microsoft SQL
Server

The client locale is defined by the Window operating
system locale where the database client is installed.

PostgreSQL The client locale can be set with the
PGCLIENTENCODING environment variable, with the
client_encoding configuration parameter in
postgresql.conf, or after connection, with the SET
CLIENT_ENCODING instruction. Check the
pg_conversion system table for available character set
conversions.

Genero Business Development Language

320

MySQL The client locale is defined by the default-character-set
option in the configuration file, or after connection, with
the SET NAMES and SET CHARACTER SET
instructions.

Sybase ASA The client locale is defined by the operating system
locale where the database client is installed.

See database vendor documentation for more details.

Front-End Settings

The front-end workstation must support the character set used on the runtime system
side. You can refer to each front-end documentation to check the list of supported
character sets. The host operating system must also be able to handle the character set.
For instance, a Western-European Windows is not configured to handle Arabic
applications. If you start an Arabic application, some graphical problems may occur (for
instance the title bar won't display Arabic characters, but unwanted characters instead).

Runtime System Messages

Predefined runtime system error messages are stored in the .iem system message files.
The system message files use the same technique as user defined message files (See
Message Files). The default message files are located in the FGLDIR/msg/en_US
directory (.msg sources are provided).

For backward compatibility with Informix 4gl, some of these system error messages are
used by the runtime system to report a "normal" error during a dialog instruction. For
example, end users may get the error -1309 "There are no more rows in the direction
you are going" when scrolling an a DISPLAY ARRAY list.

Here are some examples of system messages that can appear during a dialog:

Number Description
-1204 Invalid year in date.
-1304 Error in field.
-1305 This field requires an entered value.
-1306 Please type again for verification.
-1307 Cannot insert another row - the input array is full.
-1309 There are no more rows in the direction you are going.
and
more...

Applications

321

While it is recommended to use Localized Strings to internationalize application
messages, you might need to translated the default system messages to a specific
locale and language, or you might just want to customize the English messages.

With this technique, you can deploy multiple message files in different languages and
locales in the same FGLDIR/msg directory.

To use your own customized system messages, do the following:

1. Create a new directory under $FGLDIR/msg, using the same name as your
current locale.
For example, if LANG=fr_FR.ISO8859-1, you must create
$FGLDIR/msg/fr_FR.ISO8859-1.

2. Copy the original system message source files (.msg) from $FGLDIR/msg/en_US
to the locale-specific directory.
For example: $FGLDIR/msg/$LANG.

3. Modify the source files with the .msg suffix.
4. Re-compile the message files with the fglmkmsg tool to produce .iem files.
5. Run a program to check if the new messages are used.

Warnings:

1. The locale can be set with different environment variables (see setlocale
manual pages for more details). To identify the locale name, the runtime
system first looks for the LC_ALL value, then LC_CTYPE and finally LANG.

2. Pay attention to locale settings when editing message files: You must use
the same locale as the one used at runtime.

Troubleshooting

Locale settings (LANG) corrupted on Microsoft platforms

On Microsoft Windows XP / 2000 platforms, some system updates (Services Pack 2) or
Office versions do set the LANG environment variable with a value for Microsoft
applications (for example 1033).

Such value is not recognized by Genero as a valid locale specification. Make sure that
the LANG environment variable is properly set in the context of Genero applications.

A form is displayed with invalid characters

You may have different codesets on the client workstation and the application server.
The typical mistake that can happen is the following: You have edited a form-file with the
encoding CP1253; you compile this form-file on a UNIX-server (encoding ISO-8859-7).
When displaying the form, invalid characters will appear. This is usually the case when
you write your source file under a Windows system (that uses Microsoft Code Page
encodings), and use a Linux server (that uses ISO codepages).

Genero Business Development Language

322

Warning: All source files must be created/edited in the encoding of the server
(where fglcomp and fglrun will be executed).

Checking the locale configuration on Unix platforms

On Unix systems, the locale command without parameters outputs information about
the current locale environment.

Once the LANG environment variable is set, check that the locale environment is
correct:

$ export LANG=en_US.ISO8859-1
$ locale
LANG=en_US.ISO8859-1
LC_CTYPE="en_US.ISO8859-1"
LC_NUMERIC="en_US.ISO8859-1"
LC_TIME="en_US.ISO8859-1"
LC_COLLATE="en_US.ISO8859-1"
LC_MONETARY="en_US.ISO8859-1"
LC_MESSAGES="en_US.ISO8859-1"
LC_PAPER="en_US.ISO8859-1"
LC_NAME="en_US.ISO8859-1"
LC_ADDRESS="en_US.ISO8859-1"
LC_TELEPHONE="en_US.ISO8859-1"
LC_MEASUREMENT="en_US.ISO8859-1"
LC_IDENTIFICATION="en_US.ISO8859-1"
LC_ALL=

If the locale environment is not correct, then you should check the value of the following
environment variables : LC_ALL, LC_CTYPE, LC_NUMERIC, LC_TIME, LC_COLLATE,
... value.

The following examples show the effect of LC_ALL and LC_CTYPE on locale
configuration. The LC_ALL variable overrides all other LC_.... variables values.

$ export LANG=en_US.ISO8859-1
$ export LC_ALL=POSIX
$ export LC_CTYPE=fr_FR.ISO8859-15
$ locale
LANG=en_US.ISO8859-1
LC_CTYPE="POSIX"
LC_NUMERIC="POSIX"
LC_TIME="POSIX"
LC_COLLATE="POSIX"
LC_MONETARY="POSIX"
LC_MESSAGES="POSIX"
LC_PAPER="POSIX"
LC_NAME="POSIX"
LC_ADDRESS="POSIX"
LC_TELEPHONE="POSIX"
LC_MEASUREMENT="POSIX"
LC_IDENTIFICATION="POSIX"
LC_ALL=POSIX
$ fglrun -i mbcs

Applications

323

LANG honored : yes
Charmap : ANSI_X3.4-1968
Multibyte : no
Stateless : yes

The charset used is the ASCII charset. Clearing the LC_ALL environment variable
produces the following output:

$ unset LC_ALL
$ locale
LANG=en_US.ISO8859-1
LC_CTYPE=fr_FR.ISO8859-15
LC_NUMERIC="en_US.ISO8859-1"
LC_TIME="en_US.ISO8859-1"
LC_COLLATE="en_US.ISO8859-1"
LC_MONETARY="en_US.ISO8859-1"
LC_MESSAGES="en_US.ISO8859-1"
LC_PAPER="en_US.ISO8859-1"
LC_NAME="en_US.ISO8859-1"
LC_ADDRESS="en_US.ISO8859-1"
LC_TELEPHONE="en_US.ISO8859-1"
LC_MEASUREMENT="en_US.ISO8859-1"
LC_IDENTIFICATION="en_US.ISO8859-1"
LC_ALL=
$ fglrun -i mbcs
Error: locale not supported by C library, check LANG.
$ locale charmap
ANSI_X3.4-1968

After clearing the LC_ALL value, the value of the variable LC_CTYPE is used. It appears
that it is not correct. After clearing this value we get the following output:

$ unset LC_CTYPE
$ locale
LANG=en_US.ISO8859-1
LC_CTYPE="en_US.ISO8859-1"
LC_NUMERIC="en_US.ISO8859-1"
LC_TIME="en_US.ISO8859-1"
LC_COLLATE="en_US.ISO8859-1"
LC_MONETARY="en_US.ISO8859-1"
LC_MESSAGES="en_US.ISO8859-1"
LC_PAPER="en_US.ISO8859-1"
LC_NAME="en_US.ISO8859-1"
LC_ADDRESS="en_US.ISO8859-1"
LC_TELEPHONE="en_US.ISO8859-1"
LC_MEASUREMENT="en_US.ISO8859-1"
LC_IDENTIFICATION="en_US.ISO8859-1"
LC_ALL=
$ locale charmap
ISO-8859-1
$ fglrun -i mbcs
LANG honored : yes
Charmap : ISO-8859-1
Multibyte : no
Stateless : yes

Genero Business Development Language

324

Verifying if the locale is properly supported by the runtime system

You can check if the LANG locale is supported properly by using the -i mbcs option of
the compilers and runner programs:

$ fglcomp -i mbcs
LANG honored : yes
Charmap : ANSI_X3.4-1968
Multibyte : no
Stateless : yes

The lines printed with -i info option indicate if the locale can be supported by the
operating system libraries. Here is a short description of each line:

Verification
Parameter Description

LANG Honored This line indicates that the current locale configuration has
been correctly set.
Check if the indicator shows 'yes'.

Charmap This is the name of the character set used by the
runtime system.

Multibyte This line indicates if the character set is multi-byte.
Can be 'yes' or 'no'.

Stateless A few character sets are using an internal state that can
change during the character flow. Only stateless
character sets can be supported by Genero.
Check if the indicator shows 'yes'.

How to retrieve the list of available locales on the system

On Unix systems, the locale command with the parameter '-a' writes the names of
available locales.

$ locale -a
...
en_US
en_US.iso885915
en_US.utf8
en_ZA
en_ZA.utf8
en_ZW
...

How to retrieve the list of available codesets on the system

On Unix systems, the locale command with the parameter '-m' writes the names of
available codesets.

$ locale -m
...

Applications

325

ISO-8859-1
ISO-8859-10
ISO-8859-13
ISO-8859-14
ISO-8859-15
...

Using the charmap.alias file when client has different codeset names

The name of the codeset can be different from one system to another. The file
$FGLDIR/etc/charmap.alias is used to provide the translation of the local name to a
generic name. The generic name is the name sent to the front-end. It is the translated
name that appears when the command 'fglrun -i mbcs' is used. The local codeset name
is the value obtained using the system call 'nl_langinfo(CODESET)'. Note: This file might
be incomplete.

An example of locale configuration on HP

$ export LANG=en_US.iso88591
$ locale
LANG=en_US.iso88591
LC_CTYPE="en_US.iso88591"
LC_COLLATE="en_US.iso88591"
LC_MONETARY="en_US.iso88591"
LC_NUMERIC="en_US.iso88591"
LC_TIME="en_US.iso88591"
LC_MESSAGES="en_US.iso88591"
LC_ALL=
$ locale charmap
"iso88591.cm"

The charmap.alias file contains the following line:

iso88591 ISO8859-1

The name sent to the client is ISO-8859-1 instead of iso88591.

The following C program should compile, and outputs the current codeset name.

#include <stdio.h>
#include <stdlib.h>
#include <locale.h>
#include <langinfo.h>
int main()
{
 setlocale(LC_ALL, "");
 printf("%s\n", nl_langinfo(CODESET));
 exit(0);
}

With the previous example this program outputs:

iso88591

Genero Business Development Language

326

Localized Strings
Summary:

• What are Localized Strings?
• Syntax
• Source String Files
• Extracting Strings
• Compiling String Files
• Using String Files at Runtime
• Predefined Application Strings
• Example

See also: Programs, FGLPROFILE

Definition

Localized Strings provide a means of writing applications in which the text of strings can
be customized on site. This feature can be used to implement internationalization in your
application, or to use site-specific text (for example, when business terms change based
on territory).

This string localization feature does not define language identification. It is a simple way
to define external resource files which the runtime system can search, in order to assign
text to strings in the BDL application. The text is replaced at runtime in the p-code
modules (42m), in the compiled form specification files (42f), and in any XML resource
files loaded in the Abstract User Interface tree (4ad, 4st, 4tb, and so on).

By using a simple notation, you can identify the Localized Strings in the source code:

01 MAIN
02 DISPLAY %"my text"
03 END MAIN

The fglcomp and fglform compilers have been extended to support a new option to
extract the Localized Strings. This way, the Localized Strings can be extracted into
Source String Files.

From the original Source String File, you can create other files containing different text
(for example, one file for each language you want to support).

You must use the fglmkstr tool to compile the source string files into a binary version. By
convention, compiled string resource files must have the 42s extension.

Applications

327

By default, the compiled string files are loaded at runtime, according to the name of the
program (42r). It is also possible to define global string files in the FGLPROFILE
configuration file. See also: Using String Files at Runtime.

In 42m p-code modules, the Localized Strings are coded in our specific binary format.
But, for XML files such as compiled form files (42f), the localized strings must be
identified with a specific node, following the XML standards.

To support localized strings in XML files, any file loaded into the Abstract User Interface
tree is parsed to search for <LStr> nodes.

The <LStr> nodes define the same attributes as in the parent node with localized string
identifiers, for example:

01 <Label text="Hello!" >
02 <LStr text="label01" />
03 </Label>

The runtime system automatically replaces corresponding attributes in the parent node
(text="Hello!"), with the localized text found in the compiled string files, according to the
string identifier (label01). After interpretation, the <LStr> nodes are removed from the
XML data.

Syntax

Syntax 1: Static Localized String

 %"sid"

Syntax 2: Dynamic Localized String

 LSTR(eid)

Notes:

1. sid is a character string literal that defines both the string identifier and the default
text.

2. eid is a character string expression used at runtime as string identifier to load the
text.

Usage:

A Localized String can be used in the source code of program modules or form
specification files to identify a text string that must be converted at runtime.

Static Localized Strings

Genero Business Development Language

328

A Localized String begins with a percent sign (%), followed by the name of the string
which will be used to identify the text to be loaded. Since the name is a string, you can
use any kind of characters in the name, but it is recommended that you use a proper
naming convention. For example, you can specify a path by using several identifiers
separated by a dot, without any special characters such as space or tab:

01 MAIN
02 DISPLAY %"common.helloworld"
03 END MAIN

The string after the percent sign defines both the localized string identifier and the
default text to be used for extraction, or the default text when no string resource files are
provided at runtime.

You can use this notation in form specification files as well, at any place where a string
literal can be used.

01 LAYOUT
02 VBOX
03 GROUP g1 (TEXT=%"group01")
04 ...

Warning: It is not possible to specify a static localized string directly in the area of
containers like GRID, TABLE or SCROLLGRID. You must use label fields to use
localized strings in layout labels:

01 LAYOUT
02 GRID
03 {
04 [lab01 |f001]
05 {
06 END
07 END
08 ATTRIBUTES
09 LABEL lab01 : TEXT=%"myform.label01";
10 EDIT f001 = FORMONLY.field01;
11 END

Dynamic Localized Strings

The language provides a special operator to load a Localized String dynamically, using
an expression as string identifier. The name of this operator is LSTR(), and the syntax is
described above.

The following code example builds a Localized String identifier with an integer and loads
the corresponding string with the LSTR() operator:

01 MAIN
02 DEFINE n INTEGER
03 LET n = 234
04 DISPLAY LSTR("str"||n) -- loads string 'str234'
05 END MAIN

Applications

329

See also: The SFMT() operator

Source String Files

By convention, the source files of Localized Strings have the .str extension.

Defining a string:

You define a list of string identifiers, and the corresponding text, by using the following
syntax:

"identifier" = "string"

Special characters:

The fglmkstr compiler accepts the backslash "\" as the escape character, to define non-
printable characters:

\l \n \r \t \\

Example:

01 "id001" = "Some text"
02 "this.is.a.path.for.a.very.long.string.identifier" = "Customer List"
03 "special.characters.backslash" = "\\"
04 "special.characters.newline" = "\n"

Extracting Strings

In order to extract Localized String from Source String Files, use the fglcomp and fglform
compilers with the -m option:

$ fglcomp -m mymodule.4gl

The compilers dumps all localized string to stdout. This output can be redirected to a file
to generate the default Source String File with all the localized strings used in the 4gl file.

Compiling String Files

The Source String Files (.str) must be compiled to binary files (.42s) in order to be used
at runtime.

Genero Business Development Language

330

To compile a Source String File, use the fglmkstr compiler:

$ fglmkstr filename.str

This tool generates a .42s file with the filename prefix.

Using String Files at Runtime

Distributing string resource files

The "42s" Compiled String Files must be distributed with the program files in a directory
specified in the DBPATH environment variable.

How does the runtime system load the strings?

The string files are loaded in the following order:

1. the files defined in FGLPROFILE (see below),
2. a file having the same name prefix as the current "42r" program,
3. a file with the name "default.42s".

For each string file, the runtime system searches in following directories:

1. in the current directory,
2. in the path list defined in the DBPATH environment variable,
3. in FGLDIR/lib.

A string is loaded in memory only once (if the same string is defined in another file, it is
ignored).

What happens if a string is not defined in a resource file?

If a localized string is not defined in a resource files, the runtime system uses the string
identifier as default text.

What happens if a string is defined more that once?

When a localized string is defined in several resource files, the runtime system uses the
first string found.

For example, if the string "hello" is defined in program.42s as "hello from program", and
in default.42s as "hello from default", the runtime system will use the text "hello from
program".

Applications

331

Defining a list of string resource files in FGLPROFILE

You can specify a list of Compiled String Files with entries in the FGLPROFILE
configuration file. The file name must be specified without a file extension. The runtime
system searches for a file with the "42s" extension in the current directory and in the
path list defined in the DBPATH environment variable.

List of resource files

To define the list of resource files to be used, specify the total number of files with:

fglrun.localization.file.count = integer

And for each file, define the filename (without the 42s extension), including an index
number, with:

fglrun.localization.file.index.name = "filename"

Start index at 1.

Warning switches

If the text of a string is not found at runtime, the DVM can show a warning, for
development purposes.

fglrun.localization.warnKeyNotFound = boolean

By default, this warning switch is disabled.

Predefined Application Strings

What is a Predefined Application String?

In some situations, the runtime system needs to display texts to the user. For example,
the runtime system library includes a report viewer, which displays a form. By default the
texts are in English, and you may need to localize the texts in another language. So the
strings of this component must be 'localizable', as other application strings.

To customize the built-in strings, the runtime system uses the mechanism of localized
strings.

All strings used by the runtime system are centralized in a unique file:

$FGLDIR/src/default.str

which is compiled into:

Genero Business Development Language

332

$FGLDIR/lib/default.4ls

This file is always loaded by the runtime system.

To overwrite the defaults, you can re-define these strings in your own localized string
files. See also: Using String Files at Runtime.

Example

The Source String File "common.str" (a compiled version must be created):

01 "common.accept" = "OK"
02 "common.cancel" = "Cancel"
03 "common.quit" = "Quit"

The Source String File "actions.str" (a compiled version must be created):

01 "action.append" = "Append"
02 "action.modify" = "Modify"
03 "action.delete" = "Delete"

The Source String File "customer.str" (a compiled version must be created):

01 "customer.mainwindow.title" = "Customers"
02 "customer.listwindow.title" = "Customer List"
03 "customer.l_custnum" = "Number:"
04 "customer.l_custname" = "Name:"
05 "customer.c_custname" = "The customer name"
06 "customer.g_data" = "Customer data"
07 "customer.g_actions" = "Actions"
08 "customer.qdelete" = "Are you sure you want to delete this
customer?"

The FGLPROFILE configuration file parameters:

01 fglrun.localization.file.count = 2
02 fglrun.localization.file.1.name = "common"
03 fglrun.localization.file.2.name = "actions"

Remark: The 'customer' string file does not have to to listed in FGLPROFILE since it is
loaded as it has the same name as the program.

The form specification file "f1.per":

01 LAYOUT (TEXT=%"customer.mainwindow.title")
02 GRID
03 {
04 <g g1 >
05 [lab1] [f01]

Applications

333

06 [lab2] [f02]
07
08 <g g2 >
09 [b1] [b2]
10
11 }
12 END
13 END
14 ATTRIBUTES
15 LABEL lab1 : TEXT=%"customer.l_custnum";
16 EDIT f01 = FORMONLY.custnum;
17 LABEL lab2 : TEXT=%"customer.l_custname";
18 EDIT f02 = FORMONLY.custname, COMMENT=%"customer.c_custname";
19 BUTTON b1 : edit, TEXT=%"action.modify";
20 BUTTON b2 : quit, TEXT=%"common.quit";
21 GROUP g1 : TEXT=%"customer.g_data";
22 GROUP g2 : TEXT=%"customer.g_actions";
23 END

The program "customer.4gl" using the strings file:

01 MAIN
02 DEFINE rec RECORD
03 custnum INTEGER,
04 custname CHAR(20)
05 END RECORD
06 OPEN WINDOW w1 WITH FORM "f1"
07 MENU
08 ON ACTION edit
09 INPUT BY NAME rec.*
10 ON ACTION quit
11 EXIT MENU
12 END MENU
13 END MAIN

Genero Business Development Language

334

Built-in Functions
Summary:

• What is a built-in function?
• List of built-in functions
• List of de-supported functions
• The key code table

See also: Utility Functions, Variables, Functions, Operators, Built-in Classes.

What is a built-in function?

A built-in function is a predefined function that is included in the runtime system or
provided as a library function automatically linked to your programs. You do not have to
link with any additional BDL library to create your programs. The built-in functions are
part of the language.

See also Utility Functions.

Warnings:

1. Do not confuse built-in functions with SQL aggregate functions like:
o AVG()
o MAX()
o MIN()
o SUM()

2. Do not confuse built-in functions with operators. Some operators have the same
syntax as functions, but these are real language operators that have a specific
order of precedence. Operators can be used in different contexts according to
the BDL grammar. See for example:

o YEAR(date)
o MONTH(date)
o DAY(date)
o WEEKDAY(date)
o MDY(integer,integer,integer)
o GET_FLDBUF(field)
o INFIELD(field)
o FIELD_TOUCHED(field)

List of built-in functions

Function Description
ARG_VAL() Returns a command line

argument by position.

Library

335

ARR_COUNT() Returns the number of records
entered in a program array
during or after execution of the
INPUT ARRAY statement.

ARR_CURR() Returns the current row in a
DISPLAY ARRAY or INPUT
ARRAY.

DOWNSHIFT() Returns a string value in which
all uppercase characters in its
argument are converted to
lowercase.

ERR_GET() Returns the text corresponding
to an error number.

ERR_PRINT() Prints in the error line the text
corresponding to an error
number.

ERR_QUIT() Prints in the error line the text
corresponding to an error
number and terminates the
program.

ERRORLOG() Copies the string passed as a
parameter into the error log
file.

FGL_BUFFERTOUCHED() Returns TRUE if the current
input buffer was modified since
the field was selected.

FGL_DIALOG_GETBUFFER() Returns the value of the
current field as a string.

FGL_DIALOG_GETBUFFERLENGTH() When using a paged display
array, returns the number of
rows to fill the array buffer.

FGL_DIALOG_GETBUFFERSTART() When using a paged display
array, returns the row offset to
fill the array buffer.

FGL_DIALOG_GETCURSOR() Returns the position of the edit
cursor in the current field.

FGL_DIALOG_GETFIELDNAME() Returns the name of the
current input field.

FGL_DIALOG_GETKEYLABEL() Returns the text associated to
a key in the current interactive
instruction.

FGL_DIALOG_INFIELD() Returns TRUE if the field
passed as a parameter is the
current input field.

FGL_DIALOG_SETBUFFER() Sets the value of the current

Genero Business Development Language

336

field as a string.
FGL_DIALOG_SETCURRLINE() Moves to a specific row in a

record list.
FGL_DIALOG_SETCURSOR() Sets the position of the input

cursor within the current field.
FGL_DIALOG_SETFIELDORDER() Enables or disables field order

constraint.
FGL_DIALOG_SETKEYLABEL() Sets the text associated to a

key for the current interactive
instruction.

FGL_DRAWBOX() Draws a rectangle based on
character terminal coordinates
in the current open window.

FGL_DRAWLINE() Draws a line based on
character terminal coordinates
in the current open window.

FGL_GETCURSOR() Returns the position of the edit
cursor in the current field.

FGL_GETENV() Returns the value of the
environment variable having
the name you specify as
argument.

FGL_GETFILE() Transfers a file from the front-
end to the application server
machine.

FGL_GETHELP() Returns the help message
according to a number.

FGL_GETKEYLABEL() Returns the default label
associated to a key.

FGL_GETPID() Returns the system process id.
FGL_GETRESOURCE() Returns the value of an

FGLPROFILE entry.
FGL_GETVERSION() Returns the build number of

the runtime system.
FGL_GETWIN_HEIGHT() Returns the number of rows of

the current window.
FGL_GETWIN_WIDTH() Returns the width of the

current window as a number of
columns.

FGL_GETWIN_X() Returns the horizontal position
of the current window.

FGL_GETWIN_Y() Returns the vertical position of
the current window.

FGL_KEYVAL() Returns the key code of a

Library

337

logical or physical key.
FGL_LASTKEY() Returns the key code of the

last key pressed by the user.
FGL_PUTFILE() Transfers a file from from the

application server machine to
the front-end.

FGL_REPORT_PRINT_BINARY_FILE() Prints a file containing binary
data during a report.

FGL_REPORT_SET_DOCUMENT_HANDLER() Defines the document handler
to be used for a report.

FGL_SET_ARR_CURR() Sets the current line in a record
list.

FGL_SETENV() Sets an environment variable
FGL_SETKEYLABEL() Sets the default label

associated to a key.
FGL_SETSIZE() Sets the size of the main

application window.
FGL_SETTITLE() Sets the title of the main

application window.
FGL_SYSTEM() Starts a program in a UNIX

terminal emulator when using a
graphical front end.

FGL_WIDTH() Returns the number of
columns needed to represent
the string.

FGL_WINDOW_GETOPTION() Returns the attributes of the
current window.

LENGTH() Returns the number of
characters of the string passed
as a parameter.

NUM_ARGS() Returns the number of
program arguments.

ORD() Returns the ASCII value of the
first byte of a character
expression.

SCR_LINE() Returns the number of the
current screen record in its
screen array.

SET_COUNT() Specifies the number of
records that contain data in a
static array.

SHOWHELP() Displays a runtime help
message, corresponding to its
specified argument, from the

Genero Business Development Language

338

current help file.
STARTLOG() Initializes error logging and

opens the error log file passed
as a parameter.

UPSHIFT() Returns a string value in which
all lowercase characters in its
argument are converted to
uppercase.

List of de-supported built-in functions:

Function Description
FGL_FORMFIELD_GETOPTION() Returns attributes of a specified form field.
FGL_GETKEY() Waits for a keystroke and returns the key

code.
FGL_GETUITYPE() Returns the type of the front end.
FGL_SCR_SIZE() Returns the number of rows of a screen

array of the current form.
FGL_WINDOW_OPEN() Opens a new window with coordinates and

size.
FGL_WINDOW_OPENWITHFORM(
)

Opens a new window with coordinates and
form.

FGL_WINDOW_CLEAR() Clears the window having the name that is
passed as a parameter.

FGL_WINDOW_CLOSE() Closes the window having the name that is
passed as a parameter.

FGL_WINDOW_CURRENT() Makes current the window having the name
that is passed as a parameter.

ARG_VAL()

Purpose:

This function returns a command line argument by position.

Context:

1. At any place in the program.

Library

339

Syntax:

CALL ARG_VAL(position INTEGER) RETURNING result STRING

Notes:

1. position is the argument position. 0 returns the name of the program, 1 returns
the first argument.

Usage:

This function provides a mechanism for passing values to the program through the
command line that invokes the program. You can design a program to expect or allow
arguments after the name of the program in the command line.

Like all built-in functions, ARG_VAL() can be invoked from any program block. You can
use it to pass values to MAIN, which cannot have formal arguments, but you are not
restricted to calling ARG_VAL() from the MAIN statement. You can use the ARG_VAL()
function to retrieve individual arguments during program execution. You can also use the
NUM_ARGS() function to determine how many arguments follow the program name on
the command line.

If position is greater than 0, ARG_VAL(position) returns the command-line argument
used at a given position. The value of position must be between 0 and the value
returned by NUM_ARGS(), the number of command-line arguments. The expression
ARG_VAL(0) returns the name of the application program.

See also: NUM_ARGS().

NUM_ARGS()

Purpose:

This function returns the number of program arguments.

Context:

1. At any place in the program.

Syntax:

CALL NUM_ARGS() RETURNING result INTEGER

Notes:

1. returns 0 if no arguments are passed to the program.

Genero Business Development Language

340

See also: ARG_VAL().

SCR_LINE()

Purpose:

This function returns the number of the current screen record in its screen array.

Context:

1. During a DISPLAY ARRAY or INPUT ARRAY statement.

Syntax:

CALL SCR_LINE() RETURNING result INTEGER

Notes:

1. The current record is the line of a screen array that is highlighted at the beginning
of a BEFORE ROW or AFTER ROW clause.

Warnings:

1. When using new graphical objects such as TABLEs, this function can return an
invalid screen array line number, because the current row may not be visible if
the user scrolls in the list with scrollbars.

See also: ARR_CURR().

SET_COUNT()

Purpose:

This function specifies the number of records that contain data in a static array.

Context:

1. Before a DISPLAY ARRAY or INPUT ARRAY statement.

Syntax:

CALL SET_COUNT(nbrows INTEGER)

Library

341

Notes:

1. nbrows defines the number of rows in the static array.
2. Using this function is equivalent to the COUNT attribute of INPUT ARRAY and

DISPLAY ARRAY statements.

Usage:

When using a static array in an INPUT ARRAY (with WITHOUT DEFAULTS clause) or a
DISPLAY ARRAY statement, you must specify the total number of records in the array.
In typical applications, these records contain the values in the retrieved rows that a
SELECT statement returned from a database cursor. You specify the number of rows with
the SET_COUNT() function or with the COUNT attribute of INPUT ARRAY and DISPLAY
ARRAY statements.

Warning: You do not have to specify the number of rows when using a dynamic
array. When using a dynamic array, the number of rows is defined by the
getLength() method of the array object.

See also: ARR_CURR(), FGL_SET_ARR_CURR().

ARR_COUNT()

Purpose:

This function returns the number of records entered in a program array during or after
execution of the INPUT ARRAY statement.

Context:

1. Can be called at any place in the program, but should be limited to usage inside
or after INPUT ARRAY blocks.

Syntax:

CALL ARR_COUNT() RETURNING result INTEGER

Notes:

1. Returns the current number of records that exist in the current array.
2. Typically used inside INPUT ARRAY blocks.

Usage:

You can use ARR_COUNT() to determine the number of program records that are
currently stored in a program array. In typical FGL applications, these records

Genero Business Development Language

342

correspond to values from the result set of retrieved database rows from the most recent
query. By first calling the SET_COUNT() function or by using the COUNT attribute of
INPUT ARRAY, you can set an upper limit on the value that ARR_COUNT() returns.

ARR_COUNT() returns a positive integer, corresponding to the index of the furthest record
within the program array that the user accessed. Not all the rows counted by
ARR_COUNT() necessarily contain data (for example, if the user presses the DOWN
ARROW key more times than there are rows of data).

See also: INPUT ARRAY, ARR_CURR().

ARR_CURR()

Purpose:

This function returns the current row in a DISPLAY ARRAY or INPUT ARRAY.

Context:

1. During a DISPLAY ARRAY or INPUT ARRAY statement.

Syntax:

CALL ARR_CURR() RETURNING result INTEGER

Usage:

The ARR_CURR() function returns an integer value that identifies the current row of a list
of rows in a INPUT ARRAY or DISPLAY ARRAY instruction. The first row is numbered
1.

You can pass ARR_CURR() as an argument when you call a function. In this way the
function receives as its argument the current record of whatever array is referenced in
the INPUT ARRAY or DISPLAY ARRAY statement.

The ARR_CURR() function can be used to force a FOR loop to begin beyond the first line
of an array by setting a variable to ARR_CURR() and using that variable as the starting
value for the FOR loop.

The built-in functions ARR_CURR() and SCR_LINE() can return different values if the
program array is larger than the screen array.

See also: INPUT ARRAY, DISPLAY ARRAY, ARR_COUNT(), FGL_SET_ARR_CURR(),
SCR_LINE().

Library

343

ERR_GET()

Purpose:

This function returns the text corresponding to an error number.

Context:

1. At any place in the program.

Syntax:

CALL ERR_GET(error-number INTEGER) RETURNING result STRING

Notes:

1. error-number is a runtime error or an Informix SQL error.
2. For development only.

Warnings:

1. Informix SQL error numbers can only be supported if the program is connected to
an Informix database.

See also: ERRORLOG(), STARTLOG(), ERR_QUIT(), ERR_PRINT(), Exceptions.

ERR_PRINT()

Purpose:

This function prints in the error line the text corresponding to an error number.

Context:

1. At any place in the program.

Syntax:

CALL ERR_PRINT(error-number INTEGER)

Notes:

1. error-number is a runtime error or an Informix SQL error.
2. For development only.

Genero Business Development Language

344

Warnings:

1. Informix SQL error numbers can only be supported if the program is connected to
an Informix database.

See also: ERRORLOG(), STARTLOG(), ERR_QUIT(), ERR_GET(), Exceptions.

ERR_QUIT()

Purpose:

This function prints in the error line the text corresponding to an error number and
terminates the program.

Context:

1. At any place in the program.

Syntax:

CALL ERR_QUIT(error-number INTEGER)

Notes:

1. error-number is a runtime error or an Informix SQL error.
2. For development only.

Warnings:

1. Informix SQL error numbers can only be supported if the program is connected to
an Informix database.

See also: ERRORLOG(), STARTLOG(), ERR_QUIT(), ERR_GET(), Exceptions.

ERRORLOG()

Purpose:

This function copies the string passed as parameter into the error log file.

Context:

1. At any place in the program.

Library

345

Syntax:

CALL ERRORLOG(text STRING)

Notes:

1. text is the character string to be inserted in the error log file.
2. The error log must be started with STARTLOG().

See also: STARTLOG(), Exceptions.

SHOWHELP()

Purpose:

This function function displays a runtime help message, corresponding to its specified
argument, from the current help file.

Context:

1. At any place in the program.

Syntax:

CALL SHOWHELP(help-number INTEGER)

Notes:

1. help-number is the help message number in the current help file.
2. You set the current help file with the HELP FILE clause of the OPTIONS

instruction.

See also: OPTIONS, Message Files.

STARTLOG()

Purpose:

This function initializes error logging and opens the error log file passed as the
parameter.

Context:

1. At the beginning of the program.

Genero Business Development Language

346

Syntax:

CALL STARTLOG(filename STRING)

Notes:

1. filename is the name of the error log file.
2. Runtime errors are automatically reported.
3. You can insert error records manually with the ERRORLOG() function.

Usage:

Call STARTLOG() in the MAIN program block to open or create an error log file. After
STARTLOG() has been invoked, a record of every subsequent error that occurs during
the execution of your program is written in the error log file. If you need to report specific
application errors, use the ERRORLOG() function to make an entry in the error log file.

The default format of an error record consists of the date, time, source-module name
and line number, error number, and error message. If you invoke the STARTLOG()
function, the format of the error records appended to the error log file after each
subsequent error are as follows:

Date: 03/06/99 Time: 12:20:20
Program error at "stock_one.4gl", line number 89.
SQL statement error number -239.
Could not insert new row - duplicate value in a UNIQUE INDEX column.
SYSTEM error number -100
ISAM error: duplicate value for a record with unique key.

The STARTLOG() and ERRORLOG() functions can be used for instrumenting a program,
to track how the program is used. This use is not only valuable for improving the
program but also for recording work habits and detecting attempts to breach security.

If the argument of STARTLOG() is not the name of an existing file, STARTLOG() creates
one. If the file already exists, STARTLOG() opens it and positions the file pointer so that
subsequent error messages can be appended to this file. The following program
fragment invokes STARTLOG(), specifying the name of the error log file in a quoted string
that includes a pathname and a file extension. The function definition includes a call to
the built-in ERRORLOG() function, which adds a message to the error log file.

See also: ERRORLOG(), Exceptions.

Library

347

FGL_BUFFERTOUCHED()

Purpose:

This function returns TRUE if the input buffer was modified after the current field was
selected.

Context:

1. In AFTER FIELD, AFTER INPUT, AFTER CONSTRUCT, ON KEY, ON ACTION blocks.

Syntax:

CALL FGL_BUFFERTOUCHED() RETURNING result INTEGER

Notes:

1. returns TRUE if the input buffer has been touched after the current field was
selected.

Warnings:

1. This function is not equivalent to FIELD_TOUCHED(): The flag returned by
FGL_BUFFERTOUCHED() is reset when you enter a new field, while
FIELD_TOUCHED() returns always TRUE for a field that was modified during the
interactive instruction.

See also: FGL_DIALOG_SETBUFFER(), FGL_DIALOG_GETBUFFER().

FGL_DIALOG_GETBUFFER()

Purpose:

This function returns the value of the current field as a string.

Context:

1. In INPUT , INPUT ARRAY, CONSTRUCT instructions.

Syntax:

CALL FGL_DIALOG_GETBUFFER() RETURNING result STRING

Notes:

1. Returns the content of the input buffer of the current field.

Genero Business Development Language

348

2. Only useful in a CONSTRUCT instruction, because there is no variable
associated to fields in this case.

See also: FGL_DIALOG_SETBUFFER(), FGL_BUFFERTOUCHED(), GET_FLDBUF().

FGL_DIALOG_SETBUFFER()

Purpose:

This function sets the input buffer of the current field, and assigns corresponding
program variable when using UNBUFFERED mode.

Context:

1. In INPUT , INPUT ARRAY, CONSTRUCT instructions.

Syntax:

CALL FGL_DIALOG_SETBUFFER(value STRING)

Notes:

1. value is the text to set in the current input buffer.
2. Only useful in a CONSTRUCT instruction, because there is no variable

associated to fields in this case.

Warnings:

1. With the default buffered input mode, this function modifies the input buffer of the
current field; the corresponding input variable is not assigned. It makes no sense
to call this function in BEFORE FIELD blocks of INPUT and INPUT ARRAY.
However, if the statement is using the UNBUFFERED mode, the function will set
both the field buffer and the program variable. If the string set by the function
does not represent a valid value that can be stored by the program variable, the
buffer and the variable will be set to NULL.

2. This function sets the 'touched' flag of the current form field, and the 'touched'
flag of the dialog. Therefore, both FIELD_TOUCHED() and
FGL_BUFFERTOUCHED() would return TRUE if you call this function.

See also: FGL_DIALOG_GETBUFFER(), FGL_BUFFERTOUCHED(), GET_FLDBUF().

Library

349

FGL_DIALOG_GETFIELDNAME()

Purpose:

This function returns the name of the current input field.

Context:

1. In INPUT , INPUT ARRAY, CONSTRUCT or DISPLAY ARRAY instructions.

Syntax:

CALL FGL_DIALOG_GETFIELDNAME() RETURNING result STRING

Notes:

1. Returns the name of the current input field.

Warnings:

1. Only the column part of the field name is returned.

See also: FGL_DIALOG_INFIELD().

FGL_DIALOG_INFIELD()

Purpose:

This function returns TRUE if the field passed as the parameter is the current input field.

Context:

1. In INPUT , INPUT ARRAY, CONSTRUCT or DISPLAY ARRAY instructions.

Syntax:

CALL FGL_DIALOG_INFIELD(field-name STRING) RETURNING result INTEGER

Notes:

1. field-name is the name if the form field.

Warnings:

1. Only the column part of the field name is used.

Genero Business Development Language

350

See also: INFIELD().

FGL_DIALOG_SETCURSOR()

Purpose:

This function sets the position of the input cursor in the current field.

Context:

1. In interactive instructions.

Syntax:

CALL FGL_DIALOG_SETCURSOR(index INTEGER)

Notes:

1. index is the character position in the text.

See also: FGL_GETCURSOR().

FGL_DIALOG_SETFIELDORDER()

Purpose:

This function enables or disables field order constraint.

Context:

1. At the beginning of the program or around INPUT instructions.

Syntax:

CALL FGL_DIALOG_SETFIELDORDER(active INTEGER)

Notes:

1. When active is TRUE, the field order is constrained.
2. When active is FALSE, the field order is not constrained.

Library

351

Usage:

Typical BDL applications control user input with BEFORE FIELD and AFTER FIELD
blocks. In many cases the field order and the sequential execution of AFTER FIELD
blocks is important in order to validate the data entered by the user. But with graphical
front ends you can use the mouse to move to a field. By default the runtime system
executes all BEFORE FIELD and AFTER FIELD blocks of the fields used by the interactive
instruction, from the origin field to the target field selected by mouse click. If needed, you
can force the runtime system to ignore all intermediate field triggers, by calling this
function with a FALSE attribute.

FGL_DIALOG_SETCURRLINE()

Purpose:

This function moves to a specific row in a record list.

Context:

1. During a DISPLAY ARRAY or INPUT ARRAY instruction.

Syntax:

CALL FGL_DIALOG_SETCURRLINE(line INTEGER, row INTEGER)

Notes:

1. line is the line number in the screen array.
2. row is the row number is the array variable.

Warnings:

1. The line parameter is ignored in GUI mode.
2. You can use the FGL_SET_ARR_CURR() function instead.
3. Control blocks like BEFORE ROW and field/row validation in INPUT ARRAY are

performed, as if the user moved to another row, except when the function is
called in BEFORE DISPLAY or BEFORE INPUT.

FGL_SET_ARR_CURR()

Purpose:

This function moves to a specific row in a record list.

Genero Business Development Language

352

Context:

1. During a DISPLAY ARRAY or INPUT ARRAY instruction.

Syntax:

CALL FGL_SET_ARR_CURR(row INTEGER)

Notes:

1. row is the row number is the array variable.

Usage:

This function is typically used to control navigation in a DISPLAY ARRAY or INPUT ARRAY.

When a new row is reaching by using with this function, the first field editable gets the
focus.

Warning: Control blocks like BEFORE ROW and field/row validation in INPUT ARRAY
are performed, as if the user moved to another row, except when the function is
called in BEFORE DISPLAY or BEFORE INPUT.

FGL_SETENV()

Purpose:

This function sets the value of an environment variable.

Context:

1. At any place in the program.

Syntax:

CALL FGL_SETENV(variable STRING, value STRING)

Notes:

1. variable is the name of the environment variable.
2. value is the value to be set.

Warnings:

1. Use this function at your own risk: You may experience unexpected results if you
change environment variables that are already used by the current program - for

Library

353

example, when you are connected to INFORMIX and you change the
INFORMIXDIR environment variable.

2. There is a little difference between Windows and UNIX platforms when passing a
NULL as the value parameter: On Windows, the environment variable is
removed, while on UNIX, the environment variable gets an empty value (i.e. it is
not removed from the environment).

See also: FGL_GETENV()

FGL_DRAWBOX()

Purpose:

This function draws a rectangle based on the character terminal coordinates in the
current open window.

Context:

1. At any place in the program.

Syntax:

CALL FGL_DRAWBOX(height, width, line, column, color INTEGER)

Warnings:

1. This function is provided for backward compatibility.

See also: FGL_DRAWLINE().

FGL_DRAWLINE()

Purpose:

This function draws a line based on the character terminal coordinates in the current
open window.

Context:

1. At any place in the program.

Syntax:

CALL FGL_DRAWLINE(posX, posY, width, color INTEGER)

Genero Business Development Language

354

Warnings:

1. This function is provided for backward compatibility.

See also: FGL_DRAWBOX().

FGL_LASTKEY()

Purpose:

This function returns the key code of the last key pressed by the user.

Context:

1. Any interactive instruction.

Syntax:

CALL FGL_LASTKEY() RETURNING result INTEGER

Notes:

1. The function returns NULL if no key has been pressed.

Warnings:

1. This function is provided for backward compatibility.

See also: FGL_KEYVAL().

FGL_KEYVAL()

Purpose:

This function returns the key code of a logical or physical key.

Context:

1. At any place in the program.

Syntax:

CALL FGL_KEYVAL(character STRING) RETURNING result INTEGER

Library

355

Notes:

1. character can be a single character, a digit, a printable symbol like @, #, $ or a
special keyword.

2. Keywords recognized by FGL_KEYVAL() are: ACCEPT, HELP, NEXT, RETURN,
DELETE, INSERT, NEXTPAGE, RIGHT, DOWN, INTERRUPT, PREVIOUS, TAB, ESC,
ESCAPE, LEFT, PREVPAGE, UP, F1 through F64, CONTROL-character (except A, D,
H, I, J, L, M, R, or X)

3. If you specify a single character, FGL_KEYVAL() considers the case. In all other
instances, the function ignores the case of its argument, which can be uppercase
or lowercase letters.

4. The function returns NULL if the parameter does not correspond to a valid key.

Warnings:

1. This function is provided for backward compatibility especially for TUI mode
applications. FGL_KEYVAL() is well supported in text mode, but this function can
only be emulated in GUI mode, because the front-ends communicate with the
runtime system with other events as keystrokes.

Usage:

FGL_KEYVAL() can be used in form-related statements to examine a value returned by
the FGL_LASTKEY() function.

To determine whether the user has performed an action, such as inserting a row, specify
the logical name of the action (such as INSERT) rather than the name of the physical
key (such as F1). For example, the logical name of the default Accept key is ESCAPE.
To test if the key most recently pressed by the user was the Accept key, specify
FGL_KEYVAL("ACCEPT") rather than FGL_KEYVAL("escape") or FGL_KEYVAL("ESC").
Otherwise, if a key other than ESCAPE is set as the Accept key and the user presses
that key, FGL_LASTKEY() does not return a code equal to FGL_KEYVAL("ESCAPE"). The
value returned by FGL_LASTKEY() is undefined in a MENU statement.

See also: FGL_LASTKEY().

FGL_REPORT_PRINT_BINARY_FILE()

Purpose:

This function prints a file containing binary data during a report.

Context:

1. In a REPORT routine.

Genero Business Development Language

356

Syntax:

CALL FGL_REPORT_PRINT_BINARY_FILE(filename STRING)

Notes:

1. filename is the name of the binary file.

Warnings:

1. This function is provided for backward compatibility.

FGL_REPORT_SET_DOCUMENT_HANDLER()

Purpose:

This function redirects the next report to an XML document handler.

Context:

1. Before / After the execution of a REPORT.

Syntax:

CALL FGL_REPORT_SET_DOCUMENT_HANDLER(handler om.SaxDocumentHandler)

Notes:

1. handler is the document handler variable.

FGL_GETCURSOR() / FGL_DIALOG_GETCURSOR()

Purpose:

This function returns the position of the edit cursor in the current field.

Context:

1. In interactive instructions.

Syntax:

CALL FGL_GETCURSOR() RETURNING index INTEGER

Library

357

Notes:

1. index is the character position in the text.

See also: FGL_DIALOG_SETCURSOR().

FGL_GETWIN_HEIGHT()

Purpose:

This function returns the number of rows of the current window.

Context:

1. At any place in the program.

Syntax:

CALL FGL_GETWIN_HEIGHT() RETURNING result INTEGER

Warnings:

1. This function is provided for backward compatibility.

See also: FGL_GETWIN_WIDTH().

FGL_GETWIN_WIDTH()

Purpose:

This function returns the width of the current window as a number of columns.

Context:

1. At any place in the program.

Syntax:

CALL FGL_GETWIN_WIDTH() RETURNING result INTEGER

Warnings:

1. This function is provided for backward compatibility.

Genero Business Development Language

358

See also: FGL_GETWIN_WIDTH().

FGL_GETWIN_X()

Purpose:

This function returns the horizontal position of the current window.

Context:

1. At any place in the program.

Syntax:

CALL FGL_GETWIN_X() RETURNING result INTEGER

Warnings:

1. This function is provided for backward compatibility.

See also: FGL_GETWIN_Y().

FGL_GETWIN_Y()

Purpose:

This function returns the vertical position of the current window.

Context:

1. At any place in the program.

Syntax:

CALL FGL_GETWIN_X() RETURNING result INTEGER

Warnings:

1. This function is provided for backward compatibility.

See also: FGL_GETWIN_X().

Library

359

LENGTH()

Purpose:

This function returns the number of bytes of the expression passed as parameter.

Context:

1. At any place in the program.

Syntax:

CALL LENGTH(expression) RETURNING result INTEGER

Notes:

1. expression is any valid expression.
2. Trailing blanks are not counted in the length of the string.
3. If the parameter is NULL, the function returns zero.

Warnings:

1. The function counts bytes, not characters. This is important in a multi-byte
environment.

2. Most database servers support an equivalent scalar function in the SQL
language, but the result may be different from the FGL built-in function. For
example, Oracle's LENGTH() function returns NULL when the string is empty.

See also: FGL_WIDTH().

FGL_GETVERSION()

Purpose:

This function returns the build number of the runtime system.

Context:

1. At any place in the program.

Syntax:

CALL FGL_GETVERSION() RETURNING result STRING

Genero Business Development Language

360

Warnings:

1. Provided for debugging info only; please do not write business code dependent
on the build number.

2. The format of the build number returned by this function is subject of change in
future versions.

FGL_GETHELP()

Purpose:

Returns the help text according to its identifier by reading the current help file.

Context:

1. At any place in the program, after the definition of the current help file (OPTIONS
HELP FILE).

Syntax:

CALL FGL_GETHELP(id INTEGER) RETURNING result STRING

Notes:

1. id is the help text identifier.

See also: The OPTIONS instruction.

FGL_GETPID()

Purpose:

This function returns the system process identifier.

Context:

1. At any place in the program.

Syntax:

CALL FGL_GETPID() RETURNING result INTEGER

Library

361

Notes:

1. The process identifier is provided by the operating system; it is normally unique.

See also: FGL_SYSTEM().

FGL_DIALOG_GETBUFFERSTART()

Purpose:

This function returns the row offset of the page to feed a paged display array.

Syntax:

CALL FGL_DIALOG_GETBUFFERSTART() RETURNING result INTEGER

Usage:

See DISPLAY ARRAY.

FGL_DIALOG_GETBUFFERLENGTH()

Purpose:

This function returns the number of rows of the page to feed a paged display array.

Syntax:

CALL FGL_DIALOG_GETBUFFERLENGTH() RETURNING result INTEGER

Usage:

See DISPLAY ARRAY.

FGL_PUTFILE

Purpose:

Transfers a file from the application server machine to the front end workstation.

Genero Business Development Language

362

Syntax:

CALL fgl_putfile(src STRING, dst STRING)

Notes:

1. src contains the name of the source file to send.
2. dst contains the name of the file to write on the front end.

FGL_GETFILE

Purpose:

Transfers a file from the front end workstation to the application server machine.

Syntax:

CALL fgl_getfile(src STRING, dst STRING)

Notes:

1. src contains the name of the source file to retrieve from the front end workstation.
2. dst contains the name of the file to write on the server side.

FGL_GETENV()

Purpose:

This function returns the value of the environment variable having the name you specify
as the argument.

Syntax:

CALL FGL_GETENV(variable STRING) RETURNING result STRING

Notes:

1. variable is the name of the environment variable.
2. If the specified environment variable is not defined, the function returns a NULL

value.
3. If the environment variable is defined but does not have a value assigned to it,

the function returns blank spaces.

Library

363

Warnings:

1. If the returned value can be a long character string, be sure to declare the
receiving variable with sufficient size to store the character value returned by the
function. Otherwise, the value will be truncated.

Usage:

The argument of FGL_GETENV() must be the name of an environment variable. If the
requested value exists in the current user environment, the function returns it as a
character string and then returns control of execution to the calling context.

See also: FGL_SETENV()

FGL_GETKEYLABEL()

Purpose:

This function returns the default label associated to a key.

Syntax:

CALL FGL_GETKEYLABEL(keyname STRING) RETURNING result STRING

Notes:

1. keyname is the logical name of a key such as F11 or DELETE, INSERT, CANCEL.

Warnings:

1. This function is provided for backward compatibility.

See also: FGL_SETKEYLABEL(), FGL_DIALOG_GETKEYLABEL().

FGL_SETKEYLABEL()

Purpose:

This function sets the default label associated to a key.

Syntax:

CALL FGL_SETKEYLABEL(keyname STRING, label STRING)

Genero Business Development Language

364

Notes:

1. keyname is the logical name of a key such as F11 or DELETE, INSERT, CANCEL.
2. label is the text associated to the key.

Warnings:

1. This function is provided for backward compatibility.

See also: FGL_SETKEYLABEL(), FGL_DIALOG_SETKEYLABEL().

FGL_DIALOG_GETKEYLABEL()

Purpose:

This function returns the label associated to a key for the current interactive instruction.

Syntax:

CALL FGL_DIALOG_GETKEYLABEL(keyname STRING) RETURNING result STRING

Notes:

1. keyname is the logical name of a key such as F11 or DELETE, INSERT, CANCEL.

Warnings:

1. This function is provided for backward compatibility.

See also: FGL_SETKEYLABEL(), FGL_DIALOG_SETKEYLABEL().

FGL_DIALOG_SETKEYLABEL()

Purpose:

This function sets the label associated to a key for the current interactive instruction.

Syntax:

CALL FGL_DIALOG_SETKEYLABEL(keyname STRING, label STRING)

Notes:

1. keyname is the logical name of a key such as F11 or DELETE, INSERT, CANCEL.

Library

365

2. label is the text associated to the key.

Warnings:

1. This function is provided for backward compatibility.

See also: FGL_SETKEYLABEL(), FGL_DIALOG_GETKEYLABEL().

FGL_SETSIZE()

Purpose:

This function sets the size of the main application window.

Syntax:

CALL FGL_SETSIZE(width INTEGER, height INTEGER)

Notes:

1. width is the number of columns of the window.
2. height is the number of lines of the window.

Warnings:

1. This function is provided for backward compatibility.

See also: FGL_SETTITLE().

FGL_SETTITLE()

Purpose:

This function sets the title of the main application window.

Syntax:

CALL FGL_SETTITLE(label STRING)

Notes:

1. label is the text of the title.

Genero Business Development Language

366

Warnings:

1. This function is provided for backward compatibility.

See also: FGL_SETSIZE().

FGL_SYSTEM()

Purpose:

This function starts a program in a UNIX terminal emulator when using a graphical front
end.

Syntax:

CALL FGL_SYSTEM(command STRING)

Notes:

1. command is the command line to be executed on the server.

Warnings:

1. This function is provided for backward compatibility.

Usage:

The function starts a program that needs a UNIX terminal emulator when using the
Windows Front End, even if the current program has been started without a visible
terminal. The command parameter is a string or variable that contains the commands to
be executed. The UNIX terminal will be raised and activated. The terminal is
automatically lowered when the child process finishes.

See also: WINEXEC().

FGL_WIDTH()

Purpose:

This function returns the number of columns needed to represent the printed version of
the expression.

Library

367

Context:

1. At any place in the program.

Syntax:

CALL FGL_WIDTH(expression) RETURNING result INTEGER

Notes:

1. expression is any valid expression.
2. Trailing blanks are counted in the length of the string.
3. If the parameter is NULL, the function returns zero.

See also: LENGTH().

FGL_WINDOW_GETOPTION()

Purpose:

This function returns attributes of the current window.

Syntax:

CALL FGL_WINDOW_GETOPTION(attribute STRING) RETURNING result STRING

Notes:

1. attribute is the name of a window attribute. This can be one of name, x, y, width,
height, formline, messageline.

Warnings:

1. This function is provided for backward compatibility.

FGL_GETRESOURCE()

Purpose:

This function returns the value of an FGLPROFILE entry.

Context:

1. At any place in the program.

Genero Business Development Language

368

Syntax:

CALL FGL_GETRESOURCE(name STRING) RETURNING result STRING

Notes:

1. name is the FGLPROFILE entry name to be read.
2. If the entry does not exist in the configuration file, the function returns NULL.
3. See also FGLPROFILE definition.

Warnings:

1. FGLPROFILE entry names are not case sensitive.

ORD()

Purpose:

This function accepts as its argument a character expression and returns the integer
value of the first byte of that argument.

Context:

1. At any place in the program.

Syntax:

CALL ORD(source STRING) RETURNING result INTEGER

Notes:

1. source is a string expression.
2. This function is case-sensitive.
3. Only the first byte of the argument is evaluated.
4. Returns NULL if the argument passed is not valid.
5. For a default (U.S. English) locale, this function is the logical inverse of the

ASCII() operator.

See also: FGL_KEYVAL(), ASCII().

Library

369

DOWNSHIFT()

Purpose:

This function returns returns a string value in which all uppercase characters in its
argument are converted to lowercase.

Context:

1. At any place in the program.

Syntax:

CALL DOWNSHIFT(source STRING) RETURNING result STRING

Notes:

1. source is the character string to convert to lowercase letters.
2. Non-alphabetic or lowercase characters are not altered.

Warnings:

1. Conversion depends on locale settings (the LC_CTYPE environment variable).

See also: UPSHIFT().

UPSHIFT()

Purpose:

This function returns a string value in which all lowercase characters in its argument are
converted to uppercase.

Context:

1. At any place in the program.

Syntax:

CALL UPSHIFT(source STRING) RETURNING result STRING

Notes:

1. source is the character string to convert to uppercase letters.
2. Non-alphabetic or uppercase characters are not altered.

Genero Business Development Language

370

Warnings:

1. Conversion depends on locale settings (the LC_CTYPE environment variable).

See also: DOWNSHIFT().

The key code table

Warning: These are internal key codes. Avoid hardcoding these numbers in your
sources; otherwise your 4gl source will not be compatible with future versions of
Genero FGL. Always use the FGL_KEYVAL(keyname) function instead.

Value Key name Description
1 to 26 Control-x Control key, where x is the any letter from A

to Z. The key code corresponding to Control-
A is 1, Control-B is 2, etc.

others < 256 ASCII chars Other codes correspond to the ASCII
characters set.

2000 up The up-arrow logical key.
2001 down The down-arrow logical key.
2002 left The left-arrow logical key.
2003 right The right-arrow logical key.
2005 nextpage The next-page logical key.
2006 prevpage The previous-page logical key.
2008 help The help logical key.
2011 interrupt The interrupt logical key.
2012 home The home logical key.
2013 end The end logical key.
2016 accept The accept logical key.
2017 backspace The backspace logical key.
3000 to 3255 Fx Function key, where x is the number of the

function key. The key code corresponding to
a function key Fx is 3000+x-1, for example,
3011 corresponds to F12.

Library

371

Utility Functions
Summary:

• What is a utility function?
• List of utility functions
• List of de-supported utility functions

See also: Built-in Functions.

What is a utility function?

A utility function is a function provided in a separate 4GL library; it is not built in the
runtime system. You must link with the utility library to use one of the utility functions.

The library of utility function is named libfgl4js. The 42x file, 42m modules and 42f
forms are provided in $FGLDIR/lib. The sources of the utility functions and form files are
provided in the FGLDIR/src directory.

List of utility functions

Function Description
Common dialog functions
FGL_WINBUTTON() In a separate window, displays an interactive

message box with multiple choices
FGL_WINMESSAGE() In a separate window, Displays an interactive

message box with some text
FGL_WINPROMPT() Displays a dialog box with a field that accepts

a value
FGL_WINQUESTION() In a separate window, displays an interactive

message box with Yes, No, Cancel buttons
FGL_WINWAIT() Displays a dialog box and waits for the user to

press a key
Database utility functions
DB_GET_DATABASE_TYPE() Returns the type of the current database
DB_GET_SEQUENCE() Returns a new serial value from a predefined

table (SERIALREG)
DB_START_TRANSACTION() Starts a new transaction if none is started (for

nested transaction handling)
DB_FINISH_TRANSACTION() Ends a nested transaction

Genero Business Development Language

372

DB_IS_TRANSACTION_STARTED() Returns TRUE if a nested transaction is
started

Front End Functions (Use ui.Interface.frontCall() instead)
WINOPENDIR() Shows a dialog window to select a directory in

the front end workstation file system;
use
ui.Interface.frontCall("standard","opendir",...)
instead.

WINOPENFILE() Shows a dialog window to select a file in the
front end workstation file system;
use
ui.Interface.frontCall("standard","openfile",...)
instead.

WINSAVEFILE() Shows a dialog window to save a file in the
front end workstation file system;
use
ui.Interface.frontCall("standard","savefile",...)
instead.

Microsoft Windows Client Specific Functions (Use ui.Interface.frontCall()
instead)
WINEXEC() Starts a program on a Microsoft Windows

front end without waiting;
use
ui.Interface.frontCall("standard","execute",...)
instead.

WINEXECWAIT() Starts a program on a Microsoft Windows
front end and waits;
use
ui.Interface.frontCall("standard","execute",...)
instead.

WINSHELLEXEC() Opens a document on a Microsoft Windows
front end with the corresponding program;
use
ui.Interface.frontCall("standard","shellexec",...)
instead.

List of de-supported utility functions:

Function Description
DATE1() Converts a DATETIME to a DATE.
TIME1() Extracts the time part (hour, minute, second)

from DATETIME.
FGL_FGLGUI() Returns TRUE if the application runs in GUI

Library

373

mode.
FGL_GETUITYPE() Returns the type of the front end.
FGL_MSG_NONL() Returns an error message without trailing

blanks.
FGL_INIT4JS() Initializes the built-in function library.
FGL_MSG_NONL() Returns an error message without the CR at

the end.
FGL_WTKCLIENT() Returns TRUE if the current front end is the

WTK.
FGL_RESOURCE() Selects a specific FGLPROFILE file.
FGL_UIRETRIEVE() Returns the value of a variable from the

WTK front end.
FGL_UISENDCOMMAND() Sends a TCL command to the WTK front

end.
FGL_WTKCLIENT() Returns TRUE if the current front end is the

WTK.
FGL_CHARBOOL_TO_INTBOOL() Converts a character representation of a

Boolean value to an INTEGER.
FGL_INTBOOL_TO_CHARBOOL(
)

Converts an INTEGER to a character
representation of the Boolean value.

DB_GET_DATABASE_TYPE()

Purpose:

This function returns the database type for the current connection.

Syntax:

CALL DB_GET_DATABASE_TYPE()
 RETURNING result STRING

Usage:

After connecting to the database, you can get the type of the database server with this
function.

The following table shows the codes returned by this function, for the supported
database types:

Code Description
ADS ANTs / Genero DB
ASA Sybase ASA

Genero Business Development Language

374

DB2 IBM DB2
IFX Informix
MYS MySQL
MSV Microsoft SQL Server
ORA Oracle
PGS PostgreSQL

DB_GET_SEQUENCE()

Purpose:

This function generates a new sequence for a given identifier.

Syntax:

CALL DB_GET_SEQUENCE(id STRING)
 RETURNING result INTEGER

Warnings:

1. This function needs a database table called SERIALREG.
2. This function must be used inside a transaction block.

Usage:

This function generates a new sequence from a register table created in the current
database.

The table must be created as follows:

CREATE TABLE SERIALREG
 (TABLE_NAME VARCHAR(50) NOT NULL PRIMARY KEY,
 LAST_SERIAL INTEGER NOT NULL)

Each time you call this function, the sequence is incremented in the database table and
returned by the function.

It is mandatory to use this function inside a transaction block, in order to generate unique
sequences.

Example:

01 MAIN
02 DEFINE ns, s INTEGER
03 DATABASE mydb
04 LET s = DB_START_TRANSACTION()

Library

375

05 LET ns = DB_GET_SEQUENCE("mytable")
06 INSERT INTO mytable VALUES (ns, 'a new sequence')
07 LET s = DB_FINISH_TRANSACTION(TRUE)
08 END MAIN

DB_START_TRANSACTION()

Purpose:

This function encapsulates the BEGIN WORK instruction to start a transaction.

Syntax:

CALL DB_START_TRANSACTION()
 RETURNING result INTEGER

Usage:

You can use the transaction management functions to handle nested transactions.

On most database engines, you can only have a unique transaction, that you start with
BEGIN WORK and you end with COMMIT WORK or ROLLBACK WORK. But in a
complex program, you may have nested function calls doing several SQL transactions.

The transaction management functions execute a real transaction instruction only if the
number of subsequent start/end calls of these functions matches.

Example:

01 DEFINE s INTEGER
02
03 MAIN
04 DATABASE mydb
05 LET s = DB_START_TRANSACTION() -- real BEGIN WORK
06 CALL do_update()
07 LET s = DB_FINISH_TRANSACTION(TRUE) -- real COMMIT WORK
08 END MAIN
09
10 FUNCTION do_update()
11 LET s = DB_START_TRANSACTION()
12 UPDATE customer SET cust_status = 'X'
13 LET s = DB_FINISH_TRANSACTION(TRUE)
14 END FUNCTION

Genero Business Development Language

376

DB_FINISH_TRANSACTION()

Purpose:

This function encapsulates the COMMIT WORK or ROLLBACK WORK instructions to
end a transaction.

Syntax:

CALL DB_FINISH_TRANSACTION(commit INTEGER)
 RETURNING result INTEGER

Notes:

1. commit indicates whether the transaction must be committed.

Usage:

When the number of calls to DB_START_TRANSACTION() matches, this function
executes a COMMIT WORK if the passed parameter is TRUE; if the passed parameter
is not TRUE, it executes a ROLLBACK WORK.

If the number of calls does not match, the function does nothing.

See also: DB_START_TRANSACTION().

DB_IS_TRANSACTION_STARTED()

Purpose:

This function indicates whether a transaction is started with the transaction management
functions.

Syntax:

CALL DB_IS_TRANSACTION_STARTED()
 RETURNING result INTEGER

Usage:

The function returns TRUE if a transaction was started with
DB_START_TRANSACTION().

Library

377

FGL_WINBUTTON()

Purpose:

This function displays an interactive message box containing multiple choices, in a
separate window.

Syntax:

CALL FGL_WINBUTTON(
 title STRING, text STRING, default STRING,
 buttons STRING, icon STRING, danger SMALLINT)
 RETURNING result STRING

Notes:

1. title defines the title of the message window.
2. text specifies the string displayed in message window.
3. Use '\n' in text to separate lines (this does not work on ASCII client).
4. default indicates the default button to be pre-selected.
5. buttons defines a set of button labels separated by "|".
6. You can define up to 7 buttons that each have 10 characters.
7. icon is the name of the icon to be displayed.
8. Supported icon names are: "information", "exclamation", "question", "stop".
9. danger (for X11 only), number of the warnings item. Otherwise, this parameter is

ignored.
10. The function returns the label of the button which has been selected by the user.

Warnings:

1. You can also use a form or a menu with "popup" style instead.
2. If two buttons start with the same letter, the user will not be able to select one of

them on the ASCII client.
3. The "&" before a letter for a button is either displayed (ASCII client), or it

underlines the letter.

Example:

01 MAIN
02 DEFINE answer STRING
03 LET answer = FGL_WINBUTTON("Media selection", "What is your
favorite media?",
04 "Lynx", "Floppy Disk|CD-ROM|DVD-ROM|Other", "question", 0)
05 DISPLAY "Selected media is: " || answer
06 END MAIN

Genero Business Development Language

378

FGL_WINMESSAGE()

Purpose:

This function displays an interactive message box containing text, in a separate window.

Syntax:

CALL FGL_WINMESSAGE(title STRING, text STRING, icon STRING)

Notes:

1. title defines message box title.
2. text is the text displayed in the message box. Use '\n' to separate lines.
3. icon is the name of the icon to be displayed.
4. Supported icon names are: "information", "exclamation", "question", "stop".

Warnings:

1. You can also use a form or a menu with "popup" style instead.
2. icon is ignored by the ASCII client.

Example:

01 MAIN
02 CALL FGL_WINMESSAGE("Title", "This is a critical message.",
"stop")
03 END MAIN

FGL_WINPROMPT()

Purpose:

This function displays a dialog box containing a field that accepts a value.

Syntax:

CALL FGL_WINPROMPT (
 x INTEGER, y INTEGER, text STRING,
 default STRING, length INTEGER, type STRING)
 RETURNING value STRING

Notes:

1. x is the column position in characters.
2. y is the line position in characters.
3. text is the message shown in the box.

Library

379

4. default is the default value.
5. length is the maximum length of the input value.
6. type is the datatype of the return value : 0=CHAR, 1=SMALLINT, 2=INTEGER,

7=DATE, 255=invisible
7. value is the value entered by the user.

Warnings:

1. You can also use your own form instead.
2. Avoid passing NULL values.

Example:

01 MAIN
02 DEFINE answer DATE
04 LET answer = FGL_WINPROMPT(10, 10, "Today", DATE, 10, 7)
05 DISPLAY "Today is " || answer
06 END MAIN

FGL_WINQUESTION()

Purpose:

This function displays an interactive message box containing Yes, No, and Cancel
buttons, in a separate window

Syntax:

CALL FGL_WINQUESTION(
 title STRING, text STRING, default STRING,
 buttons STRING, icon STRING, danger SMALLINT)
 RETURNING value STRING

Notes:

1. title is the message box title.
2. text is the message displayed in the message box. Use '\n' to separate lines

(does not work on ASCII client).
3. default defines the default button that is pre-selected.
4. buttons defines the buttons: Either "yes|no" or "yes|no|cancel", not case-

sensitive.
5. icon is the name of the icon to be displayed.
6. Supported icon names are: "information", "exclamation", "question", "stop".
7. danger is for X11, it defines the code of the warning item. Otherwise, this

parameter is ignored.
8. The function returns the label of the button which has been selected by the user.

Genero Business Development Language

380

Warnings:

1. You can also use a form or a menu with "popup" style instead.
2. Setting buttons to another value may result in unpredictable behavior at runtime.
3. Avoid passing NULL values

Example:

01 MAIN
02 DEFINE answer STRING
04 LET answer = "yes"
05 WHILE answer = "yes"
06 LET answer = FGL_WINQUESTION(
07 "Procedure", "Would you like to continue ? ",
08 "cancel", "yes|no|cancel", "question", 0)
09 END WHILE
10 IF answer = "cancel" THEN
11 DISPLAY "Canceled."
12 END IF
13 END MAIN

FGL_WINWAIT()

Purpose:

This function displays an interactive message box and waits for the user to press a key

Syntax:

CALL FGL_WINWAIT(text STRING)

Notes:

1. text is the message displayed in the message box. Use '\n' to separate lines (not
working on ASCII client).

Warnings:

1. You can also use a form or a menu with "popup" style instead.

WINEXEC() MS Windows FE Only!

Purpose:

This function executes a program on the machine where the Windows Front End runs
and returns immediately.

Library

381

Context:

1. At any place in the program, but only after the first instruction has displayed
something on the front end.

Syntax:

CALL WINEXEC(command STRING)
 RETURNING result INTEGER

Notes:

1. command is the command to be executed on the front end.
2. The function executes the program without waiting.
3. The function returns FALSE if a problem has occurred.

See also: WINEXECWAIT(), DDE Support.

WINEXECWAIT() MS Windows FE Only!

Purpose:

This function executes a program on the machine where the Windows Front End runs
and waits for termination.

Context:

1. At any place in the program, but only after the first instruction has displayed
something on the front end.

Syntax:

CALL WINEXECWAIT(command STRING)
 RETURNING result INTEGER

Notes:

1. command is the command to be executed on the front end.
2. The function executes the program and waits for its termination.
3. The function returns FALSE if a problem has occurred.

See also: WINEXEC(), DDE Support.

Genero Business Development Language

382

WINSHELLEXEC() MS Windows FE Only!

Purpose:

This function opens a document with the corresponding program, based on the file
extension.

Context:

1. At any place in the program, but only after the first instruction has displayed
something on the front end

Syntax:

CALL WINSHELLEXEC(filename STRING)
 RETURNING result INTEGER

Notes:

1. filename is the file to be opened on the front end.
2. The function executes the program and returns immediately.
3. The function returns FALSE if a problem has occurred.

See also: WINEXEC(), DDE Support.

WINOPENDIR()

Purpose:

This function shows a dialog window to let the user select a directory path on the front
end workstation file system.

Context:

1. At any place in the program, but only after the first instruction has displayed
something on the front end

Syntax:

CALL WINOPENDIR(dirname STRING, caption STRING)
 RETURNING result STRING

Notes:

1. dirname is the default path to be displayed in the dialog window.
2. caption is the label to be displayed.
3. The function returns the directory path on success.

Library

383

4. The function returns NULL if a problem has occurred or if the the user canceled
the dialog.

WINOPENFILE()

Purpose:

This function shows a dialog window to let the user select a file path on the front end
workstation file system, for displaying.

Context:

1. At any place in the program, but only after the first instruction has displayed
something on the front end.

Syntax:

CALL WINOPENFILE(dirname STRING, typename STRING,
 extlist STRING, caption STRING)
 RETURNING result STRING

Notes:

1. dirname is the default path to be displayed in the dialog window.
2. typename is the name of the file type to be displayed.
3. extlist is a blank-separated list of file extensions defining the file type.
4. caption is the label to be displayed.
5. The function returns the file path on success.
6. The function returns NULL if a problem has occurred or if the the user canceled

the dialog.

WINSAVEFILE()

Purpose:

This function shows a dialog window to let the user select a file path on the front end
workstation file system, for saving.

Context:

1. At any place in the program, but only after the first instruction has displayed
something on the front end

Genero Business Development Language

384

Syntax:

CALL WINSAVEFILE(dirname STRING, typename STRING,
 extlist STRING, caption STRING)
 RETURNING result STRING

Notes:

1. dirname is the default path to be displayed in the dialog window.
2. typename is the name of the file type to be saved.
3. extlist is a blank separated list of file extensions defining the file type.
4. caption is the label to be saved.
5. The function returns the file path on success.
6. The function returns NULL if a problem has occurred or if the the user canceled

the dialog.

Library

385

Windows DDE Support
Summary:

• What is DDE?
• Using DDE API
• The DDE API
• Example
• BDL Wrappers for DDE functions

See also: Built-in Functions.

What is DDE?

DDE is a form of inter-process communication implemented by Microsoft for Windows
platforms. DDE uses shared memory to exchange data between applications.
Applications can use DDE for one-time data transfers, and for ongoing exchanges in
applications that send updates to one another as new data becomes available.

Please refer to your Microsoft documentation for DDE compatibility between existing
versions. As an example, DDE commands were changed between Office 97 and Office
98.

Using DDE API

With DDE Support, you can invoke a Windows application and send data to or receive
data from it. To use this functionality, the program must use the Windows Front End.

Before using the DDE functions, the TCP communication channel between the
application and the front end must be established with a display (OPEN WINDOW,
MENU, DISPLAY TO).

Genero Business Development Language

386

The DDE API is used in a four-part procedure, as described in the following steps:

1. The application sends the Front End the DDE order using the TCP/IP channel.
2. The Front End executes the DDE order and sends the data to the Windows

application through the DDE API.
3. The Windows application executes the command and sends the result, which

can be data or an error code, to the Front End.
4. The Windows Front End sends back the result to the application using the

TCP/IP channel.

A DDE connection is uniquely identified by two values: The name of the DDE Application
and the document. Most DDE functions require these two values to identify the DDE
source or target.

The DDE API

The DDE API is based on the front call technique described in Front End Functions. All
DDE functions are grouped in the WINDDE front end function module.

Function name Description
DDEConnect This function opens a DDE connection
DDEExecute This function executes a command in the specified

program
DDEFinish This function closes a DDE connection
DDEFinishAll This function closes all DDE connections, as well as the

DDE server program
DDEError This function returns DDE error information about the

last DDE operation

Library

387

DDEPeek This function retrieves data from the specified program
and document using the DDE channel

DDEPoke This function sends data to the specified program and
document using the DDE channel

DDEConnect

Purpose:

This function opens a DDE connection.

Syntax:

CALL ui.Interface.frontCall("WINDDE","DDEConnect",
 [program, document], [result])

Notes:

1. program is the name of the DDE application.
2. document is the document that is to be opened.
3. result is an integer variable receiving the status.
4. result is TRUE if the function succeeded, FALSE otherwise.
5. If the function failed, use DDEError to get the description of the error.

Warnings:

1. If the function failed with "DMLERR_NO_CONV_ESTABLISHED", then the DDE
application was probably not running; use execute or shellexec front call to start
the DDE application.

DDEExecute

Purpose:

This function executes a DDE command.

Syntax:

CALL ui.Interface.frontCall("WINDDE","DDEExecute",
 [program, document, command], [result])

Notes:

1. program is the name of the DDE application.

Genero Business Development Language

388

2. document is the document that is to be used.
3. command is the command that needs to be executed.
4. Refer to the program documentation for the syntax of command.
5. result is an integer variable receiving the status.
6. result is TRUE if the function succeeded, FALSE otherwise.
7. If the function failed, use DDEError to get the description of the error.

Warnings:

1. The DDE connection must be opened; see DDEConnect.

DDEFinish

Purpose:

This function closes a DDE connection.

Syntax:

CALL ui.Interface.frontCall("WINDDE","DDEFinish",
 [program, document], [result])

Notes:

1. program is the name of the DDE application.
2. document is the document that is to be closed.
3. result is an integer variable receiving the status.
4. result is TRUE if the function succeeded, FALSE otherwise.
5. If the function failed, use DDEError to get the description of the error.

Warnings:

1. The DDE connection must be opened, see DDEConnect.

DDEFinishAll

Purpose:

This function closes all DDE connections as well as the DDE server program.

Syntax

CALL ui.Interface.frontCall("WINDDE","DDEFinishAll", [], [result])

Library

389

Notes:

1. Closes all DDE connections.
2. result is an integer variable receiving the status.
3. result is TRUE if the function succeeded, FALSE otherwise.

DDEError

Purpose:

This function returns the error information about the last DDE operation.

Syntax:

CALL ui.Interface.frontCall("WINDDE","DDEError", [], [errmsg])

Notes:

1. errmsg is the error message. It is set to NULL if no error occurred.

DDEPeek

Purpose:

This function retrieves data from the specified program and document using the DDE
channel.

Syntax:

CALL ui.Interface.frontCall("WINDDE","DDEPeek",
 [program, container, cells], [result, value])

Notes:

1. program is the name of the DDE application.
2. container is the document or sub-document that is to be used.

A sub-document can, for example, be a sheet in Microsoft Excel.
3. cells represents the working items; see the program documentation for the format

of cells.
4. value represents the data to be retrieved; see the program documentation for the

format of values.
5. result is an integer variable receiving the status.
6. result is TRUE if the function succeeded, FALSE otherwise.
7. If the function failed, use DDEError to get the description of the error.
8. value is a variable receiving the cells values.

Genero Business Development Language

390

Warnings:

1. The DDE connection must be opened; see DDEConnect.
2. DDEError can only be called once to check if an error occurred.

DDEPoke

Purpose:

This function sends data to the specified program and document using the DDE channel.

Syntax:

CALL ui.Interface.frontCall("WINDDE","DDEPoke",
 [program, container, cells, values], [result])

Notes:

1. program is the name of the DDE application.
2. container is the document or sub-document that is to be used.

A sub-document can, for example, be a sheet in Microsoft Excel.
3. cells represents the working items; see the program documentation for the format

of cells.
4. values represents the data to be sent; see the program documentation for the

format of values.
5. result is an integer variable receiving the status.
6. result is TRUE if the function succeeded, FALSE otherwise.
7. If the function failed, use DDEError to get the description of the error.

Warnings:

1. The DDE connection must be opened; see DDEConnect.
2. An error may occur if you try to set many (thousands of) cells in a single

operation.

Example

dde_example.per

01 DATABASE formonly
02 SCREEN
03 {
04 Value to be given to top-left corner :
05 [f00]
06 Value found on top-left corner :
07 [f01]

Library

391

08 }
09 ATTRIBUTES
10 f00 = formonly.val;
11 f01 = formonly.rval, NOENTRY;

dde_example.4gl

01 MAIN
02 -- Excel must be open with "File1.xls"
03 CONSTANT file = "File1.xls"
04 CONSTANT prog = "EXCEL"
05 DEFINE val, rval STRING
06 DEFINE res INTEGER
07 OPEN WINDOW w1 AT 1,1 WITH FORM "dde_example.per"
08 INPUT BY NAME val
09 CALL ui.Interface.frontCall("WINDDE","DDEConnect", [prog,file],
[res])
10 CALL checkError(res)
11 CALL ui.Interface.frontCall("WINDDE","DDEPoke",
[prog,file,"R1C1",val], [res]);
12 CALL checkError(res)
13 CALL ui.Interface.frontCall("WINDDE","DDEPeek",
[prog,file,"R1C1"], [res,rval]);
14 CALL checkError(res)
15 DISPLAY BY NAME rval
16 INPUT BY NAME val WITHOUT DEFAULTS
17 CALL ui.Interface.frontCall("WINDDE","DDEExecute",
[prog,file,"[save]"], [res]);
18 CALL checkError(res)
19 CALL ui.Interface.frontCall("WINDDE","DDEFinish", [prog,file],
[res]);
20 CALL checkError(res)
21 CALL ui.Interface.frontCall("WINDDE","DDEFinishAll", [], [res]);
22 CALL checkError(res)
23 CLOSE WINDOW w1
24 END MAIN
25
26 FUNCTION checkError(res)
27 DEFINE res INTEGER
28 DEFINE mess STRING
29 IF res THEN RETURN END IF
30 DISPLAY "DDE Error:"
31 CALL ui.Interface.frontCall("WINDDE","DDEError",[],[mess]);
32 DISPLAY mess
33 CALL ui.Interface.frontCall("WINDDE","DDEFinishAll", [], [res]);
34 DISPLAY "Exit with DDE Error."
35 EXIT PROGRAM (-1)
36 END FUNCTION

BDL Wrappers to DDE front end functions

The following functions are provided for backward compatibility. We recommend that you
use the front call functions if you write new code.

Genero Business Development Language

392

Warning: These functions (especially DDEExecute and DDEPoke) expect escaped
TAB, CR and LF characters in the strings passed as parameters. For example, a
TAB character must be written as "\\t" in a BDL string constant passed as
parameter to the DDEPoke function.

Function Description
DDEConnect() This function opens a DDE connection
DDEExecute() This function executes a command in the specified

program
DDEFinish() This function closes a DDE connection
DDEFinishAll() This function closes all DDE connections as well as the

DDE server program
DDEGetError() This function returns DDE error information about the

last DDE operation
DDEPeek() This function retrieves data from the specified program

and document using the DDE channel
DDEPoke() This function sends data to the specified program and

document using the DDE channel

DDEConnect()

Purpose:

This function opens a DDE connection.

Syntax:

CALL DDEConnect (program STRING, document STRING) RETURNING SMALLINT

Notes:

1. program is the name of the DDE application.
2. document is the document that is to be opened.
3. The function returns TRUE if the connection succeeded, FALSE otherwise.
4. If the return value is FALSE, use DDEGetError() to get the description of the

error.

Warnings:

1. If the function failed with "DMLERR_NO_CONV_ESTABLISHED", then the DDE
application was probably not running; use WinExec() or WinShellExec() front call
to start the DDE application.

Library

393

DDEExecute()

Purpose:

This function executes a DDE command.

Syntax:

CALL DDEExecute (program STRING, document STRING, command STRING)
RETURNING SMALLINT

Notes:

1. program is the name of the DDE application.
2. document is the document that is to be used.
3. command is the command that needs to be executed.
4. Refer to the program documentation for the syntax of command.
5. The function returns TRUE if the command execution succeeded, FALSE

otherwise.
6. If the return value is FALSE, use DDEGetError() to get the description of the

error.

Warnings:

1. The DDE connection must be opened see DDEConnect().

DDEFinish()

Purpose:

This function closes a DDE connection.

Syntax:

CALL DDEFinish (program STRING, document STRING) RETURNING SMALLINT

Notes:

1. program is the name of the DDE application.
2. document is the document that is to be closed.
3. The function returns TRUE if the function succeeded, FALSE otherwise.
4. If the return value is FALSE, use DDEGetError() to get the description of the

error.

Warnings:

1. The DDE connection must be opened, see DDEConnect().

Genero Business Development Language

394

DDEFinishAll()

Purpose:

This function closes all DDE connections, as well as the DDE server program.

Syntax

CALL DDEFinishAll()

Notes:

1. Closes all DDE connections.

DDEGetError()

Purpose:

This function returns the error information about the last DDE operation.

Syntax:

CALL DDEGetError() RETURNING STRING

Notes:

1. The function returns the error message or NULL if no error occurred.

DDEPeek()

Purpose:

This function retrieves data from the specified program and document using the DDE
channel.

Syntax:

CALL DDEPeek (program STRING, container STRING, cells STRING)
RETURNING value

Library

395

Notes:

1. program is the name of the DDE application.
2. container is the document or sub-document that is to be used. A sub-document

can, for example, be a sheet in Microsoft Excel.
3. cells represents the working items; see the program documentation for the format

of cells.
4. value represents the data to be retrieved; see the program documentation for the

format of values.
5. If the function succeeded, DDEGetError() function returns NULL.

Warnings:

1. The DDE connection must be opened; see DDEConnect().
2. DDEGetError() can only be called once to check if an error occurred.

DDEPoke()

Purpose:

This function sends data to the specified program and document using the DDE channel.

Syntax:

CALL DDEPoke (program STRING, container STRING, cells STRING, values
STRING) RETURNING SMALLINT

Notes:

1. program is the name of the DDE application.
2. container is the document or sub-document that is to be used. A sub-document

can, for example, be a sheet in Microsoft Excel.
3. cells represents the working items; see the program documentation for the format

of cells.
4. values represents the data to be sent; see the program documentation for the

format of values.
5. The function returns TRUE if the function succeeded, FALSE otherwise.
6. If the return value is FALSE, use DDEGetError() to get the description of the

error.

Warnings:

1. The DDE connection must be opened; see DDEConnect().
2. An error may occur if you try to set many (thousands of) cells in a single

operation.

Genero Business Development Language

396

XML Utilities
This pages describes the XML utility API provided by the language.

See also: Built-in Classes, DomDocument class, DomNode class, SaxAttributes class,
XmlReader class, XmlWriter class, SaxDocumentHandler class.

DOM and SAX standards

The DOM (Document Object Model) is a programming interface specification being
developed by the World Wide Web Consortium (W3C), that lets a programmer create
and modify HTML pages and XML documents as full-fledged program objects. DOM is a
full-fledged object-oriented, complex but complete API, providing methods to manipulate
the full XML document as a whole. DOM is designed for small XML trees manipulation.

The SAX (Simple API for XML) is a programming interface for XML, simpler as DOM.
SAX is event-driven, streamed-data based, and designed for large trees.

The DOM and SAX APIs

The runtime system includes a set of built-in classes based on DOM and SAX.

The DOM API is composed of:

• The DomDocument class, that defines the interface to a DOM document.
Instances of this class can be used to identify and manipulate an XML tree.
DomNode object manipulation methods are provided by this class.

• The DomNode class, that defines the interface to an DOM node. Instances of this
class can be used to identify and manipulate a branch of an XML tree. Child
nodes and node attributes management methods are provided by this class.

The SAX API is composed of:

• The SaxAttributes class represents a set of element attributes. It is used with an
XmlReader or an XmlWriter object.

• The XmlReader class, that is defined to read XML. The XML document
processing is based on events.

• The XmlWriter class, that is defined to write XML. The XML document processing
is based on events.

• The SaxDocumentHandler class, which provides an interface to implement a
SAX filter using functions.

Controlling the user interface with DOM/SAX APIs

The runtime system represents the user interface of a program with a DOM tree. User
interface elements can be manipulated with the built-in classes described in this section.

For more details about the user interface manipulation, see the Dynamic User Interface.

397

Database Connections
Summary:

• What is a database connection?
• Database Specification

o Connection parameters in connection string
o Keep the compiled programs configurable
o Database Specification when using Informix

 Informix environment variables on Windows platforms
o Database Specification when using other databases

 Direct database specification
 Indirect database specification
 Informix emulations parameters
 Database vendor specific parameters

o Database user authentication
 Specifying user name and login with CONNECT
 Authenticating users with Informix
 Authenticating users with Oracle
 Authenticating user with SQL Server

• Global Configuration Parameters
o Default Database Driver

• Database Client Environments
• The FGLSQLDEBUG environment variable
• The SQLCA record
• STATUS, SQLCA.SQLCODE, SQLSTATE and SQLERRMESSAGE
• Interrupting SQL Statements
• Unique-session mode:

o Opening a connection (DATABASE)
o Closing a connection (CLOSE DATABASE)

• Multi-session mode:
o Opening connections (CONNECT TO)
o Selecting connections (SET CONNECTION)
o Closing connections (DISCONNECT)

See also: Transactions, Static SQL, Dynamic SQL, Result Sets, SQL Errors, Programs.

What is a database connection?

A Database Connection is a session of work, opened by the program to communicate
with a specific database server, in order to execute SQL statements as a specific user.

Genero Business Development Language

398

The database user can be identified explicitly for each connection. Usually, the user is
identified by a login and a password, or by using the authentication mechanism of the
operating system (or even from a tier security system).

The database connection instructions can not be prepared as Dynamic SQL statements;
they must be static SQL statements.

There are two kind of connection modes: unique-session and multi-session mode.
When using the DATABASE and CLOSE DATABASE instructions, you are in unique-session
mode. When using the CONNECT TO, SET CONNECTION and DISCONNECT instructions you
are in multi-session mode. The modes are not compatible. It is strongly recommended
that you choose the session mode and not mix both kinds of instructions.

In unique-session mode, you simply connect with the DATABASE instruction; that creates
a current session. You disconnect from the current session with the CLOSE DATABASE
instruction, or when another DATABASE instruction is executed, or when the program
ends.

In multi-session mode, you open a session with the CONNECT TO instruction; that creates
a current session. You can open other connections with subsequent CONNECT TO
instructions. To switch to a specific session, use the SET CONNECTION instruction; this
suspends other opened connections. Finally, you disconnect from the current, from a
specific, or from all sessions with the DISCONNECT instruction. The end of the program
disconnects all sessions automatically.

Once connected to a database server, you have a current database session. Any
subsequent SQL statement is executed in the context of the current database session.

SQL Management

399

Warning:

1. Before creating database connections, make sure you have properly installed
and configured Genero BDL, using the correct database client environment and
driver. For more information, see Installation and Setup.

Database Specification

The Database Specification identifies the data source (the database and database
server) you want to connect to.

There are different ways to identify the data source, depending on the database type.
For example, when you connect to Oracle, you cannot specify the database server as
you do with Informix by using the 'dbname@dbserver' notation.

For portability reasons, it is not recommended that you use database vendor specific
syntax in the database specification (like 'dbname@dbserver'). We recommend using a
simple symbol instead, and configuring the connection parameters in external resource
files. The ODI architecture allows this indirect database specification using the
FGLPROFILE configuration file.

Specifying connection parameters in the connection string

Although this is not recommended for abstract programming reasons, you can specify
connection parameters in the string used by the connection instructions.

This behavior is enabled when you use a plus sign in the connection string:

dbname+property='value'[,...]

In this syntax, property can be one of the following parameters:

Parameter Description
resource Specifies which 'dbi.database' entries have to be read

from the FGLPROFILE configuration file.
When this property is set, the database interface reads
dbi.database.name.* entries, where name is the value
specified for the resource parameter.

driver Defines the database driver library to be loaded
(filename without extension).

source Specifies the data source of the database (for example,
Oracle's TNS name).

username Defines the name of the database user.
password Defines the password of the database user. Warning:

Genero Business Development Language

400

Should not be used in production!

In the following example, driver, source and resource are specified in the connection
string:

01 MAIN
02 DEFINE db CHAR(50)
03 LET db = "stores+driver='dbmora',source='orcl',resource='ora'"
04 DATABASE db
05 ...
06 END MAIN

Keep the compiled programs configurable

You can use a string variable with the DATABASE or CONNECT TO statement, in order
to specify the database source at runtime (to be loaded from your own configuration file
or from an environment variable). This solution gives you the best flexibility.

01 MAIN
02 DEFINE db, us, pwd CHAR(50)
03 LET db = arg_val(1)
03 LET us = arg_val(2)
03 LET pwd = arg_val(3)
04 CONNECT TO db USER us USING pwd
05 ...
06 END MAIN

Database specification when using the Informix driver Informix
only!

When using an Informix database driver, you can use the following syntax for the
database specification:

Database
Specification Description

dbname Connects to the database server identified by the
Informix environment (for example, with the
INFORMIXSERVER environment variable) and
opens the database dbname.

@dbserver Connects to the database server identified by
dbserver. This database specification does not
select any database, the program is only connected
to the database server.

dbname@dbserver Connects to the database server identified by
dbserver and opens the database dbname.

SQL Management

401

Informix environment variables on Windows platforms

On Windows platforms, in a C console application, the Informix environment variables
must be set with a call to ifx_putenv(). See INFORMIX ESQL/C documentation for more
details about environment settings.

By default, the database driver automatically calls ifx_putenv() for all standard Informix
environment variables such as INFORMIXDIR with the current value set in the console
environment. You can specify additional environment variables to be set with the
following FGLPROFILE entries:

dbi.stdifx.environment.count = max
dbi.stdifx.environment.index = "variable"

Database specification when using a non-Informix database

To connect to a database server, additional connection parameters are often required.
Most database engines require a name to identify the server, a name to identify the
database entity, a user name and a password. Some parameters might be omitted: For
example, when using Oracle, the server can be implicitly defined by the ORACLE_SID
environment variable if the program and the database server run on the same
system. The ODI architecture allows you to define these parameters indirectly in the
FGLPROFILE configuration file.

Direct database specification method

The Direct Database Specification method takes place when the database name used
in the program is not used in FGLPROFILE to define the data source with a
'dbi.database.dbname.source' entry. In this case, the database specification used in
the connection instruction is used as the data source.

This method is well known for standard Informix drivers, where you directly specify the
database name and, if needed, the Informix server:

01 MAIN
02 DATABASE stores@orion
03 ...
04 END MAIN

In the next example, the database server is PostgreSQL. The string used in the
connection instruction defines the PostgreSQL database (stock), the host (localhost),
and the TCP service (5432) the postmaster is listening to. As PostgreSQL syntax is not
allowed in standard BDL, a CHAR variable must be used:

01 MAIN
02 DEFINE db CHAR(50)
03 LET db = "stock@localhost:5432"
04 DATABASE db
05 ...
06 END MAIN

Genero Business Development Language

402

Indirect database specification method

Indirect Database Specification method takes place when the database specification
used in the connection instruction corresponds to a 'dbi.database.dbname.source'
entry defined in the FGLPROFILE configuration file. In this case, the database
specification is considered a key to read the connection information from the
configuration file:

Program:

01 MAIN
02 DATABASE stores
03 ...
04 END MAIN

FGLPROFILE:

dbi.database.stores.source = "stock@localhost:5432"
dbi.database.stores.driver = "dbmpgs721"

This technique is flexible: The database name in programs is a kind of alias used to
define the real database. Using this method, your can develop your application with the
database name "stores" and connect to the real database "stores1" in a production
environment.

In FGLPROFILE, the entries starting with 'dbi.database' group information defining
data sources by name:

dbi.database.dsname.source = "value"
dbi.database.dsname.driver = "value"
dbi.database.dsname.username = "value"
dbi.database.dsname.password = "value" -- Warning: not encrypted, do
not use in production!

The "source" entry identifies the data source name. The following table describes the
meaning of this parameter for the supported databases:

Database
Type Value of "source" entry Description

Genero DB datasource ODBC Data Source
Generic
ODBC

datasource ODBC Data Source

Informix dbname[@dbserver] Informix database
specification

IBM DB2 dsname DB2 Catalogued Database

MySQL
dbname[@host[:port]]
or
dbname[@localhost~socket]

Database Name @ Host
Name : TCP Port
or

SQL Management

403

Database Name @ Local host
~ Unix socket file

ORACLE tnsname Oracle TNS Service name

PostgreSQL dbname[@host[:port]] Database Name @ Host
Name : TCP Port

SQL Server datasource ODBC Data Source

Sybase ASA dbname[@engine] Database Name @ Engine
Name

If the "source" entry is defined with an empty value (""), the database interface connects
to the default database server, which is usually the local server. If this entry is not
present in FGLPROFILE, the Direct Database Specification method takes place (see
above for more details).

The "driver" entry identifies the shared library or DLL to be used. Driver file names do
not have to be specified with a file extension.

If you have a lot of databases, you can define a default driver with the Default Database
Driver entry.

Database drivers shared libraries are located in FGLDIR/dbdrivers on both UNIX and
Windows platforms. Some drivers may not be available on a specific platform (for
example if the target database client does not exist). Contact your support if you do not
find the driver you are looking for.

The following table defines the database driver names according to the database client
type:

Database Type Driver library
prefix Example

Genero DB dbmads dbmads3x.so
Generic ODBC dbmodc dbmodc3x.dll
Informix dbmifx dbmifx9xx.so
IBM DB2 dbmdb2 dbmdb28x.so
MySQL dbmmys dbmmys41x.so
ORACLE dbmora dbmora92x.so
PostgreSQL dbmpgs dbmpgs80x.so
SQL Server (MDAC) dbmmsv dbmmsv80.dll
SQL Server (Native
Client) dbmsnc dbmsnc90.dll

SQL Server (FreeTDS) dbmftm dbmftm90.dll
Sybase ASA dbmasa dbmasa8x.so

Genero Business Development Language

404

The "username" and "password" entries define the default database user, when the
program uses the DATABASE instruction or the CONNECT TO instruction without the
USER clause.

Warning: The "username" and "password" entries are not encrypted. These
parameters are provided to simplify migration and should not be used in
production. You better use CONNECT TO with a USER / USING clause to avoid
any security hole, or OS user authentication. Example of database servers
supporting OS user authentication: Informix, Oracle, SQL Server and Genero db.

The "username" and "password" entries take effect based on the connection instruction
as described in the following table:

Connection
Instruction FGLPROFILE Effect

DATABASE dbname
 or
CONNECT TO "dbname"

No default
user definition

No user specification is provided to
the database server. Usually, the
Operating System authentication
takes place.

DATABASE dbname
 or
CONNECT TO "dbname"

With default
user definition

The FGLPROFILE user name and
password are used to connect to the
database server.

CONNECT TO "dbname"
 USER "username"
 USING "password"

N/A

The user information of the
CONNECT TO instruction are used
to identify the actual user

Informix emulation parameters in FGLPROFILE

To simplify the migration process to other databases, the database interface and drivers
can emulate some Informix-specific features like SERIAL columns and temporary tables;
the drivers can also do some SQL syntax translation.

Warning: Avoid using Informix emulations; write portable SQL code instead as
described in SQL Programming. Informix emulations are only provided to help
you in the migration process. Disabling Informix emulations improves
performance, because SQL statements do not have to be parsed to search for
Informix-specific syntax.

Emulations can be controlled with FGLPROFILE parameters. You can disable all
possible switches step-by-step, in order to test your programs for SQL compatibility.

Global switch to enable or disable Informix emulations:

dbi.database.dbname.ifxemul = { true | false }

Feature specific switches:

SQL Management

405

The 'ifxemul.datatype' switches define whether the specified data type must be
converted to a native type (for example, when creating a table):

dbi.database.dbname.ifxemul.datatype.type = { true | false }

Here, type can be one of: char, varchar, datetime, decimal, money, float, real, integer,
smallint, serial, text, byte.

To control SERIAL generation type, you can use the following switch:

dbi.database.dbname.ifxemul.datatype.serial.emulation = { "native" |
"regtable" | "trigseq" }

When using "native", the database driver creates a native sequence generator - it is fast,
but not fully compatible to Informix SERIAL. When using "regtable", you must have the
SERIALREG table created - it is slower than the "native" emulation, but compatible to
Informix SERIAL. The serial emulation "trigseq", can be used by some database drivers,
to use triggers with native sequence generators.

The 'temptables' switch can be used to control temporary table emulation:

dbi.database.dbname.ifxemul.temptables = { true | false }

The 'temptables.emulation' switch can be used to specify what type of tables must be
used to emulate temporary tables:

dbi.database.dbname.ifxemul.temptables.emulation = { "default" |
"global" }

The 'dblquotes' switch can be used to define whether double quoted strings must be
converted to single quoted strings:

dbi.database.dbname.ifxemul.dblquotes = { true | false }

If this emulation is enabled, all double quoted strings are converted, including database
object names.

The 'outers' switch can be used to control Informix OUTER specification:

dbi.database.dbname.ifxemul.outers = { true | false }

It is better to use standard ISO outer joins in your SQL statements.

The 'today' switch can be used to convert the TODAY keyword to a native expression
returning the current date:

dbi.database.dbname.ifxemul.today = { true | false }

The 'current' switch can be used to convert the CURRENT X TO Y expressions to a
native expression returning the current time:

Genero Business Development Language

406

dbi.database.dbname.ifxemul.current = { true | false }

The 'selectunique' switch can be used to convert the SELECT UNIQUE to SELECT
DISTINCT:

dbi.database.dbname.ifxemul.selectunique = { true | false }

It is better to replace all UNIQUE keywords by DISTINCT.

The 'colsubs' switch can be used to control column sub-strings expressions (col[x,y]) to
native sub-string expressions:

dbi.database.dbname.ifxemul.colsubs = { true | false }

The 'matches' switch can be used to define whether MATCHES expressions must be
converted to LIKE expressions:

dbi.database.dbname.ifxemul.matches = { true | false }

It is better to use the LIKE operator in your SQL statements.

The 'length' switch can be used to define whether LENGTH function names have to be
converted to the native equivalent:

dbi.database.dbname.ifxemul.length = { true | false }

The 'rowid' switch can be used to define whether ROWID keywords have to be
converted to native equivalent:

dbi.database.dbname.ifxemul.rowid = { true | false }

It is better to use primary keys instead.

The 'listupdate' switch can be used to convert the UPDATE statements using non-ANSI
syntax:

dbi.database.dbname.ifxemul.listupdate = { true | false }

The 'extend' switch can be used to convert simple EXTEND() expressions to native
date/time expressions:

dbi.database.dbname.ifxemul.extend = { true | false }

Defining database vendor specific parameters in FGLPROFILE

Some database vendor specific connection parameters can be configured by using
FGLPROFILE entries with the following syntax:

dbi.database.dsname.dbtype.param.[.subparam] = "value"

SQL Management

407

The table below describes all database vendor specific parameters supported:

Database
Server Parameters

Genero DB
 dbi.database.dsname.ads.schema

Name of the database schema to be selected after
connection is established.
Example:
dbi.database.stores.ads.schema = "store2"
Usage:
Set this parameter to a specific schema in order to share the
same table with all users.

IBM DB2
 dbi.database.dsname.db2.schema

Name of the database schema to be selected after
connection is established.
Example:
dbi.database.stores.db2.schema = "store2"
Usage:
Set this parameter to a specific schema in order to share the
same table with all users.

 dbi.database.dsname.db2.prepare.deferred
True/False Boolean to enable/disable deferred prepare.
Example:
dbi.database.stores.db2.prepare.deferred = true
Usage:
Set this parameter to true if you do not need to get SQL
errors during PREPARE statements: SQL statements will be
sent to the server when executing the statement (OPEN or
EXECUTE). The default is false (SQL statements are sent to
the server when doing the PREPARE).

ORACLE
 dbi.database.dsname.ora.schema

Name of the database schema to be selected after
connection is established.
Example:
dbi.database.stores.ora.schema = "store2"
Usage:
Set this parameter to a specific schema in order to share the
same table with all users.

 dbi.database.dsname.ora.prefetch.rows
Maximum number of rows to be pre-fetched.
Example:
dbi.database.stores.ora.prefetch.rows = 50
Usage:
You can use this parameter to increase performance by

Genero Business Development Language

408

defining the maximum number of rows to be fetched
automatically. However, the bigger this parameter is, the
more memory is used by each program. This parameter
applies to all cursors in the application.
The default is 10 rows.

 dbi.database.dsname.ora.prefetch.memory
Maximum buffer size for pre-fetching (in bytes).
Example:
dbi.database.stores.ora.prefetch.memory = 4096
Usage:
This parameter is equivalent to prefetch.rows, but here you
can specify the memory size instead of the number of rows.
As prefetch.rows, this parameter applies to all cursors in the
application.
The default is 0, which means that memory size is not
included in computing the number of rows to pre-fetch.

 dbi.database.dsname.ora.sid.command
SQL command (SELECT) to generate a unique session id
(used for temp table names).
Example:
dbi.database.stores.ora.sid.command = "SELECT
TO_CHAR(SID)||'_'||TO_CHAR(SERIAL#) FROM V$SESSION
WHERE AUDSID=USERENV('SESSIONID')"
Usage:
By default the driver uses "SELECT
USERENV('SESSIONID') FROM DUAL". This is the
standard session identifier in Oracle, but it can become a
very large number and can't be reset.
This parameter gives you the freedom to provide your own
way to generate a session id.
The SELECT statement must return a single row with one
single column.
Value can be an integer or an identifier.

SQL Server
(MDAC)

 dbi.database.dsname.msv.logintime
Connection timeout (in seconds).
Example:
dbi.database.stores.msv.logintime = 5
Usage:
Set this parameter to raise an SQL error if the connection
can not be established after the given number of seconds.
The default is 5 seconds.

 dbi.database.dsname.msv.prefetch.rows
Maximum number of rows to be pre-fetched.
Example:
dbi.database.stores.msv.prefetch.rows = 50
Usage:

SQL Management

409

You can use this parameter to increase performance.
However, the bigger this parameter is, the more memory is
used by each program.
The default is 10 rows.

SQL Server
(NCLI)

 dbi.database.dsname.snc.logintime
Connection timeout (in seconds).
Example:
dbi.database.stores.snc.logintime = 5
Usage:
Set this parameter to raise an SQL error if the connection
can not be established after the given number of seconds.
The default is 5 seconds.

 dbi.database.dsname.snc.prefetch.rows
Maximum number of rows to be pre-fetched.
Example:
dbi.database.stores.snc.prefetch.rows = 50
Usage:
You can use this parameter to increase performance.
However, the bigger this parameter is, the more memory is
used by each program.
The default is 10 rows.

SQL Server
(FreeTDS)

 dbi.database.dsname.ftm.logintime
Connection timeout (in seconds).
Example:
dbi.database.stores.ftm.logintime = 5
Usage:
Set this parameter to raise an SQL error if the connection
can not be established after the given number of seconds.
The default is 5 seconds.

 dbi.database.dsname.ftm.prefetch.rows
Maximum number of rows to be pre-fetched.
Example:
dbi.database.stores.ftm.prefetch.rows = 50
Usage:
You can use this parameter to increase performance.
However, the bigger this parameter is, the more memory is
used by each program.
The default is 10 rows.

Sybase ASA
 dbi.database.dsname.asa.logintime

Connection timeout (in seconds).
Example:
dbi.database.stores.asa.logintime = 10

Genero Business Development Language

410

Usage:
Set this parameter to raise an SQL error if the connection
can not be established after the given number of seconds.
The default is 5 seconds.

Database user authentication

Connecting to a database server is not just specifying a database name. Informix 4gl
programmers are used to write "DATABASE dbname" to get connected. But this is only
possible when the database server is configured to trust Operating System users. Only a
few database server support OS authentication. Database users are usually defined in
the database server and must be explicitly identified by a user name and password.
Note also that some database servers support external authentication methods, which
can be used with Genero. See DB specific documentation for more details.

Specifying a user name and password with the CONNECT

In order to specify a user name and password, you must use the USER/USING clause of
the CONNECT instruction:

01 MAIN
02 CONNECT TO "orc1fox+driver='dbmoraA2x'" USER "scott" USING
"tiger"
03 ...
04 END MAIN

User name and login could be specified with FGLPROFILE entries but we strongly
discourage you to do this for security reasons.

Authenticating users with Informix

Informix users are operating system users with database connection privileges, if the
client program resides on the same machine as the database server, you typically use
OS authentication and don't need to provide a user name and password.

However, you need to specify a user name and password if you want to connect to a
remove server that does not have trusted connection configured.

Authenticating users with Oracle

Oracle users can be authenticated in different manner: as DB users, as OS users or with
another external authentication method like Kerberos.

If you don't specify the USER/USING clause, OS authentication takes place.

An Oracle connection can also be established as SYSDBA or SYSOPER users. This is
possible with Genero by specifying the following strings after the user name in the USER
clause of the CONNECT instruction:

SQL Management

411

String passed to USER
clause after user name Effect as Oracle connection

/SYSDBA Connection will be established as SYSDBA
user.

/SYSOPER Connection will be established as SYSOPER
user.

Note that you must specify the user login before the /SYSDBA or /SYSOPER strings:

01 CONNECT TO "orc1fox+driver='dbmoraA2x'" USER "orauser/SYSDBA" USING
"fourjs"

Authenticating users with SQL Server

SQL Server users can be authenticated as DB users or with the Windows users.

If you don't specify the USER/USING clause, OS authentication takes place.

Global Configuration Parameters

Default Database Driver

With the following entry, you can define a default driver identifying the shared library or
DLL to be used to connect to the database:

dbi.default.driver = "value"

Database Client Environment
To connect to a database server, the BDL programs must be executed in the correct
database client environment. The database client software is usually included in the
database server software, so you do not need to install it when your programs are
executed on the same machine as the database server. However, you may need to
install the database client software in three-tier configurations, where applications and
database servers run on different systems.

This section describes basic configuration elements of the database client environment
for some well-known database servers.

Genero DB

1. The ANTSHOME environment variable must define the Genero DB software
installation path.

Genero Business Development Language

412

2. The PATH environment variable must define the access path to database client
programs.

3. On UNIX, LD_LIBRARY_PATH (or equivalent) must hold the path to
$ANTSHOME/antsodbc.

4. The ANTS ODBC client library 'libaodbc*' must be available.
5. You can make a connection test with the ANTS antscmd tool.

IBM DB2 Universal Database

1. The DB2DIR environment variable must define the DB2 software installation
path.

2. The PATH environment variable must define the access path to database client
programs.

3. On UNIX, LD_LIBRARY_PATH (or equivalent) must hold the path to
$DB2DIR/lib.

4. The DB2 client library 'DB2DIR/lib/libdb2*' must be available.
5. The remote server node and the remote database must be declared locally

with the CATALOG db2 command.
6. You can make a connection test with the IBM db2 tool.

IBM Informix Dynamic Server

1. The INFORMIXDIR environment variable must define the Informix software
installation path.

2. The PATH environment variable must define the access path to database client
programs.

3. On UNIX, LD_LIBRARY_PATH (or equivalent) must hold the path to
$INFORMIXDIR/lib:$INFORMIXDIR/lib/esql.

4. The Informix client libraries 'INFORMIXDIR/lib/*' must be available.
5. The INFORMIXSERVER environment variable can be used to define the name of

the database server.
6. The sqlhost file must define the database server identified by

INFORMIXSERVER.
7. You can make a connection test with the Informix dbaccess tool.

MySQL

1. The MYSQLDIR environment variable must define the MySQL software
installation path.

2. On UNIX, LD_LIBRARY_PATH (or equivalent) must hold the path to
$MYSQLDIR/lib.

3. The PATH environment variable must define the access path to database client
programs.

4. You can make a connection test with the mysql tool.

Oracle

1. The ORACLE_HOME environment variable must define the Oracle software
installation path.

SQL Management

413

2. The ORACLE_SID environment variable can be used to define the name of the
local database instance.

3. The PATH environment variable must define the access path to database client
programs.

4. On UNIX, LD_LIBRARY_PATH (or equivalent) must hold the path to
$ORACLE_HOME/lib.

5. The Oracle client library 'ORACLE_HOME/lib/libclntsh*' must be available.
6. The TNSNAMES.ORA file must define the database server identifiers for remote

connections (the Oracle Listener must be started on the database server to
allow remote connections).

7. The SQLNET.ORA file must define network settings for remote connections.
8. You can make a connection test with the Oracle sqlplus tool.

PostgreSQL

1. The PGDIR environment variable must define the PostgreSQL software
installation path.

2. The PATH environment variable must define the access path to database client
programs.

3. On UNIX, LD_LIBRARY_PATH (or equivalent) must hold the path to
$PGDIR/lib.

4. The PostgreSQL client library 'PGDIR/lib/libpq*' must be available.
5. On the database server, the pg_hba.conf file must define security policies.
6. You can make a connection test with the PostgreSQL psql tool.

SQL Server

1. Make sure that ODBC data source is defined on database client and database
server systems, with the correct ODBC driver. Note that Genero FGL provides
different sort of SQL Server drivers:

o The MSV driver is based on the Microsoft Data Access Components
(MDAC) ODBC driver (SQLSRV32.DLL). This driver is obsolete if you are
using SQL Server 2005.

o The SNC driver is based on the SQL Native Client ODBC driver
(SQLNCLI.DLL). This is the new driver to be used with SQL Server 2005.

o The FTM driver is based on the FreeTDS ODBC driver (libtdsodbc.so).
This driver can be used if you want to connect to SQL Server from a
UNIX machine.

2. The PATH environment variable must define the access path to database client
programs (ODBC32.DLL).

3. Check the SQL Server Client configuration with the Client Network Utility tool:
Verify that the ANSI to OEM conversion corresponds to the execution of FGL
applications in a CONSOLE environment.

4. You can make a connection test with the Microsoft Query Analyzer tool.

Sybase ASA

1. The ASADIR environment variable must define the Sybase ASA software
installation path.

Genero Business Development Language

414

2. The PATH environment variable must define the access path to database client
programs.

3. Check the Sybase Client configuration.
4. You can make a connection test with the Sybase ISQL tool.

FGLSQLDEBUG

You can set the FGLSQLDEBUG environment variable to get debug information on SQL
instructions. This variable can be set to an integer value from 0 to 10, according to the
debugging details you want to see. The debug messages are sent to the standard error
stream. If needed, you can redirect the standard error output into a file.

Unix (shell) example:

FGLSQLDEBUG=3
export FGLSQLDEBUG
fglrun myprog 2>sqldbg.txt

SQLCA

Purpose:

The SQLCA variable is a predefined record containing information about the execution of
an SQL statement.

Syntax:

SQLCA

Definition:

DEFINE SQLCA RECORD
 SQLCODE INTEGER,
 SQLERRM CHAR(71),
 SQLERRP CHAR(8),
 SQLERRD ARRAY[6] OF INTEGER,
 SQLAWARN CHAR(8)
END RECORD

Notes:

1. The SQLCA record is filled after any SQL statement execution.
2. The "SQLCA" name stands for "SQL Communication Area".
3. SQLCODE contains the SQL execution code (0 = OK, 100 = not row found, <0 =

error).
4. SQLERRM contains the Informix error message parameter.

SQL Management

415

5. SQLERRP is not used at this time.
6. SQLERRD[1] is not used at this time.
7. SQLERRD[2] contains the last SERIAL or the native SQL error code.
8. SQLERRD[3] contains the number of rows processed in the last statement (server

dependent).
9. SQLERRD[4] contains the estimated CPU cost for the query (server dependent).
10. SQLERRD[5] contains the offset of the error in the SQL statement text (server

dependent).
11. SQLERRD[6] contains the ROWID of the last row that was processed (server

dependent).
12. SQLAWARN contains the ANSI warning represented by a W character at a given

position in the string.
13. SQLAWARN[1] is set to W when any of the other warning characters have been

set to W.
14. SQLAWARN[2] is set to W when:

o a CHAR value has been truncated.
o an Informix database without transactions has been selected.

15. SQLAWARN[3] is set to W when:
o an aggregate like SUM() encountered a NULL value.
o an Informix database in ANSI/ISO mode has been selected.

16. SQLAWARN[4] is set to W when:
o the number of SELECT items is not the same as the number of INTO

variables.
o an Informix Dynamic Server database has been selected.

17. SQLAWARN[5] is set to W when:
o a float to decimal conversion is used.

18. SQLAWARN[6] is set to W when:
o the program executes an extension to the ANSI/ISO standard.

19. SQLAWARN[7] is set to W when:
o query skips a table fragment.

20. SQLAWARN[8] is not used at this time .

Warnings:

1. SQLCA can be modified by hand, but this is not recommended because it may
become read-only in a later release.

Example:

01 MAIN
02 WHENEVER ERROR CONTINUE
02 DATABASE stores
03 SELECT COUNT(*) FROM foo -- Table should not exist!
04 DISPLAY SQLCA.SQLCODE, SQLCA.SQLERRD[2]
05 END MAIN

Genero Business Development Language

416

STATUS, SQLCA.SQLCODE, SQLSTATE and SQLERRMESSAGE

If an error occurs during an SQL statement execution, you can get the error description
in the STATUS, SQLCA.SQLCODE, SQLSTATE and SQLERRMESSAGE built-in registers.

STATUS is the global language error code register, set for any kind of error (even non-
SQL). When an SQL error occurs, the Informix SQL error code held by SQLCA.SQLCODE
is copied into STATUS. The register SQLCA.SQLCODE returns the Informix error code.
SQLSTATE returns the standard ANSI error code and SQLERRMESSAGE returns the
database specific error message.

Use SQLCA.SQLCODE for SQL error management, and STATUS for 4gl errors.

Warnings:

1. SQLSTATE is an ANSI standard specification, but not all database servers support
this register. For example, Oracle 8.x and 9.0 engines do not support this

See also: STATUS, SQLCA, SQLSTATE, SQLERRMESSAGE, Exceptions.

Interrupting SQL Statements

Syntax:

OPTIONS SQL INTERRUPT { ON | OFF }

Notes:

1. By default, SQL interruption is OFF.

Warnings:

1. Not all database servers support SQL interruption.
2. You must set INT_FLAG to FALSE before executing the SQL statement.

Usage:

Typical FGL programs control the interrupt signals, by using the following instructions:

DEFER INTERRUPT
DEFER QUIT

If the database server supports SQL interruption, the runtime system can enable
interruption of long SQL queries when you set the SQL INTERRUPT program option.
When the program gets an interrupt signal from the system, the running SQL statement
is stopped and the INT_FLAG global variable is set to TRUE.

SQL Management

417

Example:

01 MAIN
02 DEFER INTERRUPT
03 DEFER QUIT
04 DATABASE stock
05 OPTIONS SQL INTERRUPT ON
06 LET INT_FLAG = FALSE
07 SELECT COUNT(*) FROM items WHERE items_value > 100
08 IF INT_FLAG THEN
09 DISPLAY "Query was interrupted by user"
10 END IF
11 END MAIN

DATABASE

Purpose:

Opens a new database connection in unique-session mode.

Syntax:

DATABASE { dbname[@dbserver] | variable | string } [EXCLUSIVE]

Notes:

1. dbname identifies the database name.
2. dbserver identifies the Informix database server (INFORMIXSERVER). Informix

only!
3. variable can be any character string defined variable containing the database

specification.
4. string can be a string literal containing the database specification.

Usage:

The DATABASE instruction opens a connection to the database server, like CONNECT
TO, but without user and password specification.

By default the database user is identified by the current operating system user, but it can
be authenticated according to database specification parameters.

The EXCLUSIVE keyword can be used to open an Informix database in exclusive mode to
prevent access by anyone but the current user. Informix only!

If a current connection exists, it is automatically closed before connecting to the new
database.

Genero Business Development Language

418

If the connection could not be established, the instruction raises an exception. For
example, if you specify a database that the runtime system cannot locate, or cannot
open, or for which the user of your program does not have access privileges, an
exception is raised.

Warnings:

1. When used in a program block, the DATABASE instruction has a different meaning
than when it is used outside a program block. See Database Schema
Specification for more details.

2. The EXCLUSIVE keyword is specific to Informix databases; do not use this
keyword when programming for non-Informix databases.

Tips:

1. The CONNECT TO instructions allow better control over database connections;
you should use these instructions instead of DATABASE and CLOSE DATABASE.

Example 1: Using a static database name.

01 MAIN
02 DATABASE stores
03 SELECT COUNT(*) FROM customer
04 END MAIN

Example 2: Using a variable.

01 MAIN
02 DEFINE dbname VARCHAR(100)
03 LET dbname = arg_val(1)
04 DATABASE dbname
05 SELECT COUNT(*) FROM customer
06 END MAIN

CLOSE DATABASE

Purpose:

Closes the current database connection when in unique-session mode.

Syntax:

CLOSE DATABASE

Usage:

The CLOSE DATABASE instruction closes the current database connect opened by the
DATABASE instruction.

SQL Management

419

Warnings:

1. The current connection is automatically closed when the program ends.

Example:

01 MAIN
02 DATABASE stores1
03 CLOSE DATABASE
04 DATABASE stores2
05 CLOSE DATABASE
06 END MAIN

CONNECT TO

Purpose:

Opens a new database session in multi-session mode.

Syntax:

CONNECT TO { dbname | DEFAULT } [AS session]
 [USER username USING password]
 [WITH CONCURRENT TRANSACTION]

Notes:

1. dbname is a string expression identifying the database specification.
2. session is a string expression identifying the database session. By default, it is

dbname.
3. username is a string expression identifying the name of the database user.
4. password is a string expression identifying the password of the database user.

Usage:

The CONNECT TO instruction opens a database connection. If the instruction successfully
connects to the database environment, the connection becomes the current database
session for the application.

An application can connect to several database environments at the same time, and it
can establish multiple connections to the same database environment, provided each
connection has a unique connection name. If you need only one connexion to a
database, you can use the DATABASE instruction.

With Informix database servers, when using the DEFAULT keyword, you connect to the
default Informix database server, identified by the INFORMIXSERVER environment
variable, without any database selection.

Genero Business Development Language

420

By default the database user is identified by the current operating system user, but it can
be authenticated according to database specification parameters.

When the USER username USING password clause is specified, the database user is
identified by username and password, ignoring all other settings defined by the database
specification. See also Database user authentication.

The WITH CONCURRENT TRANSACTION clause allows a program to open several
transactions concurrently in different database sessions.

Warnings:

1. The session name is case-sensitive.
2. You cannot include a CONNECT TO statement within a PREPARE instruction.
3. When using Informix databases on UNIX, the only restriction on establishing

multiple connections to the same database environment is that an application
can establish only one connection to each local server that uses the shared-
memory connection mechanism. To find out whether a local server uses the
shared-memory connection mechanism or the local-loopback connection
mechanism, examine the $INFORMIXDIR/etc/sqlhosts file.

Example:

01 MAIN
02 CONNECT TO "stores1" -- Session name is "stores1"
03 CONNECT TO "stores1" AS "SA" -- Session name is "SA"
04 CONNECT TO "stores2" AS "SB" USER "scott" USING "tiger"
05 END MAIN

SET CONNECTION

Purpose:

Selects the current session when in multi-session mode.

Syntax:

SET CONNECTION { { session | DEFAULT } [DORMANT] | CURRENT DORMANT }

Notes:

1. session is a string expression identifying the name of the database session to be
set as current.

Usage:

The SET CONNECTION instruction make a given connection current.

SQL Management

421

When using the DEFAULT keyword, it identifies the default database server connection
established with a CONNECT TO DEFAULT or a DATABASE instruction. Informix only!

To make the current connection dormant, use CURRENT DORMANT keyword. Informix
only!

Warnings:

1. The session name is case-sensitive.
2. You cannot include a SET CONNECTION statement within a PREPARE instruction.
3. The CURRENT DORMANT option is only supported for compatibility with Informix;

there is no need to make a connection dormant in FGL programs.

Example:

01 MAIN
02 CONNECT TO "stores1"
03 CONNECT TO "stores1" AS "SA"
04 CONNECT TO "stores2" AS "SB"
05 SET CONNECTION "stores1" -- Select first session
06 SET CONNECTION "SA" -- Select second session
07 SET CONNECTION "stores1" -- Select first session again
08 END MAIN

DISCONNECT

Purpose:

Terminates database sessions when in multi-session mode.

Syntax:

DISCONNECT { ALL | CURRENT | session }

Notes:

1. session is a string expression identifying the name of the database session to be
terminated.

Usage:

The DISCONNECT instruction closed a given database connection.

When using the DEFAULT keyword, it identifies the default database server connection
established with a CONNECT TO DEFAULT or a DATABASE instruction. Informix only!

Genero Business Development Language

422

Use the ALL keyword to terminate all opened connections. From that point, you must
establish a new connection to execute SQL statements.

Use the CURRENT keyword to terminate the current connection only. From that point, you
must select another connection or establish a new connection to execute SQL
statements.

Warnings:

1. The session name is case-sensitive.
2. You cannot include a DISCONNECT statement within a PREPARE instruction.
3. If a DISCONNECT statement is used while a transaction is active, it is automatically

rolled back.

Example:

01 MAIN
02 CONNECT TO "stores1"
03 CONNECT TO "stores1" AS "SA"
04 CONNECT TO "stores2" AS "SB" USER "scott" USING "tiger"
05 -- SB is the current database session
06 DISCONNECT "stores1" -- Continue with SB
07 DISCONNECT "SB" -- SB is no longer the current session
08 SET CONNECTION "SA" -- Select second session
09 END MAIN

SQL Management

423

Database Transactions
Summary:

• What is a database transaction?
• Transaction Management Model
• Starting a transaction (BEGIN WORK)
• Validating a transaction (COMMIT WORK)
• Cancelling a transaction (ROLLBACK WORK)
• Setting the Isolation Level (SET ISOLATION)
• Setting the Lock Mode (SET LOCK MODE)
• Examples

See also: Connections, Static SQL, Dynamic SQL, Result Sets, SQL Errors, Programs.

What is a database transaction?

A Database Transaction delimits a set of database operations that are processed as a
whole. Database operations included inside a transaction are validated or canceled as a
unique operation.

The database server is in charge of Data Concurrency and Data Consistency control.
Data Concurrency control allows the simultaneous access of the same data by many
users, while Data Consistency control gives each user a consistent view of the
database.

Without adequate concurrency and consistency controls, data could be changed
improperly, compromising data integrity. If you want to write applications that can work
with different kinds of database servers, you must adapt the program logic to the

Genero Business Development Language

424

behavior of the database servers regarding concurrency and consistency management.
This requires good knowledge of multi-user application programming, transactions,
locking mechanisms, isolation levels and wait mode. If you are not familiar with these
concepts, carefully read the documentation of each database server that covers this
subject.

Usually, database servers set exclusive locks on rows that are modified or deleted inside
a transaction. These locks are held until the end of the transaction to control concurrent
access to that data. Some database servers like Oracle implement row versioning
(before modifying a row, the server makes a copy). This technique allows readers to see
a consistent copy of the rows that are updated during a transaction not yet committed.
When the isolation level is high (Repeatable Read) or when using a SELECT FOR
UPDATE statement, the database server sets shared locks on read rows to prevent other
users from changing the data fetched by the reader. Again, these locks are held until the
end of the transaction. Some database servers like Informix allow read locks to be held
regardless of the transactions (WITH HOLD cursor option), but this is not a standard.

Processes accessing the database can change transaction parameters such as the
isolation level or lock wait mode. The main problem is to find a configuration which
results in similar behavior on every database engine. Programs using Informix-specific
behavior must be adapted to work with other database servers.

Here is the recommended configuration to get common behavior with all kinds of
database engines:

• The database must support transactions; this is usually the case.
• Transactions must be as short as possible (a few seconds).
• The Isolation Level must be at least "Committed Read" (= "Cursor Stability").
• The Wait Mode for locks must be "WAIT" or "WAIT n" (timeout).

When using this configuration, the locking granularity does not have to be set at the row
level. For example, to improve performance with Informix databases, you can use the
"LOCK MODE PAGE" locking level, which is the default.

A lot of applications have been developed for old Informix SE databases that do not
manage transaction logging. These applications often work in the default lock wait mode
which is "NOT WAIT". Additionally, applications using databases without transactions
usually do not change the isolation level, which defaults to "Dirty Read". You must
review the program logic of these applications in order to conform to the portable
configuration.

Transaction Management Model

To write portable SQL applications, programmers use the instructions described in this
section to delimit transaction blocks and define concurrency parameters such as the
isolation level and the lock wait mode. At runtime, the database driver generates the
appropriate SQL commands to be used with the target database server.

SQL Management

425

If you initiate a transaction with a BEGIN WORK statement, you must issue a COMMIT WORK
statement at the end of the transaction. If you fail to issue the COMMIT WORK statement,
the database server rolls back any modifications that the transaction made to the
database. If you do not issue a BEGIN WORK statement to start a transaction, each
statement executes within its own transaction. These single-statement transactions do
not require either a BEGIN WORK statement or a COMMIT WORK statement.

For historical reasons, the language is based on IBM Informix SQL language, which
defines the transaction management instructions. IBM Informix database servers can
work in different transaction logging modes:

1. Native, without logging
2. Native, non-buffered logging
3. Native, buffered logging
4. ANSI, buffered logging

The first mode does not allow transaction management and should be avoided. In the
second and third modes, you can use the BEGIN WORK, COMMIT WORK and ROLLBACK
WORK statements. In ANSI mode, you can only use the COMMIT and ROLLBACK
statements, because transactions are implicit.

When using Informix databases, the type of logging defines the way you manage
transactions in your programs. For example, when using an ANSI-compliant Informix
database, you do not have to start transactions with BEGIN WORK, since these are
implicit.

When using the Standard Database Interface (SDI) architecture, you are free to use any
type of transaction logging with Informix databases. When using the Open Database
Interface (ODI) architecture you are free to use the native transaction management
statements supported by the underlying database server, but it is recommended that you
follow the default (native) Informix logging, by using BEGIN WORK, COMMIT WORK and
ROLLBACK WORK to manage transactions. At runtime, the database drivers can manage
the execution of the appropriate instructions for the target database server. This allows
you to use the same source code for different kinds of database servers.

The instructions described in this section must be executed as Static SQL statements.
Even if it is supported by the Informix API, it is not recommended that you use the
Dynamic SQL instructions to PREPARE and EXECUTE transaction management
statements, because it can result in unexpected behavior when using other database
servers.

BEGIN WORK

Purpose:

Starts a database transaction in the current connection.

Genero Business Development Language

426

Syntax:

BEGIN WORK

Usage:

Use this instruction to indicate where the database transaction starts in your program. If
supported by the database server, the underlying database driver starts a transaction.
Each row that an UPDATE, DELETE, or INSERT statement affects during a transaction
is locked and remains locked throughout the transaction. When using a non-Informix
database, the ODI driver executes the native SQL statement corresponding to BEGIN
WORK.

Warnings:

1. Some database servers do not support a Data Definition Language statement
(like CREATE TABLE) inside transactions, or even auto-commit the transaction
when such a statement is executed. Therefore, it is strongly recommended that
you avoid DDL statements inside transactions.

2. A transaction that contains statements that affect many rows can exceed the
limits that your operating system or the database server configuration imposes
on the maximum number of simultaneous locks.

Tips:

1. Include a limited number of SQL operations in a transaction to execute short
transactions. In a standard database session configuration (wait mode), it is not
recommended that you have a transaction block running a long time, since it may
block concurrent processes which want to access the same data.

COMMIT WORK

Purpose:

Validates and terminates a database transaction in the current connection.

Syntax:

COMMIT WORK

Usage:

Use this instruction to commit all modifications made to the database from the beginning
of a transaction. The database server takes the required steps to make sure that all
modifications that the transaction makes are completed correctly and saved to disk. The
COMMIT WORK statement releases all exclusive locks. With some databases like Informix,
shared locks are not released if the FOR UPDATE cursor is declared WITH HOLD option.

SQL Management

427

The COMMIT WORK statement closes all cursors not declared with the WITH HOLD option.
When using a non-Informix database, the ODI driver executes the native SQL statement
corresponding to COMMIT WORK.

ROLLBACK WORK

Purpose:

Cancels and terminates a database transaction in the current connection.

Syntax:

ROLLBACK WORK

Usage:

Use this instruction to cancel the current transaction and invalidate all changes since the
beginning of the transaction. After the execution of this instruction, the database is
restored to the state that it was in before the transaction began. All row and table locks
that the canceled transaction holds are released. If you issue this statement when no
transaction is pending, an error occurs. When using a non-Informix database, the ODI
driver executes the native SQL statement corresponding to ROLLBACK WORK.

Warnings:

1. Normally, the ROLLBACK WORK statement closes all cursors not declared with the
WITH HOLD option. This is not the case with some databases like IBM DB2, which
closes all kind of cursors when doing a ROLLBACK.

SET ISOLATION

Purpose:

Defines the transaction isolation level for the current connection.

Syntax:

SET ISOLATION TO
 { DIRTY READ
 | COMMITTED READ
 | CURSOR STABILITY
 | REPEATABLE READ }

Genero Business Development Language

428

Usage:

Sets the isolation level for the current connection. See database concepts in your
database server documentation for more details about isolation levels and concurrency
management.

When using a non-Informix database, the ODI driver executes the native SQL statement
that corresponds to the specified isolation level.

Warnings:

1. When using the DIRTY READ isolation level, the database server might return a
phantom row, which is an uncommitted row that was inserted or modified within a
transaction that has subsequently rolled back. No other isolation level allows
access to a phantom row.

Tips:

1. On most database servers, the default isolation level is usually COMMITTED READ,
which is appropriate to portable database programming. Therefore, we do not
recommend that you change the isolation level.

SET LOCK MODE

Purpose:

Defines the behavior of the program that tries to access a locked row or table.

Syntax:

SET LOCK MODE TO { NOT WAIT | WAIT [seconds] }

Notes:

1. This instruction defines the timeout for lock acquisition for the current connection.
2. When possible, the underlying database driver sets the corresponding

connection parameter to define the timeout for lock acquisition. But some
database servers may not support setting the lock timeout parameter. In this
case, the runtime system generates an exception.

3. When using the NOT WAIT clause, the timeout is set to zero. If the resource is
locked, the database server ends the operation immediately and returns an SQL
Error.

4. seconds defines the number of seconds to wait for lock acquisition. If the
resource is locked, the database server ends the operation after the elapsed time
and returns an SQL Error.

5. When using the WAIT clause without a number of seconds, the database server
waits for lock acquisition for an infinite time.

SQL Management

429

6. On most database servers, the default is to wait for locks to be released.

Warnings:

1. Make sure that the database server and corresponding database driver both
support a lock acquisition timeout option, otherwise the program would generate
an exception. For example, the IBM DB2 V8.1 database server does not support
this option at the session level.

Examples

Example 1:

01 MAIN
02 DATABASE stock
03 BEGIN WORK
04 INSERT INTO items VALUES (...)
04 UPDATE items SET ...
05 COMMIT WORK
06 END MAIN

Genero Business Development Language

430

Static SQL Statements
Summary:

• What are Static SQL Statements?
• Using program variables in Static SQL
• Table and column names in Static SQL
• What SQL string was generated by the compiler?
• Supported Static SQL Statements
• Adding rows (INSERT)
• Deleting rows (DELETE)
• Updating rows (UPDATE)
• Selecting rows (SELECT)

See also: Transactions, Positioned Updates, Dynamic SQL, Result Sets, SQL Errors.

What are Static SQL Statements?

Static SQL Statements are SQL instructions that are a part of the language syntax.
Static SQL Statements can be used directly in the source code as a normal procedural
instruction. The static SQL statements are parsed and validated at compile time. At
runtime, these SQL statements are automatically prepared and executed by the runtime
system.

Program variables are detected by the compiler and handled as SQL parameters.

The following example defines two variables that are directly used in an INSERT
statement:

01 MAIN
02 DEFINE iref INTEGER, name CHAR(10)
03 DATABASE stock
04 LET iref = 65345
05 LET name = "Kartopia"
06 INSERT INTO item (item_ref, item_name) VALUES (iref, name)
07 SELECT item_name INTO name
08 FROM item WHERE item_ref = iref
09 END MAIN

Using Static SQL Statements clarifies the source code (you do not need to use Dynamic
SQL Instructions to prepare and execute the SQL statement), but you cannot modify the
SQL text at runtime.

A limited number of SQL statements is directly supported in the language (see below),
but most common statements like INSERT, UPDATE, DELETE, SELECT can be executed
without problems using a simple standard syntax.

SQL Management

431

Using program variables in Static SQL statements

The syntax of Static SQL statements supports the usage of program variables directly as
SQL parameters. This gives a better understanding of the source code and requires less
lines as using SQL parameters with Dynamic SQL:

01 MAIN
02 DEFINE c_num INTEGER
03 DEFINE c_name CHAR(10)
04 DATABASE stock
05 SELECT cust_name INTO c_name FROM customer WHERE cust_num = c_num
06 END MAIN

If a database column name conflicts with a program variable, you can use the @ sign as
the column prefix. The compiler will treat the identifier following the @ as a table column:

01 MAIN
02 DEFINE cust_name CHAR(10)
03 DEFINE cnt INTEGER
04 DATABASE stock
05 SELECT COUNT(*) INTO cnt FROM customer WHERE @cust_name =
cust_name
06 END MAIN

The @ sign will not figure in the resulting SQL statement stored in the 42m module.

Table and column names in Static SQL

In Static SQL, table and column names will be converted to lowercase by the fglcomp
compiler. The SQL keywords are always converted to uppercase.

For example:

01 UPDATE CUSTOMER set CUST_name = 'undef' WHERE cust_name is null

will be converted to:

UPDATE customer SET cust_name = 'undef' WHERE cust_name IS NULL

While SQL keywords are not case sensitive for database servers, table names and
column names can be case-sensitive.

For more details, see Naming database objects.

Genero Business Development Language

432

What SQL string was generated by the compiler?

As described in the above sections, the fglcomp compiler parses the Static SQL
statements and modifies them before writing the resulting SQL text to the 42m module.

You can extract all SQL statements from the source by using the -S option of fglcomp:

01 MAIN
02 DEFINE c_name CHAR(10)
03 DEFINE cnt INTEGER
04 DATABASE stock
05 SELECT COUNT(*) INTO cnt FROM customer WHERE customer.cust_name =
c_name
06 END MAIN
$ fglcomp -S test.4gl
test.4gl^5^SELECT COUNT(*) FROM customer WHERE cust_name = ?

Supported Static SQL Statements

The following table shows all SQL statements supported by the language as Static SQL
Statements.

Lines marked with a pink background show SQL statements that are specific to IBM
Informix SQL language. These are supported for backward compatibility with the IBM
Informix 4GL compiler, and it is not recommended that you use them in your programs if
you want to write portable SQL. Other statements can be used, as long as you use
standard SQL syntax.

SQL Statement Description
ALTER INDEX ... Modify the definition of an index.
ALTER TABLE ... Modify the definition of a table.
ALTER SEQUENCE ... Modify the definition of a sequence.
CREATE AUDIT ... Create audit recording for a given table.
CREATE DATABASE ... Create a database.
CREATE INDEX ... Create an index.
CREATE TABLE ... Create a table.
CREATE SEQUENCE ... Create a sequence.
CREATE SYNONYM ... Create a synonym for a database table or view.
CREATE TEMP TABLE ... Create a temporary table.
CREATE VIEW ... Create a view.
DELETE FROM ... Delete rows in a table.
DROP AUDIT ... Remove audit for a given table.
DROP INDEX ... Delete an index.
DROP SEQUENCE ... Delete a sequence.

SQL Management

433

DROP SYNONYM ... Delete a table or view synonym.
DROP TABLE ... Delete a table.
DROP VIEW ... Delete a view.
GRANT ... Grant access rights.
INSERT INTO ... Insert rows into a table.
RECOVER TABLE ... Re-build an SE database table from log files.
RENAME COLUMN ... Rename a table column.
RENAME INDEX ... Rename an index.
RENAME SEQUENCE ... Rename a sequence.
RENAME TABLE ... Rename a table.
REVOKE ... Revoke access rights.
ROLLFORWARD DATABASE
...

Put an SE database in a safe state.

SELECT ... Select rows from a table.
SELECT ... INTO TEMP
ttab

Create a temporary table from a result set.

SET EXPLAIN ... Enable/disable query execution plan trace.
SET LOG ... Set the logging of an On-line database.
START DATABASE ... Initialize an SE database.
TRUNCATE TABLE table
...

Cleanup a table without logging changes (no
rollback possible)

UPDATE table ... Update rows in a table.
UPDATE STATISTICS ... Collect statistics information for the query

optimizer.

INSERT

Purpose:

Inserts a row in a table in the current database session.

Syntax:

INSERT INTO table-specification [(column [,...])]
{
 VALUES ({ variable | literal | NULL } [,...])
|
 select-statement
}

where table-specification is:

[dbname[@dbserver]:][owner.]table

Genero Business Development Language

434

Notes:

1. dbname identifies the database name. Informix only!
2. dbserver identifies the Informix database server (INFORMIXSERVER). Informix

only!
3. owner identifies the owner of the table, with optional double quotes. Informix

only!
4. table is the name of the database table.
5. column is a name of a table column.
6. variable is a program variable, a record or an array used as a parameter buffer to

provide values.
7. When you use records, you can specify all record members with the star notation

(rec.*).
8. literal is any literal expression supported by the language.
9. select-statement is a static SELECT statement with or without parameters as

variables.
10. When you use the VALUES clause, the statement inserts a row in the table with

the values specified in variables, as literals, or with NULL.
11. When you use a select-statement, the statement insert all rows returned in the

result set of the SELECT statement.

Warnings:

1. For portability, it is not recommended that you use the select-statement syntax.
2. When you use a select-statement, the columns returned by the result set must

match the column number and data types of the target table.

Example:

01 MAIN
02 DEFINE myrec RECORD
03 key INTEGER,
04 name CHAR(10),
05 cdate DATE,
06 comment VARCHAR(50)
07 END RECORD
08 DATABASE stock
09 LET myrec.key = 123
10 LET myrec.name = "Katos"
11 LET myrec.cdate = TODAY
12 LET myrec.comment = "xxxxxx"
13 INSERT INTO items VALUES (123, 'Practal', NULL, myrec.comment)
14 INSERT INTO items VALUES (myrec.*)
15 INSERT INTO items SELECT * FROM histitems WHERE name = myrec.name
16 END MAIN

SQL Management

435

UPDATE

Purpose:

Updates rows of a table in the current database session.

Syntax 1:

UPDATE table-specification
 SET
 column = { variable | literal | NULL }
 [,...]
 [WHERE { condition | CURRENT OF cursor }]

Syntax 2: Informix only!

UPDATE table-specification
 SET { ([table.]*) | (column [,...]) }
 = ({ variable | literal | NULL } [,...])
 [WHERE { condition | CURRENT OF cursor }]

where table-specification is:

[dbname[@dbserver]:][owner.]table

Notes:

1. dbname identifies the database name. Informix only!
2. dbserver identifies the Informix database server (INFORMIXSERVER). Informix

only!
3. owner identifies the owner of the table, with optional double quotes. Informix

only!
4. table is the name of the database table.
5. column is a name of a table column.
6. column can be specified with a sub-script expression (column[a,b]). Informix

only!
7. variable is a program variable, a record or an array used as a parameter buffer to

provide values.
8. literal is any literal expression supported by the language.
9. condition is an SQL expression to select the rows to be updated.
10. cursor is the identifier of a database cursor.
11. For more details about the WHERE CURRENT OF clause, see Positioned Updates.

Warnings:

1. column with a sub-script expression (column[a,b]) is not recommended
because most database servers do not support this notation.

2. Although a few database servers support Syntax 2, it is strongly recommended
that you use Syntax 1 only.

Genero Business Development Language

436

Example:

01 MAIN
02 DEFINE myrec RECORD
03 key INTEGER,
04 name CHAR(10),
05 cdate DATE,
06 comment VARCHAR(50)
07 END RECORD
08 DATABASE stock
09 LET myrec.key = 123
10 LET myrec.name = "Katos"
11 LET myrec.cdate = TODAY
12 LET myrec.comment = "xxxxxx"
13 UPDATE items SET
14 name = myrec.name,
15 cdate = myrec.cdate,
16 comment = myrec.comment
17 WHERE key = myrec.key
18 END MAIN

DELETE

Purpose:

Deletes rows from a table in the current database session.

Syntax:

DELETE FROM table-specification
 [WHERE { condition | CURRENT OF cursor }]

where table-specification is:

[dbname[@dbserver]:][owner.]table

Notes:

1. dbname identifies the database name. Informix only!
2. dbserver identifies the Informix database server (INFORMIXSERVER). Informix

only!
3. owner identifies the owner of the table, with optional double quotes. Informix

only!
4. table is the name of the database table.
5. condition is an SQL expression to select the rows to be deleted.
6. cursor is the identifier of a database cursor.
7. For more details about the WHERE CURRENT OF clause, see Positioned Updates.

SQL Management

437

Warnings:

1. If you do not specify the WHERE clause, all rows in the table will be deleted.

Example:

01 MAIN
02 DATABASE stock
03 DELETE FROM items WHERE name LIKE 'A%'
04 END MAIN

SELECT

Purpose:

Selects rows from one or more tables in the current database session.

Syntax:

select-statement [UNION [ALL] select-statement] [...]

where select-statement is:

SELECT [{ALL|DISTINCT|UNIQUE}] { * | select-list }
 [INTO variable [,...]]
 FROM table-list [,...]
 [WHERE condition]
 [GROUP BY column-list [HAVING condition]]
 [ORDER BY column [{ASC|DESC}] [,...]]

where select-list is:

{ [@]table-specification.*
| [table-specification.]column
| literal
} [[AS] column-alias]
[,...]

where table-list is:

{ table-name
| OUTER table-name
| OUTER (table-name [,...])
}
[,...]

where table-name is:

table-specification [[AS] table-alias]

Genero Business Development Language

438

where table-specification is:

[dbname[@dbserver]:][owner.]table

where column-list is:

column-name [,...]

where column-name is:

[table.]column

Notes:

1. dbname identifies the database name. Informix only!
2. dbserver identifies the Informix database server (INFORMIXSERVER). Informix

only!
3. owner identifies the owner of the table, with optional double quotes. Informix

only!
4. table is the name of the database table.
5. table-alias defines a new name to reference the table in the rest of the statement.
6. column is a name of a table column.
7. column-alias defines a new name to reference the column in the rest of the

statement.
8. condition is an SQL expression to select the rows to be deleted.
9. The INTO clause provides the list of fetch buffers. This clause is not part of the

SQL language sent to the database server; it is extracted from the statement by
the compiler.

Warnings:

1. The language supports the SELECT INTO TEMP statement to create temporary
tables (this statement does not return a result set).

Usage:

If the SELECT statement returns only one row of data, you can write it directly as a
procedural instruction. However, you must use the INTO clause to provide the list of
variables where column values will be fetched:

01 MAIN
02 DEFINE myrec RECORD
03 key INTEGER,
04 name CHAR(10),
05 cdate DATE,
06 comment VARCHAR(50)
07 END RECORD
08 DATABASE stock
09 LET myrec.key = 123
10 SELECT name, cdate
11 INTO myrec.name, myrec.cdate

SQL Management

439

12 FROM items
13 WHERE key=myrec.key
14 END MAIN

If the SELECT statement returns more than one row of data, you must declare a database
cursor to process the result set:

01 MAIN
02 DEFINE myrec RECORD
03 key INTEGER,
04 name CHAR(10),
05 cdate DATE,
06 comment VARCHAR(50)
07 END RECORD
08 DATABASE stock
09 LET myrec.key = 123
10 DECLARE c1 CURSOR FOR
11 SELECT name, cdate
12 FROM items
13 WHERE key=myrec.key
14 OPEN c1
15 FETCH c1 INTO myrec.name, myrec.cdate
16 CLOSE c1
17 END MAIN

The SELECT statement can include the INTO clause, but it is strongly recommended that
you use that clause in the FETCH instruction only.

See Result Sets Processing for more details.

Genero Business Development Language

440

Dynamic SQL Management
Summary:

• What is Dynamic SQL Management?
• Preparing an SQL statement (PREPARE)
• Executing prepared statements (EXECUTE)
• Releasing prepared statements (FREE)
• Immediate execution (EXECUTE IMMEDIATE)

See also: Transactions, Positioned Updates, Static SQL, Result Sets, SQL Errors,
Declaring a cursor (DECLARE).

What is Dynamic SQL management?

BDL includes basic SQL instructions in the language syntax (see Static SQL), but only a
limited number of SQL instructions are supported this way. Dynamic SQL Management
allows you to execute any kind of SQL statement, hard coded or created at runtime, with
or without SQL parameters, returning or not returning a result set.

In order to execute an SQL statement with Dynamic SQL, you must first prepare the
SQL statement to initialize a statement handle, then you execute the prepared statement
one or more times:

When you no longer need the prepared statement, you can free the statement handle to
release allocated resources:

SQL Management

441

When using insert cursors or SQL statements that produce a result set (like SELECT),
you must declare a cursor with a prepared statement handle.

Prepared SQL statements can contain SQL parameters by using ? placeholders in the
SQL text. In this case, the EXECUTE or OPEN instruction supplies input values in the
USING clause.

To increase performance efficiency, you can use the PREPARE instruction, together with
an EXECUTE instruction in a loop, to eliminate overhead caused by redundant parsing
and optimizing. For example, an UPDATE statement located within a WHILE loop is parsed
each time the loop runs. If you prepare the UPDATE statement outside the loop, the
statement is parsed only once, eliminating overhead and speeding statement execution.

PREPARE

Purpose:

This instruction prepares an SQL statement for execution in the current database
connection.

Syntax:

PREPARE sid FROM sqltext

Notes:

1. sid is an identifier to handle the prepared SQL statement.
2. sqltext is a string expression containing the SQL statement to be prepared.

Genero Business Development Language

442

Usage:

The PREPARE instruction allocates resources for an SQL statement handle, in the context
of the current connection. The SQL text is sent to the database server for parsing,
validation and to generate the execution plan.

Prepared SQL statements can be executed with the EXECUTE instruction, or, when the
SQL statement generates a result set, the prepared statement can be used to declare
cursors with the DECLARE instruction.

A statement identifier (sid) can represent only one SQL statement at a time. You can
execute a new PREPARE instruction with an existing statement identifier if you wish to
assign the text of a different SQL statement to the statement identifier. The scope of
reference of the sid statement identifier is local to the module where it is declared.

The SQL statement can have parameter placeholders, identified by the question mark
(?) character.

Resources allocated by PREPARE can be released later by the FREE instruction.

Warnings:

1. You cannot directly reference a variable in the text of a prepared SQL statement;
you must use question mark (?) placeholders instead.

2. The number of prepared statements in a single program is limited by the
database server and the available memory. Make sure that you free the
resources when you no longer need the prepared statement.

3. The identifier of a statement that was prepared in one module cannot be
referenced from another module.

4. You cannot use question mark (?) placeholders for SQL identifiers such as a
table name or a column name; you must specify these identifiers in the statement
text when you prepare it.

5. Some database servers like Informix support multiple SQL statement preparation
in a unique PREPARE instruction, but most database servers avoid multiple
statements.

Example:

01 FUNCTION deleteOrder(n)
02 DEFINE n INTEGER
03 PREPARE s1 FROM "DELETE FROM order WHERE key=?"
04 EXECUTE s1 USING n
05 FREE s1
06 END FUNCTION

SQL Management

443

EXECUTE

Purpose:

This instruction runs an SQL statement previously prepared in the same database
connection.

Syntax:

EXECUTE sid [USING pvar {IN|OUT|INOUT} [,...]] [INTO fvar [,...]]

Notes:

1. sid is an identifier to handle the prepared SQL statement.
2. pvar is a variable containing an input value for an SQL parameter.
3. fvar is a variable used as fetch buffer, when the prepared statement returns a

single database row.

Usage:

The EXECUTE instruction performs the execution of a prepared SQL statement. Once
prepared, an SQL statement can be executed as often as needed.

If the SQL statement has (?) parameter placeholders, you must specify the USING clause
to provide a list of variables as parameter buffers. Parameter values are assigned by
position.

If the SQL statement returns a result set with one row, you can specify the INTO clause
to provide a list of variables to receive the result set column values. Fetched values are
assigned by position. If the SQL statement returns a result set with more than one row,
the instruction raises an exception.

The IN, OUT or INOUT options can be used to call stored procedures having input / output
parameters. Use the IN, OUT or INOUT options to indicate if a parameter is respectively
for input, output or both. For more details about stored procedure calls, see SQL
Programming.

Warnings:

1. You cannot use strings or numeric constants in the USING or INTO list. All
elements must be program variables.

2. You cannot execute a prepared SQL statement based on database tables if the
table structure has changed (ALTER TABLE) since the PREPARE instruction; you
must re-prepare the SQL statement.

3. The IN, OUT or INOUT options can only be used for simple variables, you cannot
specify those options for a complete record with the record.* notation.

Genero Business Development Language

444

Example:

01 MAIN
02 DEFINE var1 CHAR(20)
03 DEFINE var2 INTEGER
04
05 DATABASE stores
06
07 PREPARE s1 FROM "UPDATE tab SET col=? WHERE key=?"
08 LET var1 = "aaaa"
09 LET var2 = 345
10 EXECUTE s1 USING var1, var2
11
12 PREPARE s2 FROM "SELECT col FROM tab WHERE key=?"
13 LET var2 = 564
14 EXECUTE s2 USING var2 INTO var1
15
16 PREPARE s3 FROM "CALL myproc(?,?)"
17 LET var1 = 'abc'
18 EXECUTE s3 USING var1 IN, var2 OUT
19
20 END MAIN

FREE

Purpose:

This instruction releases the resources allocated to a prepared statement.

Syntax:

FREE sid

Notes:

1. sid is the identifier of the prepared SQL statement.

Usage:

The FREE instruction takes the name of a statement as parameter.

All resources allocated to the SQL statement handle are released.

Warnings:

1. After resources are released, the statement identifier cannot be referenced by a
cursor, or by the EXECUTE statement, until you prepare the statement again.

SQL Management

445

Tips:

1. Free the statement if it is not needed anymore, this saves resources on the
database client and database server side.

Example:

01 FUNCTION update_customer_name(key, name)
02 DEFINE key INTEGER
03 DEFINE name CHAR(10)
04 PREPARE s1 FROM "UPDATE customer SET name=? WHERE customer_num=?"
05 EXECUTE s1 USING name, key
06 FREE s1
07 END FUNCTION

EXECUTE IMMEDIATE

Purpose:

This instruction performs a simple SQL execution without SQL parameters or result set.

Syntax:

EXECUTE IMMEDIATE sqltext

Notes:

1. sqltext is a string expression containing the SQL statement to be executed.

Usage:

The EXECUTE IMMEDIATE instruction passes an SQL statement to the database server
for execution in the current database connection.

The SQL statement must be a single statement without parameters, returning no result
set.

This instruction performs the functions of PREPARE, EXECUTE and FREE in one step.

Warnings:

1. The SQL statement cannot contain SQL parameters.
2. The SQL statement must not produce a result set.

Example:

01 MAIN

Genero Business Development Language

446

02 DATABASE stores
03 EXECUTE IMMEDIATE "UPDATE tab SET col='aaa' WHERE key=345"
04 END MAIN

SQL Management

447

Database Result Set Processing (Cursor)
Summary:

• What is a database result set?
• Cursor declaration (DECLARE)
• Opening cursors (OPEN)
• Retrieving data (FETCH)
• Closing cursors (CLOSE)
• Freeing cursors (FREE)
• Browsing rows in a loop (FOREACH)

See also: Transactions, Positioned Updates, Static SQL, Dynamic SQL, SQL Errors.

What is a database result set?

A Database Result Set is a set of rows generated by an SQL statement that produces
rows, such as SELECT. The result set is maintained by the database server. In a
program, you handle a result set with a Database Cursor.

First you must declare the database cursor with the DECLARE instruction. This
instruction sends the SQL statement to the database server for parsing, validation and to
generate the execution plan.

The result set is produced after execution of the SQL statement, when the database
cursor is associated with the result set by the OPEN instruction. At this point, no data
rows are transmitted to the program. You must use the FETCH instruction to retrieve
data rows from the database server.

Genero Business Development Language

448

When finished with the result set processing, you must CLOSE the cursor to release the
resources allocated for the result set on the database server. The cursor can be re-
opened if needed. If the SQL statement is no longer needed, you can free the resources
allocated to statement execution with the FREE instruction.

The scope of reference of a database cursor is local to a module, so a cursor that was
declared in one source file cannot be referenced in a statement in another file.

The language supports sequential and scrollable cursors. Sequential cursors, which are
unidirectional, are used to retrieve rows for a report, for example. Scrollable cursors
allow you to move backwards or to an absolute or relative position in the result set.
Specify whether a cursor is scrollable with the SCROLL option of the DECLARE
instruction.

SQL Management

449

DECLARE

Purpose:

This instruction associates a database cursor with an SQL statement in the current
connection.

Syntax 1: Cursor declared with a static SQL statement.

DECLARE cid [SCROLL] CURSOR [WITH HOLD] FOR select-statement

Syntax 2: Cursor declared with a prepared statement.

DECLARE cid [SCROLL] CURSOR [WITH HOLD] FOR sid

Syntax 3: Cursor declared with a string expression.

DECLARE cid [SCROLL] CURSOR [WITH HOLD] FROM expr

Notes:

1. cid is the identifier of the database cursor.
2. select-statement is a SELECT statement defined in Static SQL.
3. sid is the identifier of a prepared SQL statement.
4. expr is any expression that evaluates to a string.
5. In all supported syntaxes, you can use the ? question mark as a parameter

placeholder.

Warnings:

1. The maximum number of declared cursors in a single program is limited by the
database server and the available memory. Make sure that you free the
resources when you no longer need the declared cursor.

2. The identifier of a cursor that was declared in one module cannot be referenced
from another module.

3. When declaring a cursor with a static select-statement, the statement can include
an INTO clause. However, this is not recommended, to be consistent with
prepared statements. If you prepare the statement, you must omit the INTO
clause in the SQL text provided to the PREPARE instruction and use the INTO
clause of the FETCH statement to retrieve the values from the result set.

4. You can add the FOR UPDATE clause in the SELECT statement to declare an
update cursor. You can use the update cursor to modify (update or delete) the
current row.

5. Use the WITH HOLD option carefully, because this feature is specific to IBM
Informix servers. Other database servers do not behave as Informix does with
this type of cursor. For example, if the SELECT is not declared FOR UPDATE, most

Genero Business Development Language

450

database servers keep cursors open after the end of a transaction, but IBM DB2
automatically closes all cursors when the transaction is rolled back.

Usage:

The DECLARE instruction allocates resources for an SQL statement handle, in the context
of the current connection. The SQL text is sent to the database server for parsing,
validation and to generate the execution plan.

After declaring the cursor, you can use the OPEN instruction to execute the SQL
statement and produce the result set.

DECLARE must precede any other statement that refers to the cursor during program
execution.

The scope of reference of the cid cursor identifier is local to the module where it is
declared.

Resources allocated by the DECLARE can be released later by the FREE instruction.

Forward only cursors

If you use only the DECLARE CURSOR keywords, you create a sequential cursor, which
can fetch only the next row in sequence from the result set. The sequential cursor can
read through the result set only once each time it is opened. If you are using a
sequential cursor for a select cursor, on each execution of the FETCH statement, the
database server returns the contents of the current row and locates the next row in the
result set.

Example 1: Declaring a cursor with a static SELECT statement.

01 MAIN
02 DATABASE stores
03 DECLARE c1 CURSOR FOR SELECT * FROM customer
04 END MAIN

Example 2: Declaring a cursor with a prepared statement.

01 MAIN
02 DEFINE key INTEGER
03 DEFINE cust RECORD
04 num INTEGER,
05 name CHAR(50)
06 END RECORD
07 DATABASE stores
08 PREPARE s1
09 FROM "SELECT customer_num, cust_name FROM customer WHERE
customer_num>?"
10 DECLARE c1 CURSOR FOR s1
11 LET key=101
12 FOREACH c1 USING key INTO cust.*

SQL Management

451

13 DISPLAY cust.*
14 END FOREACH
15 END MAIN

Scrollable cursors

Use the DECLARE SCROLL CURSOR keywords to create a scrollable cursor, which can
fetch rows of the result set in any sequence. Until the cursor is closed, the database
server retains the result set of the cursor in a static data set (for example, in a temporary
table like Informix). You can fetch the first, last, or any intermediate rows of the result set
as well as fetch rows repeatedly without having to close and reopen the cursor. On a
multi-user system, the rows in the tables from which the result set rows were derived
might change after the cursor is opened and a copy of the row is made in the static data
set. If you use a scroll cursor within a transaction, you can prevent copied rows from
changing, either by setting the isolation level to Repeatable Read or by locking the entire
table in share mode during the transaction. Scrollable cursors cannot be declared FOR
UPDATE.

The DECLARE [SCROLL] CURSOR FROM syntax allows you to declare a cursor directly
with a string expression, so that you do not have to use the PREPARE instruction. This
simplifies the source code and speeds up the execution time for non-Informix databases,
because the SQL statement is not parsed twice.

Example 3: Declaring a scrollable cursor with string expression.

01 MAIN
02 DEFINE key INTEGER
03 DEFINE cust RECORDs
04 num INTEGER,
05 name CHAR(50)
06 END RECORD
07 DATABASE stores
08 DECLARE c1 SCROLL CURSOR
09 FROM "SELECT customer_num, cust_name FROM customer WHERE
customer_num>?"
10 LET key=101
11 FOREACH c1 USING key INTO cust.*
12 DISPLAY cust.*
13 END FOREACH
14 END MAIN

Hold cursors

Informix only: Use the WITH HOLD option to create a hold cursor. A hold cursor allows
uninterrupted access to a set of rows across multiple transactions. Ordinarily, all cursors
close at the end of a transaction. A hold cursor does not close; it remains open after a
transaction ends. A hold cursor can be either a sequential cursor or a scrollable cursor.
Hold cursors are only supported by Informix database engines.

You can use the ? question mark place holders with prepared or static SQL statements,
and provide the parameters at execution time with the USING clause of the OPEN or
FOREACH instructions.

Genero Business Development Language

452

Example 4: Declaring a hold cursor with ? parameter place holders.

01 MAIN
02 DEFINE key INTEGER
03 DEFINE cust RECORDs
04 num INTEGER,
05 name CHAR(50)
06 END RECORD
07 DATABASE stores
08 DECLARE c1 CURSOR WITH HOLD
09 FOR SELECT customer_num, cust_name FROM customer WHERE
customer_num > ?
10 LET key=101
11 FOREACH c1 USING key INTO cust.*
12 BEGIN WORK
13 UPDATE cust2 SET name=cust.cust_name WHERE num=cust.num
14 COMMIT WORK
15 END FOREACH
16 END MAIN

OPEN

Purpose:

Executes the SQL statement associated with a database cursor declared in the same
connection.

Syntax:

OPEN cid
 [USING pvar {IN|OUT|INOUT} [,...]]
 [WITH REOPTIMIZATION]

Notes:

1. cid is the identifier of the database cursor.
2. pvar is a program variable, a record, or an array used as a parameter buffer to

provide SQL parameter values.

Usage:

The OPEN instruction executes the SQL statement of a declared cursor. The result set is
produced on the server side and rows can be fetched.

The USING clause is required to provide the SQL parameters as program variables, if the
cursor was declared with a prepared statement that includes (?) question mark
placeholders.

SQL Management

453

A subsequent OPEN statement closes the cursor and then reopens it. When the database
server reopens the cursor, it creates a new result set, based on the current values of the
variables in the USING clause. If the variables have changed since the previous OPEN
statement, reopening the cursor can generate an entirely different result set.

The IN, OUT or INOUT options can be used to call stored procedures having input / output
parameters and generating a result set. Use the IN, OUT or INOUT options to indicate if a
parameter is respectively for input, output or both. For more details about stored
procedure calls, see SQL Programming.

Sometimes, query execution plans need to be re-optimized when SQL parameter values
change. Use the WITH REOPTIMIZATION clause to indicate that the query execution plan
has to be re-optimized on the database server (this operation is normally done during
the DECLARE instruction). If this option is not supported by the database server, it is
ignored.

In a IBM Informix database that is ANSI-compliant, you receive an error code if you try to
open a cursor that is already open. Informix only!

With the CLOSE instruction, you can release resources allocated for the result set on the
database server.

Warnings:

1. You cannot use string or numeric constants in the USING list. All elements must
be program variables.

2. The database server evaluates the values that are named in the USING clause of
the OPEN statement only when it opens the cursor. While the cursor is open,
subsequent changes to program variables in the OPEN clause do not change the
result set of the cursor; you must re-open the cursor to re-execute the statement.

3. If you release cursor resources with a FREE instruction, you cannot use the
cursor unless you declare the cursor again.

4. The IN, OUT or INOUT options can only be used for simple variables, you cannot
specify those options for a complete record with the record.* notation.

Example:

01 MAIN
02 DEFINE k INTEGER
03 DEFINE n VARCHAR(50)
04 DATABASE stores
05 DECLARE c1 CURSOR FROM "SELECT cust_name FROM customer WHERE
cust_id>?"
06 LET k = 102
07 OPEN c1 USING k
08 FETCH c1 INTO n
09 LET k = 103
10 OPEN c1 USING k
11 FETCH c1 INTO n
12 END MAIN

Genero Business Development Language

454

FETCH

Purpose:

Moves a cursor to a new row in the corresponding result set and retrieves the row values
into fetch buffers.

Syntax:

FETCH [direction] cid [INTO fvar [,...]]

where direction is one of:

{
 NEXT
| { PREVIOUS | PRIOR }
| CURRENT
| FIRST
| LAST
| ABSOLUTE position
| RELATIVE offset
}

Notes:

1. cid is the identifier of the database cursor.
2. fvar is a program variable, a record or an array used as a fetch buffer to receive a

row value.
3. direction options different from NEXT can only be used with scrollable cursors.
4. position is an positive integer expression.
5. offset is a positive or negative integer expression.

Usage:

The FETCH instruction retrieves a row from a result set of an opened cursor. The cursor
must be opened before using the FETCH instruction.

The INTO clause can be used to provide the fetch buffers that receive the result set
column values.

A sequential cursor can fetch only the next row in sequence from the result set.

The NEXT clause (the default) retrieves the next row in the result set. If the row pointer
was on the last row before executing the instruction, the SQL Code is set to 100
(NOTFOUND), and the row pointer remains on the last row. (if you issue a FETCH
PREVIOUS at this time, you get the next-to-last row).

SQL Management

455

The PREVIOUS clause retrieves the previous row in the result set. If the row pointer was
on the first row before executing the instruction, the SQL Code is set to 100 (NOTFOUND),
and the row pointer remains on the first row. (if you issue a FETCH NEXT at this time, you
get the second row).

The CURRENT clause retrieves the current row in the result set.

The FIRST clause retrieves the first row in the result set.

The LAST clause retrieves the last row in the result set.

The ABSOLUTE clause retrieves the row at position in the result set. If the position is not
correct, the SQL Code is set to 100 (NOTFOUND). Absolute row positions are
numbered from 1.

The RELATIVE clause moves offset rows in the result set and returns the row at the
current position. The offset can be a negative value. If the offset is not correct, the SQL
Code is set to 100 (NOTFOUND). If offset is zero, the current row is fetched.

Warnings:

1. Fetching rows can have specific behavior when the cursor was declared FOR
UPDATE. See Positioned Updates for more details.

Example:

01 MAIN
02 DEFINE cnum INTEGER
03 DEFINE cname CHAR(20)
04 DATABASE stores
05 DECLARE c1 SCROLL CURSOR FOR SELECT customer_num, cust_name FROM
customer
06 OPEN c1
07 FETCH c1 INTO cnum, cname
08 FETCH LAST c1 INTO cnum, cname
09 FETCH PREVIOUS c1 INTO cnum, cname
10 FETCH FIRST c1 INTO cnum, cname
11 FETCH LAST c1
12 FETCH FIRST c1
13 END MAIN

CLOSE

Purpose:

Closes a database cursor and frees resources allocated on the database server for the
result set.

Genero Business Development Language

456

Syntax:

CLOSE cid

Notes:

1. cid is the identifier of the database cursor.

Usage:

The CLOSE instruction releases the resources allocated for the result set on the database
server.

After using the CLOSE instruction, you must re-open the cursor with OPEN before
retrieving values with FETCH.

Tips:

1. Close the cursor when the result set is no longer used, this saves resources on
the database client and database server side.

Example:

01 MAIN
02 DATABASE stores
03 DECLARE c1 CURSOR FOR SELECT * FROM customer
04 OPEN c1
05 CLOSE c1
06 OPEN c1
07 CLOSE c1
08 END MAIN

FREE

Purpose:

This instruction releases resources allocated to the database cursor with the DECLARE
instruction.

Syntax:

FREE cid

Notes:

1. cid is the identifier of the database cursor.

SQL Management

457

Usage:

The FREE instruction takes the name of a cursor as parameter.

All resources allocated to the database cursor are released.

The cursor should be explicitly closed before it is freed.

Warnings:

1. If you release cursor resources with this instruction, you cannot use the cursor
unless you declare the cursor again.

Tips:

1. Free the cursor when the result set is no longer used; this saves resources on
the database client and database server side.

Example:

01 MAIN
02 DEFINE i, j INTEGER
03 DATABASE stores
04 FOR i=1 TO 10
05 DECLARE c1 CURSOR FOR SELECT * FROM customer
06 FOR j=1 TO 10
07 OPEN c1
08 FETCH c1
09 CLOSE c1
10 END FOR
11 FREE c1
12 END FOR
13 END MAIN

FOREACH

Purpose:

A FOREACH block applies a series of actions to each row of data that is returned from a
database cursor.

Syntax:

FOREACH cid
 [USING pvar {IN|OUT|INOUT} [,...]]
 [INTO fvar [,...]]
 [WITH REOPTIMIZATION]
 {
 statement

Genero Business Development Language

458

 | CONTINUE FOREACH
 | EXIT FOREACH
 }
 [...]
END FOREACH

Notes:

1. cid is the identifier of the database cursor.
2. pvar is a program variable, a record or an array used as a parameter buffer to

provide SQL parameter values.
3. fvar is a program variable, a record or an array used as a fetch buffer to receive a

row value.

Usage:

Use the FOREACH instruction to retrieve and process database rows that were selected
by a query. This instruction is equivalent to using the OPEN, FETCH and CLOSE cursor
instructions:

1. Open the specified cursor
2. Fetch the rows selected
3. Close the cursor (after the last row has been fetched)

You must declare the cursor (by using the DECLARE instruction) before the FOREACH
instruction can retrieve the rows. A compile-time error occurs unless the cursor was
declared prior to this point in the source module. You can reference a sequential cursor,
a scroll cursor, a hold cursor, or an update cursor, but FOREACH only processes rows in
sequential order.

The FOREACH statement performs successive fetches until all rows specified by the
SELECT statement are retrieved. Then the cursor is automatically closed. It is also closed
if a WHENEVER NOT FOUND exception handler within the FOREACH loop detects a
NOTFOUND condition (that is, SQL Code = 100).

The USING clause is required to provide the SQL parameter buffers, if the cursor was
declared with a prepared statement that includes (?) question mark placeholders.

The IN, OUT or INOUT options can be used to call stored procedures having input / output
parameters and generating a result set. Use the IN, OUT, or INOUT options to indicate if a
parameter is respectively for input, output, or both. For more details about stored
procedure calls, see SQL Programming.

The INTO clause can be used to provide the fetch buffers that receive the row values.

Use the WITH REOPTIMIZATION clause to indicate that the query execution plan has to
be re-optimized.

SQL Management

459

The CONTINUE FOREACH instruction interrupts processing of the current row and starts
processing the next row. The runtime system fetches the next row and resumes
processing at the first statement in the block.

The EXIT FOREACH instruction interrupts processing and ignores the remaining rows of
the result set.

Warnings:

1. Infinite loops may occur if the cursor preparation failed.
2. The IN, OUT, or INOUT options can only be used for simple variables; you cannot

specify those options for a complete record with the record.* notation.

Example:

01 MAIN
02 DEFINE clist ARRAY[200] OF RECORD
03 cnum INTEGER,
04 cname CHAR(50)
05 END RECORD
06 DEFINE i INTEGER
07 DATABASE stores
08 DECLARE c1 CURSOR FOR SELECT customer_num, cust_name FROM
customer
09 LET i=0
10 FOREACH c1 INTO clist[i+1].*
11 LET i=i+1
12 DISPLAY clist[i].*
13 END FOREACH
14 DISPLAY "Number of rows found: ", i
15 END MAIN

Genero Business Development Language

460

SQL Positioned Updates
Summary:

• What is a Positioned Update?
• Declaring a cursor for update (DECLARE)
• Updating a row by cursor position (UPDATE ... WHERE CURRENT OF)
• Deleting a row by cursor position (DELETE ... WHERE CURRENT OF)
• Examples

See also: Transactions, Static SQL, Dynamic SQL, Result Sets, SQL Errors.

What is a Positioned Update?

When declaring a database cursor with a SELECT statement using a unique table and
including the FOR UPDATE keywords, you can update or delete database rows by using
the WHERE CURRENT OF keywords in the UPDATE or DELETE statements. Such an
operation is called Positioned Update or Positioned Delete.

Some database servers do not support hold cursors (WITH HOLD) declared with a
SELECT statement including the FOR UPDATE keywords. The SQL standards require 'for
update' cursors to be automatically closed at the end of a transaction. Therefore, it is
strongly recommended that you use positioned updates in a transaction block.

Do not confuse positioned update with the use of SELECT FOR UPDATE statements that
are not associated with a database cursor. Executing SELECT FOR UPDATE statements is
supported by the language, but you cannot perform positioned updates since there is no
cursor identifier associated to the result set.

To perform a positioned update or delete, you must declare the database cursor with a
SELECT FOR UPDATE statement:

SQL Management

461

Then, start a transaction, open the cursor and fetch a row:

Finally, you update or delete the current row and you commit the transaction:

Genero Business Development Language

462

DECLARE

Purpose:

Use this instruction to associate a database cursor with a SELECT statement to perform
positioned updates in the current connection.

Syntax:

DECLARE cid [SCROLL] CURSOR [WITH HOLD] FOR { select-statement | sid }

Notes:

1. cid is the identifier of the database cursor.
2. select-statement is a SELECT statement defined in Static SQL.
3. To perform positioned updates, the select-statement must include the FOR

UPDATE keywords.
4. sid is the identifier of a prepared SELECT statement including the FOR UPDATE

keywords.
5. See the DECLARE instruction description in Result Sets Processing.
6. DECLARE must precede any other statement that refers to the cursor during

program execution.

Warnings:

1. The scope of reference of the cid cursor identifier is local to the module where it
is declared. Therefore, you must execute the DECLARE, UPDATE or DELETE
instructions in the same module.

SQL Management

463

2. Use the WITH HOLD option carefully, because this feature is specific to IBM
Informix servers. Other database servers do not behave as Informix does with
such cursors. For example, if the SELECT is not declared FOR UPDATE, most
database servers keep cursors open after the end of a transaction, but IBM DB2
automatically closes all cursors when the transaction is rolled back.

UPDATE ... WHERE CURRENT OF

Purpose:

Updates the current row in a result set of a database cursor declared for update.

Syntax:

UPDATE table-specification
 SET
 column = { variable | literal | NULL }
 [,...]
 WHERE CURRENT OF cid

Notes:

1. table-specification identifies the target table (see UPDATE for more details).
2. column is a name of a table column.
3. variable is a program variable, a record or an array used as a parameter buffer to

provide values.
4. literal is any literal expression supported by the language.
5. cid is the identifier of the database cursor declared for update.
6. The UPDATE statement does not advance the cursor to the next row, so the

current row position remains unchanged.

Warnings:

1. The scope of reference of the cid cursor identifier is local to the module where it
is declared. Therefore, you must execute the DECLARE, UPDATE or DELETE
instructions in the same module.

2. There must be a current row in the result set. Make sure that the SQL status
returned by the last FETCH is equal to zero.

3. If the DECLARE statement that created the cursor specified one or more columns
in the FOR UPDATE clause, you are restricted to updating only those columns in a
subsequent UPDATE ... WHERE CURRENT OF statement.

Genero Business Development Language

464

DELETE ... WHERE CURRENT OF

Purpose:

Deletes the current row in a result set of a database cursor declared for update.

Syntax:

DELETE FROM table-specification
 WHERE CURRENT OF cid

Notes:

1. table-specification identifies the target table (see DELETE for more details).
2. cid is the identifier of the database cursor declared for update.
3. After the deletion, no current row exists; you cannot use the cursor to delete or

update a row until you re-position the cursor with a FETCH statement.

Warnings:

1. The scope of reference of the cid cursor identifier is local to the module where it
is declared. Therefore, you must execute the DECLARE, UPDATE or DELETE
instructions in the same module.

2. There must be a current row in the result set. Make sure that the SQL status
returned by the last FETCH is equal to zero.

Examples

Example 1:

01 MAIN
02 DEFINE pname CHAR(30)
03 DATABASE stock
04 DECLARE uc CURSOR FOR
05 SELECT name FROM item WHERE key=123 FOR UPDATE
06 BEGIN WORK
07 OPEN uc
08 FETCH uc INTO pname
09 IF sqlca.sqlcode=0 THEN
10 LET pname = "Dummy"
11 UPDATE item SET name=pname WHERE CURRENT OF uc
12 END IF
13 CLOSE uc
14 COMMIT WORK
15 FREE uc
16 END MAIN

SQL Management

465

SQL Insert Cursors
Summary:

• What is an Insert Cursor?
• Declaring the Insert Cursor (DECLARE)
• Initializing the Insert Cursor (OPEN)
• Adding Rows to the Buffer (PUT)
• Flushing the insert Buffer (FLUSH)
• Finalizing the Insert Cursor (CLOSE)
• Freeing Allocated Resources (FREE)
• Examples

See also: Transactions, Static SQL, Dynamic SQL, Result Sets, SQL Errors.

What is an Insert Cursor?

An Insert Cursor is a database cursor declared with a restricted form of the INSERT
statement, designed to perform buffered row insertion in database tables.

The insert cursor simply inserts rows of data; it cannot be used to fetch data. When an
insert cursor is opened, a buffer is created in memory to hold a block of rows. The buffer
receives rows of data as the program executes PUT statements. The rows are written to
disk only when the buffer is full. You can use the CLOSE, FLUSH, or COMMIT WORK
statement to flush the buffer when it is less than full. You must close an insert cursor to
insert any buffered rows into the database before the program ends. You can lose data if
you do not close the cursor properly.

When the database server supports buffered inserts, an insert cursor increases
processing efficiency (compared with embedding the INSERT statement directly). This
process reduces communication between the program and the database server and also
increases the speed of the insertions.

Before using the insert cursor, you must declare it with the DECLARE instruction using
an INSERT statement:

Genero Business Development Language

466

Once declared, you can open the insert cursor with the OPEN instruction. This
instruction prepares the insert buffer. When the insert cursor is opened, you can add
rows to the insert buffer with the PUT statement:

Rows are automatically added to the database table when the insert buffer is full. To
force row insertion in the table, you can use the FLUSH instruction:

SQL Management

467

Finally, when all rows are added, you can CLOSE the cursor and if you no longer need
it, you can de-allocate resources with the FREE instruction:

By default, insert cursors must be opened inside a transaction block, with BEGIN WORK
and COMMIT WORK, and they are automatically closed at the end of the transaction. If
needed, you can declare insert cursors with the WITH HOLD clause, to allow
uninterrupted row insertion across multiple transactions. See example 3 at the bottom of
this page.

Genero Business Development Language

468

DECLARE

Purpose:

Declares a new insert cursor in the current database session.

Syntax:

DECLARE cid CURSOR [WITH HOLD] FOR { insert-statement | sid }

Notes:

1. cid is the identifier of the insert cursor.
2. insert-statement is an INSERT statement defined in Static SQL.
3. sid is the identifier of a prepared INSERT statement including (?) question mark

placeholders in the VALUES clause.
4. The INSERT statement is parsed, validated and the execution plan is created.
5. DECLARE must precede any other statement that refers to the cursor during

program execution.
6. The scope of reference of the cid cursor identifier is local to the module where it

is declared.
7. When declaring a cursor with a static insert-statement, the statement can include

a list of variables in the VALUES clause. These variables are automatically read by
the PUT statement; you do not have to provide the list of variables in that
statement. See Example 1 for more details.

8. When declaring a cursor with a prepared sid statement, the statement can
include (?) question mark placeholders for SQL parameters. In this case you
must provide a list of variables in the FROM clause of the PUT statement. See
Example 2 for more details.

9. Use the WITH HOLD option to declare cursors that have uninterrupted inserts
across multiple transactions.

10. Resources allocated by the DECLARE can be released later by the FREE
instruction.

Warnings:

1. The number of declared cursors in a single program is limited by the database
server and the available memory. Make sure that you free the resources when
you no longer need the declared insert cursor.

2. The identifier of a cursor that was declared in one module cannot be referenced
from another module.

SQL Management

469

OPEN

Purpose:

Opens an insert cursor in the current database session.

Syntax:

OPEN cid

1. cid is the identifier of the insert cursor.
2. A subsequent OPEN statement closes the cursor and then reopens it.
3. With the CLOSE instruction, you can release resources allocated for the insert

buffer on the database server.

Warnings:

1. When used with an insert cursor, the OPEN instruction cannot include a USING
clause.

2. If the insert cursor was not declared WITH HOLD option, the OPEN instruction
generates an SQL error if there is no current transaction started.

3. If you release cursor resources with a FREE instruction, you cannot use the
cursor unless you declare the cursor again.

PUT

Purpose:

Adds a new row to the insert cursor buffer in the current database session.

Syntax:

PUT cid FROM paramvar [,...]

Notes:

1. cid is the identifier of the insert cursor.
2. paramvar is a program variable, a record or an array used as a parameter buffer

to provide SQL parameter values.

Warnings:

1. If the insert cursor was not declared WITH HOLD option, the PUT instruction
generates an SQL error if there is no current transaction started.

2. If the insert buffer has no room for the new row when the statement executes, the
buffered rows are written to the database in a block, and the buffer is emptied. As

Genero Business Development Language

470

a result, some PUT statement executions cause rows to be written to the
database, and some do not.

FLUSH

Purpose:

Flushes the buffer of an insert cursor in the current database session.

Syntax:

FLUSH cid

Notes:

1. cid is the identifier of the insert cursor.
2. All buffered rows are inserted into the target table.
3. The insert buffer is cleared.

Warnings:

1. The insert buffer may be automatically flushed by the runtime system if there no
room when a new row is added with the PUT instruction.

CLOSE

Purpose:

Closes an insert cursor in the current database session.

Syntax:

CLOSE cid

Notes:

1. cid is the identifier of the insert cursor.
2. If rows are present in the insert buffer, they are inserted into the target table.
3. The insert buffer is discarded.
4. This instruction releases the resources allocated for the insert buffer on the

database server.
5. After using the CLOSE instruction, you must re-open the cursor with OPEN before

adding new rows with PUT / FLUSH.

SQL Management

471

FREE

Purpose:

Releases resources allocated for an insert cursor in the current database session.

Syntax:

FREE cid

Notes:

1. cid is the identifier of the insert cursor.
2. All resources allocated to the insert cursor are released.
3. The cursor should be explicitly closed before it is freed.

Warnings:

1. If you release cursor resources with this instruction, you cannot use the cursor
unless you declare the cursor again.

Examples

Example 1: Insert Cursor declared with a Static INSERT

01 MAIN
02 DEFINE i INTEGER
03 DEFINE rec RECORD
04 key INTEGER,
05 name CHAR(30)
06 END RECORD
07 DATABASE stock
08 DECLARE ic CURSOR FOR
09 INSERT INTO item VALUES (rec.*)
10 BEGIN WORK
11 OPEN ic
12 FOR i=1 TO 100
13 LET rec.key = i
14 LET rec.name = "Item #" || i
15 PUT ic
16 IF i MOD 50 = 0 THEN
17 FLUSH ic
18 END IF
19 END FOR
20 CLOSE ic
21 COMMIT WORK
22 FREE ic

Genero Business Development Language

472

23 END MAIN

Example 2: Insert Cursor declared with a Prepared INSERT

01 MAIN
02 DEFINE i INTEGER
03 DEFINE rec RECORD
04 key INTEGER,
05 name CHAR(30)
06 END RECORD
07 DATABASE stock
08 PREPARE is FROM "INSERT INTO item VALUES (?,?)"
09 DECLARE ic CURSOR FOR is
10 BEGIN WORK
11 OPEN ic
12 FOR i=1 TO 100
13 LET rec.key = i
14 LET rec.name = "Item #" || i
15 PUT ic FROM rec.*
16 IF i MOD 50 = 0 THEN
17 FLUSH ic
18 END IF
19 END FOR
20 CLOSE ic
21 COMMIT WORK
22 FREE ic
23 FREE is
24 END MAIN

Example 3: Insert Cursor declared with 'hold' option

01 MAIN
02 DEFINE name CHAR(30)
03 DATABASE stock
04 DECLARE ic CURSOR WITH HOLD FOR
05 INSERT INTO item VALUES (1,name)
06 OPEN ic
07 LET name = "Item 1"
08 PUT ic
09 BEGIN WORK
10 UPDATE refs SET name="xyz" WHERE key=123
11 COMMIT WORK
12 PUT ic
13 PUT ic
14 FLUSH ic
15 CLOSE ic
16 FREE ic
17 END MAIN

SQL Management

473

I/O SQL Instructions
Summary:

• Loading data from files (LOAD)
• Writing data to files (UNLOAD)

See also: Connections.

LOAD

Purpose:

The LOAD instruction inserts data from a file into an existing table in the current database
connection.

Syntax:

LOAD FROM filename [DELIMITER delimiter]
{
 INSERT INTO table-specification [(column [,...])]
|
 insert-string
}

where table-specification is:

[dbname[@dbserver]:][owner.]table

Notes:

1. filename is the name of the file the data is read from.
2. delimiter is the character used as the value delimiter. If this clause is not

specified, the delimiter is defined by DBDELIMITER environment variable. If this
variable is not set, the default is a pipe.

3. The INSERT clause is a pseudo INSERT statement (without the VALUES clause),
where you can specify the list of columns in braces.

4. dbname identifies the database name. Informix only!
5. dbserver identifies the Informix database server (INFORMIXSERVER). Informix

only!
6. owner identifies the owner of the table, with optional double quotes. Informix

only!
7. table is the name of the database table.
8. column is a name of a table column.
9. insert-string is a program variable or a string literal containing the pseudo-

INSERT statement. This allows you to create the pseudo-INSERT statement at
runtime.

Genero Business Development Language

474

Warnings:

1. The number and the order of columns in the INSERT statement must match in
the input file.

2. You cannot use the PREPARE statement to preprocess a LOAD statement.
3. At this time, data type description of the input file fields is implicit; in order to

create the SQL parameter buffers to hold the field values for inserts, the LOAD
instruction uses the current database connection to get the column data types of
the target table. Those data types depend on the type of database server. For
example, IBM Informix DATE columns do not store the same data as the Oracle
DATE data type. Therefore, be careful when using this instruction; if your
application connects to different kinds of database servers, you may get data
conversion errors.

Tips:

1. LOAD provides better performance when the table that the INSERT INTO clause
references has no index, no constraint, and no trigger. If one or more triggers,
constraints, or indexes exist on the table, however, it is recommended that you
disable these objects if the database server allows such SQL operations. For
example, with IBM Informix, you can issue one of the following SQL statements:

o SET INDEX ... DISABLED
o SET CONSTRAINT ... DISABLED
o SET TRIGGER ... DISABLED

Usage:

The LOAD statement must include a pseudo-INSERT statement (either directly or as text
in a variable) to specify where to store the data. LOAD appends the new rows to the
specified table, synonym, or view, but does not overwrite existing data. It cannot add a
row that has the same key as an existing row.

Warning: The DELIMITER cannot be backslash or any hexadecimal digit (0-9, A-F,
a-f).

The variable or string following the LOAD FROM keywords must specify the name of a file
of ASCII characters (or characters that are valid for the client locale) that represent the
data values that are to be inserted. How data values in this input file should be
represented by a character string depends on the SQL data type of the receiving column
in table.

Data Type Input Format
CHAR,
VARCHAR,
TEXT

Values can have more characters than the declared
maximum length of the column, but any extra characters are
ignored. A backslash (\) is required before any literal
backslash or any literal delimiter character, and before any
NEWLINE character anywhere in character value. Blank
values can be represented as one or more blank characters
between delimiters, but leading blanks must not precede

SQL Management

475

other CHAR, VARCHAR, or TEXT values.
DATE In the default locale, values must be in month/day/year

format unless another format is specified by DBDATE
environment variable. You must represent the month as a 2-
digit number. You can use a 2-digit number for the year if
you are satisfied with the DBCENTURY setting. Values must
be actual dates; for example, February 30 is invalid.

DATETIME DATETIME values must be in the format:
 year-month-day hour:minute:second.fraction
or a contiguous subset, without the DATETIME keyword or
qualifiers. Time units outside the declared column precision
can be omitted. The year must be a four-digit number; all
other time units (except fraction) require two digits.

INTERVAL INTERVAL values must be formatted:
 year-month
or else
 day hour:minute:second.fraction
or a contiguous subset thereof, without the INTERVAL
keyword or qualifiers. Time units outside the declared
column precision can be omitted. All time units (except year
and fraction) require two digits.

MONEY Values can include currency symbols, but these are not
required.

BYTE Values must be ASCII-hexadecimals; no leading or trailing
blanks.

SERIAL Values can be represented as 0 to tell the database server
to supply a new SERIAL value. You can specify a literal
integer greater than zero, but if the column has a unique
index, an error results if this number duplicates an existing
value.

Each set of data values in filename that represents a new row is called an input record.
The NEWLINE character must terminate each input record in filename. Specify only
values that the language can convert to the data type of the database column. For
database columns of character data types, inserted values are truncated from the right if
they exceed the declared length of the column.

NULL values of any data type must be represented by consecutive delimiters in the input
file; you cannot include anything between the delimiter symbols.

Each input record must contain the same number of delimited data values. If the INSERT
clause has no list of columns, the sequence of values in each input record must match
the columns of table in number and order. Each value must have the literal format of the
column data type, or of a compatible data type.

A file created by the UNLOAD statement can be used as input for the LOAD statement if
its values are compatible with the schema of table.

Genero Business Development Language

476

The statement expects incoming data in the format specified by environment variables
like DBFORMAT, DBMONEY, DBDATE, GL_DATE, and GL_DATETIME. The
precedence of these format specifications is consistent with forms and reports. If there is
an inconsistency, an error is reported and the LOAD is cancelled.

If LOAD is executed within a transaction, the inserted rows are locked, and they remain
locked until the COMMIT WORK or ROLLBACK WORK statement terminates the
transaction. If no other user is accessing the table, you can avoid locking limits and
reduce locking overhead by locking the table with the LOCK TABLE statement after the
transaction begins. This exclusive table lock is released when the transaction
terminates. Consult the documentation for your database server about the limit on the
number of locks available during a single transaction.

If the current database has no transaction log, a failing LOAD statement cannot remove
any rows that were loaded before the failure occurred. You must manually remove the
already loaded records from either the load file or from the receiving table, repair the
erroneous records, and rerun LOAD.

Regarding transaction, you can take one of the following actions when the database has
a transaction log:

• Run LOAD as a singleton transaction, so that any error causes the entire LOAD
statement to be automatically rolled back.

• Run LOAD within an explicit transaction with BEGIN WORK / COMMIT WORK, so
that a data error merely stops the LOAD statement in place with the transaction
still open.

Example:

01 MAIN
02 DATABASE stores
03 BEGIN WORK
04 DELETE FROM items
05 LOAD FROM "items01.unl" INSERT INTO items
06 LOAD FROM "items02.unl" INSERT INTO items
07 COMMIT WORK
08 END MAIN

UNLOAD

Purpose:

The UNLOAD instruction copies data from a current database to a file.

Syntax:

UNLOAD TO filename [DELIMITER delimiter]
{

SQL Management

477

 select-statement
|
 select-string
}

Notes:

1. filename is the name of the file the data is written to.
2. delimiter is the character used as the value delimiter. If this clause is not

specified, the delimiter is defined by the DBDELIMITER environment variable. If
this variable is not set, the default is a pipe.

3. select-statement is any kind of Static SELECT statement supported by the
language.

4. select-string is a program variable or a string literal containing the SELECT
statement to produce the rows. This allows you to create the SELECT statement
at runtime.

Warnings:

1. You cannot use the PREPARE statement to preprocess an UNLOAD statement.
2. When using a select-string, do not attempt to substitute question marks (?) in

place of host variables to make the SELECT statement dynamic, because this
usage has binding problems.

3. At this time, data type description of the output file fields is implicit; in order to
create the fetch buffers to hold the column values, the UNLOAD instruction uses
the current database connection to get the column data types of the generated
result set. Those data types depend on the type of database server. For
example, IBM Informix INTEGER columns are 4-bytes integer values, while
Oracle INTEGER data type is actually a NUMBER value. Therefore, you should
take care when using this instruction; if your application connects to different
kinds of database servers, you may get data conversion errors.

Usage:

The UNLOAD statement must include a SELECT statement (directly, or in a variable) to
specify what rows to copy into filename. UNLOAD does not delete the copied data.

Warning: The DELIMITER cannot be backslash or any hexadecimal digit (0-9, A-F,
a-f).

The filename identifies an output file in which to store the rows retrieved from the
database by the SELECT statement. In the default (U.S. English) locale, this file contains
only ASCII characters. (In other locales, output from UNLOAD can contain characters from
the code-set of the locale.)

A set of values in output representing a row from the database is called an output
record. A NEWLINE character (ASCII 10) terminates each output record.

Genero Business Development Language

478

The UNLOAD statement represents each value in the output file as a string of ASCII
characters, according to the declared data type of the database column:

Data Type Output Format
CHAR,
VARCHAR,
TEXT

Trailing blanks are dropped from CHAR and TEXT (but not
from VARCHAR) values. A backslash (\) is inserted before
any literal backslash or delimiter character and before a
NEWLINE character in a character value.

DECIMAL,
FLOAT,
INTEGER,
MONEY,
SMALLFLOAT,
SMALLINT

Values are written as literals with no leading blanks. MONEY
values are represented with no leading currency symbol.
Zero values are represented as 0 for INTEGER or
SMALLINT columns, and as 0.00 for FLOAT,
SMALLFLOAT, DECIMAL, and MONEY columns.

DATE Values are written in the format month/day/year unless
some other format is specified by the DBDATE environment
variable.

DATETIME DATETIME values are formatted
 year-month-day hour:minute:second.fraction
or a contiguous subset, without DATETIME keyword or
qualifiers. Time units outside the declared precision of the
database column are omitted.

INTERVAL INTERVAL values are formatted
 year-month
or else as
 day hour:minute:second.fraction
or a contiguous subset, without INTERVAL keyword or
qualifiers. Time units outside the declared precision of the
database column are omitted.

BYTE BYTE Values are written in ASCII hexadecimal form, without
any added blank or NEWLINE characters. The logical record
length of an output file that contains BYTE values can be
very long, and thus might be very difficult to print or to edit.

NULL values of any data type are represented by consecutive delimiters in the output
file, without any characters between the delimiter symbols.

The backslash symbol (\) serves as an escape character in the output file to indicate
that the next character in a data value is a literal. The UNLOAD statement automatically
inserts a preceding backslash to prevent literal characters from being interpreted as
special characters in the following contexts:

• The backslash character appears anywhere in the value.
• The delimiter character appears anywhere in the value.
• The NEWLINE character appears anywhere in a value.

SQL Management

479

Example:

01 MAIN
02 DEFINE var INTEGER
03 DATABASE stores
04 LET var = 123
05 UNLOAD TO "items.unl" SELECT * FROM items WHERE item_num > var
06 END MAIN

Genero Business Development Language

480

SQL Programming
Summary:

• 1. Programming
o 1.1 Database utility library
o 1.2 Implicit database connection
o 1.3 Managing transaction commands
o 1.4 Executing stored procedures
o 1.5 Cursors and Connections
o 1.6 SQL Error identification

• 2. Performance
o 2.1 Using dynamic SQL
o 2.2 Using transactions
o 2.3 Avoiding long transactions
o 2.4 Declaring prepared statements
o 2.5 Saving SQL resources

• 3. Portability
o 3.1 Database entities
o 3.2 Database users and security
o 3.3 Database creation statements
o 3.4 Data definition statements
o 3.5 Using portable data types
o 3.6 CHAR and VARCHAR types
o 3.7 Concurrent data access
o 3.8 The SQLCA register
o 3.9 Optimistic locking
o 3.10 Auto-incremented columns (SERIALs)
o 3.11 Informix SQL ANSI mode
o 3.12 Positioned Updates/Deletes
o 3.13 WITH HOLD and FOR UPDATE
o 3.14 String literals in SQL statements
o 3.15 Date and time literals in SQL statements
o 3.16 Naming database objects
o 3.17 Temporary tables
o 3.18 Outer joins
o 3.19 Sub-string expressions
o 3.20 Using ROWIDs
o 3.21 MATCHES operator
o 3.22 GROUP BY clause
o 3.23 LENGTH() function
o 3.24 SQL Interruption

See also: Connections, Transactions, Static SQL, Dynamic SQL, Result Sets, SQL
Errors, Programs.

SQL Management

481

1. Programming

1,1 Database utility library

The BDL library "fgldbutl.4gl" provides several utility functions. For example, this library
implements a function to get the type of the database engine at runtime. You will find this
library in the FGLDIR/src directory. See the source file for more details.

1.2 Implicit database connection

In BDL, the DATABASE statement can be used in two distinct ways, depending on the
context of the statement within its source module :

• To specify a default database : Typically used in a "GLOBALS" module, to define
variables with the LIKE clause, but it is also used for the INITIALIZE and
VALIDATE statements. Using the DATABASE statement in this way results in
that database being opened automatically at run time.

• To specify a current database : In MAIN or in a FUNCTION, used to connect to a
database. A variable can be used in this context (DATABASE varname).

A default database is almost always used, because many BDL applications contain
DEFINE ... LIKE statements. A problem occurs when the production database name
differs from the development database name, because the default database
specification will result in an automatic connection (just after MAIN):

01 DATABASE stock_dev
02 DEFINE
03 p_cust RECORD LIKE customer.*
04 MAIN
05 DEFINE dbname CHAR(30)
06 LET dbname = "stock1"
07 DATABASE dbname
08 END MAIN

In order to avoid the implicit connection, you can use the SCHEMA instruction instead of
DATABASE:

01 SCHEMA stock_dev
02 DEFINE
03 p_cust RECORD LIKE customer.*
04 MAIN
05 DEFINE dbname CHAR(30)
06 LET dbname = "stock1"
07 DATABASE dbname
08 END MAIN

Genero Business Development Language

482

This instruction will define the database schema for compilation only, and will not make
an implicit connection at runtime.

1.3 Managing transaction commands

A BDL program can become very complex if a lot of nested functions do SQL
processing. When using a database supporting transactions, you must sometimes
execute all SQL statements in the same transaction block. This can be done easily by
centralizing transaction control commands in wrapper functions.

The fgldbutl.4gl library contains special functions to manage the beginning and the end
of a transaction with an internal counter, in order to implement nested function calls
inside a unique transaction.

Example:

01 MAIN
02 IF a() <> 0 THEN
03 ERROR "..."
04 END IF
05 IF b() <> 0 THEN
06 ERROR "..."
07 END IF
08 END MAIN
09
10 FUNCTION a()
11 DEFINE s INTEGER
12 LET s = db_start_transaction()
13 UPDATE ...
14 LET s = SQLCA.SQLCODE
15 IF s = 0 THEN
16 LET s = b()
17 END IF
18 LET s = db_finish_transaction((s==0))
19 RETURN s
20 END FUNCTION
21
22 FUNCTION b()
23 DEFINE s INTEGER
24 LET s = db_start_transaction()
25 UPDATE ...
26 LET s = SQLCA.SQLCODE
27 LET s = db_finish_transaction((s==0))
28 RETURN s
29 END FUNCTION

In this example, you see in the MAIN block that both functions a() and b() can be called
separately. However, the transaction SQL commands will be used only if needed: When
function a() is called, it starts the transaction, then calls b(), which does not start the
transaction since it was already started by a(). When function b() is called directly, it
starts the transaction.

SQL Management

483

The function db_finish_transaction() is called with the expression (s==0), which is
evaluated before the call. This allows you to write in one line the equivalent of the
following IF statement:

01 IF s==0 THEN
02 LET s = db_finish_transaction(1)
03 ELSE
04 LET s = db_finish_transaction(0)
05 END IF

1.4 Executing stored procedures

Specifying output parameters

Beginning with Genero version 2.00, it is now possible to specify OUTPUT parameters
to get values from stored procedures. While this new feature is generic, stored
procedures execution needs to be addressed specifically according to the database
type. There are different ways to execute a stored procedure. This section describes
how to execute stored procedures on the supported database engines.

Tip: In order to write reusable code, you should encapsulate each stored procedure
execution in a program function performing database-specific SQL based on a global
database type variable. The program function would just take the input parameters and
return the output parameters of the stored procedure, hiding database-specific execution
steps from the caller.

Stored procedures returning a result set

With some database servers it is possible to execute stored procedures that produce a
result set, and fetch the rows as normal SELECT statements, by using DECLARE, OPEN,
FETCH. Some databases can return multiple result sets and cursor handles declared in a
stored procedure as output parameters, but Genero supports only unique and
anonymous result sets. See below for examples.

Calling stored procedures with supported databases

• Stored procedure call with Informix
• Stored procedure call with Genero DB
• Stored procedure call with Oracle
• Stored procedure call with DB2 UDB
• Stored procedure call with SQL Server
• Stored procedure call with PostgreSQL
• Stored procedure call with MySQL

Genero Business Development Language

484

Stored procedure call with Informix

Informix distinguishes stored procedures from stored functions. Both must be written in
the Informix stored procedure language called SPL.

Stored functions returning values

There is no output parameter concept for typical SPL stored procedures or functions. If
you want to return values from a database routine, you must use a stored function with a
RETURNING clause. Informix stored procedures do not return values.

To execute a stored function with Informix, you must use the EXECUTE FUNCTION SQL
instruction:

14 PREPARE stmt FROM "execute function proc1(?)"

In order to retrieve returning values into program variables, you must use an INTO clause
in the EXECUTE instruction.

The following example shows how to call a stored function with Informix:

01 MAIN
02 DEFINE n INTEGER
03 DEFINE d DECIMAL(6,2)
04 DEFINE c VARCHAR(200)
05 DATABASE test1
06 EXECUTE IMMEDIATE "create function proc1(p1 integer)"
07 || " returning decimal(6,2), varchar(200);"
08 || " define p2 decimal(6,2);"
09 || " define p3 varchar(200);"
10 || " let p2 = p1 + 0.23;"
11 || " let p3 = 'Value = ' || p1;"
12 || " return p2, p3;"
13 || " end function;"
14 PREPARE stmt FROM "execute function proc1(?)"
15 LET n = 111
16 EXECUTE stmt USING n INTO d, c
17 DISPLAY d
18 DISPLAY c
19 END MAIN

Stored procedure call with Genero DB

Genero DB implements stored procedures as a group of statements that you can call by
name. A subset of RDBMS-specific languages are supported by Genero DB; you can
write Genero DB stored procedures in Informix SPL, Oracle PL/SQL or SQL Server
Transact-SQL.

SQL Management

485

Stored procedures with output parameters

Genero DB stored procedures must be called with the input and output parameters
specification in the USING clause of the EXECUTE, OPEN or FOREACH instruction. As
in normal dynamic SQL, parameters must correspond by position, and the
IN/OUT/INOUT options must match the parameter definition of the stored procedure.

To execute the stored procedure, you must use the CALL SQL instruction:

11 PREPARE stmt FROM "call proc1(?,?,?)"

Here is a complete example creating and calling a stored procedure:

01 MAIN
02 DEFINE n INTEGER
03 DEFINE d DECIMAL(6,2)
04 DEFINE c VARCHAR(200)
05 DATABASE test1
06 EXECUTE IMMEDIATE "create procedure proc1(p1 in int, p2 out
number(6,2), p3 in out varchar2)"
07 || " is begin"
08 || " p2 := p1 + 0.23;"
09 || " p3 := 'Value = ' || p1;"
10 || "end;"
11 PREPARE stmt FROM "call proc1(?,?,?)"
12 LET n = 111
13 EXECUTE stmt USING n IN, d OUT, c INOUT
14 DISPLAY d
15 DISPLAY c
16 END MAIN

Stored procedures producing a result set

With Genero DB, you can execute stored procedures returning a result set. To do so,
you must declare a cursor and fetch the rows:

01 MAIN
02 DEFINE i, n INTEGER
03 DEFINE d DECIMAL(6,2)
04 DEFINE c VARCHAR(200)
05 DATABASE test1
06 CREATE TABLE tab1 (c1 INTEGER, c2 DECIMAL(6,2), c3 VARCHAR(200)
)
07 INSERT INTO tab1 VALUES (1, 123.45, 'aaaaaa')
08 INSERT INTO tab1 VALUES (2, 123.66, 'bbbbbbbbb')
09 INSERT INTO tab1 VALUES (3, 444.77, 'cccccc')
10 EXECUTE IMMEDIATE "create procedure proc2 @key integer"
11 || " as begin"
12 || " select * from tab1 where c1 > @key"
13 || " end"
14 DECLARE curs CURSOR FROM "call proc2(?)"
15 LET i = 1
16 FOREACH curs USING i INTO n, d, c

Genero Business Development Language

486

17 DISPLAY n, d, c
18 END FOREACH
19 END MAIN

Stored procedures with output parameters and result set

It is possible to execute Genero DB stored procedures with output parameters and a
result set. The output parameter values are available after the OPEN cursor instruction:

01 OPEN curs USING n IN, d OUT, c INOUT
02 FETCH curs INTO rec.*

Stored procedure call with Oracle

Oracle supports stored procedures and stored functions as a group of PL/SQL
statements that you can call by name. Oracle stored functions are very similar to stored
procedures, except that a function returns a value to the environment in which it is
called. Functions can be used in SQL expressions.

Stored procedures with output parameters

Oracle stored procedures or stored functions must be called with the input and output
parameters specification in the USING clause of the EXECUTE, OPEN or FOREACH
instruction. As in normal dynamic SQL, parameters must correspond by position, and the
IN/OUT/INOUT options must match the parameter definition of the stored procedure.

To execute the stored procedure, you must include the procedure in an anonymous
PL/SQL block with BEGIN and END keywords:

11 PREPARE stmt FROM "begin proc1(?,?,?); end;"

Remark: Oracle stored procedures do not specify the size of number and character
parameters. The size of output values (especially character strings) are defined by the
calling context (i.e. the data type of the variable used when calling the procedure). When
you pass a CHAR(10) to the procedure, the returning value will be filled with blanks to
reach a size of 10 bytes.

Warning: For technical reasons, the Oracle driver uses dynamic binding with
OCIBindDynamic(). The Oracle Call Interface does not support stored procedures
parameters with the CHAR data type when using dynamic binding. You must use
VARCHAR2 instead of CHAR to define character string parameters for stored
procedures.

Here is a complete example creating and calling a stored procedure with output
parameters:

01 MAIN
02 DEFINE n INTEGER

SQL Management

487

03 DEFINE d DECIMAL(6,2)
04 DEFINE c VARCHAR(200)
05 DATABASE test1
06 EXECUTE IMMEDIATE "create procedure proc1(p1 in int, p2 in out
number, p3 in out varchar2)"
07 || " is begin"
08 || " p2 := p1 + 0.23;"
09 || " p3 := 'Value = ' || to_char(p1);"
10 || "end;"
11 PREPARE stmt FROM "begin proc1(?,?,?); end;"
12 LET n = 111
13 EXECUTE stmt USING n IN, d INOUT, c INOUT
14 DISPLAY d
15 DISPLAY c
16 END MAIN

Stored functions with a return value

To execute the stored function returning a value, you must include the function in an
anonymous PL/SQL block with BEGIN and END keywords, and use an assignment
expression to specify the place holder for the returning value:

11 PREPARE stmt FROM "begin ? := func1(?,?,?); end;"

Stored procedures producing a result set

Oracle supports result set generation from stored procedures with the concept of cursor
variables (REF CURSOR).

Warning: Genero does not support cursor references produced by Oracle stored
procedures or functions.

Stored procedure call with IBM DB2

IBM DB2 implements stored procedures as a saved collection of SQL statements, which
can accept and return user-supplied parameters. IBM DB2 stored procedures can also
produce one or more result sets. Beside stored procedures, IBM DB2 supports user
defined functions, typically used to define scalar functions returning a simple value which
can be part of SQL expressions.

Stored procedures with output parameters

IBM DB2 stored procedures must be called with the input and output parameters
specification in the USING clause of the EXECUTE, OPEN or FOREACH instruction. As
in normal dynamic SQL, parameters must correspond by position and the IN/OUT/INOUT
options must match the parameter definition of the stored procedure.

To execute the stored procedure, you must use the CALL SQL instruction:

Genero Business Development Language

488

11 PREPARE stmt FROM "call proc1(?,?,?)"

Here is a complete example creating and calling a stored procedure with output
parameters:

01 MAIN
02 DEFINE n INTEGER
03 DEFINE d DECIMAL(6,2)
04 DEFINE c VARCHAR(200)
05 DATABASE test1
06 EXECUTE IMMEDIATE "create procedure proc1(in p1 int, out p2
decimal(6,2), inout p3 varchar(20))"
07 || " language sql begin"
08 || " set p2 = p1 + 0.23;"
09 || " set p3 = 'Value = ' || char(p1);"
10 || "end"
11 PREPARE stmt FROM "call proc1(?,?,?)"
12 LET n = 111
13 EXECUTE stmt USING n IN, d OUT, c INOUT
14 DISPLAY d
15 DISPLAY c
16 END MAIN

Stored procedures producing a result set

With DB2 UDB, you can execute stored procedures returning a result set. To do so, you
must declare a cursor and fetch the rows:

01 MAIN
02 DEFINE i, n INTEGER
03 DEFINE d DECIMAL(6,2)
04 DEFINE c VARCHAR(200)
05 DATABASE test1
06 CREATE TABLE tab1 (c1 INTEGER, c2 DECIMAL(6,2), c3 VARCHAR(200)
)
07 INSERT INTO tab1 VALUES (1, 123.45, 'aaaaaa')
08 INSERT INTO tab1 VALUES (2, 123.66, 'bbbbbbbbb')
09 INSERT INTO tab1 VALUES (3, 444.77, 'cccccc')
10 EXECUTE IMMEDIATE "create procedure proc2(in key integer)"
11 || " result sets 1"
12 || " language sql"
13 || " begin"
14 || " declare c1 cursor with return for"
15 || " select * from tab1 where c1 > key;"
16 || " open c1;"
17 || " end"
18 DECLARE curs CURSOR FROM "call proc2(?)"
19 LET i = 1
20 FOREACH curs USING i INTO n, d, c
21 DISPLAY n, d, c
22 END FOREACH
23 END MAIN

SQL Management

489

Stored procedures with output parameters and result set

It is possible to execute DB2 UDB stored procedures with output parameters and a
result set. The output parameter values are available after the OPEN cursor instruction:

01 OPEN curs USING n IN, d OUT, c INOUT
02 FETCH curs INTO rec.*

Stored procedure call with Microsoft SQL Server

SQL Server implements stored procedures, which are a saved collection of Transact-
SQL statements that can take and return user-supplied parameters. SQL Server stored
procedures can also produce one or more result sets.

Stored procedures with output parameters

SQL Server stored procedures must be called with the input and output parameters
specification in the USING clause of the EXECUTE, OPEN or FOREACH instruction. As
in normal dynamic SQL, parameters must correspond by position and the IN/OUT/INOUT
options must match the parameter definition of the stored procedure.

To execute the stored procedure, you must use an ODBC call escape sequence:

 PREPARE stmt FROM "{ call proc1(?,?,?) }"

Here is a complete example creating and calling a stored procedure with output
parameters:

01 MAIN
02 DEFINE n INTEGER
03 DEFINE d DECIMAL(6,2)
04 DEFINE c VARCHAR(200)
05 DATABASE test1
06 EXECUTE IMMEDIATE "create procedure proc1 @v1 integer, @v2
decimal(6,2) output, @v3 varchar(20) output"
07 || " as begin"
08 || " set @v2 = @v1 + 0.23"
09 || " set @v3 = 'Value = ' || cast(@v1 as varchar)"
10 || "end"
11 PREPARE stmt FROM "{ call proc1(?,?,?) }"
12 LET n = 111
13 EXECUTE stmt USING n IN, d OUT, c OUT
14 DISPLAY d
15 DISPLAY c
16 END MAIN

Genero Business Development Language

490

Stored procedures producing a result set

With SQL Server, you can execute stored procedures returning a result set. To do so,
you must declare a cursor and fetch the rows.

Warning: The following example uses a stored procedure with a simple SELECT
statement. If the stored procedure contains additional Transat-SQL statements
such as SET or IF (which is the case in complex stored procedures), SQL Server
generates multiple result sets. By default the Genero MSV driver uses "Server
Cursors" to support multiple active SQL statements. But SQL Server stored
procedures generating multiple result sets cannot be used with Server Cursors:
The Server Cursor is silently converted to a "Default Result Set" cursor by the
ODBC driver. Since Default Result Set cursors do not support multiple active
statements, you cannot use another SQL statement while processing the results
of such stored procedure. You must CLOSE the cursor created for the stored
procedure before continuing with other SQL statements.

01 MAIN
02 DEFINE i, n INTEGER
03 DEFINE d DECIMAL(6,2)
04 DEFINE c VARCHAR(200)
05 DATABASE test1
06 CREATE TABLE tab1 (c1 INTEGER, c2 DECIMAL(6,2), c3 VARCHAR(200)
)
07 INSERT INTO tab1 VALUES (1, 123.45, 'aaaaaa')
08 INSERT INTO tab1 VALUES (2, 123.66, 'bbbbbbbbb')
09 INSERT INTO tab1 VALUES (3, 444.77, 'cccccc')
10 EXECUTE IMMEDIATE "create procedure proc2 @key integer"
11 || " as select * from tab1 where c1 > @key"
12 DECLARE curs CURSOR FROM "{ call proc2(?) }"
13 LET i = 1
14 FOREACH curs USING i INTO n, d, c
15 DISPLAY n, d, c
16 END FOREACH
17 END MAIN

Stored procedures returning a cursor as output parameter

SQL Server supports "Cursor Output Parameters": A stored procedure can declare/open
a cursor and return a reference of the cursor to the caller.

Warning: SQL Server stored procedures returning a cursor as output parameter
are not supported. There are two reasons for this: The Genero language does not
have a data type to store a server cursor reference, and the underlying ODBC
driver does not support this anyway.

Stored procedures with return code

SQL Server stored procedures can return integer values. To get the return value of a
stored procedure, you must use an assignment expression in the ODBC call escape
sequence:

SQL Management

491

01 PREPARE stmt FROM "{ ? = call proc3(?,?,?) }"

Stored procedures with output parameters, return code and result set

With SQL Server stored procedures, you call stored procedures with a return code,
output parameters and producing a result set.

Warning: Return codes and output parameters are the last items returned to the
application by SQL Server; they are not returned until the last row of the result set
has been fetched, after the SQLMoreResults() ODBC function is called. If output
parameters are used, the SQL Server driver executes a SQLMoreResult() call when
closing the cursor instead of SQLCloseCursor(), to get the return code and output
parameter values from SQL Server.

01 MAIN
02 DEFINE r, i, n INTEGER
03 DEFINE d DECIMAL(6,2)
04 DEFINE c VARCHAR(200)
05 DATABASE test1
06 CREATE TABLE tab1 (c1 INTEGER, c2 DECIMAL(6,2), c3 VARCHAR(200)
)
07 INSERT INTO tab1 VALUES (1, 123.45, 'aaaaaa')
08 INSERT INTO tab1 VALUES (2, 123.66, 'bbbbbbbbb')
09 INSERT INTO tab1 VALUES (3, 444.77, 'cccccc')
10 EXECUTE IMMEDIATE "create procedure proc3 @key integer output"
11 || " as begin"
12 || " set @key = @key - 1"
13 || " select * from tab1 where c1 > @key"
14 || " return (@key * 3)"
15 || " end"
16 DECLARE curs CURSOR FROM "{ ? = call proc3(?) }"
17 LET i = 1
18 OPEN curs USING r INOUT, i INOUT
19 DISPLAY r, i
20 FETCH curs INTO n, d, c
21 FETCH curs INTO n, d, c
22 FETCH curs INTO n, d, c
23 DISPLAY r, i
24 CLOSE curs
25 DISPLAY r, i -- Now the returned values are available
26 END MAIN

Warning: Return code and output parameter variables must be defined as INOUT in
the OPEN instruction.

Stored procedure call with PostgreSQL

PostgreSQL implements stored functions that can return values. If the function returns
more that one value, you must specify the returning values as function parameters with
the OUT keyword. If the function returns a unique value, you can use the RETURNS clause.

Genero Business Development Language

492

Warning: Pay attention to the function signature; PostgreSQL allows function
overloading. For example, func(int) and func(char) are two different functions. To
drop a function, you must specify the parameter type to identify the function
signature properly.

Stored functions with output parameters

To execute a stored function with PostgreSQL, you must use SELECT * FROM
function, as shown in the next line:

14 PREPARE stmt FROM "select * from proc1(?)"

In order to retrieve returning values into program variables, you must use an INTO clause
in the EXECUTE instruction.

The following example shows how to call a stored function with PostgreSQL:

01 MAIN
02 DEFINE n INTEGER
03 DEFINE d DECIMAL(6,2)
04 DEFINE c VARCHAR(200)
05 DATABASE test1
06 EXECUTE IMMEDIATE "create function proc1(p1 integer, out p2
numeric(6,2), out p3 varchar(200))"
08 || " as $$"
09 || " begin"
10 || " p2 := p1 + 0.23;"
11 || " p3 := 'Value = ' || cast(p1 as text);"
12 || " end;"
13 || " $$ language plpgsql"
14 PREPARE stmt FROM "select * from proc1(?)"
15 LET n = 111
16 EXECUTE stmt USING n INTO d, c
17 DISPLAY d
18 DISPLAY c
19 END MAIN

Stored functions producing a result set

With PostgreSQL, you can execute stored procedures returning a result set. To do so,
you must declare a cursor and fetch the rows:

01 MAIN
02 DEFINE i, n INTEGER
03 DEFINE d DECIMAL(6,2)
04 DEFINE c VARCHAR(200)
05 DATABASE test1
06 CREATE TABLE tab1 (c1 INTEGER, c2 DECIMAL(6,2), c3 VARCHAR(200)
)
07 INSERT INTO tab1 VALUES (1, 123.45, 'aaaaaa')
08 INSERT INTO tab1 VALUES (2, 123.66, 'bbbbbbbbb')
09 INSERT INTO tab1 VALUES (3, 444.77, 'cccccc')
10 EXECUTE IMMEDIATE "create function proc2(integer)"

SQL Management

493

11 || " returns setof tab1"
12 || " as $$"
13 || " select * from tab1 where c1 > $1;"
14 || " $$ language sql"
15 DECLARE curs CURSOR FROM "select * from proc2(?)"
16 LET i = 1
17 FOREACH curs USING i INTO n, d, c
18 DISPLAY n, d, c
19 END FOREACH
20 END MAIN

Stored functions with output parameters and result set

Warning: With PostgreSQL you cannot return output parameters and a result set
from the same stored procedure; both use the same technique to return values to
the client, in the context of result columns to be fetched.

Stored procedure call with MySQL

MySQL implements stored procedures and stored functions as a collection of SQL
statements that can take and return user-supplied parameters. Functions are very
similar to procedures, except that they return a scalar value and can be used in SQL
expressions.

Stored procedures with output parameters

Warning: Since MySQL C API (version 5.0) does not support an output parameter
specification, the IN / OUT / INOUT technique cannot be used.

In order to return values from a MySQL stored procedure or stored function, you must
use SQL variables. There are three steps to execute the procedure or function:

1. With the SET SQL statement, create and assign an SQL variables for each
parameter.

2. CALL the stored procedure or stored function with the created SQL variables.
3. Perform a SELECT statement to return the SQL variables to the application.

In order to retrieve returning values into program variables, you must use an INTO clause
in the EXECUTE instruction.

The following example shows how to call a stored procedure with output parameters:

Warning: MySQL version 5.0 does not allow you to prepare the CREATE
PROCEDURE statement; you may need to execute this statement from the mysql
command line tool.

Warning: MySQL version 5.0 cannot execute "SELECT @variable" with server-side
cursors. Since the Genero MySQL driver uses server-side cursors to support

Genero Business Development Language

494

multiple active result sets, it is not possible to execute the SELECT statement to
return output parameter values.

01 MAIN
02 DEFINE n INTEGER
03 DEFINE d DECIMAL(6,2)
04 DEFINE c VARCHAR(200)
05 DATABASE test1
06 EXECUTE IMMEDIATE "create procedure proc1(p1 integer, out p2
numeric(6,2), out p3 varchar(200))"
07 || " no sql begin"
08 || " set p2 = p1 + 0.23;"
09 || " set p3 = concat('Value = ', p1);"
10 || " end;"
11 LET n = 111
12 EXECUTE IMMEDIATE "set @p1 = ", n
13 EXECUTE IMMEDIATE "set @p2 = NULL"
14 EXECUTE IMMEDIATE "set @p3 = NULL"
15 EXECUTE IMMEDIATE "call proc1(@p1, @p2, @p3)"
16 PREPARE stmt FROM "select @p2, @p3"
17 EXECUTE stmt INTO d, c
18 DISPLAY d
19 DISPLAY c
20 END MAIN

Stored functions returning values

The following example shows how to retrieve the return value of a stored function with
MySQL:

Warning: MySQL version 5.0 does not allow you to prepare the CREATE
FUNCTION statement; you may need to execute this statement from the mysql
command line tool.

01 MAIN
02 DEFINE n INTEGER
03 DEFINE c VARCHAR(200)
04 DATABASE test1
05 EXECUTE IMMEDIATE "create function func1(p1 integer)"
06 || " no sql begin"
07 || " return concat('Value = ', p1);"
08 || " end;"
09 PREPARE stmt FROM "select func1(?)"
10 LET n = 111
11 EXECUTE stmt USING n INTO c
12 DISPLAY c
13 END MAIN

Stored procedures producing a result set

Warning: The MySQL version 5.0 stored procedures and stored functions cannot
return a result set.

SQL Management

495

1.5 Cursors and Connections

With Genero you can connect to several database sources from the same program by
using the CONNECT instruction. When connected, you can DECLARE cursors or
PREPARE statements, which can be used in parallel as long as you follow the rules.
This section describes how to use SQL cursors and SQL statements in a multiple-
connection program.

For convenience, the term Prepared SQL Statement and Declared Cursor will be
grouped as SQL handle; from an internal point of view, both concepts merge into a
unique SQL Handle, an object provided to manipulate SQL statements.

When you DECLARE a cursor or when you PREPARE a statement, you actually create an
SQL Handle; the runtime system allocates resources for that SQL Handle before
sending the SQL text to the database server via the database driver.

The SQL Handle is created in the context of the current connection, and must be used in
that context, until it is freed or re-created with another DECLARE or PREPARE. If you try to
use an SQL Handle in a different connection context than the one for which it was
created, you will get a runtime error.

To change the current connection context, you must use the SET CONNECTION
instruction. To set a specific connection, you must identify it by a name. To identify a
connection, you typically use the AS clause of the CONNECT instruction. If you don't use
the AS clause, the connection gets a default name based on the data source name.
Since this might change as the database name changes, it is best to use an explicit
name with the AS clause.

This small program example illustrates the use of two cursors with two different
connections:

01 MAIN
02 CONNECT TO "db1" AS "s1"
03 CONNECT TO "db2" AS "s2"
04 SET CONNECTION "s1"
05 DECLARE c1 CURSOR FOR SELECT tab1.* FROM tab1
06 SET CONNECTION "s2"
07 DECLARE c2 CURSOR FOR SELECT tab1.* FROM tab1
08 SET CONNECTION "s1"
09 OPEN c1
10 SET CONNECTION "s2"
11 OPEN c2
12 ...
13 END MAIN

The DECLARE and PREPARE instructions are a type of creator instructions; if an SQL
Handle is re-created in a connection other than the original connection for which it was
created, old resources are freed and new resources are allocated in the current
connection context.

Genero Business Development Language

496

This allows you to re-execute the same cursor code in different connection contexts, as
in the following example:

01 MAIN
02 CONNECT TO "db1" AS "s1"
03 CONNECT TO "db2" AS "s2"
04 SET CONNECTION "s1"
05 IF checkForOrders() > 0 ...
06 SET CONNECTION "s2"
05 IF checkForOrders() > 0 ...
08 ...
09 END MAIN
10
11 FUNCTION checkForOrders(d)
12 DEFINE d DATE, i INTEGER
13 DECLARE c1 CURSOR FOR SELECT COUNT(*) FROM orders WHERE ord_date
= d
14 OPEN c1
15 FETCH c1 INTO i
16 CLOSE c1
17 FREE c1
18 RETURN i
19 END FUNCTION

If the SQL handle was created in a different connection, the resources used in the old
connection context are freed automatically, and new SQL Handle resources are
allocated in the current connection context.

1.6 SQL Error identification

You can centralize SQL error identification in a BDL function:

01 CONSTANT SQLERR_FATAL = -1
02 CONSTANT SQLERR_LOCK = -2
03 CONSTANT SQLERR_CONN = -3

(constants must be defined in GLOBALS)

04 FUNCTION identifySqlError()
05 CASE
06 WHEN SQLCA.SQLCODE == -201 OR SQLCA.SQLERRD[2] == ...
07 RETURN SQLERR_FATAL
08 WHEN SQLCA.SQLCODE == -263 OR SQLCA.SQLERRD[2] == ...
09 RETURN SQLERR_LOCK
10 ...
11 END CASE
12 END FUNCTION

•

SQL Management

497

The generic Informix error code is stored in
 SQLCA.SQLCODE register.

•

The native Database Provider error code is stored in
SQLCA.SQLERRD[2]
 register.

If really needed, this would also allow adding a database specific test.

2. Performance

2.1 Using Dynamic SQL

Although BDL allows you to write SQL statements directly in the program source as a
part of the language (Static SQL), it is strongly recommended that you use Dynamic
SQL instead when you are executing SQL statements within large program loops.
Dynamic SQL allows you to PREPARE the SQL statements once and EXECUTE N
times, improving performance.

To perform Static SQL statement execution, the database interface must use the basic
API functions provided by the database vendor. These are usually equivalent to the
PREPARE and EXECUTE instructions. So when you write a Static SQL statement in your
BDL program, it is actually converted to a PREPARE + EXECUTE.

For example, the following BDL code:

01 FOR n=1 TO 100
02 INSERT INTO tab VALUES (n, c)
03 END FOR

is actually equivalent to:

01 FOR n=1 TO 100
02 PREPARE s FROM "INSERT INTO tab VALUES (?, ?)"
03 EXECUTE s USING n, c
04 END FOR

To improve the performance of the preceding code, use a PREPARE instruction before
the loop and put an EXECUTE instruction inside the loop:

01 PREPARE s FROM "INSERT INTO tab VALUES (?, ?)"
02 FOR n=1 TO 100
03 EXECUTE s USING n, c

Genero Business Development Language

498

04 END FOR

2.2 Using transactions

When you use an ANSI compliant RDBMS like Oracle or DB2, the database interface
must perform a COMMIT after each statement execution. This generates unnecessary
database operations and can slow down big loops. To avoid this implicit COMMIT, you
can control the transaction with BEGIN WORK / COMMIT WORK around the code
containing a lot of SQL statement execution.

For example, the following loop will generate 2000 basic SQL operations (1000
INSERTs plus 1000 COMMITs):

01 PREPARE s FROM "INSERT INTO tab VALUES (?, ?)"
01 FOR n=1 TO 100
03 EXECUTE s USING n, c -- Generates implicit COMMIT
04 END FOR

You can improve performance if you put a transaction block around the loop:

01 PREPARE s FROM "INSERT INTO tab VALUES (?, ?)"
02 BEGIN WORK
03 FOR n=1 TO 100
04 EXECUTE s USING n, c -- In transaction -> no implicit COMMIT
05 END FOR
06 COMMIT WORK

With this code, only 1001 basic SQL operations will be executed (1000 INSERTs plus 1
COMMIT).

However, you must take care when generating large transactions because all
modifications are registered in transaction logs. This can result in a lack of database
server resources (INFORMIX "transaction too long" error, for example) when the number
of operations is very big. If the SQL operation does not require a unique transaction for
database consistency reasons, you can split the operation into several transactions, as
in the following example:

01 PREPARE s FROM "INSERT INTO tab VALUES (?, ?)"
02 BEGIN WORK
03 FOR n=1 TO 100
04 IF n MOD 10 == 0 THEN
05 COMMIT WORK
06 BEGIN WORK
07 END IF
08 EXECUTE s USING n, c -- In transaction -> no implicit COMMIT
09 END FOR
10 COMMIT WORK

SQL Management

499

2.3 Avoiding long transactions

Some BDL applications do not care about long transactions because they use an
Informix database without transaction logging (transactions are not stored in log files for
potential rollbacks). However, if a failure occurs, no rollback can be made, and only
some of the rows of a query might be updated. This could result in data inconsistency !

With many providers (Genero DB, SQL Server, IBM DB2, Oracle…), using transactions
is mandatory. Every database modification is stored in a log file.

BDL applications must prevent long transactions when connected to a database using
logging. If a table holds hundreds of thousands of rows, a "DELETE FROM table", for
example, might cause problems. If the transaction log is full, no other insert, update or
delete could be made on the database. The activity could be stopped until a backup or
truncation of the log !

For example, if a table holds hundreds of thousands of rows, a "DELETE FROM table"
might produce a "snapshot too old" error in ORACLE if the rollback segments are too
small.

Solution :

You must review the program logic in order to avoid long transactions:

• keep transactions as short as possible.
• access the least amount of data possible while in a transaction. If possible, avoid

using a big SELECT in transaction.
• split a long transaction into many short transactions. Use a loop to handle each

block (see the last example below : 2.2 Using transactions).
• to delete all rows from a table use the "TRUNCATE TABLE" instruction instead of

"DELETE FROM" (Not for all vendors)

In the end, increase the size of the transaction log to avoid it filling up.

2.4 Declaring prepared statements

Line 2 of the following example shows a cursor declared with a prepared statement:

01 PREPARE s FROM "SELECT * FROM table WHERE ", condition
02 DECLARE c CURSOR FOR s

While this has no performance impact with Informix database drivers, it can become a
bottleneck when using non-Informix databases:

Statement preparation consumes a lot of memory and processor resources. Declaring a
cursor with a prepared statement is a native Informix feature, which does consume only
one real statement preparation. But non-Informix databases do not support this feature.

Genero Business Development Language

500

So the statement is prepared twice (once for the PREPARE, and once for the
DECLARE). When used in a big loop, such code can cause performance problems.

To optimize such code, you can use the FROM clause in the DECLARE statement:

01 DECLARE c CURSOR FROM "SELECT * FROM table WHERE " || condition

By using this solution only one statement preparation will be done by the database
server.

Remark: This performance problem does not appear with DECLARE statements using
static SQL.

 2.5 Saving SQL resources

To write efficient SQL in a Genero program, you should use Dynamic SQL as described
in 2.1 of this performance section. However, when using Dynamic SQL, you allocate an
SQL statement handle on the client and server side, consuming resources. According to
the database type, this can be a few bytes or a significant amount of memory. For
example, on a Linux 32b platform, a prepared statement costs about 5 Kbytes with an
Informix CSDK 2.80 client, while it costs about 20 Kbytes with an Oracle 10g client. That
can be a lot of memory if you have programs declaring a dozen or more cursors,
multiplied by hundreds of user processes. When executing several Static SQL
statements, the same statement handle is reused and thus less memory is needed.

Genero allows you to use either Static or Dynamic SQL, so it's in your hands to choose
memory or performance. However, in some cases the same code will be used by
different kinds of programs, needing either low resource usage or good performance. In
many OLTP applications you can actually distinguish two type of programs:

• Programs where memory usage is not a problem but needing good performance
(typically, batch programs executed as a unique instance during the night).

• Programs where performance is less important but where memory usage must
be limited (typically, interactive programs executed as multiple instances for each
application user).

To reuse the same code for interactive programs and batch programs, you can do the
following:

1. Define a local module variable as an indicator for the prepared statement.
2. Write a function returning the type of program (for example, 'interactive' or 'batch'

mode).
3. Then, in a reusable function using SQL statements, you prepare and free the

statement according to the indicators, as shown in the next example.

01 DEFINE up_prepared INTEGER
02
03 FUNCTION getUserPermissions(username)

SQL Management

501

04 DEFINE username VARCHAR(20)
05 DEFINE cre, upd, del CHAR(1)
06
07 IF NOT up_prepared THEN
08 PREPARE up_stmt FROM "SELECT can_create, can_update,
cab_delete"
09 || " FROM user_perms WHERE name = ?"
10 LET up_prepared = TRUE
11 END IF
12
13 EXECUTE up_stmt USING username INTO cre, upd, del
14
15 IF isInteractive() THEN
16 FREE up_stmt
17 LET up_prepared = FALSE
18 END IF
19
20 RETURN cre, upd, del
21
22 END FUNCTION

The first time this function is called, the up_prepared value will be FALSE, so the
statement will be prepared in line 08. The next time the function is called, the statement
will be re-prepared only if up_prepared is TRUE. The statement is executed in line 13
and values are fetch into the variables returned in line 20. If the program is interactive,
lines 15 to 18 free the statement and set the up_prepared module variable back to
FALSE, forcing statement preparation in the next call of this function.

3. Portability
Writing portable SQL is mandatory if you want to succeed with different kind of database
servers. This section gives you some hints to solve SQL incompatibility problems in your
programs. Read this section carefully and review your program source code if needed.
You should also read carefully the ODI Adaptation Guides which contain detailed
information about SQL compatibility issues.

To easily detect SQL statements with specific syntax, you can use the -W stdsql option
of fglcomp:

$ fglcomp -W stdsql orders.4gl
module.4gl:15: SQL Statement or language instruction with specific SQL
syntax.

Remark: This compiler option can only detect non-portable SQL syntax in Static SQL
statements.

Genero Business Development Language

502

3.1 Database entities

Most database servers can handle multiple database entities (you can create multiple
'databases'), but this is not possible with all engines:

Database Server
Type Multiple Database Entities

GeneroDB No
IBM DB2 UDB (Unix) Yes
Informix Yes
Microsoft SQL Server Yes
MySQL Yes
Oracle Database
Server No

PostgreSQL Yes
Sybase ASA Yes

When using a database server that does not support multiple database entities, you can
emulate different databases with schemas, but this requires you to check for the
database user definition. Each database user must have privileges to access any
schema, and to see any table of any schema without needing to set a schema prefix
before table names in SQL statements.

You can force the database driver to set a specific schema at connection with the
following FGLPROFILE entry:

 dbi.database.<dbname>.schema = "<schema-name>"

Some databases like GeneroDB also allow you to define a default schema for each
database user. When the user connects to the database, the default schema is
automatically selected.

3.2 Database users and security

To get the benefit of the database server security features, you should identify each
physical user as a database user.

According to the type of server, you must do the following steps to create a database
user:

SQL Management

503

1. Define the user as an operating system user.
2. Declare the user in the database server.
3. Grant database access privileges.

Each database server has its specific users management and data access privilege
mechanisms. Check the vendor documentation for security features and make sure you
can define the users, groups, and privileges in all database servers you want to use.

3.3 Database creation statements

Database creation statements like CREATE DATABASE, CREATE DBSPACE, DROP
DATABASE cannot be executed with ODI database drivers. Such high-level database
management statements are Informix-specific and require a connection to the server
with no current database selected, which is not supported by the ODI architecture and
drivers. However, for compatibility, the standard Informix drivers (with ix prefix) allow the
BDL programs to execute such statements.

3.4 Data definition statements

When using Data Definition Statements like CREATE TABLE, ALTER TABLE, DROP
TABLE, only a limited SQL syntax works on all database servers. Most databases
support NOT NULL, CHECK, PRIMARY KEY, UNIQUE, FOREIGN KEY constraints, but
the syntax for naming constraints is different.

The following statement works with most database servers and creates a table with
equivalent properties in all cases:

 CREATE TABLE customer
 (
 cust_id INTEGER NOT NULL,
 cust_name CHAR(50) NOT NULL,
 cust_lastorder DATE NOT NULL,
 cust_group INTEGER,
 PRIMARY KEY (cust_id),
 UNIQUE (cust_name),
 FOREIGN KEY (cust_group) REFERENCES group (group_id)
)

Warning: Some engines like SQL Server have a different default behavior for
NULL columns when you create a table. You may need to set up database
properties to make sure that a column allows NULLs if the NOT NULL constraint is
not specified.

Genero Business Development Language

504

When you want to create tables in programs using non-standard clauses (for example to
define storage options), you must use Dynamic SQL and adapt the statement to the
target database server.

3.5 Using portable data types

The ANSI SQL specification defines standard data types, but for historical reasons most
databases vendors have implemented native (non-standard) data types. You can usually
use a synonym for ANSI types, but the database server always uses the native types
behind the scenes. For example, when you create a table with an INTEGER column in
Oracle, the native NUMBER data type is used. In your programs, avoid BDL data types
that do not have a native equivalent in the target database. This includes simple types
like floating point numbers, as well as complex data types like INTERVAL. Numbers may
cause rounding or overflow problems, because the values stored in the database have
different limits. For DECIMALs, always use the same precision and scale for the BDL
variables and the database columns.

To write portable applications, we strongly recommend using the following BDL data
types only:

BDL Data Type
CHAR(n)
VARCHAR(n)
INTEGER
SMALLINT
DECIMAL(p,s)
DATE
DATETIME HOUR TO SECOND
DATETIME YEAR TO FRACTION(n)

See the ODI Adaptation Guides for more details about data type compatibility.

3.6 CHAR and VARCHAR types

The CHAR and VARCHAR types are designed to store character strings, but all
database servers do not have the same behavior when comparing two CHAR or
VARCHAR values having trailing spaces.

SQL Management

505

CHAR and VARCHAR columns in databases

With all kinds of databases servers, CHAR columns are always filled with blanks up to
the size of the column, but trailing blanks are not significant in comparisons:

CHAR("abc ") = CHAR("abc")

With all database servers except Informix, trailing blanks are significant when comparing
VARCHAR values:

VARCHAR("abc ") <> VARCHAR("abc")

This is a major issue if you mix CHAR and VARCHAR columns and variables in your
SQL statements, because the result of an SQL query can be different depending on
whether you are using Informix or another database server.

CHAR and VARCHAR variables in BDL

In BDL, CHAR variables are filled with blanks, even if the value used does not contain all
spaces.

The following example:

01 DEFINE c CHAR(5)
02 LET c = "abc"
03 DISPLAY c || "."

shows the value "abc ." (5 chars + dot).

In BDL, VARCHAR variables are assigned with the exact value specified, with significant
trailing blanks.

For example, this code:

01 DEFINE v VARCHAR(5)
02 LET v = "abc "
03 DISPLAY v || "."

shows the value "abc ." (4 chars + dot).

When comparing CHAR or VARCHAR variables in a BDL expression, the trailing blanks
are not significant:

01 DEFINE c CHAR(5)
02 DEFINE v1, v2 VARCHAR(5)
03 LET c = "abc"
04 LET v1 = "abc "
05 LET v2 = "abc "

Genero Business Development Language

506

06 IF c == v1 THEN DISPLAY "c==v1"
07 END IF
08 IF c == v2 THEN DISPLAY "c==v2"
09 END IF
10 IF v1 == v2 THEN DISPLAY "v1==v2"
11 END IF

shows all three messages.

Additionally, when you assign a VARCHAR variable from a CHAR, the target variable
gets the trailing blanks of the CHAR variable:

01 DEFINE pc CHAR(50)
02 DEFINE pv VARCHAR(50)
03 LET pc = "abc"
04 LET pv = pc
05 DISPLAY pv || "."

shows "abc <47 spaces>. " (50 chars + dot).

To avoid this, you can use the CLIPPED operator:

LET pv = pc CLIPPED

CHAR and VARCHAR variables and columns

When you insert a row containing a CHAR variable into a CHAR or VARCHAR column,
the database interface removes the trailing blanks to avoid overflow problems, (insert
CHAR(100) into CHAR(20) when value is "abc" must work).

In the following example:

01 DEFINE c CHAR(5)
02 LET c = "abc"
03 CREATE TABLE t (v1 CHAR(10), v2 VARCHAR(10))
04 INSERT INTO tab VALUES (c, c)

The value in column v1 and v2 would be "abc" (3 chars in both columns).

When you insert a row containing a VARCHAR variable into a VARCHAR column, the
VARCHAR value in the database gets the trailing blanks as set in the variable. When the
column is a CHAR(N), the database server fills the value with blanks so that the size of
the string is N characters.

In the following example:

DEFINE c VARCHAR(5)
LET c = "abc "

SQL Management

507

CREATE TABLE t (v1 CHAR(10), v2 VARCHAR(10))
INSERT INTO tab VALUES (c, c)

The value in column v1 would be "abc " (10 chars) and v2 would be "abc " (
5 chars).

What should you do?

Use VARCHAR variables for VARCHAR columns, and CHAR variables for CHAR
columns to achieve portability across all kinds of database servers.

See also: LENGTH() function.

3.7 Concurrent data access

Data Concurrency is the simultaneous access of the same data by many users. Data
Consistency means that each user sees a consistent view of the database. Without
adequate concurrency and consistency controls, data could be changed improperly,
compromising data integrity. To write interoperable BDL applications, you must adapt
the program logic to the behavior of the database server regarding concurrency and
consistency management. This issue requires good knowledge of multi-user application
programming, transactions, locking mechanisms, isolation levels and wait mode. If you
are not familiar with these concepts, carefully read the documentation of each database
server which covers this subject.

Processes accessing the database can change transaction parameters such as the
isolation level. The main problem is to find a configuration which results in similar
behavior on every database engine. Existing BDL programs must be adapted to work
with this new behavior. ALL programs accessing the same database must be changed.

The following is the best configuration to get common behavior with all types of database
engines :

• The database must support transactions; this is usually the case.
• Transactions must be as short as possible (a few seconds).
• The Isolation Level must be at least "Read Committed" (= "Cursor Stability").
• The Wait Mode for locks must be "WAIT" or "WAIT n" (timeout).

Remarks: With this configuration, the locking granularity does not have to be at the row
level. To improve performance with Informix databases, you can use the "LOCK MODE
PAGE" locking level, which is the default.

Genero Business Development Language

508

3.8 The SQLCA register

SQLCA is the SQL Communication Area variable. SQLCA is a global record predefined
by the runtime system, that can be queried to get SQL status information. After
executing an SQL statement, members of this record contain execution or error data, but
it is specific to Informix databases. For example, after inserting a row in a table with a
SERIAL column, SQLCA.SQLERRD[2] contains the new generated serial number.

SQLCA.SQLCODE will be set to a specific Informix SQL error code, if the database
driver can convert the native SQL error to an Informix SQL error. Additional members
may be set, but that depends on the database server and database driver.

To identify SQL errors, you can also use SQLSTATE; this variable holds normalized ISO
SQL error codes. However, even if Genero database drivers are prepared to support this
register, not all RDBMS support standard SQLSTATE error codes:

Database Server Type Supports SQLSTATE errors
GeneroDB No
IBM DB2 UDB (Unix) Yes, since version 7.1
Informix Yes, since IDS 10
Microsoft SQL Server Yes, since version 8 (2000)
MySQL Not in version 5.x
Oracle Database Server Not in version 10.2
PostgreSQL Yes, since version 7.4
Sybase ASA Not in version 8.x

According to the above, SQL error identification requires quite complex code, which can
be RDBMS-specific in some cases. Therefore, it is strongly recommended that you
centralize SQL error identification in a function. This will allow you to write RDBMS-
specific code, when needed, only once.

3.9 Optimistic Locking

This section describes how to implement optimistic locking in BDL applications.
Optimistic locking is a portable solution to control simultaneous modification of the same
record by multiple users.

Traditional Informix-based applications use a SELECT FOR UPDATE to set a lock on
the row to be edited by the user. This is called pessimistic locking. The SELECT FOR
UPDATE is executed before the interactive part of the code, as described in here:

1. When the end user chooses to modify a record, the program declares and opens
a cursor with a SELECT FOR UPDATE.
At this point, an SQL error might be raised if the record is already locked by

SQL Management

509

another process.
Otherwise, the lock is acquired and user can modify the record.

2. The user edits the current record in the input form.
3. The user validates the dialog.
4. The UPDATE SQL instruction is executed.
5. The transaction is committed or the SELECT FOR UPDATE cursor is closed.

The lock is released.

Note that if the Informix database was created with transaction logging, you must either
start a transaction or define the SELECT FOR UPDATE cursor WITH HOLD option.

Unfortunately, this is not a portable solution. The lock wait mode should preferably be
"WAIT" for portability reasons. Pessimistic locking is based on a "NOT WAIT" mode to
return control to the program if a record is already locked by another process. Therefore,
following the portable concurrency model, the pessimistic locking mechanisms must be
replaced by the optimistic locking technique.

Basically, instead of locking the row before the user starts to modify the record data, the
optimistic locking technique makes a copy of the current values(i.e. Before Modification
Values), lets the user edit the record, and when it's time to write data into the database,
checks if the BMVs still correspond to the current values in the database:

1. A SELECT is executed to fill the record variable used by the interactive
instruction for modifications.

2. The record variable is copied into a backup record to keep Before Modification
Values.

3. The user enters modifications in the input form; this updates the values in the
modification record.

4. The user validates the dialog.
5. A transaction is started with BEGIN WORK.
6. A SELECT FOR UPDATE is executed to put the current database values into a

temporary record.
7. If the SQL status is NOTFOUND, the row has been deleted by another process,

and the transaction is rolled back.
8. Otherwise, the program compares the temporary record values with the backup

record values (rec1.*==rec2.*)
9. If these values have changed, the row has been modified by another process,

and the transaction is rolled back.
10. Otherwise, the UPDATE statement is executed.
11. The transaction is committed.

To compare 2 records, simply write:

01 IF new_record.* != bmv_record.* THEN
02 LET values_have_changed = TRUE
03 END IF

The optimistic locking technique could be implemented with a unique SQL instruction: an
UPDATE could compare the column values to the BMVs directly (UPDATE ... WHERE
kcol = kvar AND col1 = bmv.var1 AND ...). But, this is not possible when BMVs can be

Genero Business Development Language

510

NULL. The database engine always evaluates conditional expressions such as
"col=NULL" to FALSE. Therefore, you must use "col IS NULL" when the BMV is NULL.
This means dynamic SQL statement generation based on the DMV values. Additionally,
to use the same number of SQL parameters (? markers), you would have to use "col=?"
when the BMV is not null and "col IS NULL and ? IS NULL" when the BMV is null.
Unfortunately, the expression " ? IS [NOT] NULL " is not supported by all database
servers (DB2 raises error SQL0418N).

If you are designing a new database application from scratch, you can also use the row
versioning method. Each tables of the database must have a column that identifies the
current version of the row. The column can be a simple INTEGER (to hold a row version
number) or it can be a timestamp (DATETIME YEAR TO FRACTION(5) for example). To
guaranty that the version or timestamp column is updated each time the row is updated,
you should implement a trigger to increment the version or set the timestamp when an
UPDATE statement is issued. If this is in place, you just need to check that the row
version or timestamp has not changed since the user modifications started, instead of
testing all field of the BMV record.

3.10 Auto-incremented columns

This section describes how to implement auto-incremented fields for portability.

INFORMIX provides the SERIAL data type which can be emulated by the database
interface with most non-INFORMIX database engines. But, this requires additional
configuration and maintenance tasks. If you plan to review the architecture of your
programs, you should use this portable implementation instead of SERIALs emulated by
the connectors when "ifxemul.serial" is true.

Solution 1: Use database specific serial generators.

Principle:

In accordance with the target database, you must use the appropriate native serial
generation method. Get the database type with the db_get_database_type() function of
fgldbutl.4gl and use the appropriate SQL statements to insert rows with serial
generation.

Warning : Not all database engines provide a sequence generator. Check the
documentation of your target database.

Implementation:

1. Create the database objects required for serial generation in the target database
(for example, create tables with SERIAL columns in Informix, tables with
IDENTITY columns in SQL Server and sequence generators in Oracle).

2. Adapt your BDL programs to use the native sequence generators in accordance
with the database type.

SQL Management

511

BDL example:

01 DEFINE dbtype CHAR(3)
02 DEFINE t1rec RECORD
03 id INTEGER,
04 name CHAR(50),
05 cdate DATE
06 END RECORD
07
08 LET dbtype = db_get_database_type()
09
10 IF dbtype = "IFX" THEN
11 INSERT INTO t1 (id, name, cdate)
12 VALUES (0, t1rec.name, t1rec.cdate)
13 LET t1rec.id = SQLCA.SQLERRD[2]
14 END IF
15 IF dbtype = "ORA" THEN
16 INSERT INTO t1 (id, name, cdate)
17 VALUES (t1seq.nextval, t1rec.name, t1rec.cdate)
18 SELECT t1seq.currval INTO t1rec.id FROM dual
19 END IF
20 IF dbtype = "MSV" THEN
21 INSERT INTO t1 (name, cdate)
22 VALUES (t1rec.name, t1rec.cdate)
23 PREPARE s FROM "SELECT convert(integer,@@identity)"
24 EXECUTE s INTO t1rec.id
25 END IF

Solution 2: Generate serial numbers by hand.

Purpose:

The goal is to generate unique INTEGER numbers. These numbers will usually be used
for primary keys.

Prerequisites:

1. The database must use transactions. This is usually the case with non-
INFORMIX databases, but INFORMIX databases default to auto commit mode.
Make sure your INFORMIX database allows transactions.

2. The sequence generation must be called inside a transaction (BEGIN WORK /
COMMIT WORK).

3. The lock wait mode must be WAIT. This is usually the case in non-INFORMIX
databases, but INFORMIX defaults to NOT WAIT. You must change the lock wait
mode with "SET LOCK MODE TO WAIT" or "WAIT seconds" when using
INFORMIX.

4. Non-BDL applications or stored procedures must implement the same technique
when inserting records in the table having auto-incremented columns.

Principle:

Genero Business Development Language

512

A dedicated table named "SEQREG" is used to register sequence numbers. The key is
the name of the sequence. This name will usually be the table name the sequence is
generated for. In short, this table contains a primary key that identifies the sequence and
a column containing the last generated number.

The uniqueness is granted by the concurrency management of the database server. The
first executed instruction is an UPDATE that sets an exclusive lock on the SEQREG
record. When two processes try to get a sequence at the same time, one will wait for the
other until its transaction is finished.

Implementation:

The "fgldbutl.4gl" utility library implements a function called "db_get_sequence" which
generates a new sequence. You must create the SEQREG table as described in the
fgldbutl.4gl source and make sure that every user has the privileges to access and
modify this table.

BDL example:

01 DEFINE rec RECORD
02 id INTEGER,
03 name CHAR(100)
04 END RECORD
05 BEGIN WORK
06 LET rec.id = db_get_sequence("CUSTID")
07 IF rec.id>0 THEN
08 INSERT INTO CUSTOMER (CUSTID, CUSTNAME)
09 VALUES (rec.id, rec.name)
10 ELSE
11 ERROR "cannot get new sequence number"
12 END
13 COMMIT WORK

3.11 Informix SQL ANSI Mode

INFORMIX allows you to create databases in ANSI mode, which is supposed to be
closer to ANSI standard behavior. Other databases like ORACLE and DB2 are 'ANSI' by
default.

If you are not using the ANSI mode with Informix, we suggest you keep the database as
is, because turning an Informix database into ANSI mode can result in unexpected
behavior of the programs.

Here are some ANSI mode issues extracted from the Informix books:

• Some actions, like CREATE INDEX will generate a warning but will not be
forbidden.

• Buffered logging is not allowed to enforce data recovery. (Buffered logging
provides better performance)

SQL Management

513

• The table-naming scheme allows different users to create tables without having
to worry about name conflicts.

• Owner specification is required in database object names (SELECT ... FROM
"owner".table). You must quote the owner name to prevent automatic translation
of the owner name into uppercase : SELECT .. FROM owner.table -> SELECT ..
FROM OWNER.table => table not found in database!

• Default privileges differ : When creating a table, the server grants privileges to
the table owner and the DBA only. The same thing happens for the 'Execute'
privilege when creating stored procedures.

• Default isolation level is REPEATABLE READ.
• An error is generated if any character field is filled with a value that is longer than

the field width.
• DECIMAL(p) (floating point decimals) are automatically converted to

DECIMAL(p,0) (fixed point decimals).
• Closing a closed cursor generates an SQL error.

It will take more time to adapt the programs to the INFORMIX ANSI mode than using the
database interface to simulate the native mode of INFORMIX.

3.12 WITH HOLD and FOR UPDATE

Informix supports WITH HOLD cursors using the FOR UPDATE clause. Such cursors
can remain open across transactions (when using FOR UPDATE, locks are released at
the end of a transaction, but the WITH HOLD cursor is not closed). This kind of cursor is
Informix-specific and not portable. The SQL standards recommend closing FOR
UPDATE cursors and release locks at the end of a transaction. Most database servers
close FOR UPDATE cursors when a COMMIT WORK or ROLLBACK WORK is done. All
database servers release locks when a transaction ends.

Database Server Type WITH HOLD FOR UPDATE
supported?

GeneroDB Yes (if primary key or unique
index)

IBM DB2 UDB (Unix) No
Informix Yes
Microsoft SQL Server No
MySQL No
Oracle Database Server No
PostgreSQL No
Sybase ASA No

It is mandatory to review code using WITH HOLD cursors with a SELECT statement
having the FOR UPDATE clause.

Genero Business Development Language

514

The standard SQL solution is to declare a simple FOR UPDATE cursor outside the
transaction and open the cursor inside the transaction:

01 DECLARE c1 CURSOR FOR SELECT ... FOR UPDATE
02 BEGIN WORK
03 OPEN c1
04 FETCH c1 INTO ...
05 UPDATE ...
06 COMMIT WORK

If you need to process a complete result set with many rows including updates of master
and detail rows, you can declare a normal cursor and do a SELECT FOR UPDATE
inside each transaction, as in the following example:

01 DECLARE c1 CURSOR FOR SELECT key FROM master ...
02 DECLARE c2 CURSOR FOR SELECT * FROM master WHERE key=? FOR UPDATE
03 FOREACH c1 INTO mrec.key
04 BEGIN WORK
05 OPEN c2 INTO mrec.key
06 FETCH c2 INTO rec.*
07 IF STATUS==NOTFOUND THEN
08 ROLLBACK WORK
09 CONTINUE FOREACH
10 END IF
11 UPDATE master SET ... WHERE CURRENT OF c2
12 UPDATE detail SET ... WHERE mkey=mrec.key
13 COMMIT WORK
14 END FOREACH

3.13 Positioned Updates/Deletes

The "WHERE CURRENT OF cursor-name" clause in UPDATE and DELETE statements
is not supported by all database engines.

Database Server Type WHERE CURRENT OF
supported?

GeneroDB Yes
IBM DB2 UDB (Unix) Yes
Informix Yes
Microsoft SQL Server Yes
MySQL Yes

Oracle Database Server No, emulated by driver with
ROWIDs

PostgreSQL No, emulated by driver with OIDs
Sybase ASA Yes

SQL Management

515

Some database drivers can emulate WHERE CURRENT OF mechanisms by using
rowids, but this requires additional processing. You should review the code to disable
this option.

The standard SQL solution is to use primary keys in all tables and write UPDATE /
DELETE statements with a WHERE clause based on the primary key:

01 DEFINE rec RECORD
02 id INTEGER,
03 name CHAR(100)
04 END RECORD
05 BEGIN WORK
06 SELECT CUSTID FROM CUSTOMER
07 WHERE CUSTID=rec.id FOR UPDATE
08 UPDATE CUSTOMER SET CUSTNAME = rec.name
09 WHERE CUSTID = rec.id
10 COMMIT WORK

3.14 String literals in SQL statements

Some database servers like INFORMIX allow single and double quoted string literals in
SQL statements, both are equivalent:

SELECT COUNT(*) FROM table
 WHERE col1 = "abc'def""ghi"
 AND col1 = 'abc''def"ghi'

Most database servers do not support this specific feature:

Database Server Type Double quoted string
literals

GeneroDB No
IBM DB2 UDB (Unix) No
Informix Yes
Microsoft SQL Server Yes
MySQL No
Oracle Database Server No
PostgreSQL No
Sybase ASA No

The ANSI SQL standards define doubles quotes as database object names delimiters,
while single quotes are dedicated to string literals:

CREATE TABLE "my table" ("column 1" CHAR(10))
SELECT COUNT(*) FROM "my table" WHERE "column 1" = 'abc'

Genero Business Development Language

516

If you want to write a single quote character inside a string literal, you must write 2 single
quotes:

... WHERE comment = 'John''s house'

When writing Static SQL in your programs, the double quoted string literals as converted
to ANSI single quoted string literals by the fglcomp compiler. However, Dynamic SQL
statements are not parsed by the compiler and therefore need to use single quoted
string literals.

We recommend that you ALWAYS use single quotes for string literals and, if needed,
double quotes for database object names.

3.15 Date and Time literals in SQL statements

INFORMIX allows you to specify date and time literals as a quoted character string in a
specific format, depending upon DBDATE and GLS environment variables. For example,
if DBDATE=DMY4, the following statement specifies a valid DATE literal:

SELECT COUNT(*) FROM table WHERE date_col = '24/12/2005'

Other database servers do support date/time literals as quoted character strings, but the
date/time format specification is quite different. The parameter to specify the date/time
format can be a database parameter, an environment variable, or a session option...

In order to write portable SQL, just use SQL parameters instead of literals:

01 DEFINE cnt INTEGER
02 DEFINE adate DATE
03 LET adate = '24/12/2005' -- DBDATE applies because this is BDL, not
SQL!
04 SELECT COUNT(*) INTO cnt FROM table
05 WHERE date_col = adate

Or, when using dynamic SQL:

01 DEFINE cnt INTEGER
02 DEFINE adate DATE
03 LET adate = '24/12/2005'
04 PREPARE s1 FROM "SELECT COUNT(*) FROM table WHERE date_col = ?"
05 EXECUTE s1 USING adate INTO cnt

SQL Management

517

3.16 Naming database objects

Name syntax

Each type of database server has its own naming conventions for database objects (i.e.
tables and columns):

Database
Server
Type

Naming Syntax

GeneroDB [schema.]identifier
IBM DB2
UDB (Unix)

[[database.]owner.]identifier

Informix [database[@dbservername]:][owner.]identifier
Microsoft
SQL Server

[[[server.][database].][owner_name].]object_name

MySQL [database.]identifier
Oracle
Database
Server

[schema.]identifier[@database-link]

PostgreSQL [owner.]identifier
Sybase
ASA

[database.]identifier

Case-sensitivity

Most database engines have case-sensitive object identifiers. In most cases, when you
do not specify identifiers in double quotes, the SQL parser automatically converts names
to uppercase or lowercase, so that the identifiers match if the objects are also created
without double quoted identifiers.

CREATE TABLE Customer (cust_ID INTEGER)

In Oracle, the above statement would create a table named "CUSTOMER" with a
"CUST_ID" column.

The following table shows the case sensitivity features of each kind of database engine:

Database Server
Type

Case sensitive
names?

Not-quoted names
converted to ...

GeneroDB Yes Uppercase
IBM DB2 UDB (Unix) Yes Uppercase
Informix (1) No No
Microsoft SQL Server
(2) Yes Not converted

Genero Business Development Language

518

MySQL Yes Not converted
Oracle Database
Server Yes Uppercase

PostgreSQL No Lowercase
Sybase ASA No Lowercase

(1) If not ANSI database mode.
(2) Global parameter set at installation.

Warning: You must take care with database servers marked in red, because object
identifiers are case sensitive and are not converted to uppercase or lowercase if
not delimited by double-quotes. This means that, by error, you can create two
tables with a similar name:

CREATE TABLE customer (cust_id INTEGER) -- first table
CREATE TABLE Customer (cust_id INTEGER) -- second table

Size of identifiers

The maximum size of a table or column name depends on the database server type.
Some database engines allow very large names (256c), while others support only short
names (30c max). Therefore, using short names is required for writing portable SQL.
Short names also simplify SQL programs.

How to write SQL with portable object identifiers

We recommend that you use simple and short (<30c) database object names, without
double quotes and without a schema/owner prefix:

CREATE TABLE customer (cust_id INTEGER)
SELECT customer.cust_id FROM table

You may need to set the database schema after connection, so that the current
database user can see the application tables without specifying the owner/schema prefix
each time.

Tip: Even if all database engines do not required unique column names for all tables, we
recommend that you define column names with a small table prefix (for example,
CUST_ID in CUSTOMER table).

3.17 Temporary tables

Not all database servers support temporary tables. The engines supporting this feature
often provide it with a specific table creation statement:

Database Temp table creation syntax Local to

SQL Management

519

Server Type SQL
session?

GeneroDB
CREATE TEMP TABLE tablename (column-
defs)
SELECT ... INTO TEMP tablename

Yes

IBM DB2 UDB
(Unix)

DECLARE GLOBAL TEMPORARY TABLE tablename
(column-defs)
DECLARE GLOBAL TEMPORARY TABLE tablename
AS (SELECT ...)

Yes

Informix
CREATE TEMP TABLE tablename (column-
defs)
SELECT ... INTO TEMP tablename

Yes

Microsoft SQL
Server

CREATE TABLE #tablename (column-defs)
SELECT select-list INTO #tablename FROM
...

Yes

MySQL
CREATE TEMPORARY TABLE tablename (
column-defs)
CREATE TEMPORARY TABLE tablename LIKE
other-table

Yes

Oracle Database
Server

CREATE GLOBAL TEMPORARY TABLE tablename
(column-defs)
CREATE GLOBAL TEMPORARY TABLE tablename
AS SELECT ...

No: only
data is
local to
session

PostgreSQL
CREATE TEMP TABLE tablename (column-
defs)
SELECT select-list INTO TEMP tablename
FROM ...

Yes

Sybase ASA
CREATE GLOBAL TEMPORARY TABLE tablename
(column-defs)
CREATE TABLE #tablename (column-defs)

Yes

Some databases even have a different behavior when using temporary tables. For
example, Oracle 9i supports a kind of temporary table, but it must be created as a
permanent table. The table is not specific to an SQL session: it is shared by all
processes - only the data is local to a database session.

You must review the programs using temporary tables, and adapt the code to use
database-specific temporary tables.

3.18 Outer joins

Old INFORMIX SQL outer joins specified with the OUTER keyword in the FROM part
are not standard:

SELECT * FROM master, OUTER (detail)
 WHERE master.mid = detail.mid
 AND master.cdate IS NOT NULL

Genero Business Development Language

520

Database Server Type Supports Informix OUTER join
syntax

GeneroDB Yes
IBM DB2 UDB (Unix) No (but translated by driver)
Informix (1) Yes
Microsoft SQL Server (2) No (but translated by driver)
MySQL No (but translated by driver)
Oracle Database Server No (but translated by driver)
PostgreSQL No (but translated by driver)
Sybase ASA No (but translated by driver)

Most recent database servers now support the standard ANSI outer join specification:

SELECT * FROM master LEFT OUTER JOIN detail ON (master.mid =
detail.mid)
 WHERE master.cdate IS NOT NULL

You should use recent database servers and use ANSI outer joins only.

3.19 Sub-string expressions

Only INFORMIX supports sub-string specification with square brackets:

SELECT * FROM item WHERE item_code[1,4] = "XBFG"

However, most database servers support a function that extracts sub-strings from a
character string:

Database Server Type
Supports
col[x,y] sub-
strings?

Provides sub-string function?

GeneroDB Yes SUBSTR(expr,start,length)
IBM DB2 UDB (Unix) No SUBSTR(expr,start,length)
Informix (1) Yes SUBSTR(expr,start,length)
Microsoft SQL Server (2) No SUBSTRING(expr,start,length)
MySQL No SUBSTR(expr,start,length)
Oracle Database Server No SUBSTRING(expr,start,length)

PostgreSQL No SUBSTRING(expr FROM start FOR
length)

Sybase ASA No SUBSTR(expr,start,length)

SQL Management

521

Warning: INFORMIX allows you to update some parts of a [VAR]CHAR column by
using the sub-string specification (UPDATE tab SET col[1,2] ='ab'). This is not
possible with other databases.

Review the SQL statements using sub-string expressions and use the database specific
sub-string function.

You could also create your own SUBSTRING() user function in all databases that do not
support this function, to have a common way to extract sub-strings. In Microsoft SQL
Server, when you create a user function, you must specify the owner as prefix when
using the function. Therefore, you should create a SUBSTRING() user function instead
of SUBSTR().

3.20 Using ROWIDs

Rowids are implicit primary keys generated by the database engine. Not all database
servers support rowids:

Database Server
Type Rowid keyword? Rowid type?

GeneroDB ROWID INTEGER
IBM DB2 UDB
(Unix)

none none

Informix (1) ROWID INTEGER
Microsoft SQL
Server (2)

none none

MySQL none none
Oracle Database
Server

ROWID CHAR(18)

PostgreSQL OID internal type
Sybase ASA none none

Warning: INFORMIX fills the SQLCA.SQLERRD[3] register with the ROWID of the
last updated row. This register is an INTEGER and cannot be filled with rowids
having CHAR(*) type.

Search for ROWID and SQLCA.SQLERRD[3] in your code and review the code to
remove the usage of rowids.

3.21 MATCHES operator

The MATCHES operator allows you to scan a string expression:

Genero Business Development Language

522

SELECT * FROM customer WHERE customer_name MATCHES "A*[0-9]"

Here is a table listing the database servers which support the MATCHES operator:

Database Server Type
Support for
MATCHES
operator?

GeneroDB Yes
IBM DB2 UDB (Unix) No
Informix (1) Yes
Microsoft SQL Server (2) No
MySQL No
Oracle Database Server No
PostgreSQL No
Sybase ASA No

The MATCHES operator is specific to INFORMIX SQL and Genero db. There is an
equivalent standard operator: LIKE. We recommend to replace MATCHES expressions
in your SQL statements with a standard LIKE expression. MATCHES uses * and ? as
wildcards. The equivalent wildcards in the LIKE operator are % and _. Character ranges
[a-z] are not supported by the LIKE operator.

Remark: The BDL language provides a MATCHES operator which is part of the runtime
system. Do not confuse this with the SQL MATCHES operator, used in SQL statements.
There is no problem in using the MATCHES operator of the BDL language.

Warning: A program variable can be used as parameter for the MATCHES or LIKE
operator, but you must pay attention to blank padding semantics of the target
database. If the program variable is defined as a CHAR(N), it is filled by the
runtime system with trailing blanks, in order to have a size of N. For example,
when a CHAR(10) variable is assigned with "ABC%", it contains actually "ABC%<6
blanks>". If this variable is used as LIKE parameter, the database server will
search for column values matching "ABC" + some characters + 6 blanks. To avoid
automatic blanks, use a VARCHAR(N) data type instead of CHAR(N).

3.22 GROUP BY clause

Some databases allow you to specify a column index in the GROUP BY clause:

SELECT a, b, sum(c) FROM table GROUP BY 1,2

This is not possible with all database servers:

Database Server Type GROUP BY colindex, ... ?

SQL Management

523

GeneroDB No
IBM DB2 UDB (Unix) No
Informix (1) Yes
Microsoft SQL Server
(2) No

MySQL Yes
Oracle Database Server No
PostgreSQL Yes
Sybase ASA No

Search for GROUP BY in your SQL statements and use explicit column names.

3.23 LENGTH() function

Not all database servers support the LENGTH() function, and some have specific
behavior:

Database Server Type Length
function?

Counts
trailing
blanks for
CHAR()
columns?

Return value
when NULL

GeneroDB LENGTH(expr) No NULL
IBM DB2 UDB (Unix) LENGTH(expr) Yes NULL
Informix (1) LENGTH(expr) No NULL
Microsoft SQL Server (2) LEN(expr) No NULL
MySQL LENGTH(expr) No NULL
Oracle Database Server LENGTH(expr) Yes NULL
PostgreSQL LENGTH(expr) Yes NULL
Sybase ASA LENGTH(expr) No NULL

Search for LENGTH in your SQL statements and review the code of the database-
specific function. You could also define your own LEN() user function to have a common
function in all databases. In Microsoft SQL Server, when you create a user function, you
must specify the owner as prefix when using the function. Therefore, you should create a
LEN() user function instead of LENGTH().

Remark: The BDL language provides a LENGTH built-in function which is part of the
runtime system. Do not confuse this with the SQL LENGTH() function, used in SQL
statements. There is no problem in using the LENGTH() function of the BDL language.
However, the LENGTH() function of the language returns zero when the string
expression is NULL.

Genero Business Development Language

524

3.24 SQL Interruption

With Informix, it is possible to interrupt a long-running query if the SQL INTERRUPT ON
 option is set by the Genero program. The database server returns SQLCODE -213,
which can be trapped to detect a user interruption.

01 MAIN
02 DEFINE n INTEGER
03 DEFER INTERRUPT
04 OPTIONS SQL INTERRUPT ON
05 DATABASE test1
06 WHENEVER ERROR CONTINUE
07 -- Start long query (self join takes time)
08 -- From now on, user can hit CTRL-C in TUI mode to stop the query
09 SELECT COUNT(*) INTO n FROM customers a, customers b
10 WHERE a.cust_id <> b.cust_id
11 IF SQLCA.SQLCODE == -213 THEN
12 DISPLAY "Statement was interrupted by user..."
13 EXIT PROGRAM 1
14 END IF
15 WHENEVER ERROR STOP
16 ...
17 END MAIN

When SQL Interruption is available for a database server type, Genero database drivers
implement it to behave as in Informix, converting the native error to the code -213. Not
all database servers support SQL interruption:

Database Server Type
SQL
Interruption
API

SQL error
code for
interrupted
query

GeneroDB 3.80 SQLCancel() Native error -
30005

IBM DB2 UDB 9.x SQLCancel() Native error -
952

Informix sqlbreak() Native error -
213

Microsoft SQL Server 2005 (SNC driver only) SQLCancel() SQLSTATE
HY008

MySQL N/A ?

Oracle Database Server 8.x, 9.x, 10.x OCIBreak() Native error -
1013

PostgreSQL 8.x PQCancel() SQLSTATE
57014

Sybase ASA N/A ?

525

The Interaction Model
Summary:

• The Model-View-Controller Paradigm
• Controlling User Actions

o Binding Action views to Action Controllers
o Decorating Action Views
o Enabling and Disabling Actions
o Default Action Views

• Predefined Actions
o Definition
o Lists of predefined actions
o Overwriting Predefined Actions in Interactive Instructions

• Keyboard Accelerator Names
o Accelerator keys
o List of key names
o Accelerator key modifiers

• Interruption Handling
• Detecting data changes immediately
• Controlling data validation when an action is fired
• Windows closed by the user

See also: Dynamic User Interface, Form Files, Windows and Forms.

The Model-View-Controller Paradigm
The Dynamic User Interface architecture is based on the Model-View-Controller (MVC)
paradigm. The Model defines the object to be displayed (typically the application data
that is stored in program variables). The View defines the decoration of the Model (how
the Model must be displayed to the screen, this is typically the form). The Controller is
the program code that implements the processing that manages the Model. Multiple
Views can be associated to a Model and a Controller.

With BDL, you define the Views in the Abstract User Interface tree or through built-in
classes designed for this (such as Window or Form). You store Models in the program
variables, and you implement the Controllers with interactive instructions, such as
DIALOG or INPUT.

Normally the Controllers should not provide any decoration information, as that is the
purpose of Views. Because of the history of the language, however, some interactive
instructions such as MENU define both the Controller and some presentation information
such as menu title, command labels, and comments. In this case, the runtime system
automatically creates the View with that information; you can still associate other Views
to the same controller.

Genero Business Development Language

526

Controlling User Actions

Binding Action Views to Action Controllers

In the user interface of the application, you can have interactive elements (such as
buttons) that can trigger an event transmitted to the Runtime System for interpretation.
To manage such events, the Action Views can produce Actions Events that will execute
the code of the corresponding Action Handler in the current interactive instruction of the
program.

Action Views (like buttons) are bound to an action by the 'name' attribute. For example, a
Toolbar button with the name 'cancel' is bound to the Action Handler using the name
'cancel'. Action Handlers are defined in interactive instructions with ON ACTION clause or
COMMAND / ON KEY clauses:

01 INPUT ARRAY custarr WITHOUT DEFAULTS FROM sr_cust.*
02 ON ACTION printrec
03 CALL PrintRecord(custarr[arr_curr()].*)
04 ON ACTION showhelp
05 CALL ShowHelp()
06 END INPUT

The name of the action must be a valid identifier in the program.

Warning: In the Abstract User Interface tree (where the action views are defined),
action names are case-sensitive (as they are standard DOM attribute values). In
BDL, however, identifiers are not case-sensitive. To avoid any confusion, the
compiler automatically converts action identifiers to lowercase.

For singular dialogs such as INPUT or DISPLAY ARRAY, actions only have a simple
name. Action names in a DIALOG instruction, however, have both simple names and
prefixed names. When using a DIALOG instruction, one can define the same action (or
have predefined actions such as insert, append, delete) in different sub-dialogs. These
action names automatically get a prefix to identify actions properly across sub-dialogs.
These actions are prefixed with the sub-dialog identifier. For example, when defining an
ON ACTION save handler in a DISPLAY ARRAY sub-dialog using a screen-array named
"sa", the runtime system will identify that action with both the "save" name and the
"sa.save" prefixed name. In the form files, you can then bind Action Views to sub-dialog
Action Handlers by using the sub-dialog prefix.

For backward compatibility, the COMMAND / ON KEY clauses are still supported. However,
it is strongly recommended that you use ON ACTION clauses instead, as the ON ACTION
clauses identify user actions with an abstract name.

Decorating Action Views

A default decoration for action views can be centralized in an external file. This is
strongly recommended, to separate the decoration of the action view from action usage
(the action handler) as much as possible. See Action Defaults for more details.

User Interface

527

Enabling and Disabling Actions

During an interactive instruction, you can enable or disable an action with the
setActionActive() method of the ui.Dialog built-in class. This method takes the name
of the action (in lowercase letters) and an boolean expression (0 or FALSE, 1 or TRUE) as
arguments.

01 ...
02 BEFORE INPUT
03 CALL DIALOG.setActionActive("zoom",FALSE)
04 ...

Default Views for Actions

If no explicit action view is defined, such as a toolbar button or a topmenu command, the
front end creates a default action view for each MENU COMMAND, ON KEY or ON ACTION
clause used in the current interactive instruction (typically, the default action views
appear as buttons in the action frame). You can control the presentation of these default
views with Window Styles.

If one or more action views are defined explicitly for a given action, the front end
considers that the default view is no longer needed, and hides the corresponding button.
Typically, if you define in the form a BUTTONEDIT field or a BUTTON that triggers an
action, you do not need an additional button in the action frame.

Predefined Actions

Definition

The BDL language predefines some action names for common operations of interactive
instructions. Predefined actions can be:

• Automatic actions: actions that are automatically created and handled by the
runtime system.

• Special actions: actions with a special usage.
• Local actions: actions that are handled on the front end only.

If you define your own ON ACTION handler with the name of an Automatic action, the
default action processing is bypassed and the program code is executed instead. For
more details, see Overwriting Automatic Actions in Interactive Instructions.

As for user-defined actions, if you design action views using predefined action names,
they will automatically attach themselves to the actions of the interactive instructions. It
is also possible to define default images, texts, comments and accelerator keys in the
Action Defaults resource file for these predefined actions.

Genero Business Development Language

528

List of predefined actions

Action Name Description
ON
ACTION
block

Context

Runtime
Controlled

Automatically created by the runtime
system (except for DIALOG)

accept Validates the current interactive
instruction possible (1)

cancel Cancels the current interactive instruction possible (1)

close Triggers a cancel key in the current
interactive instruction (by default) possible (7)

insert Inserts a new row before current row possible (2)
append Appends a new row at the end of the list possible (2)
delete Deletes the current row possible (2)
nextrow Moves to the next row in a list possible (4)
prevrow Moves to the previous row in a list possible (4)
firstrow Moves to the first row in a list possible (4)
lastrow Moves to the last row in a list possible (4)

help Shows the help topic defined by the HELP
clause possible (1)

Special Special behavior

interrupt Sends an interruption request to the
program when processing no (5)

dialogtouched Sent by the front end each time the user
modifies the value of a field yes (7)

Front-end
controlled

Handled by the front end (the runtime
does not know about these actions)

editcopy Copies to the clipboard the current
selected text no (1)

editcut Copies to the clipboard and removes the
current selected text no (1)

editpaste Pastes the clipboard content to the current
input widget no (1)

nextfield Moves to the next field in the form no (3)
prevfield Moves to the previous field in the form no (3)

nextrow
Moves to the next row in the list
(supported for backward compatibility - is
a runtime action)

no (4)

prevrow
Moves to the previous row in the list
(supported for backward compatibility - is
a runtime action)

no (4)

firstrow
Moves to the first row in the list (supported
for backward compatibility - is a runtime
action)

no (4)

User Interface

529

lastrow
Moves to the last row in the list (supported
for backward compatibility - is a runtime
action)

no (4)

nextpage Moves to the next page in the list no (4)
prevpage Moves to the previous page in the list no (4)
nexttab Moves to the next page in the folder no (6)
prevtab Moves to the previous page in the folder no (6)

1. CONSTRUCT, INPUT, PROMPT, INPUT ARRAY and DISPLAY ARRAY.
2. INPUT ARRAY only.
3. CONSTRUCT, INPUT and INPUT ARRAY.
4. INPUT ARRAY and DISPLAY ARRAY.
5. Only possible when no interactive instruction is active.
6. Possible in any kind of interactive instruction (MENU included).
7. DIALOG, CONSTRUCT, INPUT, PROMPT, INPUT ARRAY and DISPLAY

ARRAY.

Overwriting Automatic Actions in Interactive Instructions

The ON ACTION clause can be used with a predefined action name in an interactive
instruction :

01 INPUT BY NAME customer.*
02 ON ACTION accept
03 ...
04 END INPUT

In this case, the default behavior is not performed; the user code is executed instead.

Keyboard Accelerator Names

Accelerator keys

Some parts of the user interface can define accelerators keys. With Action Defaults, you
can define up to four accelerator keys for the same action, by setting the
acceleratorName, acceleratorName2, acceleratorName3 and acceleratorName4
attributes.

If no accelerators are defined in the Action Defaults, the runtime system sets default
accelerators for predefined actions, according to the user interface mode. For example,
the accept action will get the Return and Enter keys in GUI mode; the Escape key
would be used in TUI mode.

If you want to force an action to have no accelerator, specify "none" as the accelerator
name.

Genero Business Development Language

530

If one of the user-defined actions uses an accelerator that would normally be used for a
predefined action, the runtime system does not set that accelerator for the predefined
action. For example (in GUI mode), if you define an ON ACTION quit with an action
default using the accelerator "Escape", the cancel predefined action will not get the
"Escape" default accelerator. User settings take precedence over defaults.

Note that text edition and navigation accelerators such as Home and End are usually local
to the widget. According to the context, such accelerators might be eaten by the widget
and will not fire the action bound to the corresponding accelerator defined in the Action
Defaults. For example, even if the Action Defaults for firstrow action defines the Home
accelerator, when using an INPUT ARRAY, the Home keystroke will jump to the
beginning of the edit field, not the the first row of the list.

The following table lists all the keyboard accelerator names recognized by the runtime
system:

Accelerator
Name Description

none Special name indicating the the runtime system must not set
any default accelerator for the action.

0-9 Decimal digits from 0 to 9
A-Z Letters from A to Z
F1-F35 The functions keys
Return The RETURN key (alphanumeric keypad, see Note)
Enter The ENTER key (numeric keypad, see Note)
Space The SPACE-BAR key
Escape The ESCAPE key
Tab The TABULATION Key
BackSpace The BACKSPACE key (do not confuse with DELETE key)
Up The UP key (arrow keyboard group)
Down The DOWN key (arrow keyboard group)
Left The LEFT key (arrow keyboard group)
Right The RIGHT key (arrow keyboard group)
Insert The INSERT key (navigation keyboard group)
Delete The DELETE key (navigation keyboard group)
Home The HOME key (navigation keyboard group)
End The END key (navigation keyboard group)
Next The NEXT PAGE key (navigation keyboard group)
Prior The PRIOR PAGE key (navigation keyboard group)

User Interface

531

Note:

The "Enter" key represents the ENTER key available on the numeric keypad of
standard keyboards, while "Return" represents the RETURN key of the alphanumeric
keyboard. By default, the validation action is configured to accept both "Enter" and
"Return" keys. See the Action Defaults file.

Accelerator key modifiers

All of the key names listed in the previous table can be combined with CONTROL /
SHIFT / ALT modifiers, by adding "Control-", "Shift-", or "Alt-" to the name of the
accelerator.

For example:

Control-P
Shift-Alt-F12
Control-Shift-Alt-Z

Interruption Handling

Why do we need interruption handling?

When the BDL program executes an interactive instruction, the front end can send
action events based on user actions. When the program performs a long process like a
loop, a report, or a database query, the front end has no control. You might want to
permit the user to stop a long-running process.

How to program the detection of user interruptions

To detect user interruptions, you define an action view with the name 'interrupt'. When
the runtime system takes control to process program code, the front end automatically
enables the local 'interrupt' action to let the user send an asynchronous interruption
request to the program.

Warning: The front end can not handle interruption requests properly if the
display generates a lot of network traffic. In this case, the front end has to process
a lot of user interface modifications and has no time to detect a mouse click on
the 'interrupt' action view. A typical example is a program doing a loop from 1 to
10000, just displaying the value of the counter to a field and doing a refresh. This
would generate hundreds of AUI tree modifications in a short period of time. In
such a case, we recommended that you calculate a modulo and display steps 10
by 10 or 100 by 100.

Genero Business Development Language

532

Interruption handling example:

Form file "f1.per":

01 LAYOUT
02 GRID
03 {
04 Step: [pb]
05 [sb]
06 }
07 END
08 END
09 ATTRIBUTES
10 PROGRESSBAR pb = FORMONLY.progress, VALUEMIN=0, VALUEMAX=100;
11 BUTTON sb : interrupt, TEXT="Stop";
12 END

Program:

01 MAIN
02 DEFINE i,j INTEGER
03 DEFER INTERRUPT
04 OPEN FORM f1 FROM "f1"
05 DISPLAY FORM f1
06 LET int_flag=FALSE
07 FOR i=1 TO 100
08 DISPLAY i TO progress
09 CALL ui.Interface.refresh()
10 FOR j=1 TO 1000 -- Loop to emulate processing
11 DISPLAY j
12 IF int_flag THEN EXIT FOR END IF
13 END FOR
14 IF int_flag THEN EXIT FOR END IF
15 END FOR
16 END MAIN

Detecting data changes immediately
You can use a special predefined action to detect user changes immediately and
execute code in the program to set up your interactive instruction. This special action
has the name "dialogtouched" and must be declared with an ON ACTION clause to be
enabled:

01 DIALOG
02 ...
03 ON ACTION dialogtouched
04 LET changing = TRUE
05 CALL DIALOG.setActionActive("dialogtouched", FALSE)
06 ...
07 END DIALOG

User Interface

533

Each time the user modifies the value of a field (without leaving the field), the ON ACTION
dialogtouched block will be executed; This can be triggered by typing characters in a
text editor field, clicking a checkbox / radiogroup, or modifying a slider.

The dialogtouched action works for any field controlled by the current interactive
instruction, and with any type of form field.

Note that the current field may contain some text that does not represent a value of the
underlying field data type. For this reason, the target variable cannot hold the current
text displayed on the screen when the ON ACTION dialogtouched code is executed,
even when using the UNBUFFERED mode.

You may only want to detect the beginning of record modification, to enable a "save"
action for example. To prevent further dialogtouched action events, just disable that
action with a setActionActive() call. If this action is enabled, the ON ACTION block will be
fired each time the user modifies the value in the current field.

To avoid data validation, the dialogtouched action is defined with validate="no" in the
default Action Defaults file. This is mandatory when using the UNBUFFERED mode;
otherwise the runtime would try to copy the input buffer into the program variable when a
dialogtouched action is fired.

Controlling data validation when an action is fired

When using the UNBUFFERED mode of interactive instructions such as INPUT or DIALOG,
if the user triggers an action, the current field data is checked and loaded in the target
variable bound to the form field. For example, if the user types a wrong date (or only a
part of a date) in a field using a DATE variable and then clicks on a button to fire an
action, the runtime system will throw an error and will not execute the ON ACTION block
corresponding to the button.

If you want to prevent data validation for some actions, you can use the validate Action
Default attribute. This attribute instructs the runtime not to copy the input buffer text into
the program variable (requiring input buffer text to match the target data type).

The validate Action Default attribute can be set in the global action default file, or at
the form level, in a line of the ACTION DEFAULTS section.

Windows closed by the user
In graphical applications, windows can be closed by the user, for example by pressing
ALT+F4 or by clicking the cross button in the upper-left corner of the window. A
Predefined Action is dedicated to this specific event. When the user closes a graphical
window, the program gets a close action.

Genero Business Development Language

534

By default, when the program is in a MENU instruction, the close action is converted to
an INTERRUPT keypress (the key that cancels an interactive instruction). This means
that a COMMAND KEY(INTERRUPT) block is invoked if it is defined in the MENU statement. If
there is no COMMAND KEY(INTERRUPT), nothing happens.

When executing an INPUT, INPUT ARRAY, CONSTRUCT or DISPLAY ARRAY, the
close action acts by default the same as the cancel predefined action. So when the user
clicks the X cross button, the interactive instruction stops and int_flag is set to 1. Note
that if the CANCEL=FALSE option is set, no close action will be created, and you must
write an ON ACTION close control block to create an explicit action. In this case, you
define an action handler for close and the int_flag register will not be set.

When executing a DIALOG instruction, the close action executes the ON ACTION close
block if defined. Otherwise, the close action is mapped to the cancel action and the ON
ACTION cancel block is fired is one is defined. If neither ON ACTION close, nor ON
ACTION cancel is defined, the window cannot be closed with the X cross button or an
ALT+F4 keystroke.

You typically implement a close action handler as in the following example:

01 INPUT BY NAME cust_rec.*
02 ...
03 ON ACTION close
04 IF msg_box_yn("Are you sure you want to close this window?") ==
"y" THEN
05 EXIT INPUT
06 END IF
07 ...
08 END INPUT

User Interface

535

Using Windows and Forms
Summary:

• Windows and Forms Concepts
• Opening a Window (OPEN WINDOW)

o Window Dimensions
o Open With Form
o Window Styles
o Window Title
o OPEN WINDOW attributes

• Closing a Window (CLOSE WINDOW)
• Selecting a Window (CURRENT WINDOW IS)
• Opening a Form (OPEN FORM)
• Displaying a Form (DISPLAY FORM)
• Closing a Form (CLOSE FORM)
• Clearing a Window (CLEAR WINDOW) TUI Only!
• Clearing the screen (CLEAR SCREEN) TUI Only!
• Displaying text by position (DISPLAY AT) TUI Only!

See also: Presentation Styles, Window class, Form class, Flow Control, Forms, Input
Array, Display Array, Record Input, Construct.

Windows and Forms Concepts

Programs manipulate "Window" and "Form" objects to define display areas for
interactive instructions like INPUT ARRAY, DISPLAY ARRAY, DIALOG, INPUT and
CONSTRUCT. When an interactive instruction takes control, it uses the Form associated
with the current window.

Windows

Windows are created from programs; they define a display context for sub-elements like
forms, ring menus, message and error lines. A window can contain only one form at a
time.

When using a character terminal, windows are displayed as fixed-size boxes, at a given
line and column position, with a given width and height. When using a graphical front
end, windows are displayed as independent resizable windows by default. This behavior
is needed to create real graphical applications, but it breaks the old-mode layout
implementations.

When the runtime system starts a program, it creates a default window named
SCREEN. This default window can be used as another window (it can hold a Ring Menu
and a Form), but it can also be closed, with CLOSE WINDOW SCREEN.

Genero Business Development Language

536

A program creates a window with the OPEN WINDOW instruction, which also defines
the window identifier. The program destroys a Window with the CLOSE WINDOW
instruction. One or more windows can be displayed concurrently, but there can be only
one current Window. You can use the CURRENT WINDOW instruction to make a
specific window current.

When opening a window, the window style is used to specify the type and the decoration
of the window.

You can also use the ui.Window class to manipulate windows as objects.

Forms

Forms define the layout and presentation of areas used by the program to display or
input data. Typically, Forms are loaded by programs from external files with the 42f
extension, the compiled version of Form Specification Files.

Forms files are identified by the file name, but you can also specify a form version with
the VERSION attribute. The form version attribute is typically used to indicate that the
form content has changed. The front-end is then able to distinguish different form
versions and avoid saved settings being reloaded for new form versions.

A program can load a Form file with the OPEN FORM instruction, then display the Form
with DISPLAY FORM into the current window, and release resources with CLOSE
FORM. For temporary popup windows (typical record list where the user can select a
row), you must dedicate a new window for the form. This can be done wit a unique
instruction: OPEN WINDOW WITH FORM.

When a Form is displayed, it is attached to the current window and a ui.Form object is
created internally. You can get this object with the ui.Window.getForm() method. The
ui.Form built-in class is provided to handle form elements. You can, for example, hide
some parts of a form.

The Form that is used by interactive instructions like INPUT is defined by the current
window.

Windows in MDI mode

Windows can be displayed in an MDI container application; see Dynamic User Interface
for more details.

OPEN WINDOW

Purpose:

Creates and displays a new Window.

User Interface

537

Syntax:

OPEN WINDOW identifier
 [AT line, column]
 WITH [FORM form-file | height ROWS, width COLUMNS]
 [ATTRIBUTE (window-attributes)]

Notes:

1. identifier is the name of the window. It is always converted to lowercase by the
compiler.

2. The AT clause is optional.
3. line is the integer defining the top position of the window.

The first line in the screen is 1, while the relative line number inside the window is
zero.

4. column is the integer defining the position of the left margin.
The first column in the screen is 1, while the relative column number inside the
window is zero.

5. form-file is a string literal or variable defining the form specification file to be
used, without the file extension.

6. height defines the number of lines of the window in character units; includes the
borders in character mode.

7. width defines the number of lines of the window in character units; includes the
borders in character mode.

8. window-attributes defines the window attributes. See below for more details.

Tips:

1. For graphical applications, use this instruction without the AT clause, and with the
WITH FORM clause.

Warnings:

1. The compiler converts the window identifier to lowercase for internal storage.
When using functions or methods receiving the window identifier as a string
parameter, the window name is case-sensitive. We recommend that you always
specify the window identifier in lowercase letters.

Usage:

An OPEN WINDOW statement can have the following effects:

• Declares a name (the identifier) for the window.
• Indicates which form has to be used in that window.
• Specifies the display attributes of the window.
• When using character mode, specifies the position and dimensions of the

window, in character units.

The window identifier must follow the rules for identifiers and be unique among all
windows defined in the program. Its scope is the entire program. You can use this

Genero Business Development Language

538

identifier to reference the same Window in other modules with other statements (for
example, CURRENT WINDOW and CLOSE WINDOW).

The runtime system maintains a stack of all open windows. If you execute OPEN WINDOW
to open a new window, it is added to the window stack and becomes the current window.
Other statements that can modify the window stack are CURRENT WINDOW and
CLOSE WINDOW.

Window Dimensions

When using GUI mode, the WITH lines ROWS, characters COLUMNS clause is
ignored, because the size of the window is automatically calculated according to its
contents.

When using character mode, the WITH lines ROWS, characters COLUMNS clause
specifies explicit vertical and horizontal dimensions for the window. The expression at
the left of the ROWS keyword specifies the height of the window, in character unit lines.
This must be an integer between 1 and max, where max is the maximum number of
lines that the screen can display. The integer expression after the comma at the left of
the COLUMNS keyword specifies the width of the window, in character unit columns. This
must return a whole number between 1 and length, where length is the number of
characters that your monitor can display on one line. In addition to the lines needed for a
form, allow room for the Comment line, the Menu line, the Menu comment line and the
Error line. The runtime system issues a runtime error if the window does not include
sufficient lines to display both the form and these additional reserved lines. The
minimum number of lines required to display a form in a window is the number of lines in
the form, plus an additional line below the form for prompts, messages, and comments.

Open With Form

As an alternative to specifying explicit dimensions, the WITH FORM clause can specify a
quoted string or a character variable that specifies the name of a file that contains the
compiled screen form. The runtime system expects the compiled version of the form, but
the file name should not include the .42f file extension. A window is automatically
opened and sized to the screen layout of the form. When using character mode, the
width of the window is from the left-most character on the screen form (including leading
blank spaces) to the right-most character on the screen form (truncating trailing blank
spaces). The length of the window is calculated as (form line) + (form length).

It is recommended that you use the WITH FORM clause, especially in the standard GUI
mode, because the window is created in accordance with the form. If you use this
clause, you do not need the OPEN FORM, DISPLAY FORM, or CLOSE FORM
statement to open and close the form. The CLOSE WINDOW statement closes the
window and the form.

Window Styles

By default windows are displayed as normal application windows, but you can use the
window style to show a window at the top of all other windows, as a "modal window".

User Interface

539

The window style defines the type of the window (normal, modal) and its decoration, via
a Presentation Style. The Presentation Style specifies a set of attributes in an external
file (.4st).

The STYLE attribute can be used in the OPEN WINDOW instruction to define the default
style for a Window, but it is better to specify the window style in the form file, with the
WINDOWSTYLE attribute of the LAYOUT section. This avoids decoration-specific code in
the programs.

Warnings:

1. If you open and display a second form in an existing window, the window style of
the second form is not applied.

The following standard window styles are defined in the default presentation style file
(FGLDIR/lib/default.4st):

STYLE
attribute

Style name in
4st file Description

none Window Defines presentation attributes for common
application windows. When using MDI
containers, normal windows are displayed as
MDI children.

main Window.main
Window.main2

Defines presentation attributes for starter
applications, where the main window shows a
startmenu if one is defined by the application.

dialog Window.dialog
Window.dialog2
Window.dialog3
Window.dialog4

Defines presentation attributes for typical
OK/Cancel modal windows.

naked Window.naked Defines presentation attributes for windows that
should not show the default view for ring menus
and action buttons (OK/Cancel).

viewer Window.viewer Defines presentation attributes for viewers as
the report pager (fglreport.per).

Warnings:

1. It is recommended that you NOT change the default settings of windows styles in
the default.4st file.

2. If you create your own style file, copy the default styles into your file.
3. It is not possible to change the presentation attributes of windows in the AUI tree.

For more details about the attributes you can set for Windows, see Presentation Styles.

Genero Business Development Language

540

Window Title

The TEXT attribute in the ATTRIBUTE clause defines the default title of the window. If the
window is opened with a form (WITH FORM) that defines a TEXT attribute in the LAYOUT
section, the default is ignored. Subsequent OPEN FORM instructions may change the
window title if the form defines a new title in the LAYOUT section.

It is recommended that you specify the window title in the form file, not with the TEXT
attribute of the OPEN WINDOW instruction.

If you want to set a window title dynamically, you can use the Window built-in class.

OPEN WINDOW attributes

The following table shows the window-attributes supported by the OPEN WINDOW
statement:

Attribute Description
TEXT = string Defines the default title of the window. When a

form is displayed, the form title
(LAYOUT(TEXT="mytitle")) will be used as
window title.
We recommend that you define the window
title in the form file!

STYLE = string Defines the default style of the window. If the
form defines a window style,
(LAYOUT(WINDOWSTYLE="mystyle")), it overwrites
the default window style.
See Window Styles for more details.
We recommend that you define the window
style in the form file!

PROMPT LINE integer
TUI Only!

In character mode, indicates the position of the
prompt line for this window. The position can be
specified with FIRST and LAST predefined line
positions.

FORM LINE integer
TUI Only!

In character mode, indicates the position of the
form line for this window. The position can be
specified with FIRST and LAST predefined line
positions.

MENU LINE integer
TUI Only!

In character mode, indicates the position of the
ring menu line for this window. The position can
be specified with FIRST and LAST predefined line
positions.

MESSAGE LINE integer
TUI Only!

In character mode, indicates the position of the
message line for this window. The position can
be specified with FIRST and LAST predefined line
positions.

User Interface

541

ERROR LINE integer
TUI Only!

In character mode, indicates the position of the
error line for this window. The position can be
specified with FIRST and LAST predefined line
positions.

COMMENT LINE
{OFF|integer}
TUI Only!

In character mode, indicates the position of the
comment line or no comment line at all, for this
window. The position can be specified with FIRST
and LAST predefined line positions.

BORDER
TUI Only!

Indicates if the window must be created with a
border in character mode. A border frame is
drawn outside the specified window. This means,
that the window needs 2 additional lines and
columns on the screen.

BLACK, BLUE, CYAN,
GREEN, MAGENTA, RED,
WHITE, YELLOW
TUI Only!

Default color of the data displayed in the window.

BOLD, DIM, INVISIBLE,
NORMAL
TUI Only!

Default font attribute of the data displayed in the
window.

REVERSE, BLINK,
UNDERLINE
TUI Only!

Default video attribute of the data displayed in
the window.

The following list describes the default line positions in character mode:

• First line: Prompt line (output from PROMPT statement) and Menu line
(command value from MENU statement).

• Second line: Message line (output from MESSAGE statement; also the
descriptions of MENU options).

• Third line: Form line (output from DISPLAY FORM statement).
• Last line: Error line (output from ERROR statement); also comment line in any

window except SCREEN.

Example:

01 MAIN
02 OPEN WINDOW w1 WITH FORM "customer"
03 MENU "Test"
04 COMMAND KEY(INTERRUPT) "exit" EXIT MENU
05 END MENU
06 CLOSE WINDOW w1
07 END MAIN

Genero Business Development Language

542

CLOSE WINDOW

Purpose:

Closes and destroys a window.

Syntax:

CLOSE WINDOW identifier

Notes:

1. identifier is the name of the window.
2. If the OPEN WINDOW statement includes the WITH FORM clause, it closes both the

form and the window.
3. Closing a window has no effect on variables that were set while the window was

open.
4. Closing the current window makes the next window on the stack the new current

window. If you close any other window, the runtime system deletes it from the
stack, leaving the current window unchanged.

Tips:

1. You can close the default screen window with the CLOSE WINDOW SCREEN
instruction.

Warnings:

1. If the window is currently being used for input, CLOSE WINDOW generates a
runtime error.

Example:

01 MAIN
02 OPEN WINDOW w1 WITH FORM "customer"
03 MENU "Test"
04 COMMAND KEY(INTERRUPT) "exit" EXIT MENU
05 END MENU
06 CLOSE WINDOW w1
07 END MAIN

CURRENT WINDOW

Purpose:

Makes a specified window the current window.

User Interface

543

Syntax:

CURRENT WINDOW IS identifier

Notes:

1. identifier is the name of the window or the SCREEN keyword.

Usage:

Programs with multiple windows might need to switch to a different open window so that
input and output occur in the appropriate window. To make a window the current
window, use the CURRENT WINDOW statement.

When a program starts, the screen is the current window. Its name is SCREEN. To
make this the current window, specify the keyword SCREEN instead of a window identifier.

If the window contains a form, that form becomes the current form when a CURRENT
WINDOW statement specifies the name of that window. The CONSTRUCT, DISPLAY
ARRAY, INPUT, INPUT ARRAY, and MENU statements use only the current window for
input and output. If the user displays another form (for example, through an ON KEY
clause) in one of these statements, the window containing the new form becomes the
current window. When the CONSTRUCT, DISPLAY ARRAY, INPUT, INPUT ARRAY, or
MENU statement resumes, its original window becomes the current window.

Example:

01 MAIN
02 OPEN WINDOW w1 WITH FORM "customer"
03 OPEN WINDOW w2 WITH FORM "custlist"
04 MENU "Test"
05 COMMAND "Win1"
06 CURRENT WINDOW IS w1
07 COMMAND "Win2"
08 CURRENT WINDOW IS w2
09 COMMAND KEY(INTERRUPT) "exit"
10 EXIT MENU
11 END MENU
12 CLOSE WINDOW w1
13 CLOSE WINDOW w2
14 END MAIN

CLEAR WINDOW TUI Only!

Purpose:

Clears the contents of a window in character mode.

Genero Business Development Language

544

Syntax:

CLEAR WINDOW identifier

Notes:

1. identifier is the name of the window, or the SCREEN keyword.

Warnings:

1. This instruction is provided for backward compatibility; it is only supported to
clear windows created in character mode.

OPEN FORM

Purpose:

Declares a compiled form in the program.

Syntax:

OPEN FORM identifier FROM file-name

Notes:

1. identifier is the name of the window object.
2. The scope of reference of identifier is the entire program.
3. file-name is a string literal or variable defining the name of the compiled Form

Specification File.
4. Form files are found by using the directory paths defined in the DBPATH

environment variable.

Tips:

1. When the window is dedicated to the form, use the OPEN WINDOW WITH FORM
instruction to create the window and the form object in one statement.

2. It is not recommended that you provide a path for file-name; You should use the
DBPATH environment variable instead.

Usage:

In order to use a 42f compiled version of a Form Specification File, the programs must
declare the form with the OPEN FORM instruction and then display the form in the current
window by using the DISPLAY FORM instruction. OPEN FORM / DISPLAY FORM are
typically used at the beginning of programs to display the main form in the default
SCREEN window:

User Interface

545

01 OPEN FORM f FROM "customer"
02 DISPLAY FORM f

If you execute an OPEN FORM with the name of an open form, the runtime system first
closes the existing form before opening the new form.

In character mode, the form is displayed in the current window at the position defined by
the FORM LINE attribute that can be specified in the ATTRIBUTE clause of OPEN
WINDOW or as default with the OPTIONS instruction.

After the form is loaded, you can activate the form by executing a CONSTRUCT,
DISPLAY ARRAY, INPUT, INPUT ARRAY, or DIALOG statement. When the runtime
system executes the OPEN FORM instruction, it allocates resources and loads the form
into memory. To release the allocated resources when the form is no longer needed,
the program must execute the CLOSE FORM instruction. This is a memory-
management feature to recover memory from forms that the program no longer displays
on the screen. If the form was loaded with a window by using the WITH FORM clause, it is
automatically closed when the window is closed with a CLOSE WINDOW instruction.

The quoted string that follows the FROM keyword must specify the name of the file that
contains the compiled screen form. This filename can include a pathname, but this is not
recommended.

The form identifier does not need to match the name of the Form Specification File, but it
must be unique among form names in the program. Its scope of reference is the entire
program.

Example:

01 MAIN
02 OPEN FORM f1 FROM "customer"
03 DISPLAY FORM f1
04 CALL input_customer()
05 CLOSE FORM f1
06 OPEN FORM f2 FROM "custlist"
07 DISPLAY FORM f2
08 CALL input_custlist()
09 CLOSE FORM f2
10 END MAIN

DISPLAY FORM

Purpose:

Displays and associates a form with the current window.

Genero Business Development Language

546

Syntax:

DISPLAY FORM identifier
 [ATTRIBUTE (display-attributes)]

Notes:

1. identifier is the name of the form.
2. window-attributes defines the display attributes of the form. See below for more

details.

Usage:

The following table shows the display-attributes supported by the DISPLAY FORM
statement:

Attribute Description
BLACK, BLUE, CYAN,
GREEN, MAGENTA, RED,
WHITE, YELLOW

Default color of the data displayed in the form.

BOLD, DIM, INVISIBLE,
NORMAL

Default font attribute of the data displayed in the
form.
Warning: The INVISIBLE attribute is ignored.

REVERSE, BLINK,
UNDERLINE

Default video attribute of the data displayed in
the form.

The runtime system applies any other display attributes that you specify in the
ATTRIBUTE clause to any fields that have not been assigned attributes by the
ATTRIBUTES section of the Form Specification File, or by the database schema files, or
by the OPTIONS statement. If the form is displayed in a window, color attributes from
the DISPLAY FORM statement supersede any from the OPEN WINDOW statement. If
subsequent CONSTRUCT, DISPLAY, or DISPLAY ARRAY statements that include an
ATTRIBUTE clause reference the form, however, their attributes take precedence over
those specified in the DISPLAY FORM instruction.

CLOSE FORM

Purpose:

Closes a form.

Syntax:

CLOSE FORM identifier

User Interface

547

Notes:

1. identifier is the name of the form.
2. Releases the memory allocated to the form.

Tips:

1. A form associated with a window by the OPEN WINDOW WITH FORM instruction is
automatically closed when the program closes the window with a CLOSE
WINDOW instruction.

CLEAR SCREEN TUI Only!

Purpose:

Clears the complete application screen in character mode.

Syntax:

CLEAR SCREEN

Notes:

1. Clears the complete screen.

Warnings:

1. The CLEAR SCREEN instruction is provided for backward compatibility.

DISPLAY AT TUI Only!

Purpose:

Displays text at a given position in character mode in the current window.

Syntax:

DISPLAY text AT line, column [ATTRIBUTE (display-attributes)]

Notes:

1. text is any expression to be evaluated and displayed at the given position in the
current window.

2. line is an integer literal or variable defining the line position in the current window.

Genero Business Development Language

548

3. column is an integer literal or variable defining the column position on the screen.
4. display-attributes defines the display attributes for the text. See below for more

details.

Warnings:

1. The DISPLAY AT instruction is provided for backward compatibility and can only
be used in character mode. To display data at a given place in a graphical form,
use form fields and the DISPLAY TO instruction.

Usage:

The following table shows the display-attributes supported by the DISPLAY AT
statement:

Attribute Description
BLACK, BLUE, CYAN,
GREEN, MAGENTA,
RED, WHITE, YELLOW
TUI Only!

The color of the displayed text.

BOLD, DIM,
INVISIBLE, NORMAL
TUI Only!

The font attribute of the displayed text.

REVERSE, BLINK,
UNDERLINE
TUI Only!

The video attribute of the displayed text.

User Interface

549

Action Defaults
Summary:

• Basics
• Syntax
• Usage

o Global Action Defaults
o Form Action Defaults
o Action Defaults and interactive instructions
o Default accelerators for predefined actions
o Controlling data validation when an action is fired

• Examples

See also: Dynamic User Interface, Predefined Actions, Action Defaults and MENU.

Basics

Action Defaults allow you to define default attributes for graphical objects (action views)
associated with actions.

For example, you can specify the default text, comment, and image to use on graphical
objects (buttons, toolbar items, and so on) bound to an action across all forms in the
application.

You can centralize common action defaults in a global action defaults (.4ad) file. You
can also define action defaults at the form level.

Syntax

Action defaults are defined in the .4ad file with the following syntax:

<ActionDefaultList>
 <ActionDefault name="action-name" [attribute=value [...]] />
 [...]
</ActionDefaultList>

Notes:

1. action-name identifies the action.
2. attribute is the name of an attribute.
3. value defines the value to be assigned to attribute.

Genero Business Development Language

550

Usage

Action defaults are provided to centralize the decoration attributes and accelerator keys
for action views (graphical objects associated with actions). It is strongly recommended
that you centralize these decoration attributes to avoid specifying them in all the source
files that define the same action view.

Each attribute of an action view element bound to an action handler in the program will
automatically be set to the value defined in the Action Defaults, if there is no value
explicitly specified in the element definition for that attribute.

Note that in some situations, the action view can be bound to an action by specifying a
sub-dialog prefix. For those views, the action defaults defined with the corresponding
action name will be used to set the attributes with the default values. In other words, the
prefix will be ignored. For example, if an action view is defined with the name
"custlist.append", it will get the action defaults defined for the "append" action.

Warning: Action Defaults are applied only once, to newly created elements.
Dynamic changes are not re-applied to action views. For example, if you first load
a toolbar, then you load a global Action Defaults file, the attributes of the toolbar
items will not be updated with the last loaded Action Defaults. If you dynamically
create action views (like TopMenu or ToolBar), the action defaults are not applied,
so you must set all decoration attributes by hand.

Action Defaults can be defined globally for the whole program or at the form level. Global
Action Defaults are loaded from a default 4ad file or by using the
ui.Interface.loadActionDefaults() method. Form Action Defaults can be specified in the
form file or can be loaded with the ui.Form.loadActionDefaults() method.

For example, in most cases a print action needs a text decoration "Print", with a printer
icon image and a CONTROL-P accelerator key. Those attributes can be centralized in
the Action Defaults. Some action views of the print action may need specific attributes;
for example, if the current form handles customer addresses, the comment attribute of a
print button might be "Print current customer information". In this case you can define
Action Defaults at the form level, which have a higher priority than the global Action
Defaults. Additionally, if some action views must have a different image in the same
form, you can specify the image attribute in the definition of each element to overwrite
the defaults. For example, the toolbar button bound to the print action might have a small
image, while the print button in the form might have a large one.

The final attribute values used for graphical elements are set based on the following
priority:

1. Attribute defined in the action view element definition itself.
2. Attribute defined for the element action in the form Action Defaults.
3. Attribute defined for the element action in the global Action Defaults.

The following code defines a BUTTON in the form specification file::

User Interface

551

01 ATTRIBUTES
02 BUTTON b1: print, TEXT="Do Print";
03 END

if the form Action Defaults define:

<ActionDefaultList>
 <ActionDefault name="print" image="smiley" comment="Print orders"
acceleratorName="control-p" />
</ActionDefaultList>

and the global Action Defaults define:

<ActionDefaultList>
 <ActionDefault name="print" text="Print" image="printer" />
</ActionDefaultList>

the button object will get the following final attribute values:

• text = "Do Print"
• image = "smiley"
• comment = "Print orders"

and the accelerator will be CONTROL-P.

Action Default attributes

The following attributes can be defined with Action Defaults:

Attribute Description
name = string This attribute identifies the action. See also

predefined action names.
text = string The default label to be displayed in action views

(typically, the text of buttons).
comment = string The default help text for this action (typically,

displayed as bubble help).
image = string The default image file to be displayed in the action

view.
acceleratorName =
string

The default accelerator key that can trigger the
action, as defined in Accelerators.

acceleratorName2 =
string

The second default accelerator key that can trigger
the action, as defined in Accelerators.

acceleratorName3 =
string

The third default accelerator key that can trigger the
action, as defined in Accelerators.

acceleratorName4 =
string

The fourth default accelerator key that can trigger
the action, as defined in Accelerators.

defaultView =
string

Indicates whether the front-end must show the

Genero Business Development Language

552

default action view (buttons in control frame).
Values can be:
- "yes" the default action view is always visible.
- "no" the default action view is never visible.
- "auto" the default action view is visible if no other
action view is explicitly defined.
The default is "auto".

validate = string Defines the behavior of data validation when the
action is fired.
Values can be:
- "no" no data validation is done (field text only
available in input buffer).
By default, data validation is driven by the dialog
mode (UNBUFFERED or default mode).

Global Action Defaults

Global Action Defaults are defined in an XML file with the "4ad" extension. By default,
the runtime system searches for a file named "default.4ad" in the current directory. If
this file does not exist, it searches in the directories defined in the DBPATH environment
variable. If no file was found using DBPATH, standard action default settings are loaded
from the "FGLDIR/lib/default.4ad" file.

Warning: Global Action Defaults must be defined in a unique file; you cannot
combine several "4ad" files.

You can override the default search by loading a specific Action Defaults file with the
ui.Interface.loadActionDefaults() method. This method accepts a filename with or without
the "4ad" extension. If you omit the file extension (recommended), the runtime system
adds the extension automatically. If the file does not exist in the current directory, it is
searched in the directories defined in the DBPATH environment variable.

Form Action Defaults

Action Defaults can be defined at the form level. When action defaults are defined in the
form file, action views get the attributes defined locally.

You can define form action defaults with the ACTION DEFAULTS section in the form
specification file. If you want to use common action defaults in several forms, you can
use the preprocessor include directive to integrate an external file.

You can also load Form Action Defaults dynamically with the
ui.Form.loadActionDefaults() method. This method accepts a filename with or without
the "4ad" extension. If you omit the file extension (recommended), the runtime system
adds the extension automatically. If the file does not exist in the current directory, it is
searched in the directories defined in the DBPATH environment variable.

User Interface

553

Action Defaults and interactive instructions

When using the ON ACTION clause in a dialog instruction, action defaults accelerators
are applied in both GUI and TUI mode. For backward compatibility, this is not done in
TUI mode when using the ON KEY clause.

The traditional ON KEY clause in a dialog like INPUT implicitly defines the
acceleratorName attribute for the action, and the corresponding action default
accelerator will be ignored. For example, when you define an ON KEY(F10) block, the
first accelerator will be "F10", even if an action default defines an accelerator "F5" for the
action "F10". However, you can set other accelerators with the acceleratorName2,
acceleratorName3 and acceleratorName4 attributes in action defaults.

Warning: In TUI mode, actions created with ON KEY do not get accelerators of
Action defaults; Only actions defined with ON ACTION will get accelerators of
Action Defaults.

In menus, the behavior is a bit different, see the COMMAND and COMMAND KEY
clause in MENU.

Default accelerators for predefined actions

If no accelerator is specified in action defaults for a Predefined Action, the runtime
system sets one or more default accelerators according to the user interface mode. For
example, the accept action will get the Return and Enter keys in GUI mode, but in TUI
mode, the Escape key would be used.

If you want to force an action to have no accelerator, you can use "none" as accelerator
name.

Controlling data validation when an action is fired

The validate attribute defines the behavior of the dialog for data validation when an
action is fired. For more details, see Interaction Model.

Examples

Example 1: Loading a Action Defaults file:

Some Action Defaults in XML format:

01 <ActionDefaultList>
02 <ActionDefault name="print" text="Print" image="printer"
comment="Print report" />
03 <ActionDefault name="modify" text="Update" comment="Update the
record" />

Genero Business Development Language

554

04 <ActionDefault name="exit" text="Quit" image="byebye"
comment="Exit the program" validate="no" />
05 </ActionDefaultList>

The program loading the action defaults file:

01 MAIN
02 CALL ui.Interface.loadActionDefaults("mydefaults")
03 END MAIN

Example 2: Actions defaults in a form file:

01 ACTION DEFAULTS
02 ACTION accept (COMMENT="Commit order record changes")
03 ACTION cancel (TEXT="Stop", IMAGE="stop", ACCELERATOR=SHIFT-F2,
VALIDATE=NO)
04 ACTION print (COMMENT="Print order information",
ACCELERATOR=CONTROL-P, ACCELERATOR2=F5)
05 ACTION zoom1 (COMMENT="Open items list")
06 ACTION zoom2 (COMMENT="Open customers list")
07 END

User Interface

555

Presentation Styles
Summary:

• Introduction
• Syntax
• Usage

o Defining a Style
o Pseudo selectors
o Using a specific style
o Combining styles
o Style attribute inheritance
o Styles in the AUI tree
o Loading Presentation Styles
o Example of 4st file

• Element Types
• Colors
• Using Fonts
• Font Families
• Font Sizes
• Style Attributes Reference

o Common Style Attributes
o Window Style Attributes
o MDI Container Style Attributes
o Table Style Attributes
o ComboBox Style Attributes
o DateEdit Style Attributes
o Label Style Attributes
o ProgressBar Style Attributes
o RadioGroup Style Attributes
o TextEdit Style Attributes

See also: Dynamic User Interface.

Introduction
Presentation Styles allow you to define a set of decoration properties to be used in
graphical objects. Presentation Styles are provided to centralize attributes related to the
appearance of user interface elements.

Typical presentation attributes define font properties and foreground and background
colors. Some presentation attributes will be specific to a given class of widgets (like the
first day of week in a DATEEDIT).

Presentation Styles are defined in a resource file having an extension of 4st, which
must be distributed with other runtime files.

Genero Business Development Language

556

Syntax
<StyleList>
 <Style name="style-identifier" >
 <StyleAttribute name="attribute-name" value="attribute-value" />
 [...]
 </Style>
 [...]
</StyleList>

where style-identifier can be:

{ *
| element-type
| .style-name
| element-type.style-name }

Notes:

1. element-type defines the type of the graphical object (for example, Window).
2. style-name is the name of a specific style referenced by graphical objects using

the style attribute.
3. attribute-name defines the name of the attribute.
4. attribute-value defines the value to be assigned to attribute-name.

Usage
Presentation Styles centralize the attributes related to the decoration of the elements of
the user interface. Styles are applied implicitly by using global styles, or explicitly by
naming a specific style in the style attribute of the element.

Defining a style

 In the definition of a style, the 'name' attribute is used as a selector to apply style
attributes to graphical elements.

You can define a style as global or specific:

• A style identified by a star (*) is a global style that is automatically applied to all
elements:

01 <Style name="*" >

• A style identified by an element-type is a global style that is automatically applied
to all objects of this type:

User Interface

557

01 <Style name="Window" >
02 <Style name="Edit" >
03 <Style name="ComboBox" >

• A style identified by a style-name is a specific style that can be applied to any
element types using that style:

01 <Style name=".important" >
02 <Style name=".smallfont" >

• A style identified by an element-type followed by a dot and a style-name is a
specific style that will only be applied to elements of the given type:

01 <Style name="Window.main" >
02 <Style name="Edit.mandatory" >

Priority: When different styles can be applied to an element, the following priority, from
the most precise to the most generic, is used to determine the correct style :

1. element-type.style-name
2. .style-name
3. element-type
4. *

For instance, to find the style which will be applied to an Edit having the style attribute
set to 'mandatory', the following styles will be analyzed:

1. Edit.mandatory
2. .mandatory
3. Edit
4. *

Pseudo selectors

You can define a pseudo selector to make your style apply only when some conditions
are fulfilled. You must precede it with a colon. You can also combine the pseudo
selectors. If you do so, the style will be applied if all pseudo selector conditions are
fulfilled.

01 <Style name="Table:even:input" >
02 <Style name="Edit:focus" >
03 <Style name="Edit.important:focus" >

Pseudo selectors have different priorities, and the style with the most important pseudo
selector will be used when several styles match.

Priority Pseudo
selectors Condition

Genero Business Development Language

558

1 focus the widget has the focus
2 query the widget is in construct mode
3 display the widget is in a display array
4 input the widget is in an input array, input or construct
5 even this widget is on an even row if an array
6 odd this widget is on an odd row if an array
7 inactive the widget is inactive
8 active the widget is active

Pseudo selectors also define the priority of your styles;: a more generic style will be used
if the pseudo-selector has higher priority.

For instance: you want all important edits to have red text, but you want the current field
to be displayed in blue:

01 <Style name="Edit.important" >
02 <Style name=":focus" >

Style ":focus" may be more generic than Edit.important; it will be used for the focused
item, as the pseudo selector is more precise.

Using a specific style

To apply a specific style, set the style-name in the style attribute of the node
representing the graphical element in the Abstract User Interface tree.

There are different ways to set the style attribute of a element:

• In the ATTRIBUTES clause of instructions such as OPEN WINDOW.
• As a form element attribute, in the Form Specification File.
• Dynamically by a program, using the DOM API or a built-in class method like

setElementStyle().

For example, to define a style in a form file for a input field:

01 EDIT f001 = customer.fname, STYLE = "info";

Combining styles

You can combine several styles by using the space character as a separator in the
style attribute:

01 EDIT f001 = customer.fname, STYLE = "info highlight mandatory";

When several styles are combined, the same presentation attribute might be defined by
different styles. In this case, the first style listed that defines the attribute takes
precedence over the other styles.

User Interface

559

For example, if the textColor presentation attribute is defined as follows by the styles
info, highlight and mandatory:

• info style does not define textColor.
• highlight style defines textColor as blue.
• mandatory style defines textColor as red.

Then the widgets having a style set to "info highlight mandatory" have textColor
of blue.

Style Attribute Inheritance

A style attribute may be inherited by the descendants of a given node in the Abstract
User Interface tree. For example, when using a style defining a fontFamily in a
GROUPBOX container, you would expect that all the children in that groupbox would have
the same font. However, some style attributes should not be inherited, such as
backgroundImage.

Style inheritance is implicitly defined based on the attribute. The following sections
contain tables with descriptions of style attributes, including the implicit inheritance for
each attribute.

Presentation Styles in the Abstract User Interface tree

Presentation Styles are defined in the Abstract User Interface tree, under the
UserInterface node, in a StyleList node following the syntax described above. The
StyleList node holds a list of Style nodes that define a set of attribute values.
Attribute values are defined in StyleAttribute nodes, with a name and a value
attribute.

Loading Presentation Styles

Presentation Styles can be defined in an XML file that has the 4st extension. By default,
the runtime system searches for a file named "default.4st" in the current directory. If
this file does not exist, it searches in the directories defined in the DBPATH environment
variable. If the file was not found using DBPATH, standard Genero presentation styles
are loaded from "FGLDIR/lib/default.4st" file.

You can overwrite the default search by loading a specific Presentation Style file with the
ui.Interface.loadStyles() method. This method accepts an absolute path with the 4st
extension, or a simple file name without the 4st extension. If you give a simple file name,
for example "mystyles", the runtime system searches for the "mystyles.4st" file in the
current directory. If the file does not exist, it searches in the directories defined in the
DBPATH environment variable.

Warnings:

1. All styles must be defined in a unique file; you cannot combine several 4st files.

Genero Business Development Language

560

Example of 4st file

01 <StyleList>
02 <Style name="*" >
03 <StyleAttribute name="fontFamily" value="serif" />
04 </Style>
05 <Style name=".important" >
06 <StyleAttribute name="textColor" value="#ff0000" />
07 </Style>
08 <Style name="Window" >
09 <StyleAttribute name="toolBarPosition" value="top" />
10 <StyleAttribute name="statusBarType" value="default" />
11 </Style>
12 <Style name="Window.dialog" >
13 <StyleAttribute name="toolBarPosition" value="none" />
14 <StyleAttribute name="statusBarType" value="node" />
15 </Style>
16 </StyleList>

Element Types
Styles may apply to any graphical elements of the user interface, such as the following:

• Button
• ButtonEdit
• CheckBox
• ComboBox
• DateEdit
• Edit
• Form

• Label
• RadioGroup
• Slider
• SpinEdit
• Table
• TimeEdit
• Window

The name of the element when used in a style file is case-sensitive (CheckBox, not
checkbox).

Colors
This section describes how to specify a value for style attributes defining colors, such as
textColor.

Syntax:

{ generic-color | #rrggbb }

Notes:

1. generic-color is any of the predefined colors supported by the language.

User Interface

561

2. #rrggbb is a numerical color defined by a red/green/blue specification.

Usage:

The language defines a set of generic colors, interpreted by the front end according to
the graphical capability of the workstation.

Generic color name RGB Value Color sample
white #FFFFFF
black #000000
darkGray #A9A9A9
gray #808080
lightGray #D3D3D3
darkBlue #00008B
blue #0000FF
lightBlue #ADD8E6
darkCyan #008B8B
cyan #00FFFF
lightCyan #E0FFFF
darkMagenta #8B008B
magenta #FF00FF
lightMagenta #FFC0FF
darkOlive #505000
olive #808000
lightOlive #AAAA44
darkGreen #006400
green #00FF00
lightGreen #90EE90
darkTeal #005050
teal #008080
lightTeal #33CCCC
darkRed #8B0000
red #FF0000
lightRed #FF8080
darkOrange #FF8C00
orange #FFA500
lightOrange #FFCC00
darkYellow #AAAA00
yellow #FFFF00
lightYellow #FFFFE0

You can also specify a generic system color:

Generic system color name Meaning

Genero Business Development Language

562

window Window background.
windowText Text in Windows.

buttonFace Face color for three-dimensional
display elements.

buttonText Text on PushButtons.
highLight Item(s) selected in a control.
highLightText Text of item(s) selected in a control
infoBackground Background color for tooltip controls.
infoText Text color for tooltip controls.
grayText Grayed (disabled) text.

appWorkSpace Background color of multiple
document interface

background Desktop background

You can also specify a color with the RGB notation, starting with a # dash character.

Each value of the RGB color specification must be provided in hexadecimal, in the range
[00-FF].

Examples:

<StyleAttribute name="textColor" value="blue" />
<StyleAttribute name="textColor" value="#00FF45" />

Using Fonts
A desktop application should follow the current desktop settings. The front-end program
(GDC, GJC, HTML browser) tries to determine the default font for the desktop, and also
offers a global font chooser to let the end-user define which font best matches his
expectations.

In most cases it is not possible to know what a potential end-user might expect regarding
the font family. Therefore, the configuration should avoid using explicit font families and
use only the fontWeight/fontStyle/fontSize properties. Only if the client can't
determine a proper default font family for the desired platform should a known font family
be added to the configuration.

Use abstract font sizes such as medium, large, small, or sizes relative to the user-
chosen font (em units), rather than absolute point values. In an HTML browser you can
choose two fonts (proportional/fixed), and a well-designed document should not use
more than 2 fonts. This is also valid for applications.

User Interface

563

Font Families

This section describes the possible values of the fontFamily style attribute.

Syntax:

font-family [,...]

Notes:

1. font-family defines a generic font family or a specific font family.
2. You can specify a comma-separated list of fonts.

Usage:

The language defines a set of generic font families, interpreted by the front end
according to the graphical capability of the workstation:

Generic font
family name

Real font family
example Text sample

serif Times This is a nice font!
sans-serif Arial This is a nice font!
cursive Comic Sans Ms This is a nice font!
fantasy Algerian THIS IS A NICE FONT!
monospace Courier New This is a nice font!

Any other name is interpreted as a specific font family, which identifies a local font
supported by the front-end. Usually, it is one of the fonts installed on the workstation
operating system. See front-end documentation for a list of supported local fonts.

Any font name containing white-spaces must be quoted, with single quotes.

You can specify a comma-separated list of font families.

Examples:

<StyleAttribute name="fontFamily" value="sans-serif" />
<StyleAttribute name="fontFamily" value="'Courier New'" />
<StyleAttribute name="fontFamily" value="'Times New Roman',Times,serif"
/>

Font Sizes

This section describes the possible values of the fontSize style attribute.

Genero Business Development Language

564

Syntax:

{ generic-size | nnpt | xxem }

Notes:

1. generic-size is one of the generic sizes such as 'small' or 'xx-large'.
2. nn defines an absolute size in number of points (1pt = 1/72 inches).
3. xx defines an relative size in the size units of the client (1em = as large as the

font chosen in the client)

Usage:

The language defines a set of generic font sizes, interpreted by the front end according
to the graphical capability of the workstation.

xx-small, x-small, small, medium, large, x-large, xx-large.

You can also specify an absolute font size, by giving a numeric value followed by the
units (pt):

Examples:

<StyleAttribute name="fontSize" value="medium" />
<StyleAttribute name="fontSize" value="xx-large" />
<StyleAttribute name="fontSize" value="12pt" />
<StyleAttribute name="fontSize" value="1em" />

Style Attributes Reference
A Style attribute may be a common attribute that can be applied to any graphical
element. Other Style attributes apply only to a specific graphical element (see below).

Common Style Attributes

The style attributes described in this section apply to any graphical elements, such as
windows, layout containers, or form items.

Attribute InheritanceDescription
backgroundImage No Defines an image file to be displayed in the

background.
Value can be a simple local image file
name without the extension, or an URL.
Default is no value (no background image).

backgroundColor No Defines the color to be used to fill the

User Interface

565

background of the object.
For possible values, see Colors.
Default is no value (default color of the
object).

fontFamily Yes Defines the name of the font.
For possible values, see Font Families.
Default is no value (default object font or
inherited font).

fontSize Yes Defines the size of the characters.
For possible values, see Font Sizes.
Default is no value (default object font or
inherited font).

fontStyle Yes Defines the style of characters.
Values can be "normal", "italic" or
"oblique".
Default is no value (default object font or
inherited font).

fontWeight Yes Defines the weight of the characters.
Values can be "light", "normal", "bold",
"demi-bold" or "black".
Default is no value (default object font or
inherited font).

textColor Yes Defines the color to be used to paint the
text of the object.
For possible values, see Colors.
Default is no value (default object color or
inherited color).

textDecoration Yes Defines the decoration for the text.
Values can be "overline", "underline"
or "line-through".
Default is no value (default object font or
inherited font).

border No Defines the border for the widget.
If Value is "none", it removes the border.
Default is no value (the widget gets its
default appearance).
This attribute especially applies to Image,
Edit, ButtonEdit, DateEdit, RadioGroup,
Group, Button, Action, MenuAction, Menu,
and Dialog.

localAccelerators No Defines how the widget must behaves
regarding key strokes.
If value is "yes" (default), the local
accelerators have higher priority. Ex:
"HOME" key moves the cursor to the first
position.
If value is "no", the application

Genero Business Development Language

566

accelerators have higher priority. Ex:
"HOME" key selects the first row of the
current array.
The following keys are managed "locally" if
attribute defined to "yes".
TextEdits: left, right, up, down,
(control+)home, (control+)end,
(control+)backspace, (control+)delete
Edits Based widgets: left, right, home,
end, (control+)backspace,
(control+)delete

Warning: TTY attributes defined for the corresponding item have higher priority than the
styles. For instance, if you define in your .per:

EDIT name: FORMONLY.name, COLOR=blue;

the EDIT will have blue text whatever you style defines.
Inherited TTY attributes (set on one of the parents) will nevertheless be overridden by
styles.

Window Style Attributes

The following table shows the presentation attributes for Windows:

Attribute InheritanceDescription
windowType No Defines the basic type of the window.

Values can be "normal" or "modal".
Normal windows are displayed as
typical application windows. Modal
windows are displayed at the top of
all other windows, typically used for
temporary dialogs.
Default is "normal".

windowState No Defines the initial state of a window.
Values can be "normal" or
"maximized".
Default is "normal".

windowOptionClose No Defines if the window can be closed
with a system menu option or window
header button. Values can be "yes",
"no" or "auto". When value is
"auto", the option is enabled
according to the window type.
Default is "auto".

User Interface

567

Warning: This attribute may have
different behavior depending on the
front end operating system. For
example, when no system menu is
used, it may not be possible to have
this option enabled.

windowOptionMinimize No Defines if the window can be
minimized with a system menu option
or window header button. Values can
be "yes", "no" or "auto". When
value is "auto", the option is enabled
according to the window type.
Default is "auto".
Warning: This attribute may have
different behavior depending on the
front end operating system. For
example, when no system menu is
used, it may not be possible to have
this option enabled.

windowOptionMaximize No Defines if the window can be
maximized with a system menu
option or window header button.
Values can be "yes", "no" or
"auto". When value is "auto", the
option is enabled according to the
window type.
Default is "auto".
Warning: This attribute may have
different behavior depending on the
front end operating system. For
example, when no system menu is
used, it may not be possible to have
this option enabled.

windowSystemMenu No Defines if the window shows a
system menu. Values can be "yes",
"no" or "auto". When value is
"auto", the system menu is enabled
according to the window type.
Default is "auto".

sizable No Defines if the window can be resized
by the user. Values can be "yes",
"no" or "auto". When using "auto",
the window becomes resizable if the
content of the first displayed form has
resizable elements, for example
when using a form with a TABLE
container or an TEXTEDIT with

Genero Business Development Language

568

STRETCH attribute.
Warning: When using "auto", the
window becomes resizable based on
the first form used in the window; the
content of further forms is ignored.
Default is "yes".

position No Indicates the initial position of the
window. Values can be "default",
"field", "previous", "center" or
"center2".
When using "default", the windows
are displayed according to the
window manager rules.
When using "field" the window is
displayed below the current field
(works as "default" when current
field does not exist).
When using "previous" the
window is displayed at the same
position (top left corner) as the
previous window. (works as
"default" when there is no
previous window).
With "center", the window is
displayed in the center of the screen.
With "center2", the window is
displayed in the center of the current
window.
Default is "default".
Warning: for front-ends using stored
settings, "field", "previous"
and "previous" have higher
priority than the settings.

border No Defines the border type of the
window. Values can be "normal",
"frame", "tool" or "none". When
using "normal", the border is
standard, with a normal window
header with a caption. When using
"frame", only a frame appears,
typically without a window header.
When using "tool", a small window
header is used. When using "none",
the window has no border.
Default is "normal".

forceDefaultSettings No Indicates if the window content must
be initialized with the saved positions

User Interface

569

and sizes. By default, windows are
re-opened at the position and with
the size they had when they were
closed. You can force the use of the
initial settings with this attribute. This
applies also to column position and
width in tables.
Default is "0".

actionPanelPosition No Defines the position of the action
button frame (OK/Cancel). Values
can be "none", "top", "left",
"bottom" or "right".
Default is "right".

actionPanelButtonSize No Defines the width of buttons. Values
can be "normal", "shrink", "tiny",
"small", "medium", "large" or
"huge". When using "normal" and
"shrink", buttons are sized
according to the text or image, where
"shrink" uses the minimum size
needed to display the content of the
button.
Default is "normal".

actionPanelButtonSpace No Defines the space between buttons.
Values can be "none", "tiny",
"small", "medium", "large" or
"huge".
Default is "medium".

actionPanelScroll No Defines if the action panel is "ring" -
that is, when the last button is
shown, pressing on the "down"
button will show the first one again.
Values can be "0" or "1". Default is
"1".

actionPanelScrollStep No Defines how the action panel should
scroll when clicking the "down"
button, to shown the next visible
buttons. Values can be "line" or
"page", default is "line". When
"line", the panel will scroll by one
line, and then show only the next
button. When "page", the scrolling
will be done page by page.

actionPanelHAlign No Defines the alignment of the action
panel when actionPanelPosition is
"top" or "bottom". Values can be
"left", "right" or "center".

Genero Business Development Language

570

Default is "left".
ringMenuPosition No Defines the position of the ring menu

frame (MENU). Values can be
"none", "top", "left", "bottom" or
"right".
Default is "right".

ringMenuButtonSize No Defines the width of buttons. Values
can be "normal", "shrink", "tiny",
"small", "medium", "large" or
"huge". When using "normal" and
"shrink", buttons are sized
according to the text or image, where
"shrink" uses the minimum size
needed to display the content of the
button.
Default is "normal".

ringMenuButtonSpace No Defines the space between buttons.
Values can be "none", "tiny",
"small", "medium", "large" or
"huge".
Default is "medium".

ringMenuScroll No Defines if the ring menu is "ring" -
that is. when the last button is shown,
pressing on the "down" button or
using the "down" key will show the
first one again. Values can be "0" or
"1". Default is "1".

ringMenuScrollStep No Defines how the ring menu should
scroll when clicking "down" when the
visible button is selected, to show the
next buttons. Values can be "line"
or "page", default is "line". When
"line", the menu will scroll by one
line, and show only the next button.
When "page", the scrolling will be
done page by page.

ringMenuHAlign No Defines the alignment of the ring
menu when ringMenuPosition is
"top" or "bottom". Values can be
"left", "right" or "center".
Default is "left".

toolBarPosition No Indicates the position of the toolbar,
when a toolbar is defined. Values can
be "none", "top", "left", "bottom"
or "right".
Default is "top".

User Interface

571

commentPosition No Defines the output type of the status
bar comment field. Values can be
"statusbar", "popup", "statustip",
"both".
"popup" will bring a window popup to
the front; it should be used with care,
since it can annoy the user.
 "statustip" will add a small "down"
arrow button that will show the popup
once the user clicks on it; this can be
useful to display very long text.
Default is "statusbar".

messagePosition No Defines the output type of the status
bar message field. Values can be
"statusbar", "popup", "statustip",
"both".
Default is "statusbar".

errorMessagePosition No Defines the output type of the status
bar error field. Values can be
"statusbar", "popup", "statustip",
"both".
Default is "statusbar".

statusBarType No Defines the type of status bar the
window will display. See below for all
possible values.
Default is "default".

Status bar types:

The next table shows all possible status bar types you can set with the statusBarType
attribute for Windows:

Value Screenshot
default

lines1

lines2

lines3

lines4

lines5

Genero Business Development Language

572

lines6
panels1
panels2
panels3
panels4
panels5
panels6
panels7

none

StartMenu:

The following Window style attributes modify how the window will manage StartMenus.

Attribute InheritanceDescription
startMenuPosition No Indicates the position of the

startmenu, when one is defined.
Values can be "none", "tree",
"menu" or "poptree".
 "tree" - the startmenu is displayed
as a treeview, always visible on the
right side of the window.
"menu" - the startmenu is displayed
as a pull-down menu, always visible
at the top of the window.
 "poptree" - the startmenu is
displayed as a treeview in a popup
window that can be opened with a
short-cut (see startMenuShortcut).
Default is "none".

startMenuSize No Defines the size of the startmenu,
when one is defined and the position
is defined as "tree" or "poptree".
The values can be "tiny", "small",
"medium", "large" or "huge".
Default is "medium".
Note: the size will also depend on
the font used for the startmenu.

startMenuShortcut No Defines the shortcut key to open a
startmenu, when the position is
defined as "poptree".

User Interface

573

Default is "control-shift-F12".
startMenuAccelerator
startMenuExecShortcut2

No Defines the shortcut keys to execute
the select startmenu item, when the
position is defined as "tree" or
"poptree".
By default, "space", "enter" and
"return" start the application linked
to the current item.

MDI Container Style Attributes

The following table shows the presentation attributes for the MDI container:

Attribute InheritanceDescription
windowMenu No Defines if the MDI Container should display an

automatic "Window" menu, which holds the
Cascade and Tile features, and list of open
Windows.

Table Style Attributes

The following table shows the presentation attributes for Tables:

Attribute InheritanceDescription
forceDefaultSettings No Indicates if the table must be

initialized with the saved columns
positions and sizes. By default,
tables are re-opened with column
positions and sizes they had when
the window was closed. You can
force the use of the initial settings
with this attribute.
Default is "0".

highlightColor No Defines the highlight color of rows
for the table.
For possible values, see Colors.

highlightTextColor No Defines the highlighted text color of
rows for the table.
For possible values, see Colors.

highlightCurrentRow No Indicates if the current row must be
highlighted in a table. Values can be
1 or 0.

Genero Business Development Language

574

By default, when a Table is in read-
only mode (DISPLAY ARRAY), the
front-end automatically highlights
the current row. But in editable
mode (INPUT ARRAY), no row
highlighting is done by default. You
can change this behavior by setting
this attribute to 1.

highlightCurrentCell No Indicates if the current cell must be
highlighted in a table. Values can be
1 or 0.
By default the current edit cell in
table has a white background. You
can change this behavior by setting
this attribute to 1, to use the same
color as when highlightCurrentRow
is used. Only some type of cells,
checkboxes for example, can be
highlighted. Normal editor cells stay
in white, because this is the editor
background color.

showGrid No Indicates if the grid lines must be
visible in a table. Values can be 1 or
0.
By default, when a Table is in
editable mode (INPUT ARRAY), the
front-end displays grid lines in the
table. You can change this behavior
by setting this attribute to 0.

headerHidden No Defines if the horizontal header
must be visible in a table. Values
can be 1 or 0 (default).

ComboBox Style Attributes

The following table shows the presentation attributes for ComboBox:

Attribute InheritanceDescription
autoSelectionStart No Defines the item from which the auto-

selection will start, when pressing
keys.
Possible values are "first", "current". If
'first', the auto-selection will look for
the first corresponding item after the
first item of the object. If 'current', it will

User Interface

575

look for the first corresponding item
after the current item of the object.
Default is "current".

DateEdit Style Attributes

The following table shows the presentation attributes for DateEdit:

Attribute InheritanceDescription
firstDayOfWeek No Defines the first day of the week to be

displayed in the calendar.
Possible values are "monday", "tuesday",
"wednesday", "thursday", "friday",
"saturday", "sunday".
Default is "saturday".

daysOff No Defines the days of the week that are
grayed out.
Possible values are "monday", "tuesday",
"wednesday", "thursday", "friday",
"saturday", "sunday".
Default is "saturday sunday".. The days of
week can be combined, as shown.

buttonIcon No Defines the icon name to use for the
button.

Label Style Attributes

The following table shows the presentation attributes for Label:

Attribute InheritanceDescription
textFormat No Defines the rendering of the content of the

widget.
Possible values are "plain", "html". If 'plain',
the value assigned to this widget is
interpreted as plain text. If 'html', it is
interpreted as HTML. The support for HTML
is basic; for example, you can't add links,
frames...

Genero Business Development Language

576

ProgressBar Style Attributes

The following table shows the presentation attributes for ProgressBar:

Attribute InheritanceDescription
percentageVisible No Defines whether the current progress

value is displayed.
Possible values are "center", "system"
and "no". If "center", the progress will
be displayed in the middle of the
progressbar. If "system", it will follow
the system theme. If "no", no progress
is displayed. Default is "no".

RadioGroup Style Attributes

The following table shows the presentation attributes for Radiogroup:

Attribute InheritanceDescription
autoSelectionStart No Defines the item from which the auto-

selection will start, when pressing
keys.
Possible values are "first", "current". If
'first', the auto-selection will look for
the first corresponding item after the
first item of the object. If 'current', it will
look for the first corresponding item
after the current item of the object.
Default is "current".

TextEdit Style Attributes

The following table shows the presentation attributes for TextEdit:

Attribute InheritanceDescription
textFormat No Defines the rendering of the content

of the widget.
Possible values are "plain", "html". If
'plain', the value assigned to this
widget is interpreted as plain text. If
'html', it is interpreted as HTML. The
support for HTML is basic. For
example you can't add links or

User Interface

577

frames...
textSyntaxHighlight No Defines syntax highlighting for the

widget.
The value is currently limited to "per"
for .per files syntax highlighting.

wrapPolicy No Defines where the text can be
wrapped in word wrap mode.
Possible values are
"atWordBoundary" - the text will wrap
at word boundaries, and "anywhere".
- the text breaks anywhere, including
within words.
Default is "atWordBoundary"

Genero Business Development Language

578

Form Specification Files
Summary:

• Definition
• Concepts

o Form Items
o Form Fields
o Item Tags
o HBox Tags
o Layout Tags

• Form file structure
o SCHEMA section
o ACTION DEFAULTS section
o TOPMENU section
o TOOLBAR section
o LAYOUT section

 HBOX container
 VBOX container
 GROUP container
 FOLDER container
 PAGE container
 GRID container
 SCROLLGRID container
 TABLE container

o TABLES section
o ATTRIBUTES section

 FIELD item type
 EDIT item type
 BUTTON item type
 BUTTONEDIT item type
 CANVAS item type
 COMBOBOX item type
 CHECKBOX item type
 DATEEDIT item type
 GROUP item type
 IMAGE item type
 LABEL item type
 PROGRESSBAR item type
 RADIOGROUP item type
 SCROLLGRID item type
 SLIDER item type
 SPINEDIT item type
 TABLE item type
 TEXTEDIT item type
 TIMEEDIT item type

o INSTRUCTIONS section
o KEYS section

• Miscellaneous
o Boolean Expressions

User Interface

579

o Compiling Form Files
o Using Forms in Programs

See also: Form Attributes, Database Schema, Localized Strings, Windows and Forms,
Dynamic User Interface.

Definition

Purpose:

A Form Specification File is a source file that defines an application screen. This file
defines the disposition, presentation, and behavior of screen elements called Form
Items.

Syntax:

filename.per

Notes:

1. A form specification file is a text-based source file using a specific syntax.
2. Form specification files have a .per suffix.
3. To be used by programs, form specification files must be compiled into .42f files

with the fglform tool.
4. See the structure of a form specification file for more details about writing .per

files.

Warnings:

1. Compiled form files must be distributed to production sites.

Concepts

To write a form specification file, you need to understand the following concepts:

• Form Items
• Form Fields
• Item Tags
• HBox Tags
• Layout Tags
• Form Structure

A form file is described with a specific structure, based on a layout definition using
containers which hold Form Items.

Genero Business Development Language

580

Form file structure

A form specification file is defined by a set of sections, which must appear in the order
listed below.

• The SCHEMA section
• The ACTION DEFAULTS section
• The TOPMENU section
• The TOOLBAR section
• The LAYOUT section
• The TABLES section
• The ATTRIBUTES section
• The INSTRUCTIONS section

Notes:

1. Each section must begin with the keyword for which it is named.
2. The LAYOUT and ATTRIBUTES sections are mandatory.
3. The SCHEMA, TOPMENU, TOOLBAR, TABLES and INSTRUCTIONS sections are

optional.

SCHEMA Section

Each form specification file can begin with a SCHEMA section identifying the database
schema (if any) on which the form is based. This can be any database schema that is
defined with a database schema file. Form field data types can be automatically
extracted from the schema file if you specify the table and column name in the form field
definition (see ATTRIBUTES section).

Syntax 1:

SCHEMA { database[@dbserver] | string | FORMONLY }

1. This section is optional; if you do not specify it, database schema specification
defaults to SCHEMA FORMONLY.

2. database is the name of the database schema to be used for the form
compilation.

3. dbserver identifies the Informix database server (INFORMIXSERVER) (see

warnings).
4. string can be a string literal containing the database name.
5. You can create a form that is not related to any database schema by using the

FORMONLY keyword. When using this option, you must omit the TABLES section
and define field data types explicitly in the ATTRIBUTES section.

User Interface

581

Warnings:

1. The DATABASE instruction is supported for backward compatibility, we
recommend to use SCHEMA instead.

2. The database and dbserver specifications are supported (but ignored) for
backward compatibility with Informix form specification.

3. When using a specific database schema, the field data types are taken from the
schema file during compilation. Make sure that the schema file of the
development database corresponds to the production database; otherwise the
form fields defined in the compiled version of your forms will not match the table
structures of the production database.

Syntax 2:(supported for backward compatibility)

DATABASE { database[@dbserver] | string | FORMONLY } [WITHOUT NULL
INPUT]

The DATABASE syntax is supported for compatibility with Informix 4gl; using SCHEMA is
recommended.

Notes:

1. This section is optional; if you do not specify it, database schema specification
defaults to FORMONLY.

2. database is the name of the database schema to be used for the form
compilation.

3. dbserver identifies the Informix database server (INFORMIXSERVER) (see

warnings).
4. string can be a string literal containing the database name.
5. You can create a form that is not related to any database schema by using the

FORMONLY keyword. When using this option, you must omit the TABLES section
and define field data types explicitly in the ATTRIBUTES section.

6. The use of the WITHOUT NULL INPUT option is supported for backward
compatibility, but is ignored.

ACTION DEFAULTS Section

The ACTION DEFAULTS section defines local action view default attributes for the form
elements.

Syntax:

ACTION DEFAULTS
 ACTION action-identifier (action-attribute [,...])
 [...]
END

Genero Business Development Language

582

Notes:

1. The ACTION DEFAULTS section must appear after SCHEMA.
2. This section is optional.
3. action-identifier defines the name of the action.
4. action-attribute defines an attribute value. Valid attribute values include: TEXT,

IMAGE, COMMENT, ACCELERATOR, ACCELERATOR2, ACCELERATOR3,
ACCELERATOR4, DEFAULTVIEW, VALIDATE.

Usage:

The ACTION DEFAULTS section centralizes action view attributes (text, comment, image,
accelerators) at the form level.

You give a list of ACTION elements and specify attributes for each action. The action is
identified by the name following the ACTION keyword, and attributes are specified in a list
between parenthesis.

The attributes defined in this section are applied to form action views like Buttons,
Toolbar buttons, or Topmenu options, if the individual action views do not explicitly
define their own attributes.

If an attribute is not found in the form action defaults, and has not been defined
specifically for the individual action view, the runtime system searches for the attribute
value in the global action defaults.

See Action Defaults and Interaction Model for more details about each attribute.

Example:

01 ACTION DEFAULTS
02 ACTION accept (COMMENT="Commit order record changes")
03 ACTION cancel (TEXT="Stop", IMAGE="stop", ACCELERATOR=SHIFT-F2,
VALIDATE=NO)
04 ACTION print (COMMENT="Print order information",
ACCELERATOR=CONTROL-P, ACCELERATOR2=F5)
05 ACTION zoom1 (COMMENT="Open items list", VALIDATE=NO)
06 ACTION zoom2 (COMMENT="Open customers list", VALIDATE=NO)
07 END

TOPMENU Section

The TOPMENU section defines a pull-down menu with options that are bound to actions.

Syntax:

TOPMENU [menu-identifier] (menu-attribute [,...])
 group

User Interface

583

 [...]
END

where group is:

GROUP group-identifier (group-attribute [,...])
 { command
 | group
 | separator
 } [...]
END

where command is:

COMMAND command-identifier (command-attribute [,...])

and separator is:

SEPARATOR [separator-identifier] (separator-attribute [,...])

Notes:

1. The TOPMENU section must appear in the sequence described in Form File
Structure.

2. This section is optional.
3. menu-identifier defines the name of the top menu (optional).
4. group-identifier defines the name of the group.
5. command-identifier defines the name of the action to bind to. The action name

can be prefixed with the sub-dialog identifier.
6. separator-identifier defines the name of the top menu separator (optional).
7. menu-attribute can be: TAG.
8. group-attribute is one of: TEXT, IMAGE, COMMENT, TAG, HIDDEN.
9. command-attribute is one of: TEXT, IMAGE, COMMENT, TAG, HIDDEN,

ACCELERATOR.
10. separator-attribute is one of: TAG, HIDDEN.

Usage:

The TOPMENU section is provided to define a pull-down menu in a form. You build a tree
of GROUP elements to design the pull-down menu. A GROUP can contain COMMAND,
SEPARATOR or GROUP children. A COMMAND defines a pull-down menu option that triggers
an action when it is selected. In the Topmenu specification, command-identifier defines
which action a menu option is bound to. For example, if you define a Topmenu option as
"COMMAND zoom", it can be controlled by an "ON ACTION zoom" clause in an interactive
instruction.

The Topmenu commands are enabled according to the actions defined by the current
interactive instruction, which can be MENU, INPUT, INPUT ARRAY, DISPLAY ARRAY
or CONSTRUCT. See also Interaction Model for more details about action management.

Genero Business Development Language

584

You can use the Predefined Actions to bind Topmenu commands to common actions
such as dialog validation and cancellation.

An accelerator name can be defined for a TopMenu Command; this accelerator name
will be used for display in the command item. You must define he same accelerator in
the Action Defaults section for the action name of the TopMenu command.

Example:

01 TOPMENU myTopMenu
02 GROUP form (TEXT="Form")
03 COMMAND help (TEXT="Help", IMAGE="quest")
04 COMMAND quit (TEXT="Quit")
05 END
06 GROUP edit (TEXT="Edit")
07 COMMAND accept (TEXT="Validate", IMAGE="ok", TAG="acceptMenu")
08 COMMAND cancel (TEXT="Cancel", IMAGE="cancel")
09 SEPARATOR
10 COMMAND editcut -- Gets its decoration from action defaults
11 COMMAND editcopy -- Gets its decoration from action defaults
12 COMMAND editpaste -- Gets its decoration from action defaults
13 END
14 GROUP records (TEXT="Records")
15 COMMAND append (TEXT="Add", IMAGE="plus")
16 COMMAND delete (TEXT="Remove", IMAGE="minus")
17 COMMAND update (TEXT="Modify", IMAGE="accept")
18 SEPARATOR (TAG="lastSeparator")
19 COMMAND search (TEXT="Search", IMAGE="find")
20 END
21 END

TOOLBAR Section

The TOOLBAR section defines a toolbar with buttons that are bound to actions.

Syntax:

TOOLBAR [toolbar-identifier] [(toolbar-attribute [,...])]
 { ITEM item-identifier [(item-attribute [,...])]
 | SEPARATOR [separator-identifier] [(separator-attribute [,...])]
 }
 [...]
END

Notes:

1. The TOOLBAR section must appear in the sequence described in Form File
Structure.

2. This section is optional.
3. toolbar-identifier defines the name of the toolbar (optional).

User Interface

585

4. item-identifier defines the name of the action to bind to. Can be prefixed with the
sub-dialog identifier.

5. separator-identifier defines the name of the top menu (optional).
6. toolbar-attribute is one of: TAG, BUTTONTEXTHIDDEN.
7. item-attribute is one of: TAG, TEXT, IMAGE, COMMENT, HIDDEN.
8. separator-attribute is one of: TAG, HIDDEN.

Usage:

The TOOLBAR section defines a toolbar in a form. A TOOLBAR section defines a set of
ITEM elements that can be grouped by using a SEPARATOR element. Each ITEM defines a
toolbar button associated to an action by name. The SEPARATOR keyword specifies a
vertical line.

The Toolbar buttons are enabled according to the actions defined by the current
interactive instruction, which can be MENU, INPUT, INPUT ARRAY, DISPLAY ARRAY
or CONSTRUCT. See also Interaction Model for more details about action management.
You can use the Predefined Actions to bind toolbar buttons to common actions such as
dialog validation and cancellation.

The TOOLBAR supports the BUTTONTEXTHIDDEN attribute to hide the labels of buttons.
Button labels are visible by default.

Example:

01 TOOLBAR
02 ITEM accept (TEXT="Ok", IMAGE="ok")
03 ITEM cancel (TEXT="Cancel", IMAGE="cancel")
04 SEPARATOR
05 ITEM editcut -- Gets its decoration from action defaults
06 ITEM editcopy -- Gets its decoration from action defaults
07 ITEM editpaste -- Gets its decoration from action defaults
08 SEPARATOR (TAG="lastSeparator")
09 ITEM append (TEXT="Append", IMAGE="add")
10 ITEM update (TEXT="Update", IMAGE="modify")
11 ITEM delete (TEXT="Delete", IMAGE="del")
12 ITEM search (TEXT="Search", IMAGE="find")
13 END

LAYOUT Section

The LAYOUT section defines the graphical alignment of the form by using a tree of layout
containers.

Syntax:

LAYOUT [(attribute[=value][,...])]
 root-layout-container
[END]

Genero Business Development Language

586

Notes:

1. The LAYOUT section must appear in the sequence described in Form File
Structure.

2. This section is mandatory, unless you use a SCREEN section for backward
compatibility.

3. attribute can, for example, be 'TEXT' to define the title of the topwindow.
4. root-layout-container is the first container that holds other containers.
5. Indentation is supported in the LAYOUT section.
6. The END keyword is optional.

Attributes:

MINHEIGHT, MINWIDTH, TEXT, TAG, STYLE, VERSION, SPACING, WINDOWSTYLE.

Usage:

You define the layout tree of the form by associating layout containers. Different kind of
layout containers are provided, each of them having a specific role. Some containers
can hold children containers, while others can define a screen area. Containers using a
screen area define a formatted region containing static text labels, item tags and layout
tags. The END keyword is mandatory; it defines the end of a container block.

LAYOUT
 VBOX
 GRID
 grid-area
 END
 GROUP
 HBOX
 GRID
 grid-area
 END
 TABLE
 table-area
 END
 END
 END
 END
END

The above definition would result in a layout tree that looks like this:

-- VBOX
 |
 +-- GRID 1
 |
 +-- GROUP
 |
 +-- HBOX
 |
 +-- GRID 2

User Interface

587

 |
 +-- TABLE 1

The layout section can also contain a simple GRID container (equivalent to a V3
SCREEN definition):

LAYOUT
 GRID
 grid-area
 END
END

Description of attributes:

The MINHEIGHT, MINWIDTH attributes can be used to specify a minimum width and
height for the form. You typically use these attributes to force the form to get a bigger
size as the default when it is first rendered. Note that if the front-end stores window
sizes, these attributes will only be significant the first time the form is opened, or each
time the VERSION attribute is changed.

The VERSION attribute can be used to specify a version for the form. This allows you to
indicate that the form content has changed. Typically used to avoid having the front-end
reload the saved window settings.

The TEXT attribute can be used to define the title of the window that will display the
form. This attribute will automatically be applied to the parent window when a form is
loaded. See Windows and Forms for more details.

The STYLE attribute defines the decoration style for form elements, you can for example
define a font property for all form elements.

With the WINDOWSTYLE attribute, you can define the window type and decoration. This
attribute will automatically be applied to the parent window when a form is loaded. See
Windows and Forms for more details. For backward compatibility, the STYLE attribute is
used as the default WINDOWSTYLE if this attribute is not used.

Example:

01 LAYOUT (TEXT="Customers", WINDOWSTYLE="dialog", VERSION="1.20")

SCREEN Section (supported for backward compatibility)

To support existing V3 form files, you can define a SCREEN section in place of LAYOUT.

Syntax:

SCREEN [SIZE lines [BY chars]] [TITLE "title"]
{
 { text | [item-tag [| item-tag] [...]] }
 [...]

Genero Business Development Language

588

}
[END]

Notes:

1. The SCREEN section must be used to design TUI mode screens.
2. This section is mandatory, unless you use a LAYOUT section instead.
3. lines is the number of characters the form can display vertically. The default is

24.
4. chars is the number of characters the form can display horizontally. The default is

the maximum number of characters in any line of the screen definition.
5. title is the title for the topwindow.
6. The {} curly braces are used to delimit the body of the screen.
7. See LAYOUT section for the definition of item-tag and text.
8. The END keyword is optional.

The screen body

Inside the SCREEN section, you can define the position of text labels and form fields.

Example:

01 SCREEN
02 {
03 CustId : [f001] Name: [f002]
04 Address : [f003]
05 [f003]
06 }
07 END

Layout Containers

Layout Containers are blocks holding other layout containers or defining a formatted
screen region.

Syntax:

container-type [identifier] [(attribute[=value][,...])]
 child-container
 [...]
END

where child-container can be:

{
 VBOX [identifier] [(attribute[=value][,...])]
 child-container
 [...]
 END

User Interface

589

|
 HBOX [identifier] [(attribute[=value][,...])]
 child-container
 [...]
 END
|
 GROUP [identifier] [(attribute[=value][,...])]
 child-container
 [...]
 END
|
 FOLDER [identifier] [(attribute[=value][,...])]
 PAGE [identifier] [(attribute[=value][,...])]
 child-container
 [...]
 END
 [...]
 END
|
 GRID [identifier] [(attribute[=value][,...])]
 {
 grid-area
 }
 END
|
 SCROLLGRID [identifier] [(attribute[=value][,...])]
 {
 scroll-area
 }
 END
|
 TABLE [identifier] [(attribute[=value][,...])]
 {
 table-area
 }
 END
}

Notes:

1. container-type defines the type of container. A container type can be one of the
keywords listed below.

2. identifier is an optional name that can be used in the program to identify the
container.

3. attribute is a predefined attribute name that can be used to customize the layout
container.

4. value can be a quoted string, an integer, or a boolean value (TRUE/FALSE).
5. grid-area is a text block delimited by curly braces, containing static text labels,

item tags and layout tags.
See GRID for more details.

6. scroll-area is a text block similar to grid-area, except that you can define multiple
rows for a list-grid view.
See SCROLLGRID for more details.

Genero Business Development Language

590

7. table-area is a special kind of grid-area, used to define the columns of a screen
array.
See TABLE for more details.

8. The position of the opening curly brace defines the left-most character in a
screen- area, scroll-area and table-area.

9. The grid-area, scroll-area and table-area must end with a line having a closing
curly brace.

10. The END keyword is mandatory.

Type of Containers:

Different types of layout containers are provided, each of them having a specific usage:

Name Can Hold Description
VBOX VBOX, HBOX,

GROUP,
FOLDER,
GRID,
SCROLLGRID,
TABLE

Packs contained elements vertically, without any
decoration.

HBOX VBOX, HBOX,
GROUP,
FOLDER,
GRID,
SCROLLGRID,
TABLE

Packs contained elements horizontally, without
any decoration.

GROUP VBOX, HBOX,
GROUP,
FOLDER,
GRID,
SCROLLGRID,
TABLE

Decorates the contained element with a
rounded box that has a title.

FOLDER PAGE Presents contained pages in a folder tab.
Can only contain PAGE children!

PAGE VBOX, HBOX,
GROUP,
FOLDER,
GRID,
SCROLLGRID,
TABLE

Defines a page of a FOLDER container.
Can only be used in FOLDER!

GRID grid-area Unique-record presentation with positioned
fields and labels.

SCROLLGRID scroll-area Multiple-record presentation with positioned
fields and labels.

TABLE table-area Record-list presentation with columns and rows.

User Interface

591

Identifying Containers:

In most cases you do not need to give a name to a container because it is only used in
the form file to define the layout. However, if you want to change some attributes at
runtime, you must identify the container. You can give a name to the container by writing
an identifier after the container type, for example:

01 GROUP group1 (TEXT="Customer")

In this example, the group name is 'group1', and it can be used in a program to identify
the element:

01 DEFINE w ui.Window
02 DEFINE g om.DomNode
03 LET w = ui.Window.getCurrent()
04 LET g = w.findNode("Group","group1")
05 CALL g.setAttribute("text","This is the first group")

HBOX Container

The HBOX container automatically packs the contained elements horizontally from left to
right. Contained elements are packed in the order in which they appear in the LAYOUT
section of the form file. No decoration is added when you use a HBOX container. By
combining VBOX and HBOX containers, you can define any alignment you choose.

Syntax:

HBOX [identifier] [(attribute[=value][,...])]
 layout-container
 [...]
END

Attributes:

COMMENT, FONTPITCH, HIDDEN, STYLE, SPLITTER, TAG.

Example:

01 HBOX
02 GROUP (TEXT = "Customer")
03 {
04 ...
05 }
06 END
07 TABLE
08 {
09 ...
10 }
11 END

Genero Business Development Language

592

12 END

VBOX Container

The VBOX container automatically packs the contained elements vertically from top to
bottom. Contained elements are packed in the order in which they appear in the LAYOUT
section of the form file. No decoration is added when you use a VBOX container. By
combining VBOX and HBOX containers, you can define any alignment you choose.

Syntax:

VBOX [identifier] [(attribute[=value][,...])]
 layout-container
 [...]
END

Attributes:

COMMENT, FONTPITCH, HIDDEN, STYLE, SPLITTER, TAG.

Example:

01 VBOX
02 GROUP (TEXT = "Customer")
03 {
04 ...
05 }
06 END
07 TABLE
08 {
09 ...
10 }
11 END
12 END

GROUP Container

A GROUP container can be used to display a titled box (usually called a groupbox) around
contained elements. To display a groupbox widget around a set of fields, you simply put
a GROUP declaration around a GRID definition. If you want to include several children in a
GROUP, you can add a VBOX or HBOX into the GROUP, to define how these elements are
aligned.

User Interface

593

Syntax:

GROUP [identifier] [(attribute[=value][,...])]
 layout-container
 [...]
END

Attributes:

COMMENT, FONTPITCH, STYLE, TAG, HIDDEN. TEXT.

Usage:

Note that when using the GROUP container syntax, you cannot set the
GRIDCHILDRENINPARENT attribute. This attribute makes only sense if the parent of
the GROUP is a GRID.

Example:

01 GROUP (TEXT = "Customer")
02 VBOX
03 GRID
04 {
05 ...
06 }
07 END
08 TABLE
09 {
10 ...
11 }
12 END
13 END
14 END

FOLDER Container

A FOLDER container can be used to display children (pages) inside a "folder tab" widget.
You must define each folder page with a PAGE container inside the FOLDER container.
Each PAGE container will be displayed on a separate folder page, accessed by TAB
CONTROL click. If you want to include several containers in one page of a FOLDER, you
can add a VBOX or an HBOX container to define how these elements are aligned.

Syntax:

FOLDER [identifier] [(attribute[=value][,...])]
 page-definition
 [...]
END

Genero Business Development Language

594

Attributes:

COMMENT, FONTPITCH, STYLE, TAG, HIDDEN.

In the above syntax, the page-definition defines one page of the folder. See PAGE
container for more details.

PAGE Container

A PAGE container can only be a child of a FOLDER container. A PAGE container is
defined as follows:

PAGE [identifier] [(attribute[=value][,...])]
 layout-container
 [...]
END

Attributes:

ACTION, COMMENT, FONTPITCH, STYLE, TAG, HIDDEN, IMAGE, TEXT.

Usage:

By default PAGE containers are used to group elements for decoration only. With the
TABINDEX form field attribute, you can define which field gets the focus when a folder
page is selected.

The TEXT attributes defines the label of the folder page. The IMAGE attribute can be
used to specify which image to use as an icon.

If needed, you can use the ACTION attribute to bind an action to a folder page. When
the page is selected, the program gets the corresponding action event.

Example:

01 FOLDER
02 PAGE p1 (TEXT="Global info")
03 GRID
04 {
05 ...
06 }
07 END
08 END
09 PAGE p2 (IMAGE="list")
10 TABLE
11 {
12 ...
13 }
14 END

User Interface

595

15 END
16 END

GRID Container

The GRID container declares a formatted text block defining the dimensions and the
positions of the logical elements of a screen for a unique-record presentation. With GRID,
you can specify the position of labels, form fields for data entry or additional interactive
objects such as buttons. You design the layout of a GRID by using static text, item tags,
HBox tags, and layout tags.

Syntax:

GRID [identifier] [(attribute[=value][,...])]
{
 { text
 | item-tag
 | hbox-tag
 | layout-tag
 | h-line }
 [...]
}
END

Notes:

1. text is literal text that will appear in the form as a static label.
2. item-tag defines the position and length of a Form Item.
3. hbox-tag defines the position and length of several Form Items inside an

horizontal box.
4. layout-tag defines the position and length of a layout tag.
5. h-line is a set of dash characters defining a horizontal line.

Attributes:

COMMENT, FONTPITCH, STYLE, TAG, HIDDEN.

Usage:

A GRID container defines a layout area based on character cells. It is used to place Form
Items such as labels, fields, or buttons at a specific position. Form items are located with
item tags in the grid layout area. You can use layout tags to place some type of
containers inside a grid.

Example:

Simple GRID example defining 3 labels and 3 fields:

Genero Business Development Language

596

01 GRID
02 {
03 Id: [f1] Name: [f2]
04 Addr: [f3]
05 }
06 END

For more details about layout rules in grids, see Form Rendering.

SCROLLGRID Container

The SCROLLGRID container declares a formatted text block defining the dimensions and
the position of the logical elements of a screen for a multi-record presentation. This
container is similar to the GRID container, except that you can repeat the screen
elements on several "row-templates", in order to design a multiple-record view that
appears with a vertical scrollbar.

Syntax:

SCROLLGRID [identifier] [(attribute[=value][,...])]
{
 row-template
 [...]
}
END

where row-template is a text block containing:

{ text
| item-tag
| h-line }
[...]

Notes:

1. text is literal text that will appear in the form.
2. item-tag defines the position and length of a Form Item.
3. h-line is a set of dash characters defining a horizontal line.

Attributes:

COMMENT, FONTPITCH, GRIDCHILDRENINPARENT, STYLE, TAG, HIDDEN.

Usage:

Same layout rules apply as in a GRID container.

User Interface

597

Example:

01 SCROLLGRID
02 {
03 Id: [f001] Name: [f002]
04 Addr: [f003]
05 --
06 Id: [f001] Name: [f002]
07 Addr: [f003]
08 --
09 Id: [f001] Name: [f002]
10 Addr: [f003]
11 --
12 Id: [f001] Name: [f002]
13 Addr: [f003]
14 --
15 }
16 END

TABLE Container

The TABLE container defines the presentation of a list of records, bound to a screen
record list (also called "screen array"). When using this layout container with curly
braces, the position of the static labels and item tags is automatically detected by the
form compiler to build a graphical object displaying a list of records. Column titles for the
table list can be defined in the table layout, or as attributes in the definition of the form
fields that make up the table columns.

Syntax:

TABLE [identifier] [(attribute[=value][,...])]
{
 title [...]
[identifier [|...]]
[...]
}
END

Notes:

1. title is the text to be displayed as column title.
2. identifier references a Form Item.

Warnings:

1. The screen record definition must have exactly the same number of columns as
the TABLE container.

2. If column titles are used in the table layout, the first line of a table-area must be a
set of text entries defining the column titles. The column title can contain blank
characters, but several blanks will be interpreted as a column title separator.

Genero Business Development Language

598

3. When column titles are used in the table layout, the second line defines the
columns, referencing form fields receiving data. Otherwise, the first line defines
the columns. This line can be repeated several times on the other lines.

Attributes:

COMMENT, DOUBLECLICK, HIDDEN, FONTPITCH, STYLE, TAG,
UNHIDABLECOLUMNS, UNMOVABLECOLUMNS, UNSIZABLECOLUMNS,
UNSORTABLECOLUMNS, WANTFIXEDPAGESIZE, WIDTH, HEIGHT.

Usage:

To create a table view, you must define the following elements in the form file:

1. The layout of the list, with a TABLE container in the LAYOUT section.
2. The column data types and field properties, in the ATTRIBUTES section.
3. The field list definition to group form fields together with a screen record, in the

INSTRUCTIONS section.

The default width and height of a table are defined respectively by the columns and the
number of lines used in the table layout. You can overwrite the defaults by specifying the
WIDTH and HEIGHT attributes, as in the following example:

01 TABLE t1 (WIDTH = 5 COLUMNS, HEIGHT = 10 LINES)

You design the TABLE layout in curly braces. The layout can contain column titles as well
as the tag identifiers for each column's form fields. The form compiler can associate
column titles in the table layout with the form field columns if they are aligned properly -
the first character of each column title must appear at the same text column position as
the first character of the tag identifier for the form field. In the following example, Title1
and Title2 will be associated with column1 and column2, but Title3 cannot be
identified as a column title:

01 TABLE
02 {
03 Title1 Title2 Title3
04 [column1 |column2 |column3]
05 [column1 |column2 |column3]
06 [column1 |column2 |column3]
07 }
08 END

The column data type and additional properties are defined in the ATTRIBUTES section,
as form fields:

01 ATTRIBUTES
02 EDIT column1 = customer.cust_num;
03 EDIT column2= customer.cust_name,
04 EDIT column3= customer.cust_cdate;

User Interface

599

As an alternative, you can set the column titles of a table container by using the TITLE
attribute in the definition of the form fields, instead of using column header text in the
table layout. This allows you to use Localized Strings for the column titles:

01 TABLE
02 {
03 [c1 |c2 |c3]
04 [c1 |c2 |c3]
05 [c1 |c2 |c3]
06 }
07 END
08 ...
09 ATTRIBUTES
10 EDIT c1 = FORMONLY.col1, TITLE=%"Num";
11 LABEL c2 = FORMONLY.col2, TITLE=%"Name";
12 CHECKBOX c3 = FORMONLY.col3, TITLE=%"Status", VALUECHECKED="Y",
VALUEUNCHECKED="N";;
13 ...

Each form field must be grouped in the INSTRUCTIONS section in a screen record
definition:

01 SCREEN RECORD listarr(col1, col2, col3)

The screen record identifies the record list in BDL programs when you use an INPUT
ARRAY or DISPLAY ARRAY instruction:

01 INPUT ARRAY custarr FROM listarr.*

Warning: The screen record definition must have exactly the same columns as the
TABLE container.

By default, the current row in a TABLE is highlighted in display mode (DISPLAY ARRAY),
but it is not highlighted in input mode (INPUT ARRAY, CONSTRUCT). You can set
decoration attributes of a table with a style; see style attributes of the Table class.

With the DOUBLECLICK attribute, you can define a particular action to be send when
the user double-clicks on a row.

After a dialog execution, the current row may be unselected, depending on the KEEP
CURRENT ROW dialog attribute.

Example:

01 SCHEMA videolab
02 LAYOUT (TEXT="Customer list")
03 TABLE (TAG="normal")
04 {
05 Num Customer name Date S
06 [c1 |c2 |c3 |c4]
07 [c1 |c2 |c3 |c4]
08 [c1 |c2 |c3 |c4]

Genero Business Development Language

600

09 [c1 |c2 |c3 |c4]
10 [c1 |c2 |c3 |c4]
11 [c1 |c2 |c3 |c4]
12 }
13 END
14 END
15 TABLES
16 customer
17 END
18 ATTRIBUTES
19 EDIT c1 = customer.cust_num;
20 EDIT c2 = customer.cust_name;
21 EDIT c3 = customer.cust_cdate;
22 CHECKBOX c4 = customer.cust_status;
23 END
24 INSTRUCTIONS
25 SCREEN RECORD custlist(cust_num, cust_name, cust_cdate,
cust_status)
26 END

Form Items

A Form Item defines the properties of a form element. For example, a Form Item can
define an input area (such as an EDIT field), a push BUTTON, or a layout element (such
as a GROUPBOX).

The position and length of a Form Item is defined by a place holder called 'tag' (Item
Tag, HBox Tag or Layout Tag). Such place holders are used in the body of GRID,
SCROLLGRID and TABLE containers.

The appearance and the behavior of a Form Item is defined in the ATTRIBUTES
section.

Form Items defined for data management are called Form Fields.

Example:

01 LAYOUT(TEXT = "Vehicles")
02 GRID
03 {
04 <G g1 >
05 Number: [f1]
06 Name: [f2]
07 [b1]
08
09 }
10 END
11 END
12 ATTRIBUTES
13 GROUP g1 : group1, TEXT="Identification" ;
14 EDIT f1 = vehicle.num;

User Interface

601

15 EDIT f2 = vehicle.name;
16 BUTTON b1 : validate, TEXT="Ok";
17 END

Form Fields

A Form Field is a Form Item dedicated to data management. It associates a Form Item
with a screen record field.

A Form Field defines an area where the user can view and edit data, depending on its
description in the form specification file and the interactive statements in the program.
The interactive instruction in your program must mediate between screen record fields
and database columns by using program variables.

Form Fields linked to database columns

Unless a form field is FORMONLY, its field description must specify the SQL identifier of
a database column as the name of the display field. Fields are associated with database
columns only during the compilation of the form specification file. During the compilation
process, the form compiler examines the database schema file to identify the data type
of the column, and two optional files, containing the definitions of the syscolval and
syscolatt tables, for default values of the attributes that you have associated with any
columns of the database.

Syntax:

item-type item-tag = [table.]column
 [, attribute-list] ;

After the form compiler extracts any default attributes and identifies data types from the
schema file, the association between fields and database columns is broken, and the
form cannot distinguish the name or synonym of a table or view from the name of a
screen record.

Example:

01 EDIT f001 = customer.fname, NOT NULL, REQUIRED, COMMENTS="Customer
name" ;

The programs only have access to screen record fields, in order to display or input data
using program variables. Regardless of how you define them, there is no implicit
relationship between the values of program variables, form fields, and database
columns. Even, for example, if you declare a variable lname LIKE customer.lname,
the changes that you make to the variable do not imply any change in the column value.
Functional relationships among these entities must be specified in the logic of your
program, through screen interaction statements, and through SQL statements. It is up to
the programmer to determine what data a form displays and what to do with data values

Genero Business Development Language

602

that the user enters into the fields of a form. You must indicate the binding explicitly in
any statement that connects variables to forms or to database columns.

FORMONLY Form Fields

FORMONLY form fields are not associated with columns of any database table or view.
They can be used to enter or display the values of program variables. If the SCHEMA
section specifies FORMONLY, this is the only kind of Form Item description that you can
specify in the ATTRIBUTES section.

Syntax:

item-type item-tag = FORMONLY.field [TYPE { LIKE [table.]column |
datatype [NOT NULL] }]
 [, attribute-list] ;

The optional data type specification uses a restricted subset of the data type declaration
syntax that the DEFINE statement supports. When using CHAR or VARCHAR data types,
you do not have to specify the length, because it is defined by the size of the field tag in
the LAYOUT section. Additionally, the STRING data type is not supported.

The NOT NULL keywords specify that if you reference the form field in an INPUT
statement, the user must enter a non-null value in the field. This option is more
restrictive than the REQUIRED attribute, which permits the user to enter a NULL value.

Example:

01 EDIT f001 = FORMONLY.total TYPE DECIMAL(10,2), NOENTRY ;

Field Input Length

The input length of a form field is the number of characters the user can type into the
text editor. The input length is defined by the data type of the program variable used by
the dialog and the width of the item tag. The width of the item tag is defined by the
number of ASCII characters used between the square braces.

01 [f01] -- width = 4

When the program variable is defined with a DATE data type, the input length is the
maximum of:

• the number of characters of the FORMAT attribute, if this attribute is used
• the width of the form field, defined by the item-tag.

When the program variable is defined with a character or numeric data type, the input
length is defined by the width of the form field. This means, the maximum number of
characters a user can input is defined by the size of the item-tag in the form.

User Interface

603

For character data types, you can specify the SCROLL attribute to force the input length
to be as large as the program variable. For example, when using a CHAR(20) variable
with a form field defined with an item-tag large as 3 characters, the input length will be
20 characters instead of 3.

Warning:

1. In a multi-byte character set, the input length represents the number of bytes in
the locale of the application. In other words, it is the number of bytes used by the
character string in the character set used by the runtime system. For example,
when using a Chinese BIG5 encoding, a field having a width of 6 ASCII
characters in the form file, represents a maximum input length of 6 bytes. In
BIG5, Latin characters (a,b,c) use one byte each, while Chinese characters use 2
bytes. So, if the input length is 6, the user can enter 6 Latin characters like
"abcdef", or 4 Latin characters and one Chinese, or 3 Chinese characters.

Remark: When you display a program variable to a form field with the DISPLAY TO or
DISPLAY BY NAME instruction, the input length is used to truncate the text resulting
from the data conversion. If the resulting text does not fit into the input length, the
runtime system displays star characters (asterisks) in the form field, to indicate a size
overflow.

Item Tags

An Item Tag defines the position and size of a Form Item in a grid-area of a GRID or
SCROLLGRID.

Syntax:

[identifier [-] [|...]]

Notes:

1. identifier references a Form Item.
2. The optional - dash defines the real width of the element.
3. The | pipe can be used as item tag separator (equivalent to][).

Usage:

An item tag is delimited by square braces ([]) and contains an identifier used to
reference the description of the Form Item in the ATTRIBUTES section.

Each item tag must be indicated by left and right delimiters to show the length of the item
and its position within the container layout. Both delimiters must appear on the same
line. You must use left and right braces ([]) to delimit item tags. The number of
characters and the delimiters define the width of the region to be used by the item:

Genero Business Development Language

604

01 GRID
02 {
03 Name: [f001]
04 }
05 END

The Form Item position starts after the open square brace and the length is defined by
the number of characters between the square braces. The following example defines a
Form Item starting at position 3, with a length of 2:

01 GRID
02 {
03 1234567890
04 [f1]
05 }
06 END

By default, the real width of the Form Item is defined by the number of characters used
between the tag delimiters. For some special items like BUTTONEDIT, COMBOBOX
and DATEEDIT, the width of the field is adjusted to include the button. The form
compiler computes the width as: width=nbchars-2 if nbchars>2:

01 GRID
02 {
03 1234567
04 [f1] -- this EDIT gets a width of 7
05 [f2] -- this BUTTONEDIT gets a width of 5 (7-2)
06 }
07 END

If the default width generated by the form compiler does not fit, the - dash symbol can
be used to define the real width of the item. In the following example, the Form Item
occupies 7 grid cells, but gets a real width of 5 (i.e. for an EDIT field, you would be able
to enter 5 characters):

01 GRID
02 {
03 1234567
04 [f1 -]
05 }
06 END

To make two items appear directly next to each other, you can use the pipe symbol (|)
to indicate the end of the first item and the beginning of the second item:

01 GRID
02 {
03 Info: [f001 |f002 |f003]
04 }
05 END

If you need the form to support items with a specific height (more that one line), you can
specify multiple-segment item tags that occupy several lines of a grid-area. To create a

User Interface

605

multiple-segment item, repeat the item tag delimiters without the item identifier on
successive lines:

01 GRID
02 {
03 Multi-segment: [f001]
04 []
05 []
06 []
07 []
08 }
09 END

Warnings:

1. This notation applies to the new LAYOUT section only. For backward
compatibility (when using a SCREEN section), multiple-segment items can be
specified by repeating the identifier in sub-lines.

If the same item tag (i.e. using the same identifier) appears more than once in the layout,
it defines a column of a screen array:

01 GRID
02 {
03 Single-line array:
04 [f001] [f002] [f003]
05 [f001] [f002] [f003]
06 [f001] [f002] [f003]
07 [f001] [f002] [f003]
08 }
09 END

You can even define a multi-line list of fields:

01 GRID
02 {
03 Multi-line array:
04 [f001] [f002]
05 [f003]
06 [f001] [f002]
07 [f003]
08 [f001] [f002]
09 [f003]
10 [f001] [f002]
11 [f003]
12 }
13 END

Genero Business Development Language

606

HBox Tags

An HBox Tag defines the position and size in a GRID of an horizontal box containing
several Form Items.

Syntax:

[element : [...]]

where element can be:

{ identifier [-] | string-literal | spacer }

Notes:

1. identifier references a Form Item.
2. The optional - dash defines the real width of the element.
3. string-literal is quoted text that defines a static label.
4. spacer is zero or more blanks that define an invisible element that expends

automatically.
5. The colon is a delimiter for HBox Tag elements.

Warnings:

1. HBox Tags are not allowed for fields of Screen Arrays; you will get a form
compiler error as the AUI structure does not allow this. The client needs a Matrix
Element directly in a Grid or a ScrollGrid to perform the necessary positioning
calculations for the individual fields.

Usage:

HBox Tags are provided to control the alignment of Form Items in a grid. HBox tags
allow you to stack Form Items horizontally without the elements being influenced by
elements above or below. In an HBox, you can mix Form Items, static labels and
spacers. A typical use of the HBox is to have zip-code/city form fields side by side with
predictable spacing in-between.

An HBox tag is delimited by square braces ([]) and must contain at least one string-list
or an identifier preceded or followed by a colon (:). A string-list is combination of string-
literals (quoted text) and spacers (blank characters). The colon is a delimiter for HBox
tag elements, which are included in the horizontal box.

The following example shows simple HBox tags:

01 GRID
02 {
03 ["Label:":]
04 [f001 :]
05 [:f002]
06 }

User Interface

607

07 END

In this example:

1. Line 03 contains two elements: a static label and a spacer.
2. Line 04 contains two elements: a form item and a spacer.
3. Line 05 contains two elements: a spacer followed by a form item.

An HBox tag defines the position and width (in grid cells) of several Form Items grouped
inside an horizontal box. The position and width (in grid cells) of the horizontal box is
defined by the square braces ([]) delimiting the HBox tag.

When using an identifier, you define the position of a Form Item which is described in the
ATTRIBUTES section. When using a string-list, you can define static labels and/or
spacers. The following example defines an HBox tag generating 7 items (a static label, a
spacer, a Form Item, a spacer, a static label, a spacer and a Form Item):

01 GRID
02 {
03 ["Num:" :num : :"Name:" :name]
04 }
05 END

A spacer is an invisible element that automatically expands. It can be used to align
elements left, right or center in the HBox. The following example defines 3 HBoxes with
the same width. Each HBox contains one field. The first field is aligned to the left, the
second is aligned to the right and third is centered:

01 GRID
02 {
03 [left :]
04 [:right]
05 [:centered:]
06 }
07 END
08
09 ATTRIBUTES
10 LABEL left : label1, TEXT="LEFT";
11 LABEL right : label2, TEXT="RIGHT";
12 LABEL centered : label3, TEXT="CENTER";
13 END

When you use string literals, the quotes define where the label starts and stops. If there
is free space after the quote that ends the label, then it is filled by a spacer. Consider the
following example:

01 GRID
02 {
03 [:"Label1"]
04 [:"Label2"]
05 }
06 END

Genero Business Development Language

608

In this example:

1. Line 03 contains a spacer, followed by the static label, followed by another
spacer. The quotation marks end the string literal; a colon is not required to
delimit the label from the final spacer.

2. Line 04 contains a spacer, followed by the static label. Because there is no empty
space between the end of the static label and the closing bracket of the HBox
Tag (]).

A typical use of HBox tags is to vertically align some Form Items - that must appear on
the same line - with one or more Form Items that appear on the other lines:

01 GRID
02 {
03 Id: [num :"Name: ":name]
04 Address: [street :]
05 [zipcode:city]
06 Phones: [phone :fax]
07 }
08 END

In the above example, the form compiler will generate a grid containing 7 elements (3
Labels and 4 HBoxes):

1. The label "Id:",
2. The HBox A which defines 3 cells, where:

o The field 'num' will occupy the cell (1,1),
o The label "Name:" will occupy the cell (2,1),
o The field 'name' will occupy the cell (3,1).

3. The label "Address:" will occupy cell (1,2),
4. The HBox B which defines 1 cell, where:

o The field 'street' will occupy the cell (1,1).
5. The HBox C which defines 2 cells, where:

o The field 'zipcode' will occupy the cell (1,1),
o The field 'city' will occupy the cell (2,1).

6. The label "Phones:" will occupy cell (1,4),
7. The HBox B which defines 2 cells, where:

o The field 'phone' will occupy the cell (1,1),
o The field 'fax' will occupy the cell (2,1).

Inside an HBox tag, the positions and widths of elements are independent of other
HBoxes. It is not possible to align elements over HBoxes. The position of items inside an
HBox depends on the spacer and the real size of the elements. The following example
does not align the items as you would expect, following the character positions in the
layout definition:

01 GRID
02 {
03 ["Num: " :fnum :]
04 ["Name: " :fname]
05 }

User Interface

609

06 END

A big advantage in using elements in an HBox is that the fields gets their real sizes
according to the .per definition. The following example illustrates the case:

01 GRID
02 {
03 MMMMM
04 [f1]
05 [f2 :]
06 }
07 END

Here all items will occupy the same number of grid columns (5). The MMMMM static
label will have the largest width and define the width of the 5 grid cells. The first field is
defined with a normal item tag, and expands to the width of the 5 grid cells. The line 5
defines an HBox that will expand to the size of the 5 grid cells, according to the static
label, but its child element - the field f2 - gets a size corresponding to the number of
characters used before the ':' colon (i.e. 3 characters).

If the default width generated by the form compiler does not fit, the - dash symbol can
be used to define the real width of the item. In the following example, the HBox tag
occupies 20 grid cells, the first Form Item gets a width of 5, and the second Form Item
gets a width of 3:

01 GRID
02 {
03 12345678901234567890
04 [f1 - :f2 - :]
05 }
06 END

The - dash size indicator is especially useful in BUTTONEDIT, DATEEDIT and
COMBOBOX form fields, for which the default width computed by the form compiler may
not fit. See BUTTONEDIT for example.

In the following example, a static label is positioned above a TEXTEDIT field. The label
will be centered over the TEXTEDIT field, and will remain centered as the field expands
or contracts with the resizing of the window.

01 GRID
02 {
03 [:"label":]
04 [textedit]
05 }
06 END
07
08 ATTRIBUTES
09 TEXTEDIT textedit = formonly.textedit, STRETCH=BOTH;
10 END

Genero Business Development Language

610

Layout Tags

Layout Tags can be used to define layout containers inside the frame of a grid-based
container.

Syntax:

<type [identifier] >
 content
< >

or

<type [identifier] >
 content

Notes:

1. A layout tag is delimited by angle braces (<>).
2. type defines the kind of layout tag to be inserted at this position.
3. identifier defines the name of the layout tag that can optionally be used in the

ATTRIBUTE section to define attributes.
4. identifier must be unique in the form specification file.
5. identifier is optional.
6. content defines Form Items inside the layout tag.
7. Note that the (< >) ending tag is optional.

Usage:

While complex layout with nested frames can be defined with HBOX and VBOX
containers, it is also possible to define a form with a complex layout by using layout tags
within a grid.

A layout tag defines a layout region in a frame of a grid-based container (such as the
GRID or SCROLLGRID containers).

A layout tag has a type that defines what kind of container will be generated in the
compiled form. The following table shows the different type of layout tags:

Tag Type Container
Type Description

G GROUP Defines a group box layout tag, resulting in the
same presentation as the GROUP container.

T TABLE Defines a list view layout tag, resulting in the same
presentation as the TABLE container.

S SCROLLGRID Defines a scrollable grid layout tag, resulting in the
same presentation as the SCROLLGRID container.

User Interface

611

In the ATTRIBUTE section, you can specify attributes for the element corresponding to
the layout tag. In the following example, the layout tag g1 is defined in the ATTRIBUTE
section with the GROUP Form Item type to set the name and text:

01 LAYOUT
02 GRID
03 {
04 <G g1 >
05 [text1]
06 []
07 []
08 < >
09 }
10 END
11 END
12 ATTRIBUTES
13 GROUP g1:group1, TEXT="Description";
14 TEXTEDIT text1=FORMONLY.text1;
15 END

The layout region is a rectangle, in which the width is defined by the length of the layout
tag, and the height by a closing tag (< >) .

In the following example, the layout region defined by the layout tag named "group1" is
shown in yellow:

01 <G group1 >
02
03
04 < >

Form Items must be placed inside the layout region, shown in light blue here:

01 <G group1 >
02 Item: [f001]
03 Quantity: [f002]
04 Date: [f003]
05 < >

Note that the [] square brace delimiters are not counted to define the width of an item
tag. The width of the item is defined by the number of character between the square
braces. Thus, the following layout is valid and can be compiled:

01 <G group1 >
02 [f001]
03 [f002]
04 Static labels must fit!!
05 < >
06 <T table1 >
07 [colA |colB]
08 [colA |colB]
09 [colA |colB]
10 [colA |colB]

Genero Business Development Language

612

You can place several layout tags on the same layout line in order to split the frame
horizontally. The following example defines six layout regions (four group boxes and two
tables):

01 <G group1 ><G group2 ><G group4 >
02 FName: [f001] Phone: [f004] [f012]
03 LName: [f002] EMail: [f005] []
04 < >< >[]
05 <G group3 >[]
06 [f010][]
07 < >< >
08 <T table1 ><T table2 >
09 [c11 |c12 |c13][c21 |c22]
10 [c11 |c12 |c13][c21 |c22]
11 [c11 |c12 |c13][c21 |c22]
12 [c11 |c12 |c13][c21 |c22]
13 < >< >

The < > closing layout tag is optional. When not specified, the end of the layout region is
defined by the underlying layout tag or by the end of the current grid. However, the
ending tag must be specified if the form compiler cannot detect the end of the layout
region. This is usually the case with group layout tags. In the next example, the table
does not need an ending layout tag because it is defined by the starting tag of the group,
but the group needs and ending tag otherwise it would include the last field (field3).
Additionally, if field3 would have a different size, the form compiler would raise an error
because the group and the last field geometry would conflict.

01 <T table1 >
02 [colA |colB]
03 [colA |colB]
04 [colA |colB]
05 [colA |colB]
06 [colA |colB]
07 [colA |colB]
08 <G group2 >
09 [field1]
10 [field2]
11 < >
10 [field3]

It is possible to mix container layout tags with singular form items. You typically put form
items using a large area of the form, such as IMAGEs, TEXTEDITs. Note that the []
square brace delimiters are not used to compute the size of the singular form items:

01 <G group1 >[image1]
02 FName: [f001][]
03 LName: [f002][]
04 < >[]
05 [textedit1 |]
06 [|]
07 [|]

Table layout tags can be embedded inside group layout tags:

User Interface

613

01 <G group1 >
02 <T table1 >
03 [colA |colB]
04 [colA |colB]
05 [colA |colB]
06 [colA |colB]
07 < >

HBox or VBox containers with splitter are automatically created by the form compiler in
the following conditions:

• HBox is created when two or more stretchable elements are stacked side by side
and touch each other (nothing space between).

• VBox is created when two or more stretchable elements are stacked vertically
and touch each other (nothing space between).

Stretchable elements are containers such as TABLEs, or form items like IMAGEs,
TEXTEDITs with STRETCH attribute.

The example below defines two tables stacked vertically, generating a VBox with splitter
(note that ending tags are omitted):

01 <T table1 >
02 [colA |colB]
03 [colA |colB]
04 [colA |colB]
05 [colA |colB]
06 <T table2 >
07 [colC |colD]
08 [colC |colD]

Below the layout defines two stretchable TEXTEDITs placed side by side which would
generate an automatic HBox with splitter. Note that to make both textedits touch you
need to use a pipe delimiter in between:

01 [textedit1 |textedit2]
02 [|]
03 [|]
04 [|]

The next layout example would make the form compiler create an automatic VBox with
splitter to hold table2 and textedit1, plus an HBox with splitter to hold table1 and the first
VBox (note that we must use a pipe character to delimit the end of colB and textedit1 so
that both tables can be placed side by side):

01 <T table1 ><T table2 >
02 [colA |colB][colC|colD]
03 [colA |colB][colC|colD]
04 [colA |colB][colC|colD]
05 [colA |colB]textedit1]
06 [colA |colB]]
07 [colA |colB]]

Genero Business Development Language

614

If you want to avoid automatic HBox or VBox with splitter creation, you must add blanks
between elements:

01 <T table1 > <T table2 >
02 [colA |colB] [colC|colD]
03 [colA |colB] [colC|colD]
04 [colA |colB] [colC|colD]
05 [colA |colB]
06 [colA |colB] [textedit1]
07 [colA |colB] []
08 [colA |colB] []

Examples:

The typical Ok/Cancel window:

01 LAYOUT
02 GRID
03 {
04 <G g1 >
05 [com]
06 < >
07 [:bok |bno]
08 }
09 END
10 END
11 ATTRIBUTES
12 LABEL com: comment;
13 BUTTON bok: accept;
14 BUTTON bno: cancel;
15 ...

The following example shows multiple uses of layout tags:

01 LAYOUT
02 GRID
03 {
04 <S scrollgrid1 ><G g1 >
05 Ident: [f001] [f002] [text1]
06 [f003] []
07 Ident: [f001] [f002] []
08 [f003] []
09 Ident: [f001] [f002] []
10 [f003] []
11 < >< >
12 <G g2 >
13 [text2]
14 []
15 []
16 < >
17 <T t1 >
18 Num Name State Value
19 [col1 |col2 |col3 |col4]
20 [col1 |col2 |col3 |col4]
21 [col1 |col2 |col3 |col4]

User Interface

615

22 [col1 |col2 |col3 |col4]
23 < >
24 }
25 END
26 END
27 ATTRIBUTES
28 GROUP g1:group1, TEXT="Comment";
29 GROUP g2: TEXT="Description";
30 TABLE t1:table1, UNSORTABLECOLUMNS;
31 ...

Form layout example

01 LAYOUT (TEXT = "Customer orders")
02 VBOX
03 GROUP group1 (TEXT = "Customer")
04 GRID
05 {
06 <G Name >
07 [f001]
08 < >
09 <G Identifiers ><G Contact >
10 FCode: [f002] Phone: [f004]
11 LNumb: [f003] EMail: [f005]
12 < >< >
13 }
14 END
15 END
16 TABLE
17 {
18 OrdNo Date Ship date Weight
19 [c01 |c02 |c03 |c04]
20 [c01 |c02 |c03 |c04]
21 [c01 |c02 |c03 |c04]
22 [c01 |c02 |c03 |c04]
23 }
24 END
25 FOLDER
26 PAGE pg1 (TEXT = "Address")
27 GRID
28 {
29 Address: [f011]
30 State: [f012]
31 Zip Code: [f013]
32 }
33 END
34 END
35 PAGE pg2 (TEXT = "Comments")
36 GRID
37 {
38 [f021]
39 []
40 []

Genero Business Development Language

616

41 []
42 }
43 END
44 END
45 END
46 END
47 END

TABLES Section

The TABLES section lists every table or view referenced elsewhere in the form
specification file (specifically the ATTRIBUTES section).

Syntax:

TABLES
[alias = [database[@dbserver]:][owner.]] table [,...]
[END]

Notes:

1. alias represents an alias name for the given table.
2. table is the name of the database table.
3. database is the name of the database of the table (see warnings).
4. dbserver identifies the Informix database server (INFORMIXSERVER) (see

warnings).
5. owner is the name of the table owner (see warnings).

Usage:

This section is mandatory when form fields reference database columns defined in the
schema file. The TABLES section must follow the LAYOUT section, and the SCHEMA
section must also exist to define the database schema. The END keyword is optional.

Field identifiers in programs or in other sections of the form specification file can
reference screen fields as column, alias.column, or table.column.

The same alias must also appear in screen interaction statements of programs that
reference screen fields linked to the columns of a table that has an alias.

If a table requires the name of an owner or of a database as a qualifier, the TABLES
section must also declare an alias for the table. The alias can be the same identifier as
table.

User Interface

617

Warnings:

1. For backward compatibility with the Informix form specification, the comma
separator is optional and the database, dbserver and owner specifications are
ignored.

Example:

01 SCHEMA stores
02 LAYOUT
03 {
04 ...
05 }
06 END
07 TABLES
08 customer,
09 orders
10 END
11 ...

ATTRIBUTES Section

The ATTRIBUTES section describes properties of the elements used in the form.

Syntax:

ATTRIBUTES
{ form-field-definition | form-item-definition }
[...]
[END]

where form-field-definition is:

item-type item-tag = field-name [, attribute-list] ;

where form-item-definition is:

item-type item-tag : item-name [, attribute-list] ;

Notes:

1. The ATTRIBUTES section is mandatory.
2. This section must follow the LAYOUT section or if present, the TABLES section.
3. The END keyword is optional.
4. Each item-tag used in the LAYOUT section must be described in this section.
5. item-type defines the type of the Form Item.
6. item-tag is the name of the screen element used in the LAYOUT section.
7. field-name defines the screen record field to be associated to the Form Item. See

Field Definition for more details.

Genero Business Development Language

618

8. item-name identifies the Form Item, used to identify items not defined as Form
Fields.

9. attribute-list defines the aspect and behavior of the Form Item. See Attribute List
for more details.

Usage:

A Form Item definition is associated by name to an Item Tag or Layout Tag defined in
the LAYOUT section.

In order to define a Form Field, the Form Item definition must use the equal sign notation
to associate a screen record field with the Form Item. If the Form Item is not associated
with a screen record field (for example, a push button), you must use the colon notation.

Form item definitions can optionally include an attribute-list to specify the appearance
and behavior of the item. For example, you can define acceptable input values, on-
screen comments, and default values for fields.

When no screen record is defined in the INSTRUCTION section, a default screen record
is built for each set of Form Items declared with the same table name.

The order in which you list the Form Items determines the order of fields in the default
screen records that the form compiler creates for each table.

Tips:

1. To define Form Items as form fields, you are not required to specify table unless
the name column is not unique within the form specification. However, it is
recommended that you always specify table.column rather than the unqualified
column name. As you can refer to field names collectively through a screen
record built upon all the fields linked to the same table, your forms might be
easier to work with if you specify table for each field. For more information on
declaring screen records, see the INSTRUCTIONS section.

Form Item Types:

The item-type defines the kind of Form Item, to indicate which graphical object must be
used to display the form element. The following table describes the supported Form Item
types:

Form Item Type Description
BUTTON Standard push button with a label or a picture.
BUTTONEDIT Line edit box with a button on the right side.
CANVAS Area reserved for drawing.
CHECKBOX Boolean entry with a box and a text label.
COMBOBOX Field with a button that opens a list of values.
DATEEDIT Line edit box with a button that opens a calendar window.

User Interface

619

EDIT Simple line edit box for data input or display.
FIELD Abstract form field that can be defined in schema files.
GROUP Group container specified with a layout tag.
IMAGE Area where a picture file can be displayed.
LABEL Simple read-only text widget.
PROGRESSBAR Progress bar widget to display an integer value.
RADIOGROUP Field presented with a set of radio buttons.
SCROLLGRID Scrollable grid container specified with a layout tag.
SLIDER Slider widget to enter an integer value within a defined range.
SPINEDIT Text editor to enter an integer value.
TABLE Table container specified with a layout tag.
TEXTEDIT Multi-line edit box for data input or display.
TIMEEDIT Text editor to enter time values..

Warnings:

1. When used in a table some graphical objects are rendered only when the user
enters in the field. For example RadioGroup, CheckBox, ComboBox,
ProgressBar ...

Example:

01 ATTRIBUTES
02 EDIT f001 = player.name, REQUIRED, COMMENT="Enter player's name";
03 EDIT f002 = player.ident, NOENTRY;
04 COMBOBOX f003 = player.level, NOT NULL,
ITEMS=((1,"Beginner"),(2,"Normal"),(3,"Expert"));
05 CHECKBOX f004 = FORMONLY.winner, VALUECHECKED=1, VALUEUNCHECKED=0,
TEXT="Winner";
06 BUTTON b1 : print, TEXT="Print Report";
07 GROUP g1 : print, TEXT="Description";
08 END

Field Definition

The field-name as used in the ATTRIBUTES syntax, associates the Form Item to a
screen record field to define a Form Field.

Syntax:

A field definition can reference a database column defined in the database schema files:

[table.]column

Genero Business Development Language

620

or, it can be defined as a FORMONLY field. The data type of the field is defined with an
indirect reference to a database column or with an explicit data type:

FORMONLY.field [TYPE { LIKE [table.]column | datatype [NOT NULL] }]

Notes:

1. table is the name or alias of a table, synonym, or view, as declared in the
TABLES section.

2. column is the unqualified SQL identifier of a database column.
3. field is an identifier associated with a FORMONLY form field (not associated with

any database column).
4. datatype is any data type. When no data type is specified, the default is CHAR.

Example:

01 ATTRIBUTES
02 EDIT f001 = player.name, REQUIRED, COMMENT="Enter player's name";
03 END

Attribute List

The attribute-list as used in the ATTRIBUTES syntax describes how the runtime system
should display and handle a Form Item.

Syntax:

attribute [= { value | value-list }] [,...]

where value-list is:

({ value | value-list } [,...])

Notes:

1. attribute identifies the attribute.
2. value is a string, date or numeric literal, or predefined constant like TODAY.
3. value-list is a set of values separated by comma, supporting sub-set definitions

as in "(1,(21,22),(31,32,33))".

Usage:

The attribute list can by used, for example, to supply a default value, limit the values that
can be entered, or set the text and color of the Form Item.

User Interface

621

FIELD Item Type

Purpose:

The FIELD item type defines a generic form field that can be defined in database
schema files.

Syntax:

FIELD item-tag = field-name [, attribute-list] ;

Notes:

1. item-tag is an identifier that defines the name of the item tag.
2. field-name identifies the screen record field. See Field Definition for more details.
3. attribute-list defines the aspect and behavior of the Form Item.

Attributes:

COMMENT, DEFAULT, HIDDEN, NOT NULL, NOENTRY, REQUIRED, STYLE,
SIZEPOLICY, TAG, TABINDEX.

Table Column only: UNSORTABLE, UNSIZABLE, UNHIDABLE, UNMOVABLE, TITLE.

Example:

01 FIELD f001 = order.state, REQUIRED, STYLE="important";

Usage:

This item type defines a generic form field for data input or display. The real item type
(i.e. the widget) and the attributes must be defined in the database schema files.

The definition of the form field is determined by the .val database schema file, based on
the field-name (table.column). The item type (EDIT, COMBOBOX, etc) is defined by the
ITEMTYPE attribute in the .val schema file.

By using this form field specification, you can centralize the definition of form fields in the
database schema file, to enforce reusability. You can, for example, specify that the
"order.state" database column is a COMBOBOX, with a list of ITEMS, as if the field was
defined directly in the .per form specification file.

It is also possible to use the attributes defined in the database schema files with other
Form Item types.

The attributes defined directly in the form specification file take precedence over the
attributes defined in the database schema files.

The database schema files can be edited manually or by using a tool.

Genero Business Development Language

622

See also Form Field, Database Schema.

EDIT Item Type

Purpose:

The EDIT item type defines a simple line-edit field.

Syntax:

EDIT item-tag = field-name [, attribute-list] ;

Notes:

1. item-tag is an identifier that defines the name of the item tag.
2. field-name identifies the screen record field. See Field Definition for more details.
3. attribute-list defines the aspect and behavior of the Form Item.

Attributes:

AUTONEXT, CENTURY, COLOR, COLOR WHERE, COMMENT, DEFAULT, DISPLAY
LIKE, DOWNSHIFT, HIDDEN, FONTPITCH, FORMAT, INCLUDE, INVISIBLE,
JUSTIFY, KEY, NOT NULL, NOENTRY, PICTURE, PROGRAM, REQUIRED,
REVERSE, SAMPLE, STYLE, SCROLL, SIZEPOLICY, TAG, TABINDEX, UPSHIFT,
VALIDATE LIKE, VERIFY.

Table Column only: UNSORTABLE, UNSIZABLE, UNHIDABLE, UNMOVABLE, TITLE.

Example:

01 EDIT f001 = customer.state, REQUIRED, INCLUDE=(0,1,2);

Usage:

Defines a simple line edit box for data input or display.

See also Form Field.

User Interface

623

BUTTONEDIT Item Type

Purpose:

The BUTTONEDIT item type defines a line-edit with a push-button that can trigger an
action.

Syntax:

BUTTONEDIT item-tag = field-name [, attribute-list] ;

Notes:

1. item-tag is an identifier that defines the name of the item tag.
2. field-name identifies the screen record field. See Field Definition for more details.
3. attribute-list defines the aspect and behavior of the Form Item.

Attributes:

ACTION, AUTONEXT, CENTURY, COLOR, COLOR WHERE, COMMENT, DEFAULT,
DISPLAY LIKE, DOWNSHIFT, FONTPITCH, HIDDEN, FORMAT, IMAGE, INCLUDE,
INVISIBLE, JUSTIFY, KEY, NOT NULL, NOENTRY, PICTURE, PROGRAM, REVERSE,
SAMPLE, SCROLL, SIZEPOLICY, STYLE, REQUIRED, TAG, TABINDEX, UPSHIFT,
VALIDATE LIKE, VERIFY.

Table Column only: UNSORTABLE, UNSIZABLE, UNHIDABLE, UNMOVABLE, TITLE.

Example:

01 BUTTONEDIT f001 = customer.state, REQUIRED, IMAGE="smiley",
ACTION=zoom;

Usage:

The BUTTONEDIT Form Item defines a line edit box with a button on the right side.

This kind of Form Item is typically used to open a new window for data selection.

The ACTION attribute defines the name of the action to be sent to the program when the
user clicks on the button. The IMAGE attribute defines the picture to be displayed in the
button.

When you use an HBox tag combined to the SAMPLE attribute, it is possible to specify
the exact with of a BUTTONEDIT.

Genero Business Development Language

624

By default, the real width of BUTTONEDIT, DATEEDIT and COMBOBOX is computed as
follows (nbchars represents the number of characters used in the form layout by the item
tag to define the width of the item):

If nbchars is greater as 2, width = nbchars - 2; otherwise, width = nbchars.

For example:

01 LAYOUT
02 GRID
03 {
04 ButtonEdit A [ba]
05 ButtonEdit B [bb:]
06 ButtonEdit C [bc :]
07 ButtonEdit D [bd -:]
08 }
09 END
10 END
11 ATTRIBUTES
12 BUTTONEDIT ba = FORMONLY.ba, SAMPLE="0", ACTION=zoom1;
13 BUTTONEDIT bb = FORMONLY.bb, SAMPLE="M", ACTION=zoom2;
14 BUTTONEDIT bc = FORMONLY.bc, SAMPLE="Pi", ACTION=zoom3;
15 BUTTONEDIT bd = FORMONLY.bd, SAMPLE="0", ACTION=zoom4;
16 END

Here the BUTTONEDIT ba occupies 7 grid columns and gets a real width of 5 (7-2). The
SAMPLE attribute makes the edit field part as large as 5 characters '0' in the current
font, so with this field you can input or display only 5 digits.

The BUTTONEDIT bb, which is in an HBox tag that occupies 7 grid columns, gets a width
of 2. Since the SAMPLE attribute is "M", one can input 2 characters as wide as an "M".

The BUTTONEDIT bc, which is in an HBox tag that occupies 7 grid columns, gets a width
of 3 (5-2). Since the SAMPLE attribute is "Pi", the edit field part will be as large as the
word "Pi". (If SAMPLE contains more than 1 character it must have the same number of
characters as in the field definition).

When using an HBox tag, one can explicitly specify the width of the field with the dash
size indicator: The BUTTONEDIT bd, which is in an HBox tag that occupies 7 grid
columns, gets a width of 4 (because of the dash size indicator). Since the SAMPLE
attribute is "0", the edit field part will be as large as 4 digits.

See also Form Field.

User Interface

625

TEXTEDIT Item Type

Purpose:

The TEXTEDIT item type defines a multi line-edit field.

Syntax:

TEXTEDIT item-tag = field-name [, attribute-list] ;

Notes:

1. item-tag is an identifier that defines the name of the item tag.
2. field-name identifies the screen record field. See Field Definition for more details.
3. attribute-list defines the aspect and behavior of the Form Item.

Attributes:

COLOR, COLOR WHERE, COMMENT, DEFAULT, DOWNSHIFT, FONTPITCH,
HIDDEN, INCLUDE, KEY, NOT NULL, NOENTRY, PROGRAM, REQUIRED,
SCROLLBARS, SIZEPOLICY, STYLE, STRETCH, TAG, TABINDEX, UPSHIFT,
WANTTABS, WANTNORETURNS.

Table Column only: UNSORTABLE, UNSIZABLE, UNHIDABLE, UNMOVABLE, TITLE.

Example:

01 TEXTEDIT f001 = customer.address, WANTTABS, SCROLLBARS=BOTH;

Usage:

This kind of form field allows the user to enter a long text on multiple lines.

By default, when the focus is in a TEXTEDIT field, the TAB key moves to the next field,
while the RETURN key adds a NewLine (ASCII 10) character in the text. To control the
user input when the TAB and RETURN keys are pressed, you can specify the
WANTTABS and WANTNORETURNS attributes. When you specify WANTTABS, the
TAB key is consumed by the TEXTEDIT field, and a TAB character is added to the text.
When you specify WANTNORETURNS, the RETURN key is not consumed by the
TEXTEDIT field, and the dialog is validated.

Genero Business Development Language

626

You can use the SCROLLBARS attribute to define vertical and/or horizontal scrollbars
for the TEXTEDIT form field. By default, this attribute is set to VERTICAL for TEXTEDIT
fields.

The STRETCH attribute can be used to force the TEXTEDIT field to stretch when the
parent container is resized. Values can be NONE, X, Y or BOTH. By default, this attribute is
set to NONE for TEXTEDIT fields.

See also Form Field.

DATEEDIT Item Type

Purpose:

The DATEEDIT item type defines a line-edit with a button that opens a calendar.

Syntax:

DATEEDIT item-tag = field-name [, attribute-list] ;

Notes:

1. item-tag is an identifier that defines the name of the item tag.
2. field-name identifies the screen record field. See Field Definition for more details.
3. attribute-list defines the aspect and behavior of the Form Item.

Attributes:

CENTURY, COLOR, COLOR WHERE, COMMENT, DEFAULT, FONTPITCH, FORMAT,
HIDDEN, INCLUDE, JUSTIFY, KEY, NOT NULL, NOENTRY, REQUIRED, SAMPLE,
SIZEPOLICY, STYLE, TAG, TABINDEX.

Table Column only: UNSORTABLE, UNSIZABLE, UNHIDABLE, UNMOVABLE, TITLE.

User Interface

627

Example:

01 DATEEDIT f001 = order.shipdate;

Usage:

This item type defines a line-edit with a button on the right that opens a calendar,
dedicated to DATE input.

When you use an HBox tag combined with the SAMPLE attribute, it is possible to specify
the exact wdith of a DATEEDIT. By default, the real width is computed as width=nbchars-
2 when nbchars>2. See BUTTONEDIT for more details.

Warnings:

1. When the SAMPLE attribute is not specified, the default width for a DATEEDIT is
dependent upon DBDATE, and FORMAT when this attribute is used in the field.

See also Form Field.

COMBOBOX Item Type

Purpose:

The COMBOBOX item type defines a line-edit with a drop-down list of values.

Syntax:

COMBOBOX item-tag = field-name [, attribute-list] ;

Notes:

1. item-tag is an identifier that defines the name of the item tag.
2. field-name identifies the screen record field. See Field Definition for more details.
3. attribute-list defines the aspect and behavior of the Form Item.

Attributes:

COLOR, COLOR WHERE, COMMENT, DEFAULT, DOWNSHIFT, FONTPITCH,
HIDDEN, KEY, INCLUDE, INITIALIZER, ITEMS, NOT NULL, NOENTRY,
QUERYEDITABLE, REQUIRED, SAMPLE, SCROLL, SIZEPOLICY, STYLE, UPSHIFT,
TAG, TABINDEX.

Genero Business Development Language

628

Table Column only: UNSORTABLE, UNSIZABLE, UNHIDABLE, UNMOVABLE, TITLE.

Example:

01 COMBOBOX f001 = customer.city,
ITEMS=((1,"Paris"),(2,"Madrid"),(3,"London"));
02 COMBOBOX f002 = customer.sector, REQUIRED, ITEMS=("A","B","C");
03 COMBOBOX f003 = customer.state, NOT NULL, INITIALIZER=myinit;

Usage:

This item type defines a line-edit with a button on the right side that opens a drop-down
list.

The values of the list are defined by the ITEMS attribute. Real values can be associated
to display values, for example:

((1,"Paris"),(2,"Madrid"),(3,"London"))

The INITIALIZER attribute allows you to define an initialization function for the COMBOBOX.
This function will be invoked at runtime when the form is loaded, to fill the item list
dynamically with database records, for example. It is recommended that you use the
TAG attribute, so you can identify in the program the kind of COMBOBOX Form Item to be
initialized.

If neither ITEMS nor INITIALIZER attributes are specified, the form compiler
automatically fills the list of items with the values of the INCLUDE attribute, when
specified. However, the item list will not automatically be populated with include range
values (i.e. values defined using the TO keyword). The INCLUDE attribute can be
specified directly in the form or indirectly in the schema files.

During an INPUT, a COMBOBOX field value can only be one of the values specified in the
ITEMS attribute. During an CONSTRUCT, a COMBOBOX field gets an additional 'empty'
item (even if the field is NOT NULL), to let the user clear the search condition.

If one of the items is explicitly defined with NULL and the NOT NULL attribute is omitted;
In INPUT, selecting the corresponding combobox list item sets the field value to null. In
CONSTRUCT, selecting the list item corresponding to null will be equivalent to the = query
operator, which will generate a "colname is null" SQL condition.

By default, during a CONSTRUCT, a COMBOBOX is not editable (you are forced to set one
of the values of the list as defined by the ITEMS attribute, or set the 'empty' item). The
QUERYEDITABLE attribute can be used to force the COMBOBOX to be editable during a
CONSTRUCT instruction. This makes sense if the display values match the real values,
in order to allow the user to enter a search criterion such as "A*".

When using an HBox tag combined with the SAMPLE attribute, it is possible to specify
the exact width of a COMBOBOX. By default, the real width is computed as width=nbchars-
2 when nbchars>2. See BUTTONEDIT for more details.

User Interface

629

See also Form Field.

CHECKBOX Item Type

Purpose:

The CHECKBOX item type defines a boolean checkbox field.

Syntax:

CHECKBOX item-tag = field-name [, attribute-list] ;

Notes:

1. item-tag is an identifier that defines the name of the item tag.
2. field-name identifies the screen record field. See Field Definition for more details.
3. attribute-list defines the aspect and behavior of the Form Item.

Attributes:

COLOR, COLOR WHERE, COMMENT, DEFAULT, FONTPITCH, HIDDEN, INCLUDE,
KEY, NOT NULL, NOENTRY, REQUIRED, SIZEPOLICY, STYLE, TAG, TABINDEX,
TEXT, VALUECHECKED, VALUEUNCHECKED.

Table Column only: UNSORTABLE, UNSIZABLE, UNHIDABLE, UNMOVABLE, TITLE.

Example:

01 CHECKBOX f001 = customer.active, REQUIRED, TEXT="Active",
VALUECHECKED="Y", VALUEUNCHECKED="N";

Usage:

The CHECKBOX item type defines a boolean entry with a box and a text label.

The TEXT attribute defines the label to be displayed near the check box.

The box shows a checkmark when the form field contains the value defined in the
VALUECHECKED attribute (for example: "Y"), and shows no checkmark if the field
value is equal to the value defined by the VALUEUNCHECKED attribute (for example:
"N"). If you do not specify the VALUECHECKED or VALUEUNCHECKED attributes,
they respectively default to TRUE (integer 1) and FALSE (integer 0).

Genero Business Development Language

630

By default, during an INPUT, a CHECKBOX field can have three states:

• Grayed (NULL value)
• Checked (VALUECHECKED value)
• Unchecked (VALUEUNCHECKED value)

If the field is declared as NOT NULL, the initial state can be grayed if the default value is
NULL; once the user has changed the state of the CHECKBOX field, it switches only
between Checked and Unchecked states.

During an CONSTRUCT, a CHECKBOX field always has three possible states (even if the
field is NOT NULL), to let the user clear the search condition:

• Grayed (No search condition)
• Checked (Condition column = VALUECHECKED value)
• Unchecked (Condition column = VALUEUNCHECKED value)

See also Form Field.

RADIOGROUP Item Type

Purpose:

The RADIOGROUP item type defines a set of radio buttons.

Syntax:

RADIOGROUP item-tag = field-name [, attribute-list] ;

Notes:

1. item-tag is an identifier that defines the name of the item tag.
2. field-name identifies the screen record field. See Field Definition for more details.
3. attribute-list defines the aspect and behavior of the Form Item.

Attributes:

COLOR, COLOR WHERE, COMMENT, DEFAULT, FONTPITCH, HIDDEN, INCLUDE,
ITEMS, KEY, NOT NULL, NOENTRY, ORIENTATION, REQUIRED, SIZEPOLICY,
STYLE, TAG, TABINDEX.

User Interface

631

Table Column only: UNSORTABLE, UNSIZABLE, UNHIDABLE, UNMOVABLE, TITLE.

Example:

01 RADIOGROUP f001 = player.level,
ITEMS=((1,"Beginner"),(2,"Normal"),(3,"Expert"));

Usage:

This item type defines a set of radio buttons where each button is associated with a
value defined in the ITEMS attribute.

The text associated with each value will be used as the label of the corresponding radio
button, for example:

((1,"Beginner"),(2,"Normal"),(3,"Expert"))

During an INPUT, a RADIOGROUP field value can only be one of the values specified in
the ITEMS attribute. During an CONSTRUCT, a RADIOGROUP field allows to uncheck all
items (even if the field is NOT NULL), to let the user clear the search condition.

If one of the items is explicitly defined with NULL and the NOT NULL attribute is omitted;
In INPUT, selecting the corresponding radio button sets the field value to null. In
CONSTRUCT, selecting the radio button corresponding to null will be equivalent to the =
query operator, which will generate a "colname is null" SQL condition.

Use the ORIENTATION attribute to define if the radio group must be displayed vertically
or horizontally.

See also Form Field.

LABEL Item Type

Purpose:

The LABEL item type defines a simple text area to display a read-only value.

Syntax 1: Defining a Form Field Label

LABEL item-tag = field-name [, attribute-list] ;

Genero Business Development Language

632

Syntax 2: Defining a Static Label

LABEL item-tag : item-name [, attribute-list] ;

Notes:

1. item-tag is an identifier that defines the name of the item tag.
2. field-name identifies the screen record field. See Field Definition for more details.
3. item-name identifies the form element of a static label.
4. attribute-list defines the aspect and behavior of the Form Item.

Attributes:

COLOR, COLOR WHERE, COMMENT, FONTPITCH, HIDDEN, JUSTIFY, REVERSE,
SIZEPOLICY, STYLE, TAG.

Form Field Label only: FORMAT, SAMPLE.

Static Label only: TEXT.

Table Column only: UNSORTABLE, UNSIZABLE, UNHIDABLE, UNMOVABLE, TITLE.

Example:

01 LABEL f001 = vehicle.description; -- This is a form field label
02 LABEL lab1 : label1, TEXT="Hello"; -- This is a static label

Usage:

This item type can be used to define a read-only text area as a form field or as a static
label.

Form Field Label

This type of label item must be used to display values that change often during program
execution, like database information. The text of the label is defined by the value of the
corresponding form field. The text can be changed from the BDL program by using the
DISPLAY TO instruction to set the value of the field, or within a list by using a DISPLAY
ARRAY. This kind of Form Item does not allow data entry; it is only used to display
values.

See also Form Field for more details.

Static Label

This type of label item must be used to display text that does not change often, like field
descriptions. The text of the label is defined by the TEXT attribute; the item is not a form
field. The text can be changed from the BDL program by using the API provided to
manipulate the user interface (see Dynamic User Interface for more details). It is not

User Interface

633

possible to change the text with a DISPLAY TO instruction. This kind of item is not
affected by instructions such as CLEAR FORM. Static labels display only character text
values, and therefore do not follow any justification rule as form field labels.

IMAGE Item Type

Purpose:

The IMAGE item type defines an area that can display an image from a pixel-map file.

Syntax 1: Defining a Form Field Image

IMAGE item-tag = field-name [, attribute-list] ;

Syntax 2: Defining a Static Image

IMAGE item-tag : item-name [, attribute-list] ;

Notes:

1. item-tag is an identifier that defines the name of the item tag.
2. field-name identifies the screen record field. See Field Definition for more details.
3. item-name identifies the form element of a static image.
4. attribute-list defines the aspect and behavior of the Form Item.

Attributes:

COLOR, COLOR WHERE, COMMENT, AUTOSCALE, HIDDEN, SIZEPOLICY, WIDTH,
HEIGHT, STYLE, STRETCH, TAG.

Static Image only: IMAGE

Table Column only: UNSORTABLE, UNSIZABLE, UNHIDABLE, UNMOVABLE, TITLE.

Example:

01 IMAGE f001 = cars.picture, HEIGHT=300 PIXELS, WIDTH=400 PIXELS,
STRETCH=BOTH;
02 IMAGE img1 : logo, IMAGE="fourjs.gif", STRETCH=BOTH;

Usage:

This item type defines an area where a picture file can be displayed, as a form field or as
a static image.

The default picture size is defined by the placement of the item-tag inside the layout, but
you can overwrite the default size by using the WIDTH and HEIGHT attributes. If these

Genero Business Development Language

634

are not used, the size of the image defaults to the relative width and height defined by
the item-tag in the form layout section.

The STRETCH attribute can be used to define how the image size must change when
the parent container is resized. Values can be NONE, X, Y or BOTH. Default value is NONE
for IMAGE fields.

The AUTOSCALE boolean attribute can be set to indicate if the image must be scaled to
the available space defined by the width and height of the Form Item.

If SIZEPOLICY attribute is set to FIXED, the size of the widget will be defined by the
form specification file. Then, if AUTOSCALE is not set, scrollbars may appear if the
picture is greater than the widget. When INITIAL, the size of the widget will be define
by the first picture. When DYNAMIC, changing the picture may change the size of the
widget.

Widget Size Picture Size SIZEPOLICY AUTOSCALE

Size of Form
Specification File

Size of Widget
(image may shrink
or grow)

INITIAL, FIXED,
DYNAMIC

TRUE (Attribute is
set)

Size of Form
Specification File

Original Size
(Scrollbars may
appear)

FIXED FALSE (Attribute
is not set)

Size of Picture
(widget can grow) Original Size INITIAL,

DYNAMIC
FALSE (Attribute
is not set)

Form Field Image

This type of image item must be used to display values that change often during
program execution, like database information. The picture is defined in a file specified
with an URL (Uniform Resource Locator) as the value of the corresponding field. The
picture can be changed from the BDL program by using the DISPLAY TO instruction to
set the value of the field.

See also Form Field.

Static Image

This type of image item must be used to display text that does not change often, such as
background pictures or logos. The source file of the image is defined by the IMAGE
attribute; the item is not a form field. The image file can be changed from the BDL
program by using the API provided to manipulate the user interface (see Dynamic User
Interface for more details). It is not possible to change the image with a DISPLAY TO
instruction. This kind of item is not affected by instructions such as CLEAR FORM.

User Interface

635

PROGRESSBAR Item Type

Purpose:

The PROGRESSBAR item type defines a horizontal bar with a progress indicator.

Syntax:

PROGRESSBAR item-tag = field-name [, attribute-list] ;

Notes:

1. item-tag is an identifier that defines the name of the item tag.
2. field-name identifies the screen record field. See Field Definition for more details.
3. attribute-list defines the aspect and behavior of the Form Item.

Attributes:

COLOR, COLOR WHERE, COMMENT, HIDDEN, VALUEMIN, VALUEMAX,
SIZEPOLICY, STYLE, TAG.

Table Column only: UNSORTABLE, UNSIZABLE, UNHIDABLE, UNMOVABLE, TITLE.

Example:

01 PROGRESSBAR f001 = workstate.position, VALUEMIN=-100, VALUEMAX=+100;

Usage:

This item type can be used to show progress information.

The position of the progress bar is defined by the value of the corresponding form field.
The value can be changed from the BDL program by using the DISPLAY TO instruction
to set the value of the field. This kind of Form Item does not allow data entry; it is only
used to display integer values.

The VALUEMIN and VALUEMAX attributes define respectively the lower and upper
integer limit of the progress information. Any value outside this range will not be
displayed. Default values are VALUEMIN=0 and VALUEMAX=100.

See also Form Field.

Genero Business Development Language

636

SLIDER Item Type

Purpose:

The SLIDER item type defines a horizontal or vertical slider.

Syntax:

SLIDER item-tag = field-name [, attribute-list] ;

Notes:

1. item-tag is an identifier that defines the name of the item tag.
2. field-name identifies the screen record field. See Field Definition for more details.
3. attribute-list defines the aspect and behavior of the Form Item.

Attributes:

COLOR, COLOR WHERE, COMMENT, DEFAULT, HIDDEN, ORIENTATION,
SIZEPOLICY, STEP, STYLE, TABINDEX, TAG, VALUEMIN, VALUEMAX.

Table Column only: UNSORTABLE, UNSIZABLE, UNHIDABLE, UNMOVABLE, TITLE.

Example:

01 SLIDER f001 = workstate.duration, VALUEMIN=0, VALUEMAX=5, STEP=1;

Usage:

This item type defines a classic widget for controlling a bounded value. It lets the user
move a slider along a horizontal or vertical groove and translates the slider's position into
a value within the legal range.

The VALUEMIN and VALUEMAX attributes define respectively the lower and upper
integer limit of the slider information. Any value outside this range will not be displayed;
the step between two marks is defined by the STEP attribute. The ORIENTATION
attribute defines whether the SLIDER is displayed vertically or horizontally.

See also Form Field.

Warnings:

1. This widget is not designed for CONSTRUCT, as you can only select one value.

User Interface

637

SPINEDIT Item Type

Purpose:

The SPINEDIT item type defines a spin box widget (spin button).

Syntax:

SPINEDIT item-tag = field-name [, attribute-list] ;

Notes:

1. item-tag is an identifier that defines the name of the item tag.
2. field-name identifies the screen record field. See Field Definition for more details.
3. attribute-list defines the aspect and behavior of the Form Item.

Attributes:

COLOR, COLOR WHERE, COMMENT, DEFAULT, FONTPITCH, HIDDEN, NOT NULL,
NOENTRY, REQUIRED, SIZEPOLICY, STEP, STYLE, TABINDEX, TAG.

Table Column only: UNSORTABLE, UNSIZABLE, UNHIDABLE, UNMOVABLE, TITLE.

Example:

01 SPINEDIT f001 = command.nbItems, STEP=5;

Usage:

This item type allows the user to choose a value either by clicking the up/down buttons
to increase/decrease the value currently displayed, or by typing the value directly into
the spin box.

The step between two values is defined by the STEP attribute.

See also Form Field.

Warnings:

1. With this widget, the user can only enter an integer value.
2. This widget is not designed for CONSTRUCT, as you can only enter integer.

Genero Business Development Language

638

TIMEEDIT Item Type

Purpose:

The TIMEEDIT item type defines a time editor widget.

Syntax:

TIMEEDIT item-tag = field-name [, attribute-list] ;

Notes:

1. item-tag is an identifier that defines the name of the item tag.
2. field-name identifies the screen record field. See Field Definition for more details.
3. attribute-list defines the aspect and behavior of the Form Item.

Attributes:

COLOR, COLOR WHERE, COMMENT, DEFAULT, FONTPITCH, HIDDEN, NOT NULL,
NOENTRY, REQUIRED, SIZEPOLICY, STYLE, TABINDEX, TAG.

Table Column only: UNSORTABLE, UNSIZABLE, UNHIDABLE, UNMOVABLE, TITLE.

Example:

01 TIMEEDIT f001 = pakcage.arrTime;

Usage:

This item type allows the user to edit times by using the keyboard or the arrow keys to
increase/decrease time values.

See also Form Field.

Warnings:

1. With this widget, the user can only enter a time value.
2. This widget is not designed for CONSTRUCT, as you can only enter time.

User Interface

639

BUTTON Item Type

Purpose:

The BUTTON item type defines a push-button that can trigger an action.

Syntax:

BUTTON item-tag : item-name [, attribute-list] ;

Notes:

1. item-tag is an identifier that defines the name of the item tag.
2. item-name identifies the button and the corresponding action the button must be

bound to.
This name can be prefixed with the sub-dialog identifier.

3. attribute-list defines the aspect and behavior of the Form Item.

Attributes:

COMMENT, FONTPITCH, HIDDEN, IMAGE, SIZEPOLICY, STYLE, TAG, TEXT.

Example:

01 BUTTON btn1 : print, TEXT="Print Report", IMAGE="printer";

Usage:

This item type defines a standard push button with a label or a picture.

In the BUTTON Form Item, the label is defined with the TEXT attribute, the picture is
defined by the IMAGE attribute, and the COMMENT attribute can be used to define a
help bubble for the button.

CANVAS Item Type

Purpose:

The CANVAS item type defines an area in which you can draw shapes.

Genero Business Development Language

640

Syntax:

CANVAS item-tag : item-name [, attribute-list] ;

Notes:

1. item-tag is an identifier that defines the name of the item tag.
2. item-name identifies the canvas in the program.
3. attribute-list defines the aspect and behavior of the Form Item.

Attributes:

COMMENT, HIDDEN, TAG.

Example:

01 CANVAS cvs1 : canvas1;

Usage:

See Canvas for more details.

GROUP Item Type

Purpose:

The GROUP item type defines attributes for a groupbox layout tag.

Syntax:

GROUP layout-tag : item-name [, attribute-list] ;

Notes:

1. layout-tag is an identifier that defines the name of the layout tag.
2. item-name identifies the groupbox in the program.
3. attribute-list defines the aspect and behavior of the Form Item.

User Interface

641

Attributes:

COMMENT, FONTPITCH, GRIDCHILDRENINPARENT, HIDDEN, STYLE, TAG, TEXT.

Example:

01 GROUP g1 : group1, TEXT="Description", GRIDCHILDRENINPARENT;

Usage:

Use this item type to specify the attributes of a GROUP container defined with a layout
tag.

SCROLLGRID Item Type

Purpose:

The SCROLLGRID item type defines attributes for a scrollgrid layout tag.

Syntax:

SCROLLGRID layout-tag : item-name [, attribute-list] ;

Notes:

1. layout-tag is an identifier that defines the name of the layout tag.
2. item-name identifies the scrollgrid in the program.
3. attribute-list defines the aspect and behavior of the Form Item.

Attributes:

COMMENT, FONTPITCH, GRIDCHILDRENINPARENT, HIDDEN, STYLE, TAG.

Example:

01 SCROLLGRID sg1 : scrollgrid1, GRIDCHILDRENINPARENT;

Usage:

Use this item type to specify the attributes of a SCROLLGRID container defined with a
layout tag.

Genero Business Development Language

642

TABLE Item Type

Purpose:

The TABLE item type defines attributes for a table layout tag.

Syntax:

TABLE layout-tag : item-name [, attribute-list] ;

Notes:

1. layout-tag is an identifier that defines the name of the layout tag.
2. item-name identifies the table in the program.
3. attribute-list defines the aspect and behavior of the Form Item.

Attributes:

COMMENT, DOUBLECLICK, FONTPITCH, HIDDEN, STYLE, TAG,
UNHIDABLECOLUMNS, UNMOVABLECOLUMNS, UNSIZABLECOLUMNS,
UNSORTABLECOLUMNS, WANTFIXEDPAGESIZE, WIDTH, HEIGHT.

Example:

01 TABLE t1 : table1, UNSORTABLECOLUMNS;

Usage:

Use this item type to specify the attributes of a TABLE defined with a layout tag.

With the DOUBLECLICK attribute, you can define a particular action to be send when
the user double-clicks on a row.

By default, a table allow to hide, move, resize columns and sort the list when the user
clicks on a column header. The UNHIDABLECOLUMNS, UNMOVABLECOLUMNS,
UNSIZABLECOLUMNS, UNSORTABLECOLUMNS attributes can be used to deny
these features.

The WIDTH and HEIGHT attributes can be used to specify a initial geometry for the
table.

By default, tables can be resized in height. Use the WANTFIXEDPAGESIZE attribute to
deny table resizing.

User Interface

643

INSTRUCTIONS Section

The INSTRUCTIONS section can specify screen arrays, non-default screen records and
field delimiters.

Syntax:

INSTRUCTIONS
{ screen-record | screen-array } [;]
[...]
[delimiters [;]]
[DEFAULT SAMPLE = "string"]
[END]

where screen-record is:

SCREEN RECORD record-name (field-list)

where screen-array is:

SCREEN RECORD array-name [size] (field-list)

where field-list is:

{ table.* | field [{THROUGH|THRU} lastfield] [,...] }

and where delimiters is:

DELIMITERS "AB" TUI Only!

Notes:

1. The INSTRUCTIONS section is optional. If present, it must appear after the
ATTRIBUTES section.

2. The END keyword is optional.
3. record-name is the name of an explicit screen record.
4. array-name is the name of an explicit screen array.
5. size is an integer representing the number of screen records in the screen array.
6. field is a field identifier as defined in the right operand of a field definition in the

ATTRIBUTES section.
7. table.* notation instructs the form compiler to build the screen record with all

fields declared in the ATTRIBUTES section for the given table.
8. A and B define the opening and closing field delimiters for character based

terminals.

Warnings:

1. You must specify the table qualifier if the field name is not unique among the
fields in the ATTRIBUTES section, or if table is a required alias.

Genero Business Development Language

644

2. DELIMITERS is provided for backward compatibility; it is only useful when using
character terminals.

Example:

01 ...
02 INSTRUCTIONS
03 SCREEN RECORD s_items[10]
04 (stock.*,
05 items.quantity,
06 FORMONLY.total_price)
07 DELIMITERS "[]"
08 END

Default sample:

The DEFAULT SAMPLE directive defines the default sample text for all fields. See the
SAMPLE attribute for more details:

01 DEFAULT SAMPLE = "MMM"

Screen records:

A screen record is a group of fields that screen interaction statements of the program
can reference as a single object. By establishing a correspondence between a set of
screen fields (the screen record) and a set of program variables (typically a program
record), you can pass values between the program and the fields of the screen record.
In many applications, it is convenient to define a screen record that corresponds to a row
of a database table.

The form compiler builds default screen records that consist of all the screen fields
linked to the same database table within a given form. A default record is automatically
created for each table that is used to reference a field in the ATTRIBUTES section. The
components of the default record correspond to the set of display fields that are linked to
columns in that table. The name of the default screen record is the table name (or the
alias, if you have declared an alias for that table in the TABLES section). For example,
all the fields linked to columns of the customer table constitute a default screen record
whose name is customer. If a form includes one or more FORMONLY fields, those
fields constitute a default screen record called formonly.

Like the name of a screen field, the identifier of a screen record must be unique within
the form, and it has a scope that is restricted to when its form is open. Statements can
reference record only when the screen form that includes it is being displayed. The form
compiler returns an error if record is the same as the name or alias of a table in the
TABLES section.

In the INSTRUCTIONS section of a form specification file, you can declare explicit screen
records by using the SCREEN RECORD keywords to declare a name for the screen record
and to specify a list of fields that are members of the screen record.

User Interface

645

Screen arrays:

A screen array is usually a repetitive array of fields in the screen layout, each containing
identical groups of screen fields. Each row of a screen array is a screen record. Each
column of a screen array consists of fields with the same field tag in the LAYOUT
section of the form specification file.

You must declare screen arrays in the INSTRUCTIONS section with the SCREEN RECORD
keyword, as in the declaration of a screen record, but with an additional parameter to
specify the number of screen records in the array.

The size value should be the number of lines in the logical form where the set of fields
that comprise each screen record is repeated within the screen array. For example, a
GRID container of the LAYOUT section might represent a screen array like this:

01 ...
02 LAYOUT
03 GRID
04 {
05 OrdId Date Total Price
06 [f001 |f002 |f003]
07 [f001 |f002 |f003]
08 [f001 |f002 |f003]
09 [f001 |f002 |f003]
10 }
11 END
12 END
13 ...

This example requires a size of [4]. Except for the size parameter, the syntax for
specifying the identifier and the field names of a screen array is the same as for a simple
screen record.

You can reference the names of the screen array in the DISPLAY TO, DISPLAY
ARRAY, INPUT and INPUT ARRAY statements of programs, but only when the screen
form that includes the screen array is the current form.

Warnings:

1. You cannot define multiple screen arrays for the same TABLE definition. Only
one SCREEN RECORD specification is allowed.

Using screen records and screen arrays in programs:

Screen records and screen arrays can display program records. If the fields in the
screen record have the same sequence of data types as the columns in a database
table, you can use the screen record to simplify operations that pass values between
program variables and rows of the database.

Genero Business Development Language

646

Field delimiters:

You can change the delimiters used for fields from brackets ([]) to any other printable
character, including blank spaces. The DELIMITERS instruction tells the form compiler
what symbols to use as field delimiters when the runtime system displays the form on
the screen. The opening and closing delimiter marks must be enclosed within quotation
marks (").

To use only one space between fields, in the LAYOUT section, substitute a pipe symbol
(|) for paired back-to- back (][) brackets that separate adjacent fields. In the
INSTRUCTIONS section, define some symbol as both the beginning and the ending
delimiter. For example, you could specify "| |" or "/ /" or ": :" or " " (blanks).

Field delimiters are not displayed when using a graphical front end, but they must be
used to delimit the fields in the form specification file.

KEYS Section

The KEYS section can be used to define default key labels for the current form.

Syntax:

KEYS
key-name = [%]"label"
[...]
[END]

Notes:

1. The KEYS section is optional. If present, it must appear after the INSTRUCTIONS
section.

2. The END keyword is optional.
3. key-name is the name of a key (like F10, Control-z).
4. label is the text to be displayed in the button corresponding to the key.

Warnings:

1. The KEYS section is supported for backward compatibility. See also Setting Key
Labels.

Example:

01 ...
02 KEYS
03 F10 = "City list"
04 F11 = "State list"
05 F15 = "Validate"
06 END

User Interface

647

For more details, see "Setting Key Labels".

Boolean expressions in form files

Purpose:

This section describes the syntax supported for Boolean expressions in form
specification files, as in the COLOR WHERE attribute specification, for example.

Syntax:

[(] boolexpr {AND|OR} boolexpr [)] [...]

where boolexpr is:

[NOT]
{ expression
 { =
 | <>
 | <=
 | >=
 | <
 | >
 | !=
 | IS [NOT] NULL
 | [NOT] BETWEEN expression AND expression
 }
| charexpr
 { [NOT] MATCHES "string"
 | [NOT] LIKE "string"
 }
}

Notes:

1. expression can be the current field tag, a character string, numeric or datetime
literal.

2. charexpr can be the current field tag or a character string literal.
3. When a field-tag is used in the Boolean expression, the runtime system replaces

field-tag at runtime with the current value in the screen field and evaluates the
expression.

Compiling form files

In order for your program to work with a screen form, you must create a form
specification file that conforms to the syntax described earlier in this section, and then
compile the form. You must use the form compiler to do the compilation. Form

Genero Business Development Language

648

compilation requires that the database schema files already exist if the form specification
file uses a SCHEMA specification.

Warnings:

1. Make sure that the database schema files of the development database
correspond to the production database, otherwise the form fields defined in the
compiled version of your forms will not match the table structures of the
production database.

Tips:

1. As compiled form files depend on both the source files and the database schema
files, it is strongly recommended that you use the MAKE utility to manage form
file compilation. In the makefiles, you should define the dependence rules
according to these constraints.

Using forms in programs

To work with a screen form, the application requires a form driver, which is a logical set
of interactive statements that control the display of the form, bind form fields to program
variables, and respond to actions by the user in fields.

Compiled forms must be loaded by the program with the OPEN FORM or the OPEN
WINDOW WITH FORM instruction.

Warnings:

1. The DBPATH environment variable must contain the directory where the
compiled form file is located, if the form file is not in the current directory.

Once a form is loaded, the program can manipulate forms to display or let the user edit
data, with instructions like DISPLAY TO, INPUT, INPUT ARRAY, DISPLAY ARRAY and
CONSTRUCT. Program variables are used as display and/or input buffers.

User Interface

649

Form Specification File Attributes
Summary:

• Attributes Summary

See also: Form Specification Files.

Attributes Summary

Attribute Description
ACCELERATOR First accelerator key for an action default
ACCELERATOR2 Second accelerator key for an action default
ACCELERATOR3 Third accelerator key for an action default
ACCELERATOR4 Fourth accelerator key for an action default
ACTION Action name to be sent to the program when the

item is activated
AUTOSCALE Forces the item's contents to be scaled according

to the available space
AUTONEXT Automatically gives the focus to the next field when

all data is entered
BUTTONTEXTHIDDEN Indicates that the button labels of the element must

be hidden
CENTURY Specifies expansion of 2-digit years in DATE and

DATETIME fields
COLOR Specifies the foreground color of the text displayed

by a form item
COLOR WHERE Defines a Boolean condition based on field values

to set the color attribute dynamically
COMMENT Specifies a message to display on the Comment

line
DEFAULT Assigns a default value to a field during data entry
DEFAULTVIEW Defines if the default view must be displayed for an

action
DISPLAY LIKE Assigns attributes from the database schema files
DOUBLECLICK Defines the action to be sent when user double-

clicks on the item
DOWNSHIFT Converts to lowercase any uppercase character

data
HEIGHT Explicitly defines the height of a form element
HIDDEN Makes an element invisible

Genero Business Development Language

650

FONTPITCH Defines the character font type as fixed or variable
FORMAT Formats DECIMAL, SMALLFLOAT, FLOAT, or

DATE output
GRIDCHILDRENINPARENT Aligns children to the parent container
INCLUDE Lists a set of acceptable values during data entry
INITIALIZER Specifies an initialization function for the

ComboBox item
INVISIBLE Does not echo characters on the screen during

data entry
IMAGE Defines the URL of the image resource associated

to the form item
ITEMS Defines a list of values to be used by the form item
JUSTIFY Specifies the text justification
MINHEIGHT Defines a minimum height for the form item
MINWIDTH Defines a minimum width for the form item
NOT NULL Indicates that the field does not accept NULL

values
NOENTRY Prevents the user from entering data in the field
ORIENTATION Defines the orientation of an element as vertical or

horizontal
PICTURE Imposes a data-entry format on CHAR or

VARCHAR fields
PROGRAM Invokes an external program to display TEXT or

BYTE values
QUERYEDITABLE Allows a combobox field to be editable during a

CONSTRUCT
REQUIRED Requires the user to supply a value during input

instructions
SAMPLE Provides the text to be used as a sample to

compute the width
SCROLL Allows scrolling within the field
SCROLLBARS Defines vertical and/or horizontal scrollbars for the

form item
SIZEPOLICY Indicates sizing hint to display form elements.
SPACING Indicates spacing hint to display form elements
SPLITTER Indicates that the container must use a splitter
STEP Defines how much the value increases or

decreases with a single click
STRETCH Defines how the widget must resize according to

the parent container
STYLE Defines a presentation style for the form element
TAG Defines a string identifier for the form item

User Interface

651

TABINDEX Defines the tab order for the form item
TEXT Defines the label to be associated with the form

item
TITLE Defines the title to be associated with the form item
UPSHIFT Converts to uppercase any lowercase character

data
UNHIDABLE Indicates that the column cannot be hidden
UNHIDABLECOLUMNS The table does not allow columns to be hidden
UNMOVABLE Indicates that the column cannot be moved
UNMOVABLECOLUMNS Prevents the user from changing the order of the

columns
UNSIZABLE Indicates that the column cannot be resized
UNSIZABLECOLUMNS The table does not allow columns to be resized
UNSORTABLE Indicates that the column cannot be used for

sorting
UNSORTABLECOLUMNS The table does not allow rows to be sorted
VALIDATE Defines the data validation mode for a given action
VALIDATE LIKE Validates data entry with definitions from the

database schema files
VALUEMIN Defines the lower limit for widgets (such as

progressbars)
VALUEMAX Defines the upper limit for widgets (such as

progressbars)
VALUECHECKED Defines the value to be associated with a checked

checkbox
VALUEUNCHECKED Defines the value to be associated with an

unchecked checkbox
VERIFY Requires that data be entered twice when the

database is modified
VERSION Defines a user version string for an element
WANTTABS Forces the field to consume TAB keys
WANTNORETURNS Forces the field to reject RETURN keys
WANTFIXEDPAGESIZE Forces the table to have a fixed height when the

parent window is resized
WIDTH Explicitly defines the width of a form element
WINDOWSTYLE Specifies the style to be used by the parent window
WORDWRAP Invokes a multiple-line editor in multiple-segment

fields
CLASS Specifies the behavior of a field defined with the

WIDGET attribute
CONFIG Specifies the parameters for the definition of a

widget (only used with WIDGET attribute)

Genero Business Development Language

652

KEY Defines the label of a key when the field gets the
focus

OPTIONS Specifies widget definition options
REVERSE Causes values in the field to be displayed in

reverse video
WIDGET Defines the type of widget to be used for

presentation

ACCELERATOR Attribute

Purpose:

The ACCELERATOR attribute defines the primary accelerator key of an action default item.

Syntax:

ACCELERATOR = [CONTROL-][SHIFT-][ALT-]key

Notes:

1. key defines the accelerator key as described in Accelerators

ACCELERATOR2 Attribute

Purpose:

The ACCELERATOR2 attribute defines the secondary accelerator key of an action default
item.

Syntax:

ACCELERATOR2 = [CONTROL-][SHIFT-][ALT-]key

Notes:

1. key defines the accelerator key as described in Accelerators

User Interface

653

ACCELERATOR3 Attribute

Purpose:

The ACCELERATOR3 attribute defines the third accelerator key of an action default item.

Syntax:

ACCELERATOR3 = [CONTROL-][SHIFT-][ALT-]key

Notes:

1. key defines the accelerator key as described in Accelerators

ACCELERATOR4 Attribute

Purpose:

The ACCELERATOR4 attribute defines the fourth accelerator key of an action default item.

Syntax:

ACCELERATOR4 = [CONTROL-][SHIFT-][ALT-]key

Notes:

1. key defines the accelerator key as described in Accelerators

ACTION Attribute

Purpose:

The ACTION attribute defines the name of the action to be sent to the program when the
user activates the form item.

Syntax:

ACTION = action-name

Notes:

1. action-name is an identifier that defines the name of the action to be sent.

Genero Business Development Language

654

Tips:

1. Try to use abstract action names instead of key identifiers.

Example:

01 BUTTONEDIT f001 = customer.state, ACTION = print;

AUTOSCALE Attribute

Purpose:

The AUTOSCALE attribute causes the form element contents to automatically scale to the
size given to the item.

Syntax:

AUTOSCALE

Notes:

1. For images, this attribute forces the image to be stretched to fit in the area
reserved for the image.

AUTONEXT Attribute

Purpose:

The AUTONEXT attribute causes the cursor to automatically advance during input to the
next field when the current field is full.

Syntax:

AUTONEXT

Notes:

1. If data values entered in the field do not meet the requirements of other field
attributes like INCLUDE or PICTURE, the cursor does not automatically move to the
next field but remains in the current field, and an error message displays.

User Interface

655

Tips:

1. AUTONEXT is particularly useful with character fields in which the input data is of a
standard length, such as numeric postal codes or the abbreviations in the state
table. It is also useful if a character field has a length of 1 because only one
keystroke is required to enter data and move to the next field.

CENTURY Attribute

Purpose:

The CENTURY attribute specifies how to expand abbreviated one- and two-digit year
specifications in a DATE and DATETIME field. Expansion is based on this setting (and
on the year value from the system clock at runtime).

Syntax:

CENTURY = { "R" | "C" | "F" | "P" }

Notes:

1. The CENTURY attribute can specify any of four algorithms to expand abbreviated
years into four-digit year values that end with the same digits (or digit) that the
user has entered.

2. CENTURY supports the same settings as the DBCENTURY environment variable,
but with a scope that is restricted to a single field.

3. If the CENTURY and DBCENTURY settings are different, CENTURY takes
precedence.

Warnings:

1. Unlike DBCENTURY, the CENTURY attribute is not case sensitive. However, we
recommend that you use uppercase letters in the attribute.

CLASS Attribute

Purpose:

The CLASS attribute is used to define the behavior of a field.

Syntax:

CLASS = "identifier"

Genero Business Development Language

656

Notes:

1. identifier is a predefined keyword defining the class of the field.

Supported field classes:

Class Description
KEY Field is used to trigger a keystroke instead of being a normal

input field.
Only supported with special widgets such as buttons,
checkboxes and radiobuttons.

PASSWORD Field input is masked by replacing normal character echo by
stars "*".

Warnings:

1. The attribute is supported for backward compatibility.

COLOR Attribute

Purpose:

The COLOR attribute defines the foreground color of the text displayed by a form element.

Syntax:

COLOR = color-name

Notes:

1. color-name can be: BLACK, BLUE, CYAN, GREEN, MAGENTA, RED, WHITE, and
YELLOW.

2. For backward compatibility, color-name can be combined with an intensity
keyword: REVERSE, LEFT, BLINK, and UNDERLINE.

Example:

01 EDIT f001 = customer.name, COLOR = RED;

User Interface

657

COLOR WHERE Attribute

Purpose:

The COLOR WHERE attribute defines a condition to set the foreground color dynamically.

Syntax:

COLOR = color-name [...] WHERE boolexpr

Notes:

1. color-name can be: BLACK, BLUE, CYAN, GREEN, MAGENTA, RED, WHITE, and
YELLOW.

2. color-name can also be an intensity keyword: REVERSE, LEFT, BLINK, and
UNDERLINE.

3. boolexpr defines a Boolean expression with a restricted syntax.
4. The Boolean expression is automatically evaluated at runtime to check when the

color attribute must be set.

Warnings:

1. The condition in COLOR WHERE can only reference the field for which the attribute
is set.

2. The COLOR WHERE attribute may not be supported in all situations; it is not
supported in TABLE columns.

Example:

01 EDIT f001 = item.price, COLOR = RED WHERE f001>100;

CONFIG Attribute

Purpose:

The CONFIG attribute is used with the WIDGET attribute to define the behavior and
decoration of the field.

Syntax:

CONFIG = "parameter [...]"

Notes:

1. The CONFIG attribute can only be used with the WIDGET attribute. It is ignored if
WIDGET is not used.

Genero Business Development Language

658

2. parameter is the value of a configuration parameter.
3. Configuration parameters are separated by blanks.
4. If a configuration parameter holds blank characters, you must use {} curly

braces to delimit the parameter value.
5. See the WIDGET attribute for more details about configuration.

COMMENT Attribute

Purpose:

The COMMENT attribute defines text that can be shown when the element becomes
current.

Syntax:

COMMENT = [%]"string"

Notes:

1. string is the text to be displayed.
2. string can be a localized string.
3. The screen location where the message is displayed depends on external

configuration. It can be displayed in the COMMENT LINE, or in the STATUSBAR
when using a graphical user interface.

Tips:

1. The most common use of the COMMENT attribute is to give information or
instructions to the user. This is particularly appropriate when the field accepts
only a limited set of values.

Warnings:

1. If the OPEN WINDOW statement specifies COMMENT LINE OFF, any output to the
comment area is hidden even if the window displays a form that includes fields
that include the COMMENT attribute.

Example:

01 EDIT f001 = customer.name, COMMENT = "The customer name";

User Interface

659

DEFAULT Attribute

Purpose:

The DEFAULT attribute assigns a default value to a field during data entry.

Syntax:

DEFAULT = value

Notes:

1. value can be any literal expression supported by the form compiler.
2. value can be TODAY to specify the current system date as default.
3. value can be CURRENT to specify the current system datetime as default.
4. Default values have no effect when you execute the INPUT statement using the

WITHOUT DEFAULTS option. In this case, the runtime system displays the values
in the program variables list on the screen. The situation is the same for the
INPUT ARRAY statement, except that the default values are displayed when the
user inserts a new row.

5. If the field is FORMONLY, you must also specify a data type when you assign
the DEFAULT attribute to a field.

6. If both the DEFAULT attribute and the REQUIRED attribute are assigned to the
same field, the REQUIRED attribute is ignored.

7. If you do not use the WITHOUT NULL INPUT option in the DATABASE section, all
fields default to null values unless you have specified a DEFAULT attribute.

Warnings:

1. DATETIME and INTERVAL literals are not supported.

Example:

01 EDIT f001 = order.orderdate, DEFAULT = TODAY;

DEFAULTVIEW Attribute

Purpose:

DEFAULTVIEW is an Action Default attribute defining whether the default view (button)
must be displayed for an action.

Syntax:

DEFAULTVIEW = [AUTO | YES | NO]

Genero Business Development Language

660

Notes:

1. AUTO means that the view must be displayed if no explicit action view is used for
that action. This is the default.

2. YES indicates that a default action view must always be displayed for this action.
3. NO indicates that no default action view must be displayed for this action.

DISPLAY LIKE Attribute

Purpose:

The DISPLAY LIKE attribute takes column attributes defined in the database schema
files and applies them to a field.

Syntax:

DISPLAY LIKE [table.]column

Notes:

1. table is the optional table name to qualify the column.
2. column is the name of the column to be used to retrieve display attributes.
3. Specifying this attribute is equivalent to listing all the attributes that are assigned

to table.column in the database schema file generated from the syscolatt table.
4. Display attributes are automatically taken from the schema file if the field is linked

to table.column in the field name specification.

Warnings:

1. The DISPLAY LIKE clause is evaluated at compile time, not at runtime. If the
database schema file changes, you might need to recompile a program that uses
the LIKE clause. Even if all of the fields in the form are FORMONLY, this attribute
requires the form compiler to access the database schema file that contains the
description of table.

Example:

01 EDIT f001 = FORMONLY.fullname, DISPLAY LIKE customer.custname;

HIDDEN Attribute

Purpose:

The HIDDEN attribute indicates that the element should not be displayed.

User Interface

661

Syntax:

HIDDEN [= USER]

Notes:

1. HIDDEN sets the underlying item attribute to 1.
2. HIDDEN=USER sets the underlying item attribute to 2.

Warnings:

1. When you set a hidden attribute for a form field, the model node gets the hidden
attribute, not the view node.

Usage:

By default, all elements are visible. You can use the HIDDEN attribute to hide an element,
such as a form field or a groupbox. The runtime system handles hidden form fields. If
you write an INPUT statement using a hidden field, the field is ignored (as if it was
declared as NOENTRY). Programs may change the visibility of form fields dynamically
with the ui.Form built-in class.

When you use the HIDDEN keyword only, the underlying item attribute is set to 1. The
value 1 indicates that the element is hidden to the user without the possibility of showing
the element, for example with the context menu of table headers. In this hidden mode,
the UNHIDABLE attribute is ignored by the front end.

When you use HIDDEN=USER, the underlying item attribute is set to 2. The value 2
indicates that the element is hidden by default, but the user can show/hide the element
as needed. For example, the user can change a hidden column back to visible.

Example:

01 EDIT f001 = FORMONLY.field1, HIDDEN;
02 EDIT col1 = FORMONLY.column1, HIDDEN=USER;

HEIGHT Attribute

Purpose:

The HEIGHT attribute defines an explicit height for a form element.

Syntax:

HEIGHT = integer [CHARACTERS|LINES|POINTS|PIXELS]

Genero Business Development Language

662

Notes:

1. integer defines the height of the element.

Usage:

By default, the size of an element is defined in characters and automatically computed
by the form compiler according to the size of the form element in the layout.

For items like images, the default height is defined by the number of lines of the item tag
(as a vertical character height). You can overwrite this default by specifying the HEIGHT
attribute. You typically give a number of pixels.

For tables, the default height is defined by the number of lines used in the table layout.
You can overwrite this default by specifying the HEIGHT attribute.

If you don't specify any unit, the size unit defaults to CHARACTERS, which defines the
number of grid cells.

See also: WIDTH.

Example:

01 IMAGE img1 : image1, WIDTH = 200 PIXELS, HEIGHT = 120 PIXELS;

BUTTONTEXTHIDDEN Attribute

Purpose:

The BUTTONTEXTHIDDEN attribute indicates that the labels of the buttons of this element
should not be displayed.

Syntax:

BUTTONTEXTHIDDEN

Usage:

Use in a TOOLBAR definition to hide the labels of buttons.

User Interface

663

DOUBLECLICK Attribute

Purpose:

The DOUBLECLICK attribute defines the action to be sent when the user double-clicks on
a TABLE row.

Syntax:

DOUBLECLICK = action-name

Usage:

This attribute is typically used in a TABLE container, to define the action to be sent when
the user double-clicks on a row. By default, if the TABLE is driven by a DISPLAY
ARRAY, a double-click fires the accept action. When using an INPUT ARRAY, double-
click selects the whole text if the current widget is editable. If DOUBLECLICK is defined
when using an INPUT ARRAY, the action can only be sent when the user double-clicks on
a non-editable widget like a LABEL.

DOWNSHIFT Attribute

Purpose:

Assign the DOWNSHIFT attribute to a character field when you want the runtime system to
convert uppercase letters entered by the user to lowercase letters, both on the screen
and in the corresponding program variable.

Syntax:

DOWNSHIFT

Notes:

1. Because uppercase and lowercase letters have different values, storing
character strings in one or the other format can simplify sorting and querying a
database.

2. Characters entered by the user are converted in INPUT, INPUT ARRAY and
CONSTRUCT instructions.

3. When using single byte runners, the conversion of ASCII characters >127 is
controlled by the LC_CTYPE environment variable.

4. The results of conversions between uppercase and lowercase letters are based
on the locale settings (LANG).

Genero Business Development Language

664

FORMAT Attribute

Purpose:

You can use the FORMAT attribute with numeric and date time fields to control the format
of output displays.

Syntax:

FORMAT = "format-string"

Notes:

1. format-string is a string of characters that specifies a data display format.
2. You must enclose format-string within quotation marks (").
3. Use the PICTURE attribute to format data entered in the field by the user.
4. When using FORMAT the data is right-aligned in the field.
5. If format-string is smaller than the field width, you get a compile-time warning, but

the form is usable.
6. When this attribute is not used, environment variable settings define the default

format.

Warnings:

1. To follow abstract user interface programming and support internationalization, it
is not recommended that you use this attribute.

Numeric formats:

For DECIMAL, SMALLFLOAT, and FLOAT data types, format-string consists of pound
signs (#) that represent digits and a decimal point. For example, "###.##" produces three
places to the left of the decimal point and exactly two to the right.

If the numeric value is too large to fit in the number of characters defined by the format,
an overflow text is displayed (****).

If the actual number displayed requires fewer characters than format-string specifies,
numbers are right-aligned and padded on the left with blanks.

If necessary to satisfy the format-string specification, the number values are rounded
before display.

Character Description
* Fills with asterisks any position that would otherwise be blank.
& Fills with zeros any position that would otherwise be blank.
This does not change any blank positions in the display.
< Causes left alignment.

User Interface

665

, (comma) Defines the position of the comma (not displayed if there are
no digits on the left).

. (period) Defines the position of the period (only one can be used).
- Displays a minus sign for negative numbers.
+ Displays a plus sign for positive numbers.

$ This is the placeholder for the front specification of DBMONEY
or DBFORMAT.

(Displayed as left parentheses for negative numbers
(accounting parentheses).

) Displayed as right parentheses for negative numbers
(accounting parentheses).

Date formats:

For DATE data types, the runtime system recognizes these symbols as special in
format-string:

Character Description
dd Day of the month as a 2-digit integer.

ddd Three-letter English-language abbreviation of the day of the
week, for example, Mon, Tue.

mm Month as a 2-digit integer.

mmm Three-letter English-language abbreviation of the month, for
example, Jan, Feb.

yy Year, as a 2-digits integer representing the 2 trailing digits.
yyyy Year as a 4-digit number.

The form compiler interprets any other characters as literals and displays them wherever
you place them within format-string.

These format-string examples and their corresponding display formats for DATE fields
display the twenty-third day of September 1999:

FORMAT attribute Result
none 09/23/1999
FORMAT = "mm/dd/yy" 09/23/99
FORMAT = "mmm dd, yyyy" Sep 23, 1999
FORMAT = "yymmdd" 990923
FORMAT = "dd-mm-yy" 23-09-99
FORMAT = "(ddd.) mmm. dd, yyyy" (Thu.) Sep. 23, 1999

Genero Business Development Language

666

Example:

01 EDIT f001 = order.thedate, FORMAT = "mm/dd/yyyy";

FONTPITCH Attribute

Purpose:

This attribute defines the character font type as fixed or variable when the default font is
used.

Syntax:

FONTPITCH = {FIXED|VARIABLE}

Notes:

1. When using FIXED, you force the characters to have a fixed size.
2. When using VARIABLE, you allow the characters to have a variable size.

Usage:

By default, most front ends use variable width character fonts, but in some cases you
might need to use a fixed font.

It is recommended that you use a STYLE defining a fixed font instead of this attribute.

GRIDCHILDRENINPARENT Attribute

Purpose:

This attribute is used for a container to align its children to the parent container.

Syntax:

GRIDCHILDRENINPARENT

Usage:

By default, child elements of a container are aligned locally inside the container layout
cells. With this attribute, you can force children to be aligned according to the layout cells
of the parent container of the container to which you assign this attribute.

User Interface

667

This is useful, for example, when you want to align fields across groups defined with
Layout Tags inside a GRID:

01 LAYOUT
02 GRID
03 {
04 <G g1 >
05 Field1 [f1]
06 Field2 [f2]
07 Field3 [f3]
08
09 <G g2 >
10 F4 [f4]
11 F5 [f5]
12
13 }
14 END
15 END
16 ATTRIBUTES
17 GROUP g1 : GRIDCHILDRENINPARENT;
18 GROUP g2 : GRIDCHILDRENINPARENT;
19 EDIT f1 = FORMONLY.field1;
20 EDIT f2 = FORMONLY.field2;
21 EDIT f3 = FORMONLY.field3;
22 EDIT f4 = FORMONLY.field4;
23 EDIT f5 = FORMONLY.field5;
24 END

INCLUDE Attribute

Purpose:

The INCLUDE attribute specifies acceptable values for a field and causes the runtime
system to check the data before accepting an input value.

Syntax:

INCLUDE = ({ NULL | literal [TO literal] } [,...])

Notes:

1. literal can be any literal expression supported by the form compiler.
2. If the field is FORMONLY, you must also specify a data type when you assign

the INCLUDE attribute to a field.

Warnings:

1. DATETIME and INTERVAL literals are not supported.

Genero Business Development Language

668

Example:

01 EDIT f001 = compute.rate, INCLUDE = (1 TO 100, 200, NULL);
02 EDIT f002 = customer.state, INCLUDE = ("AL" TO "GA", "IA" TO "WY"
);

INVISIBLE Attribute

Purpose:

The INVISIBLE attribute prevents user-entered data from being echoed on the screen
during an interactive statement.

Syntax:

INVISIBLE

Notes:

1. Characters that the user enters in a field with this attribute are not displayed
during data entry. Depending on the front end type, the typed characters are
displayed using the blank, star, underscore or dot characters.

Warnings:

1. This attribute does not prevent display instructions like DISPLAY, DISPLAY
ARRAY from explicitly displaying data in the field.

IMAGE Attribute

Purpose:

The IMAGE attribute defines the image file to be associated with the form item.

Syntax:

IMAGE = "name"

Notes:

1. name can be a simple file name, a path, or URL to an image server.

User Interface

669

Usage:

This attribute is used to define the image file containing the icon to be displayed in a
button or the picture of an image form item.

The name can be a simple file name, a complete or relative path, or an URL (Uniform
Resource Locator) path to an image server.

While you can give a complete path with the file extension, it is recommended that you
use a simple name or a relative path without the file extension, so that the system can
automatically search for the image file using the specific extension (bmp, gif, ...).

If the image specification is a simple file name, the file is first sought in the pictures
directory on the client workstation. If the file is not found, the front-end automatically
sends an image request to the runtime system, in order to search for an image on the
application server. The runtime system searches for server-side images by using the
FGLIMAGEPATH environment variable.

To simplify deployment, you should use server-side images to centralize all images on
the application server.

Example:

01 BUTTONEDIT f001 = FORMONLY.field01, IMAGE = "zoom";

KEY Attribute

Purpose:

The KEY attribute is used to define the labels of keys when the field is made current.

Syntax:

KEY keyname = [%]"label"

Notes:

1. keyname is the name of a key (like F10, "Control-z").
2. Note that the keyname has to be specified in quotes if you want to use Control /

Shift / Alt key modifiers.
3. label is the text to be displayed in the button corresponding to the key.
4. See also the KEYS section to define key labels for the whole form.

Genero Business Development Language

670

Warning: This attributes is supported for backward compatibility.

Example:

01 EDIT f001 = customer.city, KEY F10 = "City list";
02 EDIT f002 = customer.state, KEY "Control-z" = "Open Zoom";

MINHEIGHT Attribute

Purpose:

The MINHEIGHT attribute defines the minimum height of a form.

Syntax:

MINHEIGHT = integer

Notes:

1. integer defines the minimum height of the element, as a number of grid cells.

Usage:

The MINHEIGHT attribute is used to define a minimum height of the form/window. It must
be specified in the attributes of the LAYOUT section.

The unit defaults to a number of grid cells. This is the equivalent of the CHARACTERS in
the HEIGHT attribute specification.

See also: MINWIDTH.

Example:

01 LAYOUT (MINWIDTH=60, MINHEIGHT=50)
02 GRID
03 ...

MINWIDTH Attribute

Purpose:

The MINWIDTH attribute defines the minimum width of a form.

User Interface

671

Syntax:

MINWIDTH = integer

Notes:

1. integer defines the minimum width of the element, as a number of grid cells.

Usage:

The MINWIDTH attribute is used to define a minimum width of the form/window. It must be
specified in the attributes of the LAYOUT section.

The unit defaults to a number of grid cells. This is the equivalent of the CHARACTERS in
the WIDTH attribute specification.

See also: MINHEIGHT.

Example:

01 LAYOUT (MINWIDTH=60, MINHEIGHT=50)
02 GRID
03 ...

NOT NULL Attribute

Purpose:

The NOT NULL attribute sets that the field does not accept NULL values.

Syntax:

NOT NULL

Notes:

1. NOT NULL keywords can also be used in the type definition of FORMONLY fields.

Usage:

This attribute requires that the field contains a value. If the field contains a default value,
the NOT NULL attribute satisfied. To insist on data entry from the user, combine NOT
NULL with the REQUIRED attribute in the field definition, or make sure the corresponding
column is defined as REQUIRED in the database schema file.

See also REQUIRED attribute.

Genero Business Development Language

672

Example:

01 EDIT f001 = customer.city, NOT NULL;

NOENTRY Attribute

Purpose:

The NOENTRY attribute prevents data entry in the field during an INPUT or INPUT
ARRAY statement.

Syntax:

NOENTRY

Notes:

1. The NOENTRY attribute does not prevent data entry into a field during a
CONSTRUCT statement.

Example:

01 EDIT f001 = order.totamount, NOENTRY;

ORIENTATION Attribute

Purpose:

The ORIENTATION attribute defines whether an element displays vertically or
horizontally.

Syntax:

ORIENTATION = { VERTICAL | HORIZONTAL }

Example:

01 RADIOGROUP f001 = customer.status, ORIENTATION=HORIZONTAL;

User Interface

673

PICTURE Attribute

Purpose:

The PICTURE attribute specifies a character pattern for data entry in a text field, and
prevents entry of values that conflict with the specified pattern.

Syntax:

PICTURE = "format-string"

Notes:

1. format-string defines the data input pattern of the field.
2. format-string can be any combination of characters, where the characters "A", "#"

and "X" have a special meaning.
3. The character "A" specifies any letter (alpha-numeric) character at a given

position.
4. The character "#" specifies any digit character at a given position.
5. The character "X" specifies any character at a given position.
6. Any character different from "A", "X" and "#" is treated as a literal. Such

characters automatically appear in the field and do not have to be entered by the
user.

7. The PICTURE attribute does not require data entry into the entire field. It only
requires that whatever characters are entered conform to format-string.

8. When PICTURE specifies input formats for DATETIME or INTERVAL fields, the
form compiler does not check the syntax of format-string, but your form will work
if the syntax is correct. Any error in format-string, however, such as an incorrect
field separator, produces a runtime error.

Example:

01 EDIT f001 = carinfo.number, PICTURE = "AA####-AA(X)";

PROGRAM Attribute TUI Only!

Purpose:

The PROGRAM attribute can specify an external application program to work with screen
fields of data type TEXT or BYTE.

Syntax:

PROGRAM = "editor"

Genero Business Development Language

674

Notes:

1. editor is the name of the program that must be used to edit the special field data.
2. You can assign the PROGRAM attribute to a TEXT or BYTE field to call an external

program to work with the BYTE or TEXT values.
3. Users can invoke the external program by pressing the exclamation point (!) key

while the screen cursor is in the field.
4. The external program then takes over control of the screen. When the user exits

from the external program, the form is redisplayed with any display attributes
besides PROGRAM in effect.

5. When no PROGRAM attribute is used, the DBEDIT environment variable defines
the default editor.

Warning: This attribute works in TUI mode only.

QUERYEDITABLE Attribute

Purpose:

The QUERYEDITABLE attribute makes a combobox field editable during a CONSTRUCT
statement.

Syntax:

QUERYEDITABLE

Notes:

1. The QUERYEDITABLE attribute is effective only during a CONSTRUCT statement..
2. This attribute is useful when the display values match the real values in the

ITEMS attribute.

REQUIRED Attribute

Purpose:

The REQUIRED attribute forces the user to enter data in the field during an INPUT or
INPUT ARRAY statement.

Syntax:

REQUIRED

User Interface

675

Notes:

1. The REQUIRED attribute is effective only when the field name appears in the list of
screen fields of an INPUT or INPUT ARRAY statement.

2. If both the REQUIRED and DEFAULT attributes are assigned to the same field, the
runtime system assumes that the default value satisfies the REQUIRED attribute.

Warnings:

1. If the dialog instruction uses the WITHOUT DEFAULTS clause, the current value of
the variable linked to the REQUIRED field is considered as a default value; the
runtime system assumes that the field satisfies the REQUIRED attribute, even if
the variable value is NULL.

Usage:

This attribute requires only that the user enter a printable character in the field. If the
user subsequently erases the entry during the same input, the runtime system considers
the REQUIRED attribute satisfied. To insist on a non-null entry, combine REQUIRED with
the NOT NULL attribute in the field definition or make sure the corresponding column is
defined as NOT NULL in the database schema file.

See also NOT NULL attribute.

REVERSE Attribute

Purpose:

On character terminals, the REVERSE attribute displays any value in the field in reverse
video (dark characters in a bright field).

Syntax:

REVERSE

Notes:

1. With character based terminals, the REVERSE video escape sequences must be
defined in the TERMINFO or TERMCAP databases.

Genero Business Development Language

676

SAMPLE Attribute

Purpose:

The SAMPLE attribute defines the text to be used to compute the width of a form field.

Syntax:

SAMPLE = "text"

Notes:

1. text is the sample string that will be used to compute the width of the field.

Warnings:

1. By default the physical width of the fields is:
if the width is smaller than 6 chars, the pixel width of the character 'M', multiplied
by the number of characters the field is designed for,
if the width is bigger than 6 chars, the pixel width of 6 characters 'M' plus the
pixel width of the character '0' , multiplied by the number of characters the field is
designed for minus 6.
The default sample looks like "MMMMMM0000"...

Usage:

By default, form fields are rendered by the client with a size determined by the current
font and the number of characters used in the layout grid. The field width is computed so
that the largest value can fit in the widget.

Sometimes the default computed width is too wide for the typical values displayed in the
field. For example, numeric fields usually need less space as alphanumeric fields. If the
values are always smaller, you can use the SAMPLE attribute to provide a hint for the
front end to compute the best width for that form field.

You can define a default sample for all fields used in the form, by specifying a DEFAULT
SAMPLE option in the INSTRUCTIONS section.

See also: DEFAULT SAMPLE.

Example:

01 EDIT cid = customer.custid, SAMPLE="0000";
02 EDIT ccode = customer.ucode, SAMPLE="MMMMMM";
03 DATEEDIT be01 = customer.created, SAMPLE="00-00-0000";

User Interface

677

SCROLL Attribute

Purpose:

The SCROLL attribute can be used to enable horizontal scrolling in a character field.

Syntax:

SCROLL

Warnings:

1. Applies only to fields with character data input.

Usage:

By default, the maximum data input length is defined by the width of the item-tag of the
field. For example, if you define an CHAR field in the form with a length of 3 characters,
users can only enter a maximum of 3 characters, even if the program variable used for
input is a CHAR(20).

If you want to let the user input more characters than the width of the item-tag of the
field, use the SCROLL attribute.

See also: Field Input Length.

STRETCH Attribute

Purpose:

The STRETCH attribute specifies how a widget must resize when the parent container is
resized.

Syntax:

STRETCH = { NONE | X | Y | BOTH }

Usage:

This attribute is typically used with form items that can be resized like IMAGE or
TEXTEDIT fields. By default such form items have a fixed width and height, but in some
cases you may want to force the widget to resize vertically, horizontally, or in both
directions.

Genero Business Development Language

678

Example:

01 IMAGE i01 = FORMONLY.image01, STRETCH=BOTH;

STEP Attribute

Purpose:

The STEP attribute specifies how a value is increased or decreased in one step (by a
mouse click or key up/down).

Syntax:

STEP = integer

Usage:

This attribute is typically used with form items allowing the user to change the current
integer value by a mouse click like SLIDER, SPINEDIT.

Example:

01 SLIDER s01 = FORMONLY.slider, STEP=10;

TEXT Attribute

Purpose:

The TEXT attribute defines the label associated with a form item, such as the text of a
checkbox item.

Syntax:

TEXT = [%]"string"

Notes:

1. string defines the label to be associated with the form item.
2. string can be a localized string.

Example:

01 CHECKBOX cb01 = FORMONLY.checkbox01, TEXT="OK", VALUECHECKED='y',
VALUEUNCHECKED='n';

User Interface

679

TITLE Attribute

Purpose:

The TITLE attribute defines the title of a form item. Use may be restricted to form fields
that make up the columns of a table container; see the documentation for the relevant
form item.

Syntax:

TITLE = [%]"string"

Notes:

1. string defines the title to be associated with the form item.
2. string can be a localized string.

Example:

01 EDIT col1 = FORMONLY.column1, TITLE="Num";

VALUEMIN Attribute

Purpose:

The VALUEMIN attribute defines a lower limit of values displayed in widgets (such as
progress bars).

Syntax:

VALUEMIN = integer

Notes:

1. integer is a integer literal.

Usage:

This attribute is typically used in PROGRESSBAR fields, to define the lower limit.

Genero Business Development Language

680

VALUEMAX Attribute

Purpose:

The VALUEMAX attribute defines a upper limit of values displayed in widgets (such as
progress bars).

Syntax:

VALUEMAX = integer

Notes:

1. integer is an integer literal.

Usage:

This attribute is typically used in PROGRESSBAR fields, to define the upper limit.

VALUECHECKED Attribute

Purpose:

The VALUECHECKED attribute defines the value associated with a checkbox item when it
is checked.

Syntax:

VALUECHECKED = value

Notes:

1. value is a numeric or string literal, or one of the following keywords: NULL, TRUE,
FALSE.

Usage:

This attribute is used in conjunction with the VALUEUNCHECKED attribute to define the
values corresponding to the states of a CHECKBOX. See CHECKBOX definition for more
details.

Example:

01 CHECKBOX cb01 = FORMONLY.checkbox01, TEXT="OK", VALUECHECKED=TRUE,
VALUEUNCHECKED=FALSE;

User Interface

681

VALUEUNCHECKED Attribute

Purpose:

The VALUEUNCHECKED attribute defines the value associated with a checkbox item when
it is not checked.

Syntax:

VALUEUNCHECKED = value

Notes:

1. value is a numeric or string literal, or one of the following keywords: NULL, TRUE,
FALSE.

Usage:

This attribute is used in conjunction with the VALUECHECKED attribute to define the values
corresponding to the states of a CHECKBOX. See CHECKBOX definition for more details.

Example:

01 CHECKBOX cb01 = FORMONLY.checkbox01, TEXT="OK", VALUECHECKED="Y",
VALUEUNCHECKED="N";

UNSORTABLE Attribute

Purpose:

Indicates that the element cannot be selected by the user for sorting.

Syntax:

UNSORTABLE

Notes:

1. Makes sense only for a field that is used for the definition of a column in a TABLE
container.

Genero Business Development Language

682

Usage:

By default, a TABLE container allows the user to sort the columns by a left-click on the
column header. Use this attribute to prevent a sort on a specific column.

Example:

01 EDIT c01 = item.comment, UNSORTABLE;

UNSORTABLECOLUMNS Attribute

Purpose:

Indicates that the columns of the table cannot be selected by the user for sorting.

Syntax:

UNSORTABLECOLUMNS

Usage

Same effect as UNSORTABLE, but at the TABLE level, so that none of the table
columns can be used for sort.

Example:

01 TABLE t1 (UNSORTABLECOLUMNS)

UNSIZABLE Attribute

Purpose:

Indicates that the element cannot be resized by the user.

Syntax:

UNSIZABLE

Notes:

1. Makes sense only for a field that is used for the definition of a column in a TABLE
container.

User Interface

683

Usage:

By default, a TABLE container allows the user to resize the columns by a drag-click on
the column header. Use this attribute to prevent a resize on a specific column.

Example:

01 EDIT c01 = item.comment, UNSIZABLE;

UNSIZABLECOLUMNS Attribute

Purpose:

Indicates that the columns of the table cannot be resized by the user.

Syntax:

UNSIZABLECOLUMNS

Usage

Same effect as UNSIZABLE, but at the TABLE level, to make all columns not resizable.

Example:

01 TABLE t1 (UNSIZABLECOLUMNS)

UNHIDABLE Attribute

Purpose:

Indicates that the element cannot be hidden or shown by the user with the context menu.

Syntax:

UNHIDABLE

Notes:

1. Makes sense only for a field that is used for the definition of a column in a TABLE
container.

Genero Business Development Language

684

Usage:

By default, a TABLE container allows the user to hide the columns by a right-click on the
column header. Use this attribute to prevent the user from hiding a specific column.

Example:

01 EDIT c01 = item.comment, UNHIDABLE;

UNHIDABLECOLUMNS Attribute

Purpose:

Indicates that the columns of the table cannot be hidden or shown by the user with the
context menu.

Syntax:

UNHIDABLECOLUMNS

Usage

Same effect as UNHIDABLE, but at the TABLE level, to make all columns not hidable.

Example:

01 TABLE t1 (UNHIDABLECOLUMNS)

UNMOVABLE Attribute

Purpose:

The UNMOVABLE attribute prevents the user from moving a defined column of a table.

Syntax:

UNMOVABLE

Usage:

By default, a TABLE container allows the user to move the columns by dragging and
dropping the column header. Use this attribute to prevent the user from changing the
order of a specific column. Typically, UNMOVABLE is used on at least two columns to
prevent the user from changing the order of the input on these columns.

User Interface

685

UNMOVABLECOLUMNS Attribute

Purpose:

The UNMOVABLECOLUMNS attribute prevents the user from moving columns of a table.

Syntax:

UNMOVABLECOLUMNS

Usage:

By default, a TABLE container allows the user to move the columns by dragging and
dropping the column header. Use this attribute to prevent the user from changing the
order of columns.

UPSHIFT Attribute

Purpose:

Assign the UPSHIFT attribute to a character field when you want the runtime system to
convert lowercase letters entered by the user to uppercase letters, both on the screen
and in the corresponding program variable.

Syntax:

UPSHIFT

Notes:

1. Because uppercase and lowercase letters have different values, storing
character strings in one or the other format can simplify sorting and querying a
database.

2. Characters entered by the user are converted in INPUT, INPUT ARRAY and
CONSTRUCT instructions.

3. With single byte runners the conversion of ASCII characters >127 is controlled by
the locale settings (the LC_CTYPE environment variable).

4. The results of conversions between uppercase and lowercase letters are based
on the locale settings (LANG).

Example:

01 EDIT f001 = FORMONLY.thetitle, UPSHIFT;

Genero Business Development Language

686

VALIDATE Attribute

Purpose:

VALIDATE is an Action Defaults attribute defining the data validation level for a given
action.

Syntax:

VALIDATE = NO

Notes:

1. NO indicates that no data validation must occur for this action. However, current
input buffer contains the text modified by the user before triggering the action.

VALIDATE LIKE Attribute

Purpose:

The VALIDATE LIKE attribute instructs the runtime system to validate the data entered in
the field by using the validation rules defined in the database schema file for the column
associated with the field.

Syntax:

VALIDATE LIKE [table.]column

Notes:

1. table is the optional table name to qualify the column.
2. column is the name of the column used to search for validation rules.
3. Specifying this attribute is equivalent to listing all the attributes that are assigned

to table.column in the database schema file generated from the syscolval table.
4. Validation rules are taken automatically from the schema file if the field is linked

to table.column in the field name specification.

Warnings:

1. The VALIDATE LIKE clause is evaluated at compile time, not at runtime. If the
database schema file changes, you might need to recompile a program that uses
the LIKE clause. Even if all of the fields in the form are FORMONLY, this attribute
requires the form compiler to access the database schema file that contains the
description of table.

User Interface

687

Example:

01 EDIT f001 = FORMONLY.fullname, VALIDATE LIKE customer.custname;

INITIALIZER Attribute

Purpose:

The INITIALIZER attribute allows you to specify an initialization function that will be
automatically called by the runtime system to set up the form item.

Syntax:

INITIALIZER = function

Notes:

1. function is an identifier defining the program function to be called.

Usage:

The initialization function must exist in the program using the form file and must be
defined with a ui.ComboBox parameter.

ITEMS Attribute

Purpose:

The ITEMS attribute defines a list of possible values that can be used by the form item.

Syntax:

ITEMS = { single-value-list | double-value-list }

where single-value-list is:

(value [,...])

where double-value-list is:

((value, label-value) [,...])

Genero Business Development Language

688

Notes:

1. single-value-list is a comma-separated list of single values.
2. double-value-list is a comma-separated list of (a, b) values pairs within

parentheses.
3. value is a numeric or string literal, or one of the following keywords: NULL, TRUE,

FALSE.
4. label-value is a numeric literal, a string literal, or a localized string.

Warnings:

1. It is only possible to use localized strings for item labels (i.e. not for key values).

Usage:

The list must be delimited by parentheses, and each element of the list can be a simple
literal value or a pair of literal values delimited by parentheses.

The following example defines a list of simple values:

ITEMS = ("Paris", "London", "New York")

The next example defines a list of pairs:

ITEMS = ((1,"Paris"),(2,"London"),(3,"New York"))

This attribute can be used, for example, to define the list of a COMBOBOX form item:

01 COMBOBOX cb01 = FORMONLY.combobox01, ITEMS =
((1,"Paris"),(2,"London"),(3,"New York"));

In this case, the first value of a pair (1,2,3) defines the data values of the form field and
the second value of a pair ("Paris", "London", "New York") defines the value to be
displayed in the selection list.

When used in a RADIOGROUP form item, this attribute defines the list of radio buttons:

01 RADIOGROUP rg01 = FORMONLY.radiogroup01, ITEMS =
((1,"Paris"),(2,"London"),(3,"New York"));

In this case, the first value of a pair (1,2,3) defines the data values of the form field and
the second value of a pair ("Paris", "London", "New York") defines the value to be
displayed as the radio button label.

Localization

You can specify item labels with Localized Strings, but this is only possible when you
specify a key and a label:

User Interface

689

ITEMS = ((1,%"item1"),(2,%"item2"),(3,%"item3"))

Using NULL items

It is allowed to define a NULL value for an item (note that an empty string is equivalent to
NULL):

ITEMS = ((NULL,"Enter bug status"),(1,"Open"),(2,"Resolved"))

In this case, the behavior of the field depends from the item type used. For more details,
see field type specific notes for COMBOBOX and RADIOGROUP.

JUSTIFY Attribute

Purpose:

The JUSTIFY attribute defines text justification.

Syntax:

JUSTIFY = { LEFT | CENTER | RIGHT }

Usage:

Default text justification depends on the dialog type, the field data type and the FORMAT
attribute. For example, a numeric field value is right aligned, while a string field is left
aligned. The type of dialog also defines the default justification. In a CONSTRUCT, all
input fields are left aligned, for search criteria input.

With the JUSTIFY attribute, you define the display text justification of a field, as LEFT,
CENTER or RIGHT. This attribute is ignored for input; only the default text justification rule
applies when a field has the focus.

The JUSTIFY attribute can only be used for widgets displaying a value as text, like a
LABEL, EDIT or BUTTONEDIT.

Example:

01 LABEL t01 : TEXT="Hello!", JUSTIFY=RIGHT;
02 EDIT f01 = order.value, JUSTIFY=CENTER;

Genero Business Development Language

690

SCROLLBARS Attribute

Purpose:

The SCROLLBARS attribute can be used to specify scrollbars for a form item.

Syntax:

SCROLLBARS = { NONE | VERTICAL | HORIZONTAL | BOTH }

Usage:

This attribute defines scrollbars for the form item, such as a TEXTEDIT.

Example:

01 TEXTEDIT f001 = customer.fname, SCROLLBARS=BOTH;

SIZEPOLICY Attribute

Purpose:

The SIZEPOLICY attribute is a sizing directive to display form elements.

Syntax:

SIZEPOLICY = { INITIAL | FIXED | DYNAMIC }

Usage:

This attribute defines the initial size of some form elements. The default value of
SIZEPOLICY is INITIAL.

When the SIZEPOLICY is FIXED, the form elements size is exactly the one defined in the
Form Specification File. The width of the element is computed from the defined width
and the font used.

For some elements such as COMBOBOX or RADIOGROUP, you may want the size of
the widget to fit exactly to its content: When SIZEPOLICY is DYNAMIC, the width of the
element grows and shrinks according to the width of the wider item.

When a form element is created from a database (for instance populating a
COMBOBOX item list), the width of each element is not known when designing the form.
When SIZEPOLICY is INITIAL, the width is computed to display the element correctly
the first time it appears on the screen. Once it is displayed, its width is frozen. This
behavior is also very useful when using Internationalization.

User Interface

691

When SIZEPOLICY is INITIAL, the client behaves differently depending on the form
element type:

• Buttons: The width defined in the form is a minimum width. If the text is bigger,
the size grows.

• ComboBoxes: The width defined in the form is a minimum width. If one of the
items in the value list is bigger, the size grows in order for the combobox to
display the largest item fully .

• Labels, Checkboxes and Radio Groups: The width defined in the form is ignored.
The fields are sized according to their text.

• Images are using AUTOSCALE and STRETCH attributes in combination of
SIZEPOLICY .

• Other items (mostly Edits, or widget without items like ProgressBar) are not
sensitive to this attribute

The following table shows the effect of the SIZEPOLICY attribute according to the type of
form item; INITIAL corresponds to the first content, while DYNAMIC corresponds to the
content at anytime:

Item Type INITIAL FIXED DYNAMIC
EDIT fixed fixed no effect
BUTTONEDIT fixed fixed no effect
TEXTEDIT fixed fixed no effect
DATEEDIT can shrink fixed no effect
COMBOBOX can grow fixed can grow

BUTTON can grow fixed can shrink and
grow

LABEL can shrink and
grow fixed can shrink and

grow

RADIOGROUP can shrink and
grow fixed can shrink and

grow

CHECKBOX can shrink and
grow fixed can shrink and

grow
PROGRESSBAR fixed fixed no effect
SLIDER fixed fixed no effect
SPINEDIT fixed fixed no effect
TIMEEDIT fixed fixed no effect
IMAGE depends on AUTOSCALE and STRETCH attributes
CANVAS Non applicable Non applicable Non applicable

Example:

01 COMBOBOX f001 = customer.city,
ITEMS=((1,"Paris"),(2,"Madrid"),(3,"London")), SIZEPOLICY=DYNAMIC;

Genero Business Development Language

692

SPACING Attribute

Purpose:

The SPACING attribute is a spacing directive to display form elements.

Syntax:

SPACING = { NORMAL | COMPACT }

Usage:

This attribute defines the global distance between two neighboring form elements. By
default, forms are displayed with NORMAL spacing. In NORMAL mode, the front end
displays form elements consistent with the desktop spacing, which is, for example, 6 and
10 pixels on Microsoft Windows platforms. Some overcrowded forms may need to be
displayed with less space between elements, to let them fit to the screen. In this case
you can use the COMPACT mode.

Example:

01 LAYOUT (SPACING=COMPACT)

SPLITTER Attribute

Purpose:

The SPLITTER attribute forces the container to use a splitter widget between each child
element.

Syntax:

SPLITTER

Usage:

This attribute indicates that the container (typically, a VBOX or HBOX) must have a
splitter between each child element held by the container. If a container is defined with a
splitter and if the children are stretchable (like TABLE or TEXTEDIT), users can resize
the child elements inside the container.

Example:

01 VBOX (SPLITTER)

User Interface

693

STYLE Attribute

Purpose:

The STYLE attribute specifies a presentation style for a form element.

Syntax:

STYLE = "string"

Notes:

1. string is a user-defined style.

Usage:

This attribute specifies a presentation style to be applied to a form element. The
presentation style can define decoration attributes such as a background color, a font
type, and so on.

TAG Attribute

Purpose:

The TAG attribute can be used to identify the form item with a specific string.

Syntax:

TAG = "tag-string"

Notes:

1. tag-string is free text.

Usage:

This attribute is used to identify form items with a specific string. It can be queried in the
program to perform specific processing.

You are free to use this attribute as you need. For example, you can define a numeric
identifier for each field in the form in order to show context help, or group fields for
specific input verification.

Genero Business Development Language

694

If you need to handle multiple data, you can format the text, for example, by using a pipe
separator.

Example:

01 EDIT f001 = customer.fname, TAG = "name";
02 EDIT f002 = customer.lname, TAG = "name|optional";

TABINDEX Attribute

Purpose:

The TABINDEX attribute defines the tab order for a form item.

Syntax:

TABINDEX = integer

Notes:

1. integer defines the order of the item in the tab sequence.
2. If integer is zero, the item will be excluded from the tagging list.

Usage:

This attribute can be used to define the order in which the form items are selected as the
user "tabs" from field to field when the program is using the form field order option.

It can also be used to define which field must get the focus when a folder page is
selected.

By default, form items get a tab index according to the order in which they appear in the
LAYOUT section.

Tip: TABINDEX can be set to zero in order to exclude the item from the tabbing list. The
item can still get the focus with the mouse.

Example:

01 EDIT f001 = customer.fname, TABINDEX = 1;
02 EDIT f002 = customer.lname, TABINDEX = 2;
03 EDIT f003 = customer.comment, TABINDEX = 0; -- Exclude from tabbing
list

User Interface

695

VERIFY Attribute

Purpose:

The VERIFY attribute requires users to enter data in the field twice to reduce the
probability of erroneous data entry.

Syntax:

VERIFY

Notes:

1. Because some data is critical, this attribute supplies an additional step in data
entry to ensure the integrity of your data. After the user enters a value into a
VERIFY field and presses RETURN, the runtime system erases the field and
requests reentry of the value. The user must enter exactly the same data each
time, character for character: 15000 is not exactly the same as 15000.00.

2. The VERIFY attribute takes effect while INPUT or INPUT ARRAY statements are
executing. It has no effect on CONSTRUCT statements.

VERSION Attribute

Purpose:

The VERSION attribute is used to specify a user version string for an element.

Syntax:

VERSION = { "string" | TIMESTAMP }

Notes:

1. string is a user-defined version string.

Warnings:

1. Use the TIMESTAMP only during development.

Usage:

This attribute specifies a version string to distinguish different versions of a form
element. You can specify an explicit version string or use the TIMESTAMP keyword to
force the form compiler to write a timestamp string into the 42f file.

Genero Business Development Language

696

Typical usage is to specify a version of the form to indicate if the form content has
changed. This attribute is used by the front-end to distinguish different form versions and
to avoid reloading window/form settings into a new version of a form.

Example:

01 LAYOUT (TEXT="Orders", VERSION = "1.23")

OPTIONS Attribute

Purpose:

The OPTION attribute specifies widget options for the field.

Syntax:

OPTIONS = "option [...]"

Notes:

1. option can be one of: -nolist (to indicate that the column should appear as an
independent field).

Warnings:

1. This attributes is supported for backward compatibility.

WANTTABS Attribute

Purpose:

The WANTTABS attribute forces a text field to insert TAB characters in the text when the
user presses the TAB key.

Syntax:

WANTTABS

Usage:

By default, text fields like TEXTEDIT do not insert a TAB character in the text when the
user presses the TAB key, since the TAB key is used to move to the next field. You can
force the field to consume TAB keys with this attribute.

User Interface

697

WANTNORETURNS Attribute

Purpose:

The WANTNORETURNS attribute forces a text field to reject NewLine characters when the
user presses the RETURN key.

Syntax:

WANTNORETURNS

Usage:

By default, text fields like TEXTEDIT insert a NewLine (ASCII 10) character in the text
when the user presses the RETURN key. As the RETURN key is used to validate the
dialog, you can force the field to reject RETURN keys with this attribute.

WANTFIXEDPAGESIZE Attribute

Purpose:

The WANTFIXEDPAGESIZE attribute gives a fixed height to a TABLE container.

Syntax:

WANTFIXEDPAGESIZE

Usage:

By default, the height of a TABLE container is resizable. Use this attribute to freeze the
number of rows to the number of screen lines defined by the form file.

WIDTH Attribute

Purpose:

The WIDTH attribute defines an explicit width of a form element.

Syntax:

WIDTH = integer [CHARACTERS|COLUMNS|POINTS|PIXELS]

Genero Business Development Language

698

Notes:

1. integer defines the width of the element.

Usage:

By default, the size of an element is defined in characters and automatically computed
by the form compiler according to the size of the form element in the layout.

For items like images, the default width is defined by the number of horizontal characters
used in the item tag. You can overwrite this default by specifying the WIDTH attribute.
You typically give a number of pixels.

For tables, the default width is defined by the columns used in the table layout. You can
overwrite this default by specifying the WIDTH attribute. You typically give a number of
columns. This allows you to use tables with a large number of columns, but a small initial
width.

If you don't specify any unit, the size unit defaults to CHARACTERS, which defines the
number of grid cells.

See also: HEIGHT.

Example:

01 TABLE t1 (WIDTH = 5 COLUMNS)

WIDGET Attribute

Purpose:

The WIDGET attribute specifies the type of graphical widget to be used for the field.

Syntax:

WIDGET = "identifier"

Notes:

1. identifier defines the type of widget, it can be one of the keywords listed in the
table below.

2. The WIDGET attribute is used with CONFIG to parameter the field widget.

Warnings:

1. This attribute is supported for backward compatibility.

User Interface

699

o Instead of WIDGET="IMAGE", you should now use a IMAGE form item.
o Instead of WIDGET="CANVAS", you should now use a CANVAS form item.
o Instead of WIDGET="CHECK", you should now use a CHECKBOX form

item.
o Instead of WIDGET="COMBO", you should now use a COMBOBOX form

item.
o Instead of WIDGET="BMP", you should now use a BUTTON form item.
o Instead of WIDGET="FIELD_BMP", you should now use a BUTTONEDIT

form item.
o Instead of WIDGET="RADIO", you should now use a RADIOGROUP form

item.
2. The identifier widget type is case sensitive, only uppercase letters are

recognized.
3. When you use the WIDGET attribute, the form cannot be properly displayed on

character based terminals, it should only be displayed on graphical front ends.

Supported widgets:

Symbol Effect Other attributes
Canvas The field is used as a

drawing area.
Field must be
declared as
FORMONLY field.

None.

BUTTON The field is presented
as a button widget
with a label.

CONFIG: The unique parameter defines
the key to be sent when the user clicks on
the button. Button text is defined in
configuration files or from the program with
a DISPLAY TO instruction.
For example:
 CONFIG = "Control-z"

BMP The field is presented
as a button with an
image.

CONFIG: First parameter defines the
image file to be displayed, second
parameter defines the key to be sent when
the user clicks on the button.
For example:
 CONFIG = "smiley.bmp F11"
Important warning: Image files are not
centralized on the machine where the
program is executed; image files must be
present on the Workstation. See front end
specific documentation for more details.

CHECK The field is presented
as a checkbox
widget.

It can be used with

CONFIG: First and second parameters
define the values corresponding
respectively to the state "Checked" /
"Unchecked" of the check box, while the
third parameter defines the label of the

Genero Business Development Language

700

the CLASS attribute to
change the behavior
of the widget.

checkbox.
For example:
 CONFIG = "Y N Confirmation"
If the CLASS attribute is used with the
"KEY" value, the first and second
parameters defines the keys to be sent
respectively when the checkbox is
"Checked" / "Unchecked", and the third
parameter defines the label of the
checkbox as with normal checkbox usage.
For example:
 CLASS="KEY",CONFIG="F11 F12
Confirmation"

COMBO The field is presented
as a combobox
widget.

It can be used with
the CLASS attribute to
change the behavior
of the widget.

INCLUDE: This attribute defines the list of
acceptable values that will be displayed in
the combobox list.
For example:
 INCLUDE = ("Paris", "London",
"Madrid")
Important warning: The INCLUDE
attribute cannot hold value range
definitions, because all items must be
explicitly listed to be added to the
combobox list.
The following example is not supported:
 INCLUDE = (1 TO 10)

FIELD_BMP The field is presented
as a normal editbox,
plus a button on the
right.

CONFIG: The first parameter defines the
image file to be displayed in the button;
the second parameter defines the key to
be sent when the user clicks on the button.
For example:
 CONFIG = "combo.bmp Control-z"

LABEL The field is presented
as a simple label, a
read-only text.

None.

RADIO The field is presented
as a radiogroup
widget.

CONFIG: Parameter pairs define
respectively the value and the label
corresponding to one radio button.
For example:
 CONFIG = "AA First BB Second CC
Third"
If the CLASS attribute is used with the
value "KEY", the first element of each pairs
represents the key to be sent when the
user selects a radio button.
For example:
 CLASS="KEY",
 CONFIG="F11 First F12 Second F13
Third"

User Interface

701

Controlling V3 widgets activation:

The following list of widgets can be enabled or disabled from programs with a DISPLAY
TO instruction:

• Text buttons (WIDGET="BUTTON")
• Image buttons (WIDGET="BMP")
• Checkboxes of class "KEY" (WIDGET="CHECK", CLASS="KEY")
• Radio buttons of class "KEY" (WIDGET="RADIO", CLASS="KEY")

If you display an exclamation mark in such fields, the button is enabled, but if you display
a star (*), it is disabled:

01 DISPLAY "*" TO button1 # disables the button
02 DISPLAY "!" TO button1 # enables the button

Changing the text of V3 buttons:

Text buttons (WIDGET="BUTTON") can be changed from programs with the DISPLAY TO
instruction:

01 DISPLAY "Click me" TO button1 # Sets text and enables the button

Changing the image of V3 buttons:

Image buttons (WIDGET="BMP") can be changed from programs with the DISPLAY TO
instruction:

01 DISPLAY "smiley.bmp" TO button1 # Sets image and enables the button

Warning: Image files are not centralized on the machine where the program is
executed; image files must be present on the Workstation. See front end specific
documentation for more details.

Changing the text of V3 labels:

The text if label fields (WIDGET="LABEL") can be changed from programs with the
DISPLAY TO instruction:

01 DISPLAY "Firstname" TO l_firstname # Sets text of the label field

Using V3 canvas areas:

The fields declared with the WIDGET="Canvas" attribute can be used by the program as
drawing areas. Canvas fields must be defined in the LAYOUT section. A set of drawing
functions are provided to fill CANVAS fields with graphical elements.

Genero Business Development Language

702

WINDOWSTYLE Attribute

Purpose:

The WINDOWSTYLE attribute defines the style to be used by the parent window of a form.

Syntax:

WINDOWSTYLE = "string"

Notes:

1. string is a user defined style.

Usage:

The WINDOWSTYLE attribute can be used to specify the style of the parent window that will
hold the form. This attribute is specific to the LAYOUT element. Do not confuse with the
STYLE attribute, which is used to specify decoration style of the form elements.

When a form is loaded by the OPEN WINDOW or DISPLAY FORM instructions, the
runtime system automatically assigns the WINDOWSTYLE to the 'style' attribute of the
parent window element.

See also: STYLE, Windows and Forms.

Example:

01 LAYOUT (STYLE="BigFont", WINDOWSTYLE="dialog")

WORDWRAP Attribute

Purpose:

The WORDWRAP attribute enables a multiple-line editor in TUI mode.

Syntax:

WORDWRAP [{ COMPRESS | NONCOMPRESS }]

Usage:

In TUI mode:

• During input and display, the runtime system treats all segments that have that
field tag as segments of a single field.

User Interface

703

• The multi-line editor can wrap long character strings to the next line of a multiple-
segment field for data entry, data editing, and data display.

• The COMPRESS option prevents blanks produced by the editor from being included
in the program variable. COMPRESS is applied by default and can cause truncation
to occur if the sum of intentional characters exceeds the field or column size.
Because of editing blanks in the WORDWRAP field, the stored value might not
correspond exactly to its multiple-line display.

• Specifying NONCOMPRESS after the WORDWRAP keyword causes any editor blanks to
be saved when the string value is saved in a database column, in a variable, or in
a file.

In GUI mode:

• The WORDWRAP attribute is ignored, because text input and display is managed by
the text editor widget.

• The text data is NOT automatically modified by the editor by adding blanks to put
words on the next line.

Warnings:

1. This attribute is provided for backward compatibility with character-based forms;
you should use a TEXTEDIT form item instead in graphical forms.

2. Using WORDWRAP fields with character-based terminals results in quite different
behavior than with graphical front ends. With character-based terminals, the text
input and display is modified by the multi-line editor. This editor can automatically
modify the text data by adding blanks to put words to the next line, in order to
make the text fit into the form field. In GUI mode, the text input and display is
managed by a multi-line edit control.

The maximum number of bytes a user can enter is the width of the form-field multiplied
by the height of the form-field. Blank characters may be intentional blanks or fill blanks.
Intentional blanks are initially stored in the target variable where entered by the user. Fill
blanks are inserted at the end of a line by the editor when a new-line or a word-
alignment forces a line-break. It is not possible to set the cursor at a fill blank. Intentional
blanks are always displayed (even on the beginning of a line; the word-wrapping method
used in reports with PRINT WORDWRAP works differently).

When entering characters with Japanese locales, special characters are prohibited from
being the first or the last character on a line. If the last character is prohibited from
ending a line, this character is wrapped down to the next line. If the first character is
prohibited from beginning a line, the preceding character will also wrap down to the next
line. This method is called kinsoku. The test for prohibited characters will be done only
once for the first and the last character on each line.

Word-wrapping is disabled on the last row of a WORDWRAP field. The last word on the
last row may by truncated. The WORDWRAP COMPRESS attribute instructs the editor
to remove fill blanks before assigning the field-buffer to the target variable. The
WORDWRAP NONCOMPRESS attribute instructs the editor to store fill blanks to the
target variable. The WORDWRAP and WORDWRAP NONCOMPRESS attributes are
equivalent.

Genero Business Development Language

704

Form Rendering
Summary:

• A character-based grid
o Grid layout rules
o Size computing
o Complex example

• Grid dependencies
o A large number of cells for large widgets
o HBox Tags

 Mechanism
 SpacerItems

• Packed Grid
o General rule
o Group exception

Genero has introduced a form rendering system. Forms are not based on fixed text-
mode screen, but can display complex layouts. In order to support .per files, the
rendering system has to manage a character-based definition, which implies very
specific graphical rules.
This document explains the graphical rendering of a .per form.

A character-based grid

Warning: Scrollgrid and Groups (without gridchildreninparent attribute) behave
the same way as Grids.

The grid container is the most important container - it contains all ‘final’ widgets (fields,
buttons…). The .per file defines a form which is character based; each character defines
a cell of the grid:

GRID
{
First Name [fname]
Last Name [lname]
}
END

Above .per file layout specification can be show in a character grid as follows:

User Interface

705

With a fixed-font based front end, there is no problem, but Genero introduced Windows
look and feel and proportional fonts. Objects are then created and added to the grid;
each object has a starting position (defined by posX and posY attributes) and the number
of cells taken (gridwidth, gridheight attributes).

Genero Business Development Language

706

Grid layout rules

Front-ends grid layout follows these important rules:

1. Empty lines and empty columns take 0 pixels.
2. The size of a cell depends on the size of the widgets inside the grid.
3. Widget's minimum size is computed via its size attribute.
4. Widget's real size is computed to completely fill the cells in the GRID (this

depends on the sizepolicy attribute).
5. A small spacing is applied in non-empty cells.

Size computing

Each widget's minimum size is computed according to its size and sizepolicy (rule
#3); the size of cells of the grid is then computed (rule #1 and #2), and the widget's size
can change to fill the cells (rule #4).

Complex example

This Grid contains several fields.

User Interface

707

For each field, the position and the number of cells is computed by the form compiler.
Then the front-end creates the widgets and sets them on the grid.

Once widgets are on the grid, their minimum size is computed according to their size
and sizepolicy attributes. Then the grid cells are computed.

Genero Business Development Language

708

You can see that fields k and c are much bigger than expected:

• Field g and l make columns 33, 34 and 35 bigger than the other,
• Field f extends columns 25 to 31.
• As field c has to fill columns 25 to 35, its size grows; the same for field k.

Some fields are proportionally bigger than others because some parameters are
variable, others fixed. Field width is computed as follows:

The width of the content (depending on sizepolicy and sample, but by default a

combination of 'M' and '0'), plus the border.

For example, a field of 1 will be as wide as 2 borders + 1 'M'. A field of 10 will be as wide
as 2 borders + 6 'M' + 4 '0'. This means that a field of 1 is far from being 10 times smaller
than a field of 10.

Grid dependencies
Rule 2 (the size of a cell depends on the size of the widgets inside the grid) is useful to
keep text-mode alignment:

GRID
{
 [a]
 [b]
}
END

This .per implies that a and b start at the same position and have the same size,
whatever a and b are.

User Interface

709

A large number of cells for large widgets

This rule could lead to very different results, especially when a large widget is assigned
into a small number of cells.

Example:

LAYOUT
GRID
{
[a|b][f]
[c|d] [e]
}
END
END

ATTRIBUTES
CHECKBOX a = formonly.a, TEXT="A Checkbox";
EDIT b = formonly.b;
EDIT c = formonly.c;
CHECKBOX d = formonly.d, TEXT="Another Checkbox";
EDIT e = formonly.e;
EDIT f = formonly.f;
END

As seen previously, the grid will be computed regarding characters:

Genero Business Development Language

710

Then the minimum size of each widget and the layout is computed. Cells (0,1) and (1,3)
contain a checkbox; these checkboxes will enlarge columns 1 and 3.

 As Edit "c" is defined to have the same width as checkbox "a", it will be much larger as
expected:

To avoid this “strange” result, the form designer should assign a realistic number of cells
for each object:

GRID
{

User Interface

711

[a |b][f]
[c|d][e]
}

Even if the LAYOUT section is wider, the result will be smaller:

HBox Tags

Mechanism

To get rid of the “character-based” grid, HBox Tags have been introduced. This
mechanism defines a “widget container” that will gather the widget horizontally, like the
HBOX layout container. All widgets inside this container are no longer dependent on the
parent grid:

GRID
{
[a:b:c]
[d|e|f]
}
END

The notation “:” defines the HBox Tag. A container is created and will contain widgets a,
b and c. These widgets won’t be aligned in the Grid:

Genero Business Development Language

712

This mechanism is useful when you have large widgets in a small number of cells in one
row and don’t want to have dependencies:

If we take the “form3” example again, and modify it with HBox Tags:

GRID
{
[a:b][f]
[c:d][e]
}
END

Spacer Items in HBox tags

HBox tags also introduces the SpacerItems concept: when a grid HBox is created, the
content may be smaller than the container:

User Interface

713

Because of the checkbox, the cell 1 is very large, and then the HBox is larger than the
three fields. A SpacerItem object is automatically created by the form compiler; the role
of the SpacerItem is to take all the free space in the container. Then all the widgets are
packed at the left.

By default, a SpacerItem is created at the right of the container, but the spacer can also
be defined in another place:

GRID
{
[a :b :c] <- default: spacer on the right
[:d :e :f] <- spacer on the left
[g : :h] <- spacer between g and h
[i: :j: :k : :l] <- multiple spacers (between i and j, j
and k, k and l
}
END

Packed Grid

General rule

When you resize a window, the content will either grow with the window or be packed in
the top left position. The rule followed by the front-end is that the grid is packed
(horizontally / vertically / both) if nothing can grow in that direction.

The following widgets can grow horizontally:

Genero Business Development Language

714

• Tables
• Images (stretch=both or stretch=x)
• TextEdits (stretch=both or stretch=x)

The following widgets can grow vertically:

• Tables (without wantfixedpagesize)
• Images (stretch=both or stretch=y)
• TextEdits (stretch=both or stretch=y)

Group’s exception

In general, a GRID can grow if any object inside the GRID can grow. The exception to this
rule: If there is only one GROUP (defined without the GRIDCHILDRENINPARENT attribute)
inside a GRID and nothing else, the grid can grow.

This exception allows better rendering of a grouped grid:

• A packed grid:

User Interface

715

• An unpacked grid:

717

Menus
Summary:

• Basics
• Syntax
• Usage

o Programming Steps
o Instruction Configuration
o Default Actions
o Control Blocks
o Interaction Blocks
o Control Instructions
o Default Accelerator Keys
o Using the COMMAND clause
o Using the COMMAND KEY clause

• Examples

See also: Dynamic User Interface

Basics

A Menu defines a list of options (also called actions) that can trigger program routines.
The MENU statement is an interactive instruction defining the possible actions that can be
executed in a specific context at a given place in the program. One Menu can only
define a set of options for a given level. You cannot define all menu options of your
program in a unique Menu; you must use nested Menu calls. A typical application starts
with a global Menu, defining general options to access sub-routines, which in turn
implement specific Menus with options like 'Append', 'Delete', 'Modify', and 'Search' that
trigger sub-routines to manage database records.

A MENU statement is a controller for user actions. You bind actions views with Menu
options by name. For example, if your Menu contains ON ACTION sendmail, you can
specify which action view the user would use to trigger the sendmail action by:

• Set the name attribute with the action name (sendmail) for a Toolbar button (see
Toolbars for more details).

• Set the name attribute with the action name (sendmail) for a TopMenu button
(see Topmenus for more details).

• Set the item-name with the action name (sendmail) for a Button widget (see
Form Specification Files for more details).

Action views are bound to an action controller by name. See the Interaction Model
description for more details.

Genero Business Development Language

718

Warning: When binding action views to menu option clauses, the action name is
case sensitive. The compiler converts COMMAND labels and ON ACTION identifiers to
lowercase for the action. It is recommended that you use all lowercase letters
when providing the action name for the action view.

By default, if no action views are associated with Menu options, the Menu options are
displayed as simple push buttons in a specific area, depending on the front end. The
following screen is produced by the program shown in Example 2:

You can display a Menu in a modal dialog window by setting some attributes, as shown
in the source code of Example 3:

For more details about default and explicit action views, see Interaction Model.

MENU

Purpose:

The MENU instruction defines a set of user choices.

Syntax:

MENU [title]
 [ATTRIBUTES (control-attributes)]
 [BEFORE MENU

User Interface

719

 menu-statement
 [...]
]
 menu-option
 [...]
END MENU

where menu-option is one of:

{ COMMAND option-name [option-comment] [HELP help-number]
 menu-statement
 [...]
| COMMAND KEY (key-name) option-name [option-comment] [HELP help-
number]
 menu-statement
 [...]
| COMMAND KEY (key-name)
 menu-statement
 [...]
| ON ACTION action-name
 menu-statement
 [...]
| ON IDLE idle-seconds
 menu-statement
 [...]
}

where menu-statement is:

{ statement
| CONTINUE MENU
| EXIT MENU
| NEXT OPTION option
| SHOW OPTION { ALL | option [,...] }
| HIDE OPTION { ALL | option [,...] }
}

Notes:

1. title is a string expression defining the title of the menu.
2. control-attributes is a list of attributes that defines the behavior and presentation

of the menu.
3. key-name is an hot-key identifier (like F11 or Control-z).
4. option-name is a string expression defining the label of the menu option and

identifying the action that can be executed by the user.
5. option-comment is a string expression containing a description for the menu

option, displayed when option-name is the current.
6. help-number is an integer that allows you to associate a help message number

with the menu option.
7. action-name identifies an action that can be executed by the user.
8. idle-seconds is an integer literal or variable that defines a number of seconds.
9. action-name identifies an action that can be executed by the user.
10. bool-expr is an integer expression that must evaluate to 0 or 1.

Genero Business Development Language

720

11. variable is a program variable that receives the return of the GET instruction.

The following table shows the control-attributes supported by the MENU statement:

Attribute Description

STYLE = string Defines the type of the menu. Values can be
'default', 'dialog' or 'popup'.

COMMENT = string Defines the message associated with this menu.
IMAGE = string Defines the icon file associated with this menu.

Usage

The MENU instruction can be used to control user actions. See Interaction Model for more
details about actions.

Warnings:

1. It is recommended that you do not use the COMMAND KEY clause to handle user
actions; use the ON ACTION clause instead.

2. The compiler converts the ON ACTION identifiers to lowercase for internal
storage. ON ACTION APPEND is equivalent to ON ACTION append.

3. When using COMMAND "label", you can use uppercase letters: The compiler
converts the command label to lowercase for the action name. COMMAND
"Append" is equivalent to ON ACTION append, except that the text and comment
attributes are defined at the program level.

4. For backward compatibility, it is possible to use simple characters and multiple
keys in the COMMAND KEY clause, but this is not recommended. If multiple keys
are defined in the COMMAND KEY clause, only the last element will be used as
accelerator key.

Tips:

1. Window close events can be trapped with COMMAND KEY(INTERRUPT) clause.
See Windows and Forms for more details.

2. Default presentation of menu buttons can be shown in different positions in the
window, according to the Window Style.

Programming Steps

The typical usage of a MENU instruction is show in the following example, using a set of
ON ACTION control blocks:

01 MENU
02 ON ACTION new
03 CALL newFile()

User Interface

721

04 ON ACTION open
05 CALL openFile()
06 ON ACTION quit
07 EXIT PROGRAM
08 END MENU

The COMMAND clause defines both the action name and the label of the menu option,
which is by default decorated on the front end side as a push-button in a specific area.
The ON ACTION clause defines an action trigger clause as described in Interaction
Model, Controlling User Actions section. To write abstract code, we recommend that you
use the ON ACTION clause instead of COMMAND. However, when using 'dialog' menus, you
might only need to provide the title of the buttons; in such situations, you can use
COMMAND clauses.

Instruction Configuration

When the STYLE instruction attribute is set to 'default' or when you do not specify the
menu type, the runtime system generates a default decoration as a set of buttons in a
specific area of the current window. When this attribute is set to 'dialog', the menu
options appear as buttons at the bottom in a temporary modal window, in which you can
define the message and the icon with the COMMENT and IMAGE attributes. When the
STYLE is set to 'popup', the menu appears as a popup menu (contextual menu).

Warning: If the menu is a "dialog" or "popup", the dialog is automatically exited after
any action clause such as ON ACTION, COMMAND or ON IDLE.

Default Actions

When an MENU instruction executes, the runtime system creates a set of default actions.
The following table lists the default actions created for this dialog:

Default action Control Block execution order

close
By default, generates a cancel key press (COMMAND
KEY(INTERRUPT))
Default action view is hidden. See Windows closed by the
user.

help Shows the help topic defined by the HELP clause.
Default action view is hidden.

Control Blocks

If the menu block contains a BEFORE MENU clause, statements within this clause will be
executed before the menu is displayed.

Interaction Blocks

The ON ACTION action-name clause defines a set of instructions to be executed when
an action is fired.

Genero Business Development Language

722

When you enter a MENU statement, you are entering an interactive instruction, also
known as a dialog. During a dialog, you can enable or disable an action with the
setActionActive() method of the DIALOG object. You can also hide and show the
default action view with the setActionHidden() method of the DIALOG object.

01 ...
02 BEFORE MENU
03 CALL DIALOG.setActionActive("query",FALSE)
04 CALL DIALOG.setActionHidden("adduser",TRUE)
05 ...

The ON IDLE idle-seconds clause defines a set of instructions that must be executed
after idle-seconds of inactivity. This can be used to quit the dialog after the user has not
interacted with the program for a specified period of time. The parameter idle-seconds
must be an integer literal or variable. If it evaluates to zero, the timeout is disabled.

01 ...
02 ON IDLE 10
03 IF ask_question("Do you want to leave the dialog?") THEN
04 EXIT MENU
05 END IF
06 ...

Control Instructions

CONTINUE MENU statement causes the runtime system to ignore the remaining
instructions in the current block and redisplay the menu.

EXIT MENU statement terminates the MENU block without executing any other statement.

The NEXT OPTION option statement defines option as the default. This cannot apply to
a hidden option, and works only with default action views created when an explicit view
is not used.

The SHOW OPTION and HIDE OPTION statements are provided for backward
compatibility only. The SHOW OPTION statement is used to make the default action view
visible and the explicit action views enabled. The HIDE OPTION statement is used to
make the default action view invisible and the explicit action views disabled. The ALL
clause can be used to specify all options. It is now recommended that you hide and
show action views with the setActionHidden() method of the DIALOG object.

Default Accelerator Keys

When a Menu instruction executes, the first letter of the display text on the action view
is, by default, underscored. For an action views where the underscored letter is not
shared with other action views, pressing the key corresponding to that letter will execute
that action. For an action view where the underscored letter is shared with other action
views surfaced by the Menu statement, pressing the key corresponding to that letter will
toggle the focus between all action views that share the same letter. For example:

User Interface

723

01 MENU
02 COMMAND "Start"
03 DISPLAY "Start"
04 COMMAND "cmdone"
05 DISPLAY "Command 1"
06 COMMAND "cmdtwo"
07 DISPLAY "Command 2"
08 COMMAND "Quit"
09 EXIT MENU
10 END MENU

In this example, if you press "S", the action "start" will be performed. If you press "C",
the focus will toggle between "cmdone" and "cmdtwo". If you press "Q", the action "quit"
will be performed.

For information on specifying an alternate accelerator key using the ampersand (&), see
"Using the COMMAND clause" below.

Using the COMMAND clause

When using the COMMAND clause, the name of the action will be the option text converted
to lowercase letters. The text and comment decoration attributes for the default action
view will get the value of the option text and comment text of the menu clause. As these
attributes are defined by the program, the corresponding text and comment attributes in
Action Defaults are not applied to these menu options. For example, when you define a
COMMAND "Hello" "This is the Hello option" menu option, the name of the action
will be "hello", the button text will be "Hello", and the comment will be "This is the
Hello option", even if an action default defines a different text or comment for the
action "hello".

With the COMMAND clause, if the user includes an ampersand (&) in the option text, the
system transforms it as an accelerator for the next character. The ampersand is not
considered when determining the name of the action. For example:

01 MENU
02 COMMAND "S&ave"
03 ...
04 COMMAND "&Quit"
05 EXIT MENU
06 END MENU

In the first COMMAND clause of this example, the name of the action will be "save", the
button text will be "Save" (with the "a" underscored), and the accelerator key for this
command will be Alt+A. In the second COMMAND clause in this example, the name of
the action will be "quit", the button text will be "Quit" (with the "Q" underscored), and the
accelerator key for this command will be Alt+Q.

Genero Business Development Language

724

Using the COMMAND KEY clause

When the COMMAND KEY specifies an option text (as in COMMAND KEY(F10,F12)
"Hello") the name of the action is defined by the option text, in lowercase letters (i.e.
"hello"). If the COMMAND KEY does not specify the option text, the action name defaults
to the last key of the list in lowercase letters. For example, if you write COMMAND
KEY(F10,F12,Control-Z), the name of the action will be "control-z". So if you want
to define action defaults for a COMMAND KEY using multiple keys, you must use the last
key for the name of the action.

A COMMAND KEY clause implicitly defines the accelerator attributes for the action and the
corresponding action default accelerators will be ignored. For backward compatibility,
the COMMAND KEY instruction supports up to four keys. Each four keys are used to
initialize the acceleratorName, acceleratorName2, acceleratorName3 and
acceleratorName4 attributes of the action. For example, when you define a COMMAND
KEY(F10,F12) "Hello" menu option, acceleratorName will be "F10" and
acceleratorName2 will be "F12", even if an Action Defaults for the action "hello" defines
acceleratorName as "F5" and acceelratorName2 as "Control=-F". However, you can set
the third accelerator with the acceleratorName3 attribute in action defaults.

Warning: In TUI mode, actions created with COMMAND [KEY] do not get
accelerators of Action defaults; Only actions defined with ON ACTION will get
accelerators of Action Defaults.

Examples

Example 1: Abstract action controller

01 MENU
02 ON ACTION new
03 CALL newFile()
04 ON ACTION open
05 CALL openFile()
06 ON ACTION save
07 CALL saveFile()
08 ON ACTION import
09 LOAD FROM "infile.dat" INSERT INTO table
10 ON ACTION quit

User Interface

725

11 EXIT PROGRAM
12 END MENU

Example 2: Simple menu (old Informix 4GL style)

01 MENU "File"
02 COMMAND KEY (CONTROL-N) "New" "Creates New File" HELP 101
03 CALL newFile()
04 COMMAND KEY (CONTROL-O) "Open" "Open existing File" HELP 102
05 CALL openFile()
06 COMMAND KEY (CONTROL-S) "Save" "Save Current File" HELP 103
07 CALL saveFile()
08 COMMAND "Import"
09 LOAD FROM "infile.dat" INSERT INTO table
10 COMMAND KEY (CONTROL-Q) "Quit" "Quit Program" HELP 201
11 EXIT PROGRAM
12 END MENU

Example 3: Using a modal menu

01 MAIN
02 MENU "Example of dialog menu"
03 ATTRIBUTES (STYLE="dialog", COMMENT="Delete the file?")
04 COMMAND "Yes"
05 DISPLAY "Yes"
06 COMMAND "No"
07 DISPLAY "No"
08 COMMAND "Cancel"
09 DISPLAY "Cancel"
10 END MENU
11 END MAIN

Genero Business Development Language

726

Displaying Data to Forms
Summary:

• How to display data to form fields
• Displaying data to specific form fields (DISPLAY TO)
• Displaying data to form fields by name (DISPLAY BY NAME)
• Clearing all form fields (CLEAR FORM)
• Clearing specific form fields (CLEAR field)

See also: Variables, Records, Windows, Forms, Record Input, Display Array

How to display data to form fields

Programs retrieve data from the database into variables with a cursor or a static
SELECT statement, and display the variable values to the current form with the DISPLAY
instruction:

DISPLAY TO

Purpose:

The DISPLAY TO instruction displays data to form fields explicitly.

User Interface

727

Syntax:

DISPLAY expression [,...] TO field-list [,...]
 [ATTRIBUTE (display-attribute [,...])]

where field-list is :

{ field-name
| table-name.*
| table-name.field-name
| screen-array[line].*
| screen-array[line].field-name
| screen-record.*
| screen-record.field-name
} [,...]

Notes:

1. expression is any expression supported by the language.
This is typically a list of variables or a record with the .* notation.

2. field-name is the identifier of a field of the current form.
3. table-name is the identifier of a database table of the current form.
4. screen-record is the identifier of a screen record of the current form.
5. screen-array is the screen array that will be used in the form.
6. display-attribute is one of the display attributes supported in this instruction. See

below for more details.

Warning: The DISPLAY TO statement changes the 'touched' status of the target
fields. When you modify a field value with this instruction, the FIELD_TOUCHED()
operator returns TRUE and the ON CHANGE trigger may be fired if the current
field value was changed with a DISPLAY TO. During an INPUT or INPUT ARRAY, we
recommend you to use the UNBUFFERED attribute to display data automatically to
fields without changing the 'touched' status of fields.

Usage:

If the variables do not have the same names as the form fields, you must use the TO
clause to explicitly map the variables to fields. You can list the fields individually, or you
can use the screen-record.* or screen-record[n].* notation, where screen-
record[n].* specifies all the fields in line n of a screen array.

In a DISPLAY TO statement, any screen attributes specified in the ATTRIBUTE clause
apply to all the fields that you specify after the TO keyword.

In the following example, the values in the p_items program record are displayed in the
first row of the s_items screen array:

01 DISPLAY p_items.* TO s_items[1].*

Genero Business Development Language

728

The expanded list of screen fields must correspond in order and in number to the
expanded list of identifiers after the DISPLAY keyword. Identifiers and their
corresponding fields must have the same or compatible data types. For example, the
next DISPLAY statement displays the values in the p_customer program record in fields
of the s_customer screen record:

01 DISPLAY p_customer.* TO s_customer.*

For this example, the p_customer program record and the s_customer screen record
require compatible declarations. The following DEFINE statement declares the
p_customer program record:

01 DEFINE p_customer RECORD
02 customer_num LIKE customer.customer_num,
03 fname LIKE customer.fname,
04 lname LIKE customer.lname,
05 phone LIKE customer.phone
05 END RECORD

This fragment of a form specification declares the s_customer screen record:

01 ATTRIBUTES
02 f000 = customer.customer_num;
03 f001 = customer.fname;
04 f002 = customer.lname;
05 f003 = customer.phone;
06 END

The ATTRIBUTE clause temporarily overrides any default display attributes or any
attributes specified in the OPTIONS or OPEN WINDOW statements for the fields. When
the DISPLAY statement completes execution, the default display attributes are restored.

The following table shows the display-attributes supported by the DISPLAY TO
statement. The display-attributes affect console-based applications only, they do not
affect GUI-based applications.

Attribute Description
BLACK, BLUE, CYAN, GREEN,
MAGENTA, RED, WHITE,
YELLOW

The color of the displayed data.

BOLD, DIM, NORMAL The font attribute of the displayed data.
REVERSE, BLINK, UNDERLINE The video attribute of the displayed data.

The REVERSE, BLINK, INVISIBLE, and UNDERLINE attributes are not sensitive to the color
or monochrome status of the terminal, if the terminal is capable of displaying these
intensity modes. The ATTRIBUTE clause can include zero or more of the BLINK,
REVERSE, and UNDERLINE attributes, and zero or one of the other attributes. That is, all of
the attributes except BLINK, REVERSE, and UNDERLINE are mutually exclusive.

User Interface

729

The DISPLAY statement ignores the INVISIBLE attribute, regardless of whether you
specify it in the ATTRIBUTE clause.

DISPLAY BY NAME

Purpose:

The DISPLAY BY NAME instruction displays data to form fields explicitly by name.

Syntax:

DISPLAY BY NAME { variable | record.* } [,...]
 [ATTRIBUTE (display-attribute [,...])]

Notes:

1. variable is a program variable that has the same name as a form field.
2. record.* is a record variable that has members with the same names as form

fields. The record name prefix is ignored.
3. display-attribute is one of the display attributes supported in this instruction. See

below for more details.

Warning: The DISPLAY BY NAME statement changes the 'touched' status of the
target fields. When you modify a field value with this instruction, the
FIELD_TOUCHED() operator returns TRUE and the ON CHANGE trigger may be
fired if the current field value was changed with a DISPLAY BY NAME. During an
INPUT or INPUT ARRAY, we recommend that you use the UNBUFFERED attribute to
display data to fields automatically without changing the 'touched' status of fields.

Usage:

If the variables to be displayed have the same name as form fields, you can use the BY
NAME clause. The BY NAME clause binds the fields to variables. To use this clause, you
must define variables with the same name as the form fields where they will be
displayed. The language ignores any record name prefix when matching the names. The
names must be unique and unambiguous; if not, this option results in an error, and the
runtime system sets STATUS to a negative value.

For example, the following statement displays the values for the specified variables in
the form fields with corresponding names (company and address1):

01 DISPLAY BY NAME p_customer.company, p_customer.address1

This BY NAME clause displays data to the screen fields of the default screen records. The
default screen records are those having the names of the tables defined in the TABLES
section of the form specification file. To use a screen array, you define a screen array in

Genero Business Development Language

730

addition to the default screen record. This default screen record holds only the first line
of the screen array.

For example, the following DISPLAY statement displays the ordno variable only in the
first line of the screen array (the default screen record):

01 DISPLAY BY NAME p_stock[1].ordno

To display ordno in all elements of the screen array, you can use the DISPLAY ARRAY
statement, or DISPLAY TO, as in the next example:

01 FOR i=1 TO 10
02 DISPLAY p_stock[i].ordno TO sc.stock[i].ordno
03 ...
04 END FOR

The following table shows the display-attributes supported by the DISPLAY BY NAME
statement:

Attribute Description
BLACK, BLUE, CYAN, GREEN,
MAGENTA, RED, WHITE,
YELLOW

The color of the displayed data.

BOLD, DIM, NORMAL The font attribute of the displayed data.
REVERSE, BLINK, UNDERLINE The video attribute of the displayed data.

CLEAR FORM

Purpose:

The CLEAR FORM instruction clears all fields in the current form.

Syntax:

CLEAR FORM

Notes:

1. This instruction has no effect on any part of the screen display except the form
fields.

Example:

01 MAIN
02 OPEN WINDOW w1 AT 1,1 WITH FORM "custlist"
03 CLEAR FORM

User Interface

731

04 CLOSE WINDOW w1
05 END FOR

CLEAR field

Purpose:

The CLEAR field instruction clears specific fields in the current form.

Syntax:

CLEAR field-list

where field-list is :

{ field-name
| table-name.*
| table-name.field-name
| screen-array[line].*
| screen-array[line].field-name
| screen-record.*
| screen-record.field-name
} [,...]

Notes:

1. field-name is the identifier of a field of the current form.
2. table-name is the identifier of a database table of the current form.
3. screen-record is the identifier of a screen record of the current form.
4. screen-array is the screen array that will be used in the form.

Example:

01 FOR i=1 TO 10
02 CLEAR s_items[i].*
03 END FOR

Genero Business Development Language

732

Record Input
Summary:

• Basics
• Syntax
• Usage

o Programming Steps
o Instruction Configuration
o Default Actions
o Control Blocks
o Control Blocks Execution Order
o Interaction Blocks
o Control Instructions
o Control Class
o Control Functions

• Examples
o Example 1: Simple INPUT statement using screen record specification
o Example 2: Complex INPUT statement using the BY NAME clause and

control blocks

See also: Variables, Records, Windows, Forms, Record Display, Display Array

Basics

The programs maintain data in variables and use the INPUT statement to bind variables
to screen-records or screen-arrays of forms for data entry into form fields. The INPUT
statement activates the current form (the form that was most recently displayed or the
form in the current window):

User Interface

733

During the INPUT statement execution, the user can edit the record fields, while the
program controls the behavior of the instruction with control blocks:

To terminate the INPUT execution, the user can validate (or cancel) the dialog to commit
(or invalidate) the modifications made in the record:

When the statement completes execution, the form is de-activated. After the user
terminates the input (for example, with the Accept key), the program must test the
INT_FLAG variable to check if the dialog was validated (or canceled), and then can use
the INSERT or UPDATE SQL statements to modify the appropriate database tables.

Genero Business Development Language

734

INPUT

Purpose:

The INPUT statement supports data entry into the fields of the current form.

Syntax 1: Implicit field-to-variable mapping

INPUT BY NAME { variable | record.* } [,...]
 [WITHOUT DEFAULTS]
 [ATTRIBUTES ({ display-attribute | control-attribute } [,...])]
 [HELP help-number]
[dialog-control-block
 [...]
END INPUT]

Syntax 2: Explicit field-to-variable mapping

INPUT { variable | record.* } [,...]
 [WITHOUT DEFAULTS]
 FROM field-list
 [ATTRIBUTES ({ display-attribute | control-attribute } [,...])]
 [HELP help-number]
[dialog-control-block
 [...]
END INPUT]

where dialog-control-block is one of:

{ BEFORE INPUT
| AFTER INPUT
| BEFORE FIELD field-spec
| AFTER FIELD field-spec
| ON CHANGE field-spec
| ON IDLE idle-seconds
| ON ACTION action-name
| ON KEY (key-name [,...])
}
 dialog-statement
 [...]

where dialog-statement is one of:

{ statement
| ACCEPT INPUT
| CONTINUE INPUT
| EXIT INPUT
| NEXT FIELD { CURRENT | NEXT | PREVIOUS | field-name }
}

where field-list is:

User Interface

735

{ field-name
| table-name.*
| table-name.field-name
| screen-array[line].*
| screen-array[line].field-name
| screen-record.*
| screen-record.field-name
} [,...]

where field-spec is:

{ field-name
| table-name.field-name
| screen-array.field-name
| screen-record.field-name
} [,...]

Notes:

1. variable is a program variable that will be filled by the INPUT statement.
2. record.* is a record variable that will be filled by the INPUT statement.
3. help-number is an integer that allows you to associate a help message number

with the instruction.
4. field-name is the identifier of a field of the current form.
5. table-name is the identifier of a database table of the current form.
6. screen-record is the identifier of a screen record of the current form.
7. screen-array is the screen array that will be used in the form.
8. line is a screen array line in the form.
9. key-name is a hot-key identifier (like F11 or Control-z).
10. idle-seconds is an integer literal or variable that defines a number of seconds.
11. action-name identifies an action that can be executed by the user.
12. statement is any instruction supported by the language.

The following table shows the options supported by the INPUT statement:

Attribute Description
HELP help-number Defines the help number when help is

invoked by the user, where help-number is
an integer literal or a program variable. See
Warning below!

WITHOUT DEFAULTS Indicates that the data rows are not filled
(TRUE) with the column default values
defined in the form specification file or the
database schema files (Default is
FALSE). See Warning below!

The following table shows the display-attributes supported by the INPUT statement. The
display-attributes affect console-based applications only, they do not affect GUI-based
applications.

Genero Business Development Language

736

Attribute Description
BLACK, BLUE, CYAN, GREEN,
MAGENTA, RED, WHITE,
YELLOW

The color of the displayed data.

BOLD, DIM, INVISIBLE,
NORMAL

The font attribute of the displayed data.

REVERSE, BLINK, UNDERLINE The video attribute of the displayed data.

The following table shows the control-attributes supported by the INPUT statement:

Attribute Description
NAME = string Identifies the dialog statement with a clear

name.
HELP = help-number Defines the help number when help is

invoked by the user, where help-number is
an integer literal or a program variable. See
Warning below!

WITHOUT DEFAULTS [=bool] Indicates if the data rows must be filled
(FALSE) or not (TRUE) with the column
default values defined in the form
specification file or the database schema
files. The bool parameter can be an integer
literal or a program variable. See Warning
below!

FIELD ORDER FORM Indicates that the tabbing order of fields is
defined by the TABINDEX attribute of form
fields. The default order in which the focus
moves from field to field in the screen array is
determined by the order of the variables used
by the INPUT statement. The program options
instruction can also change this behavior with
FIELD ORDER FORM options.

WRAP
UNBUFFERED [=bool] Indicates that the dialog must be sensitive to

program variable changes. The bool
parameter can be an integer literal or a
program variable.

CANCEL = bool Indicates if the default cancel action should
be added to the dialog. If not specified, the
action is registered. The bool parameter can
be an integer literal or a program variable.

ACCEPT = bool Indicates if the default accept action should
be added to the dialog. If not specified, the
action is registered. The bool parameter can
be an integer literal or a program variable.

User Interface

737

Usage

Warnings:

1. Although the ON KEY block is supported for backward compatibility, it is
recommended that you use ON ACTION instead.

2. For new programs, specify UNBUFFERED mode rather than using the default
buffered mode.

3. For the HELP and WITHOUT DEFAULTS options, the appearance order is important
: the last option overrides the previous one!

Programming Steps

The following steps describe how to use the INPUT statement:

1. Create a form specification file, with an optional screen record. The screen
record identifies the presentation elements to be used by the runtime system to
display the records. if you omit the declaration of the screen record in the form
file, the runtime system will use the default screen records created by the form
compiler for each table listed in the TABLES section and for the FORMONLY
pseudo-table.

2. Make sure that the program controls interruption handling with DEFER
INTERRUPT, to manage the validation/cancellation of the interactive dialog.

3. Define a program record with the DEFINE instruction. The members of the
program record must correspond to the elements of the screen record, by
number and data types.

4. Open and display the form, using an OPEN WINDOW with the WITH FORM clause
or the OPEN FORM / DISPLAY FORM instructions.

5. If needed, fill the program record with data, for example with a result set cursor.
6. Write the INPUT statement to handle data input.
7. Inside the INPUT statement, control the behavior of the instruction with BEFORE

INPUT, BEFORE FIELD, AFTER FIELD, AFTER INPUT and ON KEY blocks.
8. After the INPUT ARRAY statement, test the INT_FLAG pre-defined variable to

check if the interactive dialog was canceled (INT_FLAG = TRUE) or validated (
INT_FLAG = FALSE).

Variable Binding

The program record member variables are bound to the fields of a screen record, so the
INPUT instruction can manipulate the values that the user enters in the form fields.

The BY NAME clause implicitly binds the fields to the variables that have the same
identifiers as the field names. You must first declare variables with the same names as
the fields from which they accept input. The runtime system ignores any record name

Genero Business Development Language

738

prefix when making the match. The unqualified names of the variables and of the fields
must be unique and unambiguous within their respective domains. If they are not, the
runtime system generates an exception, and sets the STATUS variable to a negative
value.

The FROM clause explicitly binds the fields in the screen record to a list of program
variables that can be simple variables or records. The form can include other fields that
are not part of the specified variable list, but the number of variables or record members
must equal the number of fields listed in the FROM clause. Each variable must be of the
same (or a compatible) data type as the corresponding screen field. When the user
enters data, the runtime system checks the entered value against the data type of the
variable, not the data type of the screen field.

The program variables can be of any data type: The runtime system will adapt input and
display rules to the variable type. If a variable is declared LIKE a SERIAL column,
however, the runtime system does not allow the screen cursor to stop in the field.
(Values in SERIAL columns are automatically generated by the database server, not by
the runtime system.)

The variables act as data model to display data or to get user input through the INPUT
instruction. Always use the variables if you want to change some field values
programmatically. When using the UNBUFFERED attribute, the instruction is sensitive to
program variable changes: If you need to display new data during the INPUT execution,
just assign the values to the program variables; the runtime system will automatically
display the values to the screen:

01 INPUT p_items.* FROM s_items.* ATTRIBUTES (UNBUFFERED)
02 ON CHANGE code
03 IF p_items.code = "A34" THEN
04 LET p_items.desc = "Item A34"
05 END IF
06 END INPUT

When the INPUT instruction executes, any column default values are displayed in the
screen fields, unless you specify the WITHOUT DEFAULTS keywords. The column default
values are specified in the form specification file with the DEFAULT attribute, or in the
database schema files.

If you specify the WITHOUT DEFAULTS option, however, the form fields display the current
values of the variables when the INPUT statement begins. This option is available with
both the BY NAME and the FROM binding clauses.

01 LET p_items.code = "A34"
02 INPUT p_items.* FROM s_items.* WITHOUT DEFAULTS
03 BEFORE INPUT
04 MESSAGE "You should see A34 in field 'code'..."
05 END INPUT

User Interface

739

Instruction Configuration

The ATTRIBUTES clause specifications override all default attributes and temporarily
override any display attributes that the OPTIONS or the OPEN WINDOW statement
specified for these fields. While the INPUT statement is executing, the runtime system
ignores the INVISIBLE attribute.

• HELP option
• WITHOUT DEFAULTS option
• FIELD ORDER FORM option
• WRAP option
• UNBUFFERED option
• ACCEPT option
• CANCEL option

HELP option

The HELP clause specifies the number of a help message to display if the user invokes
the help while the focus is in any field used by the instruction. The predefined 'help'
action is automatically created by the runtime system. You can bind action views to the
'help' action.

Warning: The HELP option overrides the HELP attribute!

WITHOUT DEFAULTS option

Indicates if the data rows must be filled (FALSE) or not (TRUE) with the column default
values defined in the form specification file or the database schema files.

FIELD ORDER FORM option

By default, the tabbing order is defined by the variable binding list in the instruction
description. You can control the tabbing order by using the FIELD ORDER FORM attribute:
When this attribute is used, the tabbing order is defined by the TABINDEX attribute of
the form fields. If this attribute is used, the Dialog.fieldOrder FGLPROFILE entry is
ignored.

WRAP option

The default order in which the focus moves from field to field in the screen array is
determined by the order of the variables used by the INPUT statement. The program
options instruction can also change the behavior of the INPUT instruction, with the WRAP
or FIELD ORDER FORM options.

UNBUFFERED option

Indicates that the dialog must be sensitive to program variable changes. When using this
option, you bypass the traditional "buffered" mode.

Genero Business Development Language

740

When using the traditional "buffered" mode, program variable changes are not
automatically displayed to form fields; You need to execute a DISPLAY TO or DISPLAY
BY NAME. Additionally, if an action is triggered, the value of the current field is not
validated and is not copied into the corresponding program variable. The only way to get
the text of the current field is to use GET_FLDBUF().

If the "unbuffered" mode is used, program variables and form fields are automatically
synchronized. You don't need to display explicitly values with a DISPLAY TO or DISPLAY
BY NAME. When an action is triggered, the value of the current field is validated and is
copied into the corresponding program variable.

ACCEPT option

The ACCEPT attribute can be set to FALSE to avoid the automatic creation of the accept
default action. This option can be used for example when you want to write a specific
validation procedure, by using ACCEPT INPUT.

CANCEL option

The CANCEL attribute can be set to FALSE to avoid the automatic creation of the cancel
default action. This is useful for example when you only need a validation action
(accept), or when you want to write a specific cancellation procedure, by using EXIT
INPUT.

Note that if the CANCEL=FALSE option is set, no close action will be created, and you
must write an ON ACTION close control block to create an explicit action.

Default Actions

When an INPUT instruction executes, the runtime system creates a set of default actions.
See the control block execution order to understand what control blocks are executed
when a specific action is fired.

The following table lists the default actions created for this dialog:

Default action Description
accept Validates the INPUT dialog (validates fields)

Creation can be avoided with ACCEPT attribute.
cancel Cancels the INPUT dialog (no validation, int_flag is set)

Creation can be avoided with CANCEL attribute.
close By default, cancels the INPUT dialog (no validation, int_flag is

set)
Default action view is hidden. See Windows closed by the
user.

help Shows the help topic defined by the HELP clause.

User Interface

741

Only created when a HELP clause is defined.

The accept and cancel default actions can be avoided with the ACCEPT and CANCEL
dialog control attributes:

01 INPUT BY NAME field1 ATTRIBUTES (CANCEL=FALSE)
02 ...

Control Blocks

• BEFORE INPUT block
• AFTER INPUT block
• BEFORE FIELD block
• ON CHANGE block
• AFTER FIELD block

BEFORE INPUT block

The BEFORE INPUT block is executed one time, before the runtime system gives control
to the user. You can implement initialization in this block.

AFTER INPUT block

The AFTER INPUT block is executed one time, after the user has validated or canceled
the dialog, and before the runtime system executes the instruction that appears just after
the INPUT block. You typically implement dialog finalization in this block. The AFTER
INPUT block is not executed if EXIT INPUT executes.

BEFORE FIELD block

A BEFORE FIELD block is executed each time the cursor enters into the specified field,
when moving the focus from field to field.

Such block is also executed when using NEXT FIELD.

ON CHANGE block

The ON CHANGE block is executed when another field is selected, if the value of the
specified field has changed since the field got the focus and if the 'touched' field flag is
set. The 'touched' flag is set on user input or when doing a DISPLAY TO or a DISPLAY
BY NAME. Once set, the 'touched' flag is not reset until the end of the dialog.

For fields defined as RadioGroup, ComboBox, SpinEdit, Slider, and CheckBox views,
the ON CHANGE block is fired immediately when the user changes the value. For other
type of fields (like Edits), the ON CHANGE block is fired when leaving the field. You leave
the field when you validate the dialog, when you move to another field, or when you

Genero Business Development Language

742

move to another row in an INPUT ARRAY. Note that the dialogtouched predefined
action can also be used to detect field changes immediately, but with this action you
can't get the data in the target variables (should only be used to detect that the user has
started to modify data)

If both an ON CHANGE block and AFTER FIELD block are defined for a field, the ON
CHANGE block is executed before the AFTER FIELD block.

When changing the value of the current field by program in an ON ACTION block, the ON
CHANGE block will be executed when leaving the field if the value is different from the
reference value and if the 'touched' flag is set (after previous user input or DISPLAY TO /
DISPLAY BY NAME).

When using the NEXT FIELD instruction, the comparison value is re-assigned as if the
user had leaved and re-entered the field. Therefore, when using NEXT FIELD in ON
CHANGE block or in an ON ACTION block, the ON CHANGE block will only be fired again if
the value is different from the reference value. This denies to do field validation in ON
CHANGE blocks: you better do validations in AFTER FIELD blocks and/or AFTER INPUT
blocks.

AFTER FIELD block

An AFTER FIELD block is executed each time the cursor leaves the specified field, when
moving the focus from field to field.

The AFTER FIELD block is also executed when you validate the dialog or when you
move to another row in an INPUT ARRAY.

Control Block Execution Order

The following table shows the order in which the runtime system executes the control
blocks in the INPUT instruction, according to the user action:

Context / User action Control Block execution order
Entering the dialog 1. BEFORE INPUT

2. BEFORE FIELD (first field)

Moving from field A to
field B

1. ON CHANGE (if value has changed for field A)
2. AFTER FIELD (for field A)
3. BEFORE FIELD (for field B)

Changing the value of
a field with a specific
field like checkbox

1. ON CHANGE

Validating the dialog 1. ON CHANGE (if value has changed in current

User Interface

743

field)
2. AFTER FIELD
3. AFTER INPUT

Canceling the dialog 1. AFTER INPUT

Interaction Blocks

• ON IDLE block
• ON ACTION block
• ON KEY block

ON IDLE block

The ON IDLE idle-seconds clause defines a set of instructions that must be executed
after idle-seconds of inactivity. This can be used, for example, to quit the dialog after the
user has not interacted with the program for a specified period of time. The parameter
idle-seconds must be an integer literal or variable. If it evaluates to zero, the timeout is
disabled.

01 ...
02 ON IDLE 10
03 IF ask_question("Do you want to leave the dialog?") THEN
04 EXIT INPUT
05 END IF
06 ...

ON ACTION block

You can use ON ACTION blocks to execute a sequence of instructions when the user
raises a specific action. This is the preferred solution compared to ON KEY blocks,
because ON ACTION blocks use abstract names to control user interaction.

01 ...
02 ON ACTION zoom
03 CALL zoom_customers() RETURNING st, cust_id, cust_name
04 ...

ON KEY block

For backward compatibility, you can use ON KEY blocks to execute a sequence of
instructions when the user presses a specific key. The following key names are
accepted by the compiler:

Key Name Description

Genero Business Development Language

744

ACCEPT The validation key.
INTERRUPT The interruption key.
ESC or ESCAPE The ESC key (not recommended, use ACCEPT

instead).
TAB The TAB key (not recommended).
Control-char A control key where char can be any character

except A, D, H, I, J, K, L, M, R, or X.
F1 through F255 A function key.
DELETE The key used to delete a new row in an array.
INSERT The key used to delete a new row in an array.
HELP The help key.
LEFT The left arrow key.
RIGHT The right arrow key.
DOWN The down arrow key.
UP The up arrow key.
PREVIOUS or PREVPAGE The previous page key.
NEXT or NEXTPAGE The next page key.

Control Instructions

• CONTINUE INPUT instruction
• EXIT INPUT instruction
• ACCEPT INPUT instruction
• NEXT FIELD instruction
• CLEAR field-list instruction

Continuing the dialog: CONTINUE INPUT

CONTINUE INPUT skips all subsequent statements in the current control block and gives
the control back to the dialog. This instruction is useful when program control is nested
within multiple conditional statements, and you want to return the control to the dialog.
Note that if this instruction is called in a control block that is not AFTER INPUT, further
control blocks might be executed according to the context. Actually, CONTINUE INPUT
just instructs the dialog to continue as if the code in the control block was terminated (i.e.
it's a kind of GOTO end_of_control_block). However, when executed in AFTER INPUT,
the focus returns to the most recently occupied field in the current form, giving the user
another chance to enter data in that field. In this case the BEFORE FIELD of the current
field will be fired.

Note that you can also use the NEXT FIELD control instruction to give the focus to a
specific field and force the dialog to continue. However, unlike CONTINUE INPUT, the
NEXT FIELD instruction will also skip the further control blocks that are normally
executed.

User Interface

745

Leaving the dialog: EXIT INPUT

You can use the EXIT INPUT statement to terminate the INPUT instruction and resume
the program execution at the instruction following the INPUT block.

Validating the dialog: ACCEPT INPUT

The ACCEPT INPUT instruction validates the INPUT instruction and exits the INPUT
instruction if no error is raised. The AFTER FIELD, ON CHANGE, etc. control blocks will be
executed. Statements after the ACCEPT INPUT will not be executed.

Moving to a field: NEXT FIELD

The NEXT FIELD field-name instruction gives the focus to the specified field. You
typically use this instruction to control field input dynamically, in BEFORE FIELD or AFTER
FIELD blocks.

Abstract field identification is supported with the CURRENT, NEXT and PREVIOUS keywords.
These keywords represent respectively the current, next and previous fields,
corresponding to variables as defined in the input binding list (with the FROM or BY NAME
clause).

Non-editable fields are fields defined with NOENTRY attribute or using a widget that
does not allow input, such as a LABEL. If a NEXT FIELD instruction selects a non-
editable field, the next editable field gets the focus (defined by the FIELD ORDER FORM
mode used by the dialog). However, the BEFORE FIELD and AFTER FIELD blocks of non-
editable fields are executed when a NEXT FIELD instruction selects such a field.

Clearing the form fields: CLEAR field-list

The CLEAR field-list instruction can be used to clear a specific field or all fields in a
line of the screen record. You can specify the screen record as described in the following
table:

CLEAR instruction Result
CLEAR field-name Clears the specified field.
CLEAR screen-record.* Clears all fields members of the screen

record.

Warning: When using the UNBUFFERED attribute, it is not recommended that you
use the CLEAR instruction; always use program variables to set field values to
NULL.

Genero Business Development Language

746

Control Class

Inside the dialog instruction, the predefined keyword DIALOG represents the current
dialog object. It can be used to execute methods provided in the dialog built-in class.

For example, you can enable or disable an action with the ui.Dialog.setActionActive()
dialog method, or you can hide or show the default action view with
ui.Dialog.setActionHidden():

01 ...
02 BEFORE INPUT
03 CALL DIALOG.setActionActive("zoom",FALSE)
04 AFTER FIELD field1
05 CALL DIALOG.setActionHidden("zoom",1)
06 ...

The ui.Dialog.setFieldActive() method can be used to enable or disable a field during the
dialog. This instruction takes an integer expression as argument.

01 ...
02 ON CHANGE custname
03 CALL DIALOG.setFieldActive("custaddr", (rec.custname IS NOT
NULL))
04 ...

Control Functions

The language provides several built-in functions and operators to use in a INPUT
statement. For example: FIELD_TOUCHED(), FGL_DIALOG_GETFIELDNAME(),
FGL_DIALOG_GETBUFFER().

Examples

Example 1: Simple INPUT statement using screen record specification

Form definition file (FormFile.per):

01 DATABASE stores
02
03 LAYOUT
04 GRID
05 {
06 Customer : [f001]
07 Name : [f002]
08 Last Name: [f003]
09 }
10 END

User Interface

747

11 END
12
13 TABLES
14 customer
15 END
16
17 ATTRIBUTES
18 f001 = customer.customer_num ;
19 f002 = customer.fname, default = "<no name>", upshift ;
20 f003 = customer.lname ;
21 END
22
23 INSTRUCTIONS
24 SCREEN RECORD sr_cust(
25 customer.customer_num,
26 customer.fname,
27 customer.lname);
28 END

Program source code:

01 MAIN
02
03 DEFINE custrec RECORD
04 id INTEGER,
05 first_name CHAR(30),
06 last_name CHAR(30)
07 END RECORD
09
10 OPTIONS INPUT WRAP
11
12 OPEN FORM f FROM "FormFile"
13 DISPLAY FORM f
14
15 INPUT custrec.* FROM sr_cust.*
16
17 IF INT_FLAG = FALSE THEN
18 DISPLAY custrec.*
19 END IF
20
21 END MAIN

Example 2: Complex INPUT statement using the BY NAME clause and control
blocks

Form definition file (FormFile.per):

01 DATABASE stores
02
03 LAYOUT
04 GRID
05 {
06 Customer : [f001]
07 Name : [f002]
08 Last Name: [f003]

Genero Business Development Language

748

09 }
10 END
11 END
12
13 TABLES
14 customer
15 END
16
17 ATTRIBUTES
18 f001 = customer.customer_num ;
19 f002 = customer.fname, upshift ;
20 f003 = customer.lname ;
21 END

Program source code:

01 MAIN
02
03 DEFINE custrec RECORD
04 customer_num INTEGER,
05 fname CHAR(30),
06 lname CHAR(30)
07 END RECORD
09
10 OPTIONS INPUT WRAP
11
12 OPEN FORM f FROM "FormFile"
13 DISPLAY FORM f
14
15 LET custrec.customer_num = 0
16 LET custrec.fname = "<no name>"
17 LET custrec.lname = NULL
18 INPUT BY NAME custrec.* WITHOUT DEFAULTS
19 BEFORE INPUT
20 MESSAGE "Enter customer details..."
21 AFTER FIELD fname
23 IF FIELD_TOUCHED(custrec.fname)
23 AND custrec.fname IS NULL THEN
24 LET custrec.lname = NULL
25 DISPLAY BY NAME custrec.lname
26 END IF
27 BEFORE FIELD lname
28 IF NOT canEditLastName() THEN
29 NEXT FIELD fname
30 END IF
31 AFTER INPUT
32 MESSAGE "Input terminated..."
33 END INPUT
34
35 IF INT_FLAG = FALSE THEN
36 DISPLAY custrec.*
37 END IF
38
40 END MAIN

User Interface

749

Array Display
Summary:

• Basics
o The full list mode
o The paged mode

• Syntax
• Usage

o Programming Steps
o Variable Binding
o Instruction Configuration
o Default Actions
o Control Blocks
o Control Blocks Execution Order
o Interaction Blocks
o Control Instructions
o Control Class
o Control Functions

• Scrolling Rows Up and Down (SCROLL)
• Examples

o Full list mode example
o Paged mode example

See also: Arrays, Records, Result Sets, Programs, Windows, Forms, Input Array

Basics

With DISPLAY ARRAY, you can let the user browse a list of records, using a static or
dynamic array as the data buffer. The DISPLAY ARRAY instruction can work in full list
mode or in paged mode. In full list mode, you must copy all the data you want to display
into the array. In paged mode, you provide data rows dynamically during the dialog,
using a dynamic array to hold one page of data. The full list mode should be used for a
short and static list of rows, while the paged mode can be used for an infinite number of
rows. Additionally, the paged mode allows you to fetch fresh data from the database.

The full list mode

In full list mode, the DISPLAY ARRAY instruction uses a static or dynamic program array
defined with a record structure corresponding to (or to a part of) a screen-array of a
form. The program array is filled with data rows before DISPLAY ARRAY is executed. In
this case, the list is static and cannot be updated until the instruction is exited.

Genero Business Development Language

750

The paged mode

In paged mode, the DISPLAY ARRAY instruction uses a dynamic program array defined
with a record structure corresponding to (or to a part of) a screen-array of a form. The
total number of rows is defined by the COUNT attribute. The program array is filled
dynamically with data rows as needed during the DISPLAY ARRAY execution. The ON
FILL BUFFER clause is required, to feed the DISPLAY ARRAY instruction with pages of
data. The statements in the ON FILL BUFFER clause are executed automatically by the
runtime system each time a new page of data is needed.

Warnings:

1. With paged mode, the user cannot sort data by clicking on a column header.

User Interface

751

DISPLAY ARRAY

Purpose:

The DISPLAY ARRAY instruction controls the display of a program array on the screen.

Syntax:

DISPLAY ARRAY array TO screen-array.*
 [HELP help-number]
 [ATTRIBUTES ({ display-attribute | control-attribute } [,...])]
[dialog-control-block
 [...]
END DISPLAY]

where dialog-control-block is one of :

{ BEFORE DISPLAY
| AFTER DISPLAY
| BEFORE ROW
| AFTER ROW
| ON IDLE idle-seconds
| ON ACTION action-name
| ON FILL BUFFER
| ON KEY (key-name [,...])
}
 dialog-statement
 [...]

where dialog-statement is one of :

{ statement
| EXIT DISPLAY
| CONTINUE DISPLAY
| ACCEPT DISPLAY
}

Notes:

1. array is a static or dynamic array containing the records you want to display.
2. screen-array is the name of the screen array used to display data.
3. help-number is an integer that associates a help message number with the

instruction.
4. key-name is an hot-key identifier (such as F11 or Control-z).
5. action-name identifies an action that can be executed by the user.
6. idle-seconds is an integer literal or variable that defines a number of seconds.
7. statement is any instruction supported by the language.

Genero Business Development Language

752

The following table shows the display-attributes supported by the DISPLAY ARRAY
statement. The display-attributes affect console-based applications only, they do not
affect GUI-based applications.

Attribute Description
BLACK, BLUE, CYAN, GREEN,
MAGENTA, RED, WHITE,
YELLOW

The color of the displayed data.

BOLD, DIM, NORMAL The font attribute of the displayed data.
REVERSE, BLINK, UNDERLINE The video attribute of the displayed data.

The following table shows the control-attributes supported by the DISPLAY ARRAY
statement:

Attribute Description
COUNT = row-count Defines the number of data rows when using

a static array or the paged mode. row-count
can be an integer literal or a program
variable. This is the equivalent of the
SET_COUNT() built-in function.

HELP = int-expr Defines the help number when help is
invoked by the user.

KEEP CURRENT ROW [=bool] Keeps current row highlighted after execution
of the instruction.

UNBUFFERED [=bool] Indicates that the dialog must be sensitive to
program variable changes. The bool
parameter can be an integer literal or a
program variable.

CANCEL = bool
Indicates if the default cancel action should
be added to the dialog. If not specified, the
action is registered.

ACCEPT = bool
Indicates if the default accept action should
be added to the dialog. If not specified, the
action is registered.

Usage:

Programming Steps

The following steps describe how to use the DISPLAY ARRAY statement:

1. Create a form specification file containing a screen array. The screen array
identifies the presentation elements to be used by the runtime system to display
the rows.

User Interface

753

2. Make sure that the program controls interruption handling with DEFER
INTERRUPT, to manage the validation/cancellation of the interactive dialog.

3. Define an array of records with the DEFINE instruction. The members of the
program array must correspond to the elements of the screen array, by number
and data types. You can use a static or a dynamic array for a full list mode, but
you must use a dynamic array for a paged mode.

4. Open and display the form, using an OPEN WINDOW with the WITH FORM clause
or the OPEN FORM / DISPLAY FORM instructions.

5. If you want to use the full list mode, fill the program array with data, for example
with a result set cursor, counting the number of program records being filled with
retrieved data.

6. Use the DISPLAY ARRAY statement to display the values. When using a static
array, specifying the number of rows with the COUNT attribute in the ATTRIBUTES
clause.

7. If you want to use the paged mode, add the ON FILL BUFFER clause inside the
instruction, and write the code to fill the dynamic array with the expected rows
from fgl_dialog_getBufferStart() to fgl_dialog_getBufferLength().

8. Inside the DISPLAY ARRAY statement, control the behavior of the selection list
with BEFORE DISPLAY, BEFORE ROW, AFTER ROW, AFTER DISPLAY and ON KEY
blocks.

9. After the DISPLAY ARRAY statement, test the INT_FLAG predefined variable to
check if the interactive dialog was canceled (INT_FLAG = TRUE) or validated (
INT_FLAG = FALSE).

10. If needed, get the selected row with the ARR_CURR() built-in function.

Tips:

1. If you want to display data to a reduced set of columns, you must define a
second screen array in the form file, containing the limited list of form fields. Then
you can use the second screen array in a DISPLAY ARRAY a TO sa.*
instruction.

Warnings:

1. The INVISIBLE attribute is ignored.
2. While the ON KEY block is supported for backward compatibility, it is

recommended that you use ON ACTION instead.

Variable Binding

The DISPLAY ARRAY statement binds the members of the array of record to the screen
array fields specified with the TO keyword. The number of variables in each record of the
program array must be the same as the number of fields in each screen record (that is,
in a single row of the screen array).

When using the UNBUFFERED attribute, the instruction is sensitive to program variable
changes. This means that you do not have to DISPLAY the values; setting the program

Genero Business Development Language

754

variable used by the dialog automatically displays the data into the corresponding form
field.

01 ...
02 ON ACTION change
03 LET arr[arr_curr()].field1 = newValue()
04 ...

Instruction Configuration

The ATTRIBUTES clause specifications override all default attributes and temporarily
override any display attributes that the OPTIONS or the OPEN WINDOW statement
specified for these fields. While the DISPLAY ARRAY statement is executing, the runtime
system ignores the INVISIBLE attribute.

• HELP option
• COUNT option
• KEEP CURRENT ROW option
• ACCEPT option
• CANCEL option

HELP option

The HELP clause specifies the number of a help message to display if the user invokes
the help while executing the instruction. The predefined help action is automatically
created by the runtime system. You can bind action views to the 'help' action.

Warnings:

1. The HELP option overrides the HELP attribute!

COUNT option

When using a static array or the paged mode, the number of rows to be displayed is
defined by the COUNT attribute. You can also use the SET_COUNT() built-in function, but
it is supported for backward compatibility only. When using a dynamic array, the number
of rows to be displayed is defined by the number of elements in the dynamic array; the
COUNT attribute is ignored.

KEEP CURRENT ROW option

Depending on the list container used in the form, the current row may be highlighted
during the execution of the dialog, and cleared when the instruction ends. You can
change this default behavior by using the KEEP CURRENT ROW attribute, to force the
runtime system to keep the current row highlighted.

ACCEPT option

User Interface

755

The ACCEPT attribute can be set to FALSE to avoid the automatic creation of the accept
default action. Use this attribute when you want to write a specific validation procedure
by using ACCEPT DISPLAY.

CANCEL option

The CANCEL attribute can be set to FALSE to avoid the automatic creation of the cancel
default action. Use this attribute when you only need a validation action (accept), or
when you want to write a specific cancellation procedure by using EXIT DISPLAY.

Note that if the CANCEL=FALSE option is set, no close action will be created, and you
must write an ON ACTION close control block to create an explicit action.

Default Actions

When an DISPLAY ARRAY instruction executes, the runtime system creates a set of
default actions. See the control block execution order to understand what control blocks
are executed when a specific action is fired.

The following table lists the default actions created for this dialog:

Default action Description

accept
Validates the DISPLAY ARRAY dialog (validates current row
selection)
Creation can be avoided with ACCEPT attribute.

cancel
Cancels the DISPLAY ARRAY dialog (no validation, INT_FLAG
is set)
Creation can be avoided with CANCEL attribute.

close
By default, cancels the DISPLAY ARRAY dialog (no validation,
INT_FLAG is set)
Default action view is hidden. See Windows closed by the
user.

help Shows the help topic defined by the HELP clause.
Only created when a HELP clause is defined.

firstrow Moves to the first row in the list.
lastrow Moves to the last row in the list.
nextrow Moves to the next row in the list.
prevrow Moves to the previous row in the list.

The accept and cancel default actions can be avoided with the ACCEPT and CANCEL
dialog control attributes:

01 DISPLAY ARRAY arr TO sr.* ATTRIBUTES(CANCEL=FALSE, ...)
02 ...

Genero Business Development Language

756

Control Blocks

• BEFORE DISPLAY block
• AFTER DISPLAY block
• BEFORE ROW block
• AFTER ROW block
• ON FILL BUFFER block

BEFORE DISPLAY block

The BEFORE DISPLAY block is executed one time, before the runtime system gives
control to the user. You can implement dialog initialization tasks in this block.

AFTER DISPLAY block

The AFTER DISPLAY block is executed one time, after the user has validated or canceled
the dialog and before the runtime system executes the instruction that appears just after
the DISPLAY ARRAY block. You typically implement dialog finalization in this block.

BEFORE ROW block

The BEFORE ROW block is executed each time the user moves to another row, after the
destination row is made the current one. When called in this block, the ARR_CURR()
function returns the index of the current row.

AFTER ROW block

The AFTER ROW block is executed each time the user moves to another row, before the
current row is left. When called in this block, the ARR_CURR() function returns the index
of the current row.

ON FILL BUFFER block

The ON FILL BUFFER clause is provided to fill a page of rows into the dynamic array,
according to an offset and a number of rows. The offset can be retrieved with the
FGL_DIALOG_GETBUFFERSTART() built-in function and the number of rows to
provide is defined by the FGL_DIALOG_GETBUFFERLENGTH() built-in function.

A typical paged display array consists of a scroll cursor providing the list of records to be
displayed. Scroll cursors use a static result set. If you want to display fresh data, you can
write advanced paged display array instructions by using a scroll cursor providing the
primary keys of the reference result set, plus a prepared cursor used to fetch rows on
demand in the ON FILL BUFFER clause. In this case, you may need to check if a row still
exists when fetching a record with the second cursor.

 See Example 2 for a typical paged mode implementation.

User Interface

757

Control Block Execution Order

The following table shows the order in which the runtime system executes the control
blocks in the DISPLAY ARRAY instruction, according to the user action:

Context / User action Control Block execution order
Entering the dialog 1. BEFORE DISPLAY

2. BEFORE ROW

Moving to a different
row

1. AFTER ROW (the current row)
2. BEFORE ROW (the new row)

Validating the dialog 1. AFTER ROW
2. AFTER DISPLAY

Canceling the dialog 1. AFTER ROW
2. AFTER INPUT

Interaction Blocks

• ON IDLE block
• ON ACTION block
• ON KEY block

ON IDLE block

The ON IDLE idle-seconds clause defines a set of instructions that must be executed
after idle-seconds of inactivity. This can be used, for example, to quit the dialog after the
user has not interacted with the program for a specified period of time. The parameter
idle-seconds must be an integer literal or variable. If it evaluates to zero, the timeout is
disabled.

01 ...
02 ON IDLE 10
03 IF ask_question("Do you want to leave the dialog?") THEN
04 EXIT DISPLAY
05 END IF
06 ...

ON ACTION block

You can use ON ACTION blocks to execute a sequence of instructions when the user
raises a specific action. This is the preferred solution compared to ON KEY blocks,
because ON ACTION blocks use abstract names to control user interaction.

01 ...

Genero Business Development Language

758

02 ON ACTION zoom
03 CALL zoom_customers() RETURNING st, cust_id, cust_name
04 ...

ON KEY block

For backward compatibility, you can use ON KEY blocks to execute a sequence of
instructions when the user presses a specific key. The following key names are
accepted by the compiler:

Key Name Description
ACCEPT The validation key.
INTERRUPT The interruption key.

ESC or ESCAPE The ESC key (not recommended, use ACCEPT
instead).

TAB The TAB key (not recommended).

Control-char A control key where char can be any character
except A, D, H, I, J, K, L, M, R, or X.

F1 through F255 A function key.
DELETE The key used to delete a new row in an array.
INSERT The key used to insert a new row in an array.
HELP The help key.
LEFT The left arrow key.
RIGHT The right arrow key.
DOWN The down arrow key.
UP The up arrow key.
PREVIOUS or PREVPAGE The previous page key.
NEXT or NEXTPAGE The next page key.

Control Instructions

• CONTINUE DISPLAY instruction
• EXIT DISPLAY instruction
• ACCEPT DISPLAY instruction

Continuing the dialog: CONTINUE DISPLAY

CONTINUE DISPLAY skips all subsequent statements in the current control block and
gives the control back to the dialog. This instruction is useful when program control is
nested within multiple conditional statements, and you want to return the control to the
dialog. Note that if this instruction is called in a control block that is not AFTER DISPLAY,
further control blocks might be executed according to the context. Actually, CONTINUE
DISPLAY just instructs the dialog to continue as if the code in the control block was
terminated (i.e. it's a kind of GOTO end_of_control_block). However, when executed
in AFTER DISPLAY, the focus returns to the current row in the list, giving the user another

User Interface

759

chance to browse and select a row. In this case the BEFORE ROW of the current row will
be fired.

Leaving the dialog: EXIT DISPLAY

You can use the EXIT DISPLAY to terminate the DISPLAY ARRAY instruction and resume
the program execution at the instruction immediately following the DISPLAY ARRAY
block.

Validating the dialog: ACCEPT DISPLAY

The ACCEPT DISPLAY instruction validates the DISPLAY ARRAY instruction and exits the
DISPLAY ARRAY instruction. The AFTER DISPLAY control block will be executed.
Statements after ACCEPT DISPLAY will not be executed.

Control Class

Inside the dialog instruction, the predefined keyword DIALOG represents the current
dialog object. It can be used to execute methods provided in the DIALOG built-in class.

For example, you can enable or disable an action with the ui.Dialog.setActionActive()
dialog method, or you can hide and show a default action view with
ui.Dialog.setActionHidden():

01 ...
02 BEFORE DISPLAY
03 CALL DIALOG.setActionActive("refresh",FALSE)

Control Functions

The language provides several built-in functions and operators to use in a DISPLAY
ARRAY statement. You can use the following built-in functions to keep track of the relative
states of the current row, the program array, and the screen array or to access the field
buffers and keystroke buffers. These functions and operators are:

• ARR_CURR()
• FGL_SET_ARR_CURR()
• ARR_COUNT()
• SCR_LINE()
• SET_COUNT()

Genero Business Development Language

760

SCROLL

Purpose:

The SCROLL instruction specifies vertical movements of displayed values in all or some
of the fields of a screen array within the current form.

Syntax:

SCROLL field-list { UP | DOWN } [BY lines]

where field-list is :

{ field-name
| table-name.*
| table-name.field-name
| screen-array[line].*
| screen-array[line].field-name
| screen-record.*
| screen-record.field-name
} [,...]

Notes:

1. field-name is the identifier of a field of the current form.
2. table-name is the identifier of a database table of the current form.
3. screen-record is the identifier of a screen record of the current form.
4. screen-array is the name of the screen array used of the current form.
5. lines is an integer literal or variables that specifies how far (in lines) to scroll the

display.

Warnings:

1. It is recommended that you NOT use this instruction in GUI mode.

Examples

Example 1: Full list mode

Form definition file "custlist.per":

01 DATABASE stores
02
03 LAYOUT
04 TABLE
05 {
06 Id Name LastName
07 [f001 |f002 |f003]

User Interface

761

08 [f001 |f002 |f003]
09 [f001 |f002 |f003]
10 [f001 |f002 |f003]
11 [f001 |f002 |f003]
12 [f001 |f002 |f003]
13 }
14 END
15 END
16
17 TABLES
18 customer
19 END
20
21 ATTRIBUTES
22 f001 = customer.customer_num;
23 f002 = customer.fname;
24 f003 = customer.lname;
25 END
26
27 INSTRUCTIONS
28 DELIMITERS "||";
29 SCREEN RECORD srec[6] (
30 customer.customer_num,
31 customer.fname,
32 customer.lname);
33 END

Application:

01 MAIN
02 DEFINE cnt INTEGER
03 DEFINE arr ARRAY[500] OF RECORD
04 id INTEGER,
05 fname CHAR(30),
06 lname CHAR(30)
07 END RECORD
08
09 DATABASE stores7
10
11 OPEN FORM f1 FROM "custlist"
12 DISPLAY FORM f1
13
14 DECLARE c1 CURSOR FOR
15 SELECT customer_num, fname, lname FROM customer
16 LET cnt = 1
17 FOREACH c1 INTO arr[cnt].*
18 LET cnt = cnt + 1
19 END FOREACH
20 LET cnt = cnt - 1
21 DISPLAY ARRAY arr TO srec.* ATTRIBUTES(COUNT=cnt)
22 ON ACTION print
23 DISPLAY "Print a report"
24 END DISPLAY
25 END MAIN

Genero Business Development Language

762

Example 2: Paged mode

Form definition file "custlist.per" (same as example 1)

Application:

01 MAIN
02 DEFINE arr DYNAMIC ARRAY OF RECORD
03 id INTEGER,
04 fname CHAR(30),
05 lname CHAR(30)
06 END RECORD
07 DEFINE cnt, ofs, len, i INTEGER
08
09 DATABASE stores7
10
11 OPEN FORM f1 FROM "custlist"
12 DISPLAY FORM f1
13
14 SELECT COUNT(*) INTO cnt FROM customer
15 DECLARE c1 SCROLL CURSOR FOR
16 SELECT customer_num, fname, lname FROM customer
17 DISPLAY ARRAY arr TO srec.* ATTRIBUTES(COUNT=cnt)
18 ON FILL BUFFER
19 OPEN c1
20 LET ofs = fgl_dialog_getBufferStart()
21 LET len = fgl_dialog_getBufferLength()
22 -- Warning: Fill the array from index 1 to len!
23 FOR i=1 TO len
24 FETCH ABSOLUTE ofs+i-1 c1 INTO arr[i].*
25 END FOR
26 CLOSE c1
27 AFTER DISPLAY
28 IF NOT int_flag THEN
29 DISPLAY "Selected customer is #"
30 || arr[arr_curr()-ofs+1].id
31 END IF
32 END DISPLAY
33 END MAIN

User Interface

763

Array Input
Summary:

• Basics
• Syntax
• Usage

o Programming Steps
o Variable Binding
o Instruction Configuration
o Default Actions
o Control Blocks
o Control Blocks Execution Order
o Interaction Blocks
o Control Instructions
o Control Class
o Control Functions

• Examples
o Basic INPUT ARRAY
o INPUT ARRAY using default values
o INPUT ARRAY using dynamic array
o INPUT ARRAY updating database table

See also: Arrays, Records, Result Sets, Programs, Windows, Forms, Display Array

Basics

The INPUT ARRAY instruction associates a program array of records with a screen-array
defined in a form so that the user can update the list of records. The INPUT ARRAY
statement activates the current form (the form that was most recently displayed or the
form in the current window):

Genero Business Development Language

764

During the INPUT ARRAY execution, the user can edit or delete existing rows, insert new
rows, and move inside the list of records. The user can insert new rows with the insert
key, which is by default F1, or delete existing rows with the delete key, which is by
default F2. The program controls the behavior of the instruction with control blocks:

To terminate the INPUT ARRAY execution, the user can validate (or cancel) the dialog to
commit (or invalidate) the modifications made in the list of records:

User Interface

765

When the statement completes execution, the form is de-activated. After the user
terminates the input (for example, with the Accept key), the program must test the
INT_FLAG variable to check if the dialog was validated (or canceled) and then use
INSERT, DELETE, or UPDATE SQL statements to modify the appropriate database
tables. The database can also be updated during the execution of the INPUT ARRAY
statement.

INPUT ARRAY

Purpose:

The INPUT ARRAY supports data entry by users into a screen array and stores the
entered data in an array of records.

Syntax:

INPUT ARRAY array
 [WITHOUT DEFAULTS]
 FROM screen-array.*
 [ATTRIBUTES ({ display-attribute | control-attribute } [,...])]
 [HELP help-number]
[dialog-control-block
 [...]
END INPUT]

where dialog-control-block is one of:

{ BEFORE INPUT
| AFTER INPUT
| AFTER DELETE
| BEFORE ROW

Genero Business Development Language

766

| AFTER ROW
| BEFORE FIELD field-spec
| AFTER FIELD field-spec
| ON ROW CHANGE
| ON CHANGE field-spec
| ON IDLE idle-seconds
| ON ACTION action-name
| ON KEY (key-name [,...])
| BEFORE INSERT
| AFTER INSERT
| BEFORE DELETE
}
 dialog-statement
 [...]

where dialog-statement is one of:

{ statement
| ACCEPT INPUT
| CONTINUE INPUT
| EXIT INPUT
| NEXT FIELD { CURRENT | NEXT | PREVIOUS | field-name }
| CANCEL DELETE
| CANCEL INSERT
}

where field-spec is:

{ field-name
| table-name.field-name
| screen-array.field-name
| screen-record.field-name
} [,...]

Notes:

1. array is the array of records that will be filled by the INPUT ARRAY statement.
2. help-number is an integer that allows you to associate a help message number

with the instruction.
3. field-name is the identifier of a field of the current form.
4. table-name is the identifier of a database table of the current form.
5. screen-record is the identifier of a screen record of the current form.
6. screen-array is the screen array that will be used in the form.
7. action-name identifies an action that can be executed by the user.
8. idle-seconds is an integer literal or variable that defines a number of seconds.
9. key-name is a hot-key identifier (like F11 or Control-z).
10. statement is any instruction supported by the language.

The following table shows the options supported by the INPUT ARRAY statement:

Attribute Description
HELP help-number Defines the help number when help is

User Interface

767

invoked by the user, where help-number is
an integer literal or a program variable. See
Warning below!

WITHOUT DEFAULTS Indicates that the data rows are not filled
(TRUE) with the column default values
defined in the form specification file or the
database schema files (Default is
FALSE). See Warning below!

The following table shows the display-attributes supported by the INPUT ARRAY
statement. The display-attributes affect console-based applications only, they do not
affect GUI-based applications.

Attribute Description
BLACK, BLUE, CYAN, GREEN,
MAGENTA, RED, WHITE,
YELLOW

The color of the displayed data.

BOLD, DIM, INVISIBLE,
NORMAL The font attribute of the displayed data.
REVERSE, BLINK, UNDERLINE The video attribute of the displayed data.

The following table shows the control-attributes supported by the INPUT ARRAY
statement:

Attribute Description
HELP = help-number Defines the help number when help is

invoked by the user, where help-number is
an integer literal or a program variable. See
Warning below!

WITHOUT DEFAULTS [=bool] Indicates if the data rows must be filled
(FALSE) or not (TRUE) with the column
default values defined in the form
specification file or the database schema
files. The bool parameter can be an integer
literal or a program variable that evaluates to
TRUE or FALSE. See Warning below!

FIELD ORDER FORM Indicates that the tabbing order of fields is
defined by the TABINDEX attribute of form
fields. The default order in which the focus
moves from field to field in the screen array is
determined by the order of the members in
the array variable used by the INPUT ARRAY
statement. The program options instruction
can also change this behavior with FIELD
ORDER FORM options.

UNBUFFERED [=bool] Indicates that the dialog must be sensitive to

Genero Business Development Language

768

program variable changes. The bool
parameter can be an integer literal or a
program variable.

COUNT = row-count Defines the number of data rows in the static
array. The row-count can be an integer literal
or a program variable. This is the equivalent
of the SET_COUNT() built-in function.

MAXCOUNT = row-count Defines the maximum number of data rows
that can be entered in the program array,
where row-count can be an integer literal or a
program variable.

ACCEPT = bool Indicates if the default accept action should
be added to the dialog. If not specified, the
action is registered. The bool parameter can
be an integer literal or a program variable.

CANCEL = bool Indicates if the default cancel action should
be added to the dialog. If not specified, the
action is registered. The bool parameter can
be an integer literal or a program variable.

APPEND ROW [=bool] Defines if the user can append new rows at
the end of the list. The bool parameter can be
an integer literal or a program variable that
evaluates to TRUE or FALSE.

INSERT ROW [=bool] Defines if the user can insert new rows inside
the list. The bool parameter can be an integer
literal or a program variable that evaluates to
TRUE or FALSE.

DELETE ROW [=bool] Defines if the user can delete rows. The bool
parameter can be an integer literal or a
program variable that evaluates to TRUE or
FALSE.

AUTO APPEND [=bool] Defines if a temporary row will be created
automatically when needed. The bool
parameter can be an integer literal or a
program variable that evaluates to TRUE or
FALSE.

KEEP CURRENT ROW [=bool] Keeps current row highlighted after execution
of the instruction.

Usage

Programming Steps

The following steps describe how to use the INPUT ARRAY statement:

User Interface

769

1. Create a form specification file containing a screen array. The screen array
identifies the presentation elements to be used by the runtime system to display
the rows.

2. Make sure that the program controls interruption handling with DEFER
INTERRUPT, to manage the validation/cancellation of the interactive dialog.

3. Define an array of records with the DEFINE instruction. The members of the
program array must correspond to the elements of the screen array, by number
and data types. If you want to input data from a reduced set of columns, you
must define a second screen array, containing the limited list of form fields, in the
form file. You can then use the second screen array in an INPUT ARRAY a FROM
sa.* instruction.

4. Open and display the form, using a OPEN WINDOW with the WITH FORM clause
or the OPEN FORM / DISPLAY FORM instructions.

5. If needed, fill the program array with data, for example with a result set cursor,
counting the number of program records being filled with retrieved data.

6. Inside the INPUT ARRAY statement, control the behavior of the instruction with
control blocks such as BEFORE INPUT, BEFORE INSERT, BEFORE DELETE, BEFORE
ROW, BEFORE FIELD, AFTER INSERT, AFTER DELETE, AFTER FIELD, AFTER ROW,
AFTER INPUT and ON ACTION blocks.

7. After the INPUT ARRAY statement, test the INT_FLAG pre-defined variable to
check if the interactive dialog was canceled (INT_FLAG = TRUE) or validated (
INT_FLAG = FALSE).

8. Get the new number of rows with the ARR_COUNT() built-in function.
9. If needed, get the current row with the ARR_CURR() built-in function.

Warnings:

1. You can only use the CANCEL INSERT keyword in the BEFORE INSERT or AFTER
INSERT blocks.

2. You can only use the CANCEL DELETE keyword in the BEFORE DELETE block.
3. For the HELP and WITHOUT DEFAULTS options, the order of appearance is

important : the last option overrides the previous one!

Variable Binding

The INPUT ARRAY statement binds the members of the array of record to the screen
array fields specified with the FROM keyword. The number of variables in each record of
the program array must be the same as the number of fields in each screen record (that
is, in a single row of the screen array).

When using a static array, the initial number of rows is defined by the COUNT attribute
and the size of the array determines how many rows can be inserted. When using a
dynamic array, the initial number of rows is defined by the number of elements in the
dynamic array (the COUNT attribute is ignored). The size of the input array is unlimited. In
both cases, the maximum number of rows the user can enter can be defined with the
MAXCOUNT attribute.

Genero Business Development Language

770

The FROM clause binds the screen records in the screen array to the program records of
the program array. The form can include other fields that are not part of the specified
screen array, but the number of member variables in each record of the program array
must equal the number of fields in each row of the screen array. When the user enters
data, the runtime system checks the entered value against the data type of the variable,
not the data type of the screen field.

The variables of the record array are the interface to display data or to get the user input
through the INPUT ARRAY instruction. Always use the variables if you want to change
some field values programmatically. When using the UNBUFFERED attribute, the
instruction is sensitive to program variable changes. If you need to display new data
during the INPUT ARRAY execution, use the UNBUFFERED attribute and assign the values
to the program array row; the runtime system will automatically display the values to the
screen:

01 INPUT ARRAY p_items FROM s_items.* ATTRIBUTES(UNBUFFERED)
02 ON CHANGE code
03 IF p_items[arr_curr()].code = "A34" THEN
04 LET p_items[arr_curr()].desc = "Item A34"
05 END IF
06 END INPUT

The member variables of the records in a program array can be of any data type. If a
variable is declared LIKE a SERIAL column, the runtime system does not allow the
screen cursor to stop in the field, as values in SERIAL columns are automatically
generated by the database server, not by the runtime system.

The default order in which the focus moves from field to field in the screen array is
determined by the declared order of the corresponding member variables, in the array of
the record definition. The program options instruction can also change the behavior of
the INPUT ARRAY instruction, with the INPUT WRAP or FIELD ORDER FORM options.

When the INPUT ARRAY instruction executes, it displays any column default values in the
screen fields, unless you specify the WITHOUT DEFAULTS keywords. The column default
values are specified in the form specification file with the DEFAULT attribute or in the
database schema files.

Instruction Configuration

The ATTRIBUTES clause specifications override all default attributes and temporarily
override any display attributes that the OPTIONS or the OPEN WINDOW statement
specified for these fields. While the INPUT ARRAY statement is executing, the runtime
system ignores the INVISIBLE attribute.

• HELP option
• WITHOUT DEFAULTS option
• FIELD ORDER FORM option
• UNBUFFERED option

User Interface

771

• COUNT option
• MAXCOUNT option
• ACCEPT option
• CANCEL option
• APPEND ROW option
• INSERT ROW option
• DELETE ROW option
• AUTO APPEND option
• KEEP CURRENT ROW option

HELP option

The HELP clause specifies the number of a help message to display if the user invokes
the help while the focus is in any field used by the instruction. The predefined help action
is automatically created by the runtime system. You can bind action views to the 'help'
action.

Warnings:

1. The HELP option overrides the HELP attribute!

WITHOUT DEFAULTS option

Indicates if the data rows must be filled (FALSE) or not (TRUE) with the column default
values defined in the form specification file or the database schema files. The bool
parameter can be an integer literal or a program variable that evaluates to TRUE or
FALSE.

FIELD ORDER FORM option

By default, the form tabbing order is defined by the variable list in the binding
specification. You can control the tabbing order by using the FIELD ORDER FORM
attribute. When this attribute is used, the tabbing order is defined by the TABINDEX
attribute of the form items. With FIELD ORDER FORM, if you jump from one field to a
another with the mouse, the BEFORE FIELD / AFTER FIELD triggers of intermediate fields
are not executed (actually, the Dialog.fieldOrder FGLPROFILE entry is ignored)

If the form uses a TABLE container, the front-end resets the tab indexes when the user
moves columns around. This way, the visual column order always corresponds to the
input tabbing order. The order of the columns in an editable list can be important; you
may want to freeze the table columns with the UNMOVABLECOLUMNS attribute.

UNBUFFERED option

The UNBUFFERED attribute indicates that the dialog must be sensitive to program variable
changes. When using this option, you bypass the traditional "buffered" mode.

Genero Business Development Language

772

When using the traditional " buffered" mode, program variable changes are not
automatically displayed to form fields; You need to execute a DISPLAY TO or DISPLAY
BY NAME. Additionally, if an action is triggered, the value of the current field is not
validated and is not copied into the corresponding program variable. The only way to get
the text of the current field is to use GET_FLDBUF().

If the "unbuffered" mode is used, program variables and form fields are automatically
synchronized. You don't need to display explicitly values with a DISPLAY TO or DISPLAY
BY NAME. When an action is triggered, the value of the current field is validated and is
copied into the corresponding program variable.

COUNT option

The COUNT attribute defines the number of valid rows in the static array to be displayed
as default rows. If you do not use the COUNT attribute, the runtime system cannot
determine how much data to display, so the screen array remains empty. You can also
use the SET_COUNT() built-in function, but it is supported for backward compatibility
only. The COUNT option is ignored when using a dynamic array. If you specify the COUNT
attribute, the WITHOUT DEFAULTS option is not required because it is implicit. If the COUNT
attribute is greater as MAXCOUNT, the runtime system will take MAXCOUNT as the actual
number of rows. If the value of COUNT is negative or zero, it defines an empty list.

MAXCOUNT option

The MAXCOUNT attribute defines the maximum number of rows that can be inserted in the
program array. This attribute allows you to give an upper limit. When using a dynamic
array, the user can enter an infinite number of rows unless the MAXCOUNT attribute is
used. When using a static array and MAXCOUNT is greater than the size of the declared
static array, the original static array size is used as the upper limit. If MAXCOUNT is
negative or equal to zero, user cannot insert rows.

ACCEPT option

The ACCEPT attribute can be set to FALSE to avoid the automatic creation of the accept
default action. This option can be used for example when you want to write a specific
validation procedure, by using ACCEPT INPUT.

CANCEL option

The CANCEL attribute can be set to FALSE to avoid the automatic creation of the cancel
default action. This is useful for example when you only need a validation action
(accept), or when you want to write a specific cancellation procedure, by using EXIT
INPUT.

Note that if the CANCEL=FALSE option is set, no close action will be created, and you
must write an ON ACTION close control block to create an explicit action.

APPEND ROW option

User Interface

773

The APPEND ROW attribute can be set to FALSE to avoid the automatic creation of the
append default action, and deny the user to add rows at the end of the list. If APPEND
ROW = FALSE, the user can still insert rows in the middle of the list. Use the INSERT ROW
attribute to disallow the user from inserting rows.

INSERT ROW option

Using the INSERT ROW attribute, you can define with a Boolean value whether the user is
allowed to insert new rows in the middle of the list. However, even if INSERT ROW is
FALSE, the user can still append rows at the end of the list. Use the APPEND ROW
attribute to disallow the user from appending rows.

DELETE ROW option

Using the DELETE ROW attribute, you can define with a Boolean value whether the user is
allowed to delete rows (TRUE) or not allowed to delete rows (FALSE).

AUTO APPEND option

By default, an INPUT ARRAY controller creates a temporary row when needed (for
example, when the user deletes the last row of the list, an new row will be automatically
created). You can prevent this default behavior by setting the AUTO APPEND attribute to
FALSE. If this attribute is set to TRUE, the only way to create a new temporary row is to
execute the append action.

KEEP CURRENT ROW option

Depending on the list container used in the form, the current row may be highlighted
during the execution of the dialog, and cleared when the instruction ends. You can
change this default behavior by using the KEEP CURRENT ROW attribute, to force the
runtime system to keep the current row highlighted.

Default Actions

When an INPUT ARRAY instruction executes, the runtime system creates a set of default
actions. See the control block execution order to understand what control blocks are
executed when a specific action is fired.

The following table lists the default actions created for this dialog:

Default action Description

accept Validates the INPUT ARRAY dialog (validates fields)
Creation can be avoided with ACCEPT attribute.

cancel
Cancels the INPUT ARRAY dialog (no validation, INT_FLAG is
set)
Creation can be avoided with CANCEL attribute.

close By default, cancels the INPUT ARRAY dialog (no validation,

Genero Business Development Language

774

INT_FLAG is set)
Default action view is hidden. See Windows closed by the
user.

insert Inserts a new row before current row.
Creation can be avoided with INSERT ROW = FALSE attribute.

append Appends a new row at the end of the list.
Creation can be avoided with APPEND ROW = FALSE attribute.

delete Deletes the current row.
Creation can be avoided with DELETE ROW = FALSE attribute.

help Shows the help topic defined by the HELP clause.
Only created when a HELP clause is defined.

firstrow Moves to the first row in the list.
lastrow Moves to the last row in the list.
nextrow Moves to the next row in the list.
prevrow Moves to the previous row in the list.

The insert, append, delete, accept and cancel default actions can be avoided with
dialog control attributes:

01 INPUT ARRAY arr TO sr.* ATTRIBUTES(INSERT ROW=FALSE, CANCEL=FALSE,
...)
02 ...

Control Blocks

• BEFORE INPUT block
• AFTER INPUT block
• BEFORE FIELD block
• AFTER FIELD block
• ON CHANGE block
• BEFORE ROW block
• ON ROW CHANGE block
• AFTER ROW block
• BEFORE INSERT block
• AFTER INSERT block
• BEFORE DELETE block
• AFTER DELETE block

BEFORE INPUT block

The BEFORE INPUT block is executed one time, before the runtime system gives control
to the user. You can implement initialization in this block.

AFTER INPUT block

The AFTER INPUT block is executed one time, after the user has validated or canceled
the dialog, and before the runtime system executes the instruction that appears just after

User Interface

775

the INPUT ARRAY block. You typically implement dialog finalization in this block. The
AFTER INPUT block is not executed if EXIT INPUT executes.

BEFORE ROW block

The BEFORE ROW block is executed each time the user moves to another row. This
trigger can also be executed in other situations, such as when you delete a row, or when
the user tries to insert a row but the maximum number of rows in the list is reached (see
Control Blocks Execution Order for more details).

You typically do some dialog setup / message display in the BEFORE ROW block, because
it indicates that the user selected a new row or entered in the list.

When the dialog starts, BEFORE ROW will be executed for the current row.

When called in this block, the ARR_CURR() function returns the index of the current
row.

In the following example, the BEFORE ROW block gets the new row number and displays it
in a message:

01 INPUT ARRAY ...
02 ...
03 BEFORE ROW
04 MESSAGE "We are on row # ", arr_curr()
05 ...
06 END INPUT

ON ROW CHANGE block

An ON ROW CHANGE block is executed when the user moves to another row after
modifications have been done in the current row. It is triggered if the value of a field has
changed since the row was entered and if the 'touched' flag of the corresponding field is
set. The field might not be the current field, and several field values can be changed.

The 'touched' flag is set on user input or when doing a DISPLAY TO or a DISPLAY BY
NAME. Note that the 'touched' flag is reset for all fields when entering another row, or
when leaving the dialog instruction.

You can, for example, code database modifications (UPDATE) in this block. This block is
executed before the AFTER ROW block if defined. When called in this block, the
ARR_CURR() function returns the index of the current row where values have been
changed.

01 INPUT ARRAY p_items FROM s_items.*
02 ON ROW CHANGE
03 UPDATE items SET
04 items.code = p_items[arr_curr()].code,
05 items.description = p_items[arr_curr()].description,
06 items.price = p_items[arr_curr()].price,
07 items.updatedate = TODAY

Genero Business Development Language

776

08 WHERE items.num = p_items[arr_curr()].num
09 ...

AFTER ROW block

The AFTER ROW block is executed each time the user moves to another row, before the
current row is left. This trigger can also be executed in other situations, such as when
you delete a row, or when the user inserts a new row. see Control Blocks Execution
Order for more details.

A NEXT FIELD executed in the AFTER ROW control block will keep the user entry in the
current row. Thus you can use this to implement row input validation and prevent the
user from leaving the list or moving to another row.

When called in this block, the ARR_CURR() function return the index of the row that you
are leaving.

Warnings:

1. When leaving a temporary row that will be removed because user goes to a
previous row in the list, AFTER ROW is executed for the temporary row, but
ARR_CURR() will be one row greater as ARR_COUNT(). You should not access
a dynamic array with a row index that is greater as the total number of rows,
otherwise the runtime system will adapt the total number of rows to the actual
number of rows in the program array.

In the following example, the AFTER ROW block checks a variable value and forces the
user to stay in the current row if the value is wrong:

01 INPUT ARRAY p_items FROM s_items.*
02 AFTER ROW
03 IF arr_curr()>0 AND arr_curr() <= arr_count() THEN
04 IF NOT
item_is_valid_quantity(p_item[arr_curr()].item_quantity) THEN
05 ERROR "Item quentity is not valid"
06 NEXT FIELD item_quantity
07 END IF
08 END IF
09 ...

BEFORE FIELD block

A BEFORE FIELD block is executed each time the cursor enters into the specified field,
when moving the focus from field to field in the same row, or when moving to another
row.

The BEFORE FIELD block is also executed when using NEXT FIELD.

ON CHANGE block

User Interface

777

The ON CHANGE block is executed when another field is selected, if the value of the
specified field has changed since the field got the focus and if the 'touched' field flag is
set. The 'touched' flag is set when a user modification is done or when doing a DISPLAY
TO or a DISPLAY BY NAME. Once set, the 'touched' flag is not reset until the end of the
dialog.

For fields defined as RadioGroup, ComboBox, SpinEdit, Slider, and CheckBox views,
the ON CHANGE block is fired immediately when the user changes the value. For other
type of fields (like Edits), the ON CHANGE block is fired when leaving the field. You leave
the field when you validate the dialog, when you move to another field, or when you
move to another row in an INPUT ARRAY. Note that the dialogtouched predefined
action can also be used to detect field changes immediately, but with this action you
can't get the data in the target variables (and it should only be used to detect that the
user has started to modify data)

If both an ON CHANGE block and AFTER FIELD block are defined for a field, the ON
CHANGE block is executed before the AFTER FIELD block.

When changing the value of the current field by program in an ON ACTION block, the ON
CHANGE block will be executed when leaving the field if the value is different from the
reference value and if the 'touched' flag is set (after previous user input or DISPLAY TO /
DISPLAY BY NAME).

When using the NEXT FIELD instruction, the comparison value is re-assigned as if the
user had left and re-entered the field. Therefore, when using NEXT FIELD in an ON
CHANGE block or in an ON ACTION block, the ON CHANGE block will only be fired again if
the value is different from the reference value. Therefore, it is recommended not to
attempt field validation in ON CHANGE blocks: you would do better to perform validations
in AFTER FIELD blocks and/or AFTER INPUT blocks.

AFTER FIELD block

An AFTER FIELD block is executed each time the cursor leaves the specified field, when
moving the focus from field to field in the same row, or when moving to another row.

BEFORE INSERT block

The BEFORE INSERT block is executed each time the user inserts a new row, before the
new row is created and made the current one.

You typically assign default values to the array variables of the newly created row,
before the user gets control to enter more values and validates the row creation.

When called in this block, the ARR_CURR() function returns the index of the newly
created row. The row in the program array can be referenced with this index, since the
new element is already created in the array. Note that the BEFORE ROW block is also
executed (just before BEFORE INSERT) when inserting a new row, but the current row
index returned by ARR_CURR() is one higher than the actual number of rows in the list
(arr_count()).

Genero Business Development Language

778

If needed, you can cancel the insert operation with the CANCEL INSERT instruction. Note
that this control instruction can only be used in a BEFORE INSERT or AFTER INSERT
block. When a CANCEL INSERT is performed in BEFORE INSERT, the dialog will execute
some control blocks such as AFTER ROW / BEFORE ROW / BEFORE FIELD for the current
row, even if no new row was inserted.

In the following example, the BEFORE INSERT block sets some default values and
displays a message:

01 INPUT ARRAY p_items FROM s_items.*
02 BEFORE INSERT
03 LET r = DIALOG.getCurrentRow("s_items")
04 LET p_items[r].item_num = getNewSerial("items")
05 LET p_items[r].item_code = "C" || p_items[r].item_num
06 LET p_items[r].item_price = 100.00
07 MESSAGE "You are creating a new record..."
08 ...

AFTER INSERT block

The AFTER INSERT block is executed each time the user leaves a new created row. This
block is typically used to implement SQL command that inserts a new row in the
database. You can cancel the operation with the CANCEL INSERT instruction.

Warning: When the the user appends a new row at the end of the list, then moves
UP to another row or validates the dialog, the AFTER INSERT block is only
executed if at least one field was edited. If not data entry is detected, the dialog
automatically removes the new appended row and thus does not trigger the AFTER
INSERT block.

In the following example, the AFTER INSERT block inserts a new row in the database and
cancels the operation if the SQL command fails:

01 INPUT ARRAY
02 ...
03 AFTER INSERT s_items
04 LET r = DIALOG.getCurrentRow("s_items")
05 INSERT INTO items VALUES (p_items[r]. *)
06 IF SQLCA.SQLCODE < 0 THEN
07 ERROR "Could not insert row into database"
08 CANCEL INSERT
09 END IF
10 ...
11 END INPUT

BEFORE DELETE block

The BEFORE DELETE block is executed each time the user deletes a row, before the row
is removed from the list.

You typically code the database table synchronization in the BEFORE DELETE block, by
executing a DELETE SQL statement using the primary key of the current row. In the

User Interface

779

BEFORE DELETE block, the row to be deleted still exists in the program array, so you can
access its data to identify what record needs to be removed.

If needed, the deletion can be canceled with the CANCEL DELETE instruction.

When called in this block, the ARR_CURR() function returns the index of the row that will
be deleted.

In the following example, the BEFORE DELETE block removes the row from the database
table and cancels the deletion operation if an SQL error occurs:

01 INPUT ARRAY p_items FROM s_items.*
02 BEFORE DELETE
03 WHENEVER ERROR CONTINUE
04 DELETE FROM items WHERE item_num =
p_items[arr_curr()].item_num
05 WHENEVER ERROR STOP
06 IF SQLCA.SQLCODE<>0 VALUES
07 ERROR SQLERRMESSAGE
08 CANCEL DELETE
09 END IF
10 ...

AFTER DELETE block

The AFTER DELETE block is executed each time the user deletes a row, after the row has
been deleted from the list.

When an AFTER DELETE block executes, the program array has already been modified;
the deleted row no longer exists in the array. Note that the ARR_CURR() function
returns the same index as in BEFORE ROW, but it is the index of the new current row. Note
that the AFTER ROW block is also executed. Pay particular attention when deleting the
last row in the list; in this case, the current row index returned by ARR_CURR() is one
higher than the actual number of rows in the list (ARR_COUNT()).

Warnings:

1. When deleting the last row of the list, AFTER DELETE is executed for the delete
row, and ARR_CURR() will be one row greater as ARR_COUNT(). You should
not access a dynamic array with a row index that is greater as the total number of
rows, otherwise the runtime system will adapt the total number of rows to the
actual number of rows in the program array.

In the following example, the AFTER DELETE block is used to re-number the rows with a
new item line number (note ARR_COUNT() may return zero):

01 INPUT ARRAY p_items FROM s_items.*
02 AFTER DELETE
03 LET r = arr_curr()
04 FOR i=r TO arr_count()
05 LET p_items[i].item_lineno = i

Genero Business Development Language

780

06 END FOR
07 ...

Control Block Execution Order

The following table shows the order in which the runtime system executes the control
blocks in the INPUT ARRAY instruction, according to the user action:

Context / User action Control Block execution order
Entering the dialog 1. BEFORE INPUT

2. BEFORE ROW
3. BEFORE FIELD

Moving to a different
row from field A to
field B

1. ON CHANGE (if value has changed for field A)
2. AFTER FIELD (for field A in the row you leave)
3. AFTER INSERT (if the row you leave was

inserted or appended)
or
ON ROW CHANGE (if values have changed in
the row you leave)

4. AFTER ROW (for the row you leave)
5. BEFORE ROW (the new current row)
6. BEFORE FIELD (for field B in the new current

row)

Moving from field A to
field B in the same
row

1. ON CHANGE (if value has changed for field A)
2. AFTER FIELD (for field A)
3. BEFORE FIELD (for field B)

Deleting a row 1. BEFORE DELETE (for the row to be deleted)
2. AFTER DELETE (for the deleted row)
3. AFTER ROW (for the deleted row)
4. BEFORE ROW (for the new current row)
5. BEFORE FIELD (field in the new current row)

Inserting a new row
between rows

1. ON CHANGE (if value has changed in the field
you leave)

2. AFTER FIELD (for the row you leave)
3. AFTER INSERT (if the row you leave was

inserted or appended)
or
ON ROW CHANGE (if values have changed in
the row you leave)

4. AFTER ROW (for the row you leave)
5. BEFORE INSERT (for the new created row)

User Interface

781

6. BEFORE FIELD (for the new created row)

Appending a new row
at the end

1. ON CHANGE (if value has changed in the
current field)

2. AFTER FIELD (for the row you leave)
3. AFTER INSERT (if the row you leave was

inserted or appended)
or
ON ROW CHANGE (if values have changed in
the row you leave)

4. AFTER ROW (for the row you leave)
5. BEFORE ROW (for the new created row)
6. BEFORE INSERT (for the new created row)
7. BEFORE FIELD (for the new created row)

Validating the dialog 1. ON CHANGE
2. AFTER FIELD
3. AFTER INSERT (if the current row was

inserted or appended)
or
ON ROW CHANGE (if values have changed in
the current row)

4. AFTER ROW
5. AFTER INPUT

Canceling the dialog 1. AFTER ROW
2. AFTER INPUT

Interaction Blocks

• ON IDLE block
• ON ACTION block
• ON KEY block

ON IDLE block

The ON IDLE idle-seconds clause defines a set of instructions that must be executed
after idle-seconds of inactivity. For example, this can be used to quit the dialog after the
user has not interacted with the program for a specified period of time. The parameter
idle-seconds must be an integer literal or variable. If it evaluates to zero, the timeout is
disabled.

01 ...
02 ON IDLE 10

Genero Business Development Language

782

03 IF ask_question("Do you want to leave the dialog?") THEN
04 EXIT INPUT
05 END IF
06 ...

ON ACTION block

You can use ON ACTION blocks to execute a sequence of instructions when the user
raises a specific action. This is the preferred solution compared to ON KEY blocks,
because ON ACTION blocks use abstract names to control user interaction.

01 ...
02 ON ACTION zoom
03 CALL zoom_customers() RETURNING st, cust_id, cust_name
04 ...

ON KEY block

For backward compatibility, you can use ON KEY blocks to execute a sequence of
instructions when the user presses a specific key. The following key names are
accepted by the compiler:

Key Name Description
ACCEPT The validation key.
INTERRUPT The interruption key.

ESC or ESCAPE The ESC key (not recommended, use ACCEPT
instead).

TAB The TAB key (not recommended).

Control-char A control key where char can be any character
except A, D, H, I, J, K, L, M, R, or X.

F1 through F255 A function key.
DELETE The key used to delete a new row in an array.
INSERT The key used to insert a new row in an array.
HELP The help key.
LEFT The left arrow key.
RIGHT The right arrow key.
DOWN The down arrow key.
UP The up arrow key.
PREVIOUS or PREVPAGE The previous page key.
NEXT or NEXTPAGE The next page key.

Control Instructions

• CONTINUE INPUT instruction
• EXIT INPUT instruction

User Interface

783

• ACCEPT INPUT instruction
• CANCEL INSERT instruction
• CANCEL DELETE instruction
• NEXT FIELD instruction
• CLEAR field-list instruction

Continuing the dialog: CONTINUE INPUT

CONTINUE INPUT skips all subsequent statements in the current control block and gives
the control back to the dialog. This instruction is useful when program control is nested
within multiple conditional statements, and you want to return the control to the dialog.
Note that if this instruction is called in a control block that is not AFTER INPUT, further
control blocks might be executed according to the context. Actually, CONTINUE INPUT
just instructs the dialog to continue as if the code in the control block was terminated (i.e.
it's a kind of GOTO end_of_control_block). However, when executed in AFTER INPUT,
the focus returns to the current row and current field in the list, giving the user another
chance to enter data in that field. In this case the BEFORE ROW and BEFORE FIELD
triggers will be fired.

In the following example, an ON ACTION block gives control back to the dialog, skipping
all instructions below line 04:

01 ON ACTION zoom
02 IF p_cust.cust_id IS NULL OR p_cust.cust_name IS NULL THEN
03 ERROR "Zoom window cannot be opened if there is no info to
identify the customer"
04 CONTINUE INPUT
05 END IF
06 IF p_cust.cust_address IS NULL THEN
07 ...

Note that you can also use the NEXT FIELD control instruction to give the focus to a
specific field and force the dialog to continue. However, unlike CONTINUE INPUT, the
NEXT FIELD instruction will also skip the further control blocks that are normally
executed.

Leaving the dialog: EXIT INPUT

You can use the EXIT INPUT to terminate the INPUT ARRAY instruction and resume the
program execution at the instruction following the INPUT ARRAY block.

01 ON ACTION quit
02 EXIT DIALOG

When leaving the INPUT ARRAY instruction, all form items used by the dialog will be
disabled until another interactive statement takes control.

Validating the dialog: ACCEPT INPUT

Genero Business Development Language

784

The ACCEPT INPUT instruction validates the INPUT instruction and exits the INPUT
ARRAY instruction if no error is raised. The AFTER FIELD, ON CHANGE, etc. control blocks
will be executed. Statements after the ACCEPT INPUT will not be executed.

Input field validation is a process that does several successive validation tasks, as listed
below:

1. The current field value is checked, according to the program variable data type
(for example, the user must input a valid date in a DATE field).

2. NOT NULL field attributes are checked for all input fields. This attribute forces the
field to have a value set by program or entered by the user. If the field contains
no value, the constraint is not satisfied. Note that input values are right-trimmed,
so if the user inputs only spaces, this corresponds to a NULL value which does
not fulfill the NOT NULL constraint.

3. INCLUDE field attributes are checked for all input fields. This attribute forces the
field to contain a value that is listed in the include list. If the field contains a value
that is not in the list, the constraint is not satisfied.

4. REQUIRED field attributes are checked for all input fields. This attribute forces
the field to have a default value, or to be 'touched' by the user or
programmatically. If the field was not edited during the dialog, the constraint is
not satisfied.

If a field does not satisfy one of the above constraints, dialog termination is canceled, an
error message is displayed, and the focus goes to the first field causing a problem.

Canceling row insertion: CANCEL INSERT

Insertion can be canceled, by using the CANCEL INSERT instruction, in the BEFORE
INSERT or AFTER INSERT blocks. Using this instruction in a different place will generate
a compilation error.

The instructions that appear after CANCEL INSERT will be skipped.

A CANCEL INSERT executed inside a BEFORE INSERT block prevents the new row
creation. The following tasks are performed:

1. No new row will be created (the new row is not yet shown to the user).
2. The BEFORE INSERT block is terminated (further instructions are skipped).
3. The BEFORE ROW and BEFORE FIELD triggers are executed.
4. Control goes back to the user.

For example, you can cancel a row insertion if the user is not allowed to create rows:

01 BEFORE INSERT
02 IF user_can_insert() == FALSE THEN
03 ERROR "You are not allowed to insert rows"
04 CANCEL INSERT
05 END IF

User Interface

785

A CANCEL INSERT executed inside an AFTER INSERT block removes the newly created
row. The following tasks are performed:

1. The newly created row is removed from the list (the row exists now and user has
entered data).

2. The AFTER INSERT block is terminated (further instructions are skipped).
3. The BEFORE ROW and BEFORE FIELD triggers are executed.
4. The control goes back to the user.

For example, you can cancel a row insertion if a database error occurs when you try to
insert the row into a database table:

01 AFTER INSERT
02 WHENEVER ERROR CONTINUE
03 INSERT INTO customer VALUES (arr[arr_curr()].*)
04 WHENEVER ERROR STOP
05 IF SQLCA.SQLCODE<>0 THEN
06 ERROR SQLERRMESSAGE
07 CANCEL INSERT
08 END IF

If the CANCEL INSERT is done while on a new row that was appended to the end of the
list, the new row will be removed and the previous row will get the focus. If there are no
more existing rows, the list loses the focus because no row can be edited. The next time
the user clicks in a cell, DIALOG will automatically create a new row.

You can also disable the insert and append actions to prevent the user from performing
these actions with:

01 CALL DIALOG.setActionActive("insert", FALSE)
02 CALL DIALOG.setActionActive("append", FALSE)

Canceling row deletion: CANCEL DELETE

Deletion can be canceled, by using the CANCEL DELETE instruction in the BEFORE
DELETE block. Using this instruction in a different place will generate a compilation error.

When the CANCEL DELETE instruction is executed, the current BEFORE DELETE block is
terminated without any other trigger execution (no BEFORE ROW or BEFORE FIELD is
executed), and the program execution continues in the user event loop.

For example, you can prevent row deletion based on some condition:

01 BEFORE DELETE
02 IF user_can_delete() == FALSE THEN
03 ERROR "You are not allowed to delete rows"
04 CANCEL DELETE
05 END IF

The instructions that appear after CANCEL DELETE will be skipped.

Genero Business Development Language

786

You can also disable the delete action to prevent the user from performing a delete row
action with:

01 CALL DIALOG.setActionActive("delete", FALSE)

Moving to a field: NEXT FIELD

The NEXT FIELD field-name instruction gives the focus to the specified field. You
typically use this instruction to control field input dynamically, in BEFORE FIELD or AFTER
FIELD blocks, or to control row validation in AFTER ROW.

Abstract field identification is supported with the CURRENT, NEXT and PREVIOUS keywords.
These keywords represent respectively the current, next and previous fields,
corresponding to variables as defined in the input binding list (with the FROM or BY NAME
clause).

Non-editable fields are fields defined with NOENTRY attribute or using a widget that
does not allow input, such as a LABEL. If a NEXT FIELD instruction selects a non-
editable field, the next editable field gets the focus (defined by the FIELD ORDER FORM
mode used by the dialog). However, the BEFORE FIELD and AFTER FIELD blocks of non-
editable fields are executed when a NEXT FIELD instruction selects such a field.

When using NEXT FIELD in AFTER ROW or in ON ROW CHANGE, the dialog will stay in the
current row and give the control back to the user. This behavior allows to implement data
input rules:

01 ...
02 AFTER ROW
03 IF NOT int_flag AND arr_curr() <= arr_count() THEN
04 IF arr[arr_curr()].it_count * arr[arr_curr()].it_value >
maxval THEN
05 ERROR "Amount of line exceeds max value."
06 NEXT FIELD item_count
07 END IF
09 ...

For compatibility reasons, NEXT FIELD in AFTER INSERT will not stay in the current row.

Clearing the form fields: CLEAR field-list

For backward compatibility, the CLEAR field-list instruction is provided to clear a
specific field or all fields in a line of the screen array. You can specify the screen array
as described in the following table:

CLEAR instruction Result
CLEAR field-name Clears the specified field in the current line of

the screen array.
CLEAR screen-array.* Clears all fields in the current line of the

screen array.

User Interface

787

CLEAR screen-array[n].* Clears all fields in line n of the screen array.
CLEAR screen-
array[n].field-name

Clears the specified field in line n of the
screen array.

Warnings:

1. When using the UNBUFFERED attribute, it is recommended that you do NOT
use the CLEAR instruction; always use program variables to set field values to
NULL.

Control Class

Inside the dialog instruction, the predefined keyword DIALOG represents the current
dialog object. It can be used to execute methods provided in the dialog built-in class.

For example, you can enable or disable an action with the ui.Dialog.setActionActive()
dialog method, and you can hide and show the default action view with
ui.Dialog.setActionHidden():

01 ...
02 BEFORE INPUT
03 CALL DIALOG.setActionActive("zoom",FALSE)
04 AFTER FIELD field1
05 CALL DIALOG.setActionHidden("zoom",1)
06 ...

The ui.Dialog.setFieldActive() method can be used to enable or disable a field during the
dialog. This instruction takes an integer expression as argument.

01 ...
02 ON CHANGE custname
03 CALL DIALOG.setFieldActive("custaddr",
(cust_arr[arr_curr()].custname IS NOT NULL))
04 ...

Control Functions

The language provides several built-in functions and operators to use in an INPUT
ARRAY statement. You can use the following built-in functions to keep track of the relative
states of the current row, the program array, and the screen array, or to access the field
buffers and keystroke buffers:

• ARR_CURR()
• ARR_COUNT()
• FGL_SET_ARR_CURR()
• SET_COUNT()

Genero Business Development Language

788

• FIELD_TOUCHED()
• GET_FLDBUF()
• INFIELD()
• FGL_DIALOG_GETFIELDNAME()
• FGL_DIALOG_GETBUFFER()

Examples

Example 1: Basic INPUT ARRAY

Form definition file (custlist.per):

01 DATABASE stores
02 LAYOUT
03 TABLE
04 {
05 Id First name Last name
06 [f001 |f002 |f003]
07 [f001 |f002 |f003]
08 [f001 |f002 |f003]
09 [f001 |f002 |f003]
10 [f001 |f002 |f003]
11 [f001 |f002 |f003]
12 }
13 END
14 END
15 TABLES
16 customer
17 END
18 ATTRIBUTES
19 f001 = customer.customer_num ;
20 f002 = customer.fname ;
21 f003 = customer.lname ;
22 END
23 INSTRUCTIONS
24 SCREEN RECORD sr_cust[6](customer.*);
25 END

Program source code:

01 MAIN
02 DEFINE custarr ARRAY[500] OF RECORD
03 id INTEGER,
04 fname CHAR(30),
05 lname CHAR(30)
06 END RECORD
07
08 OPEN FORM f FROM "custlist"
09 DISPLAY FORM f
10
11 INPUT ARRAY custarr WITHOUT DEFAULTS FROM sr_cust.*
12 END MAIN

User Interface

789

Example 2: INPUT ARRAY using default values

The form definition file is the same as in example 1.

01 MAIN
02 DEFINE allow_insert INTEGER
03 DEFINE size INTEGER
04 DEFINE custarr ARRAY[500] OF RECORD
05 id INTEGER,
06 fname CHAR(30),
07 lname CHAR(30)
08 END RECORD
09 LET custarr[1].id = 1
10 LET custarr[1].fname = "John"
11 LET custarr[1].lname = "SMITH"
12 LET custarr[2].id = 2
13 LET custarr[2].fname = "Mike"
14 LET custarr[2].lname = "STONE"
15 LET size = 2
16 LET allow_insert = TRUE
17
18 OPEN FORM f1 FROM "custlist"
19 DISPLAY FORM f1
20
21 INPUT ARRAY custarr WITHOUT DEFAULTS FROM sr_cust.*
22 ATTRIBUTES (COUNT=size, MAXCOUNT=50, UNBUFFERED, INSERT
ROW=allow_insert)
23 BEFORE INPUT
24 MESSAGE "Editing the customer table"
25 BEFORE INSERT
26 IF arr_curr()=4 THEN
27 CANCEL INSERT
28 END IF
29 BEFORE FIELD fname
30 MESSAGE "Enter First Name"
31 BEFORE FIELD lname
32 MESSAGE "Enter Last Name"
33 AFTER FIELD lname
34 IF custarr[arr_curr()].lname IS NULL THEN
35 LET custarr[arr_curr()].fname = NULL
36 END IF
37 END INPUT
38 END MAIN

Example 3: INPUT ARRAY using a dynamic array

The form definition file is the same as in example 1.

01 MAIN
02 DEFINE counter INTEGER
03 DEFINE custarr DYNAMIC ARRAY OF RECORD
04 id INTEGER,
05 fname CHAR(30),
06 lname CHAR(30)
07 END RECORD

Genero Business Development Language

790

10 FOR counter = 1 TO 500
11 LET custarr[1].id = counter
12 LET custarr[1].fname = "ff"||counter
13 LET custarr[1].lname = "NNN"||counter
14 END FOR
15
16 OPEN FORM f FROM "custlist"
17 DISPLAY FORM f
18
19 INPUT ARRAY custarr WITHOUT DEFAULTS FROM sr_cust.*
20 ATTRIBUTES (UNBUFFERED)
21 ON ROW CHANGE
22 MESSAGE "Row #"||arr_curr()||" has been updated."
23 END INPUT
24 END MAIN

Example 4: INPUT ARRAY updating the database table

The form definition file is the same as in example 1.

01 MAIN
02
03 DEFINE custarr DYNAMIC ARRAY OF RECORD
04 id INTEGER,
05 fname CHAR(30),
06 lname CHAR(30)
07 END RECORD
08
09 DEFINE op CHAR(1)
10
11 OPEN FORM f1 FROM "custlist"
12 DISPLAY FORM f1
13
14 INPUT ARRAY custarr FROM sr1.* ATTRIBUTES(WITHOUT DEFAULTS,
UNBUFFERED)
15
16 BEFORE DELETE
17 IF op == "N" THEN -- No real SQL delete for new inserted
rows
18 IF NOT mbox_yn("List", "Are you sure you want to delete
this record?", "question") THEN
19 CANCEL DELETE -- Keeps row in list
20 END IF
21 DELETE FROM customer WHERE customer_num =
custarr[arr_curr()].id
22 IF SQLCA.SQLCODE<0 THEN
23 ERROR "Could not delete the record from database!"
24 CANCEL DELETE -- Keeps row in list
25 END IF
26 END IF
27
28 AFTER DELETE
29 MESSAGE "Record has been deleted successfully"
30
31 AFTER FIELD fname
32 IF custarr[arr_curr()].fname MATCHES "*@#$%^&()*" THEN

User Interface

791

33 ERROR "This field contains invalid characters"
34 NEXT FIELD CURRENT
35 END IF
36
37 ON ROW CHANGE
38 -- Warning: ON ROW CHANGE can occur if the SQL INSERT
failed...
39 IF op != "I" THEN LET op = "M" END IF
40
41 BEFORE INSERT
42 LET op = "T"
43 LET custarr[arr_curr()].id = arr_count()
44
45 AFTER INSERT
46 LET op = "I"
47
48 BEFORE ROW
49 LET op = "N"
50
51 AFTER ROW
52 IF int_flag THEN EXIT INPUT END IF
53 IF op == "M" OR op == "I" THEN
54 IF custarr[arr_curr()].fname IS NULL OR
custarr[arr_curr()].fname IS NULL
55 OR custarr[arr_curr()].fname ==
custarr[arr_curr()].lname THEN
56 ERROR "First name and last name are equal..."
57 NEXT FIELD fname
58 END IF
59 END IF
60 IF op == "I" THEN
61 INSERT INTO customer VALUES (custarr[arr_curr()].*)
62 IF SQLCA.SQLCODE<0 THEN
63 ERROR "Could not insert the record into database!"
64 NEXT FIELD CURRENT
65 END IF
66 END IF
67 IF op == "M" THEN
68 UPDATE customer SET fname = custarr[arr_curr()].fname,
lname = custarr[arr_curr()].lname
69 WHERE customer_num = custarr[arr_curr()].id
70 IF SQLCA.SQLCODE<0 THEN
71 ERROR "Could not update the record in database!"
72 NEXT FIELD CURRENT
73 END IF
74 END IF
75
76 END INPUT
77
78 END MAIN

Genero Business Development Language

792

Query By Example
Summary:

• Basics
o Query Operators

• Syntax
• Usage

o Programming Steps
o Instruction Configuration
o Default Actions
o Control Blocks
o Control Blocks Execution Order
o Interaction Blocks
o Control Instructions
o Control Class
o Control Functions

• Examples

See also: Flow Control, Dynamic SQL, Result Sets

Basics

What is Query By Example (QBE)?

Query By Example enables a user to query a database by specifying values (or ranges
of values) for screen fields that correspond to the database. The runtime system
converts the search filters entered by the user into a Boolean SQL condition that can be
used in the WHERE clause of a prepared SELECT statement.

The CONSTRUCT instruction handles Query By Example input in the current open form
and generates the SQL condition in a string variable. You can then use Dynamic SQL
instructions to execute the SQL statement to produce a result set:

User Interface

793

Query Operators

The following table lists all relational operators that can be used during a Query By
Example input:

Symbol Meaning Pattern
Any simple data type
= Is Null =
== Equal to == value
> Greater than > value
>= Greater than or equal to >= value
< Less than < value
<= Less than or equal to <= value
<> or != Not equal to != value, <> value
: or .. Range value1:value2, value1..value2
| List of values value1 | value2
Character data types only
* Wildcard for any string *x, x*, *x*
? Single-character wildcard ?x, x?, ?x?, x??
[c] A set of characters [a-z]*, [xy]?

Syntax

Purpose:

The CONSTRUCT instruction handles Query By Example input.

Genero Business Development Language

794

Syntax 1: Implicit field-to-column mapping

CONSTRUCT BY NAME variable ON column-list
 [ATTRIBUTES ({ display-attribute | control-attribute } [,...])]
 [HELP help-number]
[dialog-control-block
 [...]
END CONSTRUCT]

Syntax 2: Explicit field-to-column mapping

CONSTRUCT variable ON column-list FROM field-list
 [ATTRIBUTES ({ display-attribute | control-attribute } [,...])]
 [HELP help-number]
[dialog-control-block
 [...]
END CONSTRUCT]

where column-list is :

{ column-name
| table-name.*
| table-name.column-name
} [,...]

where field-list is :

{ field-name
| table-name.*
| table-name.field-name
| screen-array[line].*
| screen-array[line].field-name
| screen-record.*
| screen-record.field-name
} [,...]

where dialog-control-block is one of:

{ BEFORE CONSTRUCT
| AFTER CONSTRUCT
| BEFORE FIELD field-name [,...]
| AFTER FIELD field-name [,...]
| ON IDLE idle-seconds
| ON ACTION action-name
| ON KEY (key-name [,...])
}
 dialog-statement
 [...]

where dialog-statement is one of :

{ statement
| NEXT FIELD { NEXT | PREVIOUS | field-name }

User Interface

795

| CONTINUE CONSTRUCT
| EXIT CONSTRUCT
}

Notes:

1. variable is the variable that will contain the SQL condition built by the CONSTRUCT
instruction.

2. The ON clause defines the list of form fields in which the user can enter search
criteria.

3. column-name is the identifier of a database column of the current form.
4. table-name is the identifier of a database table of the current form.
5. field-name is the identifier of a field of the current form.
6. The BY NAME keyword implicitly maps form fields to the database columns listed

in the ON clause.
7. Use the FROM field-list clause if you need to map form fields to database

columns explicitly.
8. screen-array is the screen array that will be used in the current form.
9. line is a screen array line in the form.
10. screen-record is the identifier of a screen record of the current form.
11. help-number is an integer that allows you to associate a help message number

with the instruction.
12. key-name is a hot-key identifier (like F11 or Control-z).
13. action-name identifies an action that can be executed by the user.
14. idle-seconds is an integer literal or variable that defines a number of seconds.
15. statement is any instruction supported by the language.

The following table shows the options supported by the CONSTRUCT statement:

Attribute Description

HELP help-number

Defines the help number when help is
invoked by the user, where help-number is
an integer literal or a program variable.
Warning: The HELP option overrides the
HELP attribute!

The following table shows the display-attributes supported by the CONSTRUCT statement.
The display-attributes affect console-based applications only, they do not affect GUI-
based applications.

Attribute Description
BLACK, BLUE, CYAN, GREEN,
MAGENTA, RED, WHITE,
YELLOW

The color of the entered text.. TUI Only!

BOLD, DIM, INVISIBLE,
NORMAL

The font attribute of the entered text.. TUI
Only!

REVERSE, BLINK, UNDERLINE The video attribute of the entered text.. TUI

Genero Business Development Language

796

Only!

The following table shows the control-attributes supported by the CONSTRUCT statement:

Attribute Description
NAME = string Identifies the dialog statement with a clear

name.

HELP = help-number

Defines the help number when help is
invoked by the user, where help-number is
an integer literal or a program variable.
Warning: The HELP option overrides the
HELP attribute!

FIELD ORDER FORM
Indicates that the tabbing order of fields is
defined by the TABINDEX attribute of form
fields.

ACCEPT = bool
Indicates if the default accept action should
be added to the dialog. If not specified, the
action is registered.

CANCEL = bool
Indicates if the default cancel action should
be added to the dialog. If not specified, the
action is registered.

Usage

The CONSTRUCT statement produces an SQL condition corresponding to all search
criterion that a user specifies in the fields. The instruction fills a character variable with
that SQL condition, and you can use the content of this variable to create the WHERE
clause of a SELECT statement.

Warnings:

1. The SQL condition is generated according to the current database session,
which defines the type of the database server. Therefore, the program must be
connected to a database server before entering the CONSTRUCT block. The
generated SQL condition is specific to the database server and may not be used
with other types of servers.

2. There can be only one BEFORE CONSTRUCT and one AFTER CONSTRUCT in a
CONSTRUCT block.

3. AFTER CONSTRUCT is not performed if an EXIT CONSTRUCT is performed, or if the
Interrupt or Quit key is pressed and a DEFER INTERRUPT or DEFER QUIT
statement is not in effect..

4. The WORDWRAP field attribute is not used by the CONSTRUCT instruction.
5. Make sure that the INT_FLAG variable is set to FALSE before entering the

CONSTRUCT block.

User Interface

797

6. The ON KEY blocks are supported for backward compatibility; use ON ACTION
instead.

Programming Steps

To use the CONSTRUCT statement, you must do the following:

1. Declare a character variable with the DEFINE statement.
2. Open and display the form, using an OPEN WINDOW with the WITH FORM clause

or the OPEN FORM / DISPLAY FORM instructions.
3. Describe the CONSTRUCT statement if needed, with dialog-control-blocks to

control the environment in which the user enters search criteria.
4. After executing the CONSTRUCT, check the INT_FLAG variable to verify if the input

was validated or canceled by the user.
5. Execute the query in the database (see below).

The CONSTRUCT statement activates the current form. This is the form most recently
displayed or, if you are using more than one window, the form currently displayed in the
current window. You can specify the current window by using the CURRENT WINDOW
statement. When the CONSTRUCT statement completes execution, the form is cleared and
deactivated.

Screen field tabbing order is defined by the order of the field names in the FROM clause;
by default this is the list of column names in the ON clause when no FROM clause is
specified.

To complete the search functionality of your program, you must implement the following
steps after the CONSTRUCT instruction:

1. Concatenate the variable that contains the Boolean SQL expression with other
strings, to create a string representation of an SQL statement to be executed.
The Boolean SQL expression generated by the CONSTRUCT statement is typically
used to create SELECT statements, but it can be used in DELETE and UPDATE
statements.

2. Use the PREPARE statement to create an executable SQL statement from the
character string that was generated in the previous step.

3. Execute the prepared statement in one of the following ways:
o If the SQL statement produces a result set (like SELECT), use a database

cursor with DECLARE and FOREACH instructions (or else OPEN and
FETCH) to execute the prepared SQL statement.

o If the SQL statement does not produce a result set (like DELETE), use the
EXECUTE statement to execute an SQL statement.

If no criteria were entered, the string ' 1=1' is assigned to variable. This is a Boolean
SQL expression that always evaluates to TRUE so that all rows are returned.

After executing the CONSTRUCT instruction, the runtime system sets the INT_FLAG
variable to TRUE if the input was canceled by the user.

Genero Business Development Language

798

When the CONSTRUCT statement completes execution, the form is cleared.

Instruction Configuration

The ATTRIBUTES clause specifications override all default attributes and temporarily
override any display attributes that the OPTIONS or the OPEN WINDOW statement
specified for these fields. While the CONSTRUCT statement is executing, the runtime
system ignores the INVISIBLE attribute.

• HELP option
• FIELD ORDER FORM option
• ACCEPT option
• CANCEL option

HELP option

The HELP clause specifies the number of a help message to display if the user invokes
the help while the focus is in any field used by the instruction. The predefined help action
is automatically created by the runtime system. You can bind action views to the help
action.

Warnings:

1. The HELP option overrides the HELP attribute!

FIELD ORDER FORM option

By default, the tabbing order is defined by the column list in the instruction description.
You can control the tabbing order by using the FIELD ORDER FORM attribute: When this
attribute is used, the tabbing order is defined by the TABINDEX attribute of the form
fields.

ACCEPT option

The ACCEPT attribute can be set to FALSE to avoid the automatic creation of the accept
default action. This option can be used for example when you want to write a specific
validation procedure, by using ACCEPT CONSTRUCT.

CANCEL option

The CANCEL attribute can be set to FALSE to avoid the automatic creation of the cancel
default action. This is useful for example when you only need a validation action
(accept), or when you want to write a specific cancellation procedure, by using EXIT
CONSTRUCT.

User Interface

799

Note that if the CANCEL=FALSE option is set, no close action will be created, and you
must write an ON ACTION close control block to create an explicit action.

Default Actions

When an CONSTRUCT instruction executes, the runtime system creates a set of default
actions. See the control block execution order to understand what control blocks are
executed when a specific action is fired.

The following table lists the default actions created for this dialog:

Default action Description

accept Validates the CONSTRUCT dialog (validates field criteria)
Creation can be avoided with ACCEPT attribute.

cancel
Cancels the CONSTRUCT dialog (no validation, INT_FLAG is
set)
Creation can be avoided with CANCEL attribute.

close
By default, cancels the CONSTRUCT dialog (no validation,
INT_FLAG is set)
Default action view is hidden. See Windows closed by the
user.

help Shows the help topic defined by the HELP clause.
Only created when a HELP clause is defined.

The accept and cancel default actions can be avoided with the ACCEPT and CANCEL
dialog control attributes:

01 CONSTRUCT BY NAME cond ON field1 ATTRIBUTES (CANCEL=FALSE)
02 ...

Control Blocks

• BEFORE CONSTRUCT block
• AFTER CONSTRUCT block
• BEFORE FIELD block
• AFTER FIELD block

BEFORE CONSTRUCT block

Use a BEFORE CONSTRUCT block to execute instructions before the runtime system gives
control to the user for search criteria input.

Genero Business Development Language

800

AFTER CONSTRUCT block

Use an AFTER CONSTRUCT block to execute instructions after the user has finished
search criteria input.

BEFORE FIELD block

Use a BEFORE FIELD field-name block to execute instructions before the field-name
field is made current.

The BEFORE FIELD block is also executed when using NEXT FIELD.

AFTER FIELD block

Use an AFTER FIELD field-name block to execute instructions when the user moves to
another field.

Interaction Blocks

• ON IDLE block
• ON ACTION block
• ON KEY block

ON IDLE block

The ON IDLE idle-seconds clause defines a set of instructions that must be executed
after idle-seconds of inactivity. This can be used, for example, to quit the dialog after the
user has not interacted with the program for a specified period of time. The parameter
idle-seconds must be an integer literal or variable. If it evaluates to zero, the timeout is
disabled.

01 ...
02 ON IDLE 10
03 IF ask_question("Do you want to leave the dialog?") THEN
04 EXIT CONSTRUCT
05 END IF
06 ...

ON ACTION block

You can use ON ACTION blocks to execute a sequence of instructions when the user
raises a specific action. This is the preferred solution compared to ON KEY blocks,
because ON ACTION blocks use abstract names to control user interaction.

01 ...
02 ON ACTION zoom
03 CALL zoom_customers() RETURNING st, cust_id, cust_name

User Interface

801

04 ...

ON KEY block

For backward compatibility, you can use ON KEY blocks to execute a sequence of
instructions when the user presses a specific key. The following key names are
accepted by the compiler:

Key Name Description
ACCEPT The validation key.
INTERRUPT The interruption key.

ESC or ESCAPE The ESC key (not recommended, use ACCEPT
instead).

TAB The TAB key (not recommended).

Control-char A control key where char can be any character
except A, D, H, I, J, K, L, M, R, or X.

F1 through F255 A function key.
DELETE The key used to delete a new row in an array.
INSERT The key used to insert a new row in an array.
HELP The help key.
LEFT The left arrow key.
RIGHT The right arrow key.
DOWN The down arrow key.
UP The up arrow key.
PREVIOUS or PREVPAGE The previous page key.
NEXT or NEXTPAGE The next page key.

Control Block Execution Order

The following table shows the order in which the runtime system executes the control
blocks in the CONSTRUCT instruction, according to the user action:

Context / User action Control Block execution order
Entering the dialog 1. BEFORE CONSTRUCT

2. BEFORE FIELD (first field)

Moving from field A to
field B

1. AFTER FIELD (for field A)
2. BEFORE FIELD (for field B)

Validating the dialog 1. AFTER FIELD
2. AFTER CONSTRUCT

Genero Business Development Language

802

Canceling the dialog 1. AFTER CONSTRUCT

Control Instructions

• CONTINUE CONSTRUCT
• EXIT CONSTRUCT
• ACCEPT CONSTRUCT
• NEXT FIELD

Continuing the dialog: CONTINUE CONSTRUCT

CONTINUE CONTRUCT skips all subsequent statements in the current control block and
gives the control back to the dialog. This instruction is useful when program control is
nested within multiple conditional statements, and you want to return the control to the
dialog. Note that if this instruction is called in a control block that is not AFTER
CONSTRUCT, further control blocks might be executed according to the context. Actually,
CONTINUE CONSTRUCT just instructs the dialog to continue as if the code in the control
block was terminated (i.e. it's a kind of GOTO end_of_control_block). However, when
executed in AFTER CONSTRUCT, the focus returns to the most recently occupied field in
the current form, giving the user another chance to enter data in that field. In this case
the BEFORE FIELD of the current field will be fired.

Note that you can also use the NEXT FIELD control instruction to give the focus to a
specific field and force the dialog to continue. However, unlike CONTINUE CONSTRUCT,
the NEXT FIELD instruction will also skip the further control blocks that are normally
executed.

Leaving the dialog: EXIT CONSTRUCT

EXIT CONSTRUCT terminates the CONSTRUCT instruction without executing any other
statement.

Validating the dialog: ACCEPT CONSTRUCT

The ACCEPT CONSTRUCT instruction validates the CONSTRUCT instruction and exits the
CONSTRUCT instruction if no error is raised. The AFTER FIELD and AFTER CONSTRUCT
control blocks will be executed. Statements after the ACCEPT CONSTRUCT will not be
executed.

Moving to a field: NEXT FIELD

The NEXT FIELD field-name instruction gives the focus to the specified field. You
typically use this instruction to control field input dynamically, in BEFORE FIELD or AFTER
FIELD blocks.

User Interface

803

Abstract field identification is supported with the CURRENT, NEXT and PREVIOUS keywords.
These keywords represent respectively the current, next and previous fields,
corresponding to variables as defined in the input binding list (with the FROM or BY NAME
clause).

Non-editable fields are fields defined with NOENTRY attribute or using a widget that
does not allow input, such as a LABEL. If a NEXT FIELD instruction selects a non-
editable field, the next editable field gets the focus (defined by the FIELD ORDER mode
used by the dialog). However, the BEFORE FIELD and AFTER FIELD blocks of non-
editable fields are executed when a NEXT FIELD instruction selects such a field.

Control Class

Inside the dialog instruction, the predefined keyword DIALOG represents the current
dialog object. It can be used to execute methods provided in the dialog built-in class.

For example, you can enable or disable an action with the ui.Dialog.setActionActive()
dialog method, or you can hide and show the default action view with
ui.Dialog.setActionHidden():

01 ...
02 BEFORE CONSTRUCT
03 CALL DIALOG.setActionActive("refresh",FALSE)
04 AFTER FIELD field1
05 CALL DIALOG.setActionHidden("refresh",1)

The ui.Dialog.setFieldActive() method can be used to enable or disable a field during the
dialog. This instruction takes an integer expression as argument.

01 ...
02 ON CHANGE custid
03 CALL DIALOG.setFieldActive("custaddr", FALSE)
04 ...

Control Functions

The language provides several built-in functions and operators to use in an CONSTRUCT
statement. You can access the field buffers and keystroke buffers with:

• FIELD_TOUCHED()
• GET_FLDBUF()
• INFIELD()
• FGL_DIALOG_GETFIELDNAME()
• FGL_DIALOG_GETBUFFER()
• FGL_DIALOG_SETBUFFER()

Genero Business Development Language

804

Examples

Example 1: Simple CONSTRUCT

Form definition in the const.per file:

01 DATABASE formonly
02
03 LAYOUT
04 GRID
05 {
06 FirstName [f001]
07 LastName [f002]
08 e-Mail [f003]
09 }
10 END
11 END
12
13 ATTRIBUTES
14 f001 = formonly.field1 TYPE CHAR;
15 f002 = formonly.field2 TYPE CHAR;
16 f003 = formonly.field3 TYPE CHAR;
17 END

Program:

01 MAIN
02
03 DEFINE condition CHAR(100)
04
05 DATABASE stores
06
07 OPEN FORM f1 FROM "const"
08 DISPLAY FORM f1
09
10 CONSTRUCT condition
11 ON first_name, last_name, mail
12 FROM field1, field2, field3
13
14 DISPLAY condition
15
16 END MAIN

Example 2: CONSTRUCT followed by SQL Query

Form definition in the const.per file:

01 DATABASE stores
02
03 LAYOUT
04 GRID

User Interface

805

05 {
06 FirstName [f001]
07 LastName [f002]
08 }
09 END
10 END
11
12 TABLES
13 customer
14 END
15
16 ATTRIBUTES
17 f001 = customer.first_name;
18 f002 = customer.last_name;
19 END

Program :

01 MAIN
02
03 DEFINE condition VARCHAR(100)
04 DEFINE statement VARCHAR(200)
05 DEFINE cust RECORD
06 first_name CHAR(30),
07 last_name CHAR(30)
08 END RECORD
09
10 DATABASE stores
11
12 OPEN FORM f1 FROM "const"
13 DISPLAY FORM f1
14
15 CONSTRUCT BY NAME condition ON first_name, last_name
16 BEFORE CONSTRUCT
17 DISPLAY "A*" TO first_name
18 DISPLAY "B*" TO last_name
19 END CONSTRUCT
20
21 LET statement =
22 "SELECT first_name, last_name FROM customer WHERE " || condition
23 DISPLAY "SQL : " || statement
24
25 PREPARE s1 FROM statement
26 DECLARE c1 CURSOR FOR s1
27 FOREACH c1 INTO cust.*
28 DISPLAY cust.*
29 END FOREACH
30
31 END MAIN

Genero Business Development Language

806

Multiple Dialogs
Summary:

• Basics
• Syntax
• Usage

o Programming Steps
o Sub-dialogs
o Programming with DIALOG
o DIALOG and sub-dialogs configuration clauses
o Default Actions
o Control Blocks
o Control Blocks Execution Order
o Interaction Blocks
o Control Instructions
o Control Class
o Control Functions

• Examples
o Example 1: Two Lists
o Example 2: Query and List

See also: Arrays, Records, Result Sets, Programs, Windows, Forms, Display Array

Basics

The DIALOG instruction handles different parts of a form simultaneously, including simple
display fields, simple input fields, read-only list of records, editable list of records, query
by example fields, and action views. The DIALOG instruction acts as a collection of
singular dialogs which work in parallel.

While the DIALOG instruction re-uses some of the semantics and behaviors of singular
interactive instructions, there are some differences. By "singular interactive instructions",
we mean the INPUT, CONSTRUCT, DISPLAY ARRAY and INPUT ARRAY instructions.
The differences are discussed further within this topic.

 Like the singular interactive instructions, DIALOG is an interactive instruction. You can
execute a DIALOG instruction from one of the singular dialogs, or execute a singular
dialog from a DIALOG block. The parent dialog will be disabled until the child dialog
returns.

The DIALOG instruction binds program variables such as simple records or arrays of
records with a screen-record or screen-array defined in a form, allowing the user to view
and update application data.

User Interface

807

When a DIALOG block executes, it activates the current form (the form most recently
displayed or the form in the current window). When the statement completes execution,
the form is de-activated.

The DIALOG instruction was introduced in Genero BDL version 2.10.

The following screen shot is from a demo program called QueryCustomers that you can
find in FGLDIR/demo/MultipleDialogs. This demo involves a DIALOG block that contains
a simple INPUT block, a CONSTRUCT block, and a DISPLAY ARRAY block:

Genero Business Development Language

808

DIALOG

Purpose:

The DIALOG block is an interactive instruction that executes multiple kinds of sub-
controllers simultaneously to drive different parts of a form.

Syntax:

DIALOG
 [ATTRIBUTE ({ dialog-control-attribute } [,...])]

 { record-input-block
 | construct-block
 | display-array-block
 | input-array-block
 }
 [...]

[
 { dialog-control-block }
 [...]
]

END DIALOG

where record-input-block is:

{
INPUT BY NAME { variable | record.* } [,...]
|
INPUT { variable | record.* } [,...] FROM field-list
}
 [ATTRIBUTE ({ input-control-attribute } [,...])]
 { input-control-block }
 [...]
END INPUT

where input-control-block is one of:

{ BEFORE INPUT
| BEFORE FIELD field-spec
| ON CHANGE field-spec
| AFTER FIELD field-spec
| AFTER INPUT
| ON ACTION action-name
| ON KEY (key-name [,...])
}
 dialog-statement
 [...]

where construct-block is:

User Interface

809

{
CONSTRUCT BY NAME variable ON column-list
|
CONSTRUCT variable ON column-list FROM field-list
}
 [ATTRIBUTE ({ construct-control-attribute } [,...])]
 { construct-control-block }
 [...]
END CONSTRUCT

where construct-control-block is one of:

{ BEFORE CONSTRUCT
| BEFORE FIELD field-spec
| ON CHANGE field-spec
| AFTER FIELD field-spec
| AFTER CONSTRUCT
| ON ACTION action-name
| ON KEY (key-name [,...])
}
 dialog-statement
 [...]

where display-array-block is:

DISPLAY ARRAY array TO screen-array.*
 [ATTRIBUTE ({ display-array-control-attribute } [,...])]
 { display-array-control-block }
 [...]
END DISPLAY

where display-array-control-block is one of:

{ BEFORE DISPLAY
| BEFORE ROW
| AFTER ROW
| AFTER DISPLAY
| ON ACTION action-name
| ON KEY (key-name [,...])
}
 dialog-statement
 [...]

where input-array-block is:

INPUT ARRAY array FROM screen-array.*
 [ATTRIBUTE ({ input-array-control-attribute } [,...])]
 { input-array-control-block }
 [...]
END INPUT

where input-array-control-block is one of:

Genero Business Development Language

810

{ BEFORE INPUT
| BEFORE ROW
| BEFORE FIELD field-spec
| ON CHANGE field-spec
| AFTER FIELD field-spec
| ON ROW CHANGE
| AFTER ROW
| BEFORE DELETE
| AFTER DELETE
| BEFORE INSERT
| AFTER INSERT
| AFTER INPUT
| ON ACTION action-name
| ON KEY (key-name [,...])
}
 dialog-statement
 [...]

where dialog-control-block is one of:

{ BEFORE DIALOG
| ON ACTION action-name
| ON KEY (key-name [,...])
| ON IDLE idle-seconds
| COMMAND option-name [option-comment] [HELP help-number]
| COMMAND KEY (key-name [,...]) option-name [option-comment] [HELP
help-number]
| AFTER DIALOG
}
 dialog-statement
 [...]

where dialog-statement is one of:

{ statement
| ACCEPT DIALOG
| CONTINUE DIALOG
| EXIT DIALOG
| NEXT FIELD { CURRENT | NEXT | PREVIOUS | field-name }
}

where field-list is:

{ field-name
| table-name.*
| table-name.field-name
| screen-array[line].*
| screen-array[line].field-name
| screen-record.*
| screen-record.field-name
} [,...]

where field-spec is:

User Interface

811

{ field-name
| table-name.field-name
| screen-array.field-name
| screen-record.field-name
} [,...]

where column-list is :

{ column-name
| table-name.*
| table-name.column-name
} [,...]

Notes:

1. array is the array of records used by the DIALOG statement.
2. help-number is an integer that allows you to associate a help message number

with the command.
3. field-name is the identifier of a field of the current form.
4. option-name is a string expression defining the label of the action and identifying

the action that can be executed by the user.
5. option-comment is a string expression containing a description for the menu

option, displayed when option-name is the current.
6. column-name is the identifier of a database column of the current form.
7. table-name is the identifier of a database table of the current form.
8. variable is a simple program variable (not a record).
9. record is a program record (structured variable).
10. screen-array is the screen array that will be used in the current form.
11. line is a screen array line in the form.
12. screen-record is the identifier of a screen record of the current form.
13. action-name identifies an action that can be executed by the user.
14. idle-seconds is an integer literal or variable that defines a number of seconds.
15. key-name is a hot-key identifier (like F11 or Control-z).
16. statement is any instruction supported by the language.

The following table shows the dialog-control-attributes supported by the DIALOG
statement:

Attribute Description
FIELD ORDER FORM Indicates that the tabbing order of fields is

defined by the TABINDEX attribute of form
fields. The default order in which the focus
moves from field to field is determined by the
order of the program variables bound to the
DIALOG statement. The program options
instruction can also change this behavior with
FIELD ORDER FORM options. Action views can
also get the focus when using this option.

UNBUFFERED [=bool] Indicates that the dialog must be sensitive to

Genero Business Development Language

812

program variable changes. The bool
parameter can be an integer literal or a
program variable.

The following table shows the input-control-attributes supported by the INPUT sub-dialog
of the DIALOG statement:

Attribute Description
HELP = int-expr Defines the help number of the help message

to use when help is invoked by the user.
NAME = string Identifies the sub-dialog by providing a

unique name.
WITHOUT DEFAULTS [=bool] Indicates whether or not fields are initially

filled with the column default values defined
in the form specification file or the database
schema files. If set to FALSE, fields are
initially populated with the column default
values. If set to TRUE, default values are
ignored. bool can be an integer literal or a
program variable that evaluates to TRUE or
FALSE.

The following table shows the display-array-control-attributes supported by the DISPLAY
ARRAY sub-dialog of the DIALOG statement:

Attribute Description
COUNT = row-count Defines the number of data rows when using

a static array or a dynamic array in paged
mode. row-count can be an integer literal or a
program variable.

HELP = int-expr Defines the help number of the help message
to use when help is invoked by the user.

KEEP CURRENT ROW [=bool]

Keeps current row highlighted after execution
of the instruction. bool can be an integer
literal or a program variable that evaluates to
TRUE or FALSE.

The following table shows the input-array-control-attributes supported by the INPUT
ARRAY sub-dialog of the DIALOG statement:

Attribute Description
HELP = int-expr Defines the help number of the help message

to use when help is invoked by the user.
WITHOUT DEFAULTS [=bool] Indicates whether or not fields are initially

User Interface

813

filled with the column default values defined
in the form specification file or the database
schema files. If set to FALSE, fields are
initially populated with the column default
values. If set to TRUE, default values are
ignored. bool can be an integer literal or a
program variable that evaluates to TRUE or
FALSE.

COUNT = row-count Defines the number of data rows in the static
array. row-count can be an integer literal or a
program variable.

MAXCOUNT = row-count Defines the maximum number of data rows
that can be entered in the program array.
row-count can be an integer literal or a
program variable.

APPEND ROW [=bool] Defines if the user can append new rows at
the end of the list. bool can be an integer
literal or a program variable that evaluates to
TRUE or FALSE.

INSERT ROW [=bool] Defines if the user can insert new rows inside
the list. bool can be an integer literal or a
program variable that evaluates to TRUE or
FALSE.

DELETE ROW [=bool] Defines if the user can delete rows. bool can
be an integer literal or a program variable
that evaluates to TRUE or FALSE.

AUTO APPEND [=bool] Defines if a temporary row will be created
automatically when needed. bool can be an
integer literal or a program variable that
evaluates to TRUE or FALSE.

KEEP CURRENT ROW [=bool] Keeps current row highlighted after execution
of the instruction.

The following table shows the construct-control-attributes supported by the CONSTRUCT
sub-dialog of the DIALOG statement:

Attribute Description
HELP = int-expr Defines the help number of the help message

to use when help is invoked by the user.
NAME = string Identifies the sub-dialog by providing a

unique name.

Genero Business Development Language

814

Usage

Use the DIALOG instruction if you want to handle different parts of a form at the same
time. The DIALOG instruction acts as a combination of classical / singular dialogs. The
syntax of the DIALOG instruction is very close to singular dialogs, using common triggers
such as BEFORE FIELD, ON ACTION, and so on. Despite the similarities, the behavior and
semantics of DIALOG are a bit different from singular dialogs.

The following example is of a DIALOG instruction that includes both an INPUT and a
DISPLAY ARRAY sub-dialog:

01 SCHEMA stores
02
03 DEFINE p_customer RECORD LIKE customer.*
04 DEFINE p_orders DYNAMIC ARRAY OF RECORD LIKE order.*
05
06 FUNCTION customer_dialog()
07
08 DIALOG ATTRIBUTES(UNBUFFERED, FIELD ORDER FORM)
09
10 INPUT BY NAME p_customer.*
11 AFTER FIELD cust_name
12 CALL setup_dialog(DIALOG)
13 END INPUT
14
15 DISPLAY ARRAY p_orders TO s_orders.*
16 BEFORE ROW
17 CALL setup_dialog(DIALOG)
18 END DISPLAY
19
20 ON ACTION close
21 EXIT DIALOG
22
23 END DIALOG
24
25 END FUNCTION

The main differences between multiple dialogs and singular dialogs are:

1. While DIALOG supports the compatible BUFFERED mode, it is strongly
recommended that you use the UNBUFFERED mode, in order to synchronize views
(form fields) with data models (program variables).

2. The DIALOG instruction does not use the INT_FLAG variable. You must
implement ON ACTION accept or ON ACTION cancel to handle dialog validation
/ cancellation. These actions do not exist by default in DIALOG.

3. Unlike singular dialogs creating implicit accept and cancel actions, by default
there is no way to quit the DIALOG instruction. You must implement your own
action handler and execute EXIT DIALOG or ACCEPT DIALOG.

4. All elements of the dialog are active at the same time, so you must handle
tabbing order properly. By default - as in singular dialogs - the tabbing order is
driven by the binding list (order of program variables). It is strongly recommended

User Interface

815

that you use the FIELD ORDER FORM option and the TABINDEX field attributes
instead.

5. Like the singular INPUT ARRAY instruction, DIALOG creates implicit insert,
append and delete actions. These actions are only active when the focus is in the
list.

Tips:

1. Don't touch working programs: The purpose of the DIALOG instruction is not to
replace singular dialogs, which are still supported and useful in most cases.

2. It is recommended that you use singular dialogs if no multiple dialog is required.
For example, you would typically implement a master/detail form with DIALOG,
and execute a singular CONSTRUCT instruction as a nested dialog called from
the master/detail DIALOG.

3. Write a common setup_dialog(ui.dialog) function to centralize all field and action
activations according to the context. You can then call that setup function at any
place in the DIALOG code.

4. While static arrays are supported by the DIALOG instruction, it is strongly
recommended that you use dynamic arrays instead. With a dynamic array, the
actual number of rows is automatically defined by the array variable, while static
arrays need an additional step to define the total number of rows.

Programming Steps

The following steps describe how to use the DIALOG statement:

1. Create a form specification file containing screen record(s) and/or screen
array(s). The screen records and screen arrays identify the presentation
elements to be used by the runtime system to display the data models (i.e. the
content of program variables bound to the DIALOG instruction).

2. With the DEFINE instruction, declare program variables that will be used as data
models. For record lists (DISPLAY ARRAY or INPUT ARRAY), the members of the
program array must correspond to the elements of the screen array, by number
and data types. To handle record lists, use dynamic arrays instead of static
arrays.

3. Open and display the form, using a OPEN WINDOW with the WITH FORM clause
or the OPEN FORM / DISPLAY FORM instructions.

4. Fill the program variables with data. For lists, you typically use a result set cursor.
5. Implement the DIALOG instruction block to handle interaction. Define each sub-

dialog with program variables to be used as data models. The sub-dialogs will
define how variables will be used (display or input).

6. Inside the DIALOG instruction, control the behavior of the instructions with control
blocks,such as BEFORE DIALOG, AFTER ROW, BEFORE FIELD, or ON ACTION.

7. To end the DIALOG instruction, implement an ON ACTION close or ON ACTION
accept / ON ACTION cancel to handle dialog validation and cancellation, with
the ACCEPT DIALOG and EXIT DIALOG control instructions. Note that the
INT_FLAG variable will not be set as it would in singular dialogs.

Genero Business Development Language

816

Sub-dialogs

A DIALOG instruction is made of one or several sub-dialogs, plus global control blocks
and action handlers. The sub-dialogs bind program variables to form fields and define
the type of interaction that will take place for the data model (simple input, list input or
query). The sub-dialogs implement individual control blocks which let you control the
behavior of the interactive instruction. Sub-dialogs can also hold action handlers, which
will define local sub-dialog actions.

There are four types of DIALOG sub-dialogs:

1. Simple record input with the INPUT sub-dialog.
2. Read-only record list handling with the DISPLAY ARRAY sub-dialog.
3. Editable record list handling with the INPUT ARRAY sub-dialog.
4. Query By Example handling with the CONSTRUCT sub-dialog.

The program variables can be of any data type; the runtime system will adapt input and
display rules to the variable type. For example, if you want to use a DATE variable, the
DIALOG instruction will check for a valid date value when the user enters a value in the
corresponding form field.

You typically define program variables using a LIKE clause, ensuring the form field
matches the underlying database column.

If a variable is declared LIKE a SERIAL column, the runtime system does not allow the
screen cursor to stop in the field, because values in SERIAL columns are automatically
generated by the database server. When the user enters data for an INPUT or INPUT
ARRAY instruction, the runtime system checks the entered value against the data type of
the variable, not the data type of the form field. The field data types defined in the form,
however, are used when doing a CONSTRUCT.

Some data validation rules can be defined at the form level, such as NOT NULL,
REQUIRED and INCLUDE attributes. Data validation is discussed later in this
documentation.

For more details about defining sub-dialogs:

• The INPUT sub-dialog
o Identifying the INPUT sub-dialog
o Control blocks in INPUT

• The DISPLAY ARRAY sub-dialog
o Identifying the DISPLAY ARRAY sub-dialog
o Control blocks in DISPLAY ARRAY

• The INPUT ARRAY sub-dialog
o Identifying the INPUT ARRAY sub-dialog
o Control blocks in INPUT ARRAY

• The CONSTRUCT sub-dialog

User Interface

817

o Identifying the CONSTRUCT sub-dialog
o Control blocks in CONSTRUCT
o Query Operators

The INPUT sub-dialog

When using the INPUT sub-dialog, you bind each record member variable to the
corresponding field of a screen record so the DIALOG instruction can manipulate the
values that the user enters in the form fields.

The INPUT clause can be used in two forms:

1. INPUT BY NAME variable-list
2. INPUT variable-list FROM field-list

The BY NAME clause implicitly binds the fields to the variables that have the same
identifiers as the field names. You must first declare variables with the same names as
the fields from which they accept input. The runtime system ignores any record name
prefix when making the match. The unqualified names of the variables and of the fields
must be unique and unambiguous within their respective domains. If they are not, the
runtime system generates an exception, and sets the STATUS variable to a negative
value.

01 DEFINE p_cust RECORD
02 cust_num INTEGER,
03 cust_name VARCHAR(50),
04 cust_address VARCHAR(100)
05 END RECORD
06 ...
07 DIALOG
08 INPUT BY NAME p_cust.*
09 BEFORE FIELD cust_name
10 ...
11 END INPUT
12 ...
13 END DIALOG

The FROM clause explicitly binds the fields in the screen record to a list of program
variables that can be simple variables or records. The number of variables or record
members must equal the number of fields listed in the FROM clause. Each variable must
be of the same (or a compatible) data type as the corresponding screen field. When the
user enters data, the runtime system checks the entered value against the data type of
the variable, not the data type of the screen field.

01 DEFINE custname VARCHAR(50)
02 ...
03 DIALOG
04 INPUT cust_name FROM customer.cust_name
05 BEFORE FIELD cust_name

Genero Business Development Language

818

06 ...
07 END INPUT
08 ...
09 END DIALOG

Identifying an INPUT sub-dialog

The name of an INPUT sub-dialog can be used to qualify sub-dialog actions with a prefix.

In order to identify the INPUT sub-dialog with a specific name, you can use the
ATTRIBUTES clause to set the NAME attribute:

01 INPUT BY NAME p_cust.* ATTRIBUTES (NAME = "cust")
02 ...

For more details about the possible attributes, see INPUT ATTRIBUTE clause.

Control blocks in INPUT

Simple record input declared with the INPUT sub-dialog can raise the following triggers:

• BEFORE INPUT
• BEFORE FIELD field-spec
• ON CHANGE field-spec
• AFTER FIELD field-spec
• AFTER INPUT

Note that in the singular INPUT instruction, BEFORE INPUT and AFTER INPUT blocks are
typically used as initialization and finalization blocks. In an INPUT sub-dialog of a DIALOG
instruction, BEFORE INPUT and AFTER INPUT blocks will be executed each time the
focus goes to (BEFORE) or leaves (AFTER) the group of fields defined by this sub-dialog.

The DISPLAY ARRAY sub-dialog

The DISPLAY ARRAY sub-dialog binds the members of the flat record (or the primitive
member) of an array to the screen-array or screen-record fields specified with the TO
keyword. The number of variables in each record of the program array must be the same
as the number of fields in each screen record (that is, in a single row of the screen
array).

You typically bind a program array to a screen-array in order to display a page of
records. However, the DIALOG instruction can also bind the program array to a simple
flat screen-record. In this case, only one record will be visible at a time.

In any case, implicit navigation actions (firstrow, prevrow, nextrow and lastrow) are
created by the dialog. See also Default Actions for more details about implicit actions.
Note that the default action views for these navigation actions are hidden by default. The

User Interface

819

actions are automatically enabled and disabled according to the position of the current
row in the list.

The next code example defines an array with a flat record and binds it to a screen array:

01 DEFINE p_items DYNAMIC ARRAY OF RECORD
02 item_num INTEGER,
03 item_name VARCHAR(50),
04 item_price DECIMAL(6,2)
05 END RECORD
06 ...
07 DIALOG
08 DISPLAY ARRAY p_items TO sa.*
09 BEFORE ROW
10 ...
11 END DISPLAY
12 ...
13 END DIALOG

If the screen array is defined with one field only, you can bind an array defined with a
primitive type:

01 DEFINE p_names DYNAMIC ARRAY OF VARCHAR(50)
02 ...
03 DIALOG
04 DISPLAY ARRAY p_names TO sa.*
05 BEFORE DELETE
06 ...
07 END DISPLAY
08 ...
09 END DIALOG

Identifying a DISPLAY ARRAY sub-dialog

The name of the screen array specified with the TO clause identifes the list. The dialog
class method such as takes the name of the screen array as the parameter, identifying
the list. For example, you would use DIALOG.getCurrentRow("screen-array") to query
for the current row in the list identified by 'screen-array'. The name of the screen-array is
also used to qualify sub-dialog actions with a prefix.

Control blocks in DISPLAY ARRAY

Read-only record lists declared with the DISPLAY ARRAY sub-dialog can raise the
following triggers:

• BEFORE DISPLAY
• BEFORE ROW
• AFTER ROW
• AFTER DISPLAY

Note that in the singular DISPLAY ARRAY instruction, BEFORE DISPLAY and AFTER
DISPLAY blocks are typically used as initialization and finalization blocks. In a DISPLAY

Genero Business Development Language

820

ARRAY sub-dialog of a DIALOG instruction, BEFORE DISPLAY and AFTER DISPLAY blocks
will be executed each time the focus goes to (BEFORE) or leaves (AFTER) the group of
fields defined by this sub-dialog.

The INPUT ARRAY sub-dialog

The INPUT ARRAY sub-dialog binds the members of the flat record (or the primitive
member) of an array to the screen-array or screen-record fields specified with the FROM
keyword. The number of variables in each record of the program array must be the same
as the number of fields in each screen record (that is, in a single row of the screen
array).

Note that you typically bind a program array to a screen-array in order to display a page
of records. However, the DIALOG instruction can also bind the program array to a simple
flat screen-record. In this case, only one record will be visible at a time.

In any case, implicit navigation actions (firstrow, prevrow, nextrow and lastrow) are
created by the dialog. See also Default Actions for more details about implicit actions.
Note that the default action views for these navigation actions are hidden by default. The
actions are automatically enabled and disabled according to the position of the current
row in the list.

The next code example defines an array with a flat record and binds it to a screen array:

01 DEFINE p_items DYNAMIC ARRAY OF RECORD
02 item_num INTEGER,
03 item_name VARCHAR(50),
04 item_price DECIMAL(6,2)
05 END RECORD
06 ...
07 DIALOG
08 INPUT ARRAY p_items FROM sa.*
09 BEFORE INSERT
10 ...
11 END INPUT
12 ...
13 END DIALOG

If the screen array is defined with one field only, you can bind an array defined with a
primitive type:

01 DEFINE p_names DYNAMIC ARRAY OF VARCHAR(50)
02 ...
03 DIALOG
04 INPUT ARRAY p_names FROM sa.*
05 BEFORE DELETE
06 ...
07 END INPUT
08 ...
09 END DIALOG

User Interface

821

Identifying an INPUT ARRAY sub-dialog

The name of the screen array specified with the FROM clause will be used to identify the
list. For example, the dialog class method such as DIALOG.getCurrentRow("screen-
array") takes the name of the screen array as the parameter, to identify the list you want
to query for the current row. The name of the screen-array is also used to qualify sub-
dialog actions with a prefix.

Control blocks in INPUT ARRAY

Editable record lists declared with the INPUT ARRAY sub-dialog can raise the following
triggers:

• BEFORE INPUT
• BEFORE ROW
• BEFORE FIELD field-spec
• ON CHANGE field-spec
• AFTER FIELD field-spec
• ON ROW CHANGE
• AFTER ROW
• BEFORE DELETE
• AFTER DELETE
• BEFORE INSERT
• AFTER INSERT
• AFTER INPUT

Note that in the singular INPUT ARRAY instruction, BEFORE INPUT and AFTER INPUT
blocks are typically used as initialization and finalization blocks. In the INPUT ARRAY sub-
dialog of a DIALOG instruction, BEFORE INPUT and AFTER INPUT blocks will be executed
each time the focus goes to (BEFORE) or leaves (AFTER) the group of fields defined by
this sub-dialog.

The CONSTRUCT sub-dialog

The CONSTRUCT sub-dialog binds a character string variable with screen fields, to
implement Query By Example (QBE). When such a sub-dialog is used, the DIALOG
instruction produces an SQL condition corresponding to search criteria that a user
specifies in the fields. The instruction fills the character variable with the SQL condition,
and you can use the content of this variable to create the WHERE clause of a SELECT
statement to query the database.

01 DEFINE sql_condition STRING
02 ...
03 DIALOG
04 CONSTRUCT BY NAME sql_condition ON customer.cust_name,
customer.cust_address
05 BEFORE FIELD cust_name
06 ...
07 END CONSTRUCT

Genero Business Development Language

822

08 ...
09 END DIALOG

You must make sure the character string variable is large enough to store all possible
SQL conditions. It is better to use a STRING data type to avoid any size problems.

Warnings:

1. CONSTRUCT uses the field data types defined in the current form file to produce
the SQL conditions. This is different from other interactive instructions, where the
data types of the program variables define the way to handle input/display. It is
strongly recommended (but not mandatory) that the form field data types
correspond to the data types of the program variables used for input. This is
implicit if both form fields and program variables are based on the database
schema file.

The CONSTRUCT clause can be used in two forms:

1. CONSTRUCT BY NAME string-variable ON column-list
2. CONSTRUCT string-variable ON column-list FROM field-list

The BY NAME clause implicitly binds the form fields to the columns, where the form field
identifiers match the column names specified in the column-list after the ON keyword.
You can specify the individual column names (separated by commas) or use the
tablename.* shortcut to include all columns defined for a table in the database schema
file.

The FROM clause explicitly binds the form fields listed after the FROM keyword with the
column definitions listed after the ON keyword.

In both cases, the name of the columns in column-list will be used to produce the SQL
condition in string-variable.

Identifying a CONSTRUCT sub-dialog

The name of a CONSTRUCT sub-dialog can be used to qualify sub-dialog actions with a
prefix. In order to identify the CONSTRUCT sub-dialog with a specific name, use the
ATTRIBUTES clause to set the NAME attribute:

01 CONSTRUCT BY NAME sql_condition ON customer.* ATTRIBUTES (NAME =
"q_cust")
02 ...

For more details about the possible attributes, see INPUT ATTRIBUTE clause.

Control blocks in CONSTRUCT

A Query By Example declared with the CONSTRUCT clause can raise the following
triggers:

User Interface

823

• BEFORE CONSTRUCT
• BEFORE FIELD field-spec
• AFTER FIELD field-spec
• AFTER CONSTRUCT

Note that in the singular CONSTRUCT instruction, BEFORE CONSTRUCT and AFTER
CONSTRUCT blocks are typically used as initialization and finalization blocks. In DIALOG
instruction, BEFORE CONSTRUCT and AFTER CONSTRUCT blocks will be executed each
time the focus goes to (BEFORE) or leaves (AFTER) the group of fields defined by this sub-
dialog.

Query Operators

The following table lists all relational operators that can be used during a Query By
Example input:

Symbol Meaning Pattern
Any simple data type
= Is Null =
== Equal to == value
> Greater than > value
>= Greater than or equal to >= value
< Less than < value
<= Less than or equal to <= value
<> or != Not equal to != value, <> value
: or .. Range value1:value2, value1..value2
| List of values value1 | value2
Character data types only
* Wildcard for any string *x, x*, *x*
? Single-character wildcard ?x, x?, ?x?, x??
[c] A set of characters [a-z]*, [xy]?

Programming with DIALOG

The following sections describe the concepts you must understand in order to program a
DIALOG instruction. The following topics are covered:

• Global configuration settings in FGLPROFILE
• Identifying sub-dialogs with a name
• Binding Action Views to Action Handlers in DIALOG
• The Buffered and Unbuffered modes
• The WITHOUT DEFAULTS option

o WITHOUT DEFAULTS in INPUT
o WITHOUT DEFAULTS in INPUT ARRAY

Genero Business Development Language

824

• Which form item has the focus?
• The TOUCHED flag of input fields
• Executing form-level validation rules
• Handling the Tabbing Order
• Detecting focus changes
• Detecting data modification immediately
• Defining the total number of rows in a list
• Handling the current row in a list
• The paged mode of read-only lists
• Inserting and deleting rows in a list
• Handling temporary rows
• Implementing the close action

Global settings in FGLPROFILE

By setting global parameters in FGLPROFILE, you can control the behavior of all dialogs
of the program. These options are provided as global parameters to define a common
pattern for all dialogs of your application. A complete description is available in the
Runtime Configuration section.

List of FGLPROFILE entries affecting the behavior of dialogs:

1. Dialog.fieldOrder
2. Dialog.currentRowVisibleAfterSort

Identifying sub-dialogs by a name

The DIALOG instruction is a collection of sub-dialogs that act as controllers for different
parts of a form. In order to program a DIALOG instruction, there must be a unique
identifier for each sub-dialog. For example, to set the current row of a screen array with
the setCurrentRow() method, you pass the name of the screen array to specify the sub-
dialog to be affected. Sub-dialog identifiers are also used as a prefix to specify actions
for the sub-dialog.

The following links describe how to specify the names of the different types of DIALOG
sub-dialogs:

• Identifying the INPUT sub-dialog
• Identifying the DISPLAY ARRAY sub-dialog
• Identifying the INPUT ARRAY sub-dialog
• Identifying the CONSTRUCT sub-dialog

User Interface

825

Binding Action View to Action Handlers in DIALOG

In forms, actions views like buttons are bound to ON ACTION handlers by name. Within
the DIALOG instruction, we distinguish dialog actions from sub-dialog actions. When the
action handler is defined as dialog action, the action name is a simple identifier as in
singular interactive instructions. When the ON ACTION action handler is defined inside a
sub-dialog or if the action is an implicit action such as insert in INPUT ARRAY, the action
name gets a prefix ("sub-dialog-name.action-name") to identify the sub-dialog action with
a unique name.

01 DIALOG
02 INPUT BY NAME ... ATTRIBUTES (NAME = "cust")
03 ON ACTION suspend -- this is the local sub-dialog action
"cust.suspend"
04 ...
05 END INPUT
06 BEFORE DIALOG
07 ...
08 ON ACTION close -- this is the dialog action "close"
09 ...
10 END DIALOG

By using this sub-dialog identifier, you can bind specific action views to sub-dialog
actions. For INPUT and CONSTRUCT sub-dialogs, the sub-dialog identifier can be specified
with the NAME attribute. The INPUT ARRAY and DISPLAY ARRAY sub-dialogs are implicitly
identified with the screen-record name defined in the form.

Note that the sub-dialog prefix is optional in the action view so you can still bind action
views with the action name only: any sub-dialog action with the matching name will be
attached. This is especially useful for common actions such as the implicit insert /
append / delete actions created by INPUT ARRAY, when the dialog handles multiple
editable lists. You can bind toolbar buttons to these action without the sub-dialog prefix:
The buttons will apply to the current list that has the focus.

Concerning action views bound to sub-dialog actions without the sub-dialog qualifier, the
runtime system automatically enables or disables the actions when entering or leaving
the group of fields controlled by the sub-dialog (i.e. typical navigation buttons in the
toolbar will be disabled if the focus is not in a list). However, action views bound to sub-
dialog actions with qualified sub-dialog action names will always be active.

If a sub-dialog action is fired when the focus is not in the sub-dialog of the action, the
focus will automatically be given to the first field of the sub-dialog, before executing the
user code defined in the ON ACTION clause. This will trigger the same validation rules
and control blocks as if the user had selected the first field of the sub-dialog by hand
(see Control Block Execution Order for more details).

When using ui.Dialog.setActionActive() (or any method that takes an action name as
parameter), you can specify the action name with or without a sub-dialog identifier. If you
qualify the action with the sub-dialog identifier, the sub-dialog action is clearly identified.
If you don't specify a sub-dialog prefix, the action will be identified based on the focus
context. When the focus is in the sub-dialog of the action, non-qualified action names

Genero Business Development Language

826

identify the local sub-dialog action; otherwise, they identify a dialog action if one exists
with the same name.

Note that disabling an action by program with ui.Dialog.setActionActive(), will take
precedence over the built-in activation rules (i.e. if the action is disabled by program, the
action will not be activated when entering the sub-dialog).

For action views bound to sub-dialog actions with qualifiers, the Action Defaults defined
with the corresponding action name will be used to set the attributes with the default
values. In other words, the prefix will be ignored. For example, if an action view is
defined with the name "custlist.append", it will get the action defaults defined for the
"append" action.

See also The Interaction Model for information about binding Action Views and Action
Handlers.

The Buffered and Unbuffered modes

The variables act as a data model to display data or to get user input through the DIALOG
instruction. Always use the variables if you want to change some field values
programmatically.

When you use the default "buffered" mode, program variable changes are not
automatically displayed to form fields; you need to execute DISPLAY TO or DISPLAY BY
NAME. Additionally, if an action is triggered, the value of the current field is not validated
and is not copied into the corresponding program variable. The only way to get the text
of a field is to use GET_FLDBUF() or DIALOG.getFieldBuffer(). Note that these functions
return the current text, which might not be a valid representation of a value of the field
datatype.

When you use the UNBUFFERED attribute, program variables and form fields are
automatically synchronized, and the instruction is sensitive to program variable changes:
You don't need to display values explicitly with DISPLAY TO or DISPLAY BY NAME. When
an action is triggered, the value of the current field is validated and is copied into the
corresponding program variable. If you need to display new data during the DIALOG
execution, just assign the values to the program variables; the runtime system will
automatically display the values to the screen:

01 DIALOG ATTRIBUTES(UNBUFFERED)
02 INPUT BY NAME p_items.*
03 ON CHANGE code
04 IF p_items.code = "A34" THEN
05 LET p_items.desc = "Item A34"
06 END IF
07 ...
08 END INPUT
09 END DIALOG

User Interface

827

During data input, values entered by the user in form fields are automatically validated
and copied into the program variables. Actually the value entered in form fields is first
available in the form field buffer. This buffer can be queried with built-in functions or
dialog class methods. When you use the UNBUFFERED mode, the field buffer is used to
synchronize program variables each time control returns to the runtime system - for
example, when the user clicks on a button to execute an action.

When you use the UNBUFFERED mode, you may want to prevent data validation for some
actions like cancel or close. To avoid field validation for a given action, you can set the
validate Action Default attribute to "no", in the .4ad file or in the ACTION DEFAULTS
section of the form file:

01 ACTION DEFAULTS
02 ACTION undo (TEXT = "Undo", VALIDATE = NO)
03 ...
04 END

Note that some predefined actions are already configured with validate=no in the
default.4ad file.

If field validation is disabled for an action, the code executed in the ON ACTION block
acts as if the dialog was in BUFFERED mode: The program variable is not set; however,
the input buffer of the current field is updated. When returning from the user code, the
dialog will not synchronize the form fields with program variables, and the current field
will display the input buffer content. Therefore, if you change the value of the program
variable during an ON ACTION block where validation is disabled, you must explicitly
DISPLAY the values to the fields.

To illustrate this case, imagine that you want to implement an undo action to allow the
modifications done by the user to be reverted (before these have been saved to the
database of course). You typically copy the current record into a clone variable when the
dialog starts, and copy these old values back to the input record when the undo action is
fired. An undo action is a good candidate to avoid field validation, since you want to
ignore current values. If you don't re-display the values, the input buffer of the current
field will remain when returning from the ON ACTION block:

01 DIALOG ATTRIBUTES(UNBUFFERED)
02 INPUT BY NAME p_cust.*
03 BEFORE INPUT
04 LET p_cust_copy.* = p_cust.*
05 ON ACTION undo -- Defined with VALIDATE=NO
06 LET p_cust.* = p_cust_copy.*
07 DISPLAY BY NAME p_cust.*
08 END INPUT
09 END DIALOG

Genero Business Development Language

828

The WITHOUT DEFAULTS option

The INPUT and INPUT ARRAY sub-dialogs support the WITHOUT DEFAULTS option in the
binding clause or as an ATTRIBUTE. When used in the syntax of the binding clause, the
option is defined statically at compile time as TRUE. When used as an ATTRIBUTE option,
it can be specified with an integer expression that is evaluated when the DIALOG
interactive instruction starts:

01 INPUT BY NAME p_cust.* ATTRIBUTE (WITHOUT DEFAULTS = NOT new)
03 ...
03 END INPUT

The WITHOUT DEFAULTS clause in INPUT

In the default mode, the INPUT sub-dialog clears the program variables and assigns the
values defined by the DEFAULT attribute in the form file (or indirectly, the default value
defined in the database schema files). This mode is typically used to input and INSERT
a new record in the database. The REQUIRED field attributes are checked to make sure
that the user has entered all data that is mandatory. Note that REQUIRED only forces the
user to enter the field, and can leave the value NULL unless the NOT NULL attribute is
used. Therefore, if you have an AFTER FIELD or ON CHANGE control block with validation
rules, you can use the REQUIRED attribute to force the user to enter the field and trigger
that block.

In contrast, the WITHOUT DEFAULTS option starts the dialog with the existing values of
program variables. This mode is typically used in order to UPDATE an existing database
row. Existing values are considered valid, thus the REQUIRED attributes are ignored
when this option is used.

The WITHOUT DEFAULTS clause in INPUT ARRAY

With the INPUT ARRAY sub-dialog, the WITHOUT DEFAULT clause defines whether the
program array is populated when the dialog begins. Once the dialog is started, existing
rows are always handled as records to be updated in the database (i.e. WITHOUT
DEFAULTS=TRUE), while newly created rows are handled as records to be inserted in the
database (i.e. WITHOUT DEFAULTS=FALSE).

It is unusual to implement an INPUT ARRAY sub-dialog with no WITHOUT DEFAULTS
option, because the data of the program variable would be cleared and the list empty.
So, you typically use the WITHOUT DEFAULT clause in INPUT ARRAY. Note this is the
default in INPUT ARRAY used inside DIALOG, but in singular INPUT ARRAY, the default is
WITHOUT DEFAULTS=FALSE.

Which form item has the focus?

Since several parts of a form can now be active at the same time, you may need to know
which form item is current. For example, if you have several lists driven by multiple

User Interface

829

DISPLAY ARRAY sub-dialogs, and you want to implement a clear action for each list
with a unique ON ACTION clear block, you need to query the dialog for the current list.

To get the name of the current form item, use the DIALOG.getCurrentItem() method.
This method is the new version of the former fgl_dialog_getfieldname() built-in function.
It has been extended to return identifiers for fields, lists or actions identifiers.

01 DIALOG ATTRIBUTES(UNBUFFERED)
03 DISPLAY ARRAY p_orders TO orders.*
03 ...
04 END DISPLAY
05 DISPLAY ARRAY p_items TO items.*
06 ...
07 END DISPLAY
08 ON ACTION clear
09 IF DIALOG.getCurrentItem() == "items" THEN
10 ...
11 END IF
12 ...
13 END DIALOG

Note that you can also detect when you enter or leave a field or a group of fields by
using control blocks such as BEFORE INPUT or AFTER DISPLAY. See Detecting focus
changes for more details.

The TOUCHED flag of input fields

Each input field has a TOUCHED flag: This flag is used to execute form-level validation
rules and trigger ON CHANGE blocks. The flag can also be queried to detect if a field was
touched/changed during the DIALOG instruction, for example with the
FIELD_TOUCHED() operator or with ui.Dialog.getFieldTouched("field-name").

The touched flag is set to TRUE when the user enters data in a field, or when the
program executes a DISPLAY TO / DISPLAY BY NAME instruction. The flag can be set
to TRUE or reset to FALSE with the ui.Dialog.setFieldTouched("field-name", value)
method.

The touched flags of all fields are automatically reset by the interactive instruction in the
following cases:

• When a DIALOG instruction starts, all touched flags are set to FALSE.
• With an INPUT sub-dialog or a CONSTRUCT sub-dialog, the touched flags are

reset to FALSE when entering the group of fields.
• With an INPUT ARRAY sub-dialog, the touched flags are reset to FALSE when

moving to another row or when creating a new row.
• With a DISPLAY ARRAY sub-dialog, the touched flags are set to TRUE for all

fields. Read the warning below:

Genero Business Development Language

830

Warning: When using a DISPLAY ARRAY sub-dialog, the touched flags are set to
TRUE for all fields. This behavior exists because of backward compatibility
(actually DISPLAY ARRAY acts like a DISPLAY BY NAME concerning the touched flag).
You should not have to use the touched flags in DISPLAY ARRAY, since this sub-
dialog does not allow data input. However, you must pay attention when
implementing nested dialogs, because DISPLAY ARRAY will set the touched flags of
the fields driven by the parent dialog, for example when executing a DISPLAY
ARRAY from an INPUT ARRAY.

You can query the touched flags with the ui.Dialog.getFieldTouched("field-name")
method. Note that this flag can be queried in the AFTER INPUT, AFTER CONSTRUCT,
AFTER INSERT or AFTER ROW control blocks.

To emulate user input by program or to reset the touched flags after data was saved in
the database, you might want to reset touched flags with a call to
ui.Dialog.setFieldTouched("field-name", FALSE).

Note that when using a list driven by an INPUT ARRAY binding, a temporary row added
at the end of the list will be automatically removed if none of the touched flags is set.

For typical EDIT fields, the touched flag is set when leaving the field. If you want to
detect data modification earlier, you should use the dialogtouched predefined action.
However, this event is only an indicator that the user started to modify a field, the value
will not be available in the program variables.

Executing form-level validation rules

Form-level validation rules can be defined for each field with form specification attributes
such as NOT NULL, REQUIRED and INCLUDE. These attributes are part of the
business rules of the application and must be checked before saving data into the
database.

Implicit validation rule checking

The DIALOG instruction automatically executes form-level validation rules in the following
cases:

• The NOT NULL attribute is satisfied if a value is in the field.
NOT NULL is checked:

o when the user moves to a different row in a list controlled by an INPUT
ARRAY;
Note: If the row is temporary and none of the fields is touched, the
attribute is ignored.

o when focus leaves the sub-dialog controlling the field;
o when NEXT FIELD gives the focus to a field in a different sub-dialog than

the current sub-dialog.
o when the DIALOG instruction ends with ACCEPT DIALOG.

User Interface

831

• The REQUIRED attribute is satisfied if the field is touched, if a DEFAULT value is
defined, or if the WITHOUT DEFAULTS option is used.
REQUIRED is checked:

o when the user moves to a different row in a list controlled by an INPUT
ARRAY;
Note: If the row is temporary and none of the fields is touched, the
attribute is ignored.

o when focus leaves the sub-dialog controlling the field;
o when NEXT FIELD gives the focus to a field in a different sub-dialog than

the current sub-dialog.
o when the DIALOG instruction ends with ACCEPT DIALOG.

• The INCLUDE attribute is satisfied if the value is in the list defined by the
attribute.
INCLUDE is checked when the target program variable must be assigned. This
happens:

o when UNBUFFERED mode is used, focus is in the field, and an action is
fired;

o when the focus leaves the field;
o when the user moves to a different row in a list controlled by an INPUT

ARRAY;
Note: If the row is temporary and none of the fields is touched, the
attribute is ignored.

o when focus leaves the sub-dialog controlling the field;
o when NEXT FIELD gives the focus to a field in a different sub-dialog than

the current sub-dialog.
o when the DIALOG instruction ends with ACCEPT DIALOG.

Note that automatic validation occurs when the focus leaves a sub-dialog of the DIALOG
instruction.

Explicit validation rule checking

The DIALOG instruction can be used as in singular interactive instructions, with the
typical OK / Cancel buttons (i.e. accept / cancel actions) to finish the instruction. This lets
the user input or modify one record at a time, and program flow must re-enter the
DIALOG instruction to edit or create another record. To implement this, you can use the
default behavior of the DIALOG instruction, and have it execute the form-level validation
rules automatically when focus is lost for a sub-dialog or when leaving the dialog with
ACCEPT DIALOG (raised by the OK button). However, you may want to stay in the
DIALOG instruction and let the user input / modify multiple records. In this case, you need
a way to execute the form-level validation rules defined for each field, before saving the
data to the database. Form-level validation rules are defined by the NOT NULL,
REQUIRED and INCLUDE attributes.

To validate a sub-set of fields controlled by the DIALOG instruction, use the
ui.Dialog.validate("field-list") method, as shown in the following example:

01 ON ACTION save
02 IF DIALOG.validate("cust.*") < 0 THEN
03 CONTINUE DIALOG

Genero Business Development Language

832

04 END IF
05 CALL customer_save()

Note that this method automatically displays an error message and registers the next
field in case of error. It is mandatory to execute a CONTINUE DIALOG instruction if the
function returns an error.

Handling the Tabbing Order

The FIELD ORDER dialog attribute defines the way tabbing order works. Tabbing order
can be based on the dialog binding list (FIELD ORDER CONSTRAINED, the default) or it
can be based on the form tabbing order (FIELD ORDER FORM). It is recommended that
you use the FIELD ORDER FORM option, to use the tabbing order specified in the form
file.

The TABINDEX attribute allows tabbing order in the form to be defined for each form
item. By default, the form compiler assigns a tabbing index for each form item according
to the position of the item in the layout. Form items that can get the focus are form fields,
read-only lists, editable list cells.

If a form item is hidden or disabled, it is removed from the tabbing list. If the user
presses tab (or shift-tab), the focus will go to the next (or previous) element that is visible
and activated.

Note that the tabbing position of a read-only list driven by a DISPLAY ARRAY binding is
defined by the TABINDEX of the first field.

The NEXT FIELD instruction can also use the tabbing order, when executing NEXT
FIELD NEXT and NEXT FIELD PREVIOUS.

Note that if the form uses a TABLE container, the front-end resets the tab indexes when
the user moves columns around. This way, the visual column order always corresponds
to the input tabbing order. If the order of the columns in an editable list shouldn't be
changed, you can freeze the table columns with the UNMOVABLECOLUMNS attribute.

Note also that the DIALOG instruction creates two implicit actions to tab out of an INPUT
ARRAY list with control-tab and shit-control-tab accelerators. See Predefined Actions for
more details.

Detecting focus changes

We have seen that a DIALOG block can handle different parts of a form simultaneously.
You may want to execute some code when a part of the form gets (or loses) the focus.

User Interface

833

To detect when a group of fields, a row or a specific field gets the focus, use the
following control blocks:

• BEFORE INPUT (a field of this INPUT or INPUT ARRAY sub-dialog gets the focus
and none of its fields had focus before)

• BEFORE CONSTRUCT (a field of this CONSTRUCT sub-dialog gets the focus and
none of its fields had focus before)

• BEFORE DISPLAY (this DISPLAY ARRAY sub-dialog gets the focus and none of
its fields had focus before)

• BEFORE ROW (a new row gets the focus inside a DISPLAY ARRAY or INPUT
ARRAY list)

• BEFORE FIELD (a specific field (or group of fields) gets the focus)

Note that these triggers are also executed by NEXT FIELD.

To detect when a specific field, a row or a group of fields loses the focus:

• AFTER FIELD (the field (or group of fields) loses focus)
• AFTER ROW (a row inside a DISPLAY ARRAY or INPUT ARRAY list loses focus)
• AFTER DISPLAY (this DISPLAY ARRAY sub-dialog loses the focus = focus goes

to another sub-dialog)
• AFTER CONSTRUCT (this CONSTRUCT sub-dialog loses the focus = focus goes

to another sub-dialog)
• AFTER INPUT (this INPUT or INPUT ARRAY sub-dialog loses focus = focus goes

to another sub-dialog)

Detecting data modification immediately

Unlike singular interactive instruction such as INPUT that are quit frequently with a
cancel or accept action, the DIALOG instruction can be used continuously for several
data operations, such as navigation, creation, or modification. In this case the form is in
navigation mode by default; as soon as the user starts to modify a field, it switches to
modification mode. You typically want to get control and enable a save action when the
user starts to modify the current record. To do this, you can use the "dialogtouched"
predefined action.

If you want to use this feature, just create an ON ACTION dialogtouched block as in the
next example:

01 DIALOG
02 ...
03 ON ACTION dialogtouched
04 LET changing = TRUE
05 CALL DIALOG.setActionActive("dialogtouched", FALSE)
06 ...
07 END DIALOG

Genero Business Development Language

834

When such an action is defined, the front-end knows that it must send the action as soon
as the current field is modified (without leaving the field). Note that you must disable /
enable this special action in accordance with the status of the dialog: If this action is
enabled, the ON ACTION block will be fired each time the user modifies the value in the
current field.

Defining the total number of rows in a list

Before dynamic arrays, the language only supported static arrays, and you had to
specify the number of rows the DISPLAY ARRAY and INPUT ARRAY interactive
instructions must handle. When using a static array, you must specify the actual number
of rows with the SET_COUNT() built-in function or with the COUNT attribute. Both of
them are only taken into account when the interactive instruction starts. Further, when
using multiple lists in DIALOG, the SET_COUNT() built-in function is unusable, as it defines
the total number of rows for all lists. Thus, the only way to define the number of rows
when using a static array in multiple dialogs is to use the COUNT attribute. Remember the
COUNT attribute is only taken into account when the dialog starts.

Even if DIALOG is able to handle static arrays, it is strongly recommended that you use
dynamic arrays in DISPLAY ARRAY or INPUT ARRAY sub-dialogs. When using a dynamic
array, the total number of rows is automatically defined by the array variable (i.e. by
array.getLength()). Note that special consideration has to be taken when using the
paged mode. In this mode the dynamic array only holds a page of the row set: You must
specify the total number of rows with the ui.Dialog.setArrayLength() method.

See Example 1 for dynamic array usage with DIALOG.

The paged mode of read-only lists

When implementing a read-only list with a DISPLAY ARRAY sub-dialog, it is possible to
use the paged mode by using the ON FILL BUFFER block. The paged mode allows the
program to display a very large number of rows without copying all database rows into
the program array. Lists are actually displayed by pages; the DIALOG instruction
executes the instructions in the ON FILL BUFFER block when it needs a given page of
rows. You must use a dynamic array to implement a paged list.

In paged mode, the dynamic array holds a page of rows, not all rows of the result set.
Therefore, you must specify the total number of rows with the COUNT attribute in the
ATTRIBUTES clause of DISPLAY ARRAY. The number of rows can be changed during
dialog execution with the ui.Dialog.setArrayLength() method. Note that in singular
DISPLAY ARRAY instructions, you define the total number of rows of a paged mode with
the SET_COUNT() built-in function or the COUNT attribute. But these are only taken into
account when the dialog starts. If the total number of rows changes during the execution
of the dialog, the only way to specify the number of rows is setArrayLength().

User Interface

835

The ON FILL BUFFER clause is used to fill a page of rows in the dynamic array,
according to an offset and a number of rows. The offset can be retrieved with the
FGL_DIALOG_GETBUFFERSTART() built-in function, and the number of rows to
provide is defined by the FGL_DIALOG_GETBUFFERLENGTH() built-in function.

A typical paged DISPLAY ARRAY implementation consists of a scroll cursor providing the
list of records to be displayed. Scroll cursors use a static result set. If you want to display
fresh data, you can implement an advanced paged mode by using a scroll cursor that
provides the primary keys of the referenced result set, plus a prepared cursor to fetch
rows on demand in the ON FILL BUFFER clause. In this case you may need to check
whether a row still exists when fetching a record with the second cursor.

The following example shows a DISPLAY ARRAY implementation using a scroll cursor to
fill pages of records in ON FILL BUFFER:

01 MAIN
02 DEFINE arr DYNAMIC ARRAY OF RECORD
03 id INTEGER,
04 fname CHAR(30),
05 lname CHAR(30)
06 END RECORD
07 DEFINE cnt, ofs, len, i INTEGER
08 DATABASE stores7
09 OPEN FORM f1 FROM "custlist"
10 DISPLAY FORM f1
11 SELECT COUNT(*) INTO cnt FROM customer
12 DECLARE c1 SCROLL CURSOR FOR
13 SELECT customer_num, fname, lname FROM customer
14 OPEN c1
15 DIALOG ATTRIBUTES(UNBUFFERED)
16 DISPLAY ARRAY arr TO sa.* ATTRIBUTES(COUNT=cnt)
17 ON FILL BUFFER
18 LET ofs = fgl_dialog_getBufferStart()
19 LET len = fgl_dialog_getBufferLength()
20 FOR i=1 TO len
21 FETCH ABSOLUTE ofs+i-1 c1 INTO arr[i].*
22 END FOR
23 END DISPLAY
24 ON ACTION ten_first_rows_only
25 CALL DIALOG.setArrayLength("sa", 10)
26 ON ACTION quit
27 EXIT DIALOG
28 END DIALOG
29 END MAIN

Handling the current row in a list

To set the current row in a list driven by a DISPLAY ARRAY or INPUT ARRAY sub-
dialog, use the ui.Dialog.setCurrentRow("screen-array", pos) method:

01 DIALOG ATTRIBUTES(UNBUFFERED)

Genero Business Development Language

836

02 DISPLAY ARRAY p_items TO sa.*
03 ...
04 ON ACTION move_to_x
05 LET row = askForNewRow()
06 CALL DIALOG.setCurrentRow("sa", row)
07 NEXT FIELD item_num
08 ...
09 END DIALOG

Calling the setCurrentRow() method will not execute control blocks such as BEFORE
ROW and AFTER ROW, and will not set the focus. If you want to set the focus to the list, you
must use the NEXT FIELD instruction (this works with DISPLAY ARRAY as well as with
INPUT ARRAY).

The method to query the current row of a list is ui.Dialog.getCurrentRow("screen-array").

The singular-dialog specific functions FGL_SET_ARR_CURR(), ARR_CURR() and
ARR_COUNT() are also supported. These functions work in the context of the current
list having the focus. Note however that FGL_SET_ARR_CURR() triggers control blocks
such as BEFORE ROW, while ui.Dialog.setCurrentRow() does not trigger any control
block.

Inserting and deleting rows in a list

You can implement an editable record list by using an INPUT ARRAY sub-dialog. This
controller allows the user to directly edit existing rows and to create or remove rows with
implicit actions.

New rows can be created with append or insert actions, and can be removed with the
delete action. These three implicit actions are automatically created by the DIALOG
instruction (you do not write ON ACTION blocks for these actions):

• The insert action will insert a new row before the current row. If there are no rows
in the list, insert adds a new row.

• The append action creates a new row after the last row of the list.
• The delete action deletes the current row.

Each of the implicit actions can be prevented by setting the APPEND ROW, INSERT
ROW and/or DELETE ROW control attributes to FALSE:

01 DIALOG ATTRIBUTES(UNBUFFERED)
02 INPUT ARRAY p_items FROM sa.* ATTRIBUTES(APPEND ROW=FALSE, INSERT
ROW=FALSE, DELETE ROW=FALSE)
03 ...
04 END INPUT
05 END DIALOG

Specific control blocks (predefined triggers) are available to take control when a row is
deleted or created:

User Interface

837

• BEFORE DELETE and AFTER DELETE control blocks can be used with row
deletion.
You can cancel row deletion with the CANCEL DELETE instruction in BEFORE
DELETE.

• BEFORE INSERT and AFTER INSERT control blocks can be used with row
creation.
You can cancel a row creation with CANCEL INSERT in BEFORE INSERT or
AFTER INSERT blocks.

The dynamic arrays and the ui.Dialog class provide methods such as
array.deleteElement() or ui.Dialog.appendRow() to modify the list. When using
these methods, the predefined triggers described above are not executed. While it is
safe to use these methods within a DISPLAY ARRAY, you must take care when using an
INPUT ARRAY. For example, you should not call such methods in triggers like BEFORE
ROW, AFTER INSERT, BEFORE DELETE.

Users can append temporary rows by moving to the end of the list or by executing the
append action. Appending temporary rows is a bit different from doing an insert action,
because the row is considered temporary until the user modifies a field; inserted rows
are not temporary, they are permanent. For more details, see Temporary rows below.

Note that by default (i.e. AUTO APPEND is not defined as FALSE), when the last row is
removed by a delete action, the interactive instruction will automatically create a new
temporary row at the same position. The visual effect of this behavior can be
misinterpreted - if no data was entered in the last row, you can't see any difference.
However, the last row is really deleted and a new row is created, and the BEFORE
DELETE / AFTER DELETE / AFTER ROW / BEFORE ROW / BEFORE INSERT control block
sequence is executed.

The insert, append or delete actions might be automatically disabled according to the
context: If the INPUT ARRAY is using a static array that is full, or if the MAXCOUNT
attribute is reached, both insert and append actions will be disabled. The delete action is
automatically disabled if AUTO APPEND = FALSE and there are no more rows in the
array.

Handling temporary rows

If a list is driven by an INPUT ARRAY sub-dialog, the user can create a new temporary
row at the end of the list. The new row is called "temporary" because it will be removed if
the user leaves the row without entering data. The row is kept if the TOUCHED flag of a
field is set (from user input or by program) or when moving down to the next new
temporary row. This is different from adding new rows with the ui.Dialog.appendRow()
method; in that case, the row is considered permanent and remains in the list even if the
user did not enter data in fields.

We distinguish automatic temporary row creation from explicit temporary row creation:

Genero Business Development Language

838

Automatic temporary row creation

By default, to follow the traditional behavior of singular INPUT ARRAY instructions,
automatic temporary row creation takes place when:

• An INPUT ARRAY list has no rows and the list gets the focus. A new row is
created to let the user enter data immediately.

• The user tries to move below the last row, with a DOWN keystroke or with the
mouse.

• The user presses the TAB key on the last field in the row.
• The list has the focus and the last row of the list is deleted by an implicit delete

action.
• The list has the focus and the last row of the list is deleted by a

ui.Dialog.deleteRow() or ui.Dialog.deleteAllRows() call.

An automatic temporary row is created even if APPEND ROW / INSERT ROW
attributes are set to FALSE. This is the traditional behavior, to let the
INPUT ARRAY continue. Otherwise, the singular interactive instruction
would stop as there are no rows for the user to edit.

Explicit temporary row creation

Explicit temporary row creation takes place when the user decided to append a new row.
The following user actions will trigger a temporary row creation (as long as the APPEND
ROW attribute is TRUE - the default):

• When the implicit append action is fired, for example by pressing a button bound
to the append action. Note that when no rows exist in the list, an insert action will
have the same effect as an append action (i.e. a temporary row will be created at
position 1).

Temporary row creation is useful because, in most cases, INPUT ARRAY is used to edit
existing rows and append new rows at the end of the list. However, you might want to
fully deny row addition or at least avoid the automatic temporary row creation when the
last row is deleted or when an empty list gets the focus.

To fully deny the row addition, set the APPEND ROW attribute to FALSE attribute in the
ATTRIBUTE clause of the INPUT ARRAY sub-dialog.

To avoid automatic temporary row creation, set the AUTO APPEND attribute to FALSE:

01 DIALOG ATTRIBUTES(UNBUFFERED)
02 INPUT ARRAY p_items FROM sa.* ATTRIBUTES(AUTO APPEND=FALSE)
03 ...
04 END INPUT
05 END DIALOG

In order to control row creation, the DIALOG instruction provides the BEFORE INSERT
and AFTER INSERT control blocks. The BEFORE INSERT trigger is fired after a new row

User Interface

839

was inserted or appended, just before the user gets control to enter data in fields. The
AFTER INSERT block is fired if the user leaves the new row (i.e. when the focus moves to
another row or leaves the list), or if the dialog is validated with ACCEPT DIALOG. Note
that the AFTER INSERT block will also be fired if the user did not enter data, but then the
temporary row is automatically deleted.

In the BEFORE INSERT control block, you can tell if a row is a temporary appended one
by comparing the current row (DIALOG.getCurrentRow() or ARR_CURR()) with the total
number of rows (DIALOG.getArrayLength() or ARR_COUNT()). If current row equals the
row count, then you are in a temporary row.

See also BEFORE INSERT and AFTER INSERT for more details.

Implementing the close action

The close action is a predefined action used for the X cross button in the upper-right
corner of graphical windows. Unlike singular interactive instructions, the DIALOG
instruction does not create an implicit close action.

By default, the DIALOG instruction maps the close action to the ON ACTION cancel
block, if such a block is defined. If an ON ACTION close block is defined, it is executed
instead of the ON ACTION cancel block. This behavior is implemented to execute the
cancel code automatically when the user closes the graphical window.

Note that the default action view of the close action is hidden.

For more details, read Windows closed by the user.

DIALOG and sub-dialog configuration clauses

This sections describes the ATTRIBUTES clause attributes that can be used to
configure a DIALOG instruction and its sub-dialogs:

• DIALOG ATTRIBUTES clause
o FIELD ORDER option
o UNBUFFERED option

• INPUT ATTRIBUTES clause
o NAME option
o HELP option
o WITHOUT DEFAULTS option

• DISPLAY ARRAY ATTRIBUTES clause
o HELP option
o COUNT option

• INPUT ARRAY ATTRIBUTES clause
o INSERT ROW option

Genero Business Development Language

840

o APPEND ROW option
o DELETE ROW option
o AUTO APPEND option
o COUNT option
o MAXCOUNT option
o HELP option
o KEEP CURRENT ROW option
o WITHOUT DEFAULTS option

• CONSTRUCT ATTRIBUTES clause
o NAME option
o HELP option

DIALOG ATTRIBUTES clause

The ATTRIBUTES clause specifications override all default attributes and temporarily
override any display attributes that the OPTIONS or the OPEN WINDOW statement
specified for these fields.

FIELD ORDER FORM option

By default, the form tabbing order is defined by the variable list in the binding
specification. You can control the tabbing order by using the FIELD ORDER FORM
attribute; when this attribute is used, the tabbing order is defined by the TABINDEX
attribute of the form items.

The field order mode can also be specified globally with the OPTIONS FIELD ORDER
instruction.

With FIELD ORDER FORM, if the user changes the focus from field A to a distant field X
with the mouse, the dialog does not execute the BEFORE FIELD / AFTER FIELD triggers
of intermediate fields which appear in the binding specification between field A and field
X. If the default FIELD ORDER CONSTRAINT mode is used, all intermediate triggers are
executed unless you set the Dialog.fieldOrder FGLPROFILE entry to false (this entry is
actually ignored when using FIELD ORDER FORM).

See also Handling the Tabbing Order.

UNBUFFERED option

The UNBUFFERED attribute indicates that the dialog must be sensitive to program variable
changes. When using this option, you bypass the compatible "buffered" mode.

Note that the "unbuffered" mode can be set globally for all DIALOG instructions with a
ui.Dialog class method:

01 CALL ui.Dialog.setDefaultUnbuffered(TRUE)
02 DIALOG -- Will work in UNBUFFERED mode
03 ...

User Interface

841

04 END DIALOG

See also Buffered and Unbuffered mode.

INPUT ATTRIBUTES clause

NAME option

The NAME attribute can be used to identify the INPUT sub-dialog, especially useful to
qualify sub-dialog actions.

HELP option

The HELP attribute defines the help number of the text to be displayed when invoked and
focus is in one of the fields controlled by the INPUT sub-dialog.

WITHOUT DEFAULTS option

By default, sub-dialogs use the default values defined in the form files. If you want to use
the values stored in the program variables bound to the dialog, you must use the
WITHOUT DEFAULTS attribute. For more details see WITHOUT DEFAULTS option.

DISPLAY ARRAY ATTRIBUTES clause

HELP option

The HELP attribute defines the help number of the text to be displayed when invoked and
focus is in the list controlled by the DISPLAY ARRAY sub-dialog.

COUNT option

The COUNT attribute defines the number of valid rows in the static array to be displayed
as default rows. If you do not use the COUNT attribute, the runtime system cannot
determine how much data to display, so the screen array remains empty. The COUNT
option is ignored when using a dynamic array, unless page mode is used. In this case,
the COUNT attribute must be used to define the total number of rows, because the
dynamic array will only hold a page of the entire row set. If the value of COUNT is negative
or zero, it defines an empty list.

INPUT ARRAY ATTRIBUTES clause

INPUT ARRAY specific attributes can be defined in the ATTRIBUTE clause of the sub-
dialog header:

Genero Business Development Language

842

APPEND ROW option

The APPEND ROW attribute can be set to FALSE to avoid the automatic creation of the
append default action, and prevent the user from adding rows at the end of the list.
However, even if APPEND ROW = FALSE, the user can still insert rows in the middle of the
list. Use the INSERT ROW attribute to prevent the user from inserting rows.

INSERT ROW option

The INSERT ROW attribute can be set to FALSE to avoid the automatic creation of the
'insert' default action, and prevent the user from inserting new rows in the middle of the
list. However, even if INSERT ROW = FALSE , the user can still append rows at the end of
the list. Use the APPEND ROW attribute to prevent the user from appending rows.

DELETE ROW option

When the DELETE ROW attribute is set to FALSE, the default delete action is not created,
so the user cannot delete rows from the list. It is possible, however, to create new rows,
unless the INSERT ROW and APPEND ROW attributes are set to FALSE as well.

AUTO APPEND option

By default, an INPUT ARRAY controller creates a temporary row when needed. For
example, when the user deletes the last row of the list, an new row will be automatically
created. You can prevent this default behavior by setting the AUTO APPEND attribute to
FALSE. If this attribute is set to TRUE, the only way to create a new temporary row is to
execute the append action. For more details, see Temporary Rows.

COUNT option

The COUNT attribute defines the number of valid rows in the static array to be displayed
as default rows. If you do not use the COUNT attribute, the runtime system cannot
determine how much data to display, so the screen array remains empty. The COUNT
option is ignored when using a dynamic array. If you specify the COUNT attribute, the
WITHOUT DEFAULTS option is not required because it is implicit. If the COUNT attribute is
greater than MAXCOUNT, the runtime system will take MAXCOUNT as the actual number of
rows. If the value of COUNT is negative or zero, it defines an empty list.

MAXCOUNT option

The MAXCOUNT attribute defines the maximum number of rows that can be inserted in the
program array. This attribute allows you to give an upper limit. When using a dynamic
array, the user can enter an infinite number of rows unless the MAXCOUNT attribute is
used. When using a static array, and MAXCOUNT is greater than the size of the declared
static array, the original static array size is used as the upper limit. If MAXCOUNT is
negative or equal to zero, user cannot insert rows.

HELP option

User Interface

843

The HELP attribute defines the help number of the text to be displayed when invoked and
focus is in the list controlled by the INPUT ARRAY sub-dialog.

KEEP CURRENT ROW option

The current row of a list is highlighted during the execution of the dialog, and cleared
when the DIALOG instruction ends. You can change this default behavior by using the
KEEP CURRENT ROW attribute, to force the runtime system to keep the current row
highlighted.

WITHOUT DEFAULTS option

You typically use the INPUT ARRAY sub-dialog with the WITHOUT DEFAULTS attribute. If
this attribute is not set when using an INPUT ARRAY sub-dialog, the list is empty even if
the array holds data. For more details see WITHOUT DEFAULTS option.

CONSTRUCT ATTRIBUTES clause

NAME option

The NAME attribute can be used to identify the CONSTRUCT sub-dialog; this is especially
useful to qualify sub-dialog actions.

HELP option

The HELP attribute defines the help number of the text to be displayed when invoked and
focus is in one of the fields controlled by the CONSTRUCT sub-dialog.

Default Actions

According to the sub-dialogs defined in the DIALOG instruction, the runtime system
creates a set of default actions. These actions are provided to ease the implementation
of the controller. For example, when using an INPUT ARRAY sub-dialog, the dialog
instruction will automatically create the insert, append and delete default actions.

The following table lists the default actions created for the DIALOG interactive instruction,
according to the sub-dialogs defined:

Default action Control Block execution order

help
Shows the help topic defined by the HELP clause.
Only created when a HELP clause or option is defined for the
sub-dialog.

insert
Inserts a new row before current row.
Only created if INPUT ARRAY is used; action creation can be
avoided with INSERT ROW = FALSE attribute.

Genero Business Development Language

844

append
Appends a new row at the end of the list.
Only created if INPUT ARRAY is used; action creation can be
avoided with APPEND ROW = FALSE attribute.

delete
Deletes the current row.
Only created if INPUT ARRAY is used; action creation can be
avoided with DELETE ROW = FALSE attribute.

firstrow Moves to the first row in the list.
lastrow Moves to the last row in the list.
nextrow Moves to the next row in the list.
prevrow Moves to the previous row in the list.

The insert, append and delete default actions can be avoided with dialog control
attributes:

01 INPUT ARRAY arr TO sr.* ATTRIBUTE(INSERT ROW=FALSE, APPEND
ROW=FALSE, ...)
02 ...

Control Blocks

Control blocks are predefined triggers where you can implement specific code to control
the interactive instruction, by using ui.Dialog class methods or dialog specific instructions
such as NEXT FIELD or CONTINUE DIALOG.

• BEFORE DIALOG block
• AFTER DIALOG block
• BEFORE FIELD block
• AFTER FIELD block
• ON CHANGE block
• BEFORE INPUT block
• AFTER INPUT block
• BEFORE CONSTRUCT block
• AFTER CONSTRUCT block
• BEFORE DISPLAY block
• AFTER DISPLAY block
• BEFORE ROW block
• ON ROW CHANGE block
• AFTER ROW block
• BEFORE INSERT block
• AFTER INSERT block
• BEFORE DELETE block
• AFTER DELETE block

User Interface

845

BEFORE DIALOG block

The BEFORE DIALOG block is executed one time as the first trigger when the DIALOG
instruction is starts, before the runtime system gives control to the user. You can
implement variable initialization and dialog configuration in this block.

In the following example, the BEFORE DIALOG block performs some dialog setup and
gives the focus to a specific field:

01 BEFORE DIALOG
02 CALL DIALOG.setActionActive("save",FALSE)
03 CALL DIALOG.setFieldActive("cust_status", is_admin())
04 IF cust_is_new() THEN
05 NEXT FIELD cust_name
06 END IF

A DIALOG instruction can include no more than one BEFORE DIALOG control block.

AFTER DIALOG block

The AFTER DIALOG block is executed one time as the last trigger when the DIALOG
instruction terminates, typically after the user has validated or canceled the dialog, and
before the runtime system executes the instruction that appears just after the END
DIALOG keywords. You typically implement dialog finalization in this block.

The dialog terminates when an ACCEPT DIALOG or EXIT DIALOG control instruction is
executed. However, the AFTER DIALOG block is not executed if an EXIT DIALOG is
performed.

If you execute one of the following control instructions in an AFTER DIALOG block, the
dialog will not terminate and it will give control back to the user:

1. NEXT FIELD
2. NEXT OPTION
3. CONTINUE DIALOG

In the next example, the AFTER DIALOG block checks whether a field value is correct and
gives control back to the dialog if the value is wrong:

01 AFTER DIALOG
02 IF NOT cust_is_valid_status(p_cust.cust_status) THEN
03 ERROR "Customer state is not valid"
04 NEXT FIELD cust_status
05 END IF

Genero Business Development Language

846

BEFORE FIELD block

In parts of a dialog driven by a simple INPUT or by a CONSTRUCT sub-dialog, the
BEFORE FIELD block is executed every time the cursor enters into the specified field. For
editable lists driven by INPUT ARRAY, this block is executed when moving the focus
from field to field in the same row, or when moving to another row in the same column.

The BEFORE FIELD keywords must be followed by a list of form field specification. The
screen-record name can be omitted.

BEFORE FIELD is executed after BEFORE INPUT, BEFORE CONSTRUCT, BEFORE ROW and
BEFORE INSERT. For more details, see Control Block Execution Order.

You typically do some field value initialization or message display in a BEFORE FIELD
block:

01 BEFORE FIELD cust_status
02 LET p_cust.cust_comment = NULL
03 MESSAGE "Enter customer status"

Note that the BEFORE FIELD block is also executed when NEXT FIELD is executed
programmatically. Note that the trigger is fired even if the field is declared as NOENTRY
or disabled with ui.Dialog.setFieldActive("field-name",FALSE). If you execute NEXT
FIELD CURRENT or NEXT FIELD current-field and current-field is the current field,
BEFORE FIELD current-field is also executed; AFTER FIELD current-field is not
executed.

Warning: When using the default FIELD ORDER CONSTRAINT mode, the dialog
executes the BEFORE FIELD block of the field corresponding to the first variable of
an INPUT or INPUT ARRAY, even if that field is not editable (NOENTRY or disabled).
The block is executed when you enter the dialog and every time you create a new
row in the case of INPUT ARRAY. This behavior is supported for backward
compatibility. The block is not executed when using the FIELD ORDER FORM, as
recommended for DIALOG instructions.

When form-level validation occurs and a field contains an invalid value, the dialog gives
the focus to the field, but no BEFORE FIELD trigger will be executed.

AFTER FIELD block

In dialog parts driven by a simple INPUT or by a CONSTRUCT sub-dialog, the AFTER
FIELD block is executed every time the user moves to another form item. For editable
lists driven by INPUT ARRAY, this block is executed when moving the focus from field to
field in the same row, or when moving to another row in the same column.

The AFTER FIELD keywords must be followed by a a list of form field specifications. The
screen-record name can be omitted.

User Interface

847

AFTER FIELD is executed before AFTER INSERT, ON ROW CHANGE, AFTER ROW, AFTER
INPUT or AFTER CONSTRUCT. For more details, see Control Block Execution Order.

When a NEXT FIELD instruction is executed in an AFTER FIELD block, the cursor moves
to the specified field, which can be the current field. This can be used to prevent the user
from moving to another field / row during data input.

Note that the AFTER FIELD block of the current field is not executed when performing a
NEXT FIELD; only BEFORE INPUT, BEFORE CONSTRUCT, BEFORE ROW, and BEFORE
FIELD of the target item might be executed, based on the sub-dialog type.

You typically code some validation rules in an AFTER FIELD block:

01 AFTER FIELD item_quantity
02 IF p_item.item_quantity <= 0 THEN
03 ERROR "Item quantity cannot be negative or zero"
04 LET p_item.item_quantity = 0
05 NEXT FIELD item_quantity
06 END IF

When ACCEPT DIALOG is used, the AFTER FIELD trigger of the current field will be
executed.

ON CHANGE block

The ON CHANGE block can be used to detect that a field changed by user input. The ON
CHANGE block is executed if the value has changed since the field got the focus and if the
TOUCHED flag is set. The ON CHANGE block can only be used in INPUT and INPUT
ARRAY sub-dialogs, it is not available in CONSTRUCT.

For fields defined as RadioGroup, ComboBox, SpinEdit, Slider, and CheckBox views,
the ON CHANGE block is fired immediately when the user changes the value. For other
type of fields (like Edits), the ON CHANGE block is fired when leaving the field. You leave
the field when you validate the dialog, when you move to another field, or when you
move to another row in an INPUT ARRAY. Note that the dialogtouched predefined
action can also be used to detect field changes immediately, but with this action you
can't get the data in the target variables (should only be used to detect that the user has
started to modify data).

If both an ON CHANGE block and AFTER FIELD block are defined for a field, the ON
CHANGE block is executed before the AFTER FIELD block. For more details, see Control
Block Execution Order.

When changing the value of the current field programmatically in an ON ACTION block,
the ON CHANGE current-field block will be executed when leaving the field if the value
is different from the reference value and if the TOUCHED flag is set.

Genero Business Development Language

848

When using the NEXT FIELD instruction, the comparison value is re-assigned as if the
user had left and re-entered the field. Therefore, when using NEXT FIELD in an ON
CHANGE block or in an ON ACTION block, the ON CHANGE block will only be fired again if
the value is different from the reference value. For this reason, it is not recommended
that you attempt field validation in ON CHANGE blocks;: it is better to perform validations in
AFTER FIELD blocks.

BEFORE INPUT block

The BEFORE INPUT block is executed when the focus goes to a group of fields driven by
an INPUT or INPUT ARRAY sub-dialog. This trigger is only fired if a field of the sub-
dialog gets the focus, and none of the other fields had the focus. When the focus is in a
list driven by an INPUT ARRAY sub-dialog, moving to a different row will not fire the
BEFORE INPUT block.

Note that in singular INPUT and INPUT ARRAY instructions, the BEFORE INPUT is only
executed once when the dialog is started, while the BEFORE INPUT block of the DIALOG
instruction is executed each time the group of fields gets the focus. Thus, it is not
designed to be used as an initialization block, but rather as a trigger to detect focus
changes and activate the possible actions for the current group.

BEFORE INPUT is executed after the BEFORE DIALOG block and before the BEFORE ROW,
BEFORE FIELD blocks. For more details, see Control Block Execution Order.

When using an INPUT ARRAY sub-dialog, the ui.Dialog.getCurrentRow("screen-array")
function returns the index of the current row when it is called in the BEFORE INPUT block.

In the following example, the BEFORE INPUT block is used to set up a specific action and
display a message:

01 INPUT BY NAME p_order.*
02 BEFORE INPUT
03 CALL DIALOG.setActionActive("validate_order", TRUE)
04 MESSAGE "Enter order information"

AFTER INPUT block

The AFTER INPUT block is executed when the focus is lost by a group of fields driven by
an INPUT or INPUT ARRAY sub-dialog. This trigger is fired if a field of the sub-dialog
loses the focus, and a field of a different sub-dialog gets the focus. If the focus leaves
the current group of fields and goes to an action view, AFTER INPUT is not executed,
because the focus did not go to another sub-dialog yet. When the focus is in a list driven
by an INPUT ARRAY sub-dialog, moving to a different row will not fire the AFTER INPUT
block.

User Interface

849

Note that in singular INPUT and INPUT ARRAY instructions, the AFTER INPUT is only
executed once when dialog ends, while the AFTER INPUT block of the DIALOG instruction
is executed each time the group of fields loses the focus. Thus, it is not designed to be
used as an finalization block, but rather as a trigger to detect focus changes and
implement validation rules.

AFTER INPUT is executed after the AFTER FIELD, AFTER ROW blocks and before the
AFTER DIALOG block. For more details, see Control Block Execution Order.

When using an INPUT ARRAY sub-dialog, the ui.Dialog.getCurrentRow("screen-array")
function returns the index of the current row when it is called in the AFTER INPUT block.

Executing a NEXT FIELD in the AFTER INPUT control block will keep the focus in the
group of fields. Within an INPUT ARRAY sub-dialog, NEXT FIELD will keep the focus in
the list and stay in the current row. You typically use this behavior to control user input.

In the following example, the AFTER INPUT block is used to validate data and disable an
action that can only be used in the current group:

01 INPUT BY NAME p_order.*
02 AFTER INPUT
03 IF NOT check_order_data(DIALOG) THEN
04 NEXT FIELD CURRENT
05 END IF
06 CALL DIALOG.setFieldActive("validate_order", FALSE)

BEFORE CONSTRUCT block

The BEFORE CONSTRUCT block is executed when the focus goes to a group of fields
driven by a CONSTRUCT sub-dialog. This trigger is only fired if a field of the sub-dialog
gets the focus, and none of the other fields had the focus.

Note that in the singular CONSTRUCT instruction, the BEFORE CONSTRUCT is only
executed once when dialog is started, while the BEFORE CONSTRUCT block of the DIALOG
instruction is executed each time the group of fields gets the focus. Thus, it is not
designed to be used as an initialization block, but rather as a trigger to detect focus
changes and activate the possible actions for the current group.

BEFORE CONSTRUCT is executed after the BEFORE DIALOG block and before the BEFORE
FIELD blocks. For more details, see Control Block Execution Order.

In the following example, the BEFORE CONSTRUCT block is used to display a message:

01 CONSTRUCT BY NAME sql ON customer.*
02 BEFORE CONSTRUCT
03 MESSAGE "Enter customer search filter"

Genero Business Development Language

850

AFTER CONSTRUCT block

The AFTER CONSTRUCT block is executed when the focus is lost by a group of fields
driven by a CONSTRUCT sub-dialog. This trigger is fired if a field of the sub-dialog loses
the focus, and a field of a different sub-dialog gets the focus. If the focus leaves the
current group of fields and goes to an action view, AFTER CONSTRUCT is not executed,
because the focus did not yet go the another sub-dialog.

Note that in the singular CONSTRUCT instruction, the AFTER CONSTRUCT is only
executed once when the dialog ends, while the AFTER CONSTRUCT block of the DIALOG
instruction is executed each time the group of fields loses the focus. Thus, it is not
designed to be used as an finalization block, but rather as a trigger to detect focus
changes and implement validation rules.

AFTER CONSTRUCT is executed after the AFTER FIELD and before the AFTER DIALOG
block. For more details, see Control Block Execution Order.

Executing a NEXT FIELD in the AFTER CONSTRUCT control block will keep the focus in
the group of fields.

In the following example, the AFTER CONSTRUCT block is used to build the SELECT
statement:

01 CONSTRUCT BY NAME sql ON customer.*
02 AFTER CONSTRUCT
03 LET sql = "SELECT * FROM customers WHERE " || sql

BEFORE DISPLAY block

The BEFORE DISPLAY block is executed when a DISPLAY ARRAY list gets the focus.

Note that in the singular DISPLAY ARRAY instruction, BEFORE DISPLAY is only executed
once when the dialog is started, while the BEFORE DISPLAY block of the DIALOG
instruction is executed each time the list gets the focus. Thus, it is not designed to be
used as an initialization block, but rather as a trigger to detect focus changes and
activate the possible actions for the current list.

BEFORE DISPLAY is executed before the BEFORE ROW block. For more details, see
Control Block Execution Order.

When called in this block, the ui.Dialog.getCurrentRow("screen-array") function returns
the index of the current row.

In the following example the BEFORE DISPLAY block enables an action and displays a
message:

01 DISPLAY ARRAY p_items TO s_items.*

User Interface

851

02 BEFORE DISPLAY
03 CALL DIALOG.setActionActive("clear_item_list", TRUE)
04 MESSAGE "You are now in the list of items"

AFTER DISPLAY block

The AFTER DISPLAY block is executed when a DISPLAY ARRAY list loses the focus and
goes to another sub-dialog. If the focus leaves the current list and goes to an action
view, AFTER DISPLAY is not executed, because the focus did not go to another sub-
dialog yet.

Note that in the singular DISPLAY ARRAY instruction, the AFTER DISPLAY is only
executed once when the dialog ends, while the AFTER DISPLAY block of the DIALOG
instruction is executed each time the list loses the focus. Thus, it is not designed to be
used as an finalization block, but rather as a trigger to detect focus lost and disable
actions specific to the current list.

AFTER DISPLAY is executed after the AFTER ROW block. For more details, see Control
Block Execution Order.

When called in this block, the ui.Dialog.getCurrentRow("screen-array") function returns
the index of the row that you are leaving.

In the following example, the AFTER DISPLAY block disables an action that is specific to
the current list:

01 DISPLAY ARRAY p_items TO s_items.*
02 AFTER DISPLAY
03 CALL DIALOG.setActionActive("clear_item_list", FALSE)

BEFORE ROW block

The BEFORE ROW block is executed when a DISPLAY ARRAY or INPUT ARRAY list gets
the focus, or when the user moves to another row inside a list. This trigger can also be
executed in other situations, for example when you delete a row, or when the user tries
to insert a row but the maximum number of rows in the list is reached (see Control
Blocks Execution Order for more details).

You typically do some dialog setup / message display in the BEFORE ROW block, because
it indicates that the user selected a new row. Do not use this trigger to detect focus
changes; You better use the BEFORE DISPLAY or BEFORE INPUT blocks instead.

BEFORE ROW is executed before the BEFORE INSERT and BEFORE FIELD blocks and after
the BEFORE DISPLAY or BEFORE INPUT blocks. For more details, see Control Block
Execution Order.

Genero Business Development Language

852

Note that when the dialog starts, BEFORE ROW will only be executed if the list has
received the focus. If you have other elements in the form which can get the focus
before the list, BEFORE ROW will not be triggered when the dialog starts. You must pay
attention to this, because this behavior is new compared to singular DISPLAY ARRAY or
INPUT ARRAY. In singular dialogs, the BEFORE ROW block is always executed when the
dialog starts, since only the list can get the focus.

When called in this block, the ui.Dialog.getCurrentRow("screen-array") function returns
the index of the current row.

In the following example the BEFORE ROW block gets the new row number and displays it
in a message:

01 DISPLAY ARRAY p_items TO s_items.*
02 BEFORE ROW
03 MESSAGE "We are in items, on row #",
DIALOG.getCurrentRow("s_items")

ON ROW CHANGE block

The ON ROW CHANGE block is executed in a list driven by an INPUT ARRAY when you
leave the current row and the row has been modified since it got the focus. This is
typically used to detect whether the user has changed a value in the current row.

The ON ROW CHANGE block is only executed if at least one field value in the current row
has changed since the row was entered, and the TOUCHED flags of the modified fields
are set. The modified field(s) might not be the current field, and several field values can
be changed. Values might have been changed by the user or by the program. Note that
the TOUCHED flag is reset for all fields when entering another row, when going to
another sub-dialog, or when leaving the dialog instruction.

ON ROW CHANGE is executed after the AFTER FIELD block and before the AFTER ROW
block. For more details, see Control Block Execution Order.

When called in this block, the ui.Dialog.getCurrentRow("screen-array") function returns
the index of the current row.

You can, for example, code database modifications (UPDATE) in the ON ROW CHANGE
block:

01 INPUT ARRAY p_items FROM s_items.*
02 ...
03 ON ROW CHANGE
04 LET r = DIALOG.getCurrentRow("s_items")
05 UPDATE items SET
06 items.item_code = p_items[r].item_code,
07 items.item_description = p_items[r].item_description,
08 items.item_price = p_items[r].item_price,

User Interface

853

09 items.item_updatedate = TODAY
10 WHERE items.item_num = p_items[r].item_num

AFTER ROW block

The AFTER ROW block is executed when a DISPLAY ARRAY or INPUT ARRAY list loses
the focus, or when the user moves to another row in a list. This trigger can also be
executed in other situations, for example when you delete a row, or when the user
inserts a new row (see Control Blocks Execution Order for more details).

AFTER ROW is executed after the AFTER FIELD, AFTER INSERT and before AFTER
DISPLAY or AFTER INPUT blocks. For more details, see Control Block Execution Order.

When called in this block, the ui.Dialog.getCurrentRow("screen-array") function returns
the index of the row that you are leaving.

Warning: When leaving a temporary row that will be removed because the user
goes to a previous row in the list, AFTER ROW is executed for the temporary row,
but ui.Dialog.getCurrentRow() / ARR_CURR() will be one row greater than
ui.Dialog.getArrayLength() / ARR_COUNT(). You should not access a dynamic
array with a row index that is greater than the total number of rows, otherwise the
runtime system will adapt the total number of rows to the actual number of rows
in the program array.

For both INPUT ARRAY and DISPLAY ARRAY sub-dialogs, a NEXT FIELD executed in the
AFTER ROW control block will keep the focus in the list and stay in the current row. Thus
you can use this to implement row input validation and prevent the user from leaving the
list or moving to another row.

In the following example, the AFTER ROW block checks a variable value and forces the
user to stay in the current row if the value is wrong:

01 INPUT ARRAY p_items FROM s_items.*
02 ...
03 AFTER ROW
04 LET r = DIALOG.getCurrentRow("s_items")
05 IF r <= DIALOG.getArrayLength("s_items") THEN
06 IF NOT item_is_valid_quantity(p_item[r].item_quantity) THEN
07 ERROR "Item quentity is not valid"
08 NEXT FIELD item_quantity
09 END IF
10 END IF

Genero Business Development Language

854

BEFORE INSERT block

The BEFORE INSERT block is executed when a new row ins inserted or when a
temporary row is appended in an INPUT ARRAY. You typically use this trigger to set
some default values in the new created row.

The BEFORE INSERT block is executed after the BEFORE ROW block and before the
BEFORE FIELD block. For more details, see Control Block Execution Order.

When called in this block, the ui.Dialog.getCurrentRow("screen-array") function returns
the index of the new created row.

To distinguish row insertion from an appended row, compare the current row
(DIALOG.getCurrentRow("screen-array")) with the total number of rows
(DIALOG.getArrayLength("screen-array")). If these correspond, you are in a temporary
row.

You can cancel row creation by using the CANCEL APPEND instruction inside BEFORE
INSERT.

In the following example, the BEFORE INSERT block checks if the user can create rows
and denies new row creation if needed; otherwise, it sets some default values:

01 INPUT ARRAY p_items FROM s_items.*
02 ...
03 BEFORE INSERT
04 IF NOT user_can_append THEN
05 ERROR "You are not allowed to append rows"
06 CANCEL INSERT
07 END IF
08 LET r = DIALOG.getCurrentRow("s_items")
09 LET p_items[r].item_num = get_new_serial("items")
10 LET p_items[r].item_name = "undefined"

AFTER INSERT block

The AFTER INSERT block is executed when a new created row of an INPUT ARRAY list
is validated. In this block, you typically implement SQL to insert a new row in the
database table.

The AFTER INSERT block is executed after the AFTER FIELD block and before the AFTER
ROW block. For more details, see Control Block Execution Order.

When called in this block, the ui.Dialog.getCurrentRow("screen-array") function returns
the index of the last row.

Warning: When the the user appends a new row at the end of the list, then moves
UP to another row or validates the dialog, the AFTER INSERT block is only

User Interface

855

executed if at least one field was edited. If no data entry is detected, the dialog
automatically removes the new appended row and thus does not trigger the AFTER
INSERT block.

When executing a NEXT FIELD in the AFTER INSERT block, the dialog will keep the
focus in the list and stay in the current row. You can use this to implement row input
validation and prevent the user from leaving the list or moving to another row. However,
this will not cancel the row insertion and will not fire the BEFORE INSERT / AFTER INSERT
triggers again. The only way to keep the focus in the current row after this is to execute a
NEXT FIELD in the AFTER ROW block.

In the following example, the AFTER INSERT block inserts a new row in the database and
cancels the operation if the SQL command fails:

01 INPUT ARRAY p_items FROM s_items.*
02 ...
03 AFTER INSERT
04 WHENEVER ERROR CONTINUE
05 INSERT INTO items VALUES (
p_items[DIALOG.getCurrentRow("s_items")].*)
06 WHENEVER ERROR STOP
07 IF SQLCA.SQLCODE<>0 THEN
08 ERROR SQLERRMESSAGE
09 CANCEL INSERT
10 END IF

BEFORE DELETE block

The BEFORE DELETE block is executed each time the user deletes a row of an INPUT
ARRAY list, before the row is removed from the list.

You typically code the database table synchronization in the BEFORE DELETE block, by
executing a DELETE SQL statement using the primary key of the current row. In the
BEFORE DELETE block, the row to be deleted still exists in the program array, so you can
access its data to identify what record needs to be removed.

The BEFORE DELETE block is executed before the AFTER DELETE block. For more
details, see Control Block Execution Order.

If needed, the deletion can be canceled with the CANCEL DELETE instruction.

When called in this block, ui.Dialog.getCurrentRow("screen-array") returns the index of
the row that will be deleted.

The next example uses the BEFORE DELETE block to remove the row from the database
table and cancels the deletion operation if an SQL error occurs:

01 INPUT ARRAY p_items FROM s_items.*

Genero Business Development Language

856

02 BEFORE DELETE
03 LET r = DIALOG.getCurrentRow("s_items")
04 WHENEVER ERROR CONTINUE
05 DELETE FROM items WHERE item_num = p_items[r].item_num
06 WHENEVER ERROR STOP
07 IF SQLCA.SQLCODE<>0 VALUES
08 ERROR SQLERRMESSAGE
09 CANCEL DELETE
10 END IF
11 ...

AFTER DELETE block

The AFTER DELETE block is executed each time the user deletes a row of an INPUT
ARRAY list, after the row has been deleted from the list.

The AFTER DELETE block is executed after the BEFORE DELETE block and before the
AFTER ROW block for the deleted row and the BEFORE ROW block of the new current row.
For more details, see Control Block Execution Order.

When an AFTER DELETE block executes, the program array has already been modified;
the deleted row no longer exists in the array. Note that the ARR_CURR() function or the
ui.Dialog.getCurrentRow("screen-array") method returns the same index as in BEFORE
ROW, but it is the index of the new current row. Note that the AFTER ROW block is also
executed. Pay particular attention when deleting the last row in the list; in this case, the
current row index returned by ARR_CURR() is one higher than the actual number of
rows in the list (ARR_COUNT()).

Warning: When deleting the last row of the list, AFTER DELETE is executed for the
delete row, and ui.Dialog.getCurrentRow() / ARR_CURR() will be one row greater
than ui.Dialog.getArrayLength() / ARR_COUNT(). You should not access a
dynamic array with a row index that is greater than the total number of rows;
otherwise, the runtime system will adapt the total number of rows to the actual
number of rows in the program array.

Here the AFTER DELETE block is used to re-number the rows with a new item line
number (note that ui.Dialog.getArrayLength() may return zero) :

01 INPUT ARRAY p_items FROM s_items.*
02 AFTER DELETE
03 LET r = DIALOG.getCurrentRow("s_items")
04 FOR i=r TO DIALOG.getArrayLength("s_items")
05 LET p_items[i].item_lineno = i
06 END FOR
07 ...

It is not possible to use the CANCEL DELETE instruction in anAFTER DELETE block. At
this time it is too late to cancel row deletion, as the data row no longer exists in the
program array.

User Interface

857

Control Block Execution Order

The following table shows the order in which the runtime system executes the control
blocks in the DIALOG instruction, according to the context and user action:

Context / User action Control Block execution order
Entering the dialog 1. BEFORE DIALOG

2. BEFORE INPUT, BEFORE CONSTRUCT or BEFORE
DISPLAY (first sub-dialog getting focus)

3. BEFORE ROW (if focus goes to a list)
4. BEFORE FIELD (if focus goes to a field)

When the focus goes
to an INPUT or to a
CONSTRUCT from a
different sub-dialog

1. Triggers raised by the context of the sub-
dialog you leave

2. BEFORE INPUT or BEFORE CONSTRUCT (new
sub-dialog getting focus)

3. BEFORE FIELD

When the focus goes
to an INPUT or to a
CONSTRUCT from a
different sub-dialog

1. ON CHANGE (if INPUT and value of current
field has changed)

2. AFTER FIELD (for the current field)
3. AFTER INPUT or AFTER CONSTRUCT (current

sub-dialog losing focus)
4. Triggers raised by the context of the sub-

dialog you enter

When the focus goes
to a DISPLAY ARRAY
list or to an INPUT
ARRAY list from a
different sub-dialog

1. Triggers raised by the context of the sub-
dialog you leave

2. BEFORE INPUT or BEFORE DISPLAY (new sub-
dialog getting focus)

3. BEFORE ROW (the row that was selected in the
list)

4. BEFORE FIELD (if it's an INPUT ARRAY)

When the focus
leaves a DISPLAY
ARRAY or INPUT ARRAY
list to a different sub-
dialog

1. ON CHANGE (if INPUT ARRAY and value of
current field has changed)

2. AFTER FIELD (if it's an INPUT ARRAY)
3. AFTER INSERT (if current row was just

created)
4. AFTER ROW (the current row in the list you

leave)
5. AFTER INPUT or AFTER DISPLAY (current sub-

dialog losing focus)
6. Triggers raised by the context of the sub-

Genero Business Development Language

858

dialog you enter

Moving from field A to
field B in an INPUT or
CONSTRUCT sub-dialog
or in the same row of
an INPUT ARRAY list

1. ON CHANGE (if value of current field has
changed)

2. AFTER FIELD A
3. BEFORE FIELD B

Moving from field A of
an INPUT or
CONSTRUCT sub-dialog
to field B in another
INPUT or CONSTRUCT
sub-dialog

1. ON CHANGE (if value of current field has
changed)

2. AFTER FIELD A
3. AFTER INPUT or AFTER CONSTRUCT (for sub-

dialog of field A)
4. BEFORE INPUT or BEFORE CONSTRUCT (for sub-

dialog of field B)
5. BEFORE FIELD B

Moving to a different
row in a DISPLAY
ARRAY list

1. AFTER ROW (the row you leave)
2. BEFORE ROW (the new current row)

Moving to a different
row in an INPUT ARRAY
list when current row
was newly created

1. ON CHANGE (if value of current field has
changed)

2. AFTER FIELD (for field A in the row you leave)
3. AFTER INSERT (the newly created row)
4. AFTER ROW (the newly created row)
5. BEFORE ROW (the new current row)
6. BEFORE FIELD (field in the new current row)

Moving to a different
row in an INPUT ARRAY
list when current row
was modified

1. ON CHANGE (if value of current field has
changed)

2. AFTER FIELD (for field A in the row you leave)
3. ON ROW CHANGE (the values in current row

have changed)
4. AFTER ROW (for the row that was modified)
5. BEFORE ROW (the new current row)
6. BEFORE FIELD (field in the new current row)

Inserting or appending
a new row in an INPUT
ARRAY list

1. Triggers raised by the context of the sub-
dialog you leave

2. BEFORE INSERT (for the new current row)
3. BEFORE ROW (the new current row)
4. BEFORE FIELD (field in the new current row)

Deleting a row in an
INPUT ARRAY list

1. BEFORE DELETE (for the current row to be
deleted)

2. AFTER DELETE (now the deleted row is
removed)

User Interface

859

3. AFTER ROW (for the deleted row)
4. BEFORE ROW (the new current row)

Validating the dialog
with ACCEPT DIALOG

1. ON CHANGE (if focus is in input field and value
has changed)

2. AFTER FIELD (if focus is in input field)
3. ON ROW CHANGE (if focus is in a list and if

values have changed in the current row)
4. AFTER ROW (if focus is in a list)
5. AFTER INPUT, AFTER CONSTRUCT or AFTER

CONSTRUCT (current sub-dialog)
6. AFTER DIALOG

Canceling the dialog
with EXIT DIALOG

None of the control blocks will be executed; we just
leave the dialog instruction.

Interaction Blocks

Interaction blocks are fired by user actions. The DIALOG block supports the following
interaction blocks:

• ON IDLE block
• ON ACTION block
• ON KEY block
• COMMAND [KEY] block

ON IDLE block

The ON IDLE idle-seconds clause defines a set of instructions that must be executed
after idle-seconds of inactivity. The parameter idle-seconds must be an integer literal or
variable. If it evaluates to zero, the timeout is disabled. The timeout value is taken into
account when the dialog initializes its internal data structures. If you use a program
variable instead of an integer constant, any change of the variable will have no effect if
the change is done after the dialog has initialized. The BEFORE DIALOG block is not part
of the internal dialog initialization. Thus, if you what to change the value of the timeout
variable, it must be done before the DIALOG block.

This trigger can, for example, be used to quit the dialog after the user has not interacted
with the program for a specified period of time:

01 FUNCTION my_dialog()
02 DEFINE timeout SMALLINT
03 LET timeout = 10
04 DIALOG

Genero Business Development Language

860

05 ...
06 ON IDLE timeout
07 IF ask_question("No activity detected after 10 seconds, do
you want to leave the dialog?") THEN
08 EXIT DIALOG
09 END IF
10 ...

ON ACTION block

The ON ACTION blocks execute a sequence of instructions when the user triggers a
specific action. This is the preferred solution compared to ON KEY blocks, because ON
ACTION blocks use abstract names to control user interaction.

Action blocks will be bound by name to action views in the current form. Typical actions
views are form buttons, toolbar buttons, topmenu options. When an action block is
defined in a DIALOG instruction, all corresponding action views will be automatically
enabled on the front-end side. When the user clicks on one of the action views or
presses one of the accelerator keys defined for the action, the corresponding action
block is executed on the application server side.

The name of the action must follow the ON ACTION keywords. Note that the fglcomp and
fglform compilers convert action names to lowercase, but some resource files such as
.4ad Action Defaults files are XML files where action names are case-sensitive. To avoid
any confusion, always write your action names in lowercase.

The next example defines an action block to open a typical zoom window and let the
user select a customer record:

01 ON ACTION zoom
02 CALL zoom_customers() RETURNING st, cust_id, cust_name

The DIALOG instruction supports dialog actions and sub-dialog actions. The dialog
actions are global to the dialog and can be fired wherever the focus is. You defined a
dialog action by writing the ON ACTION block outside any sub-dialog. The sub-dialog
actions are specific to sub-dialogs. You create a sub-dialog action when the ON ACTION
block is defined inside a sub-dialog. The sub-dialog actions get an implicit prefix
identifying the sub-dialog:

01 DIALOG
02 INPUT BY NAME ... ATTRIBUTES (NAME = "cust")
03 ON ACTION suspend -- this is the local sub-dialog action
"cust.suspend"
04 ...
05 END INPUT
06 BEFORE DIALOG
07 ...
08 ON ACTION close -- this is the dialog action "close"
09 ...

User Interface

861

10 END DIALOG

See also the "Binding Action Views to Actions Handlers in DIALOG" section for more
details about binding action views to action handlers.

Actions can be individually enabled or disabled with a dialog class method called
setActionActive():

01 BEFORE ROW s_items
02 CALL DIALOG.setActionActive("show_item_details", TRUE)

In BUFFERED mode, when the user triggers an action, DIALOG suspends input to the
current field and preserves the input buffer that contains the characters typed by the
user before the ON ACTION block is executed. After the block is executed, DIALOG
restores the input buffer to the current field and resumes input on the same field, unless
a control instruction such as NEXT FIELD or EXIT DIALOG was issued in the block.

In UNBUFFERED mode, before an ON ACTION block is executed, the value of the current
field is validated and copied to the program variable. You can prevent field validation by
using the validate action default attribute.

Some action names such as close and interrupt are predefined for a specific purpose.
The close action will be automatically bound to the top-right button of the window, to
trigger specific code when the user wants to close the window. The interrupt action is
dedicated to sending an interruption event when the program is processing in a batch
loop. The interrupt action does not require an ON ACTION block: Any action view with this
name will automatically be enabled when the program is in processing mode. For more
details about these specific actions, see Predefined Actions, Interruption Handling and
Implementing the close action.

Warning: When a ON ACTION uses the same name as an implicit action such as
insert, append or delete, either the implicit action or the user action will be
executed, according to the context: The implicit action is always executed if the
focus is in the sub-dialog of fields the action is designed for. Otherwise, the user
code will be executed instead. For example, ON ACTION delete user action will only
be executed if there is no INPUT ARRAY having the focus. Note that you can avoid
list implicit actions with the INSERT ROW / APPEND ROW / DELETE ROW sub-dialog
attributes.

ON KEY block

You can use ON KEY blocks to execute a sequence of instructions when the user
presses a specific key. This clause allows you to define accelerator keys triggering
actions. It is supported to simplify legacy code migration and is especially useful when
writing TUI programs.

You must specify the key name between braces:

Genero Business Development Language

862

01 ON KEY (F5)

When you declare an ON KEY block, you actually define an ON ACTION block with an
implicit accelerator key. The name of the action will be the key name in lowercase
letters. Note that the Default Action View will be hidden (i.e. no automatic button will
appear for this action on the front-end).

For backward compatibility, the ON KEY syntax allows multiple key names. If you specify
multiple keys in an ON KEY clause, the DIALOG instruction will create an ON ACTION
equivalent for each key:

01 ON KEY (F5, CONTROL-P, CONTROL-Z)

Concerning BUFFERED/UNBUFFERED modes driving the input buffer and variable
synchronization, the same rules apply for ON KEY and ON ACTION. See ON ACTION
block for more details.

The table below shows the key names that are accepted by the compiler:

Key Name Description
ACCEPT The validation key.
INTERRUPT The interruption key.

ESC or ESCAPE The ESC key (not recommended, use ACCEPT
instead).

TAB The TAB key (not recommended).

Control-char A control key where char can be any character
except A, D, H, I, J, K, L, M, R, or X.

F1 through F255 A function key.
DELETE The key used to delete a new row in an array.
INSERT The key used to insert a new row in an array.
HELP The help key.
LEFT The left arrow key.
RIGHT The right arrow key.
DOWN The down arrow key.
UP The up arrow key.
PREVIOUS or PREVPAGE The previous page key.
NEXT or NEXTPAGE The next page key.

COMMAND [KEY] block

You can use COMMAND [KEY] blocks to execute a sequence of instructions when the
user clicks on a button or presses a specific key. This clause allows you to define text
and comment action view decoration attributes as well as accelerator keys for a specific

User Interface

863

action. It is supported to simplify legacy code migration and is especially useful when
writing TUI programs.

When you declare a COMMAND [KEY] block, you actually define an ON ACTION block with
an implicit text and comment decoration attribute. If you specify the optional KEY clause,
you also define an implicit accelerator key. The name of the action will be the option text
in lowercase letters. Unlike ON KEY actions, the Default Action View will be visible (i.e.
the automatic button will appear for this action on the front-end).

01 COMMAND "Open" "Opens a new file"

When using the optional KEY clause, you must specify the key name between
parentheses:

01 COMMAND KEY (F5) "Open" "Opens a new file"

For backward compatibility, the COMMAND KEY syntax allows multiple key names. If you
specify multiple keys in an COMMAND KEY clause, the DIALOG instruction will create only
one ON ACTION equivalent, and use the specified keys as accelerators:

01 COMMAND KEY (F5, CONTROL-P, CONTROL-Z) "Open" "Opens a new file"

The COMMAND [KEY] block specification can define a help number, to display the
corresponding text of the current help file.

01 COMMAND "Open" "Opens a new file" HELP 34

Control Instructions

The control instructions are used to control the behavior of the interactive instruction.
DIALOG supports the following control instructions:

• CLEAR instruction
• DISPLAY TO / BY NAME instruction
• NEXT FIELD instruction
• CONTINUE DIALOG instruction
• EXIT DIALOG instruction
• ACCEPT DIALOG instruction
• CANCEL DELETE instruction
• CANCEL INSERT instruction

NEXT FIELD instruction

The NEXT FIELD field-name instruction gives the focus to the specified field (or read-
only list when using DISPLAY ARRAY).

Genero Business Development Language

864

You typically use the NEXT FIELD instruction to control field input dynamically, in BEFORE
FIELD, ON CHANGE or AFTER FIELD blocks, or to control row validation in AFTER ROW.
You can also give the focus to a specific field with the NEXT FIELD instruction. When
using a read-only list driven by a DISPLAY ARRAY binding, it is possible to give the focus
to the list by using NEXT FIELD; just specify the first field used by the DISPLAY ARRAY
controller.

If the target field specified in the NEXT FIELD instruction is inside the current sub-dialog,
neither AFTER FIELD nor AFTER ROW will be fired for the field or list you are leaving.
However, the BEFORE FIELD control blocks of the destination field / list will be executed.

If the target field specified in the NEXT FIELD instruction is outside the current sub-
dialog, the AFTER FIELD, AFTER INSERT, AFTER INPUT and AFTER ROW control blocks
will be fired for the field or list you are leaving. Form-level validation rules will also be
checked, as if the user had selected the new sub-dialog himself. This is required to
guarantee that the current sub-dialog is left in a consistent state. Of course, the BEFORE
INPUT/CONSTRUCT, BEFORE ROW and the BEFORE FIELD control blocks of the destination
field / list will be executed after that.

Abstract field identification is supported with the CURRENT, NEXT and PREVIOUS keywords.
These keywords represent the current, next and previous fields respectively,
corresponding to variables as defined in the input binding list (with the FROM or BY NAME
clause). The NEXT and PREVIOUS options follow the tabbing order defined by the form
when using FIELD ORDER FORM. Otherwise, they follow the order defined by the binding
list.

Non-editable fields are fields defined with the NOENTRY attribute, fields disabled with
ui.Dialog.setFieldActive("field-name", value), or fields using a widget that does not allow
input, such as a LABEL. If a NEXT FIELD instruction selects a non-editable field, the next
editable field gets the focus (defined by the FIELD ORDER FORM mode used by the
dialog). However, the BEFORE FIELD and AFTER FIELD blocks of non-editable fields are
executed when a NEXT FIELD instruction selects such a field.

When using NEXT FIELD in AFTER ROW or in ON ROW CHANGE, the dialog will stay in the
current row and give control back to the user. This behavior allows you to implement
data input rules:

01 AFTER ROW
02 IF NOT int_flag AND
03 arr[arr_curr()].it_count * arr[arr_curr()].it_value > maxval
THEN
04 ERROR "Amount of line exceeds max value."
05 NEXT FIELD item_count
06 END IF

Note that you can also use the ui.Dialog.nextField("field-name") method to register a
field when the name is not known at compile time. However, this method does only
register the field: It does not stop code execution as the NEXT FIELD instruction. You
must issue a CONTINUE DIALOG to get the same behavior.

User Interface

865

CLEAR instruction

The CLEAR field-list instruction clears the value buffer of specified form fields. The
CLEAR instruction changes the buffers directly in the current form, not the program
variables bound to the dialog. It can be used outside any dialog instruction, such as the
DISPLAY instruction.

As DIALOG is typically used with the UNBUFFERED mode, there is no reason to clear
field buffers in a DIALOG block since any variable assignment will synchronize field
buffers. Actually, changing the field buffers with DISPLAY or CLEAR instruction will have
no visual effect if the fields are used by a dialog working in UNBUFFERED mode, because
the variables bound to the dialog will be used to reset the field buffer just before giving
control back to the user. So if you want to clear fields, just set the variables to NULL and
the fields will be cleared. However, when using a CONSTRUCT binding, you may want
to clear fields with this CLEAR instruction, as there are no program variables bound to
fields (with CONSTRUCT, only one string variable is bound to hold the SQL condition).

You can specify a single field, a screen record or screen array (with or without a screen-
line specification) as described in the following table:

CLEAR instruction Result
CLEAR field-name Clears the specified field in the current line of

the screen array.
CLEAR screen-array.* Clears all fields in the current line of the

screen array.
CLEAR screen-array[n].* Clears all fields in line n of the screen array.
CLEAR screen-
array[n].field-name

Clears the specified field in line n of the
screen array.

Note that a screen array with a screen-line specification doesn't make much sense in a
GUI application using TABLE containers.

DISPLAY TO / BY NAME instruction

The DISPLAY variable-list TO field-list or DISPLAY BY NAME variable-list
instruction fills the value buffers of specified form fields with the values contained in the
specified program variables. The DISPLAY instruction changes the buffers directly in the
current form, not the program variables bound to the dialog. DISPLAY can be used
outside any dialog instruction, in the same way as the CLEAR instruction. DISPLAY also
sets the TOUCHED flag.

As DIALOG is typically used with the UNBUFFERED mode, there is no reason to set field
buffers in a DIALOG block since any variable assignment will synchronize field buffers.

Genero Business Development Language

866

Actually, changing the field buffers with the DISPLAY or CLEAR instruction will have no
visual effect if the fields are used by a dialog working in UNBUFFERED mode, because the
variables bound to the dialog will be used to reset the field buffer just before giving
control back to the user. So if you want to set field values, just assign the variables and
the fields will be synchronized. However, when using a CONSTRUCT binding, you may
want to set field buffers with this DISPLAY instruction, as there are no program variables
bound to fields (with CONSTRUCT, only one string variable is bound to hold the SQL
condition).

Note that if you are used to performing a DISPLAY to set the TOUCHED flag of fields to
simulate user input, you can now use the ui.Dialog.setFieldTouched("field-name", value)
method instead.

CONTINUE DIALOG instruction

The CONTINUE DIALOG statement continues the execution of the DIALOG instruction,
skipping all statements appearing after this instruction. Control returns to the dialog
instruction, which executes remaining control blocks as if the program reached the end
of the current control block. Then the control goes back to the user and the dialog waits
for a new event.

The CONTINUE DIALOG statement is useful when program control is nested within
multiple conditional statements, and you want to return control to the user by skipping
the rest of the statements.

In the following code example, an ON ACTION block gives control back to the dialog,
skipping all instructions below line 04:

01 ON ACTION zoom
02 IF p_cust.cust_id IS NULL OR p_cust.cust_name IS NULL THEN
03 ERROR "Zoom window cannot be opened if there is no info to
identify the customer"
04 CONTINUE DIALOG
05 END IF
06 IF p_cust.cust_address IS NULL THEN
07 ...

If this instruction is called in a control block that is not AFTER DIALOG, further control
blocks might be executed according to the context. Actually, CONTINUE DIALOG just
instructs the dialog to continue as if the code in the control block was terminated (i.e. it's
a kind of GOTO end_of_control_block). However, when executed in AFTER DIALOG,
the focus returns to the current field or read-only list. In this case the BEFORE ROW and
BEFORE FIELD triggers will be fired.

A CONTINUE DIALOG in AFTER INPUT, AFTER DISPLAY or AFTER CONSTRUCT will only
stop the program flow (instructions after CONTINUE DIALOG will not be executed). If the
user has selected a field in a different sub-dialog, this new field will get the focus and all
necessary AFTER / BEFORE control blocks will be executed.

User Interface

867

EXIT DIALOG instruction

The EXIT DIALOG statement just terminates the DIALOG block without any further control
block execution. Program flow resumes at the instruction following the END DIALOG
keywords.

01 ON ACTION quit
02 EXIT DIALOG

When leaving the DIALOG instruction, all form items used by the dialog will be disabled
until another interactive statement takes control.

ACCEPT DIALOG instruction

The ACCEPT DIALOG statement validates all input fields bound to the DIALOG instruction
and leaves the block if no error is raised. Control blocks such as ON CHANGE, AFTER
FIELD, AFTER ROW, AFTER INPUT/DISPLAY/CONSTRUCT will be executed according to
the dialog structure. The statements appearing after the ACCEPT DIALOG will be skipped.

You typically code an ACCEPT DIALOG in an ON ACTION accept block:

01 ON ACTION accept
02 ACCEPT DIALOG

Input field validation is a process that does several successive validation tasks, as listed
below:

1. The current field value is checked, according to the program variable data type
(for example, the user must input a valid date in a DATE field).

2. NOT NULL field attributes are checked for all input fields. This attribute forces the
field to have a value set by program or entered by the user. If the field contains
no value, the constraint is not satisfied. Note that input values are right-trimmed,
so if the user inputs only spaces, this corresponds to a NULL value which does
not fulfill the NOT NULL constraint.

3. REQUIRED field attributes are checked for all input fields. This attribute forces
the field to have a default value, or to be TOUCHED by the user or
programmatically. If the field was not edited during the dialog, the constraint is
not satisfied.

4. INCLUDE field attributes are checked for all input fields. This attribute forces the
field to contain a value that is listed in the include list. If the field contains a value
that is not in the list, the constraint is not satisfied.

If a field does not satisfy one of the above constraints, dialog termination is canceled, an
error message is displayed, and the focus goes to the first field causing a problem.

Genero Business Development Language

868

After input field validation has succeeded, different types of control blocks will be
executed based on the context and type of dialog bindings used. For more details, see
Control Block Execution Order.

You may want to validate some parts of the dialog without leaving the block. To do so,
you can use the the ui.Dialog.validate() method.

CANCEL DELETE instruction

In a list driven by an INPUT ARRAY sub-dialog, row deletion can be canceled by using
the CANCEL DELETE instruction in the BEFORE DELETE block. Using this instruction in a
different place will generate a compilation error.

When the CANCEL DELETE instruction is executed, the current BEFORE DELETE block is
terminated without any other trigger execution (no BEFORE ROW or BEFORE FIELD is
executed), and the program execution continues in the user event loop.

You can, for example, prevent row deletion based on some condition:

01 BEFORE DELETE
02 IF user_can_delete() == FALSE THEN
03 ERROR "You are not allowed to delete rows"
04 CANCEL DELETE
05 END IF

The instructions that appear after CANCEL DELETE will be skipped.

Note that you can also disable the delete action to prevent the user from performing a
delete row action with:

01 CALL DIALOG.setActionActive("delete", FALSE)

On the other hand, you can prevent the user from deleting rows by using the DELETE
ROW = FALSE option in the ATTRIBUTE clause.

See also BEFORE DELETE and AFTER DELETE control blocks.

CANCEL INSERT instruction

In a list driven by an INPUT ARRAY sub-dialog, row creation can be canceled by the
program with the CANCEL INSERT instruction. This instruction can only be used in the
BEFORE INSERT and AFTER INSERT control blocks. If it appears at a different place,
the compiler will generate an error.

The instructions that appear after CANCEL INSERT will be skipped.

User Interface

869

Note that you can also disable the insert and/or append actions to prevent the user from
creating new rows with actions:

01 CALL DIALOG.setActionActive("insert", FALSE)
02 CALL DIALOG.setActionActive("append", FALSE)

However, this will not prevent the user from appending a new temporary row at the end
of the list with a mouse click or the Down key. If you want to prevent row creation
completely, you can use the INSERT ROW = FALSE and APPEND ROW = FALSE options in
the ATTRIBUTE clause.

CANCEL INSERT in BEFORE INSERT

A CANCEL INSERT executed inside a BEFORE INSERT block prevents the new row
creation. The following tasks are performed:

1. No new row will be created (the new row is not yet shown to the user).
2. The BEFORE INSERT block is terminated (further instructions are skipped).
3. The BEFORE ROW and BEFORE FIELD triggers are executed.
4. Control goes back to the user.

You can, for example, cancel a row creation if the user is not allowed to create rows:

01 BEFORE INSERT
02 IF NOT user_can_insert THEN
03 ERROR "You are not allowed to insert rows"
04 CANCEL INSERT
05 END IF

Warning: Executing CANCEL INSERT in BEFORE INSERT will also cancel a temporary
row creation, except when there are no more rows in the list. In this case, CANCEL
INSERT will just be ignored and leave the new row as is (otherwise, the instruction
would loop without end). Note that you can prevent automatic temporary row
creation with the AUTO APPEND attribute. If AUTO APPEND=FALSE and a CANCEL
INSERT is executed in BEFORE INSERT (user has fired an explicit append action),
the temporary row will be deleted and list will remain empty if it was the last row.

CANCEL INSERT in AFTER INSERT

A CANCEL INSERT executed inside an AFTER INSERT block removes the newly created
row. The following tasks are performed:

1. The newly created row is removed from the list (the row exists now and user has
entered data).

2. The AFTER INSERT block is terminated (further instructions are skipped).
3. The BEFORE ROW and BEFORE FIELD triggers are executed.
4. The control goes back to the user.

You can, for example, cancel a row insertion if a database error occurs when you try to
insert the row into a database table:

Genero Business Development Language

870

01 AFTER INSERT
02 WHENEVER ERROR CONTINUE
03 LET r = DIALOG.getCurrentRow("s_items")
04 INSERT INTO items VALUES (p_items[r].*)
05 WHENEVER ERROR STOP
06 IF SQLCA.SQLCODE<>0 THEN
07 ERROR SQLERRMESSAGE
08 CANCEL INSERT
09 END IF

Control Class

• Purpose of the ui.Dialog class
• The predefined DIALOG object reference
• Using DIALOG class methods

Purpose of the ui.Dialog class

When using a DIALOG instruction, you typically use the control instructions such as EXIT
DIALOG to drive the dialog behavior. But some operations need parameters to be passed
or values to be returned from the dialog. In this case, you must use the ui.Dialog built-
class

The predefined DIALOG object reference

Inside the dialog instruction, the predefined keyword DIALOG represents the current
dialog object. It can be used to execute methods provided in the dialog built-in class.

This keyword can be used as if it was defined as a ui.Dialog variable, but it cannot
appear outside of the DIALOG block. If this is the case, you will get a compilation error.
Note that the DIALOG object reference can be passed to functions, as in the following
example:

01 BEFORE DIALOG
02 CALL setup_dialog(DIALOG)

Using DIALOG class methods

The DIALOG class can be used to manipulate dialog properties and control the
behavior:

01 BEFORE DIALOG
02 CALL DIALOG.setActionActive("zoom",FALSE)
03 BEFORE FIELD field1
04 CALL DIALOG.setActionHidden("zoom",1)
05 AFTER FIELD field1
06 CALL DIALOG.setActionHidden("zoom",0)
07 ON CHANGE cust_name

User Interface

871

08 CALL DIALOG.setFieldActive("cust_addr", (rec.cust_name IS NOT
NULL))

See ui.Dialog class for more details.

Control Functions

For backward compatibility, the language provides several built-in functions and
operators to use in a DIALOG block. You can use the following built-in functions to keep
track of the relative states of the current row, the program array, and the screen array, or
to access the field buffers and keystroke buffers: ARR_CURR(), ARR_COUNT(),
FGL_SET_ARR_CURR(), SET_COUNT(), FIELD_TOUCHED(), GET_FLDBUF(),
INFIELD(), FGL_DIALOG_GETFIELDNAME(), FGL_DIALOG_GETBUFFER().

These functions and operators are provided for backward compatibility; you should use
ui.Dialog methods instead.

The ARR_CURR(), ARR_COUNT() and FGL_SET_ARR_CURR() functions will work as
in singular interactive instructions, when a DISPLAY ARRAY or INPUT ARRAY list has the
focus.

Examples

Example 1: Two Lists

Form file:

01 LAYOUT
02 GRID
03 {
04 <t t1 >
05 [f11 |f12]
06 < >
07 <t t2 >
08 [f21 |f22]
09 < >
10 }
11 END
12 END
13 ATTRIBUTES
14 EDIT f11 = FORMONLY.column_11;
15 EDIT f12 = FORMONLY.column_12;
16 EDIT f21 = FORMONLY.column_21;
17 EDIT f22 = FORMONLY.column_22;
18 END
19 INSTRUCTIONS
20 SCREEN RECORD sr1(FORMONLY.column_11,FORMONLY.column_12);

Genero Business Development Language

872

21 SCREEN RECORD sr2(FORMONLY.column_21,FORMONLY.column_22);
22 END

Program file:

01 DEFINE
02 arr1 DYNAMIC ARRAY OF RECORD
03 column_11 INTEGER,
04 column_12 VARCHAR(10)
05 END RECORD,
06 arr2 DYNAMIC ARRAY OF RECORD
07 column_21 INTEGER,
08 column_22 VARCHAR(10)
09 END RECORD
10
11 MAIN
12 DEFINE i INTEGER
13 FOR i = 1 TO 20
14 LET arr1[i].column_11 = i
15 LET arr1[i].column_12 = "aaa "||i
16 LET arr2[i].column_21 = i
17 LET arr2[i].column_22 = "aaa "||i
18 END FOR
19 OPTIONS INPUT WRAP
20 OPEN FORM f FROM "lists"
21 DISPLAY FORM f
22 DIALOG ATTRIBUTES(UNBUFFERED)
23 DISPLAY ARRAY arr1 TO sr1.*
24 BEFORE DISPLAY
25 MESSAGE "We are in list one"
26 END DISPLAY
27 DISPLAY ARRAY arr2 TO sr2.*
28 BEFORE DISPLAY
29 MESSAGE "We are in list two"
30 END DISPLAY
31 ON ACTION close
32 EXIT DIALOG
33 END DIALOG
34 END MAIN

Example 2: Query and Lists

Form file:

01 LAYOUT (TEXT = "Query customers", STYLE = "dialog3")
02 GRID
03{
04 >g g1
<
05 Id: [f1] Name: [f2]
06 State: [f3]
07 City: [f4]
08 Zipcode: [f5]
09 [:cc :sr
]

User Interface

873

10 <
>
11 >g g2
<
12 >t t1 <
13 Id Name Timestamp
14 [c1 |c2 |c3]
15 [c1 |c2 |c3]
16 [c1 |c2 |c3]
17 [c1 |c2 |c3]
18 [c1 |c2 |c3]
19 [c1 |c2 |c3]
20 [c1 |c2 |c3]
21 [c1 |c2 |c3]
22 < >
23 <
>
24[:cw
]
25}
26 END
27 END
28
29 ATTRIBUTES
30
31 GROUP g1 : TEXT = "Search criterias";
32 EDIT f1 = FORMONLY.cust_id TYPE INTEGER;
33 EDIT f2 = FORMONLY.cust_name TYPE VARCHAR;
34 COMBOBOX f3 = FORMONLY.cust_state TYPE VARCHAR,
35 QUERYEDITABLE, DEFAULT="CA", INITIALIZER=combo_fill_states;
36 BUTTONEDIT f4 = FORMONLY.cust_city TYPE CHAR, ACTION=zoom_city,
IMAGE="find";
37 EDIT f5 = FORMONLY.cust_zipcode TYPE VARCHAR;
38
39 GROUP g2 : TEXT = "Customer list";
40 EDIT c1 = FORMONLY.c_id TYPE INTEGER;
41 EDIT c2 = FORMONLY.c_name TYPE VARCHAR;
42 DATEEDIT c3 = FORMONLY.c_ts TYPE DATETIME YEAR TO SECOND;
43
44 BUTTON cc : clear, TEXT="Clear";
45 BUTTON sr : fetch, TEXT="Fetch";
46
47 BUTTON cw : close;
48
49 END
50
51 INSTRUCTIONS
52 SCREEN RECORD sr (FORMONLY.c_id THROUGH FORMONLY.c_ts);
53 END

Program file:

01 MAIN
02 DEFINE custarr DYNAMIC ARRAY OF RECORD
03 c_id INTEGER,
04 c_name VARCHAR(50),

Genero Business Development Language

874

05 c_ts DATETIME YEAR TO SECOND
06 END RECORD
07 DEFINE where_clause STRING
08
09 OPTIONS INPUT WRAP
10
11 OPEN FORM f1 FROM "QueryCustomers"
12 DISPLAY FORM f1
13
14 LET custarr[1].c_id = 123
15 LET custarr[1].c_name = "Parker"
16 LET custarr[1].c_ts = CURRENT YEAR TO SECOND
17 LET custarr[2].c_id = 124
18 LET custarr[2].c_name = "Duran"
19 LET custarr[2].c_ts = CURRENT YEAR TO SECOND
20
21 DIALOG ATTRIBUTES(FIELD ORDER FORM, UNBUFFERED)
22
23 CONSTRUCT BY NAME where_clause
24 ON cust_id, cust_name, cust_state, cust_city,
cust_zipcode
25 ON ACTION clear
26 CLEAR cust_id, cust_name, cust_state, cust_city,
cust_zipcode
27 END CONSTRUCT
28
29 DISPLAY ARRAY custarr TO sr.*
30 BEFORE ROW
31 MESSAGE SFMT("Row: %1/%2", DIALOG.getCurrentRow("sr"),
DIALOG.getArrayLength("sr"))
32 END DISPLAY
33
34 ON ACTION fetch
35 DISPLAY where_clause
36 -- Execute SQL query here to fill custarr ...
37
38 ON ACTION close
39 EXIT DIALOG
40
41 END DIALOG
42
43 END MAIN

User Interface

875

Prompt for Values
Summary:

• Basics
• Syntax
• Usage

o Programming Steps
o Instruction Configuration
o Default Actions
o Interaction Blocks

• Examples
o Example 1: Simple PROMPT
o Example 2: PROMPT with interrupt checking
o Example 3: PROMPT with ATTRIBUTE and ON ACTION handlers

See also: Record Input, Programs, Variables

Basics

The PROMPT instruction can be used to query for a single value from the user.

In GUI mode, the PROMPT instruction opens a modal window with an OK button and a
Cancel button.

Syntax

Purpose:

The PROMPT statement assigns a user-supplied value to a variable.

Syntax:

PROMPT question
 [ATTRIBUTES (question-attribute [,...])]
 FOR [CHAR[ACTER]] variable

Genero Business Development Language

876

 [HELP number]
 [ATTRIBUTES (input-attribute [,...])]
[dialog-control-block
 [...]
END PROMPT]

where dialog-control-block is one of :

{ ON IDLE idle-seconds
| ON ACTION action-name
| ON KEY (key-name [,...])
}
 statement
 [...]

Notes:

1. question is a string expression displayed as a message for the input of the value.
2. question-attribute defines the display attributes for the question. See below for

more details.
3. variable is the name of the variable that receives the data typed by the user.
4. The FOR CHAR clause exits the prompt statement when the first character has

been typed.
5. number is the help message number to be displayed when the user presses the

help key.
6. input-attribute is a display and control attribute for the input area. See below for

more details.
7. key-name is an hot-key identifier (such as F11 or Control-z).
8. action-name identifies an action that can be executed by the user.
9. idle-seconds is an integer literal or variable that defines a number of seconds.
10. statement is an instruction that is executed when the user presses the key

defined by key-name.

The following display attributes can be used for both question-attribute and input-
attribute:

Attribute Description
BLACK, BLUE, CYAN,
GREEN, MAGENTA,
RED, WHITE, YELLOW

The color of the displayed text.

BOLD, DIM,
INVISIBLE, NORMAL The font attribute of the displayed text.
REVERSE, BLINK,
UNDERLINE The video attribute of the displayed text.

The following control attributes can be used for input-attribute:

Attribute Description
CENTURY = string Specify a year format indicator as defined in the

User Interface

877

CENTURY attribute of form files.

FORMAT = string Specify a display format as defined in the FORMAT
attribute of form files.

PICTURE = string Specify an input picture as defined in the PICTURE
attribute of form files.

SHIFT = string Specify uppercase or lowercase shift. Values can be
'up' or 'down'.

WITHOUT DEFAULTS [
=bool]

Prompt must show by default the value of the
program variable.

CANCEL = bool
Indicates if the default cancel action should be added
to the dialog. If not specified, the action is added
(CANCEL=TRUE).

ACCEPT = bool
Indicates if the default accept action should be
added to the dialog. If not specified, the action is
added (ACCEPT=TRUE).

Usage

You can use the PROMPT instruction to manage a single value input. You provide the text
of the question to be displayed to the user and the variable that receives the value
entered by the user. The runtime system displays the question in the prompt area
(typically a popup window), waits for the user to enter a value, reads whatever value was
entered until the user validates (for example with the RETURN key), and stores this
value in a response variable. The prompt dialog remains visible until the user enters a
response.

Warnings:

1. The ON KEY blocks are provided for backward compatibility; use ON ACTION
instead.

2. The prompt finishes after ON IDLE, ON ACTION, or ON KEY block execution (to
ensure backwards compatibility).

Programming Steps

To use the PROMPT statement, you must:

1. Declare a program variable with the DEFINE statement.
2. Describe the PROMPT statement, with dialog-control-blocks to control the

instruction.
3. After executing the PROMPT, check the INT_FLAG variable to determine whether

the input was validated or canceled by the user. See Example 2 below.

Genero Business Development Language

878

Instruction Configuration

HELP option

The HELP clause specifies the number of a help message to display if the user invokes
the help while executing the instruction. The predefined help action is automatically
created by the runtime system. You can bind action views to the help action.

ACCEPT option

The ACCEPT attribute can be set to FALSE to avoid the automatic creation of the accept
default action.

CANCEL option

The CANCEL attribute can be set to FALSE to avoid the automatic creation of the cancel
default action. If the CANCEL=FALSE option is set, no close action will be created, and you
must write an ON ACTION close control block to create a close action.

Default Actions

When an PROMPT instruction executes, the runtime system creates a set of default
actions.

The following table lists the default actions created for this dialog:

Default action Description

accept Validates the PROMPT dialog (validates field criterias)
Creation can be avoided with the ACCEPT attribute.

cancel Cancels the PROMPT dialog (no validation, int_flag is set)
Creation can be avoided with the CANCEL attribute.

close
By default, cancels the PROMPT dialog (no validation, int_flag
is set)
Default action view is hidden. See Windows closed by the
user.

help Shows the help topic defined by the HELP clause.
Only created when a HELP clause is defined.

User Interface

879

Interaction Blocks

ON ACTION block

You can use ON ACTION blocks to execute a sequence of instructions when the user
raises a specific action. This is the preferred solution compared to ON KEY blocks,
because ON ACTION blocks use abstract names to control user interaction.

Warning: Because of backward compatibility, the prompt is finished after ON IDLE,
ON ACTION, ON KEY block execution.

ON IDLE block

The ON IDLE idle-seconds clause defines a set of instructions that must be executed
after idle-seconds of inactivity. The parameter idle-seconds must be an integer literal or
variable. If it evaluates to zero, the timeout is disabled.

ON KEY block

For backward compatibility, you can use ON KEY blocks to execute a sequence of
instructions when the user presses a specific key. The following key names are
accepted by the compiler:

Key Name Description
ACCEPT The validation key.
INTERRUPT The interruption key.

ESC or ESCAPE The ESC key (not recommended, use ACCEPT
instead).

TAB The TAB key (not recommended).

Control-char A control key where char can be any character
except A, D, H, I, J, K, L, M, R, or X.

F1 through F255 A function key.
DELETE The key used to delete a new row in an array.
INSERT The key used to insert a new row in an array.
HELP The help key.
LEFT The left arrow key.
RIGHT The right arrow key.
DOWN The down arrow key.
UP The up arrow key.
PREVIOUS or PREVPAGE The previous page key.
NEXT or NEXTPAGE The next page key.

Genero Business Development Language

880

Examples

Example 1: Simple PROMPT

01 MAIN
02 DEFINE birth DATE
03 DEFINE chkey CHAR(1)
04 PROMPT "Please enter your birthday: " FOR birth
05 DISPLAY "Your birthday is : " || birth
06 PROMPT "Now press a key... " FOR CHAR chkey
07 DISPLAY "You pressed: " || chkey
08 END MAIN

Example 2: Simple PROMPT with Interrupt Checking

01 MAIN
02 DEFINE birth DATE
03 LET INT_FLAG = FALSE
04 PROMPT "Please enter your birthday: " FOR birth
05 IF INT_FLAG THEN
06 DISPLAY "Interrupt received."
07 ELSE
08 DISPLAY "Your birthday is : " || birth
09 END IF
10 END MAIN

Example 3: PROMPT with ATTRIBUTES and ON ACTION handlers

01 MAIN
02 DEFINE birth DATE
03 LET birth = TODAY
04 PROMPT "Please enter your birthday: " FOR birth
05 ATTRIBUTES(WITHOUT DEFAULTS)
06 ON ACTION action1
07 DISPLAY "Action 1"
08 END PROMPT
09 DISPLAY "Your birthday is " || birth
10 END MAIN

User Interface

881

Displaying Messages
Summary:

• Displaying Text in Line Mode (DISPLAY)
• Displaying Error Messages (ERROR)
• Displaying Application Messages (MESSAGE)

DISPLAY

Purpose:

The DISPLAY instruction displays text in line mode to the standard output channel.

Syntax:

DISPLAY expression [,...]

Notes:

1. expression is any expression supported by the language.

Usage:

You can use this instruction to display information to the standard output channel.

The values contained in variables are formatted based on the data type and environment
settings.

Example:

01 MAIN
02 DISPLAY "Today's date is: ", TODAY
03 END MAIN

ERROR

Purpose:

The ERROR instruction displays an error message to the user.

Syntax:

ERROR expression [,...] [ATTRIBUTE (display-attribute [,...])]

Genero Business Development Language

882

Notes:

1. expression is any expression supported by the language.
2. display-attribute is an attribute to display the error text. See below.

Usage:

The ERROR instruction displays an error message to the user.

In TUI mode, the error text is displayed in the Error Line of the current window. In GUI
mode, the text is displayed in a specific area, depending on the front end configuration.

Possible attributes that can be used as display-attribute:

Attribute Description
BLACK, BLUE, CYAN, GREEN,
MAGENTA, RED, WHITE,
YELLOW

The color of the displayed text.

BOLD, DIM, INVISIBLE,
NORMAL The font attribute of the displayed text.

REVERSE, BLINK (TUI Only!),
UNDERLINE The video attribute of the displayed text.

Example:

01 MAIN
02 WHENEVER ERROR CONTINUE
03 DATABASE stock
04 WHENEVER ERROR STOP
05 IF sqlca.sqlcode THEN
06 ERROR "Connection failed (" || sqlca.sqlcode || ")"
07 END IF
08 END MAIN

MESSAGE

Purpose:

The MESSAGE instruction displays a message to the user.

Syntax:

MESSAGE message [,...] [ATTRIBUTE (display-attribute [,...])]

Notes:

1. expression is any expression supported by the language.

User Interface

883

2. display-attribute is an attribute to display the error text. See below.

Usage:

The MESSAGE instruction displays a message to the user.

In TUI mode, the text is displayed in the Comment Line of the current window. In GUI
mode, the text is displayed in a specific area, depending on the front end configuration.

Possible attributes that can be used as display-attribute:

Attribute Description
BLACK, BLUE, CYAN, GREEN,
MAGENTA, RED, WHITE,
YELLOW

The color of the displayed text.

BOLD, DIM, INVISIBLE,
NORMAL The font attribute of the displayed text.

REVERSE, BLINK (TUI Only!),
UNDERLINE The video attribute of the displayed text.

Example:

01 MAIN
02 WHENEVER ERROR CONTINUE
03 DATABASE stock
04 WHENEVER ERROR STOP
05 IF sqlca.sqlcode THEN
06 ERROR "Connection failed (" || sqlca.sqlcode || ")"
07 ELSE
08 MESSAGE "Connected to database."
09 END IF
10 END MAIN

885

Toolbars
Summary:

• Basics
• Syntax
• Usage

o Defining ToolBars
o Toolbar structure
o Defining a Toolbar in form file
o Loading a Toolbar from a file
o Loading the default Toolbar from a file
o Creating a Toolbar dynamically

• Examples
o Simple Toolbar in XML format
o Program creating a Toolbar dynamically
o Toolbar definition in a PER file

See also: Action Defaults, Topmenus, Form Specification Files

Basics

A Toolbar is a view for actions presented as a set of buttons that can trigger events in an
interactive instruction. This page describes how to use toolbars in programs; it is also
possible to define toolbars in forms with the TOOLBAR section.

Syntax

<ToolBar [toolbar-attribute="value" [...]] >
 { <ToolBarSeparator separator-attribute="value" [...] />
 | <ToolBarItem item-attribute="value" [...] />
 } [...]
</ToolBar>

Notes:

1. toolbar-attribute defines a property of the toolbar.
2. item-attribute defines a property of the toolbar item.

Warnings:

1. The DOM tag names are case sensitive; Toolbar is different from ToolBar.
2. When binding to an action, make sure that you are using the right value in the

name attribute. As ON ACTION and COMMAND generate lowercase identifiers, it is
recommended to use lowercase names.

Genero Business Development Language

886

3. When binding to a key, make sure the name attribute value is in lowercase letters
("f5").

4. Make sure that the image file is available to the Front End.

Tips:

1. It is recommended that you define the decoration of a Toolbar item for common
actions with Action Defaults.

Usage

Defining Toolbars

You can define a global/default toolbar at the program level, or you can define form-
specific toolbars. The global toolbar is displayed by default in all windows, or in the
global window container when using MDI. The form-specific toolbar is displayed in the
form where it is defined. You can control the position and visibility of toolbars with a
window style attribute. Typical "modal windows" do not display toolbars.

The Toolbar items (or buttons) are enabled according to the actions defined by the
current interactive instruction, which can be MENU, INPUT, INPUT ARRAY, DISPLAY
ARRAY, or CONSTRUCT. The action trigger bound to a Toolbar button is executed
when the button is clicked.

A Toolbar item is bound to an action node of the current interactive instruction if its name
attribute corresponds to an action node name (typically, the name of a ring menu
option). A click on the Toolbar button has the same effect as raising the action. For
example, if the current interactive instruction is a ring menu, this would have the same
effect as selecting the ring menu option.

A Toolbar item is bound to a key trigger if the name attribute of the item corresponds to a
valid hot key, in lowercase letters. In this case, a click on the Toolbar button has the
same effect as pressing the hot key.

A Toolbar button is automatically disabled if the corresponding action is not available (for
example, when a ring menu option is hidden).

Toolbar Structure

The following table shows the list of toolbar-attributes supported for the ToolBar node:

Attribute Type Description
tag STRING User-defined attribute to identify the node.
name STRING Identifies the Toolbar.

User Interface

887

buttonTextHidden INTEGER Defines if the text of toolbar buttons must
appear by default.

The following table shows the list of item-attributes supported for the ToolBarItem node:

Attribute Type Description

name STRING
Identifies the action corresponding to the toolbar
button.
Can be prefixed with the sub-dialog identifier.

tag STRING User-defined attribute to identify the node.
text STRING The text to be displayed in the toolbar button.

comment STRING The message to be shown as tooltip when the user
selects a toolbar button.

hidden INTEGER Indicates if the item is hidden.
image STRING The icon to be used in the toolbar button.

The following table shows the list of separator-attributes supported for the
ToolBarSeparator node:

Attribute Type Description
tag STRING User-defined attribute to identify the node.
hidden INTEGER Indicates if the separator is hidden.

Defining toolbars in the form file

You can define a toolbar in the form specification file with the TOOLBAR section; see the
example below.

Loading a Toolbar from an XML file

To load a Toolbar definition file, use the utility method provided by the Form built-in
class:

01 CALL myform.loadToolbar("standard")

This method accepts a filename with or without the "4tb" extension. If you omit the file
extension (recommended), the runtime system adds the extension automatically. If the
file does not exist in the current directory, it is searched in the directories defined in the
DBPATH environment variable.

Genero Business Development Language

888

If a form contains a specific toolbar loaded by the ui.Form.loadToolbar() method or
defined in the Form Specification File, it will be replaced by the new toolbar loaded from
this function.

Loading a default toolbar from an XML file

To load a default toolbar from an XML definition file, use the utility method provided by
the Interface built-in class:

01 CALL ui.Interface.loadToolbar("standard")

This method accepts a filename with or without the "4tb" extension. If you omit the file
extension (recommended), the runtime system adds the extension automatically. If the
file does not exist in the current directory, it is searched in the directories defined in the
DBPATH environment variable.

The default toolbar loaded by this method is also used for the MDI container.

Creating the toolbar manually with DOM

This example shows how to create a Toolbar in all forms by using the default
initialization function and the DomNode class:

01 CALL ui.Form.setDefaultInitializer("myinit")
02 OPEN FORM f1 FROM "form1"
03 DISPLAY FORM f1
04 ...
05 FUNCTION myinit(form)
06 DEFINE form ui.Form
06 DEFINE f om.DomNode
08 LET f = form.getNode()
09 ...
10 END FUNCTION

After getting the DOM node of the form, create a node with the "ToolBar" tag name:

01 DEFINE tb om.DomNode
02 LET tb = f.createChild("ToolBar")

For each toolbar button, create a sub-node with the "ToolBarItem" tag name and set
the attributes to define the button:

01 DEFINE tbi om.DomNode
02 LET tbi = tb.createChild("ToolBarItem")
03 CALL tbi.setAttribute("name","update")
04 CALL tbi.setAttribute("text","Modify")
05 CALL tbi.setAttribute("comment","Modify the current record")

User Interface

889

06 CALL tbi.setAttribute("image","change")

If needed, you can create a "ToolBarSeparator" node to separate Toolbar buttons:

01 DEFINE tbs om.DomNode
02 LET tbs = tb.createChild("ToolBarSeparator")

Examples

Example 1: Simple Toolbar in XML format

01 <ToolBar>
02 <ToolBarItem name="f5" text="List" image="list" />
03 <ToolBarSeparator/>
04 <ToolBarItem name="query" text="Query" image="search" />
05 <ToolBarItem name="add" text="Append" image="add" />
06 <ToolBarItem name="delete" text="Delete" image="delete" />
07 <ToolBarItem name="modify" text="Modify" image="change" />
08 <ToolBarSeparator/>
09 <ToolBarItem name="f1" text="Help" image="list" />
10 <ToolBarSeparator/>
11 <ToolBarItem name="quit" text="Quit" image="quit" />
12 </ToolBar>

Example 2: Program creating the Toolbar dynamically

01 MAIN
02 DEFINE aui om.DomNode
03 DEFINE tb om.DomNode
04 DEFINE tbi om.DomNode
05 DEFINE tbs om.DomNode
06
07 LET aui = ui.Interface.getRootNode()
08
09 LET tb = aui.createChild("ToolBar")
10
11 LET tbi = createToolBarItem(tb,"f1","Help","Show help","help")
12 LET tbs = createToolBarSeparator(tb)
13 LET tbi = createToolBarItem(tb,"upd","Modify","Modify current
record","change")
14 LET tbi = createToolBarItem(tb,"del","Remove","Remove current
record","delete")
15 LET tbi = createToolBarItem(tb,"add","Append","Add a new
record","add")
16 LET tbs = createToolBarSeparator(tb)
17 LET tbi = createToolBarItem(tb,"xxx","Exit","Quit
application","quit")
18
19 MENU "Example"
20 COMMAND KEY(F1)
21 DISPLAY "F1 action received"
22 COMMAND "upd"

Genero Business Development Language

890

23 DISPLAY "Update action received"
24 COMMAND "Del"
25 DISPLAY "Delete action received"
26 COMMAND "Add"
27 DISPLAY "Append action received"
28 COMMAND "xxx"
29 EXIT PROGRAM
30 END MENU
31
32 END MAIN
33
34 FUNCTION createToolBarSeparator(tb)
35 DEFINE tb om.DomNode
36 DEFINE tbs om.DomNode
37 LET tbs = tb.createChild("ToolBarSeparator")
38 RETURN tbs
39 END FUNCTION
40
41 FUNCTION createToolBarItem(tb,n,t,c,i)
42 DEFINE tb om.DomNode
43 DEFINE n,t,c,i VARCHAR(100)
44 DEFINE tbi om.DomNode
45 LET tbi = tb.createChild("ToolBarItem")
46 CALL tbi.setAttribute("name",n)
47 CALL tbi.setAttribute("text",t)
48 CALL tbi.setAttribute("comment",c)
49 CALL tbi.setAttribute("image",i)
50 RETURN tbi
51 END FUNCTION

Example 3: Toolbar definition in a PER file

01 TOOLBAR
02 ITEM accept (TEXT="Ok", IMAGE="ok")
03 ITEM cancel (TEXT="cancel", IMAGE="cancel")
04 SEPARATOR
05 ITEM editcut -- Gets decoration from action defaults
06 ITEM editcopy -- Gets decoration from action defaults
07 ITEM editpaste -- Gets decoration from action defaults
08 SEPARATOR
09 ITEM append (TEXT="Append", IMAGE="add")
10 ITEM update (TEXT="Update", IMAGE="modify")
11 ITEM delete (TEXT="Delete", IMAGE="del")
12 ITEM search (TEXT="Search", IMAGE="find")
13 END

User Interface

891

Topmenus
Summary:

• Basics
• Syntax
• Usage

o Defining TopMenus
o TopMenu Structure
o Defining a TopMenu in form file
o Loading a TopMenu from a file
o Loading a default TopMenu from a file
o Creating a TopMenu dynamically

• Examples
o Simple Topmenu in XML format
o Topmenu definition in a PER file

See also: Action Defaults, Toolbars, Form Specification Files

Basics

A Topmenu is a view for actions presented as a typical pull-down menu, having options
that can trigger events in an interactive instruction. This page describes how to use
Topmenus in programs; it is also possible to define Topmenus in forms with the
TOPMENU section.

Syntax

<TopMenu [topmenu-attribute="value" [...]] >
 group
 [...]
</TopMenu>

where group is:

<TopMenuGroup group-attribute="value" [...]>
 { <TopMenuSeparator separator-attribute="value" [...] />
 | <TopMenuCommand command-attribute="value" [...] />
 | group
 } [...]
</TopMenuGroup>

Genero Business Development Language

892

Notes:

1. The TopMenu node can hold TopMenuSeparator, TopMenuGroup or
TopMenuCommand children.

2. topmenu-attribute defines a property of the TopMenu.
3. A TopMenuGroup node can hold TopMenuSeparator, TopMenuGroup or

TopMenuCommand children.
4. group-attribute defines a property of a TopMenuGroup.
5. A TopMenuCommand node defines a leaf of the TopMenu tree and can be selected

to execute an action.
6. command-attribute defines a property of a TopMenuCommand.
7. A TopMenuSeparator node defines an horizontal line in a TopMenu group.
8. separator-attribute defines a property of a TopMenuSeparator.

Warnings:

1. The DOM tag names are case sensitive; Topmenu is different from TopMenu.
2. When binding to an action, make sure that you are using the right value in the

name attribute. As ON ACTION and COMMAND generate lowercase identifiers, it is
recommended to use lowercase names.

3. When binding to a key, make sure the name attribute value is in lowercase letters
("f5").

4. Make sure that the image file is available to the Front End.

Tips:

1. For common actions, it is recommended that you define the decoration of a
Topmenu command with Action Defaults.

Usage

Defining TopMenus

A Topmenu defines a graphical pull-down menu that holds views for actions controlled in
BDL programs with ON ACTION clauses. See Interaction Model for more details about
action management.

You can define a Topmenu in form files with the TOPMENU section, or you can load a
Topmenu at runtime into the current form by using the following methods:
ui.Form.loadTopMenu()

The Topmenu commands (pull-down menu options) are enabled according to the
actions defined by the current interactive instruction, which can be MENU, INPUT,
INPUT ARRAY, DISPLAY ARRAY or CONSTRUCT. When a Topmenu option is
selected, the program executes the action trigger the Topmenu command is bound to.

User Interface

893

A Topmenu command is bound to an action node of the current interactive instruction if
its name attribute corresponds to an action node name (typically, the name of a ring
menu option). In this case, a Topmenu command selection has the same effect as
raising the action. For example, if the current interactive instruction is a ring menu, this
would have the same effect as selecting the ring menu option.

A Topmenu command is bound to a key trigger if the name attribute of the command
corresponds to a valid hot-key, in lowercase letters. In this case, selecting a Topmenu
command has the same effect as pressing the hot-key.

A Topmenu command is automatically disabled if the corresponding action is not
available (for example, when a ring menu option is hidden).

TopMenu structure

A Topmenu is part of a form definition; the TopMenu node must be created under the
Form node.

The following table shows the list of topmenu-attributes supported for the TopMenu node:

Attribute Type Description
tag STRING User-defined attribute to identify the node.

The following table shows the list of command-attributes supported for the
TopMenuCommand node:

Attribute Type Description

name STRING
Identifies the action corresponding to the
Topmenu command.
Can be prefixed with the sub-dialog identifier.

tag STRING User-defined attribute to identify the node.

text STRING The text to be displayed in the pull-down menu
option.

comment STRING The message to be shown for this element.
hidden INTEGER Indicates if the command is hidden.

image STRING The icon to be used in the pull-down menu
option.

acceleratorName STRING

Defines the accelerator name to be display on
the left of the menu option text.
Note this attribute is only used for decoration
(you must also define an action default
accelerator).

Genero Business Development Language

894

In order to define the tree structure of the pull-down menu, the TopMenuGroup node is
provided to hold Topmenu commands and Topmenu groups:

TopMenu
 +- TopMenuGroup
 +- TopMenuCommand
 +- TopMenuCommand
 +- TopMenuCommand
 +- TopMenuGroup
 +- TopMenuGroup
 +- TopMenuCommand
 +- TopMenuCommand
 +- TopMenuGroup
 +- TopMenuCommand
 +- TopMenuCommand
 +- TopMenuCommand

The following table shows the list of group-attributes supported for the TopMenuGroup
node:

Attribute Type Description
tag STRING User-defined attribute to identify the node.

text STRING The text to be displayed in the pull-down menu
group.

comment STRING The message to be shown for this element.
hidden INTEGER Indicates if the group is hidden.

image STRING
The icon to be used in the pull-down menu group.
Warning: Images cannot be displayed for the
first level of TopMenuGroup elements.

The following table shows the list of separator-attributes supported for the
TopMenuSeparator node:

Attribute Type Description
tag STRING User-defined attribute to identify the node
hidden INTEGER Indicates if the separator is hidden.

Defining the Topmenu in a form file

You typically define a Topmenu in the form specification file, with the TOPMENU
section; see below for an example.

User Interface

895

Loading a Topmenu from an XML file

To load a Topmenu definition file, use the utility method provided by the Form built-in
class:

01 CALL myform.loadTopMenu("standard")

This method accepts a filename with or without the "4tm" extension. If you omit the file
extension (recommended), the runtime system adds the extension automatically. If the
file does not exist in the current directory, it is searched in the directories defined in the
DBPATH environment variable.

If a form contains a specific topmenu loaded by the ui.Form.loadTopmenu() method or
defined in the Form Specification File, it will be replaced by the new topmenu loaded
from this function.

Loading a default topmenu from an XML file

To load a default topmenu from an XML definition file, use the utility method provided by
the Interface built-in class:

01 CALL ui.Interface.loadTopMenu("standard")

This method accepts a filename with or without the "4tm" extension. If you omit the file
extension (recommended), the runtime system adds the extension automatically. If the
file does not exist in the current directory, it is searched in the directories defined in the
DBPATH environment variable.

The default topmenu loaded by this method is also used for the MDI container.

Creating the Topmenu dynamically

This example shows how to create a Topmenu in all forms by using the default
initialization function and the DomNode class:

01 CALL ui.Form.setDefaultInitializer("myinit")
02 OPEN FORM f1 FROM "form1"
03 DISPLAY FORM f1
04 ...
05 FUNCTION myinit(form)
06 DEFINE form ui.Form
06 DEFINE f om.DomNode
08 LET f = form.getNode()
09 ...
10 END FUNCTION

Genero Business Development Language

896

After getting the DOM node of the form, create a node with the "TopMenu" tag name:

01 DEFINE tm om.DomNode
02 LET tm = f.createChild("TopMenu")

For each Topmenu group, create a sub-node with the "TopMenuGroup" tag name and set
the attributes to define the group:

01 DEFINE tmg om.DomNode
02 LET tmg = tm.createChild("TopMenuGroup")
03 CALL tmg.setAttribute("text","Reports")

For each Topmenu option, create a sub-node in a group node with the
"TopMenuCommand" tag name and set the attributes to define the option:

01 DEFINE tmi om.DomNode
02 LET tmi = tmg.createChild("TopMenuCommand")
03 CALL tmi.setAttribute("name","report")
04 CALL tmi.setAttribute("text","Order report")
05 CALL tmi.setAttribute("comment","Orders entered today")
06 CALL tmi.setAttribute("image","smiley")

If needed, you can create a "TopMenuSeparator" node inside a group, to separate menu
options:

01 DEFINE tms om.DomNode
02 LET tms = tmg.createChild("TopMenuSeparator")

Examples

Example 1: Simple Topmenu in XML format

01 <TopMenu>
02 <TopMenuGroup text="Form" >
03 <TopMenuCommand name="help" text="Help" image="quest" />
04 <TopMenuCommand name="quit" text="Quit" acceleratorName="alt-
F4"/>
05 </TopMenuGroup>
06 <TopMenuGroup text="Edit" >
07 <TopMenuCommand name="accept" text="Validate" image="ok" />
08 <TopMenuCommand name="cancel" text="Cancel" image="cancel" />
09 <TopMenuSeparator/>
10 <TopMenuCommand name="editcut" text="Cut" />
11 <TopMenuCommand name="editcopy" text="Copy" />
12 <TopMenuCommand name="editpaste" text="Paste" />
13 </TopMenuGroup>
14 <TopMenuGroup text="Records" >
15 <TopMenuCommand name="append" text="Add" image="add" />
16 <TopMenuCommand name="delete" text="Remove" image="delete" />
17 <TopMenuCommand name="update" text="Modify" image="change" />

User Interface

897

18 <TopMenuSeparator/>
19 <TopMenuCommand name="search" text="Query" image="find" />
20 </TopMenuGroup>
21 </TopMenu>

Example 2: Topmenu definition in a PER file

01 TOPMENU
02 GROUP form (TEXT="Form")
03 COMMAND help (TEXT="Help", IMAGE="quest")
04 COMMAND quit (TEXT="Quit", ACCELERATOR=ALT-F4)
05 END
06 GROUP edit (TEXT="Edit")
07 COMMAND accept (TEXT="Validate", IMAGE="ok")
08 COMMAND cancel (TEXT="Cancel", IMAGE="cancel")
09 SEPARATOR
10 COMMAND editcut -- Gets decoration from action defaults
11 COMMAND editcopy -- Gets decoration from action defaults
12 COMMAND editpaste -- Gets decoration from action defaults
13 END
14 GROUP records (TEXT="Records")
15 COMMAND append (TEXT="Add", IMAGE="add")
16 COMMAND delete (TEXT="Remove", IMAGE="del")
17 COMMAND update (TEXT="Modify", IMAGE="change")
18 SEPARATOR
19 COMMAND search (TEXT="Search", IMAGE="find")
20 END
21 END

Genero Business Development Language

898

StartMenus
Summary:

• Basics
• Syntax
• Usage

o Defining StartMenus
o StartMenu Structure
o Loading a StartMenu from an XML file
o Creating a StartMenu dynamically

• Examples
o Simple StartMenu in XML format
o Program creating a StartMenu dynamically

See also: Toolbars, Topmenus

Basics

The StartMenu defines a tree of commands that start programs on the application server
where the runtime system executes.

Syntax

<StartMenu [startmenu-attribute="value" [...]] >
 group
 [...]
</StartMenu>

where group is:

<StartMenuGroup group-attribute="value" [...]>
 { <StartMenuSeparator/>
 | <StartMenuCommand command-attribute="value" [...] />
 | group
 } [...]
</StartMenuGroup>

Notes:

1. The StartMenu node can only hold StartMenuGroup children.
2. startmenu-attribute defines a property of the StartMenu. See below for more

details.
3. A StartMenuGroup node can hold StartMenuSeparator, StartMenuGroup, or

StartMenuCommand children.

User Interface

899

4. command-attribute defines a property of a StartMenuCommand. See below for
more details.

5. A StartMenuCommand node defines a leaf of the StartMenu tree that can be
selected to start a program.

6. group-attribute defines a property of a StartMenuGroup. See below for more
details.

Warnings:

1. The DOM tag names are case sensitive; Startmenu is different from StartMenu.

Usage

Defining StartMenus

It is recommended that you create a specific BDL program dedicated to running the Start
Menu. This program must create (or load) a Start Menu, and then perform an interactive
instruction to enter the interaction loop.

The StartMenu must be defined in the Abstract User Interface tree using the DOM API,
under the "UserInterface" root node.

The StartMenu is unique for a program and cannot be redefined.

When a StartMenu command is selected by the user, the runtime system automatically
starts a child process with the command specified in the command attribute.

StartMenu Structure

The following table shows the attributes of the StartMenu node:

Attribute Type Description
name STRING Identifies the StartMenu, not required.
text STRING Defines the text to be displayed as title.

The following table shows the attributes of the StartMenuGroup node:

Attribute Type Description

disabled INTEGER Indicates if the group must be disabled (grayed,
cannot be selected).

image STRING Defines the icon to be used for this group.
name STRING Identifies the start menu group, not required.

Genero Business Development Language

900

text STRING Defines the text to be displayed for this group.

The following table shows the attributes of the StartMenuCommand node:

Attribute Type Description

disabled INTEGER Indicates if the item must be disabled (grayed,
cannot be selected).

exec STRING Defines the command to be executed when the user
selects this command.

image STRING Defines the icon to be used for this command.
name STRING Identifies the StartMenu item, not required.
text STRING Defines the text to be displayed for this command.

waiting INTEGER Defines if the command must be started without
waiting (0, default) or waiting (1).

The following table shows the attributes of the StartMenuSeparator node:

Attribute Type Description
name STRING Identifies the StartMenu separator, not required.

Loading a StartMenu from an XML file

To load a StartMenu definition file, use the utility method provided by the Interface built-
in class:

01 CALL ui.Interface.loadStartMenu("standard")

This method accepts a filename with or without the "4sm" extension. If you omit the file
extension (recommended), the runtime system adds the extension automatically. If the
file does not exist in the current directory, it is searched in the directories defined in the
DBPATH environment variable.

Creating the StartMenu dynamically

You can create a StartMenu dynamically with the DomNode class:

First, get the AUI root node:

01 DEFINE aui om.DomNode
02 LET aui = ui.Interface.getRootNode()

User Interface

901

Next, create a node with the "StartMenu" tag name:

01 DEFINE sm om.DomNode
02 LET sm = aui.createChild("StartMenu")

Next, create a "StartMenuGroup" node to group a couple of command nodes:

01 DEFINE smg om.DomNode
02 LET smg = sm.createChild("StartMenuGroup")
03 CALL smg.setAttribute("text","Programs")

Then, create "StartMenuCommand" nodes for each program and, if needed, add
"StartMenuSeparator" nodes to separate entries:

01 DEFINE smc, sms om.DomNode
02 LET smc = smg.createChild("StartMenuCommand")
03 CALL smc.setAttribute("text","Orders")
04 CALL smc.setAttribute("exec","fglrun orders.42r")
05 LET smc = smg.createChild("StartMenuCommand")
06 CALL smc.setAttribute("text","Customers")
07 CALL smc.setAttribute("exec","fglrun customers.42r")
08 LET sms = smg.createChild("StartMenuSeparator")
09 LET smc = smg.createChild("StartMenuCommand")
10 CALL smc.setAttribute("text","Items")
11 CALL smc.setAttribute("exec","fglrun items.42r")

Examples

Example 1: Simple StartMenu in XML format

01 <StartMenu>
02 <StartMenuGroup text="Ordering" >
03 <StartMenuCommand text="Orders" exec="fglrun orders.42r" />
04 <StartMenuCommand text="Customers" exec="fglrun custs.42r" />
05 <StartMenuCommand text="Items" exec="fglrun items.42r" />
06 <StartMenuCommand text="Reports" exec="fglrun reports.42r" />
07 </StartMenuGroup>
08 <StartMenuGroup text="Configuration" >
09 <StartMenuCommand text="Database" exec="fglrun dbseconf.42r"
/>
10 <StartMenuCommand text="Users" exec="fglrun userconf.42r" />
11 <StartMenuCommand text="Printers" exec="fglrun prntconf.42r"
/>
12 </StartMenuGroup>
13 </StartMenu>

Example 2: Program creating the StartMenu dynamically

01 MAIN
02 DEFINE aui om.DomNode
03 DEFINE sm om.DomNode

Genero Business Development Language

902

04 DEFINE smg om.DomNode
05 DEFINE smc om.DomNode
06
07 LET aui = ui.Interface.getRootNode()
08
09 LET sm = aui.createChild("StartMenu")
10
11 LET smg = createStartMenuGroup(sm,"Ordering")
13 LET smc = createStartMenuCommand(smg,"Orders","fglrun
orders.42r",NULL)
14 LET smc = createStartMenuCommand(smg,"Customers","fglrun
custs.42r",NULL)
15 LET smc = createStartMenuCommand(smg,"Items","fglrun
items.42r",NULL)
16 LET smc = createStartMenuCommand(smg,"Reports","fglrun
reports.42r",NULL)
17 LET smg = createStartMenuGroup(sm,"Configuration")
18 LET smc = createStartMenuCommand(smg,"Database","fglrun
dbseconf.42r",NULL)
19 LET smc = createStartMenuCommand(smg,"Users","fglrun
userconf.42r",NULL)
20 LET smc = createStartMenuCommand(smg,"Printers","fglrun
prntconf.42r",NULL)
21
22 MENU "Example"
23 COMMAND "Quit"
24 EXIT PROGRAM
25 END MENU
26
27 END MAIN
28
29 FUNCTION createStartMenuGroup(p,t)
30 DEFINE p om.DomNode
31 DEFINE t STRING
32 DEFINE s om.DomNode
33 LET s = p.createChild("StartMenuGroup")
34 CALL s.setAttribute("text",t)
35 RETURN s
36 END FUNCTION
37
38 FUNCTION createStartMenuCommand(p,t,c,i)
39 DEFINE p om.DomNode
40 DEFINE t,c,i STRING
41 DEFINE s om.DomNode
42 LET s = p.createChild("StartMenuCommand")
43 CALL s.setAttribute("text",t)
44 CALL s.setAttribute("exec",c)
45 CALL s.setAttribute("image",i)
46 RETURN s
47 END FUNCTION

User Interface

903

Canvas
This page describes the usage of Canvas.

• What is Canvas?
• Basics
• Functions

See also: Forms, Windows

What is Canvas?

By using Canvas, you can draw simple shapes in a specific area of a form. Canvas can
draw lines, rectangles, ovals, circles, texts, arcs, and polygons. Keys can be bound to
graphical elements for selection with a right or left mouse click.

In programs, you select a given Canvas area by name and you create the shapes in the
Abstract User Interface tree by using the built-in DOM API.

The painted canvas is automatically displayed on the front end when an interactive
instruction is executed (like MENU or INPUT).

The canvas area represents an abstract drawing page where you define size and
location of shapes with coordinates from (0,0) to (1000,1000). The origin point (0,0), is
on the left-bottom of the drawing area.

Each canvas element is identified by a unique number (id). You can use this identifier to
bind mouse clicks to canvas elements.

Genero Business Development Language

904

Basics

Purpose:

Use Canvas to draw simple shapes in a specific area of a form.

Syntax:

<Canvas colName="name" >
 { <CanvasArc canvasitem-attribute="value" [...] />
 | <CanvasCircle canvasitem-attribute="value" [...] />
 | <CanvasLine canvasitem-attribute="value" [...] />
 | <CanvasOval canvasitem-attribute="value" [...] />
 | <CanvasPolygon canvasitem-attribute="value" [...] />
 | <CanvasRectangle canvasitem-attribute="value" [...] />
 | <CanvasText canvasitem-attribute="value" [...] />
 } [...]
</Canvas>
[...]

Notes:

1. You define the content of canvas areas in the Abstract User Interface tree.
2. If the form defines canvas areas, the Abstract User Interface tree contains empty

<Canvas> nodes that you can fill with canvas items.
3. A canvas node is identified in the program by the colName attribute.
4. You can get the canvas DomNode by name with the Window.getElement(name)

method.
5. You cannot drop canvas nodes, as they are read-only in a form definition.

The following table describes all the types of canvas element that are supported:

Name Description
CanvasArc Arc defined by a center point, a diameter, a start angle, a end

angle, and a fill color.
CanvasCircle Circle defined by the bounding square top left point, a

diameter, and a fill color.
CanvasLine Line defined by a start point, an end point, a width, and a fill

color.
CanvasOval Oval defined by rectangle (with start point and end point), and

a fill color.
CanvasPolygon Polygon defined by a list of points, and a fill color.
CanvasRectangle Rectangle defined by a start point, an end point, and a fill

color.
CanvasText Text defined by a start point, an anchor hint, the text, and a fill

color.

User Interface

905

The following table describes the attributes of canvas elements:

Name Values Description
startX INTEGER (0-

>1000)
X position of starting point.

startY INTEGER (0-
>1000)

Y position of starting point.

endX INTEGER (0-
>1000)

X position of ending point.

endY INTEGER (0-
>1000)

Y position of ending point.

xyList STRING Space-separated list of X Y
coordinates. For example: "23 45 56
78".

width INTEGER Width of the shape.
height INTEGER Height of the shape.
diameter INTEGER Diameter for circles and arcs.
startDegrees INTEGER Beginning of the angular range

occupied by an arc.
extentDegrees INTEGER Size of the angular range occupied by

an arc.
text STRING The text to draw.
anchor "n","e","w","s" Anchor hint to give the draw direction

for texts.
fillColor STRING Name of the color to be used for the

element.
acceleratorKey1 STRING Name of the key associated to a left

button click.
acceleratorKey3 STRING Name of the key associated to a right

button click.

Usage:

First, you must define a drawing area in the form file. The drawing area is defined by a
form field declared with the attribute WIDGET="CANVAS". In the following example, the
name of the canvas field is 'canvas01'. This field name identifies the drawing area:

01 DATABASE FORMONLY
02 LAYOUT
03 GRID
04 {
05 Canvas example:
06 [ca01]
07 []
08 []
09 []
10 []

Genero Business Development Language

906

11 []
12 }
13 END
14 END
15 ATTRIBUTES
16 CANVAS ca01 : canvas01;
17 END

In programs, you draw canvas shapes by creating Canvas nodes in the Abstract User
Interface tree with the DOM API utilities.

Define a variable to hold the DOM node of the canvas and a second to handle children
created for shapes:

01 DEFINE c, s om.DomNode

Define a window object variable; open a window with the form containing the canvas
area; get the current window object, and then get the canvas DOM node:

02 DEFINE w ui.Window
03 OPEN WINDOW w1 WITH FORM "form1"
04 LET w = ui.Window.getCurrent()
05 LET c = w.findNode("Canvas","canvas01")

Create a child node with a specific type defining the shape:

06 LET s = c.createChild("CanvasLine")

Set attributes to complete the shape definition:

07 CALL s.setAttribute("fillColor", "red")
08 CALL s.setAttribute("startX", 10)
09 CALL s.setAttribute("startY", 20)
10 CALL s.setAttribute("endX", 100)
11 CALL s.setAttribute("endY", 150)
12 CALL s.setAttribute("width", 2)

To clear a given shape in the canvas, remove the element in the canvas node:

13 CALL c.removeChild(s)

To clear the drawing area completely, remove all children of the canvas node:

14 LET s=c.getFirstChild()
15 WHILE s IS NOT NULL
16 CALL c.removeChild(s)
17 LET s=c.getFirstChild()
18 END WHILE

User Interface

907

Functions

The following table describes the built-in functions provided for backward compatibility
with version 3. This list is provided to let you search for existing code using these
functions. You should review that code and use the technique described in the sections
above.

Name Description
drawInit() Initializes the drawing API. It is mandatory to call

this function at the beginning of your program,
before the first display instruction.

drawSelect() Selects a canvas area for drawing.
drawDisableColorLines() By default shapes are paint with borders. This

function enables/disables border drawing.
drawLineWidth() Defines the width of lines.
drawAnchor() Defines the anchor hint for texts.
drawLine() Draws a line in the selected canvas.
drawCircle() Draws a circle in the selected canvas.
drawArc() Draws an arc in the selected canvas.
drawRectangle() Draws a rectangle in the selected canvas.
drawOval() Draws an oval in the selected canvas.
drawText() Draws a text in the selected canvas.
drawPolygon() Draws a polygon in the selected canvas.
drawClear() Clears the selected canvas.
drawButtonLeft() Enables left mouse click on a canvas element.
drawButtonRight() Enables right mouse click on a canvas element.
drawClearButton() Disables all mouse clicks on a canvas element.

Genero Business Development Language

908

Message Files
Summary:

• Basics
• Syntax
• Compiling Message Files
• Using Messages Files
• Example

See also: OPTIONS, SHOWHELP(), fglmkmsg, Localized Strings.

Basics

Message Files define text messages with a unique integer identifier. You can create as
many message files as needed. Message files are typically used to implement
application help system, especially when using the Text User Interface mode.

In order to use a message file, you need to do the following:

1. Create the source message file with a text editor.
2. Compiler the source message file to a binary format.
3. Copy the binary file to a distribution directory.
4. In programs, specify the message file with OPTIONS HELP FILE.

Message files are supported for backward compatibility. You should also have a look at
the Localized Strings feature.

Syntax

filename.msg

Notes:

1. filename is the name of the message source file.

Syntax of a message file:

{
 message-definition
| include-directive
}
[...]

User Interface

909

where message-definition is:

.message-number
message-line
[...]

where include-directive is:

.include file-name

Warning: Multi-line messages will include the new-line (ASCII 10) characters.

Compiling Message Files

In order to use message files in a program, the message source files (.msg) must be
compiled with the fglmkmsg utility to produce compiled message files (.iem).

The following command line compiles the message source file mess01.msg:

fglmkmsg mess01.msg

This creates the compiled message file mess01.iem.

For backward compatibility, you can specify the output file as second argument:

fglmkmsg mess01.msg mess01.iem

Warning: The .iem compiled version of the message file must be distributed on
the machine where the programs are executed.

Using Message Files

In order to use compiled message files (.iem) in programs, you must first specify the
message file with the OPTIONS HELP FILE command:

01 OPTIONS HELP FILE "mymessages.iem"

The message file will first be searched with the string passed to the OPTIONS HELP FILE
command (i.e. the current directory if the file is specified without a path), and if not
found, the DBPATH environment variable with be used.

After the message file is defined, you can use a specific message with the either with the
HELP keyword in a dialog instruction like INPUT:

01 INPUT BY NAME ... HELP 455

Genero Business Development Language

910

... or with the SHOWHELP() function:

01 CALL showhelp(1242)

Example

Message source file example:

01 .101
02 This is help about option 1
03 .102
04 This is help about help
05 .103
06 This is help about My Menu

Application using this help message:

01 MAIN
02 OPTIONS
03 HELP FILE "help.iem"
04 OPEN WINDOW w1 AT 5,5 WITH FORM "const"
05 MENU "My Menu"
06 COMMAND "Option 1" HELP 101
07 DISPLAY "Option 1 chosen"
08 COMMAND "Help"
09 CALL SHOWHELP(103)
10 END MENU
11 CLOSE WINDOW w1
12 END MAIN

User Interface

911

MDI Windows
Summary:

• Purpose
• Usage

o Configuring the parent container
o Configuring child programs

See also Interface built-in class.

Purpose

By default, BDL program windows are displayed independently in separate windows on
the front-end window manager. This mode is well known as SDI, Single Document
Interface. The user interface can be configured to group program windows in a parent
container (also known as MDI, Multiple Document Interface).

In BDL, Multiple Document Interface is called WCI: Window Container Interface.

The Window Container Interface (WCI) can be used to group several programs together
in a parent window. The parent program is the container for the other programs, defined
as children of the container. The container program can have its own windows, but this
makes sense only for temporary modal windows (with style="dialog").

Usage

WCI configuration is done dynamically at the beginning of programs, by using the
ui.Interface built-in class.

Configuring the parent container

The WCI container program is a separate BDL program of a special type, dedicated to
contain other program windows. On the front-end, container programs automatically
display a parent window that will hold all child program windows that will attach to the
container.

The WCI container program must indicate that its type is special (setType method), and
must identify itself (setName method):

01 MAIN
02 CALL ui.Interface.setName("parent1")
03 CALL ui.Interface.setType("container")
04 CALL ui.Interface.setText("SoftStore Manager")

Genero Business Development Language

912

05 CALL ui.Interface.loadStartMenu("mystartmenu")
06 MENU "Main"
07 COMMAND "Help" CALL help()
08 COMMAND "About" CALL aboutbox()
09 COMMAND "Exit" EXIT MENU
10 END MENU
11 END MAIN

Configuring child programs

WCI children programs must attach to a parent container by giving the name of the
container program:

01 MAIN
02 CALL ui.Interface.setName("custapp")
03 CALL ui.Interface.setType("child")
04 CALL ui.Interface.setText("Customers")
05 CALL ui.Interface.setContainer("parent1")
06 ...
07 END MAIN

Multiple container programs can be used to group programs by application modules.

When the program is identified as a container (type="container"), a global window is
automatically displayed as an container window. The default Toolbar and the default
Topmenu are displayed and a Startmenu can be used. Other windows created by this
kind of program can be displayed, inside the container (windowType="normal") or as
dialog windows (windowType="modal"). Window styles can be applied to the parent
window by using the default style specification (name="Window.main").

The client shows a system error and the programs stops when:

• A child program is started, but the parent container is not
• A container program is started twice

When the parent container program is stopped, other applications are automatically
stopped.

The WCI container program can query for the existence of children with the
getChildCount and getChildInstances methods:

01 MAIN
02 CALL ui.Interface.setName("parent1")
03 CALL ui.Interface.setType("container")
04 CALL ui.Interface.setText("SoftStore Manager")
05 CALL ui.Interface.loadStartMenu("mystartmenu")
06 MENU "Main"
07 COMMAND "Help" CALL help()
08 COMMAND "About" CALL aboutbox()
09 COMMAND "Exit"
10 IF ui.Interface.getChildCount()>0 THEN
11 ERROR "You must first exit the child programs."

User Interface

913

12 ELSE
13 EXIT MENU
14 END IF
15 END MENU
16 END MAIN

Genero Business Development Language

914

Front End Functions
Summary:

• Basics
• The frontCall method
• Standard built-in front end functions

See also: Interface built-in class

Basics

The BDL language provides a specific method to call functions defined in the front end
that will be executed locally on the workstation where the front end resides. When you
call a user function from BDL, you specify a module name and a function name. Input
and output parameters can be passed/returned in order to transmit/receive values
to/from the front end. A typical example is an "open file" dialog window that allows you to
select a file from the front end workstation file system.

A set of standard front end functions is built-in by default in the front end. It is possible to
write your own functions in order to extend the front end possibilities. For example, you
can write a set of functions to wrap an existing API, such as Window DDE or OLE. A set
of user functions is defined in a module, implemented as a Windows DLL or UNIX
shared library. These modules are loaded automatically according to the module name.
See the front end documentation for more details about creating user function modules
in the front end.

The frontCall method

Purpose:

The Interface built-in class provides a special method to perform front end calls.

Syntax:

ui.Interface.frontCall(module, function, parameter-list, returning-
list)

Notes:

1. module is a string defining the name of the module (DLL or shared lib) where the
function is defined. When you specify "standard", it references built-in functions
provided by default by the front end.

2. function is a string defining the name of the function to be called.

User Interface

915

3. parameter-list is a list of input parameters.
4. returning-list is a list of output parameters.

Usage:

Module and function names are case-sensitive.

Input and output parameters are provided as a variable list of parameters, with the
square braces notation ([param1,param2,...]). Input parameters can be an
expression supported by the language, while all output parameters must be variables
only, to receive the returning values. An empty list is specified with [].

Errors:

If the function could not be executed properly, one of the following exceptions might
occur:

Error
number Description

-6331 The module specified could not be found.
-6332 The function specified could not be found.
-6333 The function call failed (fatal error in function).

-6334 A function call stack problem occurred (usually, wrong number of
parameters provided).

Example:

01 MAIN
02 DEFINE data STRING
03 CALL ui.Interface.frontCall("mymodule", "connect",
["client1",128], [])
04 LET data = "Hello!"
05 CALL ui.Interface.frontCall("mymodule", "send", [data,
data.getLength()], [])
06 CALL ui.Interface.frontCall("mymodule", "receive", [], [data])
07 DISPLAY data
08 CALL ui.Interface.frontCall("mymodule", "disconnect",
["client1"], [])
09 END MAIN

Standard built-in front end functions

The following table shows the built-in functions implemented by the front ends in the
"standard" module. Note that most of these functions are supported by desktop front-
ends (GDC/GJC) only.

Genero Business Development Language

916

Warning: Additional modules and functions are available for front-ends, but are
specific to the front-end type. Please refer to the front-end documentation for
more details.

Function
Name Front-ends Description

execute GDC, GJC Executes a command on the workstation with or
without waiting.
Parameters:
- The command to be executed.
- The wait option (1=wait, 0=do not wait).
Returns:
- The execution result (TRUE=success,
FALSE=error).

feinfo GDC, GJC,
GWC

Returns front end properties like the front end type,
the workstation operating system type.
Parameters:
- The name of the property.
Returns:
- The value of the property.

Property
name Description

fename The name of the front end.

ostype The operating system type (UNIX,
WINDOWS, MACOSX).

shellexec GDC, GJC Opens a file on the workstation with the program
associated to the file extension.
Parameters:
- The document file to be opened.
Windows Only!: - the action to perform, related to the
way the file type is registred in Windows Registry
(Optionnal).
Returns:
- The execution result (TRUE=success,
FALSE=error)
Warning!: Under X11 Systems, this uses kde's
kfmclient tool, which needs to be installed on
your system.

getenv GDC, GJC Returns an environment variable set in the user
session on the front end workstation.
Parameters:
- The name of the environment variable.
Returns:
- The value of the environment variable.

opendir GDC, GJC Displays a file dialog window to get a directory path
on the local file system.

User Interface

917

Parameters:
- The default path.
- The caption to be displayed.
Returns:
- The name of the selected directory (or NULL if
canceled).

openfile GDC, GJC Displays a file dialog window to get a path to open a
file on the local file system.
Parameters:
- The default path.
- The name to be displayed for the file type.
- The file types (as a blank separated list of
extensions).
- The caption to be displayed.
Returns:
- The name of the selected file (or NULL if canceled).

savefile GDC, GJC Displays a file dialog window to get a path to save a
file on the local file system.
Parameters:
- The default path.
- The name to be displayed for the file type.
- The file types (as a blank separated list of
extensions).
- The caption to be displayed.
Returns:
- The name of the selected file (or NULL if canceled).

cbclear GDC, GJC Clears the content of the clipboard.
Parameters: none.
Returns:
- The execution result (TRUE=success,
FALSE=error).

cbset GDC, GJC Set the content of the clipboard.
Parameters:
- The text to be set.
Returns:
- The execution result (TRUE=success,
FALSE=error).

cbget GDC, GJC Gets the content of the clipboard.
Parameters: none.
Returns:
- The text in the clipboard.

cbadd GDC, GJC Adds to the content of the clipboard.
Parameters:
- The text to be added.
Returns:
- The execution result (TRUE=success,
FALSE=error).

Genero Business Development Language

918

cbpaste GDC, GJC Pastes the content of the clipboard to the current
field.
Parameters: none.
Returns:
- The execution result (TRUE=success,
FALSE=error).

mdclose GDC, GJC Unloads a DLL or shared library module.
Parameters:
- The name of the module.
Returns:
- 0 = success, -1 = module not found, -2 = cannot
unload (busy).

User Interface

919

Front End Protocol
This page describes the Front End Protocol: the communication between the Runtime
System and the Front End.

• Definition of the Front End Protocol
• Runtime System Commands
• Front End Events
• Communication Initialization
• Protocol compression and encapsulation

Definition of Front End Protocol

The purpose of the Front End Protocol is to synchronize the Abstract User Interface
(AUI) Tree maintained by the Runtime System and the corresponding copy held by the
Front End. For more details about these concepts, see the Dynamic User Interface.

The AUI Tree is used by the Front End to create graphical objects. The Front End and
the Runtime System have the same version of the AUI Tree. This way, communications
correspond to AUI Tree synchronization operations: on one hand the Front End sends
modification requests to the Runtime System (also called Front End Events); on the
other hand, the Runtime System analyses and validates Front End requests, performs
some codes if required, and sends back modification orders.

The following schema describes typical communication between the Runtime System
and the Front End:

1. Initialization phase: The Runtime System sends the initial AUI Tree.
2. The Front End builds the Graphical User Interface according to the AUI Tree.

Genero Business Development Language

920

3. The Front End waits for a user interaction (mouse click, keyboard typing).
4. When the user performs some interaction, the Front End sends Front End Events

corresponding to the modifications made by the user.
5. Front End Events are analyzed and validated by the runtime system.
6. The Runtime System sends back the result of the Front End requests, by the way

of AUI Tree Modifications Commands.
7. When receiving these commands, the Front End modifies its version of the AUI

Tree and updates the Graphical User Interface. It then waits for new user
interactions (step 3).

String Literals

In the Front End Protocol, the type of all attributes is string. The value of the attributes
follows the same rules as 4gl string literals:

• values are enclosed between double quotes : "
• CR character is \n
• TAB character is \t
• double quotes character is \"

Example:

01 { GroupBox 25 { { text "this is a \"GroupBox\""} } {}}

Runtime System Commands

The Runtime System sends commands to the Front End in order to modify the User
Interface. As discussed earlier, these commands are modifications of the AUI Tree.
Modifications can be:

• Adding children to a node
• Changing node attributes
• Removing a node

Syntax:

om command-id
{
 [{ { appendNodeCommand | updateNodeCommand | removeNodeCommand } }]
[...]
}

User Interface

921

Notes:

• command-id is the number of the command. This number is automatically
increased for each command sent by the application to the Front End. The very
first appendNodeCommand used to initialize the Protocol is command 0.

Warning: There is no verification made about this order. The communication wire
is supposed to be reliable and the Runner and the Front End do not perform
verification about lost commands.

Append Node Command

The an command adds one or several children and their attributes to a specified node.
Several children (and sub-children) and can be added in the same an command. This
command is sent by the Runtime System when there are new graphical objects to
display, and to initialize communication.

Syntax:

 an parent-id new-node

Where new-node is :

 tagName new-id { [attribute-list] } { [child-list] } }

Where attribute-list is :

 { attribute-name "attribute-value" } [...]

Where children-list is :

 { new-node } [...]

Notes:

1. parent-id identifies the existing node.
2. tag-name identifies the type of the added child. The list of possible children for

each node is defined in the AUI Tree.
3. new-id is a unique id for the new node created.
4. attribute-name is the name of the attribute of the node.
5. attribute-value is the value of the attribute.

Example:

This example shows an an command that creates a Menu (a Menu node is added) :

Genero Business Development Language

922

01 an 0 Menu 356 { { active "1"} { text "MAIN"} { posY "0"} { selection
"357"} }
02 {
03 { MenuAction 357 { { name "Option1"} { text "Option1"} { comment
""} } {}}
04 { MenuAction 358 { { name "Flow"} { text "Flow"} { comment ""} }
{}}
05 { MenuAction 359 { { name "Window"} { text "Window"} { comment
"OPEN WINDOW"} } {}}
06 { MenuAction 360 { { name "Form"} { text "Form"} { comment "form:
scroll, erase..."} } {}}
07 { MenuAction 361 { { name "Dialog"} { text "Dialog"} { comment ""}
} {}}
08 { MenuAction 362 { { name "Display"} { text "Display"} { comment
""} } {}}
09 { MenuAction 363 { { name "Options"} { text "Options"} { comment
"OPTIONS"} } {}}
10 { MenuAction 364 { { name "Exit"} { text "Exit"} { comment ""} }
{}}
11 }

Remove Node Command

The rn command removes a specific node. This command is used when graphical
objects are no longer required and need to be removed from the User Interface.

Syntax:

 rn node-id

Notes:

1. node-id identifies the existing node to be deleted

Example:

This example shows a rn command that removes a node from the AUI Tree; in this
example, the node removed would be a MenuAction node created by the an command
in the previous example.

01 rn 357

Update Node Command

The un command modifies some attributes of a specific node. This command is used to
modify the aspect of a widget, for example to validate the value entered by a user in a

User Interface

923

form field. This command is also used to confirm a focus change, modifying the focus
attribute of the UserInterface node.

Syntax:

 un node-id { [attribute-list] }

Where attribute-list is :

 { attribute-name "attribute-value" } [...]

Notes:

1. node-id identifies the modified node.
2. attribute-name is the name of the attribute of the node.
3. attribute-value is the value of the attribute.

Example:

This example shows an un command confirming a focus change: the focus now goes to
the Menu option identified by id "358", created by the an command described in the
example below. The UserInterface node has always an id equal to 0 (zero).

01 un 0 { focus "358" }

Front End Events

The Front End sends "modification requests" represented as "Front End Events" to the
Runtime system. A group of modification requests can be sent in the same event _om
command.

These events can be:

• events associated to any defined action (ActionEvent). This type of event is
sent if a user invokes an enabled Action: Action within Dialog, MenuAction within
Menu or StartMenuCommand within StartMenu.

• events associated to closing the current window (CloseWindowEvent). This type
of event is sent if a user wants to close the current Window.

• events associated to modifications of the User Interface (ConfigureEvent). This
type of event is sent if a user modifies something in the User Interface. Typically,
this is used for focus changes or when data is entered in a form field.

• events associated to Keyboard action which can not be handled by any other
event (KeyEvent). This type of event is sent to notify the Runtime System that a
user has pressed one of the following keys : tab, shift+tab, key_up, key_down,
page_up, page_down.

Genero Business Development Language

924

• events associated to local functions (FunctionCallEvent). This type of event is
sent when a local function is over, to sent back the result of this function.
Typically, local functions are DDE Functions, winexec.

• events sent by the Front End to terminate an application (DestroyEvent). This
type of event is sent when there is an error on the Front End side that needs that
the application terminates.

A very basic Front End needs only to handle KeyEvent events, and can send all keys
pressed by the user to the Runtime System. For performance and more enhancements,
most of the key pressed events are handled locally by the Front End. Only the keys
mentioned above are sent.

Syntax:

event _om command-id {}
{
 { { ConfigureEvent 0 { { idRef "object-id" } attribute-list } }
 | { KeyEvent 0 { { keyName "key-value" } } }
 | { ActionEvent 0 { { idRef "object-id" } } }
 | { FunctionCallEvent 0 { { result "result-value" } } }
 | { DestroyEvent 0 { { status "status-value" } { message "message-
value" } } }
 } [...]
}

Where attribute-list is :

{ attribute-name "attribute-value" } [...]

Notes:

1. command-id is the number of the event. This number is increased automatically
for each event _om command sent by the Front End to Runtime System.

2. object-id is the id of the node which is concerned by the event. Typically, this is
the id of the object which has been changed by the user, such as a form field.

3. attribute-name is the name of the attribute of the node.
4. attribute-value is the value of the attribute.
5. key-value is the value of the key pressed.
6. result-value is the value returned by the local function, after it completes

execution.
7. status-value is the error identifier that causes the DestroyEvent.
8. message-value is the error message explaining the reason of the DestroyEvent.

Example:

This example shows an event _om command corresponding to the following interaction:

• the user enters a value into a field. A ConfigureEvent with the new value is
sent.

User Interface

925

• the user click with the mouse in another field. A ConfigureEvent with the
position of the cursor in the new field is sent.

01 event _om 3 {}
02 {
03 { ConfigureEvent 0 { { idRef "35" } { value "someText" } { cursor
"4" } } }
04 { ConfigureEvent 0 { { idRef "32" } { cursor "6" } } }
05 }

Communication Initialization

Communication is initiated by the Runtime System, which sends some meta information
to the Front End. The meta information sent is "encoding". The Front End replies with
some information, to include the version of the Front End. With communication
initialized, the Runtime System sends the first version of the AUI Tree, generated
according to the interactive elements used in the program (see Menus, Windows and
Forms).

The root node of the Tree is the UserInterface node. This node is sent once to the Front
End. The append node command (an) is used to create the root node with an id of zero
('0'). The append node command is then used to add all the children needed by the
Front End to build the initial Graphical User Interface.

DVM meta message syntax:

DVM : meta Connection {
 { encoding "character-set" }
 { protocolVersion "protocol-version" }
 { interfaceVersion "interface-version" }
 { runtimeVersion "runtime-version" }
 { compression "zlib|none" }
 { encapsulation "0|1" }
 }

Notes:

1. character-set defines the encoding character code set used in the protocol.
2. The compression attribute defines the type of compression used. The

compression method can be "zlib" or "none". When "zlib" is used the
encapsulation must be enabled. If this attribute is not set the default value is
"none". When the DVM send this attribute it is a request. The compression is
only used once the front-end validates this request.

3. protocol-version defines the version of the protocol (commands).
4. interface-version defines the version of the user interface (nodes and attributes).
5. runtime-version defines the version of runtime system (VM).

Genero Business Development Language

926

Front-end meta message syntax:

FE : meta Client {
 { name "client-type" }
 { version "client-version" }
 { host "hostname" }
 { port "tcpport" }
 { connections "count" }
 { frontEndID2 "frontend-ID2" }
 { compression "zlib|none" }
 { encapsulation "0|1" }
 { filetransfer "0|1" }
 }

Notes:

1. client-type is the type of the front end. Can be GDC, GJC, and so on.
2. client-version is the version of the Front End.
3. hostname is the network address (alphanumeric value) of the computer hosting

the Front End.
4. tcpport is the network port number used by the connection.
5. count is the number of connections established with the front-end.
6. frontend-ID2 identifies the front-end for authentication rules.

Protocol compression and encapsulation

Encapsulation is always active in the GUI protocol, to send packets by blocks over the
network and allow secondary protocols over the channel, such as file transfer between
the front-end and the application server.

When possible, the runtime system and the client try to compress the data exchanges in
the GUI communication. The compression algorithm is provided by the standard ZLIB
library of the system. The ZLIB library might not be installed on the system, especially on
Windows platforms. If the runtime system is not able to find the standard ZLIB library of
the system, it loads the fallback library provided in FGLDIR. This secondary library is
located in $FGLDIR/lib/libzfgl.so on UNIX and %FGLDIR%\bin\LIBZFGL.DLL on
Windows.

Notes:

1. By default if encapsulation / compression is enabled, the GUI communication is
not pretty printed. To properly see the GUI communication in a front-end log
window, set the environment variable FGLGUIDEBUG to 1.

927

The Application class
Summary:

• Syntax
• Methods
• Usage

o Command line arguments
o Program information
o Runtime information
o FGLPROFILE resource
o Debugging

See also: Built-in classes

Syntax

The Application class is a built-in class providing an interface to the application
internals.

Syntax:

base.Application

Notes:

1. This class does not have to be instantiated; it provides class methods for the
current program.

Methods:

Class Methods
Name Description
getArgumentCount()
 RETURNING INTEGER

Returns the number of arguments
passed to the program.

getArgument(position INTEGER)
 RETURNING STRING

Returns the argument passed to the
program, according to its position.

getProgramName()
 RETURNING STRING

Returns the name of the program.

getProgramDir()
 RETURNING STRING

Returns the system-dependent path
of the directory where the program
files are located.

getFglDir() Returns the system-dependent path

Genero Business Development Language

928

 RETURNING STRING of the installation directory of the
runtime system (FGLDIR
environment variable).

getResourceEntry(name STRING)
 RETURNING STRING

Returns the value of an
FGLPROFILE entry.

getStackTrace()
 RETURNING STRING

Returns the current stack trace of the
program flow.

Usage:

The Application class groups a set of utility functions related to the program
environment. Command line arguments, execution directory and FGLPROFILE resource
entries are some of the elements you can query with this class.

Command line arguments

You can query command line arguments with the getArgumentCount() and
getArgument() methods. The getArgumentCount() method returns the total number of
arguments passed to the program, while getArgument() returns the argument value for
the given position. First argument starts at 1 (argument number zero is the program
name).

01 MAIN
02 DEFINE i INTEGER
03 FOR i=1 TO base.Application.getArgumentCount()
04 DISPLAY base.Application.getArgument(i)
05 END FOR
06 END MAIN

Program information

Basic program execution information can be queried with the getProgramName() and
getProgramDir() methods. The getProgramName() method returns the name of the
program. The getProgramDir() method returns the directory path where the 42r
program file is located. Note that the directory path is system-dependent.

Runtime information

Product information can be queried with the getFglDir() method. The getFglDir()
method returns the installation directory path defined by FGLDIR. Note that the directory
path is system-dependent.

FGLPROFILE resource

If needed you can query FGLPROFILE resource entries with the getResourceEntry()
method. This method returns the fglprofile value of the entry passed as parameter.

Built-in Classes

929

01 MAIN
02 DISPLAY
base.Application.getResourceEntry("mycompany.params.logmode")
03 END MAIN

Debugging

In some situations - typically, to identify problems on a production site - you may want to
known what functions have been called when a program raises an error. You can get
and print the stack trace in a log file by using the getStackTrace() method. This
method returns a string containing a formatted list of the current function stack.

You typically use this function in a WHENEVER ERROR CALL handler, as in the
following code example:

01 MAIN
02 WHENEVER ERROR CALL my_handler
03 ...
04 END MAIN
05 ...
06 FUNCTION my_handler()
07 DISPLAY base.Application.getStackTrace()
08 END FUNCTION

Example of stack trace output:

#0 my_handler() at debug.4gl:173
#1 save_customer_data() at customer.4gl:1534
#2 edit_customer() at customer.4gl:542
#3 main at main.4gl:23

Genero Business Development Language

930

The Channel class
Summary:

• Syntax
• Methods
• Usage

o Creating a Channel object
o Setting the value delimiter
o Opening a Channel

 Opening a file Channel
 Opening a pipe Channel
 Opening a client socket Channel

o Reading from / Writing to a Channel
o Closing a Channel
o Exception handling
o Detecting end of file
o Reading and Writing complete lines
o Managing line terminators with read() / write()
o Managing line terminators with readLine() / writeLine()
o Line terminators on Windows platforms

• Examples
o Example 1: Reading formatted data from a file
o Example 2: Executing the ls UNIX command
o Example 3: Reading lines from a file
o Example 4: Communicating with an HTTP server

See also: Built-in classes

Syntax

The Channel class provides basic read/write functionality for access to files or
communication with sub-processes.

Syntax:

base.Channel

Methods:

Class Methods
Name Description
create() RETURNING base.Channel Creates a new Channel object.
Object Methods

Built-in Classes

931

Name Description
isEof() RETURNING INTEGER Returns TRUE if end of file is

reached.
openFile(path STRING, flags
STRING)

Opens a Channel to a file identified
by path, with options.

openPipe(scmd STRING, flags
STRING)

Opens a Channel to a process by
executing the command scmd, with
options.

openClientSocket(host STRING,
port INTEGER, flags STRING,
timeout INTEGER)

Opens a Channel to a socket server
identified by host and port, with
options.

setDelimiter(d STRING) Sets the field delimiter of the
Channel.

read(buffer-list) RETURNING
INTEGER

Reads data from the input.

write(buffer-list) Writes data to the output.
readLine() RETURNING STRING Reads a complete line of data from

the Channel and returns the string.
writeLine(buffer STRING) Writes a complete line of data to the

Channel.
close() Closes the Channel.

Usage:

The Channel class is a built-in class that provides basic read/write functionality for
accessing files or communicating with sub-processes.

Warning: As with other BDL instructions, when you are reading or writing strings
the escape character is the backslash "\".

Creating a Channel object

First you must declare a base.Channel variable; then, create a Channel object and
optionally set the field delimiter:

01 DEFINE ch base.Channel
02 LET ch = base.Channel.create()

Setting the value delimiter

After creating the Channel object, you typical set the field value delimiter with:

Genero Business Development Language

932

01 CALL ch.setDelimiter("^")

The default is DBDELIMITER, or "|" if DBDELIMITER is not defined. If you pass NULL,
no delimiter is used.

Opening a Channel

Opening a file Channel

You can open a file for reading, writing, or both, by using the openFile() method:

01 CALL ch.openFile("file.txt", "w")

The parameters for this method are:

1. The path to the file
2. The opening flags

The opening flags can be one of:

• r : For Read mode: reads from a file (standard input if path is NULL).
• w : For Write mode: starts with an empty file (standard output if the path is

NULL).
• a : For Append mode: writes at the end of a file (standard output if the path is

NULL).
• u : For Read from standard input and Write to standard output (path must be

NULL).

Any of the above options can be followed by:

• b : Open in binary mode, to avoid CR/LF (carriage return/line feed) translation.

When you use the "w" or "a" modes, the file is created if it does not exist.

Opening a pipe Channel

With the openPipe() method, you can read from the standard output of a sub-process,
write to the standard input, or both.

01 CALL ch.openPipe("ls", "r")

The parameters for this method are:

1. The command to be executed
2. The opening flags

The opening flags can be one of:

Built-in Classes

933

• r : For Read Only from standard output of the command
• w : For Write Only to standard input of the command
• a : For Write Only to standard input of the command
• u : For Read from standard output and Write to standard input of the command

Opening a client socket Channel

Use the openClientSocket() method to establish a TCP connection to a server.

Warning: The network protocol must be based on ASCII, or must use the same
character set as the application.

Example:

01 CALL ch.openClientSocket("localhost", 80, "ub", 5)

The parameters for this method are:

1. The name of the host machine you want to connect to
2. The port number of the service
3. The opening flags
4. The timeout in seconds. -1 indicates no timeout (wait forever)

The timeout is specified in seconds, -1 waits forever.

The opening flags can be one of:

• r : For Read mode: only to read from the socket
• w : For Write mode: only to write to the socket
• u : For Read and Write mode: To read and write from/to the socket

Any of the above options can be followed by:

• b : Open in binary mode, to avoid CR/LF (carriage return / line feed) translation.

Reading from / Writing to a Channel

When the Channel is open, you can read and/or write data from/to the input/output. You
must provide a variable list by using the the square brace notation
([param1,param2,...]). The read function returns TRUE if data could be read.

01 DEFINE a,b INTEGER
02 DEFINE c,d CHAR(20)
03 WHILE ch1.read([a,b,c,d])
04 CALL ch2.write([a,b,c,d])
05 END WHILE

Genero Business Development Language

934

Closing a Channel

When you have finished with the Channel, close it with the close() method:

01 CALL ch.close()

A Channel is automatically closed when the last reference to the Channel object is
deleted.

Exception handling

You can trap exceptions with the standard WHENEVER ERROR exception handler:

01 WHENEVER ERROR CONTINUE
02 CALL ch.write([num,label])
03 IF STATUS THEN
04 ERROR "An error occurred while reading from Channel"
05 CALL ch.close()
06 RETURN -1
07 END IF
08 WHENEVER ERROR STOP

Detecting end of file

To detect the end of a file while reading from a Channel, you can use the isEof()
method:

01 DEFINE s STRING
02 WHILE TRUE
03 LET s = ch.readLine()
04 IF ch.isEof() THEN EXIT WHILE END IF
05 DISPLAY s
06 END WHILE

Warning: The End Of File can only be detected after the last read (first read, then
check EOF and process if not EOF) .

Reading and writing complete lines

If the stream does not contain lines with fields (and field separators), you should use the
readLine() and writeLine() methods. These methods read/write a complete line
from/to the Channel, by ignoring the delimiter defined by setDelimiter():

Built-in Classes

935

01 DEFINE buff STRING
02 CALL ch.writeLine("this is a complete line")
03 LET buff = ch.readLine()

The readLine() method must be used if the source stream does not contain lines with
field separators.

The readLine() method returns an empty string if the line is empty.

Warning: The readLine() function returns NULL if end of file is reached. To
distinguish empty lines from NULL, you must use the STRING data type. If you
use a CHAR or VARCHAR, you will get NULL for empty lines. To properly detect
end of file, you can use the isEof() method.

Managing line terminators with read() and write()

When using the read()/write() functions, the escaped line-feed (LF, \n) characters are
written as BS + LF to the output. When reading data, BS + LF are detected and
interpreted, to be restituted as if the value was assigned by a LET instruction, with the
same string used in the write() function.

If you want to write a LF as part of a value, the string must contain the backslash and
line-feed as two independent characters. You need to escape the backslash when you
write the string constant in the BDL source file.

In the following code example, an empty delimiter is used to simplify explanation:

01 CALL ch.setDelimiter("")
02 CALL ch.write("aaa\\\nbbb") -- [aaa<bs><lf>bbb]
03 CALL ch.write("ccc\nddd") -- [aaa<lf>bbb]

... would generate the following output:

01 aaa\
02 bbb
03 ccc
04 ddd

where line 01 and 02 contain data for the same line, in the meaning of a Channel record.

When you read these lines back with a read() call, you get the following strings in
memory:

Read 1 aaa<bs><lf>bbb
Read 2 ccc
Read 3 ddd

Genero Business Development Language

936

These reads would correspond to the following assignments when using string
constants:

01 LET s = "aaa\\\nbbb"
02 LET s = "ccc"
03 LET s = "ddd"

Managing line terminators with readLine() and writeLine()

When using the readLine() and writeLine() functions, a LF character represents the
end of a line.

Warning: LF characters escaped by a backslash are not interpreted as part of the
line during a readLine() call.

When a line is written, any LF characters in the string will be written as is to the output.
When a line is read, the LF escaped by a backslash is not interpreted as part of the line.

For example, the following code:

01 CALL ch.writeLine("aaa\\\nbbb") -- [aaa<bs><lf>bbb]
02 CALL ch.writeLine("ccc\nddd") -- [aaa<lf>bbb]

... would generate the following output:

01 aaa\
02 bbb
03 ccc
04 ddd

... and the subsequent readLine() will read four different lines, where the first line
would be ended by a backslash:

Read 1 aaa<bs>
Read 2 bbb
Read 3 ccc
Read 4 ddd

Line terminators on Windows platforms

On Windows platforms, DOS formatted text files use CR/LF as line terminators. You can
manage this type of files with the Channel class.

By default, on both Windows and Unix platforms, when records are read from a DOS file
with the Channel class, the CR/LF line terminator is removed. When a record is written

Built-in Classes

937

to a file on Windows, the lines are terminated with CR/LF in the file; on UNIX, the lines
are terminated with LF only.

If you want to avoid the automatic translation of CR/LF on Windows, you can use the b
option of the openFile() and openPipe() methods. You typically combine the b option
with r or w, based on the read or write operations that you want to do:

01 CALL ch.openFile("mytext.txt", "rb")

On Windows, when lines are read with the b option, only LF is removed from CR/LF line
terminators; CR will be copied as a character part of the last field. In contrast, when lines
are written with the b option, LF characters will not be converted to CR/LF.

On UNIX, writing lines with or without the binary mode option does not matter.

Examples

Example 1: Reading formatted data from a file

This program reads data from the "file.txt" file that contains two columns separated by a
| (pipe) character, and re-writes this data at the end of the "fileout.txt" file, separated by
"%"

01 MAIN
02 DEFINE buff1, buff2 STRING
03 DEFINE ch_in, ch_out base.Channel
04 LET ch_in = base.Channel.create()
05 CALL ch_in.setDelimiter("|")
06 LET ch_out = base.Channel.create()
07 CALL ch_out.setDelimiter("%")
08 CALL ch_in.openFile("file.txt","r")
09 CALL ch_out.openFile("fileout.txt","w")
10 WHILE ch_in.read([buff1,buff2])
11 CALL ch_out.write([buff1,buff2])
12 END WHILE
13 CALL ch_in.close()
14 CALL ch_out.close()
15 END MAIN

Example 2: Executing the ls UNIX command

This program executes the "ls" command and displays the filenames and extensions
separately:

01 MAIN
02 DEFINE fn CHAR(40)
03 DEFINE ex CHAR(10)
04 DEFINE ch base.Channel
05 LET ch = base.Channel.create()

Genero Business Development Language

938

06 CALL ch.setDelimiter(".")
07 CALL ch.openPipe("ls -l","r")
08 WHILE ch.read([fn,ex])
09 DISPLAY fn, " ", ex
10 END WHILE
11 CALL ch.close()
12 END MAIN

Example 3: Reading lines from a file:

01 MAIN
02 DEFINE i INTEGER
03 DEFINE s STRING
04 DEFINE ch base.Channel
05 LET ch = base.Channel.create()
06 CALL ch.openFile("file.txt","r")
07 LET i = 1
08 WHILE TRUE
09 LET s = ch.readLine()
10 IF ch.isEof() THEN EXIT WHILE END IF
11 DISPLAY i, " ", s
12 LET i = i + 1
13 END WHILE
14 CALL ch.close()
15 END MAIN

Example 4: Communicating with an HTTP server:

01 MAIN
02 DEFINE ch base.Channel, eof INTEGER
03 LET ch = base.Channel.create()
04 -- We open the Channel in binary mode to control CR+LF
05 CALL ch.openClientSocket("localhost",80,"ub", 30)
06 -- HTTP expects CR+LF: Note that LF is added by writeLine()!
07 CALL ch.writeLine("GET / HTTP/1.0\r")
08 -- No HTTP headers...
09 -- Empty line = end of headers
10 CALL ch.writeLine("\r")
11 WHILE NOT eof
12 DISPLAY ch.readLine()
13 LET eof = ch.isEof()
14 END WHILE
15 CALL ch.close()
16 END MAIN

Built-in Classes

939

The StringBuffer class
Summary:

• Syntax
• Methods
• Usage

o Create a StringBuffer object
o Append a string
o Clear the string buffer
o Compare strings
o Compare strings ignoring case
o Return the character at a specified position
o Return the position of a substring
o Return the length of a string
o Returns the substring at the specified position
o Convert string to lowercase
o Convert string to uppercase
o Trim the string
o Trim the beginning of the string
o Trim the end of the string
o Replace part of the current string with another string
o Replace one string with another
o Insert a string
o Convert buffer to a STRING value

• Examples

See also: Built-in classes

Syntax

The StringBuffer class is a built-in class designed to manipulate character strings.

Syntax:

base.StringBuffer

Methods:

Class Methods
Name Description
create()
 RETURNING base.StringBuffer

Creates a new empty StringBuffer
object.

Object Methods

Genero Business Development Language

940

Name Description
append(str STRING) Appends a string to the string buffer.
clear() Clears the string buffer.
equals(src STRING)
 RETURNING INTEGER

Returns TRUE if the string passed as
parameter matches the current string.
If one of the strings is NULL the
method returns FALSE.

equalsIgnoreCase(src STRING)
 RETURNING INTEGER

Returns TRUE if the string passed as
parameter matches the current string,
ignoring character case. If one of the
strings is NULL the method returns
FALSE.

getCharAt(pos INTEGER)
 RETURNING STRING

Returns the character at the byte
position pos (starts at 1). Returns
NULL if the position does not match a
valid character-byte position in the
current string.

getIndexOf(str STRING, spos
INTEGER)
 RETURNING INTEGER

Returns the position of the sub-string
str in the current string, starting from
byte position spos. Returns zero if the
sub-string was not found.

getLength()
 RETURNING INTEGER

Returns the number of bytes of the
current string, including trailing
spaces.

subString(spos INTEGER, epos
INTEGER)
 RETURNING STRING

Returns the sub-string starting at the
byte position spos and ending at
epos. Returns NULL if the positions
do not delimit a valid sub-string in the
current string. First character-byte
starts at 1.

toLowerCase() Converts the current string to
lowercase.

toUpperCase() Converts the current string to
uppercase.

trim() Removes white space characters
from the beginning and end of the
current string.

trimLeft() Removes white space characters
from the beginning of the current
string.

trimRight() Removes white space characters
from the end of the current string.

replaceAt(pos INTEGER, len
INTEGER, str STRING)

Replaces a part of the current string
by another string, starting from byte
position pos for len bytes. First
character-byte position is 1.

replace(oldString STRING, Replaces in the current string the

Built-in Classes

941

newString STRING, occ INTEGER) STRING oldString by the STRING
newString, occ time(s) (all
occurrences, if occ set to 0).

insertAt(pos INTEGER, str
STRING)

Inserts a string before the byte
position pos. First character-byte
position is 1.

toString() RETURNING STRING Creates a STRING value from the
current buffer.

Usage:

Create a StringBuffer object with the base.StringBuffer.create() class method.

The StringBuffer class is optimized for string operations. When using a StringBuffer
object, you work directly on the internal string buffer. Use the StringBuffer class to
implement heavy string manipulations. For example, if you need to process 500Kb of
text (such as when you are performing a global search-and-replace of specific words),
you get much better performances with a StringBuffer object than you would using a
basic STRING variable.

Warning: The StringBuffer methods are all based on byte-semantics. In a multi-
byte environment, the getLength() method returns the number of bytes, which can
be different from the number of characters.

When you pass a StringBuffer object as function parameter, the function receives a
variable that references the StringBuffer object. Passing the StringBuffer object by
reference is much more efficient than using a STRING that is passed by value (i.e. data is
copied on the stack). The function manipulates the original string, not a copy of the string
as if it was a STRING variable.

A StringBuffer object has different semantics than a STRING variable: When using the
STRING data type, the runtime system always creates a new buffer when you modify a
string.

For example, when you concatenate strings with the append() method of a STRING
variable, the runtime system creates a new buffer to hold the new string. This does not
impact performances of programs with a user interface or even batch programs doing
SQL, but can be an issue when you want to rapidly process large character strings.

The append() method appends a string to the string buffer.

The clear() method clears the string buffer.

The equals() method compares two strings.

The equalsIgnoreCase() method compares two strings ignoring case.

Genero Business Development Language

942

The getCharAt() method returns the character at the specified position.

The getIndexOf() method returns the position of the specified substring.

The getLength() method returns the number of bytes in the current string.

The subString() method returns the substring at the specified position.

The toLowerCase() method converts the current string to lowercase.

The toUpperCase() method converts the current string to uppercase.

The trim() method removes white space from the beginning and end of the current
string.

The trimLeft() method removes white space from the beginning of the current string.

The trimRight()method removes white space from the end of the current string.

The replaceAt() method freplaces part of the current string with another string.

The replace() method replaces the current string with another string.

The insertAt() method inserts a string before the specified position.

The toString() method creates a STRING value from the current buffer.

Examples

Example 1: Adding strings to a StringBuffer.

01 MAIN
02 DEFINE buf base.StringBuffer
03 LET buf = base.StringBuffer.create()
04 CALL buf.append("abc")
05 DISPLAY buf.toString()
06 CALL buf.append("def")
07 DISPLAY buf.toString()
08 CALL buf.append(123456)
09 DISPLAY buf.toString()
10 END MAIN

Example 2: Modifying a StringBuffer with a function.

01 MAIN
02 DEFINE buf base.StringBuffer
03 LET buf = base.StringBuffer.create()

Built-in Classes

943

04 CALL modify(buf)
05 DISPLAY buf.toString()
06 END MAIN
07
08 FUNCTION modify(sb)
09 DEFINE sb base.StringBuffer
10 CALL sb.append("more")
11 END FUNCTION

Genero Business Development Language

944

The StringTokenizer class
Summary:

• Syntax
• Methods
• Usage

o Create a tokenizer
o Extended create method
o Count the number of tokens
o Check if there are more tokens to return
o Return the next token

• Examples

See also: Built-in classes, StringBuffer

Syntax

The StringTokenizer class is designed to parse a string to extract tokens according to
delimiters.

Syntax:

base.StringTokenizer

Methods:

Class Methods
Name Description
create(src STRING , delim
STRING)
 RETURNING base.StringTokenizer

Returns a StringTokenizer object
prepared to parse the src source
string according to the delim
delimiters. The delim parameter is a
string that can hold one or more
delimiters.

createExt(src STRING , delim
STRING,
 esc STRING, nulls
INTEGER)
 RETURNING base.StringTokenizer

Same as create(), except for
additional options. The esc parameter
defines an escape character for the
delimiter. The nulls parameter
indicates if empty tokens are taken
into account.

Object Methods
Name Description

Built-in Classes

945

countTokens()
 RETURNING INTEGER

Returns the number of tokens left to
be returned.

hasMoreTokens()
 RETURNING INTEGER

Returns TRUE if there are more
tokens to return.

nextToken()
 RETURNING STRING

Parses the string and returns the next
token.

Usage:

The StringTokenizer built-in class is provided to split a source string into tokens,
according to delimiters. The following code uses the base.StringTokenizer.create()
method to create a StringTokenizer that will generate 3 tokens with the values "aaa",
"bbb", "ccc":

01 DEFINE tok base.StringTokenizer
02 LET tok = base.StringTokenizer.create("aaa|bbb|ccc","|")

The StringTokenizer can take a unique or multiple delimiters into account. A delimiter is
always one character long. In the following example, 3 delimiters are used, and 4 tokens
are extracted:

01 DEFINE tok base.StringTokenizer
02 LET tok = base.StringTokenizer.create("aaa|bbb;ccc+ddd","|+;")

If you create a StringTokenizer with the base.StringTokenizer.create(src,delim)
method, the empty tokens are not taken into account, and no escape character is
defined for the delimiters:

• No escape character can be used.
• The nextToken() method will never return NULL strings.
• In the source string, leading and trailing delimiters or the amount of delimiters

between two tokens do not affect the number of tokens.

If you create a StringTokenizer with the
base.StringTokenizer.reateExt(src,delim,esc,nulls) method, you can
configure the StringTokenizer:

When passing a character to the esc parameter, the delimiters can be escaped in the
source string.

When passing TRUE to the nulls parameter, the empty tokens are taken into account:

• The nextToken() method might return NULL strings.
• In the source string, leading and trailing delimiters or the amount of delimiters

between two tokens affects the number of tokens.

Genero Business Development Language

946

Note that when you want to specify a backslash as a delimiter, you must use double
backslashes in both the source string and as the delimiter, as shown in Example 3
below.

The countTokens() method counts the number of tokens left to be returned.

The hasMoreTokens() method returns TRUE if there are more tokens to return.

The nextToken() method parses the string and returns the next token.

Examples

Example 1: Split a UNIX directory path

01 MAIN
02 DEFINE tok base.StringTokenizer
03 LET tok = base.StringTokenizer.create("/home/tomy","/")
04 WHILE tok.hasMoreTokens()
05 DISPLAY tok.nextToken()
06 END WHILE
07 END MAIN

Example 2: Taking escaped delimiters and NULL tokens into account

01 MAIN
02 DEFINE tok base.StringTokenizer
03 LET tok =
base.StringTokenizer.createExt("||\\|aaa||bbc|","|","\\",TRUE)
04 WHILE tok.hasMoreTokens()
05 DISPLAY tok.nextToken()
06 END WHILE
07 END MAIN

Example 3: Specifying a backslash as the delimiter

01 MAIN
02 DEFINE tok base.StringTokenizer
03 LET tok = base.StringTokenizer.create("C:\\My Documents\\My
Pictures","\\")
04 WHILE tok.hasMoreTokens()
05 DISPLAY tok.nextToken()
06 END WHILE
07 END MAIN

Built-in Classes

947

The TypeInfo class
Summary:

• Syntax
• Methods
• Usage

o Creating a TypeInfo object

See also: Built-in classes

Syntax

The TypeInfo class is a built-in class provided to serialize program variables.

Syntax:

base.TypeInfo

Notes:

1. This class does not have to be instantiated.

Methods

Class Methods
Name Description
create(variable)
 RETURNING om.DomNode

Creates a DOM node from a program
variable

Usage

Use the TypeInfo class to serialize program variables in an XML format. For example,
you can fetch rows from a database table in an array, specify the array as the input into
the base.TypeInfo.create() method, write the resulting DomNode to a file using the
node.writeXml() method, and give the resulting file to any application that is able to
read XML for input.

Genero Business Development Language

948

Creating a TypeInfo object

The create() method of this class builds a DomNode object from any kind of structured
program variable, thus serializing the variable:

01 MAIN
02 DEFINE n om.DomNode
03 DEFINE r RECORD
04 key INTEGER,
05 lastname CHAR(20),
06 brithdate DATE
07 END RECORD
08 LET r.key = 234
09 LET r.lastname = "Johnson"
10 LET r.brithdate = MDY(12,24,1962)
11 LET n = base.TypeInfo.create(r)
12 CALL n.writeXml("r.xml")
13 END MAIN

The generated node contains variable values and data type information. The above
example creates the following file:

<?xml version="1.0"? encoding="ISO-8859-1">
<Record>
 <Field type="INTEGER" value="234" name="key"/>
 <Field type="CHAR(20)" value="Johnson" name="lastname"/>
 <Field type="DATE" value="12/24/1962" name="birthdate"/>
</Record>

Note that data is formatted according to current environment settings (DBDATE,
DBFORMAT, DBMONEY).

Built-in Classes

949

The Interface class
Summary:

• Syntax
• Methods
• Usage
• Examples

o Getting the type and name of the front-end
o Get the AUI root node and write it to XML file
o Using the Windows Container Interface
o Synchronizing the AUI tree with the front-end

See also: Built-in classes.

Syntax

The Interface class is a built-in class provided to manipulate the user interface.

Syntax:

ui.Interface

Notes:

1. This class does not have to be instantiated.

Methods:

Class Methods
Name Description
frontCall(module STRING, name
STRING, parameter-list,
returning-list)

Calls the front end function name of
the module module.
See Front End Functions for more
details.

getDocument()
 RETURNING om.DomDocument

Returns the DOM document owning
the Abstract User Interface tree.

getFrontEndName()
 RETURNING STRING

Returns the type of the front end (
'Gdc', 'Gwc', 'Gjc', 'Console').

getFrontEndVersion()
 RETURNING STRING

Returns the front end version string.

getRootNode()
 RETURNING om.DomNode

Returns the root DOM node of the
Abstract User Interface tree.

Genero Business Development Language

950

loadStartMenu(file STRING) Loads the start menu defined in an
XML file into the AUI tree. See
StartMenus for more details.

loadToolBar(file STRING) Loads the toolbar defined in an XML
file into the AUI tree. See Toolbars for
more details.

loadTopMenu(file STRING) Loads the topmenu defined in an
XML file into the AUI tree. See
TopMenus for more details.

loadActionDefaults(file STRING
)

Loads the default decoration for
actions from a specific XML file into
the AUI tree. See Action Defaults for
more details.

loadStyles(file STRING) Loads styles defined in an XML file
into the AUI tree. See Prensentation
Styles for more details.

setName(name STRING) Sets the name to identify the program
on the front-end.

getName()
 RETURNING STRING

Returns the identifier of the program.

setText(title STRING) Defines a title for the program.
getText()
 RETURNING STRING

Returns the title of the program.

setImage(name STRING) Sets the name of the icon to be used
for this program.

getImage()
 RETURNING STRING

Returns the name of the icon.

setType(type STRING) Defines the type of program.
getType()
 RETURNING STRING

Returns the type of the program.

setContainer(name STRING) Defines the name of the parent
container of this program.

getContainer()
 RETURNING STRING

Returns the name of the parent
container of this program.

getChildCount()
 RETURNING INTEGER

Returns the number of children in this
container.

getChildInstances(name STRING)
 RETURNING INTEGER

Returns the number of children
identified by name.

refresh() Synchronizes the front end with the
current AUI tree.

Built-in Classes

951

Usage

Getting the root DOM document

The ui.Interface.getDocument() class method returns the DomDocument object of
the Abstract user Interface tree.

Getting the current front-end identifier

The ui.Interface.getFronEndName() class method returns the type of the front-end
used by the application. This is mainly provided for debugging purposes.

Getting the current front-end version

The ui.Interface.getFronEndVersion() class method returns the version number of
the front-end used by the application. This is mainly provided for debugging purposes.

Getting the root node of the DOM document

The ui.Interface.getRootNode() class method returns the root DomNode of the
Abstract user Interface tree.

Defining the name of the application

The ui.Interface.setName() class method can be used to identify the application on
the front-end. For example, this name is used in MDI configuration.

Getting the name of the application

Use the ui.Interface.getName() class method to get the name of the application
previously set by setName().

Defining the title of the application

The ui.Interface.setText() class method can be used to define a main title for the
application on the front-end. This title is displayed in the main Window.

Getting the title of the application

Use the ui.Interface.getText() class method to get the title of the application
previously set by setText().

Defining the icon of the application

The ui.Interface.setImage() class method can be used to define the icon of the
application on the front-end. This icon will be used in taskbars, for example.

Genero Business Development Language

952

Getting the icon of the application

Use the ui.Interface.getImage() class method to get the image name of the
application previously set by setImage().

Defining the type of the application

The ui.Interface.setType() class method can be used to define the type of the
application, typically used in MDI configurations.

Possible values can be 'normal', 'container' or 'child'.

Getting the type of the application

Use the ui.Interface.getType() class method to get the type of the application,
previously set by setType().

Defining the parent container of the application

The parent container can be specified with the ui.Interface.setContainer() class
method, typically used in MDI configurations.

Getting the parent container of the application

Use the ui.Interface.getContainer() method to get the name of the parent
container of the application.

Getting the number of children in a parent container

Use the ui.Interface.getChildCount() class method to get the current number of
child applications in this parent WCI.

See also MDI configuration.

Getting the number of child instances for a given application name

If you need to known how many child instances of the same application are started in the
current WCI container, call the ui.Interface.getChildInstances() class method.
This method takes the application name as a parameter (the one defined with
setName())

See also MDI configuration.

Refreshing the user interface

Use the ui.Interface.refresh() class method to synchronize the server-side AUI
tree with the frond-end AUI tree. For more details, see "When is the front-end
synchronized?".

Built-in Classes

953

Examples

Example 1: Get the type and version of the front end.

01 MAIN
02 MENU "Test"
03 COMMAND "Get"
04 DISPLAY "Name = " || ui.Interface.getFrontEndName()
05 DISPLAY "Version = " || ui.Interface.getFrontEndVersion()
06 COMMAND "Exit"
07 EXIT MENU
08 END MENU
09 END MAIN

Example 2: Get the AUI root node and save it to a file in XML format.

01 MAIN
02 DEFINE n om.DomNode
03 MENU "Test"
04 COMMAND "SaveUI"
05 LET n = ui.Interface.getRootNode()
06 CALL n.writeXml("auitree.xml")
07 COMMAND "Exit"
08 EXIT MENU
09 END MENU
10 END MAIN

Example 3: Using the Window Container Interface

The WCI parent program:

01 MAIN
02 CALL ui.Interface.setName("main1")
03 CALL ui.Interface.setText("This is the MDI container")
04 CALL ui.Interface.setType("container")
05 CALL ui.Interface.loadStartMenu("appmenu")
06 MENU "Main"
07 COMMAND "Help" CALL help()
08 COMMAND "About" CALL aboutbox()
09 COMMAND "Exit"
10 IF ui.Interface.getChildCount()>0 THEN
11 ERROR "You must first exit the child programs."
12 ELSE
13 EXIT MENU
14 END IF
15 END MENU
16 END MAIN

The WCI child program:

01 MAIN

Genero Business Development Language

954

02 CALL ui.Interface.setName("prog1")
03 CALL ui.Interface.setText("This is module 1")
04 CALL ui.Interface.setType("child")
05 CALL ui.Interface.setContainer("main1")
06 MENU "Test"
07 COMMAND "Exit"
08 EXIT MENU
09 END MENU
10 END MAIN

Example 4: Synchronizing the AUI tree with the front end.

01 MAIN
02 DEFINE cnt INTEGER
03 OPEN WINDOW w WITH FORM "myform"
04 FOR cnt=1 TO 10
05 DISPLAY BY NAME cnt
06 CALL ui.Interface.refresh()
07 SLEEP 1
08 END FOR
09 END MAIN

Built-in Classes

955

The Window class
Summary:

• Syntax
• Methods
• Usage

o Getting a window by name
o Getting the current window
o Getting the current form of a window
o Getting the DOM node of a window
o Search for a specific element in a window
o Create a new empty form in a window
o Setting the window title
o Getting the window title

• Examples

See also: Built-in classes, Windows and Forms, Form Class

Syntax

The Window class is a built-in class providing an interface to the window objects.

Syntax:

ui.Window

Methods:

Class Methods
Name Description
forName(name STRING)
 RETURNING ui.Window

Returns a Window object according
to the name used in an OPEN
WINDOW statement.

getCurrent()
 RETURNING ui.Window

Returns a Window object referencing
the current window.

Object Methods
Name Description
findNode(t STRING, n STRING)
 RETURNING om.DomNode

Returns the first descendant DOM
node of type t and matching the name
n in the abstract representation of this
form object.

createForm(n STRING) Creates an empty form and returns

Genero Business Development Language

956

 RETURNING ui.Form the new Form object.
getForm()
 RETURNING ui.Form

Returns a Form object to handle the
current form.

getNode()
 RETURNING om.DomNode

Returns the DOM representation of
this Window.

setText(t STRING) Sets the title of this window object.
getText()
 RETURNING STRING

Returns the title of this window object.

Usage:

Windows are created with the OPEN WINDOW instruction, identifying the window by a
static handle:

01 OPEN WINDOW w1 WITH FORM "customer"

Getting a window object by name

You can get the window object corresponding to an identifier used in OPEN WINDOW
with the ui.Window.forName() class method. You must declare a variable of type
ui.Window to hold the window object reference:

01 DEFINE w ui.Window
02 LET w = ui.Window.forName("w1")

Getting the current window object

The ui.Window.getCurrent() class method returns a window object corresponding to
the current window. You must declare a variable of type ui.Window to hold the window
object reference:

01 DEFINE w ui.Window
02 LET w = ui.Window.getCurrent()

Getting the current form of a window

You can get a ui.Form instance of the current form with the getForm() method. This
allows you to manipulate form elements by program. You can, for example, hide some
parts of a form with setElementHidden().

Getting the DOM node of a window

The getNode() method returns the DOM node containing the abstract representation of
the window.

Built-in Classes

957

Search for a specific element in the window

The findNode() method allows you to search for a specific DOM node in the abstract
representation of the window content (i.e. the form). You search for a child node by
giving its type and the name of the element (i.e. the tagname and the value of the 'name'
attribute).

Create a new empty form in a window

The createForm() method can be used to create a new empty form. The method
returns a new ui.Form instance or NULL if the form name passed as the parameter
identifies an existing form used by the window.

Setting the window title

Use the setText() method to define the title of the window. By default, the tile of a
window is defined by the TEXT attribute of the LAYOUT definition in form files.

Getting the window title

The getText() method can be used to get the title set by setText().

Examples

Example 1: Get a window by name and change the title.

01 MAIN
02 DEFINE w ui.Window
03 OPEN WINDOW w1 WITH FORM "customer" ATTRIBUTE(TEXT="Unknown")
04 LET w = ui.Window.forName("w1")
05 IF w IS NULL THEN EXIT PROGRAM 1 END IF
06 CALL w.setText("Customer")
07 MENU "Test"
08 COMMAND "exit" EXIT MENU
09 END MENU
10 CLOSE WINDOW w1
11 END MAIN

Example 2: Get a the current form and hide a groupbox.

01 MAIN
02 DEFINE w ui.Window
03 DEFINE f ui.Form
04 OPEN WINDOW w1 WITH FORM "customer"
05 LET w = ui.Window.getCurrent()
06 IF w IS NULL THEN EXIT PROGRAM 1 END IF
07 LET f = w.getForm()
08 MENU "Test"
09 COMMAND "hide" CALL f.setElementHidden("gb1",1)

Genero Business Development Language

958

10 COMMAND "exit" EXIT MENU
11 END MENU
12 CLOSE WINDOW w1
13 END MAIN

Built-in Classes

959

The Form class
Summary:

• Syntax
• Methods
• Usage

o Defining the default initializer for all forms
o Getting the DOM node of the form
o Loading Action Defaults form the form
o Loading the form ToolBar
o Loading the form TopMenu
o Searching for a specific child node in the form
o Changing the text of a form element
o Changing the image of a form element
o Changing the style of a form element
o Hiding or showing a form element
o Hiding or showing a form field
o Changing the style of a form field

• Examples
o Example 1: Implement a global form initialization function
o Example 2: Hiding form elements dynamically

See also: Built-in classes, Window class, Windows and Forms

Syntax

The Form class is a built-in class that provides an interface to the forms used by the
program.

Syntax:

ui.Form

Methods:

Class Methods
Name Description
setDefaultInitializer(fn STRING
)

Defines the default initialization
function for all forms used by the
program. The function gets a ui.Form
object as parameter.

Object Methods

Genero Business Development Language

960

Name Description
findNode(t STRING, n STRING)
 RETURNING om.DomNode

Returns the first descendant DOM
node of type t and matching the name
n in the abstract representation of this
window object.

getNode()
 RETURNING om.DomNode

Returns the DOM representation of
this Form.

loadActionDefaults(fn STRING) Loads the decoration for actions from
a specific XML file into the AUI tree.
These action defaults are local to the
form and take precedence over action
defaults defined at the Interface level.
See Action Defaults for more details.

loadToolBar(fn STRING) Loads a Toolbar XML definition into
this Form, where fn is the name of the
file, without extension. If a toolbar
exists already in the form, it is
replaced.

loadTopMenu(fn STRING) Loads a Topmenu XML definition into
this Form, where fn is the name of the
file, without extension. If a topmenu
exists already in the form, it is
replaced.

setElementHidden(name STRING, v
INTEGER)

Changes the 'hidden' attribute of all
elements identified by name. Values
of v can be 0,1 or 2.

setElementText(name STRING, v
STRING)

Changes the 'text' attribute of all
elements identified by name.

setElementImage(name STRING, v
STRING)

Changes the 'image' attribute of all
elements identified by name.

setElementStyle(name STRING, v
STRING)

Changes the 'style' attribute of all
elements identified by name.

setFieldHidden(name STRING, v
INTEGER)

Changes the 'hidden' attribute of a
form field identified by name. The
name is a string containing the field
qualifier, with an optional prefix
("[table.]column"). Values of v can
be 0,1 or 2.

setFieldStyle(name STRING, v
STRING)

Changes the 'style' attribute of the
view of a form field identified by
name. The name is a string
containing the field qualifier, with an
optional prefix ("[table.]column").

Built-in Classes

961

Usage:

The Form class provides an interface to form objects created by an OPEN WINDOW
WITH FORM or DISPLAY FORM instruction.

A form object allows you to manipulate form elements by program, typically to hide some
parts of a form with the setElementHidden() method. The runtime system is able to
handle hidden fields during a dialog instruction. You can, for example, hide a GRO
containing fields and labels.

You can get a ui.Form instance of the current form with the ui.Window.getForm()
method.

Warning: The OPEN FORM instruction does not create a ui.Form object; it just
declares a handle. It is actually the DISPLAY FORM instruction that instantiates a
ui.Form object that will be attached to the current window. When a form is displayed
with DISPLAY FORM in different windows, the same form specification file will be used
to create different ui.Form objects.

Defining the default initializer for all forms

With the setDefaultInitializer() method, you can specify a default initialization
function to implement global processing when a form is opened. The method takes the
name of the initialization function as a parameter. That function will be called with a
ui.Form object as a parameter.

Warning: You must give the initialization function name in lower-case letters to the
setDefaultInitializer() method. The BDL syntax allows case-insensitive functions
names, but the runtime system must reference functions in lower-case letters internally.

Getting the DOM node of the form

The getNode() method returns the DOM node containing the abstract representation of
the window.

Loading Action Defaults for the form

You may want to load form specific Action Defaults at runtime with the
loadActionDefaults() method. This method takes the file name as parameter without
the .4ad suffix. Existing action defaults will be replaced.

Loading the form ToolBar

The loadToolBar() method can be used to load a Toolbar XML definition file into the
form; for example, in the initialization function. If the form already contains a toolbar, it
will be replaced by the new toolbar loaded from this function.

Genero Business Development Language

962

Loading the form TopMenu

The loadTopMenu() method can be used to load a Topmenu XML definition file into the
form; for example, in the initialization function. If the form alreadycontains a topmenu, it
will be replaced by the new topmenu loaded by this function.

Searching for a specific child node in the form

The findNode() method allows you to search for a specific DOM node in the abstract
representation of the form. You search for a child node by giving its type and the name
of the element (i.e. the tagname and the value of the 'name' attribute).

Changing the text of a form element

You may want to modify the text of a static label or group box during program execution.
This can be done with the setElementText() method. You must pass the identifier of
the form element (i.e. the element must have a name in the .per file).

Changing the image of a form element

The image of a form element can be changed with the setElementImage() method.
You must pass the identifier of the form element (i.e. the element must have a name in
the .per file).

Changing the style of a form element

To change the decoration style of a form element, you can use the setElementStyle()
method, by passing the identifier of the form element (i.e. the element must have a name
in the .per file).

Hiding or showing a form element

The setElementHidden() method changes the 'hidden' attribute of all form elements
identified by a name.

You specify an integer value for the 'hidden' attribute as follows:

Hidden Value Description
0 The element is visible.
1 The element is hidden and the user cannot make it visible,

typically used to hide information the user is not allowed to
see.

2 The element is hidden and the user can make it visible.

Built-in Classes

963

Hiding or showing a form field

You can use the setFieldHidden() method to change the 'hidden' attribute of a form
field. Form fields are identified by a fully qualified field name in lower case letters
("table.column" or "formonly.field").

 You specify an integer value for the 'hidden' attribute as follows:

Hidden Value Description
0 The field is visible.
1 The field is hidden and the user cannot make it visible,

typically used to hide information the user is not allowed to
see.

2 The field is hidden and the user can make it visible (for
example with a contextual menu, as in tables). This allows
you to define columns that are hidden by default, but can be
shown by the user.

Changing the style of a form field

To change the style of the view node of a form field, you must use the setFieldStyle()
method. The form field is identified by a name with an optional prefix ("table.column"
or "column").

Examples

Example 1: Implement a global form initialization function.

01 MAIN
02 CALL ui.Form.setDefaultInitializer("init")
03 OPEN FORM f1 FROM "items"
04 DISPLAY FORM f1 -- Form appears in the default SCREEN window
05 OPEN WINDOW w1 WITH FORM "customer"
06 OPEN WINDOW w2 WITH FORM "orders"
07 DISPLAY FORM f1 -- Form appears in w2 window
08 MENU "Test"
09 COMMAND "exit" EXIT MENU
10 END MENU
11 END MAIN
12
13 FUNCTION init(f)
14 DEFINE f ui.Form
15 DEFINE n om.DomNode
16 CALL f.loadTopMenu("mymenu")
17 LET n = f.getNode()
18 DISPLAY "Init: ", n.getAttribute("name")
19 END FUNCTION

Genero Business Development Language

964

Example 2: Hiding form elements dynamically.

01 MAIN
02 DEFINE w ui.Window
03 DEFINE f ui.Form
04 DEFINE custid INTEGER
05 DEFINE custname CHAR(10)
06 OPEN WINDOW w1 WITH FORM "customer"
07 LET w = ui.Window.getCurrent()
08 LET f = w.getForm()
09 INPUT BY NAME custid, custname
10 ON ACTION hide
11 CALL f.setFieldHidden("customer.custid",1)
12 CALL f.setElementHidden("label_custid",1)
13 ON ACTION show
14 CALL f.setFieldHidden("customer.custid",0)
15 CALL f.setElementHidden("label_custid",0)
16 END INPUT
17 END MAIN

Built-in Classes

965

The Dialog class
Summary:

• Syntax
• Methods
• Usage

o The DIALOG object instance
o Terminating the dialog
o Passing the dialog object to a function
o Getting the total number of rows in a list
o Setting the total number of rows of a list
o Registering the next field to jump to
o Getting the current row of a list
o Setting the current row in a list
o Getting the current item having focus
o Getting the input buffer of a field
o Getting the touched flag of a field
o Setting the touched flag of a field
o Current form used by the dialog
o Enabling/disabling Actions
o Enabling/disabling Fields
o Inserting a new row in a list
o Appending a new row in a list
o Deleting a row from a list
o Deleting all rows from a list
o Checking form level validation rules
o Handling default action view visibility
o Setting the UNBUFFERED mode
o Setting TTY attributes for cells in lists

• Examples
o Disable fields dynamically
o Get form and hide fields
o Pass a dialog object to a function
o Set display attributes to cells

See also: Built-in classes, Interaction Model, Multiple Dialogs, Windows and Forms

The Dialog class is a built-in class that provides an interface to an interactive instruction
such as INPUT.

Syntax:
ui.Dialog

Genero Business Development Language

966

Methods:

Class Methods
Name Description
setDefaultUnbuffered(v
INTEGER)

Sets the default of the UNBUFFERED attribute for
the next dialogs.

Object Methods
Name Description
accept() Validates all dialog fields.
appendRow(arrname
STRING)

Append a row at the end of the list.

deleteRow(arrname
STRING, pos INTEGER)

Deletes row at position pos.

getArrayLength(arrname
STRING)
 RETURNING INTEGER

Returns the total number of rows in a list.

getCurrentItem()
RETURNING STRING

Returns the current item having the focus. This
can be a field, list or action.

getCurrentRow(arrname
STRING)
 RETURNING INTEGER

Returns the current row of a list.

getFieldBuffer(
fieldname STRING)
 RETURNING STRING

Returns the current input buffer of the field
identified by fieldname.

getFieldTouched(
fieldname STRING)
 RETURNING STRING

Returns TRUE if the TOUCHED flag of the
specified field is set.

getForm()
 RETURNING ui.Form

Returns the current form used by this dialog.

insertRow(arrname
STRING, pos INTEGER)

Inserts a row before position pos.

nextField(fieldname
STRING)

Registers the name of the next field that must
get the focus when control returns to the dialog.

setArrayLength(arrname
STRING, v INTEGER)

Sets the total number of rows in a list for paged
mode.

setActionHidden(actname
STRING, v INTEGER)

Hides or shows the default action view
identified by actname.

setActionActive(actname
STRING, v INTEGER)

Enables or disables the action identified by
actname.

setCurrentRow(arrname
STRING, row INTEGER)

Change the current row in a list.

setFieldActive(
fieldname STRING, v
INTEGER)

Enables or disables the field identified by
fieldname.

setFieldTouched(
fieldname STRING, v
INTEGER)

Sets the TOUCHED flag of the field identified
by fieldname.

setCellAttributes(
attarr ARRAY OF RECORD)

Defines decoration attributes for each cell
(singular dialogs only).

Built-in Classes

967

setArrayAttributes(
arrname STRING, attarr
ARRAY OF RECORD)

Defines decoration attributes for each cell
(multiple dialogs).

Usage:

The DIALOG object instance

This class provides an interface to the interactive instructions INPUT, INPUT ARRAY,
DISPLAY ARRAY, CONSTRUCT, and MENU.

The DIALOG keyword is a pre-defined object variable. To get an instance of this class,
use DIALOG inside the interactive instruction block:

01 INPUT BY NAME custid, custname
02 ON ACTION disable
03 CALL DIALOG.setFieldActive("custid",0)
04 END INPUT

Passing the dialog object to a function

The dialog object is only valid during the execution of the interactive instruction. Using
the DIALOG keyword outside a dialog instruction block results in a compilation error.
However, you can pass the object to a function, in order to write common dialog
configuration code:

01 INPUT BY NAME custid, custname
02 BEFORE INPUT
03 CALL setupDialog(DIALOG)
04 END INPUT
05
06 FUNCTION setupDialog(d)
07 DEFINE d ui.Dialog
08 IF user_group = "admin" THEN
09 CALL d.setActionActive("delete",1)
10 CALL d.setActionActive("convert",1)
11 ELSE
12 CALL d.setActionActive("delete",0)
13 CALL d.setActionActive("convert",0)
14 END IF
15 END FUNCTION

Terminating the dialog

You can use the accept() method to validate field input and terminate the dialog. This
method is equivalent to the ACCEPT INPUT / ACCEPT DISPLAY / ACCEPT DIALOG
instructions. The method is provided as a 3GL alternative to the ACCEPT control

Genero Business Development Language

968

instructions, if you need for example to terminate the dialog in a function, outside the
context of a dialog block, where control instructions cannot be used.

See ACCEPT DIALOG for more details.

Getting the total number of rows in a list

The getArrayLength() method can be used to retrieve the total number of rows of an
INPUT ARRAY or DISPLAY ARRAY list. You must pass the name of the screen array to
identify the list:

01 DIALOG
02 DISPLAY ARRAY custlist TO sa_custlist.*
03 BEFORE ROW
04 MESSAGE "Row count: " ||
DIALOG.getArrayLength("sa_custlist")
05 ...
06 END DISPLAY
07 INPUT ARRAY ordlist TO sa_ordlist.*
08 BEFORE ROW
09 MESSAGE "Row count: " ||
DIALOG.getArrayLength("sa_ordlist")
10 ...
11 END INPUT
12 ...

Setting the total number of rows in a list

The setArrayLength() method is used to specify the total number of rows of an INPUT
ARRAY or DISPLAY ARRAY list when using the paged mode. You must pass the name of
the screen array to identify the list, followed by an integer expression defining the
number of rows. When using a dynamic array without ON FILL BUFFER you don't need
to specify the total number of rows to the DIALOG instruction: It is defined by the number
of elements in the array. However, when using the paged mode in a DISPLAY ARRAY,
the total number of rows does not correspond to the elements in the program array,
because the program array holds only a page of the whole list. In any other cases, a call
to this method is just ignored.

Registering the next field to jump to

The nextField() method can be used register the name of the next field that must get
the focus when control goes back to the dialog. This method is similar to the NEXT
FIELD instruction, except that it does not implicitly break the program flow. If you want to
get the same behavior as NEXT FIELD, the method call must be followed by a CONTINUE
DIALOG / INPUT / CONSTRUCT instruction.

Since this method takes an expression as parameter, you can write generic code, when
the name of the target field is not known at compile time. In the next example, the
check_value() function returns a field name where the value does not satisfy the
validation rules:

Built-in Classes

969

01 DEFINE fn STRING
02 ...
03 ON ACTION save
04 IF (fn := check_values()) IS NOT NULL THEN
05 CALL DIALOG.nextField(fn)
06 CONTINUE DIALOG
07 END IF
08 CALL save_data()
09 ...

Getting the current row of a list

The getCurrentRow() method can be used to retrieve the current row of an INPUT
ARRAY or DISPLAY ARRAY list. You must pass the name of the screen array to identify the
list:

01 DIALOG
02 DISPLAY ARRAY custlist TO sa_custlist.*
03 BEFORE ROW
04 MESSAGE "Current row: " ||
DIALOG.getCurrentRow("sa_custlist")
05 ...
06 END DISPLAY
07 INPUT ARRAY ordlist TO sa_ordlist.*
08 BEFORE ROW
09 MESSAGE "Current row: " ||
DIALOG.getCurrentRow("sa_ordlist")
10 ...
11 END INPUT
12 ...

Setting the current row in a list

If you want to change the current row in an INPUT ARRAY or DISPLAY ARRAY list, you
can use the setCurrentRow() method. You must pass the name of the screen array to
identify the list, and the new row number:

01 DEFINE x INTEGER
02 DIALOG
03 DISPLAY ARRAY custlist TO sa_custlist.*
04 ...
05 END DISPLAY
06 ON ACTION goto_x
07 CALL DIALOG.setCurrentRow("sa_custlist", x)
08 ...

Note that moving to a different row with setCurrentRow() will not trigger control blocks
such as AFTER ROW. This method will not set the focus either; You need to use NEXT
FIELD to set the focus to a list (this works with DISPLAY ARRAY as well as with INPUT
ARRAY).

Genero Business Development Language

970

Getting the current item having focus

The getCurrentItem() method returns the name of the current form item having the
focus. This can be a simple field, a list or an action view.

• If the focus is on an action view (typically, a BUTTON in the form layout),
getCurrentItem() returns the name of the corresponding action. Note that if
several action views a bound to the same action handler with a unique name,
there is no way to distinguish which action view has the focus.

• If the focus is in a simple field driven by an INPUT or CONSTRUCT sub-dialogs,
getCurrentItem() returns the field-name of that current field.

• If the focus is in a list driven by a DISPLAY ARRAY sub-dialog,
getCurrentItem() returns the screen-array name identifying the list.

• If the focus is in a list driven by an INPUT ARRAY sub-dialog,
getCurrentItem() returns screen-array.field-name, identifying both the list and
the current field.

Getting the input buffer of a field

The getFieldBuffer() method returns the current input buffer of the specified field.
The input buffer is used by the dialog to synchronize form fields and program variables.
In some situations, especially when using the BUFFERED mode or in a CONSTRUCT,
you may want to access that input buffer.

The fieldname is a string containing the field qualifier, with an optional prefix
("[table.]column").

01 LET buff = DIALOG.getFieldBuffer("customer.cust_name")

The input buffer can be set with:

• A DISPLAY TO or DISPLAY BY NAME instruction
• The fgl_dialog_setbuffer() function (only for the current field)

Getting the TOUCHED flag of a field

The getFieldTouched() method returns TRUE if the TOUCHED flag of the specified
field is set.

The fieldname is a string containing the field qualifier, with an optional prefix
("[table.]column"), or a table prefix followed by a dot and a start ("table.*").

01 AFTER FIELD cust_name
02 IF DIALOG.getFieldTouched("customer.cust_address") THEN
03 ...

If the parameter is a screen record following by dot-star, the method checks the touched
flags of all the fields that belong to the screen record:

Built-in Classes

971

01 ON ACTION quit
02 IF DIALOG.getFieldTouched("customer.*") THEN
03 ...

Setting the TOUCHED flag of a field

The setFieldTouched() method can be used to change the TOUCHED flag of the
specified field(s).

The fieldname is a string containing the field qualifier, with an optional prefix
("[table.]column"), or a table prefix followed by a dot and a start ("table.*").

You typically use this method to set the touched flag when assigning a variable, to
emulate a user input. Remember when using the UNBUFFERED mode, you don't need
to DISPLAY the value to the fields. The setFieldTouched() method is provided as a
3GL replacement for the DISPLAY instructions to set the touched flags.

01 ON ACTION zoom_city
02 LET p_cust.cust_city = zoom_city()
02 CALL DIALOG.setFieldTouched("customer.cust_city", TRUE)
03 ...

If the parameter is a screen record following by dot-star, the method checks the touched
flags of all the fields that belong to the screen record. You typically use this to reset the
touched flags of a group of fields, after modifications have been saved to the database,
to get back to the initial state of the dialog:

01 ON ACTION save
02 CALL save_cust_record()
03 CALL DIALOG.setFieldTouched("customer.*", FALSE)
04 ...

Note that the touched flags are reset to false when using an INPUT ARRAY list, every
time you leave the modified row.

Current form used by the dialog

The getForm() method returns a ui.Form object as a handle to the current form used by
the dialog. Use this form object to modify elements of the current form. For example, you
can hide some parts of the form with the ui.Form.setElementHidden() method. The
runtime system is able to detect hidden fields and exclude them from the input list. See
Example 2.

Enabling/Disabling Actions

Dialog actions can be enabled and disabled with the setActionActive() dialog
method:

01 BEFORE DIALOG
02 CALL DIALOG.setActionActive("zoom",FALSE)

Genero Business Development Language

972

In GUI applications, push-buttons triggering actions should normally be disabled if the
current context / situation makes the corresponding action invalid or unusable. For
example, a "print" button should be disabled if there is nothing to print. The
setActionActive() method is typically used to enable/disable actions according to the
context.

The action name must be passed in lowercase letters. Note that sub-dialog actions can
be qualified with the sub-dialog prefix within a DIALOG instruction. When the
setActionActive() method is called in the context of the sub-dialog, the prefix can be
omitted.

The second parameter of the method must be a boolean expression that evaluates to 0
(FALSE) or 1 (TRUE).

To simplify action activation, you can write a common "setup" function which centralizes
all rules to enable/disable actions. This function can then be called from any place in the
DIALOG instruction, passing the DIALOG object as parameter. See Example 3.

In the DIALOG instruction, actions can be prefixed with the sub-dialog identifier. The
setActionActive() method can be take a full-qualified action name as parameter.

Enabling/Disabling Fields

Form fields used by the dialog can be enabled/disabled with the setFieldActive()
method. The fields are identified by the field name used in the dialog, with an optional
table prefix ("column", "table.column" or "formonly.field"). When a field is disabled,
it is still visible, but the user cannot edit the value.

01 ON CHANGE cust_name
02 CALL DIALOG.setFieldActive("customer.cust_addr",
(rec.cust_name IS NOT NULL))

See also Example 1.

Inserting a new row in a list

The insertRow() method is just a basic row creation function, to insert a row in the list
at a given position. It does not set the current row or raise any BEFORE ROW / BEFORE
INSERT / AFTER INSERT / AFTER ROW control blocks. It is quite similar to inserting a new
element in the program array, except the internal registers are automatically updated
(like the total number of rows returned by getArrayLength()). If the list was decorated
with cell attributes, the program array defining the attributes will also be synchronized.

Warning: This method should not be called in control blocks such as BEFORE ROW,
AFTER ROW, BEFORE INSERT, AFTER INSERT, BEFORE DELETE, AFTER DELETE, but it
can safely be used in an ON ACTION block.

Built-in Classes

973

TO REMOVE: Default values defined in the form file with the DEFAULT attribute
are applied when calling this method.

After the method is called, a new row is created in the program array, so you can assign
values to the variables before the control goes back to the user. The getArrayLength()
method will return the new row count.

Note that the method does not set the current row and does not give the focus to the list;
you need to call setCurrentRow() and execute NEXT FIELD if you want to give the
focus.

The method takes two parameters:

1. The name of the screen array identifying the list.
2. The index where the row has to be inserted (starts at 1).

If the index is greater as the number of rows, a new row will be appended at the end or
the list. This will be equivalent to call the appendRow() method.

Warning: If the list is empty, getCurrentRow() will return zero. So you must test
this and use 1 instead to reference the first row otherwise you can get -1326 errors
when using the program array.

Following code example shows a user-define action to insert ten rows in the list at the
current position:

01 ON ACTION insert_some_rows
02 LET r = DIALOG.getCurrentRow("sa")
03 IF r == 0 THEN LET r = 1 END IF
04 FOR i = 10 TO 1 STEP -1
05 CALL DIALOG.insertRow("sa", r)
06 LET p_items[r].item_quantity = 1.00
07 END FOR

Appending a new row in a list

The appendRow() method is just a basic row creation function to append a row to the
end of the list. It does not set the current row or raise any BEFORE ROW / BEFORE INSERT
/ AFTER INSERT / AFTER ROW control blocks. It is quite similar to appending a new
element to the program array, except the internal registers are automatically updated
(like the total number of rows returned by getArrayLength()). If the list was decorated
with cell attributes, the program array defining the attributes will also be synchronized.

Warning: This method should not be called in control blocks such as BEFORE ROW,
AFTER ROW, BEFORE INSERT, AFTER INSERT, BEFORE DELETE, AFTER DELETE, but it
can safely be used in an ON ACTION block.

TO REMOVE: Default values defined in the form file with the DEFAULT attribute
are applied when calling this method.

Genero Business Development Language

974

After the method is called, a new row is created in the program array, so you can assign
values to the variables before the control goes back to the user. The getArrayLength()
method will return the new row count.

Note that the method does not set the current row and does not give the focus to the list;
you need to call setCurrentRow() and execute NEXT FIELD if you want to give the
focus.

The appendRow() method does not create a temporary row as the implicit append action
of INPUT ARRAY; The row is considered as permanent once it is added.

The method takes only one parameter:

1. The name of the screen array identifying the list.

Following code example implements a user-defined to append ten rows at the end of the
list:

01 ON ACTION append_some_rows
02 FOR i = 1 TO 10
03 CALL DIALOG.appendRow("sa")
04 LET r = DIALOG.getArrayLength("sa")
05 LET p_items[r].item_quantity = 1.00
06 END FOR

Deleting a row from a list

The deleteRow() method is just a basic row deletion function. It does not reset the
current row or raise any BEFORE DELETE / AFTER DELETE / AFTER ROW / BEFORE ROW
control blocks (except in some particular situation as described below). It is quite similar
to deleting an element to the program array, except that internal registers are
automatically updated (like the total number of rows returned by getArrayLength()). If the
list was decorated with cell attributes, the program array defining the attributes will also
be synchronized.

Warning: This method should not be called in control blocks such as BEFORE ROW,
AFTER ROW, BEFORE INSERT, AFTER INSERT, BEFORE DELETE, AFTER DELETE, but it
can safely be used in an ON ACTION block.

After the method is called, the row does no more exist in the program array, and the
getArrayLength() method will return the new row count.

If the deleteRow() method is called during an INPUT ARRAY, and after the call no more
rows are in the list, the dialog will automatically append a new temporary row if the focus
is in the list, to let the user enter new data. When using AUTO APPEND = FALSE
attribute, no temporary row will be created and the current row register will be
automatically changed to make sure that it will not be greater as the total number
of rows.

Built-in Classes

975

If deleteRow() method is called during an INPUT ARRAY or DISPLAY ARRAY that has the
focus, the BEFORE ROW control block will be executed if you delete the current row. This
is required to reset the internal state of the dialog.

The method takes two parameters:

1. The name of the screen array identifying the list.
2. The index of the row to be deleted (starts at 1).

If you pass zero as row index, the method does nothing (if no rows are in the list,
getCurrentRow() returns zero).

Following code example implements a user-defined action to remove the rows that have
a specific property:

01 ON ACTION delete_invalid_rows
02 FOR r = 1 TO DIALOG.getArrayLength("sa")
03 IF NOT s_orders[t].is_valid THEN
04 CALL DIALOG.deleteRow("sa",r)
05 LET r = r - 1
06 END IF
07 END FOR

Deleting all rows of a list

The deleteAllRows() method removes all the rows of a list driven by a DISPLAY ARRAY
or INPUT ARRAY. This is equivalent to a deleteRow() call, but instead of deleting one
particular row, it removes all rows of the specified list.

Warning: This method should not be called in control blocks such as BEFORE ROW,
AFTER ROW, BEFORE INSERT, AFTER INSERT, BEFORE DELETE, AFTER DELETE, but it
can safely be used in an ON ACTION block.

After the method is called, all rows are deleted from the program array, and the
getArrayLength() method will return zero.

The method takes the name of the screen-array as parameter.

If the deleteAllRows() method is called during an INPUT ARRAY, the dialog will
automatically append a new temporary row if the focus is in the list, to let the user enter
new data. When using AUTO APPEND = FALSE attribute, no temporary row will be
created and the current row register will be automatically changed to make sure
that it will not be greater as the total number of rows.

If deleteAllRows() method is called during an INPUT ARRAY or DISPLAY ARRAY that
has the focus, the BEFORE ROW control block will be executed if you delete the current
row. This is required to reset the internal state of the dialog.

Genero Business Development Language

976

Checking form level validation rules

In order to execute NOT NULL, REQUIRED and INCLUDE validation rules defined in the
form specification files, you can call the validate() method by passing a list of fields or
screen records as parameter. The method returns zero if success and the input error
code of the first field which does not satisfy the validation rules.

Note that the current field is always checked, even if it is not part of the validation field
list. This is mandatory, otherwise the current field may be left with invalid data.

If an error occurs, the validate() method automatically displays the corresponding
error message, and registers the next field to jump to when the interactive instruction
gets the control back.

Warning: The validate() method does not stop code execution if an error is
detected. You must execute a CONTINUE DIALOG or CONTINUE INPUT instruction to
cancel the code execution.

A typical usage is for a "save" action:

01 ON ACTION save
02 IF DIALOG.validate("cust.*") < 0 THEN
03 CONTINUE DIALOG
04 END IF
05 CALL customer_save()

Handling default action view visibility

The Default View on an action can made visible or invisible with the
setActionHidden() dialog method:

01 ON ACTION hide
02 CALL DIALOG.setActionHidden("confirm", 1)

Values of the second parameter can be 1 or 0.

Setting the UNBUFFERED mode

By default dialogs are not sensitive to variable changes. To make a dialog sensitive, use
the UNBUFFERED attribute in the dialog instruction definition. However, you can define the
default for all subsequent dialogs by using the setDefaultUnbuffered() class method:

01 CALL ui.Dialog.setDefaultUnbuffered(TRUE)

Built-in Classes

977

Setting TTY attributes for cells in lists

Multiple Dialogs

In an INPUT ARRAY or DISPLAY ARRAY instruction, the setArrayAttributes()
method can be used to specify display attributes for each cell. You must define an array
with the same number of record elements as the data array used by the INPUT ARRAY or
DISPLAY ARRAY. Each element must have the same name as in the data array, and
must be defined with a character data type (you typically use STRING).

Fill the display attributes array with color and video attributes. These must be specified in
lowercase characters and separated by a blank (ex: "red reverse"). Then, pass the
array to the dialog with the setArrayAttributes() method, in a BEFORE INPUT or
BEFORE DISPLAY block. Display attributes can be changed dynamically during the
dialog:

01 ON ACTION set_attributes
02 CALL DIALOG.setArrayAttributes("sr", attarr)

For a complete example, see Example 4.

Singular Dialogs

An equivalent method called setCellAttributes(), takes only the program array as
argument. The setCellAttributes() method is designed for singular dialogs, where
only one screen array is used.

Examples

Example 1: Disable fields dynamically.

01 FUNCTION input_customer()
02 DEFINE custid INTEGER
03 DEFINE custname CHAR(10)
04 INPUT BY NAME custid, custname
05 ON ACTION enable
06 CALL DIALOG.setFieldActive("custid",1)
07 ON ACTION disable
08 CALL DIALOG.setFieldActive("custid",0)
09 END INPUT
10 END FUNCTION

Example 2: Get the form and hide fields.

01 FUNCTION input_customer()
02 DEFINE f ui.Form
03 DEFINE custid INTEGER
04 DEFINE custname CHAR(10)

Genero Business Development Language

978

05 INPUT BY NAME custid, custname
06 BEFORE INPUT
08 LET f = DIALOG.getForm()
09 CALL f.setElementHidden("customer.custid",1)
10 END INPUT
11 END FUNCTION

Example 3: Pass a dialog object to a function.

01 FUNCTION input_customer()
02 DEFINE custid INTEGER
03 DEFINE custname CHAR(10)
04 INPUT BY NAME custid, custname
05 BEFORE INPUT
06 CALL setup_dialog(DIALOG)
07 END INPUT
08 END FUNCTION
09
10 FUNCTION setup_dialog(d)
11 DEFINE d ui.Dialog
12 CALL d.setActionActive("print",user.can_print)
13 CALL d.setActionActive("query",user.can_query)
14 END FUNCTION

Example 4: Set display attributes for cells.

01 FUNCTION display_customer()
02 DEFINE i INTEGER
03 DEFINE arr DYNAMIC ARRAY OF RECORD
04 key INTEGER,
05 name CHAR(10)
06 END RECORD
07 DEFINE att DYNAMIC ARRAY OF RECORD
08 key STRING,
09 name STRING
10 END RECORD
11
12 FOR i=1 TO 10
13 CALL arr.appendElement()
14 LET arr[i].key = i
15 LET arr[i].name = "name " || i
16 CALL att.appendElement()
17 IF i MOD 2 = 0 THEN
18 LET att[i].key = "red"
19 LET att[i].name = "blue reverse"
20 ELSE
21 LET att[i].key = "green"
22 LET att[i].name = "magenta reverse"
23 END IF
24 END FOR
25
26 DIALOG ATTRIBUTES(UNBUFFERED)
27 DISPLAY ARRAY arr TO sr.*
28 ON ACTION att_set
29 CALL DIALOG.setArrayAttributes("sr", att)
30 ON ACTION att_clear

Built-in Classes

979

31 CALL DIALOG.setArrayAttributes("sr", NULL)
32 END DIALOG
33
34 END FUNCTION

Genero Business Development Language

980

The ComboBox class
Summary:

• Syntax
• Methods
• Usage

o Defining the default initializer for ComboBoxes
o Searching for a ComboBox in the current form
o Clearing the item list of a ComboBox
o Adding an element to the ComboBox item list
o Getting the name of the form field table prefix
o Getting the name of the form field
o Getting the ComboBox tag value
o Getting the number of items in a ComboBox
o Getting an item name by position
o Getting an item position by name
o Getting an item text by position
o Getting an item text by item name
o Removing an item from the ComboBox

• Examples

See also: Built-in Classes, Form Specification File

Syntax

The ComboBox class provides an interface to the COMBOBOX form field view in the
Abstract User Interface tree.

Syntax:

ui.ComboBox

Methods:

Class Methods
Name Description
forName(fieldname STRING)
 RETURNING ui.ComboBox

Returns the combobox object
identified by fieldname in the current
form.

setDefaultInitializer(funcname
STRING)

Defines the default initialization
function for all COMBOBOX form
fields. See also the INITIALIZER
attribute in form specification files.

Built-in Classes

981

Object Methods
Name Description
clear() Clears the list of combobox items.
addItem(name STRING, text
STRING)

Adds an item to the combobox item
list.

getColumnName()
 RETURNING STRING

Returns the name of the column
name of the form field associated with
this combobox.

getIndexOf(name STRING)
 RETURNING STRING

Returns the position of a given item
by name.

getItemCount()
 RETURNING INTEGER

Returns the current number of items
defined in the combobox .

getItemName(index INTEGER)
 RETURNING STRING

Returns the name of an item at a
given position. First is 1.

getItemText(index INTEGER)
 RETURNING STRING

Returns the text of an item at a given
position. First is 1.

getTableName()
 RETURNING STRING

Returns the name of the table, alias
or FORMONLY of the form field
associated to this combobox.

getTag()
 RETURNING STRING

Returns the user-defined tag of this
object.

getTextOf(name STRING)
 RETURNING STRING

Returns the text for a given item
name.

removeItem(name STRING) Removes the item identified by name.

Usage:

When you declare a COMBOBOX form field in the form specification file, you declare
both a form field and a view for that model. The ComboBox class is an interface to the
view of a COMBOBOX form field.

Defining the default initializer for ComboBoxes

Use the ui.ComboBox.setDefaultInitializer() class method to define the default
initialization function that will be called each time a ComboBox object is created. That
function is called with the ComboBox object as the parameter:

01 CALL ui.ComboBox.setDefaultInitializer("initcombobox")
02
03 FUNCTION initcombobox(cb)
04 DEFINE cb ui.ComboBox
05 CALL cb.clear()
06 CALL cb.addItem(1,"Paris")
07 CALL cb.addItem(2,"London")
08 CALL cb.addItem(3,"Madrid")
09 END FUNCTION

Genero Business Development Language

982

Warning: You must give the initialization function name in lower-case letters to the
setDefaultInitializer() method. The BDL syntax allows case-insensitive function
names, but the runtime system must reference functions in lower-case letters internally.

You can also define a specific initialization function in the form specification file, by using
the INITIALIZER attribute (as shown in the second example below).

Searching for a ComboBox in the current form

The ui.ComboBox.forName() class method searches for a COMBOBOX object by form
field name in the current form. Typically, after loading a form with OPEN WINDOW
WITH FORM, you use the class method to retrieve a COMBOBOX view object into a
variable defined as a ui.ComboBox:

01 DEFINE cb ui.ComboBox
02 LET cb = ui.ComboBox.forName("formonly.airport")

It is recommended that you verify if that function has returned an object, because the
form field may not exist:

01 IF cb IS NULL THEN
02 ERROR "Form field not found in current form"
03 EXIT PROGRAM
04 END IF

Once instantiated, the ComboBox object can be used; for example, to set up the items of
the drop down list:

01 CALL cb.clear()
02 CALL cb.addItem(1,"Paris")
03 CALL cb.addItem(2,"London")
04 CALL cb.addItem(3,"Madrid")

Clearing the item list of a ComboBox

The clear() method clears the item list. If the item list is empty, the ComboBox drop-
down button will show an empty list on the client side.

Adding an element to the ComboBox item list

The addItem() method adds an item to the end of the list. It takes two parameters: the
first is the real form field value, and the second is the value to be displayed in the drop
down list. If the second parameter is NULL, the runtime system automatically uses the
first parameter as the display value:

Getting the name of the form field table prefix

The getTableName() method returns the name of the form field table prefix. Not that
this prefix can be NULL if not defined at the form field level.

Built-in Classes

983

Getting the name of the form field

The getColumnName() method returns the name of the form field table prefix. Not that
this prefix can be NULL if not defined at the form field level.

You can use the getTableName() and getColumnName() methods to get the table and
column name of the form field associated with the ComboBox:

01 DISPLAY cb.getTableName()||"."||cb.getColumnName()

Getting the ComboBox tag value

The getTag() method returns the value of the TAG attribute if defined in the form file.

Getting an item position by name

The getIndexOf() method takes an item name as parameter and returns the position of
the item in the list. Returns 0 if the item name does not exist.

With this method you can check if an item exists:

01 IF cb.getIndexOf("SFO") == 0 THEN
02 CALL cb.addItem("SFO", "San Francisco International Airport, CA")
03 END IF

Getting the number of items in a ComboBox

You can get the current number of items defined in a ComboBox with the
getItemCount() method. If no items are defined, the method returns zero.

Getting an item name by position

The getItemName() method takes an item position as parameter and returns the
identifier of that item. First item starts at position 1.

Getting an item text by position

The getItemText() method takes an item position as parameter and returns the value
of that item. First item starts at position 1.

Getting an item text by name

The getTextOf() method takes an item name as parameter and returns the value of
that item. Returns NULL if the item name does not exist.

Removing an item by name

Use the removeItem() method to delete an item from the ComboBox. Item name must
be passed as parameter.

Genero Business Development Language

984

Examples

Example 1: Get a COMBOBOX form field view and fill the item list:

Form Specification File:

01 DATABASE FORMONLY
02 LAYOUT
03 GRID
04 {
05 Airport: [cb01]
06 }
07 END
08 END
09 ATTRIBUTES
10 COMBOBOX cb01 = FORMONLY.airport TYPE CHAR;
11 END

Program File:

01 MAIN
02 DEFINE cb ui.ComboBox
03 DEFINE airport CHAR(3)
04
05 OPEN FORM f1 FORM "combobox"
06 DISPLAY FORM f1
07 LET cb = ui.ComboBox.forName("formonly.airport")
08 IF cb IS NULL THEN
09 ERROR "Form field not found in current form"
10 EXIT PROGRAM
11 END IF
12 CALL cb.clear()
13 CALL cb.addItem("CDG", "Paris-Charles de Gaulle, France")
14 CALL cb.addItem("LCY", "London-City Airport, UK")
15 CALL cb.addItem("LHR", "London-Heathrow, UK")
16 CALL cb.addItem("FRA", "Frankfurt Airport, Germany")
17 IF cb.getIndexOf("SFO") == 0 THEN
18 CALL cb.addItem("SFO", "San Francisco International Airport,
CA")
19 END IF
20
21 INPUT BY NAME airport
22
23 END MAIN

Example 2: Using the INITIALIZER attribute in the form file:

Form Specification File:

01 DATABASE FORMONLY
02 LAYOUT

Built-in Classes

985

03 GRID
04 {
05 Airport: [cb01]
06 }
07 END
08 END
09 ATTRIBUTES
10 COMBOBOX cb01 = FORMONLY.airport TYPE INTEGER,
INITIALIZER=initcombobox;
11 END

Initialization function:

01 FUNCTION initcombobox(cb)
02 DEFINE cb ui.ComboBox
03 CALL cb.clear()
04 CALL cb.addItem("CDG", "Paris-Charles de Gaulle, France")
05 CALL cb.addItem("LCY", "London-City Airport, UK")
06 CALL cb.addItem("LHR", "London-Heathrow, UK")
07 CALL cb.addItem("FRA", "Frankfurt Airport, Germany")
08 CALL cb.addItem("SFO", "San Francisco International Airport, CA")
09 END MAIN

987

The DomDocument class
Summary:

• Syntax
• Methods
• Usage

o Create a new DomDocument object
o Create a new DomNode object
o Return the root node of the DomDocument
o Return a specific node of the DomDocument
o Remove a DomNode object

• Examples

See also: Built-in Classes, XML Utils

Syntax

Purpose:

The DomDocument class provides methods to manipulate a data tree, following the
DOM standards.

Syntax:

om.DomDocument

Methods:

Class Methods
Name Description
create(tag STRING)
 RETURNING om.DomDocument

Creates a new, empty DomDocument
object, where tag identifies the tag
name of the root element.

createFromXmlFile(file STRING)
 RETURNING om.DomDocument

Creates a new DomDocument object
using an XML file specified by the
parameter file. Returns NULL if an
error occurs.

createFromString(source STRING
)
 RETURNING om.DomDocument

Creates a new DomDocument object
by parsing the XML string passed as
parameter. Returns NULL if an error
occurs.

Object Methods

Genero Business Development Language

988

Name Description
copy(src om.DomNode, deep
INTEGER)
 RETURNING om.DomNode

Clones a DomNode (with child nodes
if deep is TRUE).

createChars(text STRING)
 RETURNING om.DomNode

Creates a DomNode as a text node.

createEntity(text STRING)
 RETURNING om.DomNode

Creates a DomNode as an entity
node.

createElement(tag STRING)
 RETURNING om.DomNode

Creates a new empty DomNode
object with a tag name specified by
tag.

getDocumentElement()
 RETURNING om.DomNode

Returns the root node of the DOM
document.

getElementById(id INTEGER)
 RETURNING om.DomNode

Gets an element using its id, the
internal integer identifier automatically
assigned to each DomNode object.

removeElement(e om.DomNode) Removes a DomNode object and any
descendent DomNodes from the
document.

Usage:

A DomDocument object holds a DOM tree of DomNode objects.

A unique root DomNode object is owned by a DomDocument object.

Create a new DomDocument object

To create an instance of the DomDocument class, you must first declare a variable with
the type om.DomDocument.

Then, use the method om.DomDocument.create() to instantiate a new, empty
DomDocument object.

To create a document from an existing XML file, use the method
om.DomDocument.createFromXmlFile(). You can also use the
om.DomDocument.createFromString() method to create a document from a string in
memory.

Create a new DomNode object

New nodes can be created with the createElement() method.

New text nodes can be created with the createChars() method.

New entity nodes can be created with the createEntity() method.

Built-in Classes

989

Clone a DomNode object using the copy() method.

Once a new DomNode object is created, you can for example inserted it in the DOM tree
with the insertBefore() method of a DomNode object

Return the root node of the DomDocument

You can get the root node with the getDocumentElement() method. Once you have the
root element, you can recursively manipulate child nodes with the DomNode class
methods

Return a specific node of the DomDocument

You can get a specific node of the DomDocument by using its internal identifier with the
getElementById() method.

Remove a DomNode object

Use the removeElement() method to remove an Element from a DomDocument.

Examples

Example 1:

01 MAIN
02 DEFINE d om.DomDocument
03 DEFINE r om.DomNode
04 LET d = om.DomDocument.create("MyDocument")
05 LET r = d.getDocumentElement()
06 END MAIN

Genero Business Development Language

990

The DomNode class
Summary:

• Syntax
• Methods
• Usage

o Node creation/removal
o In/Out utilities
o Node Identification
o Attributes management
o Tree navigation

• Examples

See also: Built-in Classes, XML Utils, NodeList

Syntax

The DomNode class provides methods to manipulate a node of a data tree, following
the DOM standards.

Syntax:

om.DomNode

Notes:

1. A DomNode object is a node (or element) of a DomDocument.

Methods:

Object Methods
Name Description
Node creation
appendChild(src om.DomNode) Adds a DomNode at the end of the

list of children in this node.
createChild(tag STRING)
 RETURNING om.DomNode

Creates a DomNode and adds it to
the children list of this node.

insertBefore(new om.DomNode,
exn om.DomNode)

Inserts a DomNode just before the
existing node referenced by exn.

removeChild(node om.DomNode) Removes the child node referenced
by node and removes any of its
descendents.

Built-in Classes

991

replaceChild(new om.DomNode,
old om.DomNode)

Replaces the child node referenced
by old by the node new.

In/Out Utilities
loadXml(file STRING)
 RETURNING om.DomNode

Creates a new DomNode object by
loading an XML file and attaches it to
this node as a child. The new created
node object is returned from the
function.

parse(source STRING) Parses a source string in XML format
and creates a new DomNode from it.

toString() RETURNING STRING Serializes the DomNode to a string in
XML format.

writeXml(file STRING) Writes an XML file with the current
node.

write(shd om.SaxDocumentHandler
)

Outputs an xml-tree to a sax
document handler.

Node identification
getId()
 RETURNING INTEGER

Returns the internal integer identifier
automatically assigned to an Abstract
User Interface DomNode. Returns -1
for nodes that are not part of the
Abstract User Interface tree.

getTagName()
 RETURNING STRING

Returns the tag name of the node.

Attributes management
setAttribute(att STRING, val
STRING)

Sets the attribute att with value val.

getAttribute(att STRING)
 RETURNING STRING

Returns the value of the attribute
having the name att.

getAttributeInteger(att STRING,
def INTEGER)
 RETURNING INTEGER

Returns the value of the attribute
having the name att as an integer
value. Returns def if the attribute is
not defined.

getAttributeString(att STRING,
def STRING)
 RETURNING INTEGER

Returns the value of the attribute
having the name att as a string value.
Returns def if the attribute is not
defined.

getAttributeName(pos INTEGER)
 RETURNING STRING

Returns the name of the attribute at
the position pos (1 = first).

getAttributesCount()
 RETURNING INTEGER

Returns the number of attributes of
this DomNode.

getAttributeValue(pos INTEGER)
 RETURNING STRING

Returns the value of the attribute at
the position pos (1 = first).

removeAttribute(att STRING) Deletes the attribute identified by att.
Tree navigation
getChildCount()
 RETURNING INTEGER

Returns the number of children.

Genero Business Development Language

992

getChildByIndex(pos INTEGER)
 RETURNING om.DomNode

Returns the child node at index pos
(1 = first).

getFirstChild()
 RETURNING om.DomNode

Returns the first child node.

getLastChild()
 RETURNING om.DomNode

Returns the last DomNode in the list
of children.

getNext()
 RETURNING om.DomNode

Returns the next sibling DomNode of
this node.

getParent()
 RETURNING om.DomNode

Returns the parent DomNode of this
node.

getPrevious()
 RETURNING om.DomNode

Returns the previous sibling
DomNode of this node.

selectByTagName(name STRING)
 RETURNING om.NodeList

Creates a list of nodes by recursively
searching nodes by tag name.

selectByPath(path STRING)
 RETURNING om.NodeList

Creates a list of nodes by recursively
searching nodes matching an XPath-
like pattern.

Usage:

Node creation/removal

To create an instance of the DomNode class from scratch, you must instantiate the
object using one of the methods provided in the DomNode class:

createChild() creates a child node and adds it to the children list.

appendChild() creates a child node and adds it to the end of the children list.

insertBefore() inserts a child node before the specified existing node.

replaceChild() replaces the specified child node with a different child node.

Other methods to create DomNode objects are available from the DomDocument class.
For example, to create a text node, use the createChars() method of a DomDocument
object; to create an entity node, use the createEntity() method of a DomDocument
object.

removeChild() removes the specified child node.

In/Out utilities

The DomNode class provides the writeXml() method to save the DOM tree into a file in
XML format.

Built-in Classes

993

The method write() outputs an xml-tree to a sax document handler.

The method loadXml() creates a new DomNode object by loading an XML file and
attaches it to this node as a child.

Use the toString() method to generate a string in XML format from the DomNode. To
scan an XML source string and create a DomNode from, use the parse() method.

Attributes management

A DomNode object can have attributes with values, except if it is a text node. In this
case, you can only get/set the text of the node, since text nodes cannot have attributes.
The DomNode class provides a complete set of methods to modify attribute values:

getAttribute() returns the value of the attribute having the specified name.

setAttribute() sets the value of the specified attribute.

getAttributeInteger() returns the value of the specified attribute as an integer value.

getAttributeString() returns the value of the specified attribute as a string value.

getAttributeName() returns the name of the attribute at the specified position.

getAttributesCount()returns the number of attributes of this DomNode.

getAttributeValue() returns the value of the attribute at the specified position.

removeAttribute() deletes the specified attribute.

Node Identification

To get the tag name of the DOM node, use the getTagName() method.

The method getId() returns the internal integer identifier automatically assigned to an
DomNode.

Tree navigation

A DomNode object can have zero or more DomNode children that can have, in turn,
other children. The DomNode class provides a complete set of methods to manipulate
DomNode child objects.

getChildCount() returns the number of children.

getChildByIndex() returns the child node at the specified index position.

getFirstChild() returns the first child node.

Genero Business Development Language

994

getLastChild() returns the last DomNode in the list of children.

getNext() returns the next sibling DomNode of this node.

getParent() returns the parent DomNode of this node.

getPrevious() returns the previous sibling DomNode of this node.

The selectByTagName() and selectByPath() methods allow you to search for
children nodes according to a tag name (i.e. a type of node) or by using an XPath-like
search criteria. See the NodeListclass for more details.

Warnings:

1. Tag and attribute names are case sensitive; "Wheel" is not the same as "wheel".
2. Text nodes cannot have attributes, but they have plain text.
3. In text nodes, the characters can be accessed with the @chars attribute name.
4. In XML representation, a text node is the text itself. Do not confuse it with the

parent node. For example, <Item id="32">Red shoes</Item> represents 2
nodes: The parent 'Item' node and a text node with string 'Red shoes'.

Tips:

1. If you need to identify an element, use a common attribute like "name".
2. If you need to label an element, use a common attribute like "text".

Examples

Example 1:

To create a DOM tree with the following structure (represented in XML format):

<Vehicles>
 <Car name="Corolla" color="Blue" weight="1546">Nice car! Yes,
very nice!
 </Car>
 <Bus name="Maxibus" color="Yellow" weight="5278">
 <Wheel width="315" diameter="925" />
 <Wheel width="315" diameter="925" />
 <Wheel width="315" diameter="925" />
 <Wheel width="315" diameter="925" />
 </Bus>
</Vehicles>

You write the following:

01 MAIN
02 DEFINE d om.DomDocument

Built-in Classes

995

03 DEFINE r, n, t, w om.DomNode
04 DEFINE i INTEGER
05
06 LET d = om.DomDocument.create("Vehicles")
07 LET r = d.getDocumentElement()
08
09 LET n = r.createChild("Car")
10 CALL n.setAttribute("name","Corolla")
11 CALL n.setAttribute("color","Blue")
12 CALL n.setAttribute("weight","1546")
13
14 LET t = d.createChars("Nice car!")
15 CALL n.appendChild(t)
16 LET t = d.createEntity("nbsp")
17 CALL n.appendChild(t)
18 LET t = d.createChars("Yes, very nice!")
19 CALL n.appendChild(t)
20
21 LET n = r.createChild("Bus")
22 CALL n.setAttribute("name","Maxibus")
23 CALL n.setAttribute("color","yellow")
24 CALL n.setAttribute("weight","5278")
25 FOR i=1 TO 4
26 LET w = n.createChild("Wheel")
27 CALL w.setAttribute("width","315")
28 CALL w.setAttribute("diameter","925")
29 END FOR
30
31 CALL r.writeXml("Vehicles.xml")
32
33 END MAIN

Example 2:

The following example displays a DOM tree content recursively:

01 FUNCTION displayDomNode(n,e)
02 DEFINE n om.DomNode
03 DEFINE e, i, s INTEGER
04
05 LET s = e*2
06 DISPLAY s SPACES || "Tag: " || n.getTagName()
07
08 DISPLAY s SPACES || "Attributes:"
09 FOR i=1 TO n.getAttributesCount()
10 DISPLAY s SPACES || " " || n.getAttributeName(i) || "=[" ||
n.getAttributeValue(i) ||"]"
11 END FOR
12 LET n = n.getFirstChild()
13
14 DISPLAY s SPACES || "Child Nodes:"
15 WHILE n IS NOT NULL
16 CALL displayDomNode(n,e+1)
17 LET n = n.getNext()
18 END WHILE
19

Genero Business Development Language

996

20 END FUNCTION

Example 3:

The following example outputs a Dom tree without indentation.

01 MAIN
02 DEFINE d om.DomDocument
03 DEFINE r, n, t, w om.DomNode
04 DEFINE dh om.SaxDocumentHandler
05
06 DEFINE i INTEGER
07
08 LET dh = om.XmlWriter.createPipeWriter("cat")
09 CALL dh.setIndent(FALSE)
10
11 LET d = om.DomDocument.create("Vehicles")
12 LET r = d.getDocumentElement()
13
14 LET n = r.createChild("Car")
15 CALL n.setAttribute("name","Corolla")
16 CALL n.setAttribute("color","Blue")
17 CALL n.setAttribute("weight","1546")
18
19 LET t = d.createChars("Nice car!")
20 CALL n.appendChild(t)
21
22 LET n = r.createChild("Bus")
23 CALL n.setAttribute("name","Maxibus")
24 CALL n.setAttribute("color","yellow")
25 CALL n.setAttribute("weight","5278")
26 FOR i=1 TO 4
27 LET w = n.createChild("Wheel")
28 CALL w.setAttribute("width","315")
29 CALL w.setAttribute("diameter","925")
30 END FOR
31
32 CALL r.write(dh)
33
34 END MAIN

Built-in Classes

997

The NodeList class
Summary:

• Syntax
• Methods
• Usage
• Examples

See also: Built-in Classes, XML Utils

Syntax

The NodeList class holds a list of DomNode objects created from a selection method.

Syntax:

om.NodeList

Notes:

1. A NodeList object is created from a DomNode.selectByTagName() or
DomNode.selectByPath() method.

Methods:

Object Methods
Name Description
item(index INTEGER)
 RETURNING om.DomNode

Returns the DomNode object at the
given position (first is 1). Returns
NULL if the item does not exist.

getLength()
 RETURNING INTEGER

Returns the number of items in the
list.

Usage

A NodeList object contains a list of the child objects of the DomNode from which it was
created, selected by Tag Name or Path. Use the DomNode methods to create the
NodeList, as shown in the examples below.

Once the NodeList object is created, the following Object methods are available:

Genero Business Development Language

998

item() - This method returns the DomNode that is at the specified position in the list.

getLength() - This method returns the total number of DomNodes in the list.

Examples

Example 1: Search for child nodes by tag name:

01 MAIN
02 DEFINE nl om.NodeList
03 DEFINE r, n om.DomNode
04 DEFINE i INTEGER
05
06 LET r = ui.Interface.getRootNode()
07 LET nl = r.selectByTagName("Form")
08
09 FOR i=1 to nl.getLength()
10 LET n = nl.item(i)
11 DISPLAY n.getAttribute("name")
12 END FOR
13
14 END MAIN

Example 2: Search for child nodes by XPath:

01 MAIN
02 DEFINE nl om.NodeList
03 DEFINE r, n om.DomNode
04 DEFINE i INTEGER
05
06 LET r = ui.Interface.getRootNode()
07 LET nl = r.selectByPath("//Window[@name=\"screen\"]")
08
09 FOR i=1 to nl.getLength()
10 LET n = nl.item(i)
11 DISPLAY n.getAttribute("name")
12 END FOR
13
14 END MAIN

Built-in Classes

999

The SaxAttributes class
Summary:

• Syntax
• Methods
• Usage

o Creating a SaxAttributes object
o Returning the value of an Attribute
o Returning the number of Attributes
o Returning the name of an Attribute
o Adding Attributes
o Removing Attributes
o Replacing the Attributes list

• Examples

See also: Built-in Classes, XML Utils

Syntax

The SaxAttributes class provides methods to manipulate XML element attributes.

Syntax:

om.SaxAttributes

Methods:

Class Methods
Name Description
copy(src SaxAttributes)
 RETURNING om.SaxAttributes

Clones an existing SaxAttributes
object.

create()
 RETURNING om.SaxAttributes

Creates a new, empty SaxAttributes
object.

Object Methods
Name Description
addAttribute(n STRING, v STRING
)

Adds an attribute to the end of the
list.

clear() Clears the attribute list.
getLength()
 RETURNING INTEGER

Returns the number of attributes in
the list.

getName(pos INTEGER)
 RETURNING STRING

Returns the name of the attribute at
position pos.

Genero Business Development Language

1000

getValue(att STRING)
 RETURNING STRING

Returns the value of the attribute
identified by the name att.

getValuebyIndex(pos INTEGER)
 RETURNING STRING

Returns the value of the attribute at
position pos.

removeAttribute(pos INTEGER)
 RETURNING INTEGER

Removes the attribute at position pos.

setAttributes(atts
om.SaxAttributes)

Clears the current attribute list and
adds all attributes of atts.

Usage:

This class provides basic methods to manipulate attributes of an XML element. The
SaxAttributes object is a list containing the attributes of the element.

Creating a SaxAttributes object

To process element attributes, a SaxAttributes object can be used in cooperation with an
XmlReader object. You get an instance of SaxAttributes with the getAttributes()
method.

The following SaxAttributes Class methods are also provided:

The om.SaxAttributes.create() method creates a new, empty SaxAttributes object.

The om.SaxAttributes.copy() method clones an existing SaxAttributes object.

Returning the value of an attribute

The getValue() method returns the value of the attribute specified by name.

The getValueByIndex() method returns the value of the attribute at the specified
position.

Returning the number of attributes

The getLength() method returns the number of attributes in the list.

Returning the name of an attribute

The getName() method returns the name of the attribute at the specified position in the
list.

Adding attributes

The addAttribute() method adds a new attribute to the end of the attributes list.

Built-in Classes

1001

Removing attributes

The clear() method clears the attributes list.

The removeAttribute() method removes the attributes at the given position in the list.

Replacing the attributes list

The setAttributes() method clears the current list and adds all the attributes of the
specified SaxAttributes object.

Examples

Example 1:

01 FUNCTION displayAttributes(a)
02 DEFINE a om.SaxAttributes
03 DEFINE i INTEGER
04 FOR i=1 to a.getLength()
05 DISPLAY a.getName(i) || "=[" || a.getValueByIndex(i) || "]"
06 END FOR
07 END FUNCTION

Genero Business Development Language

1002

The SaxDocumentHandler class
Summary:

• Syntax
• Methods
• Usage

o Creating a SaxDocumentHandler object
o Loading the document
o Processing the document

• Examples

See also: Built-in Classes, XML Utils, XmlWriter

Syntax

The SaxDocumentHandler class provides an interface to write an XML filter, following
the SAX standards.

Warning: You must either write a BDL module dedicated to the implementation of
the filter methods, or create the SaxDocumentHandler object with a XmlWriter
creation method; see usage for more details.

Syntax:

om.SaxDocumentHandler

Methods:

Class Methods
Name Description
createForName(module STRING)
 RETURNING
om.SaxDocumentHandler

Creates a SaxDocumentHandler
object using a BDL module.

Object Methods
Name Description
readXmlFile(file STRING) Reads an XML file and applies the

filter.
setIndent (indenting BOOLEAN) Enables output indentation if

indenting is TRUE. Indentation is
enabled by default

startDocument() Processes the beginning of the
document.

Built-in Classes

1003

startElement(tag STRING, atts
SaxAttributes)

Processes the beginning of an
element having the tag name tag and
the attributes atts.

characters(text STRING) Processes characters of a text node.
skippedEntity(text STRING) Processes an unresolved entity.
endElement(tag STRING) Processes the end of an element

having the tag name tag.
endDocument() Processes the end of the document.
processingInstruction(n STRING,
a STRING)

Processes a processing instruction
with the name n and attributes a.

Usage:

This class can be used in two different ways:

1. To implement an XML SAX filter, using BDL functions defined in a module.
2. To write an XML document to a file, process or socket output, using XmlWriter

creation methods.

This page describes the first usage; see XmlWriter for more details about the second
usage.

With the SaxDocumentHandler class, you can implement a SAX filter by using a BDL
module to write the methods handling the standard SAX events. The
SaxDocumentHandler class also provides methods to process all SAX events by hand.
This is useful if you want to chain SAX filters.

Creating a SaxDocumentHandler object

First, you create the SaxDocumentHandler object with the
om.SaxDocumentHandler.createForName(module) method, which takes a BDL
module as a parameter:

01 DEFINE filter om.SaxDocumentHandler
02 LET filter = om.SaxDocumentHandler.createForName("module1")

When doing this, the runtime system loads the BDL module and attaches its functions to
the SaxDocumentHandler methods by name.

Loading the document

To process a document, you typically load it from an XML file:

01 CALL filter.readXmlFile("xmlsource")

Genero Business Development Language

1004

Processing the document

The module must implement the following functions to match the SAX filter events:

• startDocument(): Called one time at the beginning of the document processing.
• processingInstruction(name,data): Called when a processing instruction is

reached, identified by name, with data information.
• startElement(name,attr): Called when an XML element is reached, identified

by the tag name, having the attr attributes (SaxAttributes).
• characters(chars): Called when a text node is reached, having the characters

chars.
• skippedEntity(chars): Called when an unknown entity node is reached (like

&xxx; for example). Entity name is stored in chars.
• endElement(name): Called when the end of an XML element is reached,

identified by the tag name.
• endDocument(): Called one time at the beginning of the document processing.

In these functions, you are free to process the XML document as you wish. You can use
the SaxAttributes methods to get the attributes of an element, transform the values or
ignore some attributes, and write directly to a file or to the database, or even chain
directly with another SaxDocumentHandler. If you want to write to an XML file, you
typically use an XmlWriter object.

By default, the SaxDocumentHandler object outputs XML with indentation. If you want to
disable indentation, use the setIndent() method:

01 CALL myhdlr.setIndent(FALSE)

Examples

Example 1: Extracting phone numbers from a directory.

This example shows how to write a SAX filter to extract phone numbers from a directory
file written in XML.

01 MAIN
02 DEFINE f om.SaxDocumentHandler
03 LET f = om.SaxDocumentHandler.createForName("module1")
04 CALL f.readXmlFile("customers")
05 END MAIN

Notes:

1. In Line 03, the input parameter specifies the name of a source file that has been
compiled into a .42m file ("module1.42m" in our example).

The module "module1.4gl":

Built-in Classes

1005

01 FUNCTION startDocument()
02 END FUNCTION
03
04 FUNCTION processingInstruction(name,data)
05 DEFINE name,data STRING
06 END FUNCTION
07
08 FUNCTION startElement(name,attr)
09 DEFINE name STRING
10 DEFINE attr om.SaxAttributes
11 DEFINE i INTEGER
12 IF name="Customer" THEN
13 DISPLAY attr.getValue("lname")," ",
14 attr.getValue("fname"),":",
15 COLUMN 60, attr.getValue("phone")
16 END IF
17 END FUNCTION
18
19 FUNCTION endElement(name)
20 DEFINE name STRING
21 END FUNCTION
22
23 FUNCTION endDocument()
24 END FUNCTION
25
26 FUNCTION characters(chars)
27 DEFINE chars STRING
28 END FUNCTION
29
30 FUNCTION skippedEntity(chars)
31 DEFINE chars STRING
32 END FUNCTION

The XML file "customers":

<Customers>
 <Customer customer_num="101" fname="Ludwig" lname="Pauli"
 company="All Sports Supplies" address1="213 Erstwild Court"
 address2="" city="Sunnyvale" state="CA" zipcode="94086"
 phone="408-789-8075" />
 <Customer customer_num="102" fname="Carole" lname="Sadler"
 company="Sports Spot" address1="785 Geary St"
 address2="" city="San Francisco" state="CA" zipcode="94117"
 phone="415-822-1289" />
 <Customer customer_num="103" fname="Philip" lname="Currie"
 company="Phil's Sports" address1="654 Poplar"
 address2="P. O. Box 3498" city="Palo Alto" state="CA"
 zipcode="94303" phone="415-328-4543" />
</Customers>

Genero Business Development Language

1006

The XmlReader class
Summary:

• Syntax
• Methods
• Usage

o Creating an XMLReader object
o Processing Events

• Examples

See also: Built-in Classes, XML Utils

Syntax

The XmlReader class provides methods to read and process a file written in XML
format, following the SAX standards.

Syntax:

om.XmlReader

Methods:

Class Methods
Name Description
createFileReader(file STRING)
 RETURNING om.XmlReader

Creates an XmlReader reading from
a file.

Object Methods
Name Description
getAttributes()
 RETURNING om.SaxAttributes

Returns the attribute list of the current
element.

getCharacters()
 RETURNING STRING

Returns the string value of the current
text element.

skippedEntity()
 RETURNING STRING

Returns the name of the entity.

getTagName()
 RETURNING STRING

Returns the tag name of the current
element.

read()
 RETURNING STRING

Reads the next XML fragment and
returns the name of the SAX event
that occurs. This can be one of
StartDocument, StartElement,
Characters, EndElement,

Built-in Classes

1007

EndDocument.

Usage:

The processing of the XML file is streamed-data based; the file is loaded and processed
sequentially with events. To process element attributes, an XmlReader object must
cooperate with a SaxAttributes object. The XmlReader class can only read from a file.
To write to a file, you must use the XmlWriter class.

Creating an XMLReader object

First, you must declare a variable of type om.XmlReader, and use the
om.XmlReader.createFileReader(filename) method to create the object; where
filename is a string expression defining the name of the file to be read.

As with the standard SAX API, the XML file is parsed on the basis of events. Once the
XmlReader object is created with the om.XmlReader.createFileReader() method, you
can successively call the read() method to get named events indicating how to parse
the XML file.

Processing Events

The following events can be returned by the read() method:

Event name Description Action
StartDocument Beginning of the document Prepare processing (allocate

resources)
StartElement Beginning of a node Get current element's

tagname or attributes
XmlReader.getTagName()
XmlReader.getAttributes()

Characters Value of the current element Get current element's value
XmlReader.getCharacters()

SkippedEntity Name of the entity Get current element's value
XmlReader.skippedEntity()

EndElement Ending of a node Get current element's
tagname
XmlReader.getTagName()

EndDocument Ending of the document Finish processing (release
resources)

To process element attributes, you must declare a variable of type SaxAttributes. This
object represents a set of attributes of an element. You get an object of this class with
the getAttributes() method. Once created from the XmlReader, the SaxAttributes

Genero Business Development Language

1008

object is automatically updated based on the element currently processed by the
XmlReader.

Examples

Example:

01 MAIN
02 DEFINE i, l INTEGER
03 DEFINE r om.XmlReader
04 DEFINE e String
05 DEFINE a om.SaxAttributes
06 LET r = om.XmlReader.createFileReader("myfile.xml")
07 LET a = r.getAttributes()
08 LET l = 0
09 LET e = r.read()
10 WHILE e IS NOT NULL
11 CASE e
12 WHEN "StartDocument"
13 DISPLAY "StartDocument:"
14 WHEN "StartElement"
15 LET l=l+1
16 DISPLAY l SPACES, "StartElement:", r.getTagName()
17 FOR i=1 to a.getLength()
18 DISPLAY l SPACES," ",
19 a.getName(i)," = ",
20 a.getValueByIndex(i)
21 END FOR
22 WHEN "Characters"
23 DISPLAY l SPACES, " Characters:'",r.getCharacters(),"'"
24 WHEN "EndElement"
25 DISPLAY l SPACES, "EndElement:", r.getTagName()
26 LET l=l-1
27 WHEN "EndDocument"
28 DISPLAY "EndDocument:"
29 OTHERWISE
30 DISPLAY "Invalid event: ",e
31 END CASE
32 LET e=r.read()
33 END WHILE
34 END MAIN

Built-in Classes

1009

The XmlWriter class
Summary:

• Syntax
• Methods
• Usage

o Create a SaxDocumentHandler object writing to a file
o Create a SaxDocumentHandler object writing to a pipe
o Create a SaxDocumentHandler object writing to a socket

• Examples

See also: Built-in Classes, XML Utils, SaxDocumentHandler

Syntax

The XmlWriter class allows you to write XML documents to different types of output,
following the SAX standards.

Syntax:

om.XmlWriter

Methods:

Class Methods
Name Description
createFileWriter(file STRING)
 RETURNING
om.SaxDocumentHandler

Creates a SaxDocumentHandler
object writing to a file.

createPipeWriter(exec STRING)
 RETURNING
om.SaxDocumentHandler

Creates a SaxDocumentHandler
object writing to a pipe created for a
process.

createSocketWriter(host STRING,
port STRING)
 RETURNING
om.SaxDocumentHandler

Creates a SaxDocumentHandler
object writing to a socket.

Usage:

This class is only used to create a SaxDocumentHandler object, by using one of the
class methods described in the above table.

Genero Business Development Language

1010

First, define a variable of type om.SaxDocumentHander and create the object with one
of the "create" methods, according to the output destination:

• The method om.XmlWriter.createFileWriter(filename) creates an object
writing to the file identified by filename.

• The method om.XmlWriter.createPipeWriter(progname) creates an object
writing to a pipe opened by a sub-process identified by progname.

• The method om.XmlWriter.createSocketWriter(hostname,portnum) creates
an object writing to the TCP socket identified by the host hostname and the TCP
port portnum.

To handle element attributes, define a variable of type om.SaxAttributes.

Create the SaxAttributes object with om.SaxAttributes.create() class method. See
the class definition for more details about attributes definition.

Use SaxDocumentHandler methods

Use the method startDocument() to start writing to the output. From this point, the
order of method calls defines the structure of the XML document.

To write an element, fill the SaxAttributes object with attributes. Then, initiate the
element output with the method startElement(name,attset), where name is the tag
name of the element and attset is the SaxAttributes object defining element attributes.
After this call, you can write text nodes with the characters() method. You can write an
entity node with the entity() method. Finish element output with a call to the
endElement() method. Repeat these steps as many times as you have elements to
write.

Instead of using the startElement() method, you can generate processing instruction
elements with processingInstruction(name,attset), where name is the name of the
application. The resulting XML output is in the form: <?name attribute="value1" ...
?>

Finally, you must finish the document output with a endDocument() call.

Examples

Example 1:

The following code writes an HTML page to a file using the XmlWriter class:

01 MAIN
02 DEFINE w om.SaxDocumentHandler
03 DEFINE a,n om.SaxAttributes
04
05 LET w = om.XmlWriter.createFileWriter("sample.html")

Built-in Classes

1011

06 LET a = om.SaxAttributes.create()
07 LET n = om.SaxAttributes.create()
08
09 CALL n.clear()
10
11 CALL w.startDocument()
12
13 CALL w.startElement("HTML",n)
14
15 CALL w.startElement("HEAD",n)
16
17 CALL w.startElement("TITLE",n)
18 CALL w.characters("HTML page generated with XmlWriter")
19 CALL w.endElement("TITLE")
20
21 CALL a.clear()
22 CALL a.addAttribute("type","text/css")
23 CALL w.startElement("STYLE",a)
24 CALL w.characters("\nBODY { background-color:#c0c0c0; }\n")
25 CALL w.endElement("STYLE")
26
27 CALL w.endElement("HEAD")
28
29 CALL w.startElement("BODY",n)
30
31 CALL addHLine(w)
32 CALL addTitle(w,"What is XML?",1,"55ff55")
33 CALL addParagraph(w,"XML = eXtensible Markup Language ...")
34
35 CALL addHLine(w)
36 CALL addTitle(w,"What is SAX?",1,"55ff55")
37 CALL addParagraph(w,"SAX = Simple Api for XML ...")
38
39 CALL w.endElement("BODY")
40
41 CALL w.endElement("HTML")
42
43 CALL w.endDocument()
44
45 END MAIN
46
47 FUNCTION addHLine(w)
48 DEFINE w om.SaxDocumentHandler
49 DEFINE a om.SaxAttributes
50 LET a = om.SaxAttributes.create()
51 CALL a.clear()
52 CALL a.addAttribute("width","100%")
53 CALL w.startElement("HR",a)
54 CALL w.endElement("HR")
55 END FUNCTION
56
57 FUNCTION addTitle(w,t,x,c)
58 DEFINE w om.SaxDocumentHandler
59 DEFINE t VARCHAR(100)
60 DEFINE x INTEGER
61 DEFINE c VARCHAR(20)
62 DEFINE a om.SaxAttributes

Genero Business Development Language

1012

63 DEFINE n varchar(10)
64 LET a = om.SaxAttributes.create()
65 LET n = "h" || x
66 CALL a.clear()
67 CALL w.startElement(n,a)
68 IF c IS NOT NULL THEN
69 CALL a.addAttribute("color",c)
70 END IF
71 CALL w.startElement("FONT",a)
72 CALL w.characters(t)
73 CALL w.endElement("FONT")
74 CALL w.endElement(n)
75 END FUNCTION
76
77 FUNCTION addParagraph(w,t)
78 DEFINE w om.SaxDocumentHandler
79 DEFINE t VARCHAR(2000)
80 DEFINE a om.SaxAttributes
81 LET a = om.SaxAttributes.create()
82 CALL a.clear()
83 CALL w.startElement("P",a)
84 CALL w.characters("Text is:")
84 CALL w.skippedEntity("nbsp") # Add a non breaking space :

84 CALL w.characters("is")
84 CALL w.characters(t)
85 CALL w.endElement("P")
86 END FUNCTIO

1013

Environment Variables
Summary:

• Setting Environment Variables on UNIX
• Setting Environment Variables on Windows
• Operating System Environment Variables

o PATH
o LD_LIBRARY_PATH
o LC_ALL

• Database Client Environment Variables
• Genero BDL Environment Variables

o DBDATE
o DBCENTURY
o DBDELIMITER
o DBEDIT
o DBFORMAT
o DBMONEY
o DBPATH
o DBPRINT
o FGLDBPATH
o FGLDIR
o FGLIMAGEPATH
o FGLLDPATH
o FGLGUI
o FGLGUIDEBUG
o FGLPROFILE
o FGLSERVER
o FGLSOURCEPATH
o FGLSQLDEBUG
o FGLWRTUMASK

See also: Tools, Localization Support, Connections, Installation and Setup

Setting Environment Variables on UNIX
On UNIX platforms, environment variables can be set through the following methods,
depending on to the command interpreter used:

Bourne shell:

 VAR=value; export VAR

Korn shell:

 export VAR=value

Genero Business Development Language

1014

C shell:

 setenv VAR=value

For more details, refer to the documentation for your UNIX system.

Setting Environment Variables on Windows
On Windows platforms, environment variables can be set by one of the following
methods:

• In a command window, with the SET command.
• In the registry, for the current user in HKEY_CURRENT_USER or a global setting in

HKEY_LOCAL_MACHINE.

For more details, refer to the documentation of your Windows system.

Warnings:

1. When using Informix, some variables related to the database engine must be set
using the SETNET32 utility.

2. On Windows, double quotes do not have the same meaning as on UNIX
systems. For example, if you set a variable with the command SET VAR="abc",
the value of the variable will be "abc" (with double quotes), and not abc.

Operating System Environment Variables
This section describes a couple of well-known system environment variables that are
used by Genero software components.

PATH

Purpose:

This variable defines the list of search path for executables files.

Notes:

1. On Unix platforms, PATH defines search path list for executable programs.
2. On Windows platforms, PATH defines search path for programs and DLLs.
3. The path separator is a colon (:) on UNIX and a semicolon (;) on Windows.

Miscellaneous

1015

LD_LIBRARY_PATH

Purpose:

This variable defines the list of search path for shared libraries loaded by the dynamic
linker on Unix platforms.

Notes:

1. On some operating systems, the environment variable defining the shared library
search path may have a different name. For example, on a system where a 32b
and a 64b environment coexist, you may need to set LD_LIBRARY_PATH_64 to
execute the 64b programs.

LC_ALL

Purpose:

This variable defines the locale (language, territory and code-set) for Unix programs.

Notes:

1. This variable is used by the runtime system to handle character strings. It is
important to set this variable properly according to the character set used by your
application.

2. If LC_ALL is not defined, LANG is used instead.
3. Read the Unix manual of the setlocale C function for more details about this

variable. See also the Localization page.

Database Client Environment Variables
If your Genero programs connect to a database server, you will probably have to set
database vendor specific environment variables (or registry settings on Windows
platforms). You must for example set INFORMIXDIR for an Informix client,
ORACLE_HOME for Oracle, etc. Read carefully the database client software
documentation. You get also some details in the Database Connections page of this
documentation.

Genero Business Development Language

1016

Genero Environment Variables
This section lists and describes in detail all Genero specific environment variables.

DBDATE

Purpose:

Defines the default display format for DATE values and the default picture for automatic
string-to-DATE conversions.

Values:

Values can be a restricted combination of several symbols described in the following
table:

Symbol Meaning in DBDATE format string
D Day of month as one or two digits
M Month as one or two digits
Y2 Year as two digits
Y4 Year as four digits
/ Default time-unit separator for the default locale
- Minus time-unit separator
, Coma time-unit separator
. Period time-unit separator
0 Indicates no time-unit separator

The combinations must follow a specific order:

 { DM | MD } { Y2 | Y4 } { / | - | , | . | 0 }
 { Y2 | Y4 } { DM | MD } { / | - | , | . | 0 }

Notes:

1. DBDATE defines the order of the month, day, and year time units within a date,
whether the year is printed with two digits (Y2) or four digits (Y4) and the time-
unit separator between the month, day, and year.

2. In programs, when you assign a string representing a date to a variable defined
with the DATE data type, automatic string-to-DATE conversion takes place
based on the DBDATE definition.

3. In the default locale, the default setting for DBDATE is DMY4/.
4. Date formatting specified in a USING clause or FORMAT attribute overrides the

formatting specified in DBDATE.

Miscellaneous

1017

Example:

DBDATE="DMY4/"
export DBDATE

DBDELIMITER

Purpose:

The DBDELIMITER environment variable defines the value delimiter for LOAD and
UNLOAD instructions.

Notes:

1. If DBDELIMITER is not defined, the default delimiter is a (|) pipe.

Warnings:

1. Do not use backslash or hex digits (0-9, A-F, a-f).

Example:

DBDELIMITER="@"
export DBDELIMITER

DBCENTURY

Purpose:

The DBCENTURY environment variable specifies how to expand abbreviated one- and
two-digit year specifications within DATE and DATETIME values.

Values:

Symbol Algorithm for Expanding Abbreviated Years
C Use the past, future, or current year closest to the current date.
F Use the nearest year in the future to expand the entered value.
P Use the nearest year in the past to expand the entered value.
R Prefix the entered value with the first two digits of the current year.

Genero Business Development Language

1018

Notes:

1. Default value is "R" (prefix the entered value with the first two digits of the current
year).

2. Values are case sensitive; only the four uppercase letters are valid.
3. Three-digit years are not expanded.
4. If a year is entered as a single digit, it is first expanded to two digits by prefixing it

with a zero; DBCENTURY then expands this value to four digits.
5. Years before 99 AD (or CE) require leading zeros (to avoid expansion).

Warnings:

1. If the database server and the client system have different settings for
DBCENTURY, the client system setting takes precedence for abbreviations of
years in dates entered through the application. Expansion is sensitive to the time
of execution and to the accuracy of the system clock-calendar. You can avoid the
need to rely on DBCENTURY by requiring the user to enter four-digit years or by
setting the CENTURY attribute in the form specification of DATE and DATETIME
fields.

DBEDIT

Purpose:

The DBEDIT environment variable defines the editor program to be used for TEXT
fields.

DBFORMAT

Purpose:

The DBFORMAT environment variable defines the input and display format for numbers.

See also DBMONEY.

Syntax:

front:thousands:decimal:back

Notes:

1. front is the leading currency symbol, can be an asterisk (*).
2. throusands is a character that you specify as a valid thousands separator, can be

an asterisk (*).
3. decimal is a character that you specify as a valid decimal separator.

Miscellaneous

1019

4. back is the trailing currency symbol, can be an asterisk (*).

Usage:

The DBFORMAT environment variable specifies the format in which values are entered,
displayed, or passed to the database for number data types: MONEY, DECIMAL, INTEGER,
SMALLINT, FLOAT, SMALLFLOAT.

The default format specified in DBFORMAT affects numeric and monetary values in
display, input, and output operations.

DBFORMAT can specify the leading and trailing currency symbols (but not their default
positions within a monetary value) and the decimal and thousands separators. The
decimal and thousands separators defined by DBFORMAT apply to both monetary and
other numeric data.

Features of BDL affected by the setting in DBFORMAT include (but are not restricted to)
the following items:

• USING operator or FORMAT attribute
• DISPLAY or PRINT statement
• LET statement, where a CHAR, VARCHAR or STRING variable is assigned a

monetary or number value
• LOAD and UNLOAD statements that use ASCII files (or whatever the locale

regards as a flat file) to pass data to or from the database
• PREPARE statements that process number values

The asterisk (*) specifies that a symbol or separator is not applicable; it is the default
for any front, thousands, or back term that you do not define.

If you specify more than one character for decimal or thousands, the values in the
decimal or thousands list cannot be separated by spaces (nor by any other symbols).
BDL uses the first value specified as the thousands or decimal separator when
displaying the number or currency value in output. The user can include any of the
decimal or thousands separators when entering values.

Any printable character that your locale supports is valid for the thousands separator or
for the decimal separator, except:

• Digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
• <, >, |, ?, !, =, [,]

The same character cannot be both the thousands and decimal separator. A blank
space (ASCII 32) can be the thousands separator (and is conventionally used for this
purpose in some locales). The asterisk (*) symbol is valid as the decimal separator, but
is not valid as the thousands separator.

The colon (:) symbol is supported as thousands or decimal separator but must be
preceded by a backslash (\) symbol, as in the specification :\::.:DM. .

Genero Business Development Language

1020

You must include all three colons. Enclosing the DBFORMAT specification in a pair of
single quotation marks is recommended to prevent the shell from attempting to interpret
(or execute) any of the DBFORMAT characters.

The setting in DBFORMAT also affects how formatting masks of the FORMAT attribute
and of the USING operator are interpreted. In formatting masks of FORMAT and USING,
the following symbols are not literal characters but are placeholders for what
DBFORMAT specifies:

• The dollar ($) sign is a placeholder for the front currency symbol.
• The comma is a placeholder for the thousands separator.
• The period is a placeholder for the decimal separator.

In formatting masks of the FORMAT attribute, the at (@) sign is a placeholder for the
back currency symbol. (The @ symbol has no special significance in formatting masks
for the USING operator.)

The following table illustrates the results of different combinations of DBFORMAT setting
and format string on the same value.

Value Format String DBFORMAT Result
1234.56 $$#,###.## $:,:.: $1,234.56
1234.56 $$#,###.## :.:,:DM 1.234,56
1234.56 #,###.##@ $:,:.: 1,234.56
1234.56 #,###.##@ :.:,:DM 1.234,56DM

When the user enters number or currency values, the runtime system behaves as
follows:

• It disregards any front (leading) or back (trailing) currency symbol and any
thousands separators that the user enters.

• If a symbol is entered that was defined as a decimal separator in DBFORMAT, it
is interpreted as the decimal separator.

When the runtime system displays or prints values:

• The DBFORMAT-defined leading or trailing currency symbol is displayed for
MONEY values.

• If a leading or trailing currency symbol is specified by the FORMAT attribute for
non-MONEY data types, the symbol is displayed.

• The thousands separator is not displayed unless it is included in a formatting
mask of the FORMAT attribute or of the USING operator.

When MONEY values are converted to character strings by the LET statement, both
automatic data type conversion and explicit conversion with a USING clause insert the
DBFORMAT-defined separators and currency symbol into the converted strings.

For example, suppose DBFORMAT is set as follows:

Miscellaneous

1021

*:.:,:DM

The value 1234.56 will print or display as follows:

1234,56DM

Here DM stands for deutsche marks. Values input by the user into a screen form are
expected to contain commas, not periods, as their decimal separator because
DBFORMAT has *:.:,:DM as its setting in this example.

DBMONEY

Purpose:

The DBMONEY environment variable defines the currency symbol and the decimal
separator for MONEY values.

See also DBFORMAT.

Syntax:

front{.|,}back

Notes:

1. front is a character string representing a leading currency symbol that precedes
the value.

2. back is a character string representing a trailing currency symbol that follows the
value.

3. The currency symbol can be up to seven characters long and can contain any
character except a comma or a period.

4. The currency symbol can be non-ASCII characters if your current locale supports
a code set that defines the non-ASCII characters you use.

Usage:

This variable is used to display or input MONEY values and for implicit data conversion
between MONEY values and character strings.

Currency symbol and decimal separator characters must be specified in this
environment variable.

The position of the currency symbol (relative to the decimal separator) indicates whether
the currency symbol appears before or after the MONEY value. When the currency
symbol is positioned in DBMONEY before the decimal separator, it is displayed before
the value ($1234.56). When it is positioned after the decimal separator, it is displayed
after the value (1234.56F).

Genero Business Development Language

1022

The runtime system recognizes the period (.) and the comma (,) as decimal
separators. All other characters are considered to be part of the currency symbol. For
example, ", FR" defines a MONEY format with the comma as decimal separator and the
string " FR" (including the space) as the currency symbol.

The default value for DBMONEY is "$.", defining the currency symbol as the dollar sign (
$) and the decimal separator as the period (.).

Because only its position within a DBMONEY setting indicates whether a symbol is the
front or back currency symbol, the decimal separator is required. If you use DBMONEY
to specify a back symbol, for example, you must supply a decimal separator (a comma
or period). Similarly, if you use DBMONEY to change the decimal separator from a
period to a comma, you must also supply a currency symbol.

To avoid ambiguity in displayed numbers and currency values, do not use the thousands
separator of DBFORMAT as the decimal separator of DBMONEY. For example,
specifying comma as the DBFORMAT thousands separator dictates using the period as
the DBMONEY decimal separator.

Example:

DBMONEY="$."
export DBMONEY
DBMONEY=",F"
export DBMONEY

DBPATH

Purpose:

The DBPATH environment variable defines the paths to search for program resource
files.

Notes:

1. If DBPATH is not defined, the default is the current directory.
2. You can provide a list of paths, using system-specific path separators.

Usage:

The DBPATH environment variable contains the search paths for the following type of
files:

1. Form files loaded by OPEN FORM,
2. Message files used by OPTIONS HELP FILE,
3. Resource files of Localized strings.

Miscellaneous

1023

Warnings:

1. The path separator is platform specific (":" on UNIX platforms and ";" on
Windows platforms).

Example (UNIX):

DBPATH="/user/forms1:/user/form2:/usr/strings/french"
export DBPATH

DBPRINT

Purpose:

The DBPRINT environment variable specifies the print device to be used by reports
defined TO PRINTER.

Notes:

1. On UNIX systems, the DBPRINT environment variable typically contains the
printer queue command (such as lp).

2. To have the DVM print to the printer on the client running the Genero Desktop
Client (GDC), set DBPRINT=FGLSERVER.

Example (UNIX):

DBPRINT="lpr"
export DBPRINT

Example (Client):

DBPRINT=FGLSERVER
export DBPRINT

FGLDIR

Purpose:

The FGLDIR environment variable defines the Genero BDL software installation
directory.

Warnings:

1. The FGLDIR environment variable must be set in order to use the product
components.

Genero Business Development Language

1024

FGLIMAGEPATH

Purpose:

The FGLIMAGEPATH environment variable defines the search paths to find images for
the front-end.

Notes:

1. By default, the image directory is the current directory where the program was
started.

2. You can provide a list of paths, using system-specific path separators.

Warnings:

1. The path separator is platform specific (":" on UNIX platforms and ";" on
Windows platforms).

Usage:

When the front-end needs to display an image which is specified with a simple file name
(not an URL), the front end first looks for local image files on the user workstation. If the
image file is not found locally, the front-end sends an image request to the runtime
system, which provides the image from the server file-system.

You define the search path for images with the FGLIMAGEPATH environment variable.

The runtime system searches for image files in the locations described below. The
search depends from the name of the image file, the list of directories defined in
FGLIMAGEPATH, and the expected file extensions provided by the front-end:

• Name of the image file is: "file"
• Content of FGLIMAGEPATH: "dir1:dir2"
• List of extensions provided by the front-end: .gif, .png

The image file would be searched in the following locations:

1. ./file
2. ./file.gif
3. ./file.png
4. dir1/file
5. dir1/file.gif
6. dir1/file.png
7. dir2/file
8. dir2/file.gif
9. dir2/file.png

Miscellaneous

1025

Example:

FGLIMAGEPATH="/user/myimages:/user/myicones"
export FGLIMAGEPATH

FGLLDPATH

Purpose:

The FGLLDPATH environment variable defines the search paths to load C extensions
and modules.

Usage:

A Genero program can be composed by several p-code modules (42m) and can use C
extensions. When linking and when executing the program, the runtime system must
known where to search for these modules. You can use the FGLLDPATH environment
variable to define the search paths to load C extensions and p-code modules.

Modules are searched in several implicit directories in the following order:

1. The directory where the program (42r) file resides.
2. A path defined in the FGLLDPATH environment variable.
3. The FGLDIR/lib directory.
4. The current directory.

Warnings:

1. The path separator is platform specific (":" on UNIX platforms and ";" on
Windows platforms).

2. This variable is used at link time and at run time.

Example:

FGLLDPATH="/user/modules1:/user/modules2"
export FGLLDPATH

See also: IMPORT.

FGLGUI

Purpose:

The FGLGUI environment variable indicates whether the applications are run in TUI or
GUI mode.

Genero Business Development Language

1026

Notes:

1. When set to 0 (zero), the application executes in TUI mode.
2. When set to 1 (one), the application executes in GUI mode.

FGLGUIDEBUG

Purpose:

The FGLGUIDEBUG environment variable defines the debug level in GUI mode.

Notes:

1. When set to 0 (zero), no debug information is generated.

Usage:

By default, the GUI protocol commands are compressed and not easy to read on the
client debug log. If you set this variable to a value different from zero, the protocol
commands are indented for better read.

If FGLGUIDEBUG is not set to 0, debug information about the compression initialization
is generated.

FGLSERVER

Purpose:

The FGLSERVER environment variable defines the hostname and port of the graphical
front end to be used by the runtime system to display the application windows.

Syntax:

{hostname|ipaddress}[:servnum]

Notes:

1. hostname is the name of a machine on the network.
2. ipaddress is the IP V4 address (Ex: 10:0:0:105).
3. servnum identifies the front end. This number also implicitly defines the TCP port

number the front end is listening to, as an offset for the base port 6400.

Miscellaneous

1027

Warnings:

1. The servnum parameter defines the front end server number (first is 0, second is
1, and so on) and implicitly the TCP port. The port number base is 6400. For
example, when using 1, the runtime system connects to the TCP port 6401.

Example:

FGLSERVER="mars:0"
export FGLSERVER

See also: Automatic front-end startup.

FGLSOURCEPATH

Purpose:

The FGLSOURCEPATH environment variable defines the path to source files for the
debugger.

Notes:

1. By default, source files are searched in the current directory and in the directories
defined by FGLLDPATH.

2. You can provide a list of paths, using system-specific path separators.

Warnings:

1. The path separator is platform specific (":" on UNIX platforms and ";" on
Windows platforms).

FGLDBPATH

Purpose:

The FGLDBPATH environment variable contains the path to database schema files.

Notes:

1. If FGLDBPATH is not defined, the current directory is the default path for the
database schema files.

2. You can provide a list of paths, separating the paths with a colon (":").
3. FGLDBPATH is only used in development.

Genero Business Development Language

1028

Warnings:

1. The path separator is platform specific (":" on UNIX platforms and ";" on
Windows platforms).

FGLSQLDEBUG

Purpose:

The FGLSQLDEBUG environment variable defines the debug level for tracing SQL
instructions.

Notes:

1. If FGLSQLDEBUG is set to a value greater than zero, you get a debug trace in
the standard error channel.

2. FGLSQLDEBUG is only used in development.

FGLPROFILE

Purpose:

The FGLPROFILE environment variable defines the current configuration file to be used
by the runtime system.

Notes:

1. If FGLPROFILE is not set, the runtime system reads entries from the default
configuration file located in FGLDIR/etc/fglprofile, or from the program-specific
configuration file.

2. For more information, refer to the FGLPROFILE section of this manual.

FGLWRTUMASK

Purpose:

The FGLWRTUMASK environment variable defines the umask for the FGLDIR/lock
directory.

Miscellaneous

1029

Notes:

1. The FGLWRTUMASK environment variable is used by the license manager
fglWrt.

2. This variable defines the umask to create the FGLDIR/lock directory.
3. The default is 000, which creates a directory with rwxrwxrwx rights.

For more information, refer to the Installation section of this manual.

Genero Business Development Language

1030

The FGLPROFILE configuration file
Summary:

• Basics
• FGLPROFILE Entry Syntax
• Supported Entries

See also: Programs

Basics

The runtime system uses one or more configuration files in which you can define entries
to change the behavior of the programs.

There is no specific naming convention for the configuration files, however, we
recommend to use an extension such as prf.

There are three different ways to specify the configuration file, with the following order of
precedence:

1. By default, the runtime system reads the configuration file provided in
FGLDIR/etc/fglprofile. This file contains all supported entries, identifies the
possible values for an entry, and documents default values.

2. If the FGLPROFILE environment variable is set, the runtime system reads entries
from the file specified by this environment variable.

3. If the program-specific profile directory contains a file with the same name as the
current program, the runtime system reads the entries from that file. By default,
the program-specific profile directory is FGLDIR/defaults. This directory can be
changed with the fglrun.defaults entry in one of the previously mentioned
configuration files (FGLDIR/etc/fglprofile or the one defined by the FGLPROFILE
environment variable).

FGLPROFILE Entry Syntax

Purpose:

An FGLPROFILE entry is a parameter that can be changed in the configuration file.

Syntax:

entry = value

Miscellaneous

1031

Notes:

1. entry identifies the name of the entry.
2. value is the value of the entry; it might be a numeric value, a string literal, or a

Boolean value (true/false), depending on what is valid for the entry.

Warnings:

1. Entry names are converted to lower case when loaded by the runtime system. In
order to avoid any confusion, it is recommended to write FGLPROFILE entry
names in lower case.

2. If an entry is defined several times in the same file, the last entry found in the file
is used. No error is raised.

Usage:

The entries are defined by a name composed of a list of words separated by a dot
character.

By using names like domain.sub-domain.param, entries can be organized by domains
and sub-domains.

The value can be a numeric literal, a string literal, or a Boolean (true/false).

Numeric values are composed by an optional sign, followed by digits, followed by an
optional decimal point and digits:
[-|+]{digits}[.digits]

String values must be delimited by double quotes. The escape character is backslash:
"characters"

Boolean values must be either the true or false keyword:
{true|false}

If an entry is defined in different levels of configuration files (default/specific/program),
the runtime system searches for the entry value in the following order:

1. Program (FGLDIR/default/progname)
2. Specific (file specified by the FGLPROFILE environment variable)
3. Default (FGLDIR/etc/fglprofile)

For more details about supported entries, see Supported Entries.

Example:

01 rtm.memory.cachelocals = true
02 rtm.default.logfile = "mytrace1.log"
03 rtm.installation.path = "C:\\progra~1\\fourjs\\fgl"
04 dbi.database.stores.prefetch.rows = 200

Genero Business Development Language

1032

Supported Entries

The following table shows the a partial list of supported FGLPROFILE entries. You can
find the complete usage for an entry in the corresponding documentation section
referenced in the description of the entry.

Entry Values DefaultDescription
dbi.* N/A N/A Database interface

configuration.
See Connections for
more details.

gui.chartable string NULL Defines the character
conversion table file.
See Dynamic User
Interface for more
details.

gui.connection.timeout integer 30 Defines the timeout
delay (in seconds) the
runtime system waits
when it establishes a
connection to the front-
end. After this delay the
program stops with an
error.
See Dynamic User
Interface for more
details.

gui.protocol.pingTimeout integer 600 Defines the timeout
delay (in seconds) the
runtime system waits for
a front-end ping when
there is no user activity.
After this delay the
program stops with an
error.
See Dynamic User
Interface for more
details.

gui.server.autostart.* N/A N/A Defines automatic front-
end startup parameters.
See Dynamic User
Interface for more
details.

fglrun.default string NULL Defines the directory
where program specific

Miscellaneous

1033

configuration files are
located.
See Basics for more
details.

fglrun.ignoreLogoffEvent boolean false Defines whether the
DVM ignores a
CTRL_LOGOFF_EVENT
on Windows platforms.
See Programs for more
details.

fglrun.ignoreDebuggerEvent boolean false Defines whether the
DVM ignores a
SIGTRAP (Unix) or
CTRL-Break (Windows)
to switch into debug
mode.
See Debugger for more
details.

fglrun.localization.* N/A N/A Defines load parameters
for localized string
resource files.
See Localized Strings for
more details.

fglrun.mmapDisable boolean false Memory mapping
control. When set to
true, memory mapping is
disabled and standard
memory allocation
method takes place. For
more details about
memory mapping, run
"man mmap" on UNIX.
See Basics for more
details.

flm.* N/A N/A License management
related entries. See
installation notes for
more details.

Dialog.currentRowVisibleAfterSortboolean false Forces current row to be
shown after a sort in a
table.
See Runtime
Configuration for more
details.

Dialog.fieldOrder boolean false Defines if the
intermediate field
triggers must be
executed when a new

Genero Business Development Language

1034

field gets the focus with
a mouse click.
See Runtime
Configuration for more
details.

key.key-name.text string N/A Defines a label for an
action defined with an
ON KEY clause.
Provided for V3
compatibility only.
See Settings Key labels
for more details.

Report.aggregateZero boolean false Defines if the report
aggregate functions
must return zero or
NULL when all values
are NULL.
Provided for V3
compatibility only.
See Report
Configuration for more
details.

Miscellaneous

1035

The Debugger
Summary:

• Basics
• Usage

o Starting fglrun in debug mode
o Stack Frames
o Using ddd as graphical interface
o Invoking the debugger at runtime
o Setting a breakpoint programmatically

• Commands

See also: Programs, Tools.

Basics

The debugger is a tool built in the runtime system that allows you to stop a program
before it terminates, or before it encounters a problem, so that you can locate logical and
runtime errors.

Syntax:

fglrun -d program[.42r]

Notes:

1. program is the name of the BDL program.
2. The command-line arguments for program (if any) have to be passed to the "run"

command later on.

Usage

Starting fglrun in debug mode

In order to use the debugger, you must start the virtual machine with the -d option:

fglrun -d myprog

The debugger can be used alone in the command line mode or with a graphical shell
compatible with gdb such as ddd:

Genero Business Development Language

1036

ddd --debugger "fglrun -d myprog"

The debugger supports a subset of the standard GNU C/C++ debugger called gdb.

In command line mode, the debugger shows the following prompt

(fgldb)

A command is a single line of input. It starts with a command name, which may be
followed by arguments whose meaning depends on the command name. For example,
the command step accepts as an argument the number of times to step:

(fgldb) step 5

You can use command abbreviations. For example, the 'step' command abbreviation is
's':

(fgldb) s 5

Possible command abbreviations are shown in the command's syntax.

A blank line as input to the debugger (pressing just the RETURN or ENTER keys)
usually causes the previous command to repeat. However, commands whose
unintentional repetition might cause problems will not repeat in this way.

Stack Frames

Each time your program performs a function call, information about the call is saved in a
block of data called a stack frame. Each frame contains the data associated with one call
to one function.

The stack frames are allocated in a region of memory called the call stack. When your
program is started, the stack has only one frame, that of the function main. This is the
initial frame, also known as the outermost frame. As the debugger executes your
program, a new frame is made each time a function is called. When the function returns,
the frame for that function call is eliminated.

The debugger assigns numbers to all existing stack frames, starting with zero for the
innermost frame, one for the frame that called it, and so on upward. These numbers do
not really exist in your program; they are assigned by the debugger to allow you to
designate stack frames in commands.

Each time your program stops, the debugger automatically selects the currently
executing frame and describes it briefly. You can use the frame command to select a
different frame from the current call stack.

Miscellaneous

1037

Using ddd as graphical interface

To use ddd with the debugger:

1. Create a script "fglddd" containing the following command; make the script
executable.

 exec ddd --debugger "fglrun -d" "$@"

2. Start fglddd as a replacement for fglrun when you want to debug a BDL
program.

Invoking the debugger in a running instance of fglrun

Even if fglrun has not been started with the -d option, it is possible to switch the running
program to debug mode: On Unix platforms, you must send a SIGTRAP signal to the
process. On Windows, you must use the CTRL-BREAK key in the console window
which has started the program.

Example (Unix):

shell 1> fglrun func

From another session, send the SIGTRAP signal to this process.

shell 2> kill -TRAP pid_of_fglrun

Then the instance running the program will receive this signal and enter in debugging
mode. The (fgldb) prompt is displayed and waits for instructions.

shell 1> fglrun func
func1() at func.4gl:15
15 for g_cpt=1 to 1000000
(fgldb)

In production sites, you can avoid the runtime system to trap the debugger signal by
setting the following FGLPROFILE entry:

fglrun.ignoreDebuggerEvent = true

Setting a breakpoint programmatically

You can set a breakpoint in the program source code with the BREAKPOINT instruction.
If the program flow encounters this instruction, the program stops as if the break point
was set by the break command:

Genero Business Development Language

1038

01 MAIN
02 DEFINE i INTEGER
03 LET i=123
04 BREAKPOINT
05 DISPLAY i
06 END MAIN

The BREAKPOINT instruction is simply ignored when running in normal mode.

Commands

Summary of the debugger commands:

Command Description

backtrace/where Print a summary of how your program reached the current state
(back trace of all stack frames).

break Set a break point at the specified line or function.
call Call a function in the program.
clear Clear breakpoint at some specified line or function.
continue Continue program being debugged.
define Define a new command name.
delete Delete some breakpoints or auto-display expressions.
disable Disable some breakpoints.
display Print the values of expression EXP each time the program stops.
down Select and print the function called by the current function.
echo Print the specified text.
enable Re-activate breakpoints that have previously been disabled.
finish Execute until selected stack frame returns.
frame Select and print a stack frame.
help Print list of debugger commands.
ignore Set ignore-count of a breakpoint number N to COUNT.
info Provide information about the status of the program.
list List specified function or line.

next Step program; continue with the next source code line at the same
level.

output Print the current value of the specified expression; do not include
value history and do not print new-line.

print Print the current value of the specified expression.
ptype Print the type of a variable
quit Exit the debugger.
run Start the debugged program.

Miscellaneous

1039

set Evaluate an expression and assign the result to a variable.
source Execute a file of debugger commands.
signal Continue program giving it the signal specified by the argument.
step Step program until it reaches a different source line.
tbreak Set a temporary breakpoint.
tty Set terminal for future runs of program being debugged.

undisplay Cancel some expressions to be displayed when the program
stops.

until Continue running until a specified location is reached.
up Select and print the function that called the current function.

watch
Set a watchpoint for an expression. A watchpoint stops the
execution of your program whenever the value of an expression
changes.

whatis Prints the data type of a variable.

backtrace / where

This commands prints a summary of how your program reached the current state.

Syntax:

backtrace

Usage:

The backtrace command prints a summary of your program's entire stack, one line per
frame. Each line in the output shows the frame number and function name.

Example:

(fgldb) backtrace
#1 addcount() at mymodule.4gl:6
#2 main() at mymodule.4gl:2
(fgldb)

Tips:

• bt and where are aliases for the backtrace command.

Genero Business Development Language

1040

break

This command defines a break point to stop the program execution at a given line or
function.

Syntax:

break [{ function | [module :] line }] [if condition]

Notes:

1. function is a function name.
2. module is a specific source file.
3. line is a source code line.
4. condition is an expression evaluated dynamically.

Usage:

The break command sets a break point at a given position in the program.

When the program is running, the debugger stops automatically at breakpoints defined
by this command.

If a condition is specified, the program stops at the breakpoint only if the condition
evaluates to TRUE.

Warning: If you do not specify any location (function or line number), the
breakpoint is created for the current line. For example, if you write "break if var =
1", the debugger adds a conditional breakpoint for the current line, and the
program will only stop if the variable is equal to 1 when reaching the current line
again.

Example:

(fgldb) break mymodule:5
Breakpoint 2 at 0x00000000: file mymodule.4gl, line 5.

call

This command calls a function in the program.

Syntax:

call function-name (expression [, expression [...]])

Miscellaneous

1041

Notes:

1. function-name is the name of the function to call.
2. expression is an expression argument provided to the function after evaluation.
3. The return values are printed when the function returns.

Example:

01 MAIN
02 DEFINE i INTEGER
03
04 LET i = 1
05 DISPLAY i
06
07 END MAIN
08
09 FUNCTION hello ()
10 RETURN "hello", "world"
11 END FUNCTION
(fgldb) br main
Breakpoint 1 at 0x00000000: file t.4gl, line 4.
(fgldb) run
Breakpoint 1, main() at t.4gl:4
4 LET i = 1
(fgldb) call hello()
$1 = { "hello" , "world" }
(fgldb)

clear

This command clears the breakpoint at a specified line or function.

Syntax:

clear [{ function | [module :] line }]

Notes:

1. function is a function name.
2. module is a specific source file.
3. line is a source code line.

Usage:

With the clear command, you can delete breakpoints according to where they are in
your program.

Use the clear command with no arguments to delete any breakpoints at the next
instruction to be executed in the selected stack frame.

Genero Business Development Language

1042

See the delete command to delete individual breakpoints by specifying their breakpoint
numbers.

Example:

(fgldb) clear mymodule:5
Deleted breakpoint 2
(fgldb)

continue

This command continues the execution of the program after a breakpoint.

Syntax:

continue [ignore-count]

Notes:

1. ignore-count defines the number of times to ignore a breakpoint at this location.

Usage:

The continue command continues the execution of the program until the program
completes normally, another breakpoint is reached, or a signal is received.

Example:

(fgldb) continue
 <..program output..>
Program exited normally.

Tips:

• c is an alias for the continue command.

define

This command allows you to specify a user-defined sequence of commands.

Syntax:

define command-name
command

Miscellaneous

1043

[...]
end

Notes:

1. command-name is the name assigned to the command sequence.
2. command is a valid debugger command.
3. end indicates the end of the command sequence.

Usage:

The define command allows you to create a user-defined command by assigning a
command name to a sequence of debugger commands that you specify. You may then
execute the command that you defined by entering the command name at the debugger
prompt.

User commands may accept up to ten arguments separated by white space.

Example:

(fgldb) define myinfo
> info breakpoints
> info program
> end
(fgldb)

delete

This command allows you to remove breakpoints that you have specified in your
debugger session.

Syntax:

delete breakpoint

Notes:

1. breakpoint is the number assigned to the breakpoint by the debugger.

Usage:

The delete command allows you to remove breakpoints when they are no longer
needed in your debugger session.

If you prefer you may disable the breakpoint instead, see the disable command.

Genero Business Development Language

1044

Example:

(fgldb) delete 1
(fgldb) run
Program exited normally.
(fgldb)

Tips:

• d is an alias for the delete command.

disable

This command disables the specified breakpoint.

Syntax:

disable breakpoint

Notes:

1. breakpoint is the number assigned to the breakpoint by the debugger.

Usage:

The disable command instructs the debugger to ignore the specified breakpoint when
running the program.

Use the enable command to re-activate the breakpoint for the current debugger
session.

Example:

(fgldb) disable 1
(fgldb) run
Program exited normally.
(fgldb)

display

This command displays the specified expression's value each time your program stops.

Syntax:

display expression

Miscellaneous

1045

Notes:

1. expression is your program's expression that you wish to examine.

Usage:

The display command allows you to add an expression to an automatic display list.
The values of the expressions in the list are printed each time your program stops. Each
expression in the list is assigned a number to identify it.

This command is useful in tracking how the values of expressions change during the
program's execution.

Example:

(fgldb) display a
1: a = 6
(fgldb) display i
2: i = 1
(fgldb) step
2: i = 1
1: a = 6
16 for i = 1 to 10
(fgldb) step
2: i = 2
1: a = 6
17 let a = a+1
(fgldb)

down

This command selects and prints the function called by the current function, or the
function specified by the frame number in the call stack.

Syntax:

down [frames]

Notes:

1. frames is the number of frames to move down the stack. The default is 1.

Usage:

This command moves down the call stack, to the specified frame, and prints the function
identified with that frame. To print the function called by the current function, use the
down command without an argument. See Stack Frames for a brief description of
frames.

Genero Business Development Language

1046

(fgldb) down
#0 query_cust() at custquery.4gl:22
22 CALL cleanup()
(fgldb)

echo

This command prints the specified text as prompt.

Syntax:

echo text

Notes:

1. text is the specific text to be output.

Usage:

The echo command allows you to generate exactly the output that you want. Nonprinting
characters can be included in text using C escape sequences, such as ‘\n’ to print a
new-line. No new-line is printed unless you specify one. In addition to the standard C
escape sequences, a backslash followed by a space stands for a space. A backslash at
the end of text can be used to continue the command onto subsequent lines.

Example:

(fgldb) echo hello
hello (fgldb)

enable

This command enables breakpoints that have previously been disabled.

Syntax:

enable breakpoint

Notes:

1. breakpoint is the number assigned to the breakpoint by the debugger.

Miscellaneous

1047

Usage:

The enable command allows you to re-activate a breakpoint in the current debugger
session. The breakpoint must have been disabled using the disable command.

Example:

(fgldb) disable 1
(fgldb) run
Program exited normally.
(fgldb) enable 1
(fgldb) run
Breakpoint 1, at mymodule.4gl:5

finish

This command continues the execution of a program until the current function returns
normally.

Syntax:

finish

Usage:

The finish command instructs the program to continue running until just after the
function in the selected stack frame returns, and then stop.

The returned value, if any, is printed.

Example:

(fgldb) finish
Run till exit myfunc() at module.4gl:10
Value returned is $1 = 123
(fgldb)

frame

This command selects and prints a stack frame.

Syntax:

frame [address | number]

Genero Business Development Language

1048

Notes:

1. address is the address of the frame that you wish to select.
2. number is the stack frame number of the frame that you wish to select.

Usage:

The frame command allows you to move from one stack frame to another, and to print
the stack frame that you select. Each stack frame is associated with one call to one
function within the currently executing program. Without an argument, the current stack
frame is printed. See Stack Frames for a brief discussion of frames.

Example:

(fgldb) frame
#0 query_cust() at testquery.4gl:42
(fgldb)

help

This command provides information about debugger commands.

Syntax:

help [command]

Notes:

1. command is the name of the debugger command for which you wish information.

Usage:

The help command displays a short explanation of a specified command.

Enter the help command with no arguments to display a list of debugger commands.

Example:

(fgldb) help delete
Delete some breakpoints or auto-display expressions

ignore

Set the ignore-count of a breakpoint number N to COUNT.

Miscellaneous

1049

Syntax:

ignore breakpoint count

Notes:

1. breakpoint is the breakpoint number.
2. count is the number of times the breakpoint will be ignored.

Usage:

The ignore command defines the number of times a breakpoint is ignored when the
program flow reaches that breakpoint.

The next count times the breakpoint is reached, the program execution will continue, and
no breakpoint condition is checked.

Tips:

1. You can specify a count of zero to make the breakpoint stop the next time it is
reached.

2. When using the continue command to resume the execution of the program from
a breakpoint, you can specify a an ignore count directly as an argument.

Example:

(fgldb) br main
Breakpoint 1 at 0x00000000: file t.4gl, line 4.
(fgldb) ignore 1 2
Will ignore next 2 crossings of breakpoint 1.
(fgldb) run
 1
Program exited normally.
(fgldb) run
 1
Program exited normally.
(fgldb) run
Breakpoint 1, main() at t.4gl:4
4 LET i = 1
(fgldb)

info

This command describes the current state of your program.

Syntax:

info { breakpoints
 | sources

Genero Business Development Language

1050

 | program
 | variables
 | locals
 | files
 | line { function | module:line }
 }

Notes:

1. function is a function name of the program.
2. module:line defines a source code line in a module.

Usage:

The info command describes the state of your program.

• info breakpoints lists the breakpoints that you have set.
• info sources prints the names of all the source files in your program.
• info program displays the status of your program.
• info variables displays global variables.
• info locals displays the local variables of the current function.
• info files lists the files from which symbols were loaded.
• info line function prints the program addresses for the first line of the

function named function.
• info line module:line prints the starting and ending addresses of the

compiled code for the source line specified. See the list command for all the
ways that you can specify the source code line.

Example:

(fgldb) info sources
Source files for which symbols have been read in:
mymodule.4gl, fglwinexec.4gl, fglutil.4gl, fgldialog.4gl,
fgldummy4js.4gl
(fgldb)

list

This command prints source code lines of the program being executed.

Syntax:

list [function | [module:]line]

Usage:

The list command prints source code lines of your program, by default it begins with
the current line.

Miscellaneous

1051

Example:

(fgldb) run
Breakpoint 1, at mymodule.4gl:5
5 call addlist()
(fgldb) list
5 call addlist()
6 call addname()
.
14 end function
(fgldb)

next

This command continues running the program by executing the next source line in the
current stack frame, and then stops.

Syntax:

next

Usage:

The next command allows you to execute your program one line of source code at a
time. The next command is similar to step, but function calls that appear within the line
of code are executed without stopping. When the next line of code at the original stack
level that was executing when you gave the next command is reached, execution
stops.

After reaching a breakpoint, the next command can be used to examine a troublesome
section of code more closely.

Example:

(fgldb) next
5 call addlist()
(fgldb) next
6 call addname()
(fgldb)

Tips:

• n is an alias for the next command.

Genero Business Development Language

1052

output

This command prints only the value of the specified expression, suppressing any other
output.

Syntax:

output expression

Notes:

1. expression is your program's expression that you wish to examine.

Usage:

The output command prints the current value of the expression and nothing else, no
new-line character, no "expr=", etc.

The usual output from the debugger is suppressed, allowing you to print only the value.

Example:

(fgldb) output b
123(fgldb)

print

This command displays the current value of the specified expression.

Syntax:

print expression

Notes:

1. expression is your program's expression that you wish to examine.

Usage:

The print command allows you to examine the data in your program.

It evaluates and prints the value of the specified expression from your program, in a
format appropriate to its data type.

Miscellaneous

1053

Example:

(fgldb) print b
 $1 = 5
(fgldb)

Tips:

• p is an alias for the print command.

ptype

This command prints the data type or structure of a variable.

Syntax:

ptype variable-name

Notes:

1. variable-name is the name of the variable.

Example:

(fgldb) ptype cust_rec
type = RECORD
 cust_num INTEGER,
 cust_name VARCHAR(10),
 cust_address VARCHAR(200)
END RECORD

quit

This command terminates the debugger session.

Syntax:

quit

Usage:

The quit command allows you to exit the debugger.

Example:

Genero Business Development Language

1054

(fgldb) quit

Tips:

• q is an alias for the quit command.

run

This command starts the program.

Syntax:

run [argument [...]]

Notes:

1. argument is an argument to be passed to the program.

Usage:

The run command causes your program to execute until a breakpoint is reached or the
program terminates normally.

Example:

(fgldb) run a b c
Breakpoint 1, at mymodule.4gl:3
3 call addcount()
(fgldb)

set

This command allows you to configure your debugger session and change program
variable values.

Syntax:

set { prompt ptext
 | annotate {1|0}
 | verbose {on|off}
 | variable varname=value
 | environment envname[=value]
 }

Miscellaneous

1055

Notes:

1. ptext is the string to which the prompt should be set.
2. varname is the program variable to be set to value.
3. envname is the environment variable to be set to value.

Usage:

The set command allows to change program variables and/or the environment.

set variable sets an program variable, to be taken into account when continuing
program execution.

set prompt changes the prompt text. The text can be set to any string. A space is not
automatically added after the prompt string, allowing you to determine whether to add a
space at the end of the prompt string.

set environment sets an environment variable, where value may be any string. If the
value parameter is omitted, the variable is set to a null value. The variable is set for your
program, not for the debugger itself.

set verbose on forces the debugger to display additional messages about its
operations, allowing you to observe that it is still working during lengthy internal
operations.

set annotate 1 switches the output format of the debugger to be more machine
readable (this command is used by GUI front-ends like ddd or xxgdb)

Example:

(fgldb) set prompt ($)
($)

Warning: On Unix systems, if your SHELL variable names a shell that runs an
initialization file, any variables you set in that file affect your program. You may
wish to move setting of environment variables to files that are only run when you
sign on, such as .login or .profile.

source

This command executes a file of debugger commands.

Syntax:

source commandfile

Genero Business Development Language

1056

Notes:

1. commandfile is the name of the file containing the debugger commands.

Usage:

The source command allows you to execute a command file of lines that are debugger
commands. The lines in the file are executed sequentially. The commands are not
printed as they are executed, and any messages are not displayed. Commands are
executed without asking for confirmation. An error in any command terminates execution
of the command file.

Example:

Using the text file mycommands, which contains the single line: break 10

(fgldb) source mycommands
Breakpoint 2 @ 0x00000000: file mymod.4gl, line 10.
(fgldb)

signal

This command sends an INTERRUPT signal to your program.

Syntax:

signal signal

Usage:

Resume execution where your program stopped, but immediately give it the signal
signal. signal can be the name or the number of a signal. For example, on many
systems signal 2 and signal SIGINT are both ways of sending an interrupt signal. The
signal SIGINT command resumes execution of your program where it has stopped, but
immediately sends an INTERRUPT signal. The source line that was current when the
signal was received is displayed.

Notes:

1. The current version only allows then signal SIGINT.

Example:

(fgldb) signal SIGINT
Program exited normally.
16 for i = 1 to 10
(fgldb)

Miscellaneous

1057

step

This command continues running the program by executing the next line of source code,
and then stops.

Syntax:

step [count]

Notes:

1. count defines the number of lines to execute before stopping.

Usage:

The step command allows you to "step" through your program, executing one line of
source code at a time. When a function call appears within the line of code, that function
is also stepped through. A common technique is to set a breakpoint prior to the section
or function that is causing problems, run the program till it reaches the breakpoint, and
then step through it line by line.

Example:

(fgldb) step
4 call addlist(a)
(fgldb)

Tips:

• s is an alias for the step command.

tbreak

This command sets a temporary breakpoint.

Syntax:

tbreak [{ function | [module :] line }] [if condition]

Notes:

1. function is a function name.
2. module is a specific source file.
3. line is a source code line.
4. condition is an expression evaluated dynamically.

Genero Business Development Language

1058

Usage:

The tbreak command sets a breakpoint for one stop only. The breakpoint is set in the
same way as with the break command, but the breakpoint is automatically deleted after
the first time your program stops there.

If a condition is specified, the program stops at the breakpoint only if the condition
evaluates to TRUE.

Warning: If you do not specify any location (function or line number), the
breakpoint is created for the current line. For example, if you write "tbreak if var =
1", the debugger adds a conditional breakpoint for the current line, and the
program will only stop if the variable is equal to 1 when reaching the current line
again.

Example:

(fgldb) tbreak 12
Breakpoint 2 at 0x00000000: file custmain.4gl, line 12.
(fgldb)

tty

This command resets the default program input and output for future run commands.>

Syntax:

tty filename

Notes:

1. filename is the file which is to be the default for program input and output.

Usage:

The tty command instructs the debugger to re-direct program input and output to the
specified file for future run commands.

The re-direction is for your program only; your terminal is still used for debugger input
and output.

Example:

(fgldb) tty /dev/ttyS0
(fgldb)

Miscellaneous

1059

undisplay

This command cancels expressions to be displayed when the program stops.

Syntax:

undisplay itemnum [...]

Notes:

1. itemnum is the number of the expressions for which the display is cancelled.

Usage:

When the display command is used, each expression displayed is assigned an item
number. The undisplay command allows you to remove expressions from the list to be
displayed, using the item number to specific the expression to be removed.

Example:

(fgldb) step
2: i = 2
1: a = 20
9 FOR i = 1 TO 10
(fgldb) undisplay 2
(fgldb) step
1: a = 20
10 Let cont = TRUE
(fgldb)

until

This command continues running the program until the specified location is reached.

Syntax:

until [{ function | [module :] line }]

Notes:

1. function is a function name.
2. module is a specific source file.
3. line is a source code line.

Genero Business Development Language

1060

Usage:

The until command continues running your program until either the specified location
is reached, or the current stack frame returns. This can be used to avoid stepping
through a loop more than once.

Example:

(fgldb) until addcount()

up

This command selects and prints the function that called this one, or the function
specified by the frame number in the call stack.

Syntax:

up [frames]

Notes:

1. frames says how many frames up to go in the stack. The default is 1.

Usage:

The up command moves towards the outermost frame, to frames that have existed
longer. To print the function that called the current function, use the up command without
an argument. See Stack Frames for a brief description of frames.

Example:

(fgldb) up
#1 main() at customain.4gl:14
14 CALL query_cust()
(fgldb)

watch

This command sets a watchpoint for an expression. A watchpoint stops execution of
your program whenever the value of an expression changes.

Syntax:

watch expression [boolean-expression]

Miscellaneous

1061

Notes:

1. expression is the expression to watch.
2. boolean-expression is an optional boolean expression.

Usage:

The watchpoint stops the program execution when the value of the expression changes.

If boolean-expression is provided, the watchpoint stops the execution of the program if
the expression value has changed and the boolean-expression evaluates to TRUE.

Warning: The watchpoint cannot be set if the program is not in the context where
expression can be evaluated. Before using a watchpoint, you typically set a
breakpoint in the function where the expression makes sense, then you run the
program, and then you set the watchpoint. The example below illustrates this
procedure.

Example:

01 MAIN
02 DEFINE i INTEGER
03
04 LET i = 1
05 DISPLAY i
06 LET i = 2
07 DISPLAY i
08 LET i = 3
09 DISPLAY i
10
11 END MAIN
(fgldb) break main
breakpoint 1 at 0x00000000: file test.4gl, line 4
(fgldb) run
Breakpoint 1, main() at test.4gl:4
4 LET i = 1
(fgldb) watch i if i >= 3
Watchpoint 1: i
(fgldb) continue
 1
 2
Watchpoint 1: i

Old value = 2
New value = 3
main() at t.4gl:9
9 DISPLAY i
(fgldb)

Genero Business Development Language

1062

whatis

This command prints the data type of a variable.

Syntax:

whatis variable-name

Notes:

1. variable-name is the name of the variable.

Example:

(fgldb) run
Breakpoint 1, main() at t.4gl:4
4 LET i = 1
(fgldb) whatis i
type = INTEGER
(fgldb)

Miscellaneous

1063

The Profiler
Summary:

• Basics
• Syntax
• Usage

o Profiler output: Flat profile
o Profiler output: Call graph

• Example

See also: Programs, Tools

Basics

The profiler is a tool built in the runtime system that allows you to know where your
program spends time, and which function calls which function.

The profiler can help to identify pieces of your program that are slower than expected.

Syntax

fglrun -p program[.42r] [argument [...]]

Notes:

1. program is the name of the BDL program.
2. argument is a command line argument passed to the program.

Usage

In order to use the profiler, you must start the virtual machine with the -p option:

fglrun -p myprog

When the program ends, the profiler dumps profiling information to standard error.

Warnings:

Genero Business Development Language

1064

1. Times reported by the profiler can change from one execution to the other,
depending on the available system resources. You better execute the program
several times to get an average time.

2. The profiler does not support parent/child recursive calls, when a child function
calls its parent function (i.e. Function P calls C which calls P again). In this case
the output will show negative values, because the time spend in the parent
function is subtracted from the time spend in the child function.

Profiler output: Flat profile

The section "flat profile" contains the list of the functions called while the programs was
running. It is presented as a five-column table.

Flat profile
Column Description
count number of calls for this function

%total Percentage of time spent in this function. Includes time
spent in subroutines called from this function.

%child Percentage of time spent in the functions called from this
function.

%self Percentage of time spent in this function excluding the
time spent in subroutines called from this function.

name Function name

Note : 100% represents the program execution time.

Profiler output: Call graph

The section "Call graph" provides for each function:

1. The functions that called it, the number of calls, and an estimation of the
percentage of time spent in these functions.

2. The functions called, the number of calls, and an estimation of the time that was
spent in the subroutines called from this function.

Call graph
Name Description

index Each function has an index which appears at the
beginning of its primary line.

%total Percentage of time spent in this function. Includes time
spent in subroutines called from this function.

%self Percentage of time spent in this function excluding the
time spent in subroutines called from this function.

%child Percentage of time spent in the functions called from this
function.

calls/of Number of calls / Total number of calls
name Function name

Miscellaneous

1065

Output example:

index %total %self %child calls/of name
...
 1.29 0.10 1.18 1/2 <-- main
 24.51 1.18 23.33 1/2 <-- fb
[4] 25.80 1.29 24.51 2 *** fc
 24.51 1.43 23.08 7/8 --> fa

Description:

• The function fc has been called two times (by main and fb) and has called the
function fa 7 times.

• The function fa has been called 8 times in the program.

Example

Sample program

01 MAIN
02 DISPLAY "Profiler sample"
03 CALL fB()
04 CALL fC(2)
05 END MAIN
06
07 FUNCTION fA(from,n_a)
08 DEFINE n_a,i INTEGER
09 DEFINE from STRING
10 FOR i=1 TO n_a
11 DISPLAY "fA "||from||" n:"||i
12 END FOR
13 END FUNCTION
14
15 FUNCTION fB()
16 CALL fA("fB",10)
17 CALL fC(5)
18 END FUNCTION
19
20 FUNCTION fC(n_c)
21 DEFINE n_c INTEGER
22 WHILE n_c > 0
23 CALL fA("fC",2)
24 LET n_c=n_c-1
25 END WHILE
26 END FUNCTION

Running the profiler

Flat profile (order by self)
 count %total %child %self name
 25 88.0 0.0 88.0 rts_display

Genero Business Development Language

1066

 72 6.3 0.0 6.3 rts_Concat
 8 85.4 82.0 3.4 fa
 2 25.8 24.5 1.3 fc
 8 0.3 0.0 0.3 rts_forInit
 1 85.6 85.4 0.2 fb
 1 99.9 99.6 0.3 main
Call graph
index %total %self %child calls/of name
 12.69 12.69 0.00 1/25 <-- main
 75.29 75.29 0.00 24/25 <-- fa
[1] 87.98 87.98 0.00 25 *** rts_display

 6.35 6.35 0.00 72/72 <-- fa
[2] 6.35 6.35 0.00 72 *** rts_Concat

 60.90 2.02 58.88 1/8 <-- fb
 24.51 1.43 23.08 7/8 <-- fc
[3] 85.41 3.45 81.96 8 *** fa
 75.29 75.29 0.00 24/25 --> rts_display
 6.35 6.35 0.00 72/72 --> rts_Concat
 0.33 0.33 0.00 8/8 --> rts_forInit

 1.29 0.10 1.18 1/2 <-- main
 24.51 1.18 23.33 1/2 <-- fb
[4] 25.80 1.29 24.51 2 *** fc
 24.51 1.43 23.08 7/8 --> fa

 0.33 0.33 0.00 8/8 <-- fa
[5] 0.33 0.33 0.00 8 *** rts_forInit

 85.61 0.20 85.41 1/1 <-- main
[6] 85.61 0.20 85.41 1 *** fb
 24.51 1.18 23.33 1/2 --> fc
 60.90 2.02 58.88 1/8 --> fa

 99.94 0.35 99.59 1/1 <-- <top>
[7] 99.94 0.35 99.59 1 *** main
 1.29 0.10 1.18 1/2 --> fc
 85.61 0.20 85.41 1/1 --> fb
 12.69 12.69 0.00 1/25 --> rts_display

Miscellaneous

1067

Optimization
Summary:

• Genero runtime system basics
o Dynamic module loading
o Objects shared by multiple programs
o Objects shared by multiple modules
o Objects private to a program

• Size information of a program
• Check runtime system memory leaks
• Programming Tips

o Finding program bottlenecks with the profiler
o Optimizing SQL statements
o Passing small CHAR parameters to function
o Compiler removes unused variables
o Saving memory by splitting modules
o Saving memory by using STRING variables
o Saving memory by using dynamic arrays

See also: Tools, SQL Programming.

Genero runtime system basics

Dynamic module loading

A Genero program is typically constructed by linking several 42m modules together.
Except when using the debugger, modules are loaded dynamically as needed. For
example, when executing a CALL instruction, the runtime system checks if the module of
the function is already in memory. If not, the module is first loaded, then module
variables are instantiated, and then the function is called.

Objects shared by multiple programs

The p-code instructions and the constants are shared among several Genero programs
running on the same machine. These elements are loaded with the system memory
mapping facility, which allows multiple processes to access the same unique memory
area.

Objects shared by multiple modules

By definition, global variables are visible to all modules of a program, and thus shared
among all modules of the program. While global variables are an easy way to share data
among multiple modules, it is not recommended that you use too many global variables.

Genero Business Development Language

1068

Since version 2.00, the data type definitions (DEFINE or RECORDs and ARRAYs) are
now shared by all modules of a program instance. By data type definition we mean the
type descriptions, not the data itself. This applies only to the same data types is used in
different modules. In versions prior to 2.00, all data type definitions were private to a
module and required un-necessary memory. For example, when defining the same
RECORD structure needing 150 bytes for its definition in 20 modules, this was - in
version 1.33 - 150 x 20 = 3Kb for each process, while in version 2.00 it is only using 150
bytes.

Objects private to a program

Program objects such as global variables, module variables as well as resources used
by the user interface and SQL connections and cursors, are private to a program. This
implies that each of these objects requires private memory to be allocated. If memory is
an issue, do not allocate unnecessary resources. For example, don't create windows /
load forms or declare / prepare cursors until these are really needed by the program.

Size information of a program
When a 42m module is loaded, the runtime system allocates memory for module
components such as variables, types, constants and code.

The size information of 42m modules can be extracted by using fglrun with the -s option;
The sizes are displayed in bytes.

When using the -s option on a 42r program, fglrun searches for all the modules used by
the program.

Example:

$ fglrun -s t.42r

== Module: t ==
 function local
 main 1024004

 module global module code types
 t 268 512004 92 660

== Module: t2 ==
 function local
 foo 8

 module global module code types
 t2 472 0 43 360

== Program globals ==
 GLOBALS size
 h 201

Miscellaneous

1069

 garr 264
 v 4
 sqlca 116
 quit_flag 4
 int_flag 4
 status 4

 TOTAL size
 597

== Program totals ==
 name global module code types
 t.42r 597 512004 135 1020

== Program types ==
 PROGRAM TYPES (types) 1020
- UNIQUE TYPES - (size) 864
 = 156

First the dvm will display each module statistics in the Module section: Each Module
section displays the list of functions declared by the module and the size of its local
variables in the column local. Then the module statistics are displayed:

Column Description
module The 42m module name
global Size used by the global variables imported by the module.
module Size used by the module variables.

code Size used by the code itself (shared by all program instances
running on the same machine).

types Size used by data types.

The next section Program Globals displays all the global variables referenced by the
program with their size (column size). The TOTAL line shows the total amount of
memory needed by the program global variables.

The section Program totals shows the program totals.

The last section called Program types provides additional information about the memory
consumed by data types. Identical type definitions are shared between all modules of a
program. This amount of memory is showed by the line UNIQUE TYPES.

When several instances of the same program are started, the memory used by the code
and constants is shared.

Check runtime system memory leaks
To improve the quality of the runtime system, we have implemented a memory leak
checker in the runtime system.

Genero Business Development Language

1070

You can enable this feature by using the -M or -m options of fglrun.

$ fglrun -M stores.42r
FunctionI : 10 - 10 = 0
Module : 3 - 3 = 0
...
FieldType : 19 - 19 = 0

The -M option displays memory counters at the end of the program execution.

The -m option checks for memory leaks, and displays memory counters at the end of the
program execution if leaks were found.

Each line shows the number of objects allocated, and the number of objects freed. If the
difference is not zero, there is a memory leak.

If you are doing automatic regression tests, we recommend that you run all your
programs with fglrun -m to check for memory leaks in the runtime system.

Programming Tips
This section lists some programming tips and tricks to optimize the execution of your
application.

Finding program bottlenecks with the profiler

The best way to find out why a program is slow (and also, to optimize an already fast-
running program), it to use the Profiler. This tool is included in the runtime system, and
generates a report that shows what function in your program is the most time-
consuming. For more details, see Profiler.

Optimizing SQL statements

SQL statement execution is often the code part of the program that consumes a lot of
processor, disk and network resources. Therefore, it is critical to pay attention to SQL
execution. Advice for this can be found in SQL Programming.

Passing small CHAR parameters to functions

In Genero, function parameters of most data types are passed by value (i.e. the value of
the caller variable is copied on the stack, and then copied back into a local variable of
the called function.) When large data types are used, this can introduce a performance
issue.

For example, the following code defines a logging function that takes a CHAR(2000) as
parameter:

Miscellaneous

1071

01 FUNCTION log_msg(msg)
02 DEFINE msg CHAR(2000)
03 CALL myLogChannel.writeLine(msg)
04 END FUNCTION

If you call this function with a string having 19 bytes:

01 CALL log_msg("Start processing...")

The runtime system copies the 19 bytes string on that stack, calls the function, and then
copies the value into the the msg local variable. When doing this, since the values in
CHAR variables must always have a length matching the variable definition size, the
runtime system fills the remaining 1981 bytes with blanks. Each time you call this
function, 2000 bytes are copied into a buffer.

By using a VARCHAR(2000) (or a STRING) data type in this function, you optimize the
execution because no trailing blanks need to be added.

Compiler removes unused variables

If you have declared a large static array without any reference to that variable in the rest
of the module, you will not see the memory grow at runtime. The compiler has removed
its definition from the 42m module.

To get the defined variable in the 42m module, you must at least use it once in the
source (for example, with a LET statement). Note that memory might only be allocated
when reaching the lines using the variable.

Saving memory by splitting modules

As described in dynamic module loading, 42m modules are loaded on demand. If a
program only needs some independent functions of a given module, all module
resources will be allocated just to call these functions. By independent, we mean
functions that do not use module objects such as variables defined outside function or
SQL cursors. To avoid unnecessary resource allocation, you can extract these
independent functions into another module and save a lot of memory at runtime.

Additionally, it is recommended that you create 42x libraries with the 42m modules that
belong to the same functionality group. For example, group all accounting modules
together in an accounting.42x library. By doing this, programmers using the 42x libraries
are not dependent from module re-organizations.

Saving memory by using STRING variables

The CHAR and VARCHAR data types are provided to hold string data from a database
column. When you define a CHAR or VARCHAR variable with a length of 1000, the runtime
system must allocate the entire size, to be able to fetch SQL data directly into the
internal string buffer.

Genero Business Development Language

1072

To save memory, Genero BDL introduced the STRING data type. The STRING type is
similar to VARCHAR, except that you don't need to specify a maximum length and the
internal string buffer is allocated dynamically as needed. Thus, by default, a STRING
variable initially requires just a bunch of bytes, and grows during the program life time,
with a limitation of 65534 bytes.

A STRING variable should typically be used to build SQL statements dynamically, for
example from a CONSTRUCT instruction. You may also use the STRING type for utility
function parameters, to hold file names for example.

After a large STRING variable is used, it should be cleared with a LET or a INITIALIZE
TO NULL instruction. However, this is only needed for STRING variables declared as
global or module variables. The variables defined in functions will be automatically
destroyed when the program returns from the function.

Note that Genero also introduced the base.StringBuffer build-in class, which should be
used for heavy string manipulation and modifications. String data is not copied on the
stack when an object of this class is passed to a function, or when the string is modified
with class methods. This can have a big impact on performance when very large strings
are processed.

Saving memory by using dynamic arrays

Genero FGL supports both static arrays and dynamic arrays. For compatibility reasons,
static arrays must be allocated in their entirety. This can result in huge memory usage
when big structures are declared, such as:

01 DEFINE my_big_array ARRAY[100,50] OF RECORD
02 id CHAR(200),
02 comment1 CHAR(2000),
02 comment2 CHAR(2000)
04 END RECORD

If possible, replace such static arrays with dynamic arrays. However, be aware that
dynamic arrays have a slightly different behavior than static arrays.

Note that after using a large dynamic array, you should clean the content by using the
clear() method. This will free all the memory used by the array elements. However, this
is only needed for arrays declared as global or module variables. The arrays defined in
functions will be automatically cleaned and destroyed when the program returns from the
function.

Miscellaneous

1073

The Preprocessor
Summary:

• Basics
• Command line syntax
• File inclusion &include
• Simple macro definition &define
• Function macro definition &define
• Stringification
• Concatenation
• Predefined macros
• Un-define a macro &undef
• Conditional compilation &ifdef,&ifndef,&else,&endif

See also: Programs, Tools

Basics

The preprocessor is used to transform your sources before compilation. It allows you to
include other files and to define macros that will be expanded when used in the source.
It behaves similar to the C Preprocessor, with some differences.

The preprocessor transforms files as follows:

• The source file is read and split into lines.
• Continued lines are merged into one long line if it is part of a preprocessor

definition.
• Comments are not removed unless they appear in a macro definition.
• Each line is split into a list of lexical tokens.

The preprocessor implements the following features :

1. File inclusion
2. Conditional compilation
3. Macro definition and expansion

There are two kind of macros:

1. Simple macros
2. Function macros

where function macros look like function calls.

Genero Business Development Language

1074

Compilers command line options

Preprocessor options can be used with fglcomp and fglform compilers.

File inclusion path:

 -I path

The -I option defines a path used to search files included by the &include directives.

Macro definition:

 -D identifier

The -D option defines a macro with the value 1, so that it can be used conditional
directives like &ifdef.

Preprocessing only:

 -E

By using the -E option, only the pre-processing phase is done by the compilers. Result is
dumped in standard output.

Preprocessing options:

 -p [nopp|noln|fglpp]

When using option -p nopp, it disables the preprocessor phase.

By using option -p noln with the -E preprocessing-only option, you can remove line
number information and un-necessary empty lines.

By default, the preprocessor expects an ampersand '&' as preprocessor symbol for
macros. The option -p fglpp enables the old syntax, using the sharp '#' as
preprocessor symbol.

Examples:

fglcomp -E -D DEBUG -I /usr/sources/headers program.4gl

fglcomp -E -p fglpp -I /usr/sources/headers program.4gl

fglcomp -E -p nopp -I /usr/sources/headers program.4gl

Miscellaneous

1075

File Inclusion

Purpose:

The &include directive instructs the preprocessor to include a file. The included file will
be scanned and processed before continuing with the rest of the current file.

Syntax:

&include "filename"

Notes:

1. filename is searched first in the directory containing the current file, then in the
directories listed in the include path. (-I option). The file name can be followed by
spaces and comments.

Example:

File A
01 First line
02 &include "B"
03 Third line

File B
01 Second line

Output
01 & 1 "A"
02 First line
03 & 1 "B"
04 Second line
05 & 3 "A"
06 Third line

These preprocessor directives inform the compiler of its current location with special
preprocessor comments, so the compiler can provide the right error message when a
syntax error occurs.

The preprocessor-generated comments use the following format:

& number "filename"

where:

• number is the current line in the preprocessed file
• filename is the current file name

Genero Business Development Language

1076

Recursive inclusions

Recursive inclusions are not allowed. Doing so will fail and output an error message.

The following example is incorrect:

File A
01 &include "B"

File B
01 HELLO
02 &include "A"

Output
01 & 1 "A"
02 & 1 "B"
03 HELLO
04 A:0: Multiple inclusion of the file 'A'.
05 included from B:2
06 included from A:1

But including the same file several times is allowed:

File A
01 &include "B"
02 &include "B" -- correct

File B
01 HELLO

Output
01 & 1 "A"
02 & 1 "B"
03 HELLO
04 & 2 "A"
05 & 1 "B"
06 HELLO

Simple macro definition

A macro is identified by its name and body. As the preprocessor scans the text, it
substitutes the macro body for the name identifier.

Syntax:

&define identifier body

Miscellaneous

1077

Notes:

1. identifier is the name of the macro. Any valid identifier can be used.
2. body is any sequence of tokens until the end of the line.

After substitution, the macro definition is replaced with blank lines.

Examples:

The following example show macro substitution with 2 simple macros:

File A
01 &define MAX_TEST 12
02 &define HW "Hello world"
03
04 MAIN
05 DEFINE i INTEGER
06 FOR i=1 TO MAX_TEST
07 DISPLAY HW
08 END FOR
09 END MAIN

Output
01 & 1 "A"
02
03
04
05 MAIN
06 DEFINE i INTEGER
07 FOR i=1 TO 12
08 DISPLAY "Hello world"
09 END FOR
10 END MAIN

The macro definition can be continued on multiple lines, but when the macro is
expanded, it is joined to a single line as follows:

File A
01 &define TABLE_VALUES 1, \
02 2, \
03 3
04 DISPLAY TABLE_VALUES

Output
01 & 1 "A"
02
03
04
05 DISPLAY 1, 2, 3

Genero Business Development Language

1078

The source file is processed sequentially, so a macro takes effect at the place it has
been written:

File A
01 DISPLAY X
02 &define X "Hello"
03 DISPLAY X

Output
01 & 1 "A"
02 DISPLAY X
03
04 DISPLAY "Hello"

The macro body is expanded only when the macro is applied :

File A
01 &define AA BB
02 &define BB 12
03 DISPLAY AA

Output
01 & 1 "A"
02
03
04 DISPLAY 12

• AA is first expanded to BB.
• The text is rescanned and BB is expanded to 12.
• When the macro AA is defined, BB is not known yet; but it is known when the

macro AA is used.

In order to prevent infinite recursion, a macro cannot be expanded recursively.

File A
01 &define A B
02 &define B A
03 &define C C
04 A C

Output
01 & 1 "A"
02
03
04
05 A C

• A is first expanded to B.
• B is expanded to A.
• A is not expanded again as it appears in its own expansion.

Miscellaneous

1079

• C expands to C and can not be expanded further.

Function macro definition

Function macros are macros which can take arguments.

Syntax:

&define identifier(arglist) body

Notes:

1. identifier is the name of the macro. Any valid identifier can be used.
2. body is any sequence of tokens until the end of the line.
3. arglist is a list of identifiers separated with commas and optionally whitespace.
4. There must be NO space or comment between the macro name and the opening

parenthesis. Otherwise the macro is not a function macro, but a simple macro.

Example:

File A
01 &define function_macro(a,b) a + b
02 &define simple_macro (a,b) a + b
03 function_macro(4 , 5)
04 simple_macro (1,2)

Output
01 & 1 "A"
02
03
04 4 + 5
05 (a,b) a + b (1,2)

A function macro can have an empty argument list. In this case, parenthesis are required
for the macro to be expanded. As we can see in the next example, line 03 is not
expanded because it there is no '()' after foo. The function macro cannot be applied even
if it has no arguments.

File A
01 &define foo() yes
02 foo()
03 foo

Output
01 & 1 "A"
02
03 yes
04 foo

Genero Business Development Language

1080

The comma separates arguments. Macro parameters containing a comma can be used
with parenthesis. In the following example Line 02 has been substituted, but line 03
produced an error, because the number of parameters is incorrect.

The error message is produced on standard error.

File A
01 &define one_parameter(a) a
02 one_parameter((a,b))
03 one_parameter(a,b)

Output
01 & 1 "A"
02
03 (a,b)
04 one_parameter
05 t:3: Invalid number of parameters for macro one_parameter.

Macro arguments are completely expanded and substituted before the function macro
expansion.

A macro argument can be left empty.

File A
01 &define two_args(a,b) a b
02 two_args(,b)
03 two_args(,)
04 two_args()
05 two_args(,,)

Output
01 & 1 "A"
02
03 b
04
05 A:4: Invalid number of parameters for macro two_args.
06 two_args
07 A:5: Invalid number of parameters for macro two_args.
08 two_args

Macro arguments appearing inside strings are not expanded.

File A
01 &define foo(x) "x"
02 foo(toto)

Output
01 & 1 "A"
02
03 "x"

Miscellaneous

1081

Stringification

The stringification transformation allows you to create a string using a macro parameter.
When a macro parameter is used with a preceding '#', it is replaced by a string
containing the literal text of the argument. The argument is not macro expanded before
the substitution.

Example:

File A
01 &define test(x) IF x THEN \
02 DISPLAY "Condition "||#x||" is true." \
03 ELSE \
04 DISPLAY "Condition "||#x||" is false." \
05 END IF
06 test(1=2)

Output
01 & 1 "A"
02
03
04
05
06
07 IF 1=2 THEN DISPLAY "Condition "||"1=2"||" is true."
 ELSE DISPLAY "Condition "||"1=2"||" is false."
 END IF

Line 07 has been split on multiple lines for readability. The preprocessor output is
merged on one line.

Concatenation

The operator '##' can be used to merge two tokens while expanding a macro. The two
tokens on either side of each '##' are combined to create a single token.

All tokens can not be merged. Usually these tokens are identifiers, or numbers. The
concatenation result produces an identifier.

Example:

File A
01 &define COMMAND(NAME) #NAME, NAME ## _command
02 COMMAND(quit)

Genero Business Development Language

1082

Output
01 & 1 "A"
02
03 "quit", quit_command

Predefined macros

The preprocessor predefines 2 macros:

1. __LINE__ expands to the current line number. Its definition changes with each
new line of the code.

2. __FILE__ expands to the name of the current file as a string constant. Ex :
"subdir/file.inc"

These macros are often used to generate error messages.

An &include directive changes the values of __FILE__ and __LINE__ to correspond to
the included file.

Un-defining a macro

You are allowed to un-define a macro and then redefine it with a new body.

Syntax:

&undef identifier

Usage:

If a macro is redefined without having been undefined previously, the preprocessor
issues a warning and replaces the existing definition with the new one.

Example:

File A
01 &define HELLO "hello"
02 DISPLAY HELLO
03 &undef HELLO
04 DISPLAY HELLO

Output
01 & 1 "A"
02
03 DISPLAY "hello"

Miscellaneous

1083

04 DISPLAY HELLO

Conditional compilation

Conditional processing is supported with the &ifdef and &ifndef directives.

Syntax 1:

&ifdef identifier
...
[&else
...]
&endif

Syntax 2:

&ifndef identifier
...
[&else
...]
&endif

Notes:

1. The comment following &endif is not required. However, it can help to match the
corresponding &ifdef or &ifndef.

2. Even if the condition is evaluated to false, the content of the &ifdef block is still
scanned and tokenized. Therefore, it must be lexically correct.

3. Sometimes it is useful to use some code if a macro is not defined. You can use
&ifndef, that evaluates to true if the macro is not defined.

Example:

File A
01 &define IS_DEFINED
02 &ifdef IS_DEFINED
03 DISPLAY "The macro is defined"
04 &endif /* IS_DEFINE */

Output
01 & 1 "A"
02
03
04 DISPLAY "The macro is defined"
05

Genero Business Development Language

1084

File Extensions
This page describes the file extensions used by the Genero Business Development
Language.

Extension Type Description
.4gl Text BDL Source Module
.42m Binary Compiler BDL p-code module
.per Text BDL Form Specification File
.42f XML Compiler form specification file
.42s Binary Localized Strings compiled file
.4st XML Presentation Styles resource file
.4sm XML StartMenu resource file
.4tm XML TopMenu resource file
.4tb XML ToolBar resource file
.4ad XML Action Defaults resource file
.sch Text Database Schema File - column types
.str Text Localized Strings source file
.val Text Database Schema File - form field attributes
.att Text Database Schema File - video attributes
.42r Binary Compiled BDL program
.42x Binary Compiler BDL p-code library
.msg Text Message Definition source file
.iem Binary Compiled Message Definition file

Miscellaneous

1085

Error Messages
This pages describes Genero system errors messages. If needed, you can customize or
translate these system messages to your own language. See Localization, Runtime
System Messages for more details.

Number Description

-201 A syntax error has occurred.
Description: This general error message indicates mistakes in the
form of an SQL statement.
Solution: Look for missing or extra punctuation; keywords misspelled,
misused, or out of sequence, or a reserved word used as an
identifier.

-235 Character column size is too big.
Description: The SQL statement specifies a width for a character data
type that is greater than 65,534 bytes.
Solution: If you need a column of this size, use the TEXT data type,
which allows unlimited lengths. Otherwise, inspect the statement for
typographical errors.

-307 Illegal subscript.
Description: The substring values (two numbers in square brackets)
of a character variable are incorrect. The first is less than zero or
greater than the length of the column, or the second is less than the
first.
Solution: Review all uses of square brackets in the statement to find
the error. Possibly the size of a column has been altered and makes
a substring fail that used to work.

-363 CURSOR not on SELECT statement.
Description: The cursor named in this statement (probably an OPEN)
has been associated with a prepared statement that is not a SELECT
statement.
Solution: Review the program logic, especially the DECLARE for the
cursor, the statement id specified in it, and the PREPARE that set up
that statement. If you intended to use a cursor with an INSERT
statement, you can only do that when the INSERT statement is
written as part of the DECLARE statement. If you intended to execute
an SQL statement, do that directly with the EXECUTE statement, not
indirectly through a cursor.

-513 Statement not available with this database server.

-805 Cannot open file for load.
Description: The input file that is specified in this LOAD statement
could not be opened.
Solution: Check the statement. Possibly a more complete pathname
is needed, the file does not exist, or your account does not have read
permission for the file or a directory in which it resides.

Genero Business Development Language

1086

-806 Cannot open file for unload.
Description: The output file that is specified in this UNLOAD
statement could not be opened.
Solution: Check the statement. Possibly a more complete pathname
is needed; the file exists, but your account does not have write
permission for it; or the disk is full.

-809 SQL Syntax error has occurred.
Description: The INSERT statement in this LOAD/UNLOAD
statement has invalid syntax.
Solution: Review it for punctuation and use of keywords.

-846 Number of values in load file is not equal to number of columns.
Description: The LOAD processor counts the delimiters in the first
line of the file to determine the number of values in the load file. One
delimiter must exist for each column in the table, or for each column
in the list of columns if one is specified.
Solution: Check that you specified the file that you intended and that
it uses the correct delimiter character. An empty line in the text can
also cause this error. If the LOAD statement does not specify a
delimiter, verify that the default delimiter matches the delimiter that is
used in the file. If you are in doubt about the default delimiter, specify
the delimiter in the LOAD statement.

-1102 Field name not found in form.
Description: A field name listed in an INPUT, INPUT ARRAY,
CONSTRUCT, SCROLL or DISPLAY statement does not appear in
the form specification of the screen form that is currently displayed.
Solution: Review the program logic to ensure that the intended
window is current, the intended form is displayed in it, and all the field
names in the statement are spelled correctly.

-1107 Field subscript out of bounds.
Description: The subscript of a screen array in an INPUT, DISPLAY,
or CONSTRUCT statement is either less than 1 or greater than the
number of fields in the array.
Solution: Review the program source in conjunction with the form
specification to see where the error lies.

-1108 Record name not in form.
Description: The screen record that is named in an INPUT ARRAY or
DISPLAY ARRAY statement does not appear in the screen form that
is now displayed.
Solution: Review the program source in conjunction with the form
specification to see if the screen record names match.

-1109 List and record field counts differ.
Description: The number of program variables does not agree with
the number of screen fields in a CONSTRUCT, INPUT, INPUT
ARRAY, DISPLAY, or DISPLAY ARRAY statement.
Solution: Review the statement in conjunction with the form
specification to see where the error lies. Common problems include a

Miscellaneous

1087

change in the definition of a screen record that is not reflected in
every statement that uses the record, and a change in a program
record that is not reflected in the form design.

-1110 Form file not found.
Description: The form file that is specified in an OPEN FORM
statement was not found.
Solution: Inspect the "form-file" parameter of the statement. It should
not include the file suffix .frm. However, if the form is not in the
current directory, it should include a complete path to the file.

-1112 A form is incompatible with the current BDL version. Rebuild
your form.
Description: The form file that is specified in an OPEN FORM
statement is not acceptable. Possibly it was corrupted in some way,
or it was compiled with a version of the Form Compiler that is not
compatible with the version of the BDL compiler that compiled this
program.
Solution: Use a current version of the Form Compiler to recompile the
form specification.

-1114 No form has been displayed.
Description: The current statement requires the use of a screen form.
For example, DISPLAY...TO or an INPUT statement must use the
fields of a form. However, the DISPLAY FORM statement has not
been executed since the current window was opened.
Solution: Review the program logic to ensure that it opens and
displays a form before it tries to use a form.

-1119 NEXT FIELD name not found in form.
Description: This statement (INPUT or INPUT ARRAY) contains a
NEXT FIELD clause that names a field that is not defined in the form.
Solution: Review the form and program logic. Perhaps the form has
been changed, but the program has not.

-1129 Field (name) in BEFORE/AFTER clause not found in form.
Description: This statement includes a BEFORE FIELD clause or an
AFTER FIELD clause that names a field that is not defined in the
form that is currently displayed.
Solution: Review the program to ensure that the intended form was
displayed, and review this statement against the form specification to
ensure that existing fields are named.

-1133 The NEXT OPTION name is not in the menu.
Description: This MENU statement contains a NEXT OPTION clause
that names a menu-option that is not defined in the statement.
Solution: The string that follows NEXT OPTION must be identical to
one that follows a COMMAND clause in the same MENU statement.
Review the statement to ensure that these clauses agree with each
other.

-1140 NEXT OPTION is a hidden option.
Description: The option that is named in this NEXT OPTION

Genero Business Development Language

1088

statement has previously been hidden with the HIDE OPTION
statement. Because it is not visible to the user, it cannot be
highlighted as the next choice.
Solution: Use the SHOW OPTION statement to unhide the menu
option.

-1141 Cannot close window with active INPUT, DISPLAY ARRAY, or
MENU statement.
Description: This CLOSE WINDOW statement cannot be executed
because an input operation is still active in that window. The CLOSE
WINDOW statement must have been contained in, or called from
within, the input statement itself.
Solution: Review the program logic, and revise it so that the
statement completes before the window is closed.

-1143 Window is already open.
Description: This OPEN WINDOW statement names a window that is
already open.
Solution: Review the program logic, and see whether it should
contain a CLOSE WINDOW statement, or whether it should simply
use a CURRENT WINDOW statement to bring the open window to
the top.

-1146 PROMPT message is too long to fit in the window.
Description: Although BDL truncates the output of MESSAGE and
COMMENT to fit the window dimensions, it does not do so for
PROMPT and the user's response.
Solution: Reduce the length of the prompt string, or make the window
larger. You could display most of the prompting text with DISPLAY
and then prompt with a single space or colon.

-1150 Window is too small to display this menu.
Description: The window must be at least two rows tall, and it must
be wide enough to display the menu title, the longest option name,
two sets of three-dot ellipses, and six spaces. Revise the program to
make the window larger or to give the menu a shorter name and
shorter options.
Solution: Review the OPEN WINDOW statement for the current
window in conjunction with this MENU statement.

-1168 Command does not appear in the menu.
Description: The SHOW OPTION, HIDE OPTION, or NEXT OPTION
statement cannot refer to an option (command) that does not exist.
Solution: Check the spelling of the name of the option.

-1170 The type of your terminal is unknown to the system.
Description: Check the setting of your TERM environment variable
and the setting of your TERMCAP or TERMINFO environment
variable.
Solution: Check with your system administrator if you need help with
this action.

-1202 An attempt was made to divide by zero.

Miscellaneous

1089

Description: Zero cannot be a divisor.
Solution: Check that the divisor is not zero. In some cases, this error
arises because the divisor is a character value that does not convert
properly to numeric.

-1204 Invalid year in date.
Description: The year in a DATE value or literal is invalid. For
example, the number 0000 is not acceptable as the year.
Solution: Check the value of year.

-1205 Invalid month in date.
Description: The month in a DATE value or literal must be a one- or
two-digit number from 1 to 12.
Solution: Check the value of month.

-1206 Invalid day in date.
Description: The day number in a DATE value or literal must a one-
or two-digit number from 1 to 28 (or 29 in a leap year), 30, or 31,
depending on the month that accompanies it.
Solution: Check the value of day.

-1212 Date conversion format must contain a month, day, and year
component.
Description: When a date value is converted between internal binary
format and display or entry format, a pattern directs the conversion.
When conversion is done automatically, the pattern comes from the
environment variable DBDATE. When it is done with an explicit call to
the rfmtdate(), rdefmtdate(), or USING functions, a pattern string is
passed as a parameter. In any case, the pattern string (the format of
the message) must include letters that show the location of the three
parts of the date: 2 or 3 letters d; 2 or 3 letters m; and either 2 or 4
letters y.
Solution: Check the pattern string and the value of DBDATE.

-1213 A character to numeric conversion process failed.
Description: A character value is being converted to numeric form for
storage in a numeric column or variable. However, the character
string cannot be interpreted as a number.
Solution: Check the character string. It must not contain characters
other than white space, digits, a sign, a decimal, or the letter e. Verify
the parts are in the right order. If you are using NLS, the decimal
character or thousands separator might be wrong for your locale.

-1214 Value too large to fit in a SMALLINT.
Description: The SMALLINT data type can accept numbers with a
value range from -32,767 to +32,767.
Solution: To store numbers that are outside this range, redefine the
column or variable to use INTEGER or DECIMAL type.

-1215 Value too large to fit in an INTEGER.
Description: The INTEGER data type can accept numbers with a
value range from -2,147,483,647 to +2,147,483,647.
Solution: Check the other data types available, such as DECIMAL.

Genero Business Development Language

1090

-1218 String to date conversion error.
Description: The data value does not properly represent a date: either
it has non-digits where digits are expected, an unexpected delimiter,
or numbers that are too large or are inconsistent.
Solution: Check the value being converted.

-1226 Decimal or money value exceeds maximum precision.
Description: The data value has more digits to the left of the decimal
point than the declaration of the variable allows.
Solution: Revise the program to define the variable with an
appropriate precision.

-1260 It is not possible to convert between the specified types.
Description: Data conversion does not make sense, or is not
supported.
Solution: Possibly you referenced the wrong variable or column.
Check that you have specified the data types that you intended and
that literal representations of data values are correctly formatted.

-1261 Too many digits in the first field of datetime or interval.
Description: The first field of a DATETIME literal must contain 1 or 2
digits (if it is not a YEAR) or else 2 or 4 digits (if it is a YEAR). The
first field of an INTERVAL literal represents a count of units and can
have up to 9 digits, depending on the precision that is specified in its
qualifier.
Solution: Review the DATETIME and INTERVAL literals in this
statement, and correct them.

-1262 Non-numeric character in datetime or interval.
Description: A DATETIME or INTERVAL literal can contain only
decimal digits and the allowed delimiters: the hyphen between year,
month, and day numbers; the space between day and hour; the colon
between hour, minute, and second; and the decimal point between
second and fraction. Any other characters, or these characters in the
wrong order, produce an error.
Solution: Check the value of the literal.

-1263 A field in a datetime or interval is out of range.
Description: At least one of the fields in a datetime or interval is
incorrect.
Solution: Inspect the DATE, DATETIME, and INTERVAL literals in
this statement. In a DATE or DATETIME literal, the year might be
zero, the month might be other than 1 to 12, or the day might be
other than 1 to 31 or inappropriate for the month. Also in a
DATETIME literal, the hour might be other than 0 to 23, the minute or
second might be other than 0 to 59, or the fraction might have too
many digits for the specified precision.

-1264 Extra characters at the end of a datetime or interval.
Description: Only spaces can follow a DATETIME or INTERVAL
literal.
Solution: Inspect this statement for missing or incorrect punctuation.

Miscellaneous

1091

-1265 Overflow occurred on a datetime or interval operation.
Description: An arithmetic operation involving a DATETIME and/or
INTERVAL produced a result that cannot fit in the target variable.
Solution: Check if the data type can hold the result of the operation.
For example, extend the INTERVAL precision by using YEAR(9) or
DAY(9).

-1266 Intervals or datetimes are incompatible for the operation.
Description: An arithmetic operation mixes DATETIME and/or
INTERVAL values that do not match.
Solution: Check the data types of the variable used in the operation.

-1267 The result of a datetime computation is out of range.
Description: In this statement, a DATETIME computation produced a
value that cannot be stored. This situation can occur, for example, if a
large interval is added to a DATETIME value. This error can also
occur if the resultant date does not exist, such as Feb 29, 1999.
Solution: Review the expressions in the statement and see if you can
change the sequence of operations to avoid the overflow.

-1268 Invalid datetime or interval qualifier.
Description: This statement contains a DATETIME or INTERVAL
qualifier that is not acceptable. These qualifiers can contain only the
words YEAR, MONTH, DAY, HOUR, MINUTE, SECOND,
FRACTION, and TO. A number from 1 to 5 in parentheses can follow
FRACTION.
Solution: Inspect the statement for missing punctuation and
misspelled words. A common error is adding an s, as in MINUTES.

-1301 This value is not among the valid possibilities.
Description: A list or range of acceptable values has been
established for this column in the form-specification file.
Solution: You must enter a value within the acceptable range.

-1302 The two entries were not the same -- please try again.
Description: To guard against typographical errors, this field has been
designated VERIFY in the form-specification file. You must enter the
value in this field twice, identically.
Solution: Carefully reenter the data. Alternatively, you can cancel the
form entry with the Interrupt key.

-1303 You cannot use this editing feature because a picture exists.
Description: This field is defined in the form-specification file with a
PICTURE attribute to specify its format.
Solution: You cannot use certain editing keys (for example, CTRL-A,
CTRL-D, and CTRL-X) while you are editing such a field. Use only
printable characters and backspace to enter the value.

-1304 Error in field.
Description: You entered a value in this field that cannot be stored in
the program variable that is meant to receive it.
Solution: Possibly you entered a decimal number when the
application provided only an integer variable, or you entered a

Genero Business Development Language

1092

character string that is longer than the application expected.

-1305 This field requires an entered value.
Description: The cursor is in a form field that has been designated
REQUIRED.
Solution: You must enter some value before the cursor can move to
another field. To enter a null value, type any printable character and
then backspace. Alternatively, you can cancel the form entry with the
Interrupt key.

-1306 Please type again for verification.
Description: The cursor is in a form field that has been designated
VERIFY. This procedure helps to ensure that no typographical errors
occur during data entry.
Solution: You must enter the value twice, identically, before the
cursor can move to another field. Alternatively, you can cancel the
form entry with the Interrupt key.

-1307 Cannot insert another row - the input array is full.
Description: You are entering data into an array of records that is
represented in the program by a static array of program variables.
That array is now full; no place is available to store another record.
Solution: Press the ACCEPT key to process the records that you
have entered.

-1309 There are no more rows in the direction you are going.
Description. You are attempting to scroll an array of records farther
than it can go, either scrolling up at the top or scrolling down at the
bottom of the array. Further attempts will have the same result.

-1312 FORMS statement error number %d.
Description. An error occurred in the form at runtime.
Solution. Edit your source file: go to the specified line, correct the
error, and recompile the file.

-1313 SQL statement error number %d.
Description: The current SQL statement returned this error code
number.

-1314 Program stopped at 'file-name', line number line-number.
Description: At runtime an error occurred in the specified file at the
specified line. No .err file is generated.
Solution: Edit your source file, go to the specified line, correct the
error, and recompile the file.

-1318 A parameter count mismatch has occurred between the calling
function and the called function.
Description: Either too many or too few parameters were given in the
call to the function.
Solution. The call is probably in a different source module from the
called functions. Inspect the definition of the function, and check all
places where it is called to ensure that they use the number of
parameters that it declares.

Miscellaneous

1093

-1320 A function has not returned the correct number of values
expected.
Description: A function that returns several variables has not returned
the correct number of parameters.
Solution: Check your source code and recompile.

-1321 A validation error has occurred as a result of the VALIDATE
command.
Description: The VALIDATE LIKE statement tests the current value of
variables against rules that are stored in the syscolval table. It has
detected a mismatch.
Solution: Ordinarily, the program would use the WHENEVER
statement to trap this error and display or correct the erroneous
values. Inspect the VALIDATE statement to see which variables were
being tested and find out why they were wrong.

-1322 A report output file cannot be opened.
Description: The file that the REPORT TO statement specifies cannot
be opened.
Solution: Check that your account has permission to write such a file,
that the disk is not full, and that you have not exceeded some limit on
the number of open files.

-1323 A report output pipe cannot be opened.
Description: The pipe that the REPORT TO PIPE statement specifies
could not be started.
Solution: Check that all programs that are named in it exist and are
accessible from your execution path. Also look for operating-system
messages that might give more specific errors.

-1324 A report output file cannot be written to.
Description: The file that the REPORT TO statement specifies was
opened, but an error occurred while writing to it.
Solution: Possibly the disk is full. Look for operating- system
messages that might give more information.

-1326 An array variable has been referenced outside of its specified
dimensions.
Description: The subscript expression for an array has produced a
number that is either less than one or greater than the number of
elements in the array.
Solution: Review the program logic that leads up to this statement to
determine how the error was made.

-1327 An insert statement could not be prepared for inserting rows
into a temporary table used for a report.
Description: Within the report function, BDL generated an SQL
statement to save rows into a temporary table. The dynamic
preparation of the statement (see the reference material on the
PREPARE statement) produced an error.
Solution: Probably the database tables are not defined now, at
execution time, as they were when the program was compiled. Either

Genero Business Development Language

1094

the database has been changed, or the program has selected a
different database than the one that was current during compilation.
Possibly the database administrator has revoked SELECT privilege
from you for one or more of the tables that the report uses. Look for
other error messages that might give more details.

-1328 A temporary table needed for a report could not be created in
the selected database.
Description: Within the report definition, BDL generated an SQL
statement to save rows into a temporary table, but the temporary
table could not be created.
Solution: You must have permission to create tables in the selected
database, and there must be sufficient disk space left in the
database. You may already have a table in your current database
with the same name as the temporary table that the report definition
is attempting to create as a sorting table; the sorting table is named
"t_reportname". Another possible cause with some database servers
is that you have exceeded an operating-system limit on open files.

-1329 A database index could not be created for a temporary database
table needed for a report.
Description: Within the report definition, BDL generated SQL
statements to save rows into a temporary table. However, an index
could not be created on the temporary table.
Solution: Probably an index with the same name already exists in the
database. (The sorting index is named "i_reportname"; for example,
"i_order_rpt".) Possibly no disk space is available in the file system or
dbspace. Another possibility with some database servers is that you
have exceeded an operating-system limit on open files.

-1330 A row could not be inserted into a temporary report table.
Description: Within the report definition, BDL generated SQL
statements that would save rows into a temporary table. However, an
error occurred while rows were being inserted.
Solution: Probably no disk space is left in the database. Look for
other error messages that might give more details.

-1331 A row could not be fetched from a temporary report table.
Description: Within the report definition, BDL generated SQL
statements to select rows from a temporary table. The table was built
successfully but now an error occurred while rows were being
retrieved from it.
Solution: Almost the only possible cause is a hardware failure or an
error in the database server. Check for operating-system messages
that might give more details.

-1332 A character variable has referenced subscripts that are out of
range.
Description: In the current statement, a variable that is used in taking
a substring of a character value contains a number less than one or a
number greater than the size of the variable, or the first substring
expression is larger than the second.

Miscellaneous

1095

Solution: Review the program logic that leads up to this statement to
find the cause of the error.

-1335 A report is accepting output or being finished before it has been
started.
Description: The program executed an OUTPUT TO REPORT or
FINISH REPORT statement before it executed a START REPORT.
Solution: Review the program logic that leads up to this statement to
find the cause of the error.

-1337 The variable variable-name has been redefined with a different
type or length.
Description: The variable that is shown is defined in the GLOBALS
section of two or more modules, but it is defined differently in some
modules than in others.
Solutions. Possibly modules were compiled at different times, with
some change to the common GLOBALS file between. Possibly the
variable is declared as a module variable in some module that does
not include the GLOBALS file.

-1338 The function 'function-name' has not been defined in any
module in the program.
Description: The named function is called from at least one module of
the program, but it is defined in none.
Solution. Verify that the module containing the function is a part of the
program, and that the function name is correctly spelled.

-1340 The error log has not been started.
Description: The program called the errorlog() function without first
calling the startlog() function.
Solution: Review the program logic to find out the cause of this error.

-1353 Use '!' to edit TEXT and BYTE fields.
This is a normal message text used outside an error context.

-1355 Cannot build temporary file.
Description: A TEXT or BYTE variable has been located in a
temporary file using the LOCATE statement. The current statement
assigns a value into that variable, so BDL attempted to create the
temporary file, but an error occurred.
Solution: Possibly no disk space is available, or your account does
not have permission to create a temporary file. Look for operating-
system error messages that might give more information.

-1359 Read error on blob file 'file-name'.
Description: The operating system signaled an error during output to
a temporary file in which a TEXT or BYTE variable was being saved.
Solution: Possibly the disk is full, or a hardware failure occurred. For
more information, look for operating-system messages.

-1360 No PROGRAM= clause for this field.
Description. No external program has been designated for this field
using the PROGRAM attribute in the form-specification file (For Text

Genero Business Development Language

1096

User Interface mode on ASCII terminals only)

-1373 The field 'field-name' is not in the list of fields in the
CONSTRUCT/INPUT statement.
Description: The built-in function get_fldbuf() or field_touched() has
been called with the field name shown. However, input from that field
was not requested in this CONSTRUCT or INPUT statement. As a
result, the function cannot return any useful value.
Solution: Review all uses of these functions, and compare them to
the list of fields at the beginning of the statement.

-1374 SQL character truncation or transaction warning.
Description: The program set WHENEVER WARNING STOP, and a
warning condition arose. If the statement involved is a DATABASE
statement, the condition is that the database that was just opened
uses a transaction log. On any other statement, the condition is that a
character value from the database had to be truncated to fit in its
destination.

-1375 SQL NULL value in aggregate or mode ANSI database warning.
Description: The program set WHENEVER WARNING STOP, and a
warning condition arose. If the statement that is involved is a
DATABASE statement, the condition is that the database that was
just opened is ANSI compliant. On any other statement, the condition
is that a null value has been used in the computation of an aggregate
value.

-1376 SQL, database server, or program variable mismatch warning.
Description: The program set WHENEVER WARNING STOP, and a
warning condition arose. If the statement that is involved is a
DATABASE or CREATE DATABASE statement, the condition is that
the database server opened the database. On any other statement,
the condition is that a SELECT statement returned more values than
there were program variables to contain them.

-1377 SQL float-to-decimal conversion warning.
Description: The program set WHENEVER WARNING STOP, and a
warning condition arose. The condition is that in the database that
was just opened, the database server will use the DECIMAL data
type for FLOAT values.

-1378 SQL non-ANSI extension warning.
Description. A database operation was performed that is not part of
ANSI SQL, although the current database is ANSI compliant. This
message is informational only.

-1396 A report PRINT FILE source file cannot be opened for reading.
Description: The file that is named in a PRINT FILE statement cannot
be opened.
Solution: Review the file name. If it is not in the current directory, you
must specify the full path. If the file exists, make sure your account
has permissions to read it.

Miscellaneous

1097

-2017 The character data value does not convert correctly to the field
type.
Description: You have entered a character value (a quoted string)
into a field that has a different data type (for example INTEGER).
However, the characters that you entered cannot be converted to the
type of the field.
Solution: Re-enter the data.

-2024 There is already a record 'record-name' specified.
Description: A screen record is automatically defined for each table
that is used in the ATTRIBUTES section to define a field. If you
define a record with the name of a table, it is seen as a duplicate.
Solution: Check that the record-name of every screen record and
screen array is unique in the form specification.

-2028 The symbol 'name' does not represent a table prefix used in this
form.
Description: In a SCREEN RECORD statement, each component
must be introduced by the name of the table as defined in the
TABLES section or by the word FORMONLY.
Solution: Review the spelling of the indicated name against the
TABLES section, and check the punctuation of the rest of the
statement.

-2029 Screen record array 'record-name' has different component
sizes.
Description: The screen record array name has component sizes
which either differ from the specified dimension of the array or differ
among themselves. This error message appears when one or more
of the columns appear a different number of times.
Solution. The dimension of the screen array is written in square
brackets that follow its name. Verify that the dimensions of the screen
array match the screen fields.

-2039 The attributes AUTONEXT, DEFAULT, INCLUDE, VERIFY, RIGHT
and ZEROFILL are not supported for BLOB fields.
Description: Columns of the data type specified cannot be used in the
ways that these attributes imply.
Solution: Check that the table and column names are as you
intended, and verify the current definition of the table in the database
that the DATABASE statement names.

-2041 The form 'form-name' cannot be opened.
Description: The form filename cannot be opened. This is probably
because it does not exist, or the user does not have read permission.
Solution: Check the spelling of filename. Check that the form file
exists in your current directory. If it is in another directory, check that
the correct pathname has been provided. On a UNIX system, if these
things are correct, verify that your account has read permission on
the file.

-2045 The conditional attributes of a field cannot depend on the values

Genero Business Development Language

1098

of other fields.
Description: The Boolean expression in a WHERE clause of a
COLOR attribute can use only the name of that field and constants.
Solution: Revise this attribute, and recompile the form.

-2100 Field 'field-name' has validation string error, String = string.
Description: One of the formatting or validation strings that is stored
in the syscolval or syscolatt tables is improperly coded. The string is
shown as is the field to which it applies.
Solution: Update the string in the tables.

-2810 The name 'database-name' is not an existing database name.
Description: This name, which was found in the DATABASE
statement at the start of the form specification, is not a database that
can be found.
Solution: Check the spelling of the database name and the database
entries in the fglprofile file.

-2820 The label name between brackets is incorrectly given or the
label is missing.
Description: In the layout section of a form specification, the brackets
should contain a simple name. Instead, they contain spaces or an
invalid name.
Solution: Check the layout section of the form for invalid form item
labels.

-2830 A left square bracket has been found on this line, with no right
square bracket to match it.
Description: Every left square bracket field delimiter must have a right
square bracket delimiter on the same line.
Solution: Review the form definition file to make sure all fields are
properly marked.

-2840 The field label 'label-name' was not defined in the form.
Description: The indicated name appears at the left of this
ATTRIBUTES statement, but it does not appear within brackets in the
SCREEN section.
Solution: Review the field tags that have been defined to see why this
one was omitted.

-2843 The column 'column-name' does not appear in the form
specification.
Description: A name in this ATTRIBUTES statement should have
been defined previously in the form specification.
Solution: Check that all names in the statement are spelled correctly
and defined properly.

-2846 The field 'field-name' is not a member of the table 'table-name'.
Description: Something in this statement suggests that the name
shown is part of this table, but that is not true in the current database.
Solution: Review the spelling of the two names. If they are as you
intended, check that the correct database is in use and that the table
has not been altered.

Miscellaneous

1099

-2859 The column 'column-name' is a member of more then one table -
- you must specify the table name.
Description: Two or more tables that are named in the TABLES
section have columns with the name shown.
Solution: You must make clear which table you mean. To do this,
write the table name as a prefix of the column name, as table.column,
wherever this name is used in the form specification.

-2860 There is a column/value type mismatch for 'column-name'.
Description: This statement assigns a value to the field with the
DEFAULT clause or uses its value with the INCLUDE clause, but it
does so with data that does not agree with the data type of the field.
Solution: Review the data type of the field (which comes from the
column with which it is associated), and make sure that only
compatible values are assigned.

-2862 The table 'table-name' cannot be found in the database.
Description: The indicated table does not exist in the database that is
named in the form.
Solution: Check the spelling of the table name and database name. If
they are as you intended, either you are not using the version of the
database that you expected, or the database has been changed.

-2863 The column 'column-name' does not exist among the specified
tables.
Description: The tables that are specified in the TABLES section of
the form exist, but column-name, which is named in the
ATTRIBUTES section, does not.
Solution: Check its spelling against the actual table. Possibly the
table was altered, or the column was renamed.

-2864 The table 'table-name' is not among the specified tables.
Description: The indicated table is used in this statement but is not
defined in the TABLES section of the form specification.
Solution: Check its spelling; if it is as you intended, add the table in
the TABLES section.

-2865 The column 'column-name' does not exist in the table 'table-
name'.
Description: Something in this statement implies that the column
shown is part of the indicated table (most likely the statement refers
to table-name.column). However, it is not defined in that table.
Solution: Check the spelling of both names. If they are as you
intended, then check the contents of the database; possibly the table
has been altered or the column renamed.

-2892 The column 'column-name' appears more then once. If you wish
a column to be duplicated in a form, use the same display field
label.
Description: The same column name is listed in the ATTRIBUTES
section more than once.
Solution: The expected way to display the same column in two or

Genero Business Development Language

1100

more places is to put two or more fields in the screen layout, each
with the same tag-name. Then put a single statement in the
ATTRIBUTES section to associate that tag-name with the column
name. The current column value will be duplicated in all fields. If you
intended to display different columns that happen to have the same
column-names, prefix each column with its table-name.

-2893 The display field label 'label-name' appears more than once in
this form, but the lengths are different.
Description: You can put multiple copies of a field in the screen layout
(all will display the same column), but all copies must be the same
length.
Solution: Review the form definition to make sure that, if you intended
to have multiple copies of one field, all copies are the same.

-2975 The display field label 'label-name' has not been used.
Description: A field tag has been declared in the screen section of the
form- specification file but is not defined in the attributes section.
Solution. Check your form-specification file.

-2992 The display label 'label-name' has already been used.
Description: The forms compiler indicates that name has been
defined twice. These names must be defined uniquely in the form
specification.
Solution: Review all uses of the name to see if one of them is
incorrect.

-2997 See error number %d.
Description: The database server returned an error that is shown.
Solution: Look up the shown error in the database server
documentation.

-4307 The number of variables and/or constants in the display list
does not match the number of form fields in the display
destination.
Description: There must be exactly as many items in the list of values
to display as there are fields listed following the TO keyword in this
statement.
Solution: Review the statement.

-4308 The number of input variables does not match the number of
form fields in the screen input list.
Description: Your INPUT statement must specify the same number of
variables as it does fields.
Solution: When checking this, keep in mind that when you refer to a
record using an asterisk or THRU, it is the same as listing each
record component individually.

-4309 Printing cannot be done within a loop or CASE statement
contained in report headers or trailers.
Description: BDL needs to know how many lines of space will be
devoted to page headers and trailers; otherwise, it does not know
how many detail rows to allow on a page. Since it cannot predict how

Miscellaneous

1101

many times a loop will be executed, or which branch of a CASE will
be execute, it forbids the use of PRINT in these contexts within
FIRST PAGE HEADER, PAGE HEADER, and PAGE TRAILER
sections.
Solution: Re-arrange the code to place the PRINT statement where it
will always be executed.

-4319 The symbol 'name' has been defined more than once.
Description: The variable that is shown has appeared in at least one
other DEFINE statement before this one.
Solution: Review your code. If this DEFINE is within a function or the
MAIN section, the prior one is also. If this DEFINE is outside any
function, the prior one is also outside any function; however, it might
be within the file included by the GLOBALS statement.

-4320 The symbol 'name' is not the name of a table in the specified
database.
Description: The named table does not appear in the database.
Solution: Review the statement. The table name may be spelled
wrong in the program, or the table might have been dropped or
renamed since the last time the program was compiled.

-4322 The symbol 'name' is not the name of a column in the specified
database.
Description: The preceding statement suggests that the named
column is part of a certain table in the specified database. The table
exists, but the column does not appear in it.
Solution: Check the spelling of the column name. If it is spelled as
you intended, then either the table has been altered, or the column
renamed, or you are not accessing the database you expected.

-4323 The variable 'variable-name' is too complex a type to be used in
an assignment statement.
Description: The named variable is a complex variable like a record
or an array, which cannot be used in a LET statement.
Solution: You must assign groups of components to groups of
components using asterisk notation.

-4324 The variable 'variable-name' is not a character type, and cannot
be used to contain the result of concatenation.
Description: This statement attempts to concatenate two or more
character strings (using the comma as the concatenation operator)
and assign the result to the named variable. Unfortunately, it is not a
character variable, and automatic conversion from characters cannot
be performed in this case.
Solution: Assign the concatenated string to a character variable; then,
if you want to treat the result as numeric, assign the string as a whole
to a numeric variable.

-4325 The source and destination records in this record assignment
statement are not compatible in types and/or length.
Description: This statement uses asterisk notation to assign all

Genero Business Development Language

1102

components of one record to the corresponding components of
another. However, the components do not correspond. Note that BDL
matches record components strictly by position, the first to the first,
second to second, and so on; it does not match them by name.
Solution: If the source and destination records do not have the same
number and type of components, you will have to write a simple
assignment statement for each component.

-4333 The function 'function-name' has already been called with a
different number of parameters.
Description: Earlier in the program, there is a call to this same
function or event with a different number of parameters in the
parameter list. At least one of these calls must be in error.
Solution: Examine the FUNCTION statement for the named function
to find out the correct number of parameters. Then examine all calls
to it, and make sure that they are written correctly.

-4334 The variable 'variable-name' in its current form is too complex to
be used in this statement.
Description: The variable has too many component parts. Only
simple variables (those that have a single component) can be used in
this statement.
Solution: If variable-name is an array, you must provide a subscript to
select just one element. If it is a record, you must choose just one of
its components. (However, if this statement permits a list of variables,
as in the INITIALIZE statement, you can use asterisk or THRU
notation to convert a record name into a list of components)

-4336 The parameter 'param-name' has not been defined within the
function or report.
Description: The name variable-name appears in the parameter list of
the FUNCTION statement for this function. However, it does not
appear in a DEFINE statement within the function. All parameters
must be defined in their function before use.
Solution: Review your code. Possibly you wrote a DEFINE statement
but did not spell variable-name the same way in both places.

-4338 The symbol 'name' has already been defined once as a
parameter.
Description: The name that is shown appears in the parameter list of
the FUNCTION statement and in at least two DEFINE statements
within the function body.
Solution: Review your code. Only one appearance in a DEFINE
statement is permitted.

-4340 The variable 'variable-name' is too complex a type to be used in
an expression.
Description: In an expression, only simple variables (those that have
a single component) can be used.
Solution: If the variable indicated is an array, you must provide a
subscript to select just one element. If it is a record or object, you
must choose just one of its components.

Miscellaneous

1103

-4343 Subscripting cannot be applied to the variable 'variable-name'.
Description: You tried to use a [x,y] subscript expression with a
variable that is neither a character data type or an array type.
Solution: Check the variable data type and make sure it can be used
with a subscript expression.

-4347 The variable 'variable-name' is not a record. It cannot reference
record elements.
Description: In this statement variable-name appears followed by a
dot, followed by another name. This is the way you would refer to a
component of a record variable; however, variable-name is not
defined as a record.
Solution: Either you have written the name of the wrong variable, or
else variable-name is not defined the way you intended.

-4363 The report cannot skip lines while in a loop within a header or
trailer.
Description. BDL needs to know how many lines of space will be
devoted to the page header and trailer (otherwise it does not know
how many detail rows to allow on the page). It cannot predict how
many times a loop will be executed, so it has to forbid the use of
SKIP statements in loops in the PAGE HEADER, PAGE TRAILER,
and FIRST PAGE HEADER sections.
Solution: Review the report header or trailer to avoid SKIP in loops.

-4369 The symbol 'name' does not represent a defined variable.
Description: The name shown appears where a variable would be
expected, but it does not match any variable name in a DEFINE
statement that applies to this context.
Solution: Check the spelling of the name. If it is the name you
intended, look back and find out why it has not yet been defined.
Possibly the GLOBALS statement has been omitted from this source
module, or it names an incorrect file. Possibly this code has been
copied from another module or another function, but the DEFINE
statement was not copied also.

-4371 Cursors must be uniquely declared within one program module.
Description: In the statement DECLARE cursor-name CURSOR, the
identifier cursor-name can be used in only one DECLARE statement
in the source file. This is true even when the DECLARE statement
appears inside a function. Although a program variable made with the
DEFINE statement is local to the function, a cursor within a function
is still global to the whole module
Solution: Search for duplicated cursor names and change the name
to have unique identifiers.

-4372 The cursor 'cursor-name' has not yet been declared in this
program.
Description: The name shown appears where the name of a declared
cursor or a prepared statement is expected; however, no cursor (or
statement) of that name has been declared (or prepared) up to this
point in the program.

Genero Business Development Language

1104

Solution: Check the spelling of the name. If it is the name you
intended, look back in the program to see why it has not been
declared. Possibly the DECLARE statement appears in a GLOBALS
file that was not included.

-4374 This type of statement can only be used within a MENU
statement.
Description: This statement only makes sense within the context of a
MENU statement.
Solution: Review the program in this vicinity to see if an END MENU
statement has been misplaced. If you intended to set up the
appearance of a menu before displaying it, use a BEFORE MENU
block within the scope of the MENU.

-4379 The input file 'file-name' cannot be opened.
Description: Either the file does not exist, or, on UNIX, your account
does not have permission to read it.
Solution: Possibly the filename is misspelled, or the directory path
leading to the file was specified incorrectly.

-4380 The listing file 'file-name' cannot be created.
Description: The file cannot be created.
Solution: Check that the directory path leading to the file is specified
correctly and, on UNIX systems, that your account has permission to
create a file in that directory. Look for other, more explicit, error
messages from the operating system. Possibly the disk is full, or you
have reached a limit on the number of open files.

-4383 The elements 'name-1' and 'name-2' do not belong to the same
record.
Description: The two names shown are used where two components
of one record are required; however, they are not components of the
same record.
Solution: Check the spelling of both names. If they are spelled as you
intended, go back to the definition of the record and see why it does
not include both names as component fields.

-4402 In this type of statement, subscripting may be applied only to
array.
Description: The statement contains a name followed by square
brackets, but the name is not that of an array variable.
Solution. Check the punctuation of the statement and the spelling of
all names. Names that are subscripted must be arrays. If you
intended to use a character substring in this statement, you will have
to revise the program.

-4403 The number of dimensions for the variable 'variable-name' does
not match the number of subscripts.
Description: In this statement, the array whose name is shown is
subscripted by a different number of dimensions than it was defined
to have.
Solution: Check the punctuation of the subscript. If it is as you

Miscellaneous

1105

intended, then review the DEFINE statement where variable-name is
defined.

-4414 The label label-name has been used but has never been defined
within the above main program or function.
Description: A GOTO or WHENEVER statement refers to the label
shown, but there is no corresponding LABEL statement in the current
function or main program.
Solution: Check the spelling of the label. If it is as you intended it, find
and inspect the LABEL statement that should define it. You cannot
transfer out of a program block with GOTO; labels must be defined in
the same function body where they are used.

-4415 An ORDER BY or GROUP item specified within a report must be
one of the report parameters.
Description: The names used in a ORDER BY, AFTER GROUP OF,
or BEFORE GROUP OF statement must also appear in the
parameter list of the REPORT statement. It is not possible to order or
group based on a global variable or other expression.
Solution: Check the spelling of the names in the statement and
compare them to the REPORT statement.

-4416 There is an error in the validation string: 'string'.
Description: The validation string in the syscolval table is not correct.
Solution: Change the appropriate DEFAULT or INCLUDE value in the
syscolval table.

-4417 This type of statement can be used only in a report.
Description: Statements such as PRINT, SKIP, or NEED are
meaningful only within the body of a report function, where there is an
implicit report listing to receive output.
Solution: Remove the report specific statement from the code which
is not in a report body.

-4418 The variable used in the INPUT ARRAY or DISPLAY ARRAY
statement must be an array.
Description: The name following the words DISPLAY ARRAY or
INPUT ARRAY must be that of an array of records.
Solution: Check the spelling of the name. If it is as you intended, find
and inspect the DEFINE statement to see why it is not an array. (If
you want to display or input a simple variable or a single element of
an array, use the DISPLAY or INPUT statement.)

-4420 The number of lines printed in the IF part of an IF-THEN-ELSE
statement of a header or trailer clause must equal the number of
lines printed in the ELSE part.
Description. BDL needs to know how many lines will be filled in
header and trailer sections (otherwise it could not know how many
detail rows to put on the page). Because it cannot tell which part of
an IF statement will be executed, it requires that both produce the
same number of lines of output.
Solution: Use the same number of occurrences of PRINT statements

Genero Business Development Language

1106

in each block of the IF statement.

-4440 The field 'field-name-1' precedes 'field-name-2' in the record
'record-name' and must also precede it when used with the
THROUGH shorthand.
Description: The THROUGH or THRU shorthand requires you to give
the starting and ending fields as they appear in physical sequence in
the record.
Solution: Check the spelling of the names; if they are as you
intended, then refer to the VARIABLE statement where the record
was defined to see why they are not in the sequence you expected.

-4447 'key-name' is not a recognized key value.
Description: The key name used in an ON KEY clause is not known
by the compiler.
Solution: Search the documentation for possible key names (F1-
F255, Control-?).

-4448 Cannot open the file 'file-name' for reading or writing.
Description: The file cannot be opened.
Solution: Verify that the filename is correctly spelled and that your
account has permission to read or write to it.

-4452 The function (or report) 'name' has already been defined.
Description: Each function (or report, which is similar to a function)
must have a unique name within the program.
Solution: Change the function or report name.

-4457 You may have at most 4 keys in the list.
Description: An interactive instruction defines a ON KEY() clause with
more that 4 keys.
Solution: Remove keys from the list.

-4458 One dimension of this array has exceeded the limit of 65535.
Description: The program is using a static array with a dimension that
exceeds the limit.
Solution: Use a dimension below the 65535 limit.

-4463 The NEXT FIELD statement can only be used within an INPUT or
CONSTRUCT statement.
Description: The NEXT FIELD statement is used outside an INPUT,
INPUT ARRAY or CONSTRUCT statement.
Solution: Remove the NEXT FIELD statement from that part of the
code.

-4464 The number of columns must match the number of values in the
SET clause of an UPDATE statement.
Description: In an UPDATE statement, the number of values used
does not match the number of columns.
Solution: Check for the table definition, then either add or remove
values or columns from the UPDATE statement.

-4476 Record members may not be used with database column
substring.

Miscellaneous

1107

Description: This statement has a reference of the form
name1.name2[...]. This is the form in which you would refer to a
substring of a column: table.column[...]. However, the names are not
a table and column in the database, so BDL presumes they refer to a
field of a record.
Solution: Inspect the statement and determine what was intended: a
reference to a column or to a record. If it is a column reference, verify
the names of the table and column in the database. If it is a record
reference, verify that the record and component are properly defined.

-4477 The variable 'variable-name' is an array. You must specify one of
its elements in this statement.
Description: You tried to use an array without element specification in
a SQL statement.
Solution. Use one of the members of the array.

-4488 The program cannot CONTINUE or EXIT statement-type at this
point because it is not immediately within statement-type
statement.
Description: This CONTINUE or EXIT statement is not appropriate in
its context.
Solution: Review your code. Possibly the statement is misplaced, or
the statement type was specified incorrectly.

-4490 You cannot have multiple BEFORE clauses for the same field.
Description: You cannot specify more than one BEFORE FIELD
clause for the same field.
Solution: Review your code to eliminate multiple BEFORE FIELD
clauses.

-4491 You cannot have multiple AFTER clauses for the same field.
Description: You cannot specify more than one AFTER FIELD clause
for the same field.
Solution: Review your code to eliminate multiple AFTER FIELD
clauses.

-4631 Startfield of DATETIME or INTERVAL qualifiers must come
earlier in the time-list than its endfield.
Description: The qualifier for a DATETIME or INTERVAL consists of
start TO end, where the start and end are chosen from this list: YEAR
MONTH DAY HOUR MINUTE SECOND FRACTION.
The keyword for the start field must come earlier in the list than, or be
the same as, the keyword for the end field.
Solution: Check the order of the startfield and endfield qualifiers. For
example, qualifiers of DAY TO FRACTION and MONTH TO MONTH
are valid but one of MINUTE TO HOUR is not.

-4632 Parenthetical precision of FRACTION must be between 1 and 5.
No precision can be specified for other time units.
Description: In a DATETIME qualifier only the FRACTION field may
have a precision in parentheses, and it must be a single digit from 1
to 5.

Genero Business Development Language

1108

Solution: Check the DATETIME qualifiers in the current statement;
one of them violates these rules. The first field of an INTERVAL
qualifier may also have a parenthesized precision from 1 to 5.

-4652 The function 'function-name' can only be used within an INPUT
or CONSTRUCT statement.
Description: The function shown is being used outside of an INPUT
or CONSTRUCT statement. However, it returns a result that is only
meaningful in the context of INPUT or CONSTRUCT.
Solution: Review the code to make sure that an END INPUT or END
CONSTRUCT statement has not been misplaced. Review the
operation and use of the function to make sure you understand it.

-4653 No more than one BEFORE or AFTER INPUT/CONSTRUCT
clause can appear in an INPUT/CONSTRUCT statement.
Description. There may be only one BEFORE block of statements to
initialize each of these statement types.
Solution: Make sure that the scope of all your INPUT, CONSTRUCT
and MENU statements is correctly marked with END statements.
Then combine all the preparation code into a single BEFORE block
for each one.

-4656 CANCEL INSERT can only be used in the BEFORE INSERT
clause of an INPUT ARRAY statement.
Description: The CANCEL INSERT statement is being used outside
of the BEFORE INSERT clause of an INPUT ARRAY.
Solution: Review the code to make sure that CANCEL INSERT has
not been used anywhere except in the BEFORE INSERT clause.

-4657 CANCEL DELETE can only be used in the BEFORE DELETE
clause of an INPUT ARRAY statement.
Description: The CANCEL DELETE statement is being used outside
of BEFORE DELETE clause of an INPUT ARRAY.
Solution: Review the code to make sure that CANCEL DELETE has
not been used anywhere except in the BEFORE DELETE clause.

-4900 This syntax is not supported here. Use
[screenrecordname.]screenfieldname.
Description: The field name specification in a BEFORE FIELD or
AFTER FIELD is not valid.
Solution: Check for the field name and use
[screenrecordname.]screenfieldname syntax.

-4901 Fatal internal error: %s(%d).
Description: This error occurs when an incorrect field name is used in
a BEFORE FIELD or AFTER FIELD statement.
Solution: Check if the field name used in the BEFORE FIELD or
AFTER FIELD clause exists.

-6001 The license manager daemon cannot be started.
Description: This error occurs when a process creation fails during
the start of the license manager.
Solution: Increase the maximum number of processes allowed

Miscellaneous

1109

(ulimit)

-6012 Cannot get license information. Check your environment and the
license (run 'fglWrt -a info').
See error -6015.

-6013 Time limited version: time has expired.
Description: The license installed is a license with time limit and time
has expired. The program can not start.
Solution: Contact your distributor or support center.

-6014 Your serial number is not valid for this version.
Description: The license serial number is invalid for this version of the
software.
Solution: Contact your distributor or support center.

-6015 Cannot get license information. Check your environment and the
license (run 'fglWrt -a info').
Description: It is not possible for the application to check the license
validity.
Solution:

• License manager:
o The license may not have been installed
o The license controller can not communicate with the

license manager. Check that the license manager is
started and check that the fglprofile entries
flm.server and flm.service contain valid information.

o The directory $FLMDIR/lock and all the files below
must have read/write permission.

• License controller:
o The license may not have been installed.
o The directory $FGLDIR/lock and all the files below

must have read/write permission.

-6016 Cannot get information for license (Error %s). Check your
environment and the license (run 'fglWrt -a info').
Description: The application is unable to check the license validity.
Solution: See error -6015.

-6017 User limit exceeded. Cannot run this program.
Description: The maximum number of users allowed by the license
has been reached. The program can not start.
Solution: Contact your distributor or support center.

-6018 Cannot access internal data file. Cannot continue this program.
Please, check your environment(%s).
Description: When a client computer starts an application on the
server, the application stores data in the $FGLDIR/lock directory.
The client must have permission to create and delete files in this
directory.

Genero Business Development Language

1110

Solution:

• Do not remove or modify files contained in the directory
$FGLDIR/lock

• Change the permissions of the $FGLDIR/lockdirectory, or
connect to the server with a user name having the correct
permissions.

-6019 This demonstration version allows one user only.
Description: The demonstration version is designed to run with only
one user. Another user or another graphical daemon is currently
active.
Solution: Wait until the user stops the current program, or use the
same graphical daemon.

-6020 Installation: Cannot open 'file-name'.
Description: A file is missing or the permissions are not set for the
current user.
Solution: Check that the file permissions are correct for the user
trying to execute the application. If the file is missing, re-install the
compiler package.

-6022 Demonstration time has expired. Please, run this program again.
Description: The runtime demonstration version is valid only for a few
minutes after you have started a program.
Solution: Restart the program.

-6023 C-code generation is not allowed with the demonstration
program.
Description: Four J’s Business Development Language can compile
in P code and in C Code (only for the UNIX version). But with the
demonstration version, C-code compilation is not available.
Solution: Compile your program in P code.

-6025 Demonstration time has expired. Please, contact your vendor.
Description: The demonstration version of Four J’s Business
Development Language has a time limit of 30 days.
Solution: Either reinstall a new demonstration version, or call your
Four J’s Business Development Language vendor.

-6026 Bad link for runner demonstration. Please, retry or rebuild your
runner.
Description: The runner is corrupted.

-6027 Cannot access license server. Please check the following:
- the license server entry in your resource file. (service port)
- the license server host.
- the license server program.
Description: You have not specified a value for the environment
variable [fgllic|fls|flm].server in the $FGLDIR/etc/fglprofile file.
Solution: Check the fglprofile file for the entry point

Miscellaneous

1111

[fgllic|fls|flm].server and specify the name of the computer that runs
the Four J’s Business Development Language License Manager.

-6029 Unknown parameter 'parameter' for checking.
Description: The command line of the fglWrt or flmprg tool contains
an unknown parameter.
Solution: Check your command-line parameters and retry the
command.

-6031 Temporary license license-number has expired.
Description: Your temporary runtime license has expired.
Solution: Call your Four J’s Business Development Language
distributor to get a new license.

-6032 %s: illegal option : '%c'.
Description: You are not using a valid option.
Solution: Check your command line and try the command again.

-6033 %s: '%c' option requires an argument.
Description: You cannot use this option of the fglWrt tool without a
parameter.
Solution: Check your command line and try the command again.

-6034 Warning! This is a temporary license, installation number is
'installation-number'.
Description: You have installed a temporary license of 30 days. You
will have to enter an installation key before the end of this period if
you want to keep on running the program.
Solution: This is only a warning message.

-6035 Cannot read in directory
Description: The compiler cannot access the $FGLDIR/lock directory.
The current user must have read and write permissions in this
directory.
Solution: Give the current user read and write permissions to the
$FGLDIR/lock directory.

-6041 Can not retrieve network interface information.
Description: An error occurred while retrieving network interface
information.
Solution: Restart your program. If this does not solve your problem,
contact your distributor.

-6042 MAC Address has changed.
Description: The MAC address of the host has changed since the
license was first installed.
Solution: The license must be reinstalled, or restore the old MAC
address.

-6043 The testing period is finished. You must install a new license.
Description: The test time license of Four J’s Business Development
Language has expired.
Solution: Call your Four J’s Business Development Language
distributor to purchase a new license.

Genero Business Development Language

1112

-6044 IP Address has changed.
Description: The IP Address of the host has changed.
Solution: Restore the IP address of the host, or reinstall the license.
This is no longer checked by the latest versions of the license
controller.

-6045 Host name has changed.
Description: The host name has changed.
Solution: Restore the host name or reinstall the license.
This is no longer checked by the latest versions of the license
controller.

-6046 Could not get file reference number information.
Description. The license could not get information about the license
file.
Solution: Reinstall the license. Contact your distributor.

-6047 The device number of the license file has changed.
Description: The license file has been touched. The license is no
longer valid.
Solution: Reinstall the license. Contact your distributor.

-6048 The file reference number of the license file has changed.
Description: The license file has been touched. The license is no
longer valid.
Solution: Reinstall the license. Contact your distributor.

-6049 This product is licensed for runtime only. No compilation is
allowed.
Description: You have a runtime license installed with this package.
You cannot compile BDL source code modules with this license.
Solution: If you want to compile 4GL source code, you must purchase
and install a development license. Contact your distributor.

-6050 Temporary license license-number expired. Please contact your
vendor.
Description: A license with a time limit has been installed and the
license has expired.
Solution: Install a new license to activate the product. Contact your
distributor.

-6051 Temporary license license-number expired. Please contact your
vendor.
Description: A license with a time limit has been installed and the
license has expired.
Solution: Install a new license to activate the product. Contact your
distributor.

-6052 Temporary license license-number expired. Please contact your
vendor.
Description: A license with a time limit has been installed and the
license has expired.
Solution: Install a new license to activate the product. Contact your

Miscellaneous

1113

distributor.

-6053 Installation path has changed. It must hold the original
installation path.
Description: The value of FGLDIR or the location of FGLDIR has
been changed.
Solution: Ask the person who installed the product for the location of
the original installation directory and then set the FGLDIR
environment variable.

-6054 Cannot read a license file. Check installation path and your
environment. Verify if a license is installed.
Description: The file that contains the license is not readable by the
current user.
Solution:

• License controller: Check that the FGLDIR environment
variable is correctly set and that the file
$FGLDIR/etc/f4gl.sn is readable by the current user.

• License manager: Check that the file
$FLMDIR/etc/license/lic?????.dat is readable by the
current user.

-6055 Cannot update a license file. Check installation path and your
environment. Verify if a license is installed.
Description: The file that contains the license cannot be overwritten
by the current user.
Solution:

• License controller: Check that the FGLDIR environment
variable is correctly set and that the file
$FGLDIR/etc/f4gl.sn is writable by the current user.

• License manager: Check that the file
$FLMDIR/etc/license/lic?????.dat is writable by the current
user.

-6056 Cannot write into a license file. Please check your rights.
Description: The file that contains the license cannot be overwritten
by the current user.
Solution:

• License controller: Check that the FGLDIR environment
variable is correctly set and that the file
$FGLDIR/etc/f4gl.sn is writable by the current user.

• License manager: Check that the file
$FLMDIR/etc/license/lic?????.dat is writable by the current
user.

Genero Business Development Language

1114

-6057 Cannot read a license file. Check installation path and your
environment. Verify if a license is installed.
Description: The file that contains the license cannot be read by the
current user.
Solution: Check that the current user can read the file
$FGLDIR/etc/f4gl.sn. Also check that the FGLDIR environment
variable is set correctly.

-6058 Incorrect license file format. Verify if a license is installed.
Description: The file that contains the license has been corrupted.
Solution: Reinstall the license. If you have a backup of the current
installation of Genero Business Development Language, restore the
files located in the $FGLDIR/etc directory.

-6059 Incorrect license file format. Verify if a license is installed.
Description: The file that contains the license has been corrupted.
Solution: Reinstall the license. If you have a backup of the current
installation of Genero Business Development Language, restore the
files located in the $FGLDIR/etc directory.

-6061 License 'license-number' not installed.
Description: The license shown is not installed.
Solution: Reinstall the license.

-6062 No installed license has been found for 'license-number'.
Description. The add-user license can not be installed. No main
license found to add users.
Solution: Contact your distributor.

-6063 License 'license-number' is already installed.
Description: The license shown is already installed.
Solution: No particular action to be taken.

-6064 The resource 'flm.license.number' is required to use the license
manager.

-6065 The resource 'flm.license.key' is required to use the license
manager.

-6066 License 'license-number' cannot be installed over 'license-
number'.
Description: The add-user license does not match the main license.
The add-user license can not be installed.
Solution: Contact your distributor.

-6067 You need a installed license if you want to add users.
Description: The add-user license must be installed after the main
license.
Solution: Install the main license before the add-user license. If this
does not solve your problem, contact your distributor.

-6068 No license installed.
Description: There is no license installed for Genero Business
Development Language.

Miscellaneous

1115

Solution: Install a license. If a license is already installed, check that
the $FGLDIR environment variable is set correctly.

-6069 Cannot uninstall the license.
Description: There was a problem during the uninstall of the Genero
Business Development Language license.
Solution: Check whether the FGLDIR environment variable is
correctly set in your environment and the current user has
permission to delete files in the $FGLDIR/etc directory.

-6070 The license server entry must be set in your resource file in
order to reach the license server.
Description: You are using the remote license process and you have
set the value of fgllic.server, in $FGLDIR/etc/fglprofile, to localhost or
to the 127.0.0.1 address.
Solution: You must use the real IP address of the computer even if it
is the local computer.

-6071 Cannot use directory 'directory-name'. Check installation path
and verify if access rights are 'drwxrwxrwx'.
Description: The compiler needs to operate in the specified directory.
Solution: Change the permission of this directory.

-6072 Cannot create file in 'file-name'. Check installation path and
verify if access rights are 'drwxrwxrwx'.
Description: The compiler needs to operate in the specified directory.
Solution: Change the permission of this directory to 777 mode.

-6073 Cannot change mode of a file in 'file-name'. Verify if access
rights are 'drwxrwxrwx'.
Description: The compiler needs to operate in the specified directory.
Solution: Change the permission of this directory to 777 mode.

-6074 'file-name' does not have 'rwxrwxrwx' rights or isn't a directory.
Check access rights with 'ls -ld <installation-path>/lock' or
execute 'rm -r <installation-path>/lock' if no users are
connected.
Description: The compiler needs to operate in the specified directory.
Solution: Change the permission of this directory. The $FGLDIR/lock
directory contains only data needed at runtime by BDL applications.
When the application is finished, you can remove this directory. If you
delete this directory while BDL applications are running, the
applications will be stopped immediately.

-6075 Cannot read from directory 'directory-name'. Check installation
path and verify if access rights are 'drwxrwxrwx'.
Description: The compiler needs to operate in the specified directory.
Solution: Change the permission of this directory.

-6076 Bad lock tree. Please check your environment.
Description: There is a problem accessing the $FGLDIR/lock
directory.
Solution: Check if the current user has sufficient permission to read

Genero Business Development Language

1116

and write to the $FGLDIR/lock directory. Check also if the FGLDIR
environment variable is correctly set.

-6077 Bad lock tree. Please check your environment.
Description: There is a problem accessing the $FGLDIR/lock
directory.
Solution: Check if the current user has sufficient permission to read
and write to the $FGLDIR/lock directory. Check also if the FGLDIR
environment variable is correctly set.

-6079 Cannot get machine name or network IP address. Each
graphical client must have an IP address when using a license
server. FGLSERVER must hold the IP address or the host name
of the client.
Description: You are using the remote license process and you have
set the value of fgllic.server, in $FGLDIR/etc/fglprofile, to localhost or
to the 127.0.0.1 address.
Solution: You must use the real IP address of the computer even if it
is the local computer. This is also true for the value used with the
FGLSERVER environment variable.

-6080 Cannot get IP address from 'host-name' host. Check the
'flm.server' resource.
Description: The system cannot find the IP address of the specified
host.
Solution: This is a configuration issue regarding your system. The
command ping should not reply as well. Correct your system
configuration and then try to execute your program.

-6081 Cannot reach host 'host-name' with ping. Check license server
entry in your resource file. Check your network configuration or
increase 'flm.ping' value.
Description: The license server cannot ping the client computer, or it
does not get the response in the time limit specified by the fgllic.ping
entry in the $FGLDIR/etc/fglprofile file.
Solution: Try to manually ping the specified computer. If this works,
try to increase the value of the fgllic.ping entry in fglprofile. If the ping
does not respond, fix the system configuration problem and then try
the program again.

-6082 SYSERROR(%d)%s: Cannot set option TCP_NODELAY on
socket. Check the system error message and retry.
Description: There is a problem with the socket of the Windows
computer.
Solution: Check that the system is correctly configured and retry the
program.

-6085 SYSERROR(%d)%s: Cannot connect to the license server on
host 'host-name'. Check following things:
- license server entry.
- the license server machine.
- the license server TCP port.

Miscellaneous

1117

Description: The application cannot check the license validity. To do
so, it tries to communicate with the Genero Business Development
Language license service running on the computer where the product
is installed.
Solution: Check that the Genero Business Development Language
License Server is running on the computer where the product is
installed.

-6086 SYSERROR(%d)%s: Cannot send data to the license server.
Check the system error message and retry.
Description: There is a problem with the socket of the Windows
computer.
Solution: Check that the system is correctly configured and retry the
program.

-6087 SYSERROR(%d)%s: Cannot receive data from license server.
Check the system error message and retry.
Description: There is a problem with the socket of the Windows
computer.
Solution: Check that the system is correctly configured and retry the
program.

-6088 You are not allowed to be connected for the following reason:
description
Description: The program cannot connect to the license server
because of the specified reason.
Solution: Try to fix the problem described and rerun your application.

-6089 Each graphical client must have an IP address when using a
license server. FGLSERVER must hold the IP address or the
host name of the client (localhost or 127.0.0.1 are not allowed).

-6090 SYSERROR(%d)%s: Cannot create a socket to start the license
server. Check the system error message and retry.
Description: There is a problem with the socket of the Windows
computer.
Solution: Check that the system is correctly configured and rerun the
program.

-6091 SYSERROR(%d)%s: Cannot bind socket for the license server.
Check the system error message and retry.
Description: There is a problem with the socket of the Windows
computer.
Solution: Check that the system is correctly configured and rerun the
program.

-6092 SYSERROR(%d)%s: Cannot listen socket for the license server.
Description: There is a problem with the socket of the Windows
computer.
Solution: Check that the system is correctly configured and rerun the
program.

-6093 SYSERROR(%d)%s: Cannot create a socket to search an active

Genero Business Development Language

1118

client.
Description: There is a problem with the socket of the Windows
computer.
Solution: Check that the system is correctly configured and rerun the
program.

-6094 SYSERROR(%d)%s: This is a WSAStartup error. Check the
system error message and retry.
Description: There is a problem with the socket of the Windows
computer.
Solution: Check that the system is correctly configured and rerun the
program.

-6095 License problem: reason
Description: License type incompatible. You are installing an earlier
version, which was not designated for use with the current license
server.
Solution: Reinstall and then contact your vendor.

-6096 Connection refused by the license server.
Description: There is problem connecting the client computer to the
Windows license server.
Solution: There is a configuration problem with the license server
computer. Check the configuration of the computers and of the
products.

-6100 Bad format of line sent by the license requester.

-6101 License number 'license-number' does not correspond to
license key 'license-key'.

-6102 Verify if resource 'flm.license.number' and 'flm.license.key'
correspond to a valid license.

-6103 License 'license-number' is no longer available from the license
server.

-6107 User limit exceeded. Please retry later.
Description: The maximum number of clients that can be run has
been reached (due to the license installed).
Solution: Retry later (when the number of current users has
decreased) or install a new license that allows more users.

-6108 Environment is incorrect.
Description: There is no local license, or the environment is not set
correctly.
Solution: Check your environment and your FGLDIR environment
variable.

-6109 Cannot add session #%s.
Description: You do not have the permissions to create the new
session (the directory representing the new client).
Solution: Check the permissions of the dedicated directories.

Miscellaneous

1119

-6110 Cannot add program 'program-name' (pid=%d).
Description: You do not have the permissions to create the new
application (the file representing the new application) for the current
user .
Solution: Check the permissions of the dedicated directories.

-6112 Compilation is not allowed: This product is licensed for runtime
only.

-6113 Compilation is not allowed: Invalid license.

-6114 Cannot start program 'program-name' or result of process
number is 0.
Description: When fglWrt -u is executed to find the number of users
allowed on this installation, the command "ps" may be launched (only
on UNIX).
Solution: Check the permissions for ps.

-6116 Wrong number of characters.

-6117 The entry must be 12 characters long.

-6118 Wrong checksum result for this entry.

-6122 You must specify entry 'flm.server' in the resource file.

-6123 SYSERROR(%d)%s: Cannot open socket. Check the system
error message and retry.

-6129 License uninstalled.
Description: This is an information message.

-6140 Version version-number
Description: This is an information message.

-6148 Installation path is not known.
Description: You are handling licenses but the FGLDIR environment
variable is not set.
Solution: Set the FGLDIR environment variable and retry.

-6149 Problem while installing license 'license-number'.
Description: A problem occurred while licensing.
Solution: Note the system-specific error number and contact your
Technical Support.

-6150 Temporary license not found for this version.
Description: While adding a definitive license key, the temporary
license has not been found.
Solution: Re-install the license.

-6151 Wrong installation key.
Description: While adding a definitive license key, the installation key
was not valid.
Solution: Re-install the license.

-6152 Problem during license installation.

Genero Business Development Language

1120

Description: A problem occurred while installing the license. Could
not write information to the disk (either own files or system files).
Solution: Check the FGLDIR environment variable and the rights of
the license files (must be able to change them).

-6153 License installation failed.

-6154 License installation successful.
Description: This is an information message.

-6156 Too many temporary licenses. You must reinstall a license.
Description: You installed a temporary license too many times.
Solution: Contact technical support to get a valid license.

-6158 Cannot store temporary information.
Description: A problem occurred while installing the license. Could
not write information to the disk (either own files or system files).
Solution: Check the FGLDIR environment variable and the rights of
the license files (you must be able to change them).

-6159 This kind of license is not permitted.

-6160 You do not have the permissions to be connected.

-6161 You do not have the permissions to compile.

-6162 Cannot reach the license server. Please check if 'flm.server' is
correctly initialized. ('flmprg -a info up' command should answer
'ok'). The license server is running but no autocheck will be
done.

-6168 Cannot get information from directory 'directory-name'.

-6170 Old request format to license server detected. You must install a
license program version 2.99 or higher.

-6171 A license has been installed temporarily. Only the installation
key is required. You must run 'fglWrt -k <installation-key>' to
install it.

-6172 Bad parameter: 'parameter' hasn't the right format.

-6173 Invalid license number or invalid license key.

-6174 This option is only available for a local license. And resource
'flm.server' was found in your configuration.

-6175 License number 'license-number' is invalid.

-6176 In license server, following problem occurs with license number
'license-number': problem-description

-6177 Following problem occurs with license number 'license-
number': problem-description

-6178 Your machine is not allowed to be connected on any of your
authorized licenses.

Miscellaneous

1121

-6179 License validity time is reached. The users control is
reactivated.

-6180 CPU limit exceeded. The users control is reactivated.

-6181 Cannot get license extension information. Check your
environment, the license (run 'fglWrt -a info') and the fglWrt
version ('fglWrt -V' should give version-number or higher).

-6182 Your license has 'restriction-name' restriction. You are not
allowed to run another mode.

-6183 Local license controller (fglWrt) may not be compatible with this
runner. Check its version ('fglWrt -V' should give version-
number or higher).

-6184 You are not authorized to run this version of runner.

-6185 Protection file is not compatible with this version of the runner.
You must reinstall your license.

-6186 Demo version initialization.
Description. This is an information message.

-6196 You are not authorized to delete sessions from the license
server 'server-name'.

-6197 'extension-name' extension is not allowed with this license type.

-6198 Product identifier does not correspond to the license number.

-6200 Module 'module-name': The function function-signature-1 will be
called as function-signature-2.
Description: An incorrect number of parameters are used to call a
BDL function.
Solution: Check your source code and recompile your application.

-6201 Module 'module-name': Bad version: Recompile your sources.
Description: You have compiled your program with an old version.
The newly compiled version of your program is not supported.
Solution: Compile all source files and form files again.

-6202 filename 'file-name': Bad magic: Code can't run with this p code
machine.
Description: You have compiled your program with an old version.
The new compiled version of your program is not supported. You
might also have a file with the same name as the .42r. You used the
fglrun 42r-Name without specifying the extension.
Solution: To resolve this problem, call fglrun with the .42r extension
or recompile your application.

-6203 Module 'module-name-1': The function 'function-name' has
already been defined in module 'module-name-2'.
Description. The specified function is defined for the second time in
the application. The second occurrence of the function is in the
specified module.

Genero Business Development Language

1122

Solution: Eliminate one of the two function definitions from your
source code.

-6204 Module 'module-name': Unknown opcode.
Description: An unknown instruction was found in the compiled BDL
application.
Solution: Check that the version of the Genero Business
Development Language package executing the compiled application
is the same as the one that compiled the application. It is also
possible that the compiled module has been corrupted. If so, you will
need to recompile your application.

-6205 INTERNAL ERROR: Alignment.
Description: This error is internal, which should not normally occur.
Solution: Contact your Technical Support.

-6206 The dynamic loader can not open module 'module-name'.
Description: The module is not in the current directory or in one of the
directories specified by the environment variable FGLLDPATH.
Solution: Set the environment variable FGLLDPATH.

-6207 The dynamic loaded module 'module-name' does not contain the
function 'function-name'.
Description: A BDL module has been changed and recompiled, but
the different modules of the application have not been linked
afterward.
Solution: Link the new modules together before you execute your
application.

-6208 Module 'module-name' already loaded.
Description: A module was loaded twice at runtime. This can occur
because one module has been concatenated with another.
Solution: Recompile and re-link your BDL modules.

-6210 INTERNAL ERROR: exception 2 raised before invoking the
exception handler for exception 1.
Description: A module was loaded twice at runtime. This can occur
because one module has been concatenated with another.
Solution: Check for function names, recompile and re-link your BDL
modules.

-6211 Link has failed.
Description: A problem occurred while linking the BDL program.
Solution. Check for function names, recompile and re-link your BDL
modules.

-6212 Function function-name: local variables size is too large -
Allocation failed.
Description: A local function variable is too large and runtime could
not allocate memory.
Solution. Review the variable data types in the function.

-6213 Module module-name: Module's variable size is too large -
Allocation failed.

Miscellaneous

1123

Description: A module variable is too large and runtime could not
allocate memory.
Solution. Review the variable data types in the module.

-6214 Global variable variable-name size is too large - Allocation
failed.
Description: A global variable is too large and runtime could not
allocate memory.
Solution. Review the variable data types in the globals.

-6215 Memory allocation failed. Ending program.
Description: Runtime could not allocate memory.
Solution. Check for system resources and verify if the OS user is
allowed to allocate as much memory as the program needs (check
for ulimits on UNIX systems).

-6216 The global 'name' has been redefined with a different constant-
value.
Description: A global constant has been defined twice with a different
value.
Solution: A global constant may have only one value. Review your
code.

-6217 The global 'name' has been defined as a constant and a variable.
Description: The same symbol was used to define a constant and a
variable.
Solution: Use a different name for the constant and the variable.
Review your code.

-6218 No runtime. You must call fgl_start() before calling fgl_call().
Description: This error occurs when a C extension has re-defined the
main() routine, but then does not call fgl_start() to initialize the BDL
runtime environment.
Solution: Check the C extension and call fgl_start() before any other
operation.

-6219 WHENEVER ERROR CALL: The error-handler recursively calls
itself.
Description: The exception handler calls a function which in turn calls
itself recursively.
Solution: Review the function called by the exception handler.

-6220 Could not load C extension library 'library-name'.\nReason:
reason
Description: Runtime system could not find the shared library for the
reason given.
Solution: Check if the C extension library exists in one of the
directories defined by FGLLDPATH.

-6221 C extension initialization failed with status %d.
Description: C extension failed to initialize.
Solution: Check the C extension source or documentation.

-6300 Can not connect to GUI.

Genero Business Development Language

1124

Description: You have run a GUI application but the environment
variable FGLSERVER is not set correctly, or the Genero client
(graphical front-end) is not running.
Solution: The FGLSERVER environment variable should be set to the
hostname and port of the graphical front end used by the runtime
system to display the application windows. Check that the network
connection is still available, make sure no firewall denies access to
the workstation, and see whether the front-end is still running.

-6301 Can not write to GUI.
Description: You are running a GUI application but for an unknown
reason the front-end no longer responds and the runtime system
could not write to the GUI socket.
Solution: Check that the network connection is still available, make
sure no firewall denies access to the workstation, and see whether
the front-end is still running.

-6302 Can not read from GUI.
Description: You are running a GUI application but for an unknown
reason the front-end no longer responds and the runtime system
could not read from the GUI socket.
Solution: Check that the network connection is still available, make
sure no firewall denies access to the workstation, and see whether
the front-end is still running.

-6303 Invalid user interface protocol.
Description: You are trying to execute a program with a runtime
system that uses a different AUI protocol version as the front-end.
Solution: Install either a new front-end or a new runtime environment
that matches (2.0x with 2.0x, 1.3x with 1.3x).

-6304 Invalid abstract user interface definition.
Description: You are trying to execute a program with a runtime
system that uses a different AUI protocol version as the front-end.
Solution: Install either a new front-end or a new runtime environment
that matches (2.0x with 2.0x, 1.3x with 1.3x).

-6305 Can not open char table file. Check your fglprofile.
Description: This error occurs if the conversion file defined by the
gui.chartable entry, in the $FGLDIR/etc/fglprofile file, is not readable
by the current user.
Solution: Check if the gui.chartable entry is correctly set and if the
specified file is readable by the current user.

-6306 Can not open server file. Check installation.
Description: A file on the server side cannot be sent to the graphical
interface.
Solution: Check the permissions of the file located in the
$FGLDIR/etc directory. These files must have at least read
permission for the current user.

-6307 GUI server autostart: can not identify workstation.
Description: GUI Server autostart configuration is wrong. Either

Miscellaneous

1125

DISPLAY, FGLSERVER or fglprofile settings are invalid.
Solution: Set the required environment variables and check for
fglprofile autostart entries.

-6308 GUI server autostart: unknown workstation: check
gui.server.autostart entries.
Description: The computer described by the X11 DISPLAY
environment variable is neither the local host, nor is it listed in the
fglprofile entries.
Solution: Check if the X11 DISPLAY name is correctly set, or review
the fglprofile entries.

-6309 Not connected. Cannot write to GUI.
Description: For unknown reasons there was an attempt to write on
the GUI socket before the connection was initiated.
Solution: Check the program for invalid GUI operations.

-6310 Not connected. Cannot read from GUI.
Description: For unknown reasons there was an attempt to read on
the GUI socket before the connection was initiated.
Solution: Check the program for invalid GUI operations.

-6311 No current window.
Description: The program tries to issue a MENU instruction with no
current window open.
Solution: Review the program logic and make sure a window is open
before MENU.

-6312 The type of the user interface (FGLGUI) is invalid.
Description: While initiating the user interface, the runtime system did
not recognize the GUI type and stopped.
Solution: Make sure the FGLGUI environment variable has a correct
value.

-6313 The UserInterface has been destroyed.
Description: The error occurs when the front-end sends a
DestroyEvent event, indicating some inconsistency with the starting
program. This can happen, for example, when multiple StartMenus
are used, or when you try to run an MDI child without a parent
container, or when two MDI containers are started with the same
name, etc.
Solution: Check for inconsistency and fix it.

-6314 Wrong connection string. Check client version.
Description: While starting the program, the runtime received a wrong
or incorrectly constructed answer from the front-end.
Solution: Make sure you are using a front-end that is compatible with
the runtime system.

-6315 The form is too complex for the console-ui.
Description: The program tries to display a form with a complex
layout that can't be displayed in text mode.
Solution: Review the form file and use a simple grid with a SCREEN

Genero Business Development Language

1126

section instead of LAYOUT.

-6316 Error error-number returned from client:\n description
Description: Front end returned the specified error during GUI
connection initialization.
Solution: Check the front-end documentation for more details.

-6317 Invalid or unsupported client protocol feature.
Description: The GUI protocol feature you are trying to use is not
supported by the front-end. For example, you are trying to use
protocol compression but the runtime is not able to compress data.
Solution: Check the runtime system version for supported protocol
features.

-6318 The function 'function-name' cannot be called with this version
of fglrun.
Description: The function or class method shown in the error
message cannot be used in the current context.
Solution: Use a different function or method.

-6320 Can't open file 'file-name'.
Description: The runtime system tried to open a resource file in
FGLDIR but access is denied or file no longer exists.
Solution: Check for file permissions and existence in FGLDIR.

-6321 No such interface capability: 'feature'.
Description: The runtime system tried to use a front-end protocol
capability, but is not able to use it.
Solution: Check if the front-end is compatible with the runtime
system.

-6322 %s wrong version. Expecting %s.
Description: Some resource files of FGLDIR have been identified as
too old for the current runtime system.
Solution: Re-install the runtime system environment.

-6323 Can't load factory profile 'file-name'.
Description: The default fglprofile file located in FGLDIR/etc is
missing or is unreadable.
Solution: Check the permission of the file. If the file is missing,
reinstall the software.

-6324 Can't load customer profile 'file-name'.
Description: The configuration file defined by the FGLPROFILE
environment variable is missing or unreadable.
Solution: Check if the FGLPROFILE environment variable is correctly
set and if the file is readable by the current user.

-6325 Can't load application resources 'file-name'.
Description: The directory specified by the fglrun.default entry in
FGLDIR/etc/fglprofile is missing or not readable for the current user.
Solution: Check if the entry fglrun.default is correctly set in
FGLDIR/etc/fglprofile and if the directory specified is readable by the
current user.

Miscellaneous

1127

-6326 Can't open char map file 'file-name'. Check your fglprofile.
Description: The specified char map file cannot be found or read.
Solution. Verify that the char map file is located in FGLDIR/etc, and
that the correct value is set in fglprofile (GUI.CHARTABLE entry).

-6327 Internal error in the run time library file library-name.
Description: Something unpredictable has occurred, generating an
error.
Solution: Contact your Technical Support.

-6328 Bad format of resource 'name' value 'value': you must use the
syntax :
%s='VARNAME=value'.
Description: The FGLPROFILE file contains an invalid environment
variable definition format.
Solution: Check the content of the profile file.

-6330 Syntax error in profile 'filename', line number lineno, near
'token'.
Description: The FGLPROFILE file shown in the error message
contains a syntax error.
Solution: Check the content of the profile file.

-6331 Front end module could not be loaded.
Description: A front end call failed because the module does not
exist.
Solution: The front end is probably not supporting this module.

-6332 Front end function could not be found.
Description: A front end call failed because the function does not
exist.
Solution: The front end is probably not supporting this function.

-6333 Front end function call failed.
Description: A front end call failed for an unknown reason.
Solution: Call the support and report the problem.

-6334 Front end function call stack problem.
Description: A front end call failed because the number of parameter
or returning values does not match.
Solution: Make sure the number of parameters and return values are
correct.

-6340 Can't open file.
Description: The channel object failed to open the file specified.
Solution: Make sure the filename is correct and user has permissions
to read/write to the file.

-6341 Unsupported mode for 'open file'.
Description: You try to open a channel with an unsupported mode.
Solution: See channel documentation for supported modes.

-6342 Can't open pipe.
Description: The channel object failed to open a pipe to execute the

Genero Business Development Language

1128

command.
Solution: Make sure the command you try to execute is valid.

-6343 Unsupported mode for 'open pipe'.
Description: You try to open a channel with an unsupported mode.
Solution: See channel documentation for supported modes.

-6344 Can't write to unopened file, pipe or socket.
Description: You try to write to a channel object which is not open.
Solution: First open the channel, then write.

-6345 Channel write error.
Description: An unexpected error occurred while writing to the
channel.
Solution: See system error message for more details.

-6346 Cannot read from unopened file, pipe or socket.
Description: You try to read from a channel object which is not open.
Solution: First open the channel, then read.

-6360 This runner can't execute any SQL.
Description: The runtime system is not ready for database
connections.
Solution: Check the configuration of FGL.

-6361 Dynamic SQL: type unknown: typename.
Description: The database driver does not support this SQL data
type.
Solution: You cannot use this SQL data type, review the code.

-6364 Cannot connect to sql back end.
Description: The runtime system could not initialize the database
driver to establish a database connection.
Solution: Make sure the database driver exists.

-6365 Database driver not connected yet.
Description: There is an attempt to execute an SQL statement, but no
database connect is established.
Solution: First connect, then execute SQL statements.

-6366 Could not load database driver driver-name.
Description: The runtime system failed to load the specified database
driver. The database driver DLL or a dependent DLL could not be
found.
Solution: There is probably an environment problem, check for
example the UNIX LD_LIBRARY_PATH environment variable.

-6367 Incompatible database driver interface.
Description: The database driver interface does not match the
interface expected by the runtime system. This can occur if you copy
an old database driver into a younger FGLDIR installation.
Solution: Call the support to get a valid database driver.

-6368 SQL driver initialization function failed.

Miscellaneous

1129

Description: The runtime system failed to initialize the database
driver, program must stop because no database connection can be
established.
Solution: There is probably an environment problem (for example,
INFORMIXDIR or ORACLE_HOME is not set). Check your
environment and try to connect with a database vendor tool
(dbaccess, sqlplus) to identify the problem.

-6369 Invalid database connection mode.
Description: You try to mix DATABASE and CONNECT statements,
but this is not allowed.
Solution: Use either DATABASE or CONNECT.

-6370 Unsupported SQL feature.
Description: This SQL command or statement is not supported with
the current database driver.
Solution: Review the code and use a standard SQL feature instead.

-6371 SQL statement error number %d (%d).
Description: An SQL error has occurred having the specified error
number.
Solution: You can query SQLERRMESSAGE or the SQLCA record to
get a description of the error.

-6372 General SQL error, check SQLCA.SQLERRD[2].
Description: A general SQL error has occurred.
Solution: You can query SQLERRMESSAGE or the SQLCA record to
get a description of the error. The native SQL error code is in
SQLCA.SQLERRD[2].

-6373 Invalid database connection string.
Description: The database connection string that you have used is
not valid.
Solution: Verify the format of the connection string.

-6374 Wrong database driver context.
Description: You try to EXECUTE, OPEN, FETCH, PUT, FLUSH,
CLOSE or FREE a cursor that was declared or prepared in a different
connect and driver.
Solution: Issue a SET CONNECTION before the statement to select
the same connection and driver as when the cursor was created.

-6375 LOAD cannot get describe information for table columns.
Description: The LOAD instructions needs column description to
allocate the automatic fetch buffers, but the database driver is not
able to describe the table columns used in the INSERT statement.
Solution: If the underlying database client API does not provide result
set column description, the LOAD statement cannot be supported.

-6601 Can not open Database dictionary 'name'. Run database schema
extraction tool.
Description:b>. The schema file does not exist or cannot be found.
Solution: If the schema file exists, verify that the filename is spelled

Genero Business Development Language

1130

correctly, and that the file is in the current directory or the
FGLDBPATH environment variable is set to the correct path. If the
file does not exist, run the database schema extraction tool to create
a schema file.

-6602 Can not open globals file 'name'.
Description: The globals file does not exist or cannot be found.
Solution: Verify that the globals file exists. Check the spelling of the
filename, and verify that the path is set correctly.

-6603 The file 'name' cannot be created for writing.
Description: The compiler failed to create the file shown in the error
message for writing.
Solution: Check for user permissions to make sure that the .42m file
can be created.

-6604 The function 'function-name' can only be used within an INPUT
[ARRAY], DISPLAY ARRAY or CONSTRUCT statement.
Description: The language provides built-in functions that can only
be used within specific interactive statements.
Solution: Review your code and make the necessary
corrections.Check that the function is within the interactive statement
and that appropriate END statements (END INPUT/ARRAY/DISPLAY
ARRAY/CONSTRUCT) have been used.

-6605 The module 'name' does not contain function 'function-name'.
Description. The module shown in the error message does not hold
the function name as expected.
Solution: The specified function needs to be defined in this module.

-6606 No member function 'name' for class 'class-name' defined.
Description. The function name is mispelled or is not a method of the
class for which it is called.
Solution: Review your code and the documentation for the method
you are attempting to use. If the function is an object method, make
sure the referenced object in your code is of the correct class.

-6608 Resource error:%s:parameter expected
Description. This is a generic error message for resource file
problems.

-6609 A grammatical error has been found at '%s' expecting: %s.
Description: A general syntax error message that indicates the
location of the problem code and what code was expected.
Solution: Review your code, particularly for missing END statements
such as END FUNCTION or END INPUT, etc., and make the
necessary corrections.

-6610 The function 'name' has already been called with a different
number of parameters.
Description: Earlier in the program, there is a call to this same
function or event with a different number of parameters in the
parameter list.

Miscellaneous

1131

Solution: Check the correct number of parameters for the specified
function. Then examine all calls to it, and make sure that they are
written correctly.

-6611 Function 'name': unexpected number of returned values.
Description: The function shown returned a different number of
values as expected.
Solution: Check the body of the function for RETURN instructions.

-6612 Redeclaration of function 'name'.
Description: The function shown was defined multiple times.
Solution: Change the name of conflicting functions.

-6613 The library function 'name' is not declared.
Description: The function shown was not declared.
Solution: Change the name of the function.

-6614 The function 'name' may return a different number of values.
Description: The function shown contains multiple RETURN
instructions which may return different number of values.
Solution: Review the RETURN instructions to return the same
number of values.

-6615 The symbol 'name' is unused.
Description: This is a warning indicating that the shown symbol is
defined but never used.
Solution: Useless definition can be removed.

-6616 The symbol 'name' does not represent a defined CONSTANT.
Description: The shown symbol is used as a CONSTANT, but it is not
a constant.
Solution: Review your code and check for this name.

-6617 The symbol 'name' is a VARIABLE.
Description: The symbol shown is a VARIABLE which cannot be
used in the current context.
Solution: Review your code and check for this name.

-6618 The symbol 'name' is a CONSTANT.
Description: The symbol shown is a CONSTANT which cannot be
used in the current context.
Solution: Review your code and check for this name.

-6619 The symbol 'name' is not an INTEGER CONSTANT.
Description: The symbol shown is used as if it was an INTEGER
constant, but it is not.
Solution: Review your code and check for this name.

-6620 The symbol 'name' is not a REPORT.
Description: The symbol shown is used as a REPORT, but it is not
defined as a REPORT.
Solution: Review your code and check for this name.

-6621 The symbol 'name' is not a FUNCTION.

Genero Business Development Language

1132

Description: The symbol shown is used as a FUNCTION, but it is not
defined as FUNCTION.
Solution: Review your code and check for this name.

-6622 The symbol 'name' does not represent a valid variable type.
Description: The symbol shown does not .
Solution: Review your code and check for this name.

-6623 The method 'method-name' can't be called without an object.
Description: The specified method is an object method of its class.
Solution: Review your code. Ensure that the required object of the
class has been instantiated and still exists, and that the method is
called specifying the object variable as the prefix, with the period
character as a separator.

-6624 The method 'method-name' can't be called with an object.
Description: The specified method is a class method and cannot be
called using an object reference. No object has to be created.
Solution: Review your code. Ensure that the method is called using
the class name as the prefix, with the period character as a
separator.

-6625 The statement is not Informix compatible.
Description: The SQL statement is not Informix compatible.
Solution: Change the SQL statement by using Informix SQL syntax.

-6627 The symbol 'name' is not a VARIABLE.
Description: The symbol shown is use as a variable, but is not
defined as a variable.
Solution: Review your code and check for this name.

-6628 The GLOBALS file does not contain a GLOBALS section.
Description: The filename specified in a GLOBALS statement
references a file that does not contain a GLOBALS section.
Solution: Review your code to make sure that the file specified by
the filename is a valid GLOBALS file, containing the required
GLOBALS section.

-6629 The type 'type-name' is too complex to be used within a C-
extension.
Description: The type of the global variable is too complex to be
used in a C extension. This error can occur when the -G option of
fglcomp, to generate the C sources to share global variables with
C extensions, when a global variable is defined with complex data
types without a C equivalent.
Solution: Review the definition of the global variables and use
simple types instead, corresponding to a C data type. The BYTE,
TEXT and STRING types are complex types.

-6630 Memory overflow occurred during p-code generation.
Simplify the module.
Description: A memory overflow occurred during compilation to p-

Miscellaneous

1133

code because the 4gl source module is too large.
Solution: This problem can occur with very large source files. You
must split the module into multiple sources.

-6802 Can not open Database dictionary 'name'. Run schema
extraction tool.
Description: The schema file does not exist or cannot be found.
Solution: If the schema file exists, verify that the filename is spelled
correctly, and that the file is in the current directory or the
FGLDBPATH environment variable is set to the correct path. If the
file does not exist, run the database schema extraction tool to create
a schema file.

-6803 A grammatical error has been found at 'line', expecting token.
Description: This is a generic message for errors.

-6804 'name' form compilation was successful.
Description: This is an information message indicating that the form
was compiled without problem.

-6805 Open Form 'name', Bad Version:%s, expecting:%s.
Description: You have compiled your form with a version of the form
compiler that is not compatible with that used for compiling the other
source code.
Solution: Compile your form file and related source code files using
the same or compatible versions of the compilers.

-6807 The label 'name' could not be used as column-title.
Description: The form file defines an invalid TABLE column title.
Solution: Check for column titles which are not corresponding to
column positions.

-6808 The widget 'name' can not be defined as array.
Description: The form file defines an item which is used as a matrix
column.
Solution: Review your form definition.

-6809 The layout tag 'name' is invalid, expecting: token.
Description: The form compiler detected an invalid layout tag
specification.
Solution: Review your form definition.

-6810 The attribute 'attribute' is invalid for item type 'name'.
Description: The form compiler detected an invalid attribute definition
for this item type.
Solution: Review your form definition and check for invalid attributes.

-6811 Syntax error near '%s', expecting %s.
Description: A general syntax error message that indicates the
location of the problem code and what code was expected.
Solution: Review your code and make the necessary corrections.

-6812 Unterminated char constant.
Description: The form compiler detected an unterminated character

Genero Business Development Language

1134

constant.
Solution: Review your form definition and check for missing quotes or
double-quotes.

-6813 The element 'name' conflicts with group-box 'name'.
Description: You have used the same name for an element and for a
group-box.
Solution: Review your form definition and ensure that the names
used are unique.

-6814 The screen records 'name' must reference one table.
Description: The shown screen record references multiple tables in
your form file.
Solution: Review your form definition and use one unique table for a
given screen record.

-6815 Invalid indentation in between braces.
Description: The LAYOUT section of your form defines an invalid
indentation.
Solution: Review your form definition and check for corresponding
indentations.

-6817 TABLE container defined without a SCREEN RECORD in the
INSTRUCTION section.
Description. The minimum value of the defined attribute must be
lower than the maximum value.
Solution: Review your code and make the necessary corrections.

-6818 Min value must be lower that Max value.
Description. The minimum value of the defined attribute must be
lower than the maximum value.
Solution: Review your code and make the necessary corrections.

-6819 Number of elements in the SCREEN RECORD must match the
number of columns in TABLE container.
Description: The number of elements defined in the screen record is
not equal to the number of columns used for the TABLE container.
Solution: Review your form definition.

-6820 ScrollGrid and/or Group layout tags cannot be nested.
Description: The form definition has nested ScrollGrid and/or Group
layout tags. These tags cannot be nested.
Solution: Review your form definition and make the necessary
corrections.

-6821 HBOX tags cannot be used for ARRAYS.
Description: The form definition is using an HBOX tag for an array,
which is not permitted.
Solution: Review your form definition and make the necessary
corrections.

-6822 Escaped graphical characters are not accepted in GRID
sections.
Description: You try to use Text User Interface graphics in the new

Miscellaneous

1135

GRID container.
Solution: This is not allowed, use GROUPs instead.

-6823 Close tag does not have a matching tag above.
Description: The form definition has a close tag without a prior
matching open tag. Open tags and close tags must match.
Solution: Review your form definition file and make the necessary
corrections.

-6824 The table 'tablename' is empty.
Description: The form layout defines a table layout tag identified by
tablename, but nothing was found directly under this table which
could be a column or a column title.
Solution: Append columns to the table layout region.

-6825 The tag 'tagname' overlaps with table 'tablename'.
Description: In the form layout, tagname overlaps the layout region of
tablename and makes it invalid.
Solution: Move or remove tagname, or redefine the layout region of
tablename.

-6826 Checked value must be different from unchecked value for field
'fieldname'.
Description: The VALUECHECKED and VALUEUNCHECKED
attributes have the same value. This makes no sense because these
attributes define the values corresponding to the checked and
unchecked states of a checkbox.
Solution: Use different values for these attributes.

-6826 Duplicated item key found for field 'fieldname'.
Description: The ITEMS attribute of field fieldname defines item keys
with the same value.
Solution: Check ITEMS attribute and use unique key values. Note
that '' and NULL are equivalent.

-8000 Dom: Node not found.
Description: The node could not be found in the current document.
Solution: Review your code.

-8001 Dom: Invalid Document.
Description: The document passed to the DOM API is not a valid
document.
Solution: Review your code.

-8002 Dom: Invalid usage of NULL as parameter.
Description: NULL cannot be used at this place.
Solution: Review your code.

-8003 Dom: A node is inserted somewhere it doesn't belong.
Description: You try to insert a node under a parent node which does
not allow this type of nodes.
Solution: Check for the possible nodes and review your code.

-8004 Sax: Invalid hierarchy.

Genero Business Development Language

1136

Description: The SAX handler encountered an invalid hierarchy.
Solution: Make sure parent/child relations are respected.

-8005 Deprecated feature: %s
Description: The feature you are using will be removed in a next
version.
Solution: A replacement for the feature is normally available.

-8006 The string resource file 'name' cannot be found.
Description: The string file shown could not be found.
Solution: Check if file exists and if path is valid.

-8007 The string resource file 'name' cannot be read.
Description: The string file shown could not be read.
Solution: Check if file exists and if user has read permissions.

-8008 The string key 'key' has no defined value.
Description: The runtime system could not find a string resource
corresponding to the shown key.
Solution: Check if the key is defined in one of the resource files.

-8009 String resource syntax error near 'token', expecting token.
Description: The string file compiler detected a syntax error.
Solution: Check for invalid syntax in the .str file.

-8010 The included string file 'name' cannot be found (filename:line)
IGNORE LINE.
Description: The string file compiler could not find the file to be
included.
Solution: Check file name and path.

-8011 The included string file 'name' was already included
(filename:line) IGNORE LINE.
Description: The string file compiler detected that the included file
was already included.
Solution: Remove the inclusion.

-8012 Duplicate string key 'key' (filename:line) IGNORE LINE.
Description: The string file compiler detected duplicated string keys.
Solution: Review the .str file and remove duplicated keys.

-8013 The string file 'name' can not be opened for writing.
Description: The string file compiler could not write to the specified
string file.
Solution: Make sure the user has write permissions and file name is
valid.

-8014 The string file 'name' can not be read.
Description: The runtime system could not read from the specified
string file.
Solution: Make sure the user has read permissions.

-8015 Field (name) in ON CHANGE clause not found in form.
Description: The field used in the ON CHANGE clauses was not

Miscellaneous

1137

found in the form specification file.
Solution: Make sure the field name of the ON CHANGE clause
matches a valid form field.

-8016 You cannot have multiple ON CHANGE clauses for the same
field.
Description: It is not possible to specify multiple ON CHANGE
clauses using the same field.
Solution: Remove un-necessary ON CHANGE clauses.

-8017 SFMT: Invalid % index used.
Description: The format string is not valid.
Solution: Check for invalid % positions.

-8018 SFMT: Format error.
Description: The format string is not valid.
Solution: Check for invalid % positions.

-8019 No more than one ON ROW CHANGE clause can appear in an
INPUT ARRAY statement.
Description: Multiple ON ROW CHANGE clause were found in the
same INPUT ARRAY.
Solution: Remove un-necessary ON ROW CHANGE clauses.

-8020 Multiple ON ACTION clauses with the same action name appear
in the statement.
Description: It is not possible to specify multiple ON ACTION clauses
using the same action name.
Solution: Remove un-necessary ON ACTION clauses.

-8021 Multiple ON KEY clauses with the same key name appear in the
statement.
Description: It is not possible to specify multiple ON KEY clauses
using the same key.
Solution: Remove un-necessary ON KEY clauses.

-8022 Dom: Cannot open xml-file.
Description: The file could not be loaded.
Solution: Check file name and user permissions.

-8023 Dom: The attribute 'name' does not belong to node 'node'.
Description: You try to set an attribute to a node which does not have
such attribute.
Solution: This is not allowed, review your code.

-8024 Dom: Character data can not be created here.
Description: You try to create a character node under a node which
does not allow such nodes.
Solution: This is not allowed, review your code.

-8025 Dom: Cannot set attributes of a character node.
Description: You try to set attributes in a character node.
Solution: This is not allowed, review your code.

Genero Business Development Language

1138

-8026 Dom: The attribute 'name' can not be removed: the node 'node'
belongs to the user-interface.
Description: You try to remove a mandatory attribute from an AUI
node.
Solution: You can only change the value of this attribute, try 'none' or
an empty string.

-8027 Sax: can not write.
Description: The SAX handlers could not write to the destination file.
Solution: Make sure the file path is correct and the user has write
permissions.

-8028 Multiple ON IDLE clauses appear in the statement.
Description: Only one ON IDLE clause can be used inside a dialog
block.
Solution: Remove un-necessary ON IDLE clauses.

-8029 Multiple inclusion of the source file 'name'.
Description: The preprocessor detected that the specified file was
included several times by the same source.
Solution: Remove un-necessary file inclusions.

-8030 The full path to the source file 'name' is too long.
Description: The preprocessor does not support very long file names.
Solution: Rename the file.

-8031 The source file 'name' cannot be read.
Description: The preprocessor could not read the file specified.
Solution: Make sure the use has read permissions.

-8032 The source file 'name' cannot be found.
Description: The preprocessor could not find the file specified.
Solution: Make sure the file exists.

-8033 Extra token found after 'name' directive.
Description: The preprocessor detected an unexpected token after
the shown directive.
Solution: Review your code and make the necessary corrections.

-8034 feature: This feature is not implemented.
Description: This preprocessor feature is not supported.
Solution: Review your code and make the necessary corrections.

-8035 The macro 'name' has already been defined.
Description: The preprocessor found a duplicated macro definition.
Solution: Review your code and make the necessary corrections.

-8036 A &else directive found without corresponding &if,&ifdef or
&ifndef directive.
Description: The preprocessor detected an unexpected &else
directive.
Solution: Review your code and make the necessary corrections.

-8037 A &endif directive found without corresponding &if,&ifdef or

Miscellaneous

1139

&ifndef directive.
Description: The preprocessor detected an unexpected &endif
directive.
Solution: Review your code and make the necessary corrections.

-8038 Invalid preprocessor directive &name found.
Description: The preprocessor directive shown in the error message
does not exist.
Solution: Review your code and check valid macros.

-8039 Invalid number of parameters for macro name.
Description: The number of parameters of the preprocessor macro
shown in the error message does not match de number of
parameters in the definition of this macro.
Solution: Review your code and check for the number of parameters.

-8040 Lexical error : Unclosed string.
Description: The compiler detected an unclosed string and cannot
continue.
Solution: Review your code and make the necessary corrections.

-8041 Unterminated condition &if or &else.
Description: The preprocessor found an un-terminated conditional
directive.
Solution: Review the definition of this directive.

-8042 The operator '##' can only be used with identifiers and numbers.
%s is not allowed.
Description: The preprocessor found an invalid usage of the ## string
concatenation operator.
Solution: Review the definition of this macro.

-8043 Could not run FGLPP, command used : command
Description: The compiler could not run the preprocessor command
shown in the error message.
Solution: Make sure the preprocessor command exists.

-8044 Lexical error : Unclosed comment.
Description: The compiler detected an unclosed comment and cannot
continue.
Solution: Review your code and make the necessary corrections.

-8045 This type of statement can only be used within an INPUT, INPUT
ARRAY, DISPLAY ARRAY, CONSTRUCT or MENU statement.
Description: This statement has not been used within a valid
interactive statement, which must be terminated appropriately with
END INPUT, END INPUT ARRAY, END DISPLAY ARRAY, END
CONSTRUCT, or END MENU.
Solution: Review your code and make the necessary corrections.

-8046 This type of statement can only be used within an INPUT, INPUT
ARRAY, DISPLAY ARRAY or CONSTRUCT statement.
Description: This statement has not been used within a valid
interactive statement, which must be terminated appropriately with

Genero Business Development Language

1140

END INPUT, END INPUT ARRAY, END DISPLAY ARRAY, or END
CONSTRUCT.
Solution: Review your code and make the necessary corrections.

-8047 Invalid use of 'dialog'. Must be used within an INPUT, INPUT
ARRAY, DISPLAY ARRAY or CONSTRUCT statement.
Description: The predefined keyword DIALOG has not been used
within a valid interactive statement, which must be terminated
appropriately with END INPUT, END INPUT ARRAY, END
DISPLAY ARRAY, or END CONSTRUCT.
Solution: Review your code and make the necessary corrections.

-8048 An error occurred while preprocessing the file 'name'.
Compilation ends.
Description: The FGL preprocessor could not parse the whole source
file and stopped compilation.
Solution: Review the source code and check for not well formed &
preprocessor macros.

-8049 The program cannot ACCEPT (INPUT|CONSTRUCT|DISPLAY) at
this point because it is not immediately within (INPUT|INPUT
ARRAY|CONSTRUCT|DISPLAY ARRAY) statement.
Description: ACCEPT XXX has not been used within a valid
interactive statement, which must be terminated appropriately with
END INPUT, END PROMPT, or END INPUT ARRAY.
Solution: Review your code and make the necessary corrections.

-8050 Dom: Invalid XML data found in source.
Description: ACCEPT DISPLAY has not been used within a valid
DISPLAY ARRAY statement, which must be terminated with END
DISPLAY ARRAY.
Solution: Review your code and make the necessary corrections.

-8051 Sax: Invalid processing instruction name.
Description: The om.SaxDocumentHandler.processingInstruction()
does not allow invalid processing instruction names such as 'xml'.
Solution: <?xml ..?> is not a processing instruction, it is reserved to
define the XML file text declaration. You must use another name.

-8052 Illegal input sequence. Check LANG.
Description: The compiler encountered an invalid character
sequence. The source file uses a character sequence which does not
match the locale settings (LANG).
Solution: Check source file and locale settings.

-8053 Unknown preprocessor directive 'name'.
Description: The preprocessor directive shown in the error message
is not a known directive.
Solution: Check for typo errors and read the documentation for valid
preprocessor directives.

-8054 Unexpected preprocessor directive.
Description: The preprocessor encountered an unexpected directive.

Miscellaneous

1141

Solution: Remove the directive.

-8055 The resource file 'name' contains unexpected data.
Description: The XML resource file shown in the error message does
not contain the expected nodes. For example, you try to load a
ToolBar with ui.Interface.loadActionDefaults().
Solution: Check if the XML file contains the node types expected for
this type of resource.

-8056 XPath: Unclosed quote at position integer.
Description: The XPath parser found an unexpected quote at the
given position.
Solution: Review the XPath expression.

-8057 XPath: Unexpected character 'character' at position integer.
Description: The XPath parser found an unexpected character at the
given position.
Solution: Review the XPath expression.

-8058 XPath: Unexpected token/string 'name' at position integer.
Description: The XPath parser found an unexpected token or string at
the given position.
Solution: Review the XPath expression.

-8059 SQL statement or language instruction with specific SQL syntax.
Description: The compiler found an SQL statement which is using a
database specific syntax. This statement will probably not run on
other database servers as the current.
Solution: Review the SQL statement an use standard/common syntax
and features.

-8060 Spacer items are not allowed inside a SCREEN sections.
Description: The form contains spacer items in a SCREEN section,
while these are only allowed in LAYOUT.
Solution: Review the form specification file.

-8061 A TABLE row should not be defined on multiple lines.
Description: All columns of a row in a TABLE container must be in a
single line.
Solution: Use a SCROLLGRID if you want to show row cells on
multiple lines.

-8062 DOM(ui): insert of removed node is not allowed.
Description: It is not possible to insert a removed node in the AUI
document.
Solution: Review the code.

-8063 The client connection timed out, exiting program.
Description: The runtime system could not establish the connection
with the front-end after a given time. This can for example happen
during a file transfer, when the front-end takes too much time to
answer to the runtime system.
Solution: Check that your network connection is working properly.

Genero Business Development Language

1142

-8064 File transfer interrupted.
Description: An interruption was caught during a file transfer.
Solution: File could not be transferred, you need to redo the
operation.

-8065 Network error during file transfer.
Description: An socket error was caught during a file transfer.
Solution: Check that your network connection is working properly.

-8066 Could not write destination file for file transfer.
Description: The runtime system could not write the destination file
for a transfer.
Solution: Make sure the file path is correct and check that user has
write permissions.

-8067 Could not read source file for file transfer.
Description: The runtime system could not read the source file to
transfer.
Solution: Make sure the file path is correct and check that user has
read permissions.

-8068 File transfer protocol error (invalid state).
Description: The runtime system encountered a problem during a file
transfer.
Solution: A network failure has probably raised this error.

-8069 File transfer not available.
Description: File transfer feature is not supported.
Solution: Make sure the front-end supports file transfer.

-8070 The localized string file 'name' is corrupted.
Description: The shown string resource file is invalid (probably invalid
multi-byte characters corrupt the file).
Solution: Check for locale settings (LANG), make sure the .str source
uses valid characters and recompile it.

-8071 The item 'name' has been defined more than once.
Description: The form file defines several elements of the same type
with the same name.
Solution: Review the form file and use unique identifiers.

-8072 Statement must terminate with ';'.
Description: An ESQL/C preprocessor directive is not terminated with
a semi-colon.
Solution: Add a semi-colon to the end of the directive.

-8073 Invalid 'include' directive file name.
Description: An include preprocessor directive is using an invalid file
name.
Solution: Check the file name.

-8074 A &elif directive found without corresponding &if,&ifdef or
&ifndef directive.
Description: The preprocessor found an &elif directive with no

Miscellaneous

1143

corresponding &if.
Solution: Add the &if directive before the &elif, or remove the &elif.

-8075 The compiler plugin name could not be loaded.
Description: fglcomp could not load the plugin because it was not
found.
Solution: Make sure the plugin exists and can be loaded.

-8076 The compiler plugin name does not implement the required
interface.
Description: fglcomp could not load the plugin because the interface
is invalid.
Solution: Check if the plugin corresponds to the version of the
compiler.

-8077 The attribute 'name' has been defined more than once.
Description: The variable attribute shown in the error message was
defined multiple times.
Solution: Review the variable definition and remove duplicated
attributes.

-8078 The attribute 'name' is not allowed.
Description: The variable attribute shown in the error message is not
allowed for this type of variable.
Solution: Review the possible variable attributes.

-8079 An error occurred while parsing the XML file.
Description: The runtime system could not parse an XML file, which
is probably not using a valid XML format.
Solution: Check for XML format typos and if possible, validate the
XML file with a DTD.

-8080 Could not open xml file.
Description: The specified XML file cannot be opened.
Solution: Make sure the file exists and has access permissions for
the current user.

-8081 Invalid multibyte character has been encountered.
Description: A compiler found an invalid multi-byte character in the
source and cannot compile the form or module.
Solution: Check locale settings (LANG) and verify if there are no
invalid characters in your sources.

-8082 The item 'name' is used in an invalid layout context.
Description: The form item name is used in a layout part which does
not support this type of form item. This error occurs for example when
you try to define a BUTTON as a TABLE column.
Solution: Review your form definition file and use correct item types.

-8083 NULL pointer exception.
Description: The program is using calling a method thru an object
variable which is NULL.
Solution: You must assign an object reference to the variable before
calling a method.

Genero Business Development Language

1144

-8084 Can't open socket.
Description: The channel object failed to open a client socket.
Solution: Make sure the IP address and port are correct.

-8085 Unsupported mode for 'open socket'.
Description:You try to open a channel with an unsupported mode.
Solution: See channel documentation for supported modes.

-8086 The socket connection timed out.
Description: Socket connect could not be established and timeout
expired.
Solution: Check all network layers and try again.

-8087 File error in BYTE or TEXT readFile or writeFile.
Description: File I/O error occured while reading from or writing to a
file.
Solution: Verify the file name, content and access permissions.

-8088 The dialog attribute 'attribute-name' is not supported.
Description: A dialog instruction was declared with an ATTRIBUTES
clause containing an unsupported option.
Solution: Review the ATTRIBUTES clause and remove unsupported
option.

-8089 Action 'action-name' not found in dialog.
Description: You try to use and action name that does not exist in the
current dialog.
Solution: Verify if name of the action is defined by an ON ACTION
clause.

-8090 Field 'field-name' already used in this DIALOG.
Description: The DIALOG instruction binds the same field-name or
screen-record multiple times.
Solution: Review all sub-dialog blocks and check the field-names /
screen-records.

-8091 Clause 'clause-name' already used.
Description: You have defined the same dialog control block multiple
times. For example, AFTER ROW was defined twice.
Solution: Remove the un-necessary control blocks.

Miscellaneous

1145

General Terms used in this documentation
This documentation uses several terms that must be clarified for a good understanding.
Here is a short description for all these terms:

Product

The Product defines all software components that compose the information
system managing a given domain. Usually, the domains covered by programs
written in BDL are business oriented.

End User

The End User is the person that uses the Product; that person works on
hardware called the Workstation.

Programs

The Programs are the software components that are developed and distributed
by the supplier of the Product. Programs typically implement business rules and
processing, usually called Business Logic. Programs are executed by the
Runtime System on the Application Server machine. These components are
typically p-code modules, forms and additional files.

Developer

The Developer is the person in charge of the conception and implementation of
the Product components.

Application Data

Application Data defines the data manipulated by the Product. It is typically
managed by one or more Database Systems. The Application Data has a volatile
state when loaded in the Runtime System, and it has a static state when stored
in the Database System.

Database

The Database is a logical entity regrouping the Application Data. It is managed
by the Database System.

Database System

The Database System is the software that manages data storage and searching;
it is usually installed on the Database Server machine and is supported by a tier
software vendor. It is the software managing the Data in the Three-Tier C/S
model.

Genero Business Development Language

1146

Development Database

The Development Database is the Database used in the application development
environment.

Production Database

The Production Database is the Database used on production sites.

Front End

The Front End is the software that manages the display of the User Interface on
the Workstation machine. This component is historically called "The Client", in a
thin Client/Server context. It is the software managing the Presentation in the
Three-Tier C/S model.

Runtime System

The Runtime System is the software that manages the execution of the
Programs, where the Business Logic is processed. It is typically implemented by
the Dynamic Virtual Machine (DVM) and historically called "The Runner". It is the
software managing the Processing in the Three-Tier C/S model.

User Interface

The User Interface defines the parts of the Programs that interact with the end
user, including interactive elements like windows, screens, input fields, buttons
and menus. It is displayed on the Workstation. This can typically be implemented
by different kinds of Front Ends, based on ASCII terminals, graphical platforms
(MS Windows, X11) or even through web protocols like HTML over HTTP.

Graphical User Interface

The Graphical User Interface (GUI) mode identifies the user interface displayed
on a remote machine via a Front End.

Text User Interface

The Text User Interface (TUI) mode identifies the user interface displayed on
ASCII terminals (TTY on UNIX or Console Window on MS Windows).

Workstation

The Workstation identifies the hardware used by the End User to interact with the
Product. It can be an ASCII Terminal, a PC, a diskless station or even a cellular
phone, as long as a Front End is available on that hardware.

1147

Genero BDL Tutorial Summary
If you are a developer new to Genero and the Business Development Language, this
tutorial is designed for you, to explain concepts and provide code examples for some of
the common business-related tasks. The only prerequisite knowledge is familiarity with
relational databases and SQL.

The chapters contain a series of programs that range in complexity from simply
displaying a database row to more advanced topics, such as handling arrays and
master/detail relationships. Each chapter has a general discussion of the features and
programming techniques used in the example programs, with annotated code samples.
The examples in later chapters build on concepts and functions explained in earlier
chapters. These programs have the BDL keywords in uppercase letters; this is a
convention only. For ease in reading, the BDL keywords are colored green. The line
numbers in the programs are for reference only; they are not a part of the BDL code.

If you wish to run the example programs or try out the programming techniques
described in this tutorial, See Testing the Example Programs for the requirements.

For an overview of Genero BDL, see Introduction: BDL Concepts.

Genero Business Development Language

1148

Tutorial Chapters

Chapter Description

1 - Overview This chapter provides an overview of the Tutorial and
a description of the database schema and sample
data used for the example programs.

2 - Using BDL This chapter illustrates the structure of a BDL
program and some of the BDL statements that
perform some common tasks - display a text
message to the screen, connect to a database and
retrieve data, define variables, and pass variables
between functions.

3 - Displaying
Data(Windows/Forms)

This chapter illustrates opening a window that
contains a form to display information to the user.
An SQL statement is used to retrieve the data from
a database table. A form specification file is defined
to display the values retrieved. The actions that are
available to the user are defined in the source code,
tied to buttons that display on the form.

4 - Searching the
Database(Query by
Example)

The program in this chapter allows the user to
search a database by entering criteria in a form.
The search criteria is used to build an SQL SELECT
statement to retrieve the desired database rows. A
cursor is defined in the program, to allow the user to
scroll back and forth between the rows of the result
set. Testing the success of the SQL statements
and handling errors is illustrated.

5 - Enhancing the Form Program forms can be displayed in a variety of
ways. This chapter illustrates adding a Toolbar or a
Topmenu (pulldown menu) by modifying the form
specification file, changing the window's
appearance, and disabling/enabling actions. The
example programs in this chapter use some of the
action defaults defined by Genero BDL to
standardize the presentation of common actions to
the user.

6 - Modifying Data
(Insert/Update/Delete)

This program allows the user to insert/update/delete
rows in the customer database table. Embedded
SQL statements (UPDATE/INSERT/DELETE) are
used to update the table, based on the values
stored in the program record. SQL transactions,
concurrency, and consistency are discussed. A
dialog window is displayed to prompt the user to
verify the deletion of a row.

Tutorial

1149

7 - Displaying an Array of
Data

Unlike the previous programs, the example in this
chapter displays multiple customer records at once.
The program defines a program array to hold the
records, and displays the records in a form containing
a table and a screen array. The example program is
then modified to dynamically fill the array as needed.
This program illustrates a library function - the
example is written so it can be used in multiple
programs, maximizing code re-use.

8 - Modifying an Array The program in this chapter allows the user to view
and change a list of records displayed on a form. As
each record in the program array is added, updated,
or deleted, the program logic makes corresponding
changes in the rows of the corresponding database
table.

9 - Creating Reports This program generates a simple report of the data
in the customer database table. The two parts of a
report, the report driver logic and the report
definition are illustrated. A technique to allow a user
to interrupt a long-running report is shown.

10 -Using Localization Localization support and localized strings allow you
to internationalize your application using different
languages, and to customize it for specific industry
markets in your user population. This chapter
illustrates the use of localized strings in your
programs.

11 - Managing Master/Detail
Forms

The form used by the program in this chapter
contains fields from both the orders and items
tables in the custdemo database, illustrating a
master-detail relationship. Since there are multiple
items associated with a single order, the rows from
the items table are displayed in a table on the
form. This chapter focuses on the master/detail
form and the unique features of the corresponding
program.

12 - Changing the User
Interface Dynamically

This chapter focuses on using the classes and
methods in the ui package of built-in classes to
modify the user interface at runtime. Among the
techniques illustrated are hiding or disabling form
items; changing the text, style or image associated
with a form item; loading a ComboBox from a
database table; and adding Toolbars and
Topmenus dynamically.

Genero Business Development Language

1150

Testing the Example Programs
Before you can create the custdemo database and test the example programs, the
following requirements must be met:

• You must have access to one of the supported relational database systems, and
it must be up and running.

• Genero BDL must be installed, and the appropriate environment must be set to
allow you to use it.

• The front-end client specific to your system (Genero Desktop Client, for example)
must be installed.

• A text-editor to view and edit the program files must be available.

The example database is designed to be as generic as possible, so it can be
implemented on various relational database systems.

The source code of example programs are provided in the Tutorial directory of the
HTML documentation.

To set up the environment in order to run the example programs:

1. Using your database system software, create an empty database named
custdemo with logging enabled.

2. Make a copy on your system of the Tutorial directory provided in the
documentation.

3. From your copy of the Tutorial files:

• execute the SQL statements in the file
custdemo.sql to create tables in the custdemo
database.

• Execute the SQL statements in the file
loadcust.sql to insert rows into the tables of the
custdemo database.

4. Configure FGLPROFILE with dbi.* entries to connect to the database. See
Connections for more details.

5. Set the FGLDBPATH environment variable to "..", in order to let compilers
access the custdemo.sch database schema file from example sub-directories.

Tutorial

1151

Tutorial Chapter 1: Overview
Summary:

• Overview
• The BDL Language
• The BDL Tutorial
• The Example Database (custdemo)
• The Sample data

See also: Introduction: BDL Concepts

Overview
Especially well-suited for large-scale, database-intensive business applications, Genero
Business Development Language (BDL) is a reliable, easy-to-learn high-level
programming language that allows application developers to:

• express business logic in a clear yet powerful syntax
• use SQL statements for database access to any of the supported databases
• localize your application to follow a specific language or cultural rules
• define user interfaces in an abstract, platform-independent manner
• define Presentation Styles to customize and standardize the appearance of the

interface
• manipulate the user interface at runtime, as a tree of objects

The separation of business logic, user interface, and deployment provides
maximum flexibility.

• The business logic is written in text files (.4gl source code modules) that interact
with separate form files defining the user interface.

• Actions defined in the business logic are tied to action views (buttons, menu
items, toolbar icons) in the form definition files, and respond to user interaction
statements in the source code.

• Compiling a form definition file translates it into XML, which is used to display the
user interface to various Genero clients running on different platforms.

You can write once, deploy anywhere - one production release supports all major
versions of Unix, Linux, Windows, and Mac OS X.

Compiling, linking, and deploying BDL applications, and additional resources for
developers, are discussed in Introduction: BDL Concepts.

Genero Business Development Language

1152

The BDL Language
The Genero Business Development Language includes:

• Program flow control
• Conditional logic
• SQL statement support
• Connection management
• Error handling
• Localized strings

Dynamic SQL management allows you to execute any SQL statement that is valid for
your database version, in addition to those that are included as part of the language. The
statement can be hard coded or created at runtime, with or without SQL parameters,
returning or not returning a result set.

High-level BDL user interaction statements substitute for the many lines of code
necessary to implement common business tasks, mediating between the user and the
user interface in order to:

• Provide a selection of actions to the user (MENU)
• Allow the user to enter database search criteria on a form (CONSTRUCT)
• Display information from database tables (DISPLAY, DISPLAY ARRAY)
• Allow the user to modify the contents of database tables (INPUT, INPUT

ARRAY)

Multiple dialogs allow a Genero program to handle interactive statements isuch as the
above in parallel.

In addition, built-in classes and methods, and built-in functions are provided to assist you
in your program development.

The BDL Tutorial
The chapters in this tutorial describe the basic functionality of BDL. Annotated code
examples in each chapter guide you through the steps to implement the features
discussed above. In addition, complete source code programs for the examples are
included in the Tutorial directory of the BDL documentation. See the Tutorial Summary
for a description of each chapter.

The example programs interact with an demo database, the custdemo database,
containing store and order information for a fictional retail chain.

If you wish to test the example programs on your own system, see Testing the Programs
for information about the software and sample data that must be installed and
configured.

Tutorial

1153

The Example Database (custdemo)
The following SQL statements create the tables for the custdemo database; these
statements are in the file custdemo.sql in the Tutorial subdirectory of the
documentation.

create table customer(
 store_num integer not null,
 store_name char(20) not null,
 addr char(20),
 addr2 char(20),
 city char(15),
 state char(2),
 zipcode char(5),
 contact_name char(30),
 phone char(18),
 primary key (store_num)
);
create table orders(
 order_num integer not null,
 order_date date not null,
 store_num integer not null,
 fac_code char(3),
 ship_instr char(10),
 promo char(1) not null,
 primary key (order_num)
);
create table factory(
 fac_code char(3) not null,
 fac_name char(15) not null,
 primary key (fac_code)
);
create table stock(
 stock_num integer not null,
 fac_code char(3) not null,
 description char(15) not null,
 reg_price decimal(8,2) not null,
 promo_price decimal(8,2),
 price_updated date,
 unit char(4) not null,
 primary key (stock_num, fac_code)
);
create table items(
 order_num integer not null,
 stock_num integer not null,
 quantity smallint not null,
 price decimal(8,2) not null,
 primary key (order_num, stock_num)
);
create table state(
 state_code char(2) not null,
 state_name char(15) not null,
 primary key (state_code)

Genero Business Development Language

1154

);

The Sample Data
The following sample data for the custdemo database is contained in the file
loadcust.sql in the Tutorial subdirectory of the documentation.

Customer table

101|Bandy's Hardware|110 Main| |Chicago|IL|60068|Bob Bandy|630-221-9055|
102|The FIX-IT Shop|65W Elm Street Sqr.| |Madison|WI|65454| |630-34343434|
103|Hill's Hobby Shop|553 Central Parkway| |Eau Claire|WI|54354|Janice Hilstrom|666-
4564564|
104|Illinois Hardware|123 Main Street| |Peoria|IL|63434|Ramon Aguirra|630-3434334|
105|Tools and Stuff|645W Center Street| |Dubuque|IA|54654|Lavonne Robinson|630-
4533456|
106|TrueTest Hardware|6123 N. Michigan Ave| |Chicago|IL|60104|Michael
Mazukelli|640-3453456|
202|Fourth Ill Hardware|6123 N. Michigan Ave| |Chicago|IL|60104|Michael
Mazukelli|640-3453456|
203|2nd Hobby Shop|553 Central Parkway| |Eau Claire|WI|54354|Janice Hilstrom|666-
4564564|
204|2nd Hardware|123 Main Street| |Peoria|IL|63434|Ramon Aguirra|630-3434334|
205|2nd Stuff|645W Center Street| |Dubuque|IA|54654|Lavonne Robinson|630-4533456|
206|2ndTest Hardware|6123 N. Michigan Ave| |Chicago|IL|60104|Michael Mazukelli|640-
3453456|
302|Third FIX-IT Shop|65W Elm Street Sqr.| |Madison|WI|65454| |630-34343434|
303|Third Hobby Shop|553 Central Parkway| |Eau Claire|WI|54354|Janice Hilstrom|666-
4564564|
304|Third IL Hardware|123 Main Street| |Peoria|IL|63434|Ramon Aguirra|630-3434334|
305|Third and Stuff|645W Center Street| |Dubuque|IA|54654|Lavonne Robinson|630-
4533456|
306|Third Hardware|6123 N. Michigan Ave| |Chicago|IL|60104|Michael Mazukelli|640-
3453456|

Orders table

1|04/04/2003|101|ASC|FEDEX|N|
2|06/06/2006|102|ASC|FEDEX|Y|
3|06/10/2006|103|PHL|FEDEX|Y|
4|06/10/2006|104|ASC|FEDEX|Y|
5|07/06/2006|101|ASC|FEDEX|Y|
6|07/16/2006|105|ASC|FEDEX|Y|
7|08/04/2006|104|PHL|FEDEX|Y|
8|08/16/2006|101|ASC|FEDEX|Y|
9|08/23/2006|101|ASC|FEDEX|Y|
10|09/06/2006|106|PHL|FEDEX|Y|

Tutorial

1155

Items table

1|456|10|5.55|
1|310|5|12.85|
1|744|60|250.95|
2|456|15|5.55|
2|310|2|12.85|
3|323|2|0.95|
4|744|60|250.95|
4|456|15|5.55|
5|456|12|5.55|
5|310|15|12.85|
5|744|6|250.95|
6|456|15|5.55|
6|310|2|12.85|
7|323|10|0.95|
8|456|10|5.55|
8|310|15|12.85|
9|744|20|250.95|
10|323|200|0.95|

Stock table

456|ASC|lightbulbs|5.55|5.0|01/16/2006|ctn|
310|ASC|sink stoppers|12.85|11.57|06/16/2006|grss|
323|PHL|bolts|0.95|0.86|01/16/2006|20/b|
744|ASC|faucets|250.95|225.86|01/16/2006|6/bx|

Factory table

ASC|Assoc. Std. Co.|
PHL|Phelps Lighting|

State table

IL|Illinois|
IA|Iowa|
WI|Wisconsin|

Genero Business Development Language

1156

Tutorial Chapter 2: Using BDL
Summary:

• A simple BDL program
• Writing BDL programs
• Compiling and Executing the program
• Debugging BDL programs
• The "Connect to database" program

o Connecting to a database
o Variable Definition
o Variable Scope
o Passing Variables
o Retrieving data from a database table
o Example: connectdb.4gl

A simple BDL program
This simple example displays a text message to the screen, illustrating the structure of a
BDL program.

Because Genero BDL is a structured programming language as well as a 4th generation
language, executable statements can appear only within logical sections of the source
code called program blocks. This can be the MAIN statement, a FUNCTION statement,
or a REPORT statement. (Reports are discussed in Chapter 9.)

Execution of any program begins with the special, required program block MAIN,
delimited by the keywords MAIN and END MAIN. The source module that contains MAIN
is called the main module.

The FUNCTION statement is a unit of executable code, delimited by FUNCTION and
END FUNCTION, that can be called by name. In a small program, you can write all the
functions used in the program in a single file. As programs grow larger, you will usually
want to group related functions into separate files, or source modules. Functions are
available on a global basis. In other words, you can reference any function in any source
module of your program.

 The following example is a small but complete Genero BDL program, simple.4gl

Program simple.4gl
01 -- simple.4gl
02
03 MAIN
04 CALL sayIt()
05 END MAIN
06
07 FUNCTION sayIt()

Tutorial

1157

08 DISPLAY "Hello, world!"
09 END FUNCTION -- sayIt

Notes:

• Line 01 simply lists the filename as a comment, which will be ignored by BDL.
• Line 03 indicates the start of the MAIN program block.
• Line 04 Within the MAIN program block, the CALL statement is used to invoke

the function named sayIt. Although no arguments are passed to the function
sayIt, the empty parentheses are required. Nothing is returned by the function.

• Line 05 defines the end of the MAIN program block. When all the statements
within the program block have been executed the program will terminate
automatically.

• Line 07 indicates the start of the FUNCTION sayIt.
• Line 08 uses the DISPLAY statement to display a text message, enclosed within

double quotes, to the user. Because the program has not opened a window or
form, the message is displayed on the command line.

• Line 09 indicates the end of the FUNCTION. The comment (-- sayIt) is
optional. After the message is displayed, control in the program is returned to
the MAIN function, to line 05, the line immediately following the statement
invoking the function. As there are no additional statements to be executed
(END MAIN has been reached), the program terminates.

Writing BDL Programs
• Genero BDL source code is written as text in a source module (a file with a

filename extension of .4gl).
• BDL statements do not require a statement terminator.
• You can begin a comment that terminates at the end of the current line with a

pair of minus signs (--) or #. Curly braces { } can be used to delimit comments
that occupy multiple lines.

• All white space in a source code module is treated as a single space, so you are
free to use indentations and white space for clarity.

• Although the language keywords in this example and throughout the tutorial are
in all-capitals, this is just a convention used in these documents. You may write
keywords in lowercase, or any combination of capitals and lowercase you prefer.

• The line numbers shown in all the code examples are not a part of the code; they
simply link the notes for the programs with the correct program lines.

Compiling and Executing the Program
The following tools can be used to compile and execute the simple program from the
command line.

Genero Business Development Language

1158

1. Create the database schema files if they have not already been created:

fgldbsch -db custdemo

2. Compile the single module program:

fglcomp simple.4gl

3. Execute the program:

fglrun simple.42m

Tip:

1. You can compile and run the program without specifying the file extensions:

fglcomp simple
fglrun simple

2. You can do this in one command line, adding the -M option for errors:

fglcomp -M simple && fglrun simple

Debugging a BDL Program
You can use the command line debugger to search for programming errors. The
command line debugger is integrated in the runtime system. You typically start a
program in debug mode by passing the -d option to fglrun.

The following lines illustrate a debug session with the previous program sample:

fglrun -d simple

(fgldb) break main
Breakpoint 1 at 0x00000000: file simple.4gl, line 2.
(fgldb) run
Breakpoint 1, main() at simple.4gl:2
2 CALL sayIt()
(fgldb) step
sayit() at simple.4gl:6
6 DISPLAY "Hello, world!"
(fgldb) next
Hello, world!
7 END FUNCTION -- sayIt
(fgldb) continue
Program existed normally.
(fgldb) quit

Tutorial

1159

For more details, see the Debugger reference.

The "Connect to database" Program
This program illustrates connecting to a database and retrieving data, defining variables,
and passing variables between functions. A row from the customer table of the
custdemo example database is retrieved by an SQL statement and displayed to the
user.

Connecting to the Database

A Database Connection is a session of work, opened by the program to communicate
with a specific database server, in order to execute SQL statements as a specific user.
To connect to a database server, most database engines require a name to identify the
server, a name to identify the database entity, a user name and a password.

Connecting through the Open Database Interface, the database can be specified
directly, and the specification will be used as the data source. Or, you can define the
database connection parameters indirectly in the FGLPROFILE configuration file, and
the database specification will be used as a key to read the connection information from
the file. This technique is flexible; for example, you can develop your application with
the database name "custdemo" and connect to the real database "custdemo1" in a
production environment.

The CONNECT instruction opens a session in multi-session mode, allowing you to open
other connections with subsequent CONNECT instructions (to other databases, for
example). If you have multiple connections open, you can use the SET CONNECTION
instruction to switch to a specific session; this suspends other opened connections. The
DISCONNECT instruction can be used to disconnect from specific sessions, or from all
sessions. The end of a program disconnects all sessions automatically.

The user name and password can be specified in the CONNECT instruction, or defaults
can be defined in FGLPROFILE. Otherwise, the user name and password provided to
your operating system will generally be used for authentication.

 CONNECT TO "custdemo"

Variable Definition

A Variable contains volatile information of a specific BDL data type. Variables must be
declared before you use them in your program, using the DEFINE statement. After
definition, variables have default values based on the data type.

 DEFINE cont_ok INTEGER

You can use the LIKE keyword to declare a variable that has the same data type as a
specified column in a database schema. The column data type defined by the database

Genero Business Development Language

1160

schema must be supported by the language. A SCHEMA statement must define the
database name, identifying the database schema files to be used. The column data
types are read from the schema file during compilation, not at runtime. Make sure that
your schema files correspond exactly to the production database.

 DEFINE store_name LIKE customer.store_name

Genero BDL allows you to define structured variables as records or arrays. Examples of
this are included in later chapters.

Variable Scope

Variables defined in a FUNCTION, REPORT or MAIN program block have local scope
(are known only within the program block). The DEFINE statement declares the
variables and causes memory to be allocated for them. DEFINE must precede any
executable statements within the same program block.

A Variable defined with modular scope can have its value set and can be used in any
function within a single source-code module. The DEFINE statement must appear at the
top of the module, before any program blocks. Memory for module variables is allocated
when the program starts, and is released when the program ends.

A Variable with local scope can have its value set and can be used only within the
function in which it is defined. The DEFINE statement must be the first statement in the
function. Memory for the variable is allocated when the function is called by a program,
and is released when the function ends.

A compile-time error occurs if you declare the same name for two variables that have the
same scope. You can, however, declare the same name for variables that differ in their
scope. For example, you can use the same identifier to reference different local
variables in different program blocks. If a local variable has the same name as a module
variable, then the local variable takes precedence inside the program block in which it is
declared. Elsewhere in the same source-code module, the name references the module
variable.

Passing Variables

Functions can be invoked explicitly using the CALL statement. Variables can be passed
as arguments to a function when it is invoked. The parameters can be variables, literals,
constants, or any valid expressions. Arguments are separated by a comma. If the
function returns any values, the RETURNING clause of the CALL statement assigns the
returned values to variables in the calling routine. The number of input and output
parameters is static.

The function that is invoked must have a RETURN instruction to transfer the control
back to the calling function and pass the return values. The number of returned values
must correspond to the number of variables listed in the RETURNING clause of the
CALL statement invoking this function. If the function returns only one unique value, it
can be used as a scalar function in an expression.

Tutorial

1161

 CALL myfunc()

 CALL newfunc(var1) RETURNING var2, var3

 LET var2 = anotherfunc(var1)

 IF testfunc1(var1) == testfunc2(var1) THEN

Retrieving data from a database

Using Static SQL, an embedded SQL SELECT statement can be used to retrieve data
from a database table into program variables. If the SELECT statement returns only one
row of data, you can write it directly as a procedural instruction, using the INTO clause to
provide the list of variables where the column values will be fetched. If the SELECT
statement returns more than one row of data, you must declare a database cursor to
process the result set.

Example: connectdb.4gl

Note: The line numbers shown in the examples in this tutorial are not part of the BDL
code; they are used here so specific lines can be easily referenced. The BDL keywords
are shown in uppercase, as a convention only. The keywords also appear in green in
this documentation.

Program connectdb.4gl
01 -- connectdb.4gl
02 SCHEMA custdemo
03
04 MAIN
05 DEFINE
06 m_store_name LIKE customer.store_name
07
08 CONNECT TO "custdemo"
09
10 CALL select_name(101)
11 RETURNING m_store_name
12 DISPLAY m_store_name
13
14 DISCONNECT CURRENT
15
16 END MAIN
17
18 FUNCTION select_name(f_store_num)
19 DEFINE
20 f_store_num LIKE customer.store_num,
21 f_store_name LIKE customer.store_name
22
23 SELECT store_name INTO f_store_name
24 FROM customer
25 WHERE store_num = f_store_num

Genero Business Development Language

1162

26
27 RETURN f_store_name
28
29 END FUNCTION -- select_name

Notes:

• Line 02 The SCHEMA statement is used to define the database schema files to
be used as custdemo. The LIKE syntax has been used to define variables in
the module.

• Lines 05 and 06 Using DEFINE the local variable m_store_name is declared as
being LIKE the store_name column; that is, it has the same data type definition
as the column in the customer table of the custdemo database.

• Line 08 A connection in multi-session mode is opened to the custdemo database,
with connection parameters defined in FGLPROFILE. Once connected to the
database server, a current database session is started. Any subsequent SQL
statement is executed in the context of the current database session.

• Line 10 The select_name function is called, passing the literal value 101 as an
argument. The function returns a value to be stored in the local variable
m_store_name.

• Line 12 The value of m_store_name is displayed to the user on the standard
output.

• Line 14 The DISCONNECT instruction disconnects you from the current session.
As there are no additional lines in the program block, the program terminates.

• Line 18 Beginning of the definition of the function select_name. The value 101
that is passed to the function will be stored in the local variable f_store_num.

• Lines 19 thru 21 Defines multiple local variables used in the function, separating
the variables listed with a comma. Notice that a variable must be declared with
the same name and data type as the parameter listed within the parenthesis in
the function statement, to accept the passed value.

• Lines 23 thru 25 Contains the embedded SELECT ... INTO SQL statement to
retrieve the store name for store #101. The store name that is retrieved will be
stored in the f_store_name local variable. Since the store number is unique, the
WHERE clause ensures that only a single row will be returned.

• Line 27 The RETURN statement causes the function to terminate, returning the
value of the local variable f_store_name. The number of variables returned
matches the number declared in the RETURNING clause of the CALL statement
invoking the function. Execution of the program continues with line 12.

Compiling and Executing the Program
1. Create the database schema files if they have not already been created:

fgldbsch -db custdemo

2. Compile the single module program:

Tutorial

1163

fglcomp connectdb.4gl

3. Execute the program:

fglrun connectdb.42m

Genero Business Development Language

1164

Tutorial Chapter 3: Displaying Data
(Windows/Forms)
Summary:

o Application Overview
o The .4gl File- Program Logic

o Opening Windows and Forms
o Interacting with the User

o Defining Actions - the MENU statement
o Displaying Messages and Errors
o Example: dispcust.4gl (MAIN)

o Retrieving and Displaying Data
• Defining a Record
• Using SQL to Retrieve Data
• Displaying a Record
• Example: dispcust.4gl (query_cust function)

o The Form Specification File
o Overview
o SCHEMA section (optional)
o The ACTION DEFAULTS, TOPMENU, and TOOLBAR sections (optional)
o LAYOUT section
o TABLES section (optional)
o ATTRIBUTES section
o INSTRUCTIONS section (optional)
o Example: custform.per

o Compiling the program and form

Application Overview
This example program opens a WINDOW containing a FORM to display information to
the user. The appearance of the form is defined in a separate form definition file. The
program logic to display information on the form is written in the .4gl program module.
The same form file can be used with different applications. This separation of user
interface and business logic provides maximum flexibility.

The options to retrieve data or exit are defined as actions in a MENU statement in the
.4gl file. By default, push buttons are displayed on the form corresponding to the actions
listed in the MENU statement. When the user presses the "query" button, the code listed
for the action statement is executed - in this case, an SQL SELECT statement retrieves
a single row from the customer table and displays it on the form.

A FORM can contain form fields for entering and displaying data; explanatory text
(labels); and other form objects such as Buttons, Topmenus (dropdown menus), toolbar
icons, folders, tables, and CheckBoxes. Form objects that are associated with an action

Tutorial

1165

are called action views. Messages providing information to the user can be displayed on
the form.

 Display on Windows platforms

The .4gl File - Opening Windows and Forms
A program creates a window with the OPEN WINDOW instruction, and destroys a
window with the CLOSE WINDOW instruction. The OPEN WINDOW ... WITH FORM
instruction can be used to automatically open a window containing a specified form:

 OPEN WINDOW custwin WITH FORM "custform"

When you are using a graphical front end, windows are created as independent
resizable windows. By default windows are displayed as normal application windows, but
you can specify a Presentation Style. The standard window styles are defined in the
default Presentation Style file (FGLDIR/lib/default.4st):

If the WITH FORM option is used in opening a window, the CLOSE WINDOW statement
closes both the window and the form.

 CLOSE WINDOW custwin

When the runtime system starts a program, it creates a default window named
SCREEN. This default window can be used as another window, but it can be closed if
not needed.

 CLOSE WINDOW SCREEN

Genero Business Development Language

1166

Note: The appropriate Genero Front-end Client must be running for the program to
display the window and form.

The .4gl File - Interacting with the User

Defining Actions - the MENU statement

Your form can display options to the user using action views - buttons, dropdown
menus (top menus), toolbars, and other items on the window. See Form Specification
Files for a complete list of form items.

An action defined in the .4gl module, which identifies the program routine to be
executed, can be associated with each action view shown on the form.. You define the
program logic to be executed for each action in the .4gl module.

• In this BDL program, the MENU statement supplies the list of actions and the
statements to be executed for each action. The actions are specified with ON
ACTION clauses:

 ON ACTION query
 CALL query_cust()

• The ON ACTION clause defines the action name and the statements to be
executed for the action. The presentation attributes - title, font, comment, etc. -
for the graphical object that serves as the action view are defined in a separate
action defaults file, or in the Action Defaults section of the form file. This allows
you to standardize the appearance of the views for common actions. Action
Defaults are illustrated in chapter 5.

You can also use ON ACTION clauses with some other interactive BDL
statements, such as INPUT, INPUT ARRAY, DIALOG, and DISPLAY
ARRAY.

• When the MENU statement in your program is executed, the action views for the
actions (query, in the example) that are listed in the interactive MENU statement
are enabled. Only the action views for the actions in the specific MENU
statement are enabled, so you must be sure to include a means of exiting the
MENU statement. If there is no action view defined in your form specification file
for a listed action, a simple push button action view is automatically displayed in
the window. Control is turned over to the user, and the program waits until the
user responds by selecting one of enabled action views or exiting the form. Once
an action view is selected, the corresponding program routine (action) is
executed.

.See MENUs for a complete discussion of the statement and all its options.

Tutorial

1167

Displaying Messages and Errors

The MESSAGE and ERROR statements are used to display text containing a message
to the user. The text is displayed in a specific area, depending on the front end
configuration and window style. The MESSAGE text is displayed until it is replaced by
another MESSAGE statement or field comment. You can specify any combination of
variables and strings for the text. BDL generates the message to display by replacing
any variables with their values and concatenating the strings:

 MESSAGE "Customer " || l_custrec.store_num , || " retrieved."

The Localized Strings feature can be used to customize the messages for specific user
communities. This is discussed in Chapter 10.

Example: dispcust.4gl

This portion of the dispcust.4gl program connects to a database, opens a window and
displays a form and a menu.

 Program dispcust.4gl
01 -- dispcust.4gl
02 SCHEMA custdemo
03
04 MAIN
05
06 CONNECT TO "custdemo"
07
08 CLOSE WINDOW SCREEN
09 OPEN WINDOW custwin WITH FORM "custform"
10 MESSAGE "Program retrieves customer 101"
11
12 MENU "Customer"
13 ON ACTION query
14 CALL query_cust()
15 ON ACTION exit
16 EXIT MENU
17 END MENU
18
19 CLOSE WINDOW custwin
20
21 DISCONNECT CURRENT
22
23 END MAIN

Notes:

• Line 02 The SCHEMA statement is required since variables are defined as LIKE
a database table in the function query_cust.

• Line 06 opens the connection to the custdemo database.
• Line 08 closes the default window named SCREEN, which is opened each time

the runtime system starts a program containing interactive statements

Genero Business Development Language

1168

• Line 09 uses the WITH FORM syntax to open a window having the identifier
custwin containing the form identified as custform. The window name must be
unique among all windows defined in the program. Its scope is the entire
program. You can use the window's name to reference any open window in other
modules with other statements. Although there can be multiple open windows,
only one window may be current at a given time.
By default, the window that opens will be a normal application window.
The form identifier is the name of the compiled .42f file (custform.42f). The
form identifier must be unique among form names in the program. Its scope of
reference is the entire program.

• Line 10 displays a string as a MESSAGE to the user. The message will be
displayed until it is replaced by a different string.

• Lines 12 through 17 contain the interactive MENU statement. By default, the
menu options query and exit are displayed as buttons in the window, with
Customer as the menu title. When the MENU statement is executed, the
buttons are enabled, and control is turned over to the user.
If the user selects the query button, the function query_cust will be executed.
Following execution of the function, the action views (buttons in this case) are re-
enabled and the program waits for the user to select an action again.
If the user selects the exit button, the MENU statement is terminated, and the
program continues with line 19.

• Line 19 The window custwin is closed, which automatically closes the form,
removing both objects from the application's memory.

• Line 21 The program disconnects from the database; as there are no more
statements in MAIN, the program terminates.

The .4gl File - Retrieving and Displaying Data

Defining a Record

In addition to defining individual variables, the DEFINE statement can define a record, a
collection of variables each having its own data type and name. You put the variables in
a record so you can treat them as a group. Then, you can access any member of a
record by writing the name of the record, a dot (known as dot notation), and the name of
the member.

 DEFINE custrec RECORD
 store_num LIKE customer.store_num
 store_name LIKE customer.store_name
 END RECORD
 DISPLAY custrec.store_num

Your record can contain variables for the columns of a database table. At its simplest,
you write RECORD LIKE tablename.* to define a record that includes members that
match in data type all the columns in a database table. However, if your database
schema changes often, it's best to list each member individually, so that a change in the
structure of the database table won't break your code. Your record can also contain
members that are not defined in terms of a database table.

Tutorial

1169

Using SQL to Retrieve the Data

A subset of SQL, known as Static SQL, is provided as part of the BDL language and
can be embedded in the program. At runtime, these SQL statements are automatically
prepared and executed by the Runtime System.

SELECT store_num, store_name INTO custrec.* FROM customer

Only a limited number of SQL instructions are supported this way. However, Dynamic
SQL Management allows you to execute any kind of SQL statement.

Displaying a Record: DISPLAY BY NAME

A common technique is to use the names of database columns as the names of both the
members of a program record and the fields in a form. Then, the DISPLAY BY NAME
statement can be used to display the program variables. By default, a screen record
consisting of the form fields associated with each database table column is
automatically created. BDL will match the variable name to the name of the form field,
ignoring any record name prefix:

 DISPLAY BY NAME custrec.*

The program variables serve as the intermediary between the database and the form
that is displayed to the user. Values from a row in the database table are retrieved into
the program variables by an SQL SELECT statement, and are then displayed on the
form. In Chapter 6 you will see how the user can change the values in the form, resulting
in changes to the program variables, which could then be used in SQL statements to
modify the data in the database.

Genero Business Development Language

1170

Example: dispcust.4gl (function query_cust)

This function retrieves a row from the customer table and displays it in a form.

Function query_cust
01 FUNCTION query_cust() -- displays one row
02 DEFINE l_custrec RECORD
03 store_num LIKE customer.store_num,
04 store_name LIKE customer.store_name,
05 addr LIKE customer.addr,
06 addr2 LIKE customer.addr2,
07 city LIKE customer.city,
08 state LIKE customer.state,
09 zipcode LIKE customer.zipcode,
10 contact_name LIKE customer.contact_name,
11 phone LIKE customer.phone
12 END RECORD
13
14 SELECT store_num,
15 store_name,
16 addr,
17 addr2,
18 city,
19 state,
20 zipcode,
21 contact_name,
22 phone
23 INTO l_custrec.*
24 FROM customer
25 WHERE store_num = 101
26
27 DISPLAY BY NAME l_custrec.*
28 MESSAGE "Customer " || l_custrec.store_num ||
29 " displayed."
30 END FUNCTION

Notes:

• Line 01 is the beginning of the function query_cust. No variables are passed to
the function.

• Lines 02 thru 12 DEFINE a record l_custrec as LIKE columns in the customer
database table, listing each variable separately.

• Line 14 thru 25 SELECT .. INTO can be used, since the statement will retrieve
only one row from the database. The SELECT statement lists each column name
to be retrieved, rather than using SELECT *. This allows for the possibility that
additional columns might be added to a table at a future date. Since the SELECT
list retrieves values for all the variables in the program record, in the order listed
in the DEFINE statement, the shorthand INTO l_custrec.* can be used.

• Line 27 The names in the program record l_custrec match the names of screen
fields on the form, so DISPLAY BY NAME can be used. l_custrec.* indicates
that all of the members of the program record are to be displayed.

Tutorial

1171

• Lines 28 and 29 A string for the MESSAGE statement is concatenated together
using the double pipe (||) operator and displayed. The message consists of the
string "Customer ", the value of l_custrec.store_num, and the string "
displayed".

There are no additional statements in the function, so the program returns to the MENU
statement, awaiting the user's next action.

The Form Specification File

Overview

You can specify the layout of a form in a form specification file, which is compiled
separately from your program. The form specification file defines the initial settings for
the form, which can be changed programmatically at runtime.

Form specification files have a file extension of .per . The structure of the form is
independent of the use of the form. For example, one function can use a form to display
a database row, another can let the user enter a new database row, and still another can
let the user enter criteria for selecting database rows.

A Form can contain the following types of items:

• Container - groups other form items. Every form item must be in a container. A
GRID is the basic container, frequently used to display a single row of database
data. TABLE containers can provide record-list presentation in columns and
rows. Other containers, such as a FOLDER or GROUP, provide additional
options for organizing the data that is displayed.

• FormField - defines an area where the user can view and edit data. The data is
stored in variables defined in the .4gl source code file. The EDIT formfield
provides a simple line-edit field. Other form items, such as a COMBOBOX or
RADIOGROUP, provide a user-friendly interface to the data stored in the
underlying formfield. The data type of a formfield can be defined by a database
table column, or it can be FORMONLY - defined specifically in the form.

• Action view - allows the user to trigger actions specified in the .4gl file. An Action
view can be a BUTTON, Toolbar icon, or Topmenu option, for example.

• Other - items that enhance the display or provide read-only information (an
IMAGE or LABEL, for example).

Each form and form item has attributes that control its appearance and behavior. See
Form Specification Files, Form Specification File Attributes, and The Interaction Model
for additional information about form items.

Styles from a Presentation Styles file can be applied to the form and form items.

A basic form specification consists of the following sections:

Genero Business Development Language

1172

The SCHEMA section (optional)

This specifies the database schema file to be used when the form is compiled. It is
required if any form items are defined as data types based on a column of a database
table.

 SCHEMA custdemo

The ACTION DEFAULTS, TOPMENU, and TOOLBAR sections
(optional)

These sections are provided to allow you to define the decoration for action views
(action defaults), as well as to define Topmenus and Toolbars for the form. In this case,
the definitions are specific to the form. If your definitions are in external XML files
instead, they can be applied to any form.

This is discussed in chapter 5.

The LAYOUT section

This section defines the appearance of a form using a layout tree of containers, which
can hold other containers or can define a screen area. Some of the available containers
are GRID, VBOX, HBOX, GROUP, FOLDER, and PAGE.

The simplest layout tree could have only a GRID container defining the dimensions and
the position of the logical elements of a screen:

LAYOUT
 GRID
 grid-area
 END
END

The END keyword is mandatory to define the end of a container block.

The grid-area is delimited by curly braces. Within this area, you can specify the position
of form items or interactive objects such as BUTTON, COMBOBOX, CHECKBOX,
RADIOGROUP, PROGRESSBAR, etc.

Simple form fields, delimited by square brackets ([]), are form items used to display
data and take input. Generally, the number of characters in the space between the
brackets defines the width of the region to be used by the item. For example, in the grid-
area, the following field could be defined:

 [f01]

This form field has an item tag of f01, which will be used to link the field to its definition in
the ATTRIBUTES section of the form specification.

Tutorial

1173

Interactive form items, such as COMBOBOX, CHECKBOX, and RADIOGROUP, can be
used instead of simple form fields to represent the values in the underlying
formfield. Special width calculations are done for some of these form items, such as
COMBOBOX, BUTTONEDIT, and DATEEDIT. If the default width generated by the form
compiler does not fit, the - dash symbol can be used to define the real width of the item.

Text in the grid-area that is outside brackets is display-only text, as in the word
Company below:

 Company [f01]

The TABLES section (optional)

If a database table or database view is referenced elsewhere in the form specification
file, in the ATTRIBUTES section for example, the table or view must be listed in the
TABLES section:

 TABLES
 customer
 END

A default screen record is automatically created for the form fields associated with each
table listed in this section.

The ATTRIBUTES section

The ATTRIBUTES section defines properties of the items used in the form.

Form Fields

For form fields (items that can be used to display data or take input) the definition is:

 <item-type> <item-tag> = <item-name>, <attribute-list> ;

• The item-type defines the kind of graphical object which must be used to display
the form element.

• The item-tag identifies the form item in the display area.
• The item-name provides the name of the form item.
• The optional attribute-list defines the aspect and behavior of the form item.

Examples:

 EDIT f01 = customer.cust_num, REQUIRED;
 COMBOBOX f03 = customer.state;
 CHECKBOX f04 = formonly.propcheck;

 The most commonly used item-type, EDIT, defines a simple line edit box for data input
or display. This example uses an EDIT item-type for the form field f01.The COMBOBOX

Genero Business Development Language

1174

and CHECKBOX item types present the data contained in the form fields f03 and f04 in
a user-friendly way.

The item-name must specify a database column as the name of the display field, or must
be FORMONLY (fields defined as FORMONLY are discussed in chapter 11.) Fields are
associated with database columns only during the compilation of the form specification
file, to identify the data type for the form field based on the database schema. After the
form compiler identifies the data types, the association between fields and database
columns is broken, and the item-name is associated with the screen record.

Form field and form item definitions can optionally include an attribute-list to specify the
appearance and behavior of the item. For example, you can define acceptable input
values, on-screen comments, and default values for fields; you can insure that a value is
entered in the field during the input of a new row (REQUIRED); columns in a table can
be specified as sortable or non-sortable; numbers and dates can be formatted for
display; data entry patterns can be defined and input data can be upshifted or
downshifted.

A form field can be an EDIT, BUTTONEDIT, CHECKBOX, COMBOBOX, DATEEDIT,
IMAGE, LABEL, PROGRESSBAR, RADIOGROUP, or TEXTEDIT.

Other form items

For form items that are not form fields (BUTTON, CANVAS, GROUP, static IMAGE,
static LABEL, SCROLLGRID, and TABLE) the definition is:

 <item-type> <item-tag> : <item-name> , <attribute-list> ;

Examples:

 BUTTON btn1: print, TEXT = "Print Report";
 LABEL lab1 : label1, TEXT ="Customer";

The INSTRUCTIONS section (optional)

The INSTRUCTIONS section is used to define explicit screen records or screen arrays.
This is discussed in Chapter 7.

Example: Form Specification File custform.per

This form specification file is used with the dispcust.4gl program to display program
variables to the user. This form uses a layout with a simple GRID to define the display
area.

custform.per
01 SCHEMA custdemo
02

Tutorial

1175

03 LAYOUT
04 GRID
05 {
06 Store #:[f01] Name:[f02]
07 Address:[f03]
08 [f04]
09 City:[f05]State:[f6]Zip:[f07]
10 Contact:[f08]
11 Phone:[f09]
12
13 }
14 END --grid
15 END -- layout
16
17 TABLES
18 customer
19 END
20
21 ATTRIBUTES
22 EDIT f01 = customer.store_num, REQUIRED;
23 EDIT f02 = customer.store_name, COMMENT="Customer name";
24 EDIT f03 = customer.addr;
25 EDIT f04 = customer.addr2;
26 EDIT f05 = customer.city;
27 EDIT f6 = customer.state;
28 EDIT f07 = customer.zipcode;
29 EDIT f08 = customer.contact_name;
30 EDIT f09 = customer.phone;
31 END

Notes:

• Line 01 lists the database schema file from which the form field data types will be
obtained.

• Lines 03 through 15 delimit the LAYOUT section of the form.
• Lines 04 thru 14 delimit the GRID area, indicating what will be displayed to the

user between the curly brackets on lines 05 and 13.
• Line 17 The TABLES statement is required since the field descriptions reference

the columns of the database table customer.
• Within the grid area, the form fields have item tags linking them to descriptions in

the ATTRIBUTES section, in lines 20 thru 28. As an example, f01 is the display
area for a program variable having the same data type definition as the
store_num column in the customer table of the custdemo database.

• Line 22 All of the item-tags in the form layout section are listed in the
ATTRIBUTES section. For example, the item-tag f01 is listed as having an item-
type of EDIT. This field will be used for display only in this program, but the
same form will be used for input in a later program. An additional attribute,
REQUIRED, indicates that when this form is used for input, an entry in the field
f01 must be made. This prevents the user from trying to add a row with a NULL
store_num to the customer table, which would result in an error message from
the database.

Genero Business Development Language

1176

• Line 23 The second field is defined with the attribute COMMENT, which specifies
text to be displayed when this field gets the focus, or as a tooltip when the mouse
goes over the field.

Compiling the Program and Form
When this form is compiled (translated) using the fglform tool, an XML file is generated
that has a file extension of .42f. The runtime system uses this file along with your
programs to define the Abstract User Interface.

Compile the form:

 fglform custform.per

Compile the single module program:

fglcomp dispcust.4gl

Execute the program:

fglrun dispcust.42m

Tutorial

1177

Tutorial Chapter 4: Query by Example
Summary:

• Implementing Query-by-Example
o CONSTRUCT and STRING variables
o PREPARE Statement

• Allowing the User to Cancel the Query
o Pre-defined Actions (accept/cancel)
o DEFER INTERRUPT and INT_FLAG
o Conditional Logic: IF and CASE
o The Query Program
o Example: custmain.4gl
o Example: custquery..4gl (function query_cust)
o Example: custquery.4gl (function get_cust_cnt)

• Retrieving Data from the Database
o Use of Cursors
o The SQLCA.SQLCODE
o Example: custquery.4gl (function cust_select)
o Example: custquery.4gl (function fetch_cust)
o Example: custquery.4gl (function fetch_rel_cust)
o Example: custquery.4gl (function display_cust)

• Compiling and Linking a Multiple-module Program
• Modifying the Program to Handle Errors

o WHENEVER ERROR statement
o Negative SQLCA.SQLCODE
o Using SQLERRMESSAGE
o Example: custquery.4gl (function cleanup)
o Error if Cursor is Not Open:

This program implements query-by-example, using the CONSTRUCT statement to
allow the user to enter search criteria in a form. The criteria is used to build an SQL
SELECT statement which will retrieve rows from the customer database table. A
SCROLL CURSOR is defined in the program, to allow the user to scroll back and forth
between the rows of the result set. The SQLCA.SQLCODE is used to test the success
of the SQL statements. Handling errors, and allowing the user to cancel the query, is
illustrated.

 Display on Windows platforms

Implementing Query-by-Example
Query-by-Example allows users to enter a value or a range of values for one or several
form fields. Then your program looks up the database rows that satisfy the requirements.
The BDL statement that makes this possible is CONSTRUCT.

Genero Business Development Language

1178

Steps:

1. Define fields linked to database columns in a form specification file.
2. Define a STRING variable in your program to hold the query criteria.
3. Open a window and display the form.
4. Activate the form with the interactive dialog statement CONSTRUCT, for entry of

the query criteria. Control is turned over to the user to enter his criteria.
5. The user enters his criteria in the fields specified in the CONSTRUCT statement.

The CONSTRUCT statement accepts logical operators in any of the fields to
indicate ranges, comparisons, sets, and partial matches. Using the form in this
program, for example, the user can enter a specific value, such as IL in the state
field, to retrieve all the rows from the customer table where the state column =
IL. Or he can enter relational tests, such as > 103, in the Store # field, to retrieve
only those rows where the store_num column is greater than 103.

6. After entering his criteria, the user selects OK, to instruct your program to
continue with the query, or Cancel to terminate the dialog.
In this program, the action views for accept (OK) and cancel are displayed as
buttons on the screen.

7. If the user accepts the dialog, the CONSTRUCT statement creates a Boolean
expression by generating a logical expression for each field with a value and then
applying unions (and relations) to the field statements. This expression is stored
in the character string that you specified in the CONSTRUCT statement.

8. You can then use the Boolean expression to create a STRING variable
containing a complete SELECT statement. You must supply the WHERE
keyword to convert the Boolean expression into a WHERE clause. Make sure
that you supply the spaces required to separate the constructed Boolean
expression from the other parts of the SELECT statement.

9. Execute the statement to retrieve the row(s) from the database table, after
preparing it or declaring a cursor for SELECT statements that might retrieve
more than one row.

Using CONSTRUCT and STRING variables

A basic CONSTRUCT statement has the following format:

 CONSTRUCT <variable-name> ON <column-list> FROM <field-list

This statement temporarily binds the specified form fields to database columns. It allows
you to identify database columns for which the user can enter search criteria. Each field
and CONSTRUCT corresponding column must be the same or compatible data types.
You can use the BY NAME clause when the fields on the screen form have the same
names as the corresponding columns in the ON clause. The user can query only the
screen fields implied in the BY NAME clause.

 CONSTRUCT BY NAME <variable-name> ON <column-list>

The runtime system converts the entered criteria into a Boolean SQL condition that can
appear in the WHERE clause of a SELECT statement. The variable to hold the query
condition can be defined as a STRING data type. Strings are a variable length,
dynamically allocated character string data type, without a size limitation. The STRING

Tutorial

1179

variable can be concatenated, using the double pipe operator (||), with the text required
to form a complete SQL SELECT statement. The LET statement can be used to assign
a value to the variable. For example:

 DEFINE where_clause, sqltext STRING
 CONSTRUCT BY NAME where_clause ON customer.*
 LET sql_text = "SELECT COUNT(*) FROM customer WHERE " ||
where_clause

 Display on Windows Platform

In this example the user has entered the criteria > 101 in the store_num field. The
where_clause would be generated as

 "store_num > 101"

and the complete sql_text would be

 "SELECT COUNT(*) FROM customer WHERE store_num > 101"

Preparing the SQL Statement

The STRING created in the example is not valid for execution. The PREPARE
instruction sends the text of the string to the database server for parsing, validation, and
to generate the execution plan. The scope of a prepared SQL statement is the module
in which it is declared.

 PREPARE cust_cnt_stmt FROM sql_text

A prepared SQL statement can be executed with the EXECUTE instruction.

 EXECUTE cust_cnt_stmt INTO cust_cnt

Since the SQL statement will only return one row (containing the count) the INTO syntax
of the EXECUTE instruction can be used to store the count in the local variable

Genero Business Development Language

1180

cust_cnt. (The function cust_select illustrates the use of database cursors with SQL
SELECT statements.)

When a prepared statement is no longer needed, the FREE instruction will release the
resources associated with the statement.

 FREE cust_cnt_stmt

Allowing the User to Cancel the Query Operation

Predefined Actions (accept/cancel)

The language pre-defines some actions and associated names for common operations,
such as accept or cancel, used during interactive dialogs with the user such as
CONSTRUCT. You do not have to define these actions in the interactive instruction
block, the runtime system interprets predefined actions. For example, when the accept
action is caught, the dialog is validated.

You can define action views (such as buttons, toolbar icons, menu items) in your form
using these pre-defined names; the corresponding action will automatically be attached
to the view. If you do not define any action views for the actions, default buttons (such
as OK/Cancel) for these actions will be displayed on the form as appropriate when
interactive dialog statements are executed.

When the CONSTRUCT statement executes, buttons representing accept and cancel
actions will be displayed by default, allowing the user to validate or cancel the interactive
dialog statement. If the user selects Cancel, the INT_FLAG is automatically set to TRUE.
Once INT_FLAG is set to TRUE, your program must re-set it to FALSE to detect a new
cancellation. You typically set INT_FLAG to FALSE before you start a dialog instruction,
and you test it just after (or in the AFTER CONSTRUCT / AFTER INPUT block) to detect
if the dialog was canceled:

 LET INT_FLAG = FALSE
 CONSTRUCT BY NAME where_part
 ...
 END CONSTRUCT
 IF INT_FLAG = TRUE THEN
 ...
 END IF

DEFER INTERRUPT and the INT_FLAG

The statement DEFER INTERRUPT in your MAIN program block will prevent your
program from terminating abruptly if a SIGINT signal is received. When using a GUI
interface, the user can generate an interrupt signal if you have an action view named
'interrupt' (the predefined interrupt action). If an interrupt event is received, TRUE is
assigned to the built-in global integer variable INT_FLAG.

Tutorial

1181

It is up to the programmer to manage the interruption event (stop or continue with the
program), by testing the value of INT_FLAG variable.

Interruption handling is discussed in the report example, in chapter 9.

Conditional Logic

Once the CONSTRUCT statement is completed, you must test whether the INT_FLAG
was set to TRUE (whether the user cancelled the dialog). Genero BDL provides the
conditional logic statements IF or CASE to test a set of conditions.

The IF statement

 IF <condition> THEN

 ELSE

 END IF

IF statements can be nested. The ELSE clause may be omitted.

If condition is TRUE, the runtime system executes the block of statements following
THEN, until it reaches either the ELSE keyword or the END IF keywords. Your program
resumes execution after END IF. If condition is FALSE, the runtime system executes
the block of statements between ELSE and END IF.

 IF (INT_FLAG = TRUE) THEN
 LET INT_FLAG = FALSE
 LET cont_ok = FALSE
 ELSE
 LET cont_ok = TRUE
 END IF

The CASE statement

 The CASE statement specifies statement blocks to be executed conditionally,
depending on the value of an expression. Unlike IF statements, CASE does not restrict
the logical flow of control to only two branches. Particularly if you have a series of
nested IF statements, the CASE statement may be more readable. In the previous
example, the CASE statement could have been substituted for the IF statement:

 CASE
 WHEN (INT_FLAG = TRUE)
 LET INT_FLAG = FALSE
 LET cont_ok = FALSE
 OTHERWISE
 LET cont_ok = TRUE
 END CASE

Genero Business Development Language

1182

Usually, there would be several conditions to check. The following statement uses an
alternative syntax, since all the conditions check the value of var1:

 CASE var1
 WHEN 100
 CALL routine_100()
 WHEN 200
 CALL routine_200()
 OTHERWISE
 CALL error_routine()
 END CASE

The first WHEN condition in the CASE statement will be evaluated. If the condition is
true(var1=100), the statement block is executed and the CASE statement is exited. If the
condition is not true, the next WHEN condition will be evaluated, and so on through
subsequent WHEN statements until a condition is found to be true, or OTHERWISE or END
CASE is encountered. The OTHERWISE clause of the CASE statement can be used as a
catch-all for unanticipated cases.

See Flow Control for other examples of IF and CASE syntax and the additional
conditional statement WHILE.

The Query program
The Query program consists of two modules. The custmain.4gl module must be linked
with the custquery.4gl module in order for the program to be run. The line numbers
shown in the code are for reference only, and are not a part of the code.

Example: Module custmain.4gl

This module contains the MAIN program block for the query program, and the MENU
that drives the query actions.

Module custmain.4gl
01 MAIN
02
03 DEFER INTERRUPT
04
05 CONNECT TO "custdemo"
06 CLOSE WINDOW SCREEN
07 OPEN WINDOW w1 WITH FORM "custform"
08
09 MENU "Customer"
10 ON ACTION query
11 CALL query_cust()
12 ON ACTION next

Tutorial

1183

13 CALL fetch_rel_cust(1)
14 ON ACTION previous
15 CALL fetch_rel_cust(-1)
16 ON ACTION exit
17 EXIT MENU
18 END MENU
19
20 CLOSE WINDOW w1
21
22 DISCONNECT CURRENT
23
24 END MAIN

Notes:

• Line 01 Beginning of the MAIN block. The SCHEMA statement is not needed
since this module does not define any program variables in terms of a database
table.

• Line 03 uses the DEFER INTERRUPT statement to prevent the user from
terminating the program prematurely by pressing the INTERRUPT key.

• Line 07 opens a window with the same form that was used in the Chapter 3
example.

• Lines 09 thru 18 contains the MENU for the query program. Four actions -
query, next, previous, and quit - will be displayed as buttons on the form. The
pre-defined actions accept (OK button) and cancel will automatically be displayed
as buttons when the CONSTRUCT statement is executed.

• Line 11 calls the function query_cust in the cust_query.4gl module.
• Line 13 calls the function fetch_rel_cust in the cust.query.4gl module. The

literal value 1 is passed to the function, indicating that the cursor should move
forward to the next row.

• Line 15 calls the function fetch_rel_cust also, but passes the literal value -1,
indicating that the cursor should move backwards to retrieve the previous row in
the results set.

• Line 17 exits the MENU statement.
• Line 20 closes the window that was opened.
• Line 22 disconnects from the database.

There are no further statements so the Query program terminates.

Example: Module custquery.4gl

This module of the Query program contains the logic for querying the database and
displaying the data retrieved. The function query_cust is called by the "query" option of
the MENU in custmain.4gl.

Module custquery.4gl (and function query_cust)
01 -- custquery.4gl
02

Genero Business Development Language

1184

03 SCHEMA custdemo
04
05 DEFINE mr_custrec RECORD
06 store_num LIKE customer.store_num,
07 store_name LIKE customer.store_name,
08 addr LIKE customer.addr,
09 addr2 LIKE customer.addr2,
10 city LIKE customer.city,
11 state LIKE customer.state,
12 zipcode LIKE customer.zipcode,
13 contact_name LIKE customer.contact_name,
14 phone LIKE customer.phone
15 END RECORD
16
17 FUNCTION query_cust()
18 DEFINE cont_ok SMALLINT,
19 cust_cnt SMALLINT,
20 where_clause STRING
21 MESSAGE "Enter search criteria"
22 LET cont_ok = FALSE
23
24 LET INT_FLAG = FALSE
25 CONSTRUCT BY NAME where_clause
26 ON customer.store_num,
27 customer.store_name,
28 customer.city,
29 customer.state,
30 customer.zipcode,
31 customer.contact_name,
32 customer.phone
33
34 IF (INT_FLAG = TRUE) THEN
35 LET INT_FLAG = FALSE
36 CLEAR FORM
37 LET cont_ok = FALSE
38 MESSAGE "Canceled by user."
39 ELSE
40 CALL get_cust_cnt(where_clause)
41 RETURNING cust_cnt
42 IF (cust_cnt > 0) THEN
43 MESSAGE cust_cnt USING "<<<<",
44 " rows found."
45 CALL cust_select(where_clause)
46 RETURNING cont_ok
47 ELSE
48 MESSAGE "No rows found."
49 LET cont_ok = FALSE
50 END IF
51 END IF
52
53 IF (cont_ok = TRUE) THEN
54 CALL display_cust()
55 END IF
56
57 END FUNCTION

Tutorial

1185

Notes:

• Line 03 is required to identify the database schema file to be used when
compiling the module.

• Lines 05 thru 15 define a RECORD, mr_custrec, that is modular in scope,
since it is at the top of the module and outside any function. The values of this
record will be available to, and can be set by, any function in this module.

• Line 17: Function query_cust. This is the beginning of the function query_cust.
• Line 18 defines cont_ok, a local variable of data type SMALLINT, to be used as

a flag to indicate whether the query should be continued. The keywords TRUE
and FALSE are used to set the value of the variable (0=FALSE, <>0=TRUE).

• Line 19 defines another local SMALLINT variable, cust_cnt, to hold the number
of rows returned by the SELECT statement.

• Line 20 defines where_clause as a local STRING variable to hold the boolean
condition resulting from the CONSTRUCT statement.

• Line 21 displays a message to the user that will remain until it is replaced by
another MESSAGE statement.

• Line 22 sets cont_ok to FALSE, prior to executing the statements of the function.
• Line 24 sets INT_FLAG to FALSE. It is common to set this global flag to FALSE

immediately prior to the execution of an interactive dialog, so your program can
test whether the user attempted to cancel the dialog.

• Lines 25 thru 32: The CONSTRUCT statement lists the database columns for
which the user may enter search criteria. The program does not permit the user
to enter search criteria for the address columns. The BY NAME syntax matches
the database columns to form fields having the same name.

• Line 34 is the beginning of an IF statement testing the value of INT_FLAG. This
test appears immediately after the CONSTRUCT statement, to test whether the
user terminated the CONSTRUCT statement (INT_FLAG would be set by the
runtime system to TRUE).

• Lines 35 thru 38 are executed only if the value of INT_FLAG is TRUE. The
INT_FLAG is immediately re-set to FALSE, since it is a global variable which
other parts of your program will test. The form is cleared of any criteria that the
user has entered, the cont_ok flag is set to FALSE, and a message is displayed
to the user. The program will continue with the statements after the END IF on
line 49.

• Lines 40 thru 50: contain the logic to be executed if INT_FLAG was not set to
TRUE (the user did not cancel the query).

o In lines 40 and 41, the get_cust_cnt function is called, to retrieve the
number of rows that would be returned by the query criteria. The
where_clause variable is passed to the function, and the value returned
will be stored in the cust_cnt variable.

o Lines 42 is the beginning of a nested IF statement, testing the value of
cust_cnt.

o Lines 43 thru 46 are executed if the value of cust_cnt is greater than
zero; a message with the number of rows returned is displayed to the
user, and the function cust_select is called. The where_clause is
passed to this function, and the returned value is stored in cont_ok.
Execution continues with the statement after the END IF on line 51.

Genero Business Development Language

1186

o Lines 48 and 49 are executed if the value is zero (no rows found); a
message is displayed to the user, and cont_ok is set to FALSE.
Execution continues after the END IF on line 51.

• Line 49 is the end of the IF statement beginning on line 33.
• Lines 53 thru 55 test the value of cont_ok, which will have been set during the

preceding IF statements and in the function cust_select. If cont_ok is TRUE,
the function display_cust is called.

• Line 57 is the end of the query_cust function.

Example: custquery.4gl (Function get_cust_cnt)

This function is called by the function query_cust to return the count of rows that would
be retrieved by the SELECT statement. The criteria previously entered by the user and
stored in the variable where_clause is used.

 Function get_cust_cnt
01 FUNCTION get_cust_cnt(p_where_clause)
02 DEFINE p_where_clause STRING,
03 sql_text STRING,
04 cust_cnt SMALLINT
05
06 LET sql_text =
07 "SELECT COUNT(*) FROM customer" ||
08 " WHERE " || p_where_clause
09
10 PREPARE cust_cnt_stmt FROM sql_text
11 EXECUTE cust_cnt_stmt INTO cust_cnt
12 FREE cust_cnt_stmt
13
14 RETURN cust_cnt
15
16 END FUNCTION

Notes:

• Line 01 The function accepts as a parameter the value of where_clause, stored
in the local variable p_where_clause defined on Line 60.

• Line 02 defines a local STRING variable, sql_txt, to hold the complete text of
the SQL SELECT statement.

• Line 04 defines a local variable cust_cnt to hold the count returned by the
SELECT statement.

• Lines 06 thru 08 create the string containing the complete SQL SELECT
statement, concatenating p_where_clause at the end using the || operator.
Notice that the word WHERE must be provided in the string.

• Line 10 uses the PREPARE statement to convert the STRING into an executable
SQL statement, parsing the statement and storing it in memory. The prepared
statement is modular in scope. The prepared statement has the identifier
cust_cnt_stmt, which does not have to be defined.

Tutorial

1187

• Line 11 executes the SQL SELECT statement contained in cust_cnt_stmt, using
the EXECUTE ... INTO syntax to store the value returned by the statement in the
variable cust_cnt. This syntax can be used if the SQL statement returns a
single row of values.

• Line 12 The FREE statement releases the memory associated with the
PREPAREd statement, since this statement is no longer needed.

• Line 14 returns the value of cust_cnt to the calling function, query_cust.
• Line 16 is the end of the get_cust_cnt function.

Retrieving data from the Database

Using Cursors

When an SQL SELECT statement in your application will retrieve more than one row, a
cursor must be used to pass the selected data to the program one row at a time. The
cursor is a data structure that represents a specific location within the active set of rows
that the SELECT statement retrieved.

• Sequential cursor - reads through the active set only once each time it is opened,
by moving the cursor forward one row each time a row is requested.

• Scroll cursor - fetches the rows of the active set in any sequence. To implement
a scroll cursor, the database server creates a temporary table to hold the active
set.

The scope of a cursor is the module in which it is declared. Cursor names must be
unique within a module.

The general sequence of program statements when using a SELECT cursor for Query-
by-Example is:

• DECLARE - the program declares a cursor for the STRING that contains the
SQL SELECT statement. This allocates storage to hold the cursor. Note that the
string does not have to be prepared using the PREPARE statement.

• OPEN - the program opens the cursor. The active set associated with the cursor
is identified, and the cursor is positioned before the first row of the set.

• FETCH - the program fetches a row of data into host variables and processes it.
The syntax FETCH NEXT <cursor-identifier> INTO <variable-names> can
be used with a SCROLL CURSOR to fetch the next row relative to the current
position of the cursor in the SQL result set. Using FETCH PREVIOUS ... moves
the cursor back one row in the SQL result set.

• CLOSE - the program closes the cursor after the last row desired is fetched.
This releases the active result set associated with the cursor. The cursor can be
re-opened.

• FREE - when the cursor is no longer needed, the program frees the cursor to
release the storage area holding the cursor. Once a cursor has been freed, it
must be declared again before it can be re-opened.

Genero Business Development Language

1188

The cursor program statements must appear physically within the module in the order
listed.

The SQLCA.SQLCODE

The "SQLCA" name stands for "SQL Communication Area". The SQLCA variable is a
predefined record containing information on the execution of an SQL statement. The
SQLCA record is filled after any SQL statement execution. The SQLCODE member of
this record contains the SQL execution code:

Execution
Code

Description

0 SQL statement executed
successfully.

100 No rows were found.
<0 An SQL error occurred.

The NOTFOUND constant is a predefined integer value that evaluates to 100. This
constant is typically used to test the execution status of an SQL statement returning a
result set, to check if rows have been found.

Example custquery.4gl (function cust_select)

This function is called by the function query_cust, if the row count returned by the
function get_cust_cnt indicates that the criteria previously entered by the user and
stored in the variable where_clause would produce an SQL SELECT result set.

 Function cust_select
01 FUNCTION cust_select(p_where_clause)
02 DEFINE p_where_clause STRING,
03 sql_text STRING,
04 fetch_ok SMALLINT
05
06 LET sql_text = "SELECT store_num, " ||
07 " store_name, addr, addr2, city, " ||
08 " state, zipcode, contact_name, phone " ||
09 " FROM customer WHERE " || p_where_clause ||
10 " ORDER BY store_num"
11
12 DECLARE cust_curs SCROLL CURSOR FROM sql_text
13 OPEN cust_curs
14 CALL fetch_cust(1) -- fetch the first row
15 RETURNING fetch_ok
16 IF NOT (fetch_ok) THEN
17 MESSAGE "no rows in table."

Tutorial

1189

18 END IF
19
20 RETURN fetch_ok
21
22 END FUNCTION

Notes:

• Line 01 The function cust_select accepts as a parameter the where_clause,
storing it in the local variable p_where_clause.

• Lines 06 thru 10 concatenate the entire text of the SQL statement into the local
STRING variable sql_txt.

• Line 12 declares a SCROLL CURSOR with the identifier cust_curs, for the
STRING variable sql_text.

• Line 13 opens the cursor, positioning before the first row of the result set. Note
that these statements are physically in the correct order within the module.

• Lines 14 and 15 call the function fetch_cust, passing as a parameter the literal
value 1, and returning a value stored in the local variable fetch_ok. Passing the
value 1 to fetch_cust will result in the NEXT row of the result set being fetched
(see the logic in the function fetch_cust), which is this case would be the first
row.

• Line 16 Since fetch_ok is defined as a SMALLINT, it can be used as a flag
containing the values TRUE or FALSE. The value returned from the function
fetch_cust indicates whether the fetch was successful.

• Line 17 displays a message to the user if the FETCH was not successful. Since
this is the fetch of the first row in the result set, another user must have deleted
the rows after the program selected the count.

• Line 20 returns the value of fetch_ok to the calling function. This determines
whether the function display_cust is called.

• Line 22 is the end of the function cust_select.

Tips:

1. Lines 15 and 16 could be combined to shorten the code:

 IF NOT fetch_cust(1) THEN ...

This syntax would call the function fetch_cust implicitly, passing the
parameter 1; the function returns TRUE or FALSE, which would be tested
by the IF statement.

Example: custquery.4gl (function fetch_cust)

This function is designed so that it can be re-used each time a row is to be fetched from
the customer database table; a variable is passed to indicate whether the cursor should
move forward one row or backward one row.

Genero Business Development Language

1190

 Function fetch_cust
01 FUNCTION fetch_cust(p_fetch_flag)
02 DEFINE p_fetch_flag SMALLINT,
03 fetch_ok SMALLINT
04
05 LET fetch_ok = FALSE
06 IF (p_fetch_flag = 1) THEN
07 FETCH NEXT cust_curs
08 INTO mr_custrec.*
09 ELSE
10 FETCH PREVIOUS cust_curs
11 INTO mr_custrec.*
12 END IF
13
14 IF (SQLCA.SQLCODE = NOTFOUND) THEN
15 LET fetch_ok = FALSE
16 ELSE
17 LET fetch_ok = TRUE
18 END IF
19
20 RETURN fetch_ok
21
22 END FUNCTION

Notes:

• Line 01 The function fetch_cust accepts a parameter and stores it in the local
variable p_fetch_flag.

• Line 03 defines a variable, fetch_ok, to serve as an indicator whether the
FETCH was successful.

• Lines 06 thru 12 tests the value of p_fetch_flag, moving the cursor forward with
FETCH NEXT if the value is 1, and backward with FETCH PREVIOUS if the value is -
1. The values of the row in the customer database table are fetched into the
program variables of the mr_custrec record. The INTO mr_custrec.* syntax
requires that the program variables in the record mr_custrec are in the same
order as the columns are listed in the SELECT statement.

• Lines 14 thru 15 tests SQLCA.SQLCODE and sets the value of fetch_ok to
FALSE if the fetch did not return a row. If the FETCH was successful, fetch_ok
is set to TRUE.

• Line 20 returns the value of fetch_ok to the calling function.
• Line 22 is the end of the function fetch_cust.

Example: querycust.4gl (function fetch_rel_cust)

This function is called by the MENU options "next" and "previous" in the custmain.4gl
module.

Function fetch_rel_cust
01 FUNCTION fetch_rel_cust(p_fetch_flag)

Tutorial

1191

02 DEFINE p_fetch_flag SMALLINT,
03 fetch_ok SMALLINT
04
05 MESSAGE " "
06 CALL fetch_cust(p_fetch_flag)
07 RETURNING fetch_ok
08
09 IF (fetch_ok) THEN
10 CALL display_cust()
11 ELSE
12 IF (p_fetch_flag = 1) THEN
13 MESSAGE "End of list"
14 ELSE
15 MESSAGE "Beginning of list"
16 END IF
17 END IF
18
19 END FUNCTION

Notes:

• Line 01 The parameter passed to it, p_fetch_flag will be 1 or -1, depending on
the direction in which the SCROLL CURSOR is to move.

• Line 05 re-sets the MESSAGE display to blanks.
• Line 06 calls the function fetch_cust, passing it the value of p_fetch_flag. The

function fetch_cust uses the SCROLL CURSOR to retrieve the next row in the
direction indicated, returning FALSE if there was no row found.

• Lines 09 and 10 If a row was found (the fetch_cust function returned TRUE) the
display_cust function is called to display the row in the form.

• Line 13 If no rows were found and the direction is forward, indicated by
p_fetch_flag of 1, the cursor is past the end of the result set.

• Line 15 If no rows were found and the direction is backward, indicated by
p_fetch_flag of -1, the cursor is prior to the beginning of the result set.

• Line 19 is the end of the function fetch_rel_cust.

Example: custquery.4gl (function display_cust)

This function displays the contents of the mr_custrec record in the form. It is called by
the functions query_cust and fetch_rel_cust.

Function display_cust
01 FUNCTION display_cust()
02 DISPLAY BY NAME mr_custrec.*
03 END FUNCTION

Notes:

Genero Business Development Language

1192

• Line 02 uses the DISPLAY BY NAME syntax to display the contents of the
program record mr_custrec to the form fields having the same name.

Compiling and Linking the Program
The two example modules must be compiled and then linked into a single program.

From the command line:

 fglcomp custmain.4gl
 fglcomp custquery.4gl

This produces the object modules custmain.42m and custquery.42m, which must be
linked to produce the program cust.42r:

 fgllink -o cust.42r custmain.42m custquery.42m

Or, compile both modules and link at the same time:

 fgl2p -o cust.42r custmain.4gl custquery.4gl

Modifying the Program to Handle Errors

The WHENEVER ERROR statement

Since program statements that access the database may be expected to fail
occasionally (the row is locked, etc.) the WHENEVER ERROR statement can be used to
handle this type of error.

By default, when a runtime error occurs the program will stop. To prevent this
happening when SQL statements that access the database fail, surround the SQL
statement with WHENEVER ERROR statements, as in the following example based on
the fetch_cust function in the custquery.4gl program module:

 01 IF (p_fetch_flag = 1) THEN
 02 WHENEVER ERROR CONTINUE
 03 FETCH NEXT cust_curs
 04 INTO mr_custrec.*
 05 WHENEVER ERROR STOP
 06 ...

WHENEVER ERROR statements are modular in scope, and generate additional code
for exception handling when the module is compiled. This exception handling is valid
until the end of the module or until a new WHENEVER ERROR instruction is
encountered by the compiler.

Tutorial

1193

When the example code is compiled, WHENEVER ERROR CONTINUE will generate
code to prevent the program from stopping if the FETCH statement fails. Immediately
after the FETCH statement, the WHENEVER ERROR STOP instruction will generate the
code to re-set the default behavior for the rest of the module.

You can write your own error function to handle SQL errors, and use the WHENEVER
ERROR CALL <function-name> syntax to activate it. Run-time errors may be logged to
an error log.

Negative SQLCA.SQLCODE

The database server returns an execution code whenever an SQL statement is
executed, available in SQLCA.SQLCODE. If the code is a negative number, an SQL
error has occurred. Just as we checked the SQLCA.SQLCODE for the NOTFOUND
condition, we can also check the code for database errors (negative SQLCODE). The
SQLCA.SQLCODE should be checked immediately after each SQL statement that may
fail, including DECLARE, OPEN, FETCH, etc. For simplicity of the examples, the error
handling in these programs is minimal.

SQLERRMESSAGE

If an SQL error occurs, the SQLERRMESSAGE operator returns the error message
associated with the error code. This is a character string that can be displayed to the
user with the ERROR instruction.

 ERROR SQLERRMESSAGE

Changes to function fetch_cust (custquery.4gl)
01 FUNCTION fetch_cust (p_fetch_flag)
02 DEFINE p_fetch_flag SMALLINT,
03 fetch_ok SMALLINT
04
05 LET fetch_ok = FALSE
06 IF (p_fetch_flag = 1) THEN
07 WHENEVER ERROR CONTINUE
08 FETCH NEXT cust_curs
09 INTO mr_custrec.*
10 WHENEVER ERROR STOP
11 ELSE
12 WHENEVER ERROR CONTINUE
13 FETCH PREVIOUS cust_curs
14 INTO mr_custrec.*
15 WHENEVER ERROR STOP
16 END IF
17
18 CASE
19 WHEN (SQLCA.SQLCODE = 0)
20 LET fetch_ok = TRUE
21 WHEN (SQLCA.SQLCODE = NOTFOUND)
22 LET fetch_ok = FALSE
23 WHEN (SQLCA.SQLCODE < 0)
24 LET fetch_ok = FALSE
25 ERROR SQLERRMESSAGE

Genero Business Development Language

1194

26 END CASE
27
28 RETURN fetch_ok
29
30 END FUNCTION

Notes:

• Lines 08, 09, 13, 14 The SQL statements are surrounded by WHENEVER
ERROR statements. If an error occurs during the SQL statements, the program
will continue. The error handling is re-set to the default (STOP) immediately after
each SQL statement so that failures of other program statements will not be
ignored.

• Lines 18 to 26 Immediately after the WHENEVER ERROR STOP statement, the
SQLCA.SQLCODE is checked, to see whether the SQL statement succeeded. A
CASE statement is used, since there are more than two conditions to be
checked.

Close and Free the Cursor

Closing and freeing the cursor when you no longer need it is good practice, especially if
the modules are part of a larger program. This function must be placed in the same
module as the DECLARE/OPEN/FETCH statements and in sequence, so this is the last
function in the query_cust module. However, the function can be called from
cust_main, as a final "cleanup" routine.

Function cleanup (custquery.4gl)
01 FUNCTION cleanup()
02 WHENEVER ERROR CONTINUE
03 CLOSE cust_curs
04 FREE cust_curs
05 WHENEVER ERROR STOP
06 END FUNCTION

Notes:

• Line 03 Closes the cursor used to retrieve the database rows.
• Line 04 Frees the memory associated with the cursor.
• Lines 02 and 05 The WHENEVER ERROR statements prevent a program error

if the user exited the program without querying, and the cursor was never
created).

Error if Cursor is not Open
In the example program in this chapter, if the user selects the Next or Previous action
from the MENU before he has queried, the program returns an error ("Program stopped
at line Fetch attempted on unopened cursor."). One way to prevent this error would

Tutorial

1195

be to add a variable to the program to indicate whether the user has queried for a result
set, and to prevent him from executing the actions associated with Next or Previous until
he has done so.

Changes to function query_cust (custquery.4gl)
01 FUNCTION query_cust()
02 DEFINE cont_ok SMALLINT,
03 cust_cnt SMALLINT,
04 where_clause STRING
05 MESSAGE "Enter search criteria"
06 LET cont_ok = FALSE
07
...
08
09 IF (cont_ok = TRUE) THEN
10 CALL display_cust()
11 END IF
12
13 RETURN cont_ok
14
15 END FUNCTION

Notes:

• Line 13 A single line is added to the query_cust function to return the value of
cont_ok, which indicates whether the query was successful, to the calling
function in custmain.4gl.

Changes to module custmain.4gl
01 MAIN
02 DEFINE query_ok SMALLINT
03
04 DEFER INTERRUPT
05
06 CONNECT TO "custdemo"
07 CLOSE WINDOW SCREEN
08 OPEN WINDOW w1 WITH FORM "custform"
09 LET query_ok = FALSE
10
11 MENU "Customer"
12 ON ACTION query
13 CALL query_cust() RETURNING query_ok
14 ON ACTION next
15 IF (query_ok) THEN
16 CALL fetch_rel_cust(1)
17 ELSE
18 MESSAGE "You must query first."
19 END IF
20 ON ACTION previous
21 IF (query_ok) THEN
22 CALL fetch_rel_cust(-1)
23 ELSE
24 MESSAGE "You must query first."

Genero Business Development Language

1196

25 END IF
26 ON ACTION quit
27 EXIT MENU
28 END MENU
29
30 CLOSE WINDOW w1
31 CALL cleanup()
32 DISCONNECT CURRENT
33
34 END MAIN

Notes:

• Line 03 defines the variable query_ok, which will be used to indicate whether the
user has queried.

• Line 09 sets the initial value of query_ok to FALSE.
• Line 13 the function query_cust now returns a value for query_ok.
• Lines 15 thru 19 and Lines 21 thru 25: these sections test the value of

query_ok when Next or Previous has been selected. If query_ok is TRUE, the
function fetch_rel_cust is called; otherwise, a message is displayed to the user.

• Line 31 calls the cleanup function to close the cursor used to fetch the database
rows.

Tutorial

1197

Tutorial Chapter 5: Enhancing the Form
Summary:

• Adding a Toolbar
• Adding a Topmenu
• Adding a ComboBox form item
• Changing the Window Appearance
• Examples
• Managing actions

o Disable/enable actions
o The close action

• Example: custmain.4gl
• Action Defaults
• MENU/Action Defaults Interaction

You can change the way that program options are displayed in a form in a variety of
ways. This example program illustrates some of the simple changes that can be made:

• By changing the form specification file, you can provide the user with a valid list
of abbreviations for the state field and add a Toolbar or pulldown menu
(Topmenu). The program business logic in the BDL program need not change.
Once you recompile the form file, it can be used by the program with no
additional changes required.

• You can change the appearance of the application window, adding a custom title
and icon.

• You can disable and enable actions dynamically to control the options available
to the user.

The program also illustrates some of the Genero BDL action defaults that standardize
the presentation of common actions.

Genero Business Development Language

1198

Adding a Toolbar

 Display on Windows platforms

The TOOLBAR section of a form specification file defines a Toolbar with buttons that are
bound to actions. A Toolbar definition can contain the following elements:

• an ITEM - specifies the action that is bound to the Toolbar button
• a SEPARATOR - a vertical line

Values can be assigned to TEXT, COMMENT, and IMAGE attributes for each item in the
Toolbar.

The TOOLBAR commands are enabled by actionsdefined by the current interactive BDL
instruction, which in our example is the MENU statement in the custquery.4gl module.
When a Toolbar button is selected by the user, the program triggers the actionto which
the Toolbar button is bound.

Example: (in custform.per)

This TOOLBAR will display buttons for find, next, previous, and quit actions.

Form (custform.per)
01 SCHEMA custdemo
02
03 TOOLBAR
04 ITEM find
05 ITEM previous
06 ITEM next
07 SEPARATOR
08 ITEM quit (TEXT="Quit", COMMENT="Exit the program", IMAGE="exit")
09 END
10
...

Tutorial

1199

Notes:

• Line 04 The ITEM command-identifier find will be bound to the MENU statement
action find on line 14 in the custmain.4gl file shown below. The word find must
be identical in both the TOOLBAR ITEM and the MENU statement action, and
must always be in lower-case. The other command-identifiers are similarly
bound.

• Line 08 Although attributes such as TEXT or COMMENT are defined for the
ITEM quit, the ITEMS find, previous, and next do not have any attributes
defined in the form specification file. These actions are common actions that
have default attributes defined in the action defaults file.

Adding a Topmenu
The same options that were displayed to the user as a TOOLBAR can also be defined
as buttons on a pull-down menu (a TOPMENU). To change the presentation of the
menu options to the user, simply modify and recompile the form specification file.

 Display on Windows platforms

The TOPMENU section of the form specification allows you to design the pull-down
menu. The TOPMENU section must appear after SCHEMA, and must contain a tree of
GROUP elements that define the pull-down menu. The GROUP TEXT value is the title
for the pull-down menu group.

A GROUP can contain the following elements:

• a COMMAND - specifies the action the menu option must be bound to
• a SEPARATOR - a horizontal line
• GROUP children - a subgroup within a group.

Values can be assigned to attributes such as TEXT, COMMENT, and IMAGE. for each
item in the TOPMENU.

Genero Business Development Language

1200

As in a Toolbar, the TOPMENU commands are enabled by actions defined by the
current interactive BDL instruction (dialog), which in our example is the MENU statement
in the custquery.4gl module. When a TOPMENU option is selected by the user, the
program triggers the action to which the TOPMENU command is bound.

Example (in custform.per):

Form custform.per
01 SCHEMA custdemo
02
03 TOPMENU
04 GROUP form (TEXT="Form")
05 COMMAND quit (TEXT="Quit", COMMENT="Exit the program",
IMAGE="exit")
06 END
07 GROUP stores (TEXT="Stores")
08 COMMAND find
09 SEPARATOR
13 COMMAND next
14 COMMAND previous
15 END
16 END
17
...

Notes:

• Lines 04 and 07 This example TOPMENU will consist of two groups on the menu
bar of the form. The TEXT displayed on the menu bar for the first group will be
Form, and the second group will be Stores.

• Line 08 to 14: Under the menu bar item Stores, the command-identifier find on
line 05 will be bound to the MENU statement action find on line 14 in the
custmain.4gl file shown below. The word find must be identical (including case)
in both the TOPMENU command and the MENU statement action. The other
command-identifiers are similarly bound.

The revised form specification file must be re-compiled before it can be used in the
program.

Adding a COMBOBOX form item
In this example application the only valid values for the state column of the database
table customer are IL, IA, and WI. The form item used to display the state field can be
changed to a COMBOBOX displaying a dropdown list of valid state values. The
COMBOBOX is active during an INPUT, INPUT ARRAY, or CONSTRUCT statement,
allowing the user to select a value for the state field.

Tutorial

1201

 Display on Windows platforms

The values of the list are defined by the ITEMS attribute:

 COMBOBOX f6=customer.state, ITEMS = ("IL", "IA", "WI");

In this example, the value displayed on the form and the real value (the value to be
stored in the program variable corresponding to the form field) are the same. You can
choose to define different display and real values; in the following example, the values
Paris, Madrid, and London would be displayed to the user, but the value stored in the
corresponding program variable would be 1, 2, or 3:

COMBOBOX f9 = formonly.cities, ITEMS =
((1,"Paris"),(2,"Madrid"),(3,"London"));

Although the list of values for the COMBOBOX is contained in the form specification file
in this example program, you could also set the INITIALIZER attribute to define a
function that will provide the values. The initialization function would be invoked at
runtime when the form is loaded, to fill the COMBOBOX item list dynamically with
database records, for example.

See form file item-types for a complete list of the item types that can be used on a form.

Changing the Window Appearance
Genero provides attributes that can be used to customize the appearance of windows,
forms, and form objects in your application. In addition, you can create Presentation
Styles to standardize the appearance of window and form objects across applications.

Some of the simple changes that you can make are:

Genero Business Development Language

1202

Title

The default title for a window is the name of the object in the OPEN
WINDOW statement. For example, in the programs we've seen so far, the
title of the window is w1:

 OPEN WINDOW w1 WITH FORM "custform"

In the form specification file, the attribute TEXT of the LAYOUT section
can be used to change the title of the parent window:

 LAYOUT (TEXT="Customer")

Icon

The Genero runtime system provides built-in classes, or object templates,
which contain methods, or functions, that you can call from your
programs. The classes are grouped together into packages. One
package, ui, contains the "Interface" class, allowing you to manipulate the
user interface. For example, the setImage method can be used to set the
default icon for the windows of your program. You may simply call the
method, prefixing it with the package name and class name; you do not
need to create an Interface object.

 CALL ui.Interface.setImage("imagename")

Window Style

By default windows are displayed as normal application windows, but you
can choose a specific style using the WINDOWSTYLE attribute of the
LAYOUT section of the form file. The default window styles are defined as
a set of attributes in an external file (default.4st).

 LAYOUT (WINDOWSTYLE="dialog")

Example: (in custform.per)

Form custform.per
...
18 LAYOUT (TEXT="Customer")
19 GRID
20 {
21 Store #:[f01] Name:[f02]
22 Address:[f03]
23 [f04]
24 City:[f05]State:[f6]Zip:[f07]
25 Contact:[f08]

Tutorial

1203

26 Phone:[f09]
27 }
28 END
29 END
30 TABLES
31 customer
32 END
33 ATTRIBUTES
34 EDIT f01=customer.store_num,
35 REQUIRED, COMMENT="This is the co-op store number";
36 EDIT f02=customer.store_name;
37 EDIT f03=customer.addr;
38 EDIT f04=customer.addr2;
39 EDIT f05=customer.city;
40 COMBOBOX f6=customer.state,
41 REQUIRED, ITEMS = ("IL", "IA", "WI");
41 EDIT f07=customer.zipcode;
42 EDIT f08=customer.contact_name;
43 EDIT f09=customer.phone;
43 END

Notes:

• Line 18, the title of the window is set to Customer. Since this is a normal
application window, the default window style is used.

• Line 40, a COMBOBOX is substituted for a simple Edit form field.
• Line 35 and 41 The REQUIRED attribute forces the user to enter or select a

value for this field when a new record is being added. See the attributes list for a
complete list of the attributes that can be defined for a form field.

Example: (in custmain.4gl)

Changing the icon for the application windows:

Module custmain.4gl
...
04 MAIN
05 DEFINE query_ok SMALLINT
06
07 DEFER INTERRUPT
08
09 CONNECT TO "custdemo"
10 CLOSE WINDOW SCREEN
11 CALL ui.Interface.setImage("smiley")
12 OPEN WINDOW w1 WITH FORM "custform"
13
...

Notes:

• Line 11 For convenience, the image used is the smiley image from the pics
directory, which is the default image directory of the Genero Desktop Client.

Genero Business Development Language

1204

Managing Actions

Disable/Enable Actions

In the example in the previous lesson, if the user clicks the Next or Previous buttons on
the application form without first querying successfully, a message displays and no
action is taken. You can disable and enable the actions instead, providing visual cues to
the user when the actions are not available. The ui.Dialog built-in class provides an
interface to the BDL interactive dialog statements, such as CONSTRUCT and MENU.
The method setActionActive enables and disables actions. To call a method of this
class, use the pre-defined DIALOG object within the interactive instruction block.

For example:

 MENU
 BEFORE MENU
 CALL DIALOG.setActionActive("actionname" , state)
 ...
 END MENU

where actionname is the name of the action, state is an integer, 0 (disable) or 1 (enable).

You must be within an interactive instruction in order to use the DIALOG object in your
program, but you can pass the object to a function. Using this technique, you could
create a function that enables/disables an action, and call the function from the MENU
statement, for example. See ui.Dialog for further information.

The Close Action

In Genero applications, when the user clicks the X button in the upper-right corner of the
application window, a predefined close action is sent to the program. What happens
next depends on the interactive dialog statement:

• When the program is in a MENU dialog statement, the close action is converted
to an INTERRUPT key press. If there is a COMMAND KEY (INTERRUPT) block
in the MENU statement, the statements in that control block are executed.
Otherwise, no action is taken.

• When the program is in an INPUT, INPUT ARRAY, CONSTRUCT or DISPLAY
ARRAY statement, the close action cancels the dialog, and the int_flag is set to
TRUE. Your program can check the value of int_flag and take appropriate
action.

You can change this default behavior by overwriting the close action within the
interactive statement. For example, to exit the MENU statement when the user clicks
this button:

 MENU

Tutorial

1205

 ...
 ON ACTION close
 EXIT MENU
 END MENU

By default the action view for the close action is hidden and does not display on the
form.

Example: (custmain.4gl)

Module custmain.4gl
01
02 MAIN
03 DEFINE query_ok SMALLINT
04
05 DEFER INTERRUPT
06 CONNECT TO "custdemo"
07 CLOSE WINDOW SCREEN
08 CALL ui.Interface.setImage("smiley")
09 OPEN WINDOW w1 WITH FORM "custform"
10
11 LET query_ok = FALSE
12
13 MENU
14 BEFORE MENU
15 CALL DIALOG.setActionActive("next",0)
16 CALL DIALOG.setActionActive("previous",0)
17 ON ACTION find
18 CALL DIALOG.setActionActive("next",0)
19 CALL DIALOG.setActionActive("previous",0)
20 CALL query_cust() RETURNING query_ok
21 IF (query_ok) THEN
22 CALL DIALOG.setActionActive("next",1)
23 CALL DIALOG.setActionActive("previous",1)
24 END IF
25 ON ACTION next
26 CALL fetch_rel_cust(1)
27 ON ACTION previous
28 CALL fetch_rel_cust(-1)
29 ON ACTION quit
30 EXIT MENU
31 ON ACTION close
32 EXIT MENU
33 END MENU
34
35 CLOSE WINDOW w1
36
37 DISCONNECT CURRENT
38
39 END MAIN

Notes:

Genero Business Development Language

1206

• Line 08 The icon for the application windows is set to the "exit" image.
• Lines 15, 16 Before the menu is first displayed, the next and previous actions

are disabled.
• Lines 18, 19 Before the query_cust function is executed the next and previous

actions are disabled
• Lines 21 thru 24 If the query was successful the next and previous actions are

enabled.
• Line 31 The close action is included in the menu, although an action view won't

display on the form. If the user clicks the X button in the top right of the window,
the action on line 32, EXIT MENU, will be taken.

Action Defaults
The Genero BDL runtime system includes an XML file, default.4ad, in the lib
subdirectory of the installation directory FGLDIR, that defines presentation attributes for
some commonly used actions. If you match the action names used in this file exactly
when you define your action views (TOOLBAR or TOPMENU items, buttons, etc.) in the
form specification file, the presentation attributes defined for this action will be used. All
action names must be in lower-case.

For example, the following line in the default.4ad file:

<ActionDefault name="find" text="Find"
 image="find" comment="Search" />

defines presentation attributes for a find action- the text to be displayed on the action
view find defined in the form, the image file to be used as the icon for the action view,
and the comment to be associated with the action view. The attribute values are case-
sensitive,so the action name in the form specification file must be "find", not "Find".

The following line in the default.4ad file defines presentation attributes for the pre-
defined action cancel. An accelerator key is assigned as an alternate means of invoking
the action:

<ActionDefault name="cancel" text="Cancel"
 acceleratorName="Escape" />

You can override a default presentation attribute in your program. For example, by
specifying a TEXT attribute for the action find in the form specification file, the default
TEXT value of "Find " will be replaced with the value "Looking".

03 TOPMENU
04
...
07 GROUP stores (TEXT="Stores")
08 COMMAND find (TEXT="Looking")

Tutorial

1207

You can create your own .4ad file to standardize the presentation attributes for all the
common actions used by your application. See Action Defaults for additional details.

MENU/Action Defaults Interaction
The attributes of the action views for the MENU actions in the custmain.4gl example will
be determined as shown in the table below. Attributes defined in the form specification
file override attributes defined in the .4ad file.

Action From the form
specification file From the default.4ad file

From the MENU
statement
in the .4gl file

find No attributes
listed

TEXT="Find"
IMAGE="find"
COMMENT="Search"

Over-ridden by
default.4ad

next No attributes
listed

TEXT="Next"
IMAGE="goforw"
COMMENT="Next record"

Over-ridden by
default.4ad

previous No attributes
listed

TEXT="Previous"
IMAGE="gorev"
COMMENT="Previous
record"

Over-ridden by
default.4ad

close Not listed in the
form file

attributes are listed in
default.4ad but the action
view is not displayed on
form by default

Over-ridden by
default.4ad (pre-
defined action)

quit

For both
TOPMENU and
TOOLBAR, the
action view has the
attributes
TEXT="Quit",
COMMENT="Exit
the program",
IMAGE="exit".

 Action is not listed in the file
Over-ridden by the
form specification
file.

*accept Not listed in the
form file.

TEXT="OK"
AcceleratorName="Return"
AcceleratorName2="Enter"

This action is not
defined in a MENU
instruction (pre-
defined action.)

*cancel Not listed in the
form file.

TEXT="Cancel"
AcceleratorName="Escape"

This action is not
defined in a MENU
instruction (pre-
defined action.)

Genero Business Development Language

1208

* The pre-defined actions accept and cancel do not have action views defined in the
form specification file; by default, they appear on this form as buttons in the righthand
section of the form when the CONSTRUCT statement is active. Their attributes are
taken from the default.4ad file.

Images

The image files specified in these definitions are among the files provided with the
Genero Desktop Client, in the pics subdirectory.

Tutorial

1209

Tutorial Chapter 6: Add/Update/Delete
Summary:

• Entering data on a form (INPUT statement)
o INPUT attribute (UNBUFFERED)
o INPUT attribute (WITHOUT DEFAULTS)

• Updating database tables
o SQL transactions
o Concurrency and Consistency

• Adding a new row
o INPUT statement control blocks
o Example: Add a row to the customer table

• Updating an existing row
o Using a work record
o SELECT ... FOR UPDATE
o CURSOR WITH HOLD
o Example: Update a row in the customer table

• Deleting a row
o Using a modal Menu to prompt for validation
o Example: Deleting a row in the customer table

This program allows the user to insert/update/delete rows in the customer
table. Embedded SQL statements (UPDATE/INSERT/DELETE) are used to update the
table, based on the values stored in the program record. SQL transactions, and
concurrency and consistency issues are discussed. Prior to deleting a row, a dialog
window is displayed to prompt the user to verify the deletion.

Entering data on a form: INPUT statement
The INPUT statement allows the user to enter or change the values in a program record,
which can then be used as the data for new rows in a database table, or to update
existing rows. In the INPUT statement you list:

• The program variables that are to receive data from the form
• The corresponding form fields that the user will use to supply the data

 INPUT <program-variables> FROM <form-fields>

The FROM clause explicitly binds the fields in the screen record to the program
variables, so the INPUT instruction can manipulate values that the user enters in the
screen record. The number of record members must equal the number of fields listed in
the FROM clause. Each variable must be of the same (or a compatible) data type as the
corresponding screen field. When the user enters data, the runtime system checks the
entered value against the data type of the variable, not the data type of the screen field.

Genero Business Development Language

1210

When invoked, the INPUT statement enables the specified fields of the form in the
current BDL window, and waits for the user to supply data for the fields. The user moves
the cursor from field to field and types new values. Each time the cursor leaves a field,
the value typed into that field is deposited into the corresponding program variable. You
can write blocks of code as clauses in the INPUT statement that will be called
automatically during input, so that you can monitor and control the actions of your user
within this statement.

The INPUT statement ends when the user selects the accept or cancel actions.

INPUT supports the same shortcuts for naming records as the DISPLAY statement. You
can ask for input to all members of a record, from all fields of a screen record, and you
can ask for input BY NAME from fields that have the same names as the program
variables.

 INPUT BY NAME <programrecord>.*

UNBUFFERED attribute

By default, field values are buffered. The UNBUFFERED attribute makes the INPUT
dialog "sensitive", allowing you to easily change some form field values
programmatically during INPUT execution. When you assign a value to a program
variable, the runtime system will automatically display that value in the form; when you
input values in a form field, the runtime system will automatically store that value in the
corresponding program variable. Using the UNBUFFERED attribute is strongly
recommended.

WITHOUT DEFAULTS attribute

The same INPUT statement can be used, with the WITHOUT DEFAULTS attribute, to
allow the user to make changes to an existing program record representing a row in the
database. This attribute prevents BDL from automatically displaying any default values
that have been defined for the form fields when INPUT is invoked, allowing you to
display the existing database values on the screen before the user begins editing the
data. In this case, when the INPUT statement is used to allow the user to add a new
row, any existing values in the program record must first be nulled out.

Updating Database Tables
The values of the program variables that have been input through the form can be used
in SQL statements that update tables in a database.

SQL transactions

The embedded SQL statements INSERT, UPDATE, and DELETE can be used to make
changes to the contents of a database table. If your database has transaction logging,

Tutorial

1211

you can use the BEGIN WORK and COMMIT WORK commands to delimit a transaction
block, usually consisting of multiple SQL statements. If you do not issue a BEGIN
WORK statement to start a transaction, each statement executes within its own
transaction. These single-statement transactions do not require either a BEGIN WORK
statement or a COMMIT WORK statement. At runtime, the Genero database driver
generates the appropriate SQL commands to be used with the target database server.

To eliminate concurrency problems, keep transactions as short as possible.

 Concurrency and Consistency

While your program is modifying data, another program may also be reading or
modifying the same data. To prevent errors, database servers use a system of locks.
When another program requests the data, the database server either makes the
program wait or turns it back with an error. BDL provides a combination of statements to
control the effect that locks have on your data access:

•

SET LOCK MODE TO {WAIT [n]| NOT WAIT }

This defines the timeout for lock acquisition for the current connection.
The timeout period can be specified in seconds (n). If no period is
specified, the timeout is infinite. If the LOCK MODE is set to NOT WAIT,
an exception is returned immediately if a lock cannot be acquired.

Warning: This feature is not supported by all databases. When
possible, the database driver sets the corresponding connection
parameter to define the timeout. If the database server does not
support setting the lock timeout parameter, the runtime system
generates an exception.

•

SET ISOLATION LEVEL TO { DIRTY READ
 | COMMITTED READ
 | CURSOR STABILITY
 | REPEATABLE READ }

This defines the ISOLATION LEVEL for the current connection. When
possible, the database driver executes the native SQL statement that
corresponds to the specified isolation level.

 For portable database programming, the following is recommended:

• Transactions must be enabled in your database.
• The ISOLATION LEVEL must be at least COMMITTED READ. On most

database servers, this is usually the default isolation level and need not be
changed.

Genero Business Development Language

1212

• The LOCK MODE must be set to WAIT or WAIT <timeperiod>, if this is
supported by your database server.

See Transactions in the BDL Reference Manual for a more complete discussion. The
ODI Adaptation Guides provide detailed information about the behavior of specific
database servers.

Adding a new row

INPUT Statement Control blocks

Genero BDL provides some optional control blocks for the INPUT statement that are
called automatically as the user moves the cursor through the fields of a form. This
allows your program to initialize field contents when adding a new row, for example, or to
validate the user's input.

For example:

• BEFORE FIELD control blocks are executed immediately prior to the focus
moving to the specified field. The example program uses this control block to
prevent the user from changing the store number during an Update, by
immediately moving the focus to the store name field (the NEXT FIELD
instruction).

• An ON CHANGE is used to verify the uniqueness of the store number that was
entered, and to make sure that the store name is not left blank. The user
receives notification of a problem with the value of a field as soon as the field is
exited. Validating these values as they are completed is less disruptive than
notifying the user of several problems after the entire record has been entered.

See the INPUT statement for a complete list of control blocks.

Example: add a new row to the customer table

Module custmain.4gl

The MENU statement in the module custmain.4gl is modified to call functions for
adding, updating, and deleting the rows in the customer table.

The MAIN block (custmain.4gl)
01 -- custmain.4gl
02
03 MAIN
04 DEFINE query_ok INTEGER
05

Tutorial

1213

06 DEFER INTERRUPT
07 CONNECT TO "custdemo"
08 SET LOCK MODE TO WAIT 6
09 CLOSE WINDOW SCREEN
10 OPEN WINDOW w1 WITH FORM "custform"
11
12 MENU
13 ON ACTION find
14 LET query_ok = query_cust()
15 ON ACTION next
16 IF (query_ok) THEN
17 CALL fetch_rel_cust(1)
18 ELSE
19 MESSAGE "You must query first."
20 END IF
21 ON ACTION previous
22 IF (query_ok) THEN
23 CALL fetch_rel_cust(-1)
24 ELSE
25 MESSAGE "You must query first."
26 END IF
27 COMMAND "Add"
28 IF (inpupd_cust("A")) THEN
29 CALL insert_cust()
30 END IF
31 COMMAND "Delete"
32 IF (delete_check()) THEN
33 CALL delete_cust()
34 END IF
35 COMMAND "Modify"
36 IF inpupd_cust("U") THEN
37 CALL update_cust()
38 END IF
39 ON ACTION quit
40 EXIT MENU
41 END MENU
42
43 CLOSE WINDOW w1
44
45 DISCONNECT CURRENT
46
47 END MAIN

Notes:

• Line 08 sets the lock timeout period to 6 seconds.
• Lines 12 thru 41 define the main menu of the program.
• Lines 27 thru 30 The MENU option "Add" now calls an inpupd_cust function.

Since this same function will also be used for updates, the value "A", indicating
an Add of a new row, is passed. If inpupd_cust returns TRUE, the insert_cust
function is called.

• Lines 31 thru 34 The MENU option "Delete" now calls a delete_check function.
If delete_check returns TRUE, the delete_cust function is called.

Genero Business Development Language

1214

• Lines 35 thru 38 are added to the MENU statement for the "Modify" option,
calling the inpud_cust function. The value "U", for an Update of a new row, is
passed as a parameter. If inpupd_cust returns TRUE, the update_cust function
is called.

Module custquery.4gl (function inpupd_cust)

A new function, inpupd_cust, is added to the custquery.4gl module, allowing the user
to insert values for a new customer row into the form.

Function inpupd_cust (custquery.4gl)
01 FUNCTION inpupd_cust(au_flag)
02 DEFINE au_flag CHAR(1),
03 cont_ok SMALLINT
04
05 LET cont_ok = TRUE
07
08 IF (au_flag = "A") THEN
09 MESSAGE "Add a new customer"
10 INITIALIZE mr_custrec.* TO NULL
12 END IF
13
14 LET INT_FLAG = FALSE
15
16 INPUT BY NAME mr_custrec.*
17 WITHOUT DEFAULTS ATTRIBUTES(UNBUFFERED)
18
19 ON CHANGE store_num
20 IF (au_flag = "A") THEN
21 SELECT store_name,
22 addr,
23 addr2,
24 city,
25 state,
26 zipcode,
27 contact_name,
28 phone
29 INTO mr_custrec.*
30 FROM customer
31 WHERE store_num = mr_custrec.store_num
32 IF (SQLCA.SQLCODE = 0)THEN
33 ERROR "Store number already exists."
34 LET cont_ok = FALSE
35 CALL display_cust()
36 EXIT INPUT
37 END IF
38 END IF
39
40 AFTER FIELD store_name
41 IF (mr_custrec.store_name IS NULL) THEN
42 ERROR "You must enter a company name."
43 NEXT FIELD store_name
44 END IF
45

Tutorial

1215

46 END INPUT
47
48 IF (INT_FLAG) THEN
49 LET INT_FLAG = FALSE
50 LET cont_ok = FALSE
51 MESSAGE "Operation cancelled by user"
52 INITIALIZE mr_custrec.* TO NULL
53 END IF
54
55 RETURN cont_ok
56
57 END FUNCTION

Notes:

• Line 01 The function accepts a parameter defined as CHAR(1). In order to use
the same function for both the input of a new record and the update of an existing
one, the CALL to this function in the MENU statement in main.4gl will pass a
value "A" for add, and "U" for update.

• Line 06 The variable cont_ok is a flag to indicate whether the update operation
should continue; set initially to TRUE.

• Lines 08 thru 12 test the value of the parameter au_flag. If the value of au_flag
is "A" the operation is an Add of a new record, and a MESSAGE is displayed.
Since this is an Add, the modular program record values are initialized to NULL
prior to calling the INPUT statement, so the user will have empty form fields in
which to enter data.

• Line 14 sets the INT_FLAG global variable to FALSE prior to the INPUT
statement, so the program can determine if the user cancels the dialog.

• Line 17 The UNBUFFERED and WITHOUT DEFAULTS clauses of the INPUT
statement are used. The WITHOUT DEFAULTS clause is required since this
statement will also be used for Updates, to prevent the existing values displayed
on the form from being erased or replaced with default values.

• Lines 19 thru 38 Each time the value in store_num changes, the customer
table is searched to see if that store_num already exists. If so, the values in the
mr_custrec record are displayed in the form, the variable cont_ok is set to
FALSE, and the INPUT statement is immediately terminated.

• Lines 40 thru 44 The AFTER FIELD control block verifies that store_name was
not left blank. If so, the NEXT FIELD statement returns the focus to the
store_name field so the user may enter a value.

• Line 46 END INPUT is required when any of the optional control blocks of the
INPUT statement are used.

• Lines 48 thru 53 The INT_FLAG is checked to see if the user has cancelled the
input. If so, the variable cont_ok is set to FALSE, and the program record
mr_custrec is NULLED out. The UNBUFFERED attribute of the INPUT
statement assures that the NULL values in the program record are automatically
displayed on the form.

• Line 55 returns the value of cont_ok, indicating whether the input was
successful.

Genero Business Development Language

1216

Module custquery.4gl (function insert_cust)

A new function, insert_cust, in the custquery.4gl module, contains the logic to add the
new row to the customer table.

Function insert_cust
01 FUNCTION insert_cust()
02
03 WHENEVER ERROR CONTINUE
04 INSERT INTO customer (
05 store_num,
06 store_name,
07 addr,
08 addr2,
09 city,
10 state,
11 zipcode,
12 contact_name,
13 phone
14) VALUES (mr_custrec.*)
15 WHENEVER ERROR STOP
16
17 IF (SQLCA.SQLCODE = 0) THEN
18 MESSAGE "Row added"
19 ELSE
20 ERROR SQLERRMESSAGE
21 END IF
22
23 END FUNCTION

Notes:

• Lines 04 thru 14 contain an embedded SQL statement to insert the values in the
program record mr_custrec into the customer table. This syntax can be used
when the order in which the members of the program record were defined
matches the order of the columns listed in the SELECT statement. Otherwise,
the individual members of the program record must be listed separately. Since
there is no BEGIN WORK/COMMIT WORK syntax used here, this statement will
be treated as a singleton transaction and the database driver will automatically
send the appropriate COMMIT statement. The INSERT statement is surrounded
by WHENEVER ERROR statements.

• Lines 17 thru 21 test the SQLCA.SQLCODE that was returned from the INSERT
statement. If the INSERT was not successful, the corresponding error message
is displayed to the user.

Tutorial

1217

Updating an existing Row
Updating an existing row in a database table provides more opportunity for concurrency
and consistency errors that inserting a new row. Using the following techniques can help
to minimize these errors.

Using a work record

A work record and a local record, both identical to the program record, are defined to
allow the program to compare the values.

1. A SCROLL CURSOR is used to allow the user to scroll through a result set
generated by a query. The scroll cursor is declared WITH HOLD so it will not be
closed when a COMMIT WORK or ROLLBACK WORK is executed.

2. When the user chooses Update, the values in the current program record are
copied to the work record.

3. The INPUT statement accepts the user's input and stores it in the program
record. The WITHOUT DEFAULTS keywords are used to insure that the original
values retrieved from the database were not replaced with default values.

4. If the user accepts the input, a transaction is started with BEGIN WORK.
5. The primary key stored in the program record is used to SELECT the same row

into the local record. FOR UPDATE locks the row.
6. The SQLCA.SQLCODE is checked, in case the database row was deleted after

the initial query.
7. The work record and the local record are compared, in case the database row

was changed after the initial query.
8. If the work and local records are identical, the database row is updated using the

new program record values input by the user.
9. If the UPDATE is successful, a COMMIT WORK is issued. Otherwise, a

ROLLBACK WORK is issued.
10. The SCROLL CURSOR has remained open, allowing the user to continue to

scroll through the query result set.

SELECT ... FOR UPDATE

To explicitly lock a database row prior to updating, a SELECT ... FOR UPDATE
statement may be used to instruct the database server to lock the row that was
selected. SELECT ... FOR UPDATE cannot be used outside of an explicit transaction.
The locks are held until the end of the transaction.

SCROLL CURSOR WITH HOLD

Like many programs that perform database maintenance, the Query program uses a
SCROLL CURSOR to move through an SQL result set, updating or deleting the rows as
needed. BDL cursors are automatically closed by the database interface when a
COMMIT WORK or ROLLBACK WORK statement is performed. To allow the user to
continue to scroll through the result set, the SCROLL CURSOR can be declared WITH
HOLD, keeping it open across multiple transactions.

Genero Business Development Language

1218

Example: Updating a Row in the customer table

Module custquery.4gl

The module has been modified to define a work_custrec record that can be used as
working storage when a row is being updated.

Module custquery.4gl
01
02 SCHEMA custdemo
03
04 DEFINE mr_custrec, work_custrec RECORD
05 store_num LIKE customer.store_num,
06 store_name LIKE customer.store_name,
07 addr LIKE customer.addr,
08 addr2 LIKE customer.addr2,
09 city LIKE customer.city,
10 state LIKE customer.state,
11 zipcode LIKE customer.zipcode,
12 contact_name LIKE customer.contact_name,
13 phone LIKE customer.phone
14 END RECORD
...

Notes:

• Lines 04 thru 15 define a work_custrec record that is modular in scope and
contains the identical structure as the mr_custrec program record.

The function inpupd_cust in the custquery.4gl module has been modified so it can
also be used to obtain values for the Update of existing rows in the customer table.

Function inpupd_cust (custquery.4gl)
01 FUNCTION inpupd_cust(au_flag)
02 DEFINE au_flag CHAR(1),
03 cont_ok SMALLINT
04
05 INITIALIZE work_custrec.* TO NULL
06 LET cont_ok = TRUE
07
08 IF (au_flag = "A") THEN
09 MESSAGE "Add a new customer"
10 LET mr_custrec.* = work_custrec.*
11 ELSE
12 MESSAGE "Update customer"
13 LET work_custrec.* = mr_custrec.*
14 END IF

Tutorial

1219

15
16 LET INT_FLAG = FALSE
17
18 INPUT BY NAME mr_custrec.*
19 WITHOUT DEFAULTS ATTRIBUTES(UNBUFFERED)
20
21 BEFORE FIELD store_num
22 IF (au_flag = "U") THEN
23 NEXT FIELD store_name
24 END IF
25
26 ON CHANGE store_num
27 IF (au_flag = "A") THEN
...
28 AFTER FIELD store_name
29 IF (mr_custrec.store_name IS NULL) THEN
...
30
31 END INPUT

Notes:

• Line 05 sets the work_custrec program record to NULL.
• Line 10 For an Add, the mr_custrec program record is set equal to the

work_custrec record, in effect setting mr_custrec to NULL. The LET statement
uses less resources than INITIALIZE.

• Line 13 For an Update, the values in the mr_custrec program record are copied
into work_custrec, saving them for comparison later.

• Lines 21 thru 24 A BEFORE FIELD store_num clause has been added to the
INPUT statement. If this is an Update, the user should not be allowed to change
store_num, and the NEXT FIELD instruction moves the focus to the
store_name field.

• Line 26 The ON CHANGE store_num control block, which will only execute if the
au_flag is set to "A" (the operation is an Add) remains the same.

• Line 28 The AFTER FIELD store_name control block remains the same, and will
execute if the operation is an Add or an Update.

A new function update_cust in the custquery.4gl module updates the row in the
customer table.

Function update_cust (custquery.4gl)
01 FUNCTION update_cust()
02 DEFINE l_custrec RECORD
03 store_num LIKE customer.store_num,
04 store_name LIKE customer.store_name,
05 addr LIKE customer.addr,
06 addr2 LIKE customer.addr2,
07 city LIKE customer.city,
08 state LIKE customer.state,
09 zipcode LIKE customer.zipcode,

Genero Business Development Language

1220

10 contact_name LIKE customer.contact_name,
11 phone LIKE customer.phone
12 END RECORD,
13 cont_ok INTEGER
14
15 LET cont_ok = FALSE
16
17 BEGIN WORK
18
19 SELECT store_num,
20 store_name,
21 addr,
22 addr2,
23 city,
24 state,
25 zipcode,
26 contact_name,
27 phone
28 INTO l_custrec.* FROM customer
29 WHERE store_num = mr_custrec.store_num
30 FOR UPDATE
31
32 IF (SQLCA.SQLCODE = NOTFOUND) THEN
33 ERROR "Store has been deleted"
34 LET cont_ok = FALSE
35 ELSE
36 IF (l_custrec.* = work_custrec.*) THEN
37 WHENEVER ERROR CONTINUE
38 UPDATE customer SET
39 store_name = mr_custrec.store_name,
40 addr = mr_custrec.addr,
41 addr2 = mr_custrec.addr2,
42 city = mr_custrec.city,
43 state = mr_custrec.state,
44 zipcode = mr_custrec.zipcode,
45 contact_name = mr_custrec.contact_name,
46 phone = mr_custrec.phone
47 WHERE store_num = mr_custrec.store_num
48 WHENEVER ERROR STOP
49 IF (SQLCA.SQLCODE = 0) THEN
50 LET cont_ok = TRUE
51 MESSAGE "Row updated"
52 ELSE
53 LET cont_ok = FALSE
54 ERROR SQLERRMESSAGE
55 END IF
56 ELSE
57 LET cont_ok = FALSE
58 LET mr_custrec.* = l_custrec.*
59 MESSAGE "Row updated by another user."
60 END IF
61 END IF
62
63 IF (cont_ok = TRUE) THEN
64 COMMIT WORK
65 ELSE

Tutorial

1221

66 ROLLBACK WORK
67 END IF
68
69 END FUNCTION

Notes:

• Lines 02 thru 12 define a local record, l_custrec with the same structure as the
modular program records mr_custrec and work_custrec.

• Line 15 The cont_ok variable will be used as a flag to determine whether the
Update should be committed or rolled back.

• Line 17 Since this will be a multiple-statement transaction, the BEGIN WORK
statement is used to start the transaction.

• Lines 19 thru 30 use the store_num value in the program record to re-select the
row. FOR UPDATE locks the database row until the transaction ends.

• Lines 32 thru 34 check SQLCA.SQLCODE to make sure the record has not been
deleted by another user. If so, an error message is displayed, and the variable
cont_ok is set to FALSE.

• Lines 36 thru 60 are to be executed if the database row was found.
• Line 36 compares the values in the l_custrec local record with the

work_custrec record that contains the original values of the database row. All
the values must match for the condition to be TRUE.

• Lines 37 thru 55 are executed if the values matched. An embedded SQL
statement is used to UPDATE the row in the customer table using the values
which the user has previously entered in the mr_custrec program record. The
SQL UPDATE statement is surrounded by WHENEVER ERROR statements.
The SQLCA.SQLCODE is checked after the UPDATE, and if it indicates the
update was not successful the variable cont_ok is set to FALSE and an error
message is displayed.

• Lines 57 through 59 are executed if the values in l_custrec and work_custrec
did not match. The variable cont_ok is set to FALSE. The values in the
mr_custrec program record are set to the values in the l_custrec record (the
current values in the database row, retrieved by the SELECT .. FOR UPDATE
statement.) The UNBUFFERED attribute of the INPUT statement assures that
the values will be automatically displayed in the form. A message is displayed
indicating the row had been changed by another user.

• Lines 63 thru 67 If the variable cont_ok is TRUE (the update was successful) the
program issues a COMMIT WORK to end the transaction begun on Line 278. If
not, a ROLLBACK WORK is issued. All locks placed on the database row are
automatically released.

Deleting a Row
The SQL DELETE statement can be used to delete rows from the database table. The
primary key of the row to be deleted can be obtained from the values in the program
record.

Genero Business Development Language

1222

Using a dialog Menu to prompt for validation

The MENU statement has an optional STYLE attribute that can be set to 'dialog',
automatically opening a temporary modal window. You can also define a message and
icon with the COMMENT and IMAGE attributes. This provides a simple way to prompt
the user to confirm some action or operation that has been selected.

The menu options appear as buttons at the bottom of the window. Unlike standard
menus, the dialog menu is automatically exited after any action clause such as ON
ACTION, COMMAND or ON IDLE. You do not need an EXIT MENU statement.

Example: Deleting a Row
Function delete_check is added to the custquery.4gl module to check whether a store
has any orders in the database before allowing the user to delete the store from the
customer table. If there are no existing orders, a dialog MENU is used to prompt the user
for confirmation.

Function delete_check (custquery.4gl)
01 FUNCTION delete_check()
02 DEFINE del_ok SMALLINT,
03 ord_count SMALLINT
04
05 LET del_ok = FALSE
06
07 SELECT COUNT(*) INTO ord_count
08 FROM orders
09 WHERE orders.store_num =
10 mr_custrec.store_num
11
12 IF ord_count > 0 THEN
13 MESSAGE "Store has existing orders"
14 ELSE
15 MENU "Delete" ATTRIBUTES (STYLE="dialog",
16 COMMENT="Delete the row?")
17 COMMAND "Yes"
18 LET del_ok = TRUE
19 COMMAND "No"
20 MESSAGE "Delete canceled"
21 END MENU
22 END IF

Tutorial

1223

23
24 RETURN del_ok
25
26 END FUNCTION

Notes:

• Line 02 defines a variable del_ok to be used as a flag to determine if the Delete
should continue.

• Line 05 sets del_ok to FALSE.
• Lines 07 thru 10 use the store_num value in the mr_custrec program record in

an SQL statement to determine whether there are orders in the database for that
store_num. The variable ord_count is used to store the value returned by the
SELECT statement.

• Lines 12 thru 13 If the count is greater than zero, there are existing rows in the
orders table for the store_num. A message is displayed to the user. del_ok
remains set to FALSE.

• Lines 15 thru 21 If the count is zero, the Delete can continue. A MENU
statement is used to prompt the user to confirm the Delete action. The STYLE
attribute is set to "dialog" to automatically display the MENU in a modal dialog
window. If the user selects "Yes", the variable del_ok is set to TRUE. Otherwise
a message is displayed to the user indicating the Delete will be canceled.

• Line 24 returns the value of del_ok to the delete_cust function.

The function delete_cust is added to the custquery.4gl module to delete the row from
the customer table.

Function delete_cust (custquery.4gl)
01 FUNCTION delete_cust()
02
03 WHENEVER ERROR CONTINUE
04 DELETE FROM customer
05 WHERE store_num = mr_custrec.store_num
06 WHENEVER ERROR STOP
07 IF SQLCA.SQLCODE = 0 THEN
08 MESSAGE "Row deleted"
09 INITIALIZE mr_custrec.* TO NULL
10 ELSE
11 ERROR SQLERRMESSAGE
12 END IF
13
14 END FUNCTION

Notes:

• Lines 04 and 05 contains an embedded SQL DELETE statement that uses the
store_num value in the program record mr_custrec to delete the database
row. The SQL statement is surrounded by WHENEVER ERROR statements.

Genero Business Development Language

1224

This is a singleton transaction that will be automatically committed if it is
successful.

• Lines 07 thru 12 check the SQLCA.SQLCODE returned for the SQL DELETE
statement. If the DELETE was successful, a message is displayed and the
mr_custrec program record values are set to NULL and automatically displayed
on the form. Otherwise, an error message is displayed.

Tutorial

1225

Tutorial Chapter 7: Array Display
Summary:

• Defining the Form
o Screen Arrays
o Table Container
o Instructions Section

• Form example: manycust.per
• Creating the Function

o Program Arrays
o Loading the Array: FOREACH
o The DISPLAY ARRAY Statement

• The DISPLAY ARRAY Statement
o The COUNT attribute
o The ARR_CURR function

• Example: library function to display an Array
• Compiling and using a library
• Paged mode of DISPLAY ARRAY

Unlike the previous programs, this example displays multiple customer records at once.
The program defines a program array to hold the records, and displays the records in a
form containing a TABLE and a screen array. The user can scroll through the records in
the table, sort the table by a specific column, and hide or display columns.

This example is written as a library function so it can be used in multiple programs. This
type of code re-use maximizes your programming efficiency. As you work through the
examples in the other tutorial lessons, look for additional candidates for library functions.

 Display on Windows platform

Genero Business Development Language

1226

In the illustration, the table is sorted by City. A right mouse click has displayed a
dropdown list of the columns, with check boxes allowing the user to hide or show a
specific column. After the user validates the row selected, the store number and store
name are returned to the calling function.

To implement this type of scrolling display, the example must:

• Create a form specification file containing a screen array of screen records
• Define an program array of records, each record having members that

correspond to the fields of the screen records.

The function will use the DISPLAY ARRAY statement to display all the records in the
program array into the rows of the screen array. Typically the program array has many
more rows of data than will fit on the screen.

Defining the Form

Screen Arrays

A screen array is usually a repetitive array of fields in the LAYOUT section of a form
specification, each containing identical groups of screen fields. Each “row” of a screen
array is a screen record. Each “column” of a screen array consists of fields with the
same item tag in the LAYOUT section of the form specification file. You must declare
screen arrays in the INSTRUCTIONS section.

TABLE Containers

The TABLE container in a form defines the presentation of a list of records, bound to a
screen array. When this layout container is used with curly braces defining the container
area, the position of the static labels and item tags is automatically detected by the form
compiler to build a graphical object displaying a list of records.

The first line of the TABLE area contains text entries defining the column titles. The
second line contains field item tags that define the columns of the table receiving the
data. This line is repeated to allow the display of multiple records at once.

The user can sort the rows displayed in the form table by a mouse-click on the title of the
column that is to be used for the sort. This sort is performed on the client side only. The
columns and the entire form can be stretched and re-sized. A right-mouse-click on a
column title displays a dropdown list-box of column names, with radio buttons allowing
the user to indicate whether a specific column is to be hidden or shown.

Tutorial

1227

The INSTRUCTIONS section

You must declare a screen array in the INSTRUCTIONS section of the form with the
SCREEN RECORD keyword. You can reference the names of the screen array in
the DISPLAY ARRAY statement of the program.

Form example: manycust.per

Module custmain.4gl
01 SCHEMA custdemo
02
03 LAYOUT
04 TABLE
05 {
06 Id Name ... Zipcode Contact Phone
07 [f01][f02] [f05][f06][f07]
08 [f01][f02] [f05][f06][f07]
09 [f01][f02] [f05][f06][f07]
10 [f01][f02] [f05][f06][f07]
11 [f01][f02] [f05][f06][f07]
12 [f01][f02] [f05][f06][f07]
13 }
14 END
15 END
16
17 TABLES
18 customer
19 END
20
21 ATTRIBUTES
22 EDIT f01=customer.store_num;
23 EDIT f02=customer.store_name;
24 EDIT f03=customer.city;
25 EDIT f04=customer.state;
26 EDIT f05=customer.zipcode;
27 EDIT f06=customer.contact_name;
28 EDIT f07=customer.phone;
29 END
30
31 INSTRUCTIONS
32 SCREEN RECORD sa_cust (customer.*);
33 END

Notes:

In order to fit on the page, the layout section of the form is truncated, not displaying the
city and state columns.

• Line 01 The custdemo schema will be used by the compiler to determine the
data types of the form fields.

Genero Business Development Language

1228

• Line 06 contains the titles for the columns in the TABLE.
• Lines 07 thru 12 define the display area for the screen records. These rows must

be identical in a TABLE. (The fields for city and state are indicated by so the
layout will fit on this page.)

• Line 21 thru 29 In the ATTRIBUTES section the field item tags are linked to the
field description. Although there are multiple occurrences of each item tags in the
form, the description is listed only once for each unique field item tag.

• Line 32 defines the screen array in the INSTRUCTIONS section. The screen
record must contain the same number of elements as the records in the TABLE
container. This example defines the screen record with all fields defined with the
customer prefix, but you can list each field name individually.

Creating the Function

Program Arrays

A program array is an ordered set of elements all of the same data type. You can create
one-, two-, or three-dimensional arrays. The elements of the array can be simple types
or they can be records.

Arrays can be:

• static - defined with an explicit size for all dimensions.
• dynamic - has a variable size. Dynamic arrays have no theoretical size limit.

All elements of static arrays are initialized even if the array is not used. Therefore,
defining huge static arrays may use a lot of memory. The elements of dynamic arrays
are allocated automatically by the runtime system, as needed.

Example of a dynamic array of records definition:

01 DEFINE cust_arr DYNAMIC ARRAY OF RECORD
02 store_num LIKE customer.store_num,
03 city LIKE customer.city
04 END RECORD

This array variable is named cust_arr; each element of the array contains the members
store_num and city. The size of the array will be determined by the runtime system,
based on the program logic that is written to fill the array. The first element of any array
is indexed with subscript 1. You would access the store_num member of the 10th
element of the array by writing cust_arr[10].store_num.

Loading the Array: the FOREACH Statement

To load the program array in the example, you must retrieve the values from the result
set of a query and load them into the elements of the array. You must DECLARE the
cursor before the FOREACH statement can retrieve the rows.The FOREACH statement

Tutorial

1229

is equivalent to using the OPEN, FETCH and CLOSE statements to retrieve and process
all the rows selected by a query, and is especially useful when loading arrays.

01 DECLARE custlist_curs CURSOR FOR
02 SELECT store_num, city FROM customer
03 CALL cust_arr.clear()
04 FOREACH custlist_curs INTO cust_rec.*
05 CALL cust_arr.appendElement()
06 LET cust_arr[cust_arr.getLength()].* = cust_rec.*
07 END FOREACH

The FOREACH statement shown above:

1. Opens the custlist_curs cursor.
2. Clears the cust_arr array.
3. Fetches a row into the record cust_rec. This record must be defined as having

the same structure as a single element of the cust_arr array (store_num, city).
4. Appends an empty element to the cust_arr array.
5. Copies the cust_rec record into the array cust_arr using the getLength method

to determine the index of the element that was newly appended to the array.
6. Repeats steps 3, 4 and 5 until no more rows are retrieved from the database

table (automatically checks for the NOTFOUND condition).
7. Closes the cursor and exits from the FOREACH loop.

The DISPLAY ARRAY Statement

The DISPLAY ARRAY statement lets the user view the contents of an array of records,
scrolling through the display, but the user cannot change them.

The COUNT attribute

• With static arrays

When using a static array, the number of rows to be displayed is defined
by the COUNT attribute. If you do not use the COUNT attribute, the
runtime system cannot determine how much data to display, and so the
screen array remains empty.

• With dynamic arrays

When using a dynamic array, the number of rows to be displayed is
defined by the number of elements in the dynamic array; the COUNT
attribute is ignored.

Example:

01 DISPLAY ARRAY cust_arr TO sa_cust.*

This statement will display the program array cust_arr to the form fields defined in the
sa_cust screen array of the form.

Genero Business Development Language

1230

By default, the DISPLAY ARRAY statement does not terminate until the user accepts or
cancels the dialog; the Accept and Cancel actions are predefined and display on the
form. Your program can accept the dialog instead, using the ACCEPT DISPLAY
instruction.

The ARR_CURR function

When the user accepts or cancels a dialog, the ARR_CURR built-in function returns the
index (subscript number) of the row in the program array that was selected (current).

Example Library module: cust_lib.4gl

Module cust_lib.4gl
01 SCHEMA custdemo
02
03 FUNCTION display_custarr()
04
05 DEFINE cust_arr DYNAMIC ARRAY OF RECORD
06 store_num LIKE customer.store_num,
07 store_name LIKE customer.store_name,
08 city LIKE customer.city,
09 state LIKE customer.state,
10 zipcode LIKE customer.zipcode,
11 contact_name LIKE customer.contact_name,
12 phone LIKE customer.phone
13 END RECORD,
14 cust_rec RECORD
15 store_num LIKE customer.store_num,
16 store_name LIKE customer.store_name,
17 city LIKE customer.city,
18 state LIKE customer.state,
19 zipcode LIKE customer.zipcode,
20 contact_name LIKE customer.contact_name,
21 phone LIKE customer.phone
22 END RECORD,
23 ret_num LIKE customer.store_num,
24 ret_name LIKE customer.store_name,
25 curr_pa SMALLINT
26
27 OPEN WINDOW wcust WITH FORM "manycust"
28
29 DECLARE custlist_curs CURSOR FOR
30 SELECT store_num,
31 store_name,
32 city,
33 state,
34 zipcode,
35 contact_name,
36 phone
37 FROM customer
38 ORDER BY store_num

Tutorial

1231

39
40
41 CALL cust_arr.clear()
42 FOREACH custlist_curs INTO cust_rec.*
43 CALL cust_arr.appendElement()
44 LET cust_arr[cust_arr.getLength()].* = cust_rec.*
45 END FOREACH
46
47 LET ret_num = 0
48 LET ret_name = NULL
49
50 IF (cust_arr.getLength() > 0) THEN
51 DISPLAY ARRAY cust_arr TO sa_cust.*
52 IF (NOT INT_FLAG) THEN
53 LET curr_pa = arr_curr()
54 LET ret_num = cust_arr[curr_pa].store_num
55 LET ret_name = cust_arr[curr_pa].store_name
56 END IF
57
58
59 CLOSE WINDOW wcust
60 RETURN ret_num, ret_name
61
62 END FUNCTION

Notes:

• Lines 05 thru 13 define a local program array, cust_arr.
• Lines 14 thru 22 define a local program record, cust_rec. This record is used as

temporary storage for the row data retrieved by the FOREACH loop in line 42.
• Lines 23 and 24 define local variables to hold the store number and name

values to be returned to the calling function.
• Line 25 defines a variable to store the value of the program array index.
• Line 27 opens a window with the form containing the array.
• Lines 29 thru 38 DECLARE the cursor custlist_curs to retrieve the rows from

the customer table.
• Line 40 sets the variable idx to 0, this variable will be incremented in the

FOREACH loop.
• Line 41 clear the dynamic array.
• Line 42 uses FOREACH to retrieve each row from the result set into the

program record, cust_rec.
• Lines 43 thru 44 are executed for each row that is retrieved by the FOREACH.

They append a new element to the array cust_arr, nd transfer the data from the
program record into new element, using the method getLength to identify the
index of the element. When the FOREACH statement has retrieved all the rows
the cursor is closed and the FOREACH is exited.

• Lines 47 and 48 Initialize the variables used to return the customer number and
customer name.

• Lines 50 thru 57 If the length of the cust_arr array is greater than 0, the
FOREACH statement did retrieve some rows.

• Line 52 DISPLAY ARRAY turns control over to the user, and waits for the user to
accept or cancel the dialog.

Genero Business Development Language

1232

• Line 52 The INT_FLAG variable is tested to check if the user validated the dialog.
• Line 53 If the user has validated the dialog, the built-in function ARR_CURR is

used to store the index for the program array element the user had selected
(corresponding to the highlighted row in the screen array) in the variable
curr_pa.

• Lines 54 and 55 The variable curr_pa is used to retrieve the current values of
store_num and store_name from the program array and store them in the
variables ret_num and ret_name.

• Line 59 closes the window.
• Line 60 returns ret_num and ret_name to the calling function.

Compiling and using a Library
Since this is a function that could be used by other programs that reference the
customer table, the function will be compiled into a library. The library can then be
linked into any program, and the function called. The function will always return
store_num and store_name. If the FOREACH fails, or returns no rows, the calling
program will have a store_num of zero and a NULL store_name returned.

The function is contained in a file named cust_lib.4gl. This file would usually contain
additional library functions. To compile (and link, if there were additional .4gl files to be
included in the library):

 fgl2p -o cust_lib.42x cust_lib.4gl

Since a library has no MAIN function, we will need to create a small stub program if we
want to test the library function independently. This program contains the minimal
functionality to test the function.

Example: cust_stub.4gl

Module cust_stub.4gl
01 SCHEMA custdemo
02
03 MAIN
04 DEFINE store_num LIKE customer.store_num,
05 store_name LIKE customer.store_name
06
07 DEFER INTERRUPT
08 CONNECT TO "custdemo"
09 CLOSE WINDOW SCREEN
10
11 CALL display_custarr()
12 RETURNING store_num, store_name
13 DISPLAY store_num, store_name
14
15 DISCONNECT CURRENT
16

Tutorial

1233

17 END MAIN

Notes:

• Lines 04 and 05 define variables to hold the values returned by the
display_custarr function.

• Lines 07 thru 09 are required simply for the test program, to set the program up
and connect to the database.

• Line 11 calls the library function display_custarr.
• Line 13 displays the returned values to standard output for the purposes of the

test.

Now we can compile the form file and the test program, and link the library, and then test
to see if it works properly.

 fglform manycust.per
 fgl2p -o test.42r cust_stub.4gl cust_lib.42x
 fglrun test.42r

Paged Mode of DISPLAY ARRAY
The previous example retrieves all the rows from the customer table into the program
array prior to the data being displayed by the DISPLAY ARRAY statement. Using this full
list mode, you must copy into the array all the data you want to display. Using the
DISPLAY ARRAY statement in "paged" mode allows you to provide data rows
dynamically during the dialog, using a dynamic array to hold one page of data.

The following example modifies the program to use a SCROLL CURSOR to retrieve only
the store_num values from the customer table. As the user scrolls thru the result set,
statements in the ON FILL BUFFER clause of the DISPLAY ARRAY statement are used
to retrieve and display the remainder of each row, a page of data at a time. This helps to
minimize the possibility that the rows have been changed, since the rows are re-selected
immediately prior to the page being displayed.

What is the "Paged mode"?

A "page" of data is the total number of rows of data that can be displayed in the form at
one time. The length of a page can change dynamically, since the user has the option of
re-sizing the window containing the form. The run-time system automatically keeps
track of the current length of a page.

The ON FILL BUFFER clause feeds the DISPLAY ARRAY instruction with pages of
data. The following built-in functions are used in the ON FILL BUFFER clause to provide
the rows of data for the page:

Genero Business Development Language

1234

• FGL_DIALOG_GETBUFFER START() - retrieves the offset in the SCROLL
CURSOR result set, and is used to determine the starting point for retrieving and
displaying the complete rows.

• FGL_DIALOG_GETBUFFERLENGTH() - retrieves the current length of the page,
and is used to determine the number of rows that must be provided.

The statements in the ON FILL BUFFER clause of DISPLAY ARRAY are executed
automatically by the runtime system each time a new page of data is needed. For
example, if the current size of the window indicates that ten rows can be displayed at
one time, the statements in the ON FILL BUFFER clause will automatically maintain the
dynamic array so that the relevant ten rows are retrieved and/or displayed as the user
scrolls up and down through the table on the form. If the window is re-sized by the user,
the statements in the ON FILL BUFFER clause will automatically retrieve and display the
new number of rows.

AFTER DISPLAY block

The AFTER DISPLAY block is executed one time, after the user has accepted or
canceled the dialog, but before executing the next statement in the program. In this
program, the statements in this block determine the current position of the cursor when
user pressed OK or Cancel, so the correct store number and name can be returned to
the calling function.

Example of paged mode
In the first example, the records in the customer table are loaded into the program array
and the user uses the form to scroll through the program array. In this example, the user
is actually scrolling through the result set created by a SCROLL CURSOR. This
SCROLL CURSOR retrieves only the store number, and another SQL SELECT
statement is used to retrieve the remainder of the row as needed.

Module cust_lib2.4gl
01 SCHEMA custdemo
02
03 FUNCTION display_custarr()
04
05 DEFINE cust_arr DYNAMIC ARRAY OF RECORD
06 store_num LIKE customer.store_num,
07 store_name LIKE customer.store_name,
08 city LIKE customer.city,
09 state LIKE customer.state,
10 zipcode LIKE customer.zipcode,
11 contact_name LIKE customer.contact_name,
12 phone LIKE customer.phone
13 END RECORD,
14 ret_num LIKE customer.store_num,
15 ret_name LIKE customer.store_name,
16 ofs, len, i SMALLINT,

Tutorial

1235

17 sql_text STRING,
18 rec_count SMALLINT,
19 curr_pa SMALLINT
20
21 OPEN WINDOW wcust WITH FORM "manycust"
22
23 LET rec_count = 0
24 SELECT COUNT(*) INTO rec_count FROM customer
25 IF (rec_count == 0) THEN
26 RETURN 0, NULL
27 END IF
28
29 LET sql_text =
30 "SELECT store_num, store_name, city,"
31 || " state, zipcode, contact_name,"
32 || " phone"
33 || " FROM customer WHERE store_num = ?"
34 PREPARE rec_all FROM sql_text
35
36 DECLARE num_curs SCROLL CURSOR FOR
37 SELECT store_num FROM customer
38 OPEN num_curs
39
40 DISPLAY ARRAY cust_arr TO sa_cust.*
41 ATTRIBUTES(UNBUFFERED, COUNT=rec_count)
42
43 ON FILL BUFFER
44 LET ofs = FGL_DIALOG_GETBUFFERSTART()
45 LET len = FGL_DIALOG_GETBUFFERLENGTH()
46 FOR i = 1 TO len
47 WHENEVER ERROR CONTINUE
48 FETCH ABSOLUTE ofs+i-1 num_curs
49 INTO cust_arr[i].store_num
50 EXECUTE rec_all INTO cust_arr[i].*
51 USING cust_arr[i].store_num
52 WHENEVER ERROR STOP
53 IF (SQLCA.SQLCODE = NOTFOUND) THEN
54 MESSAGE "Row deleted" by another user."
55 CONTINUE FOR
56 ELSE
57 IF (SQLCA.SQLCODE < 0) THEN
58 ERROR SQLERRMESSAGE
59 CONTINUE FOR
60 END IF
61 END IF
62 END FOR
62
64 AFTER DISPLAY
65 IF (INT_FLAG) THEN
66 LET ret_num = 0
67 LET ret_name = NULL
68 ELSE
69 LET curr_pa = ARR_CURR()- ofs + 1
70 LET ret_num = cust_arr[curr_pa].store_num
71 LET ret_name = cust_arr[curr_pa].store_name
72 END IF

Genero Business Development Language

1236

73
74 END DISPLAY
75
76 CLOSE num_curs
77 FREE num_curs
78 FREE rec_all
79
80 CLOSE WINDOW wcust
81 RETURN ret_num, ret_name
82
83 END FUNCTION

Notes:

• Lines 16 thru 19 define some new variables to be used, including cont_disp to
indicate whether the function should continue.

• Line 24 uses an embedded SQL statement to store the total number of rows in
the customer table in the variable rec_count.

• Lines 25 thru 27 If the total number of rows is zero, function returns immediately
0 and NULL.

• Lines 29 thru 33 contain the text of an SQL SELECT statement to retrieve values
from a single row in the customer table. The ? placeholder will be replaced with
the store number when the statement is executed. This text is assigned to a
STRING variable, sql_text.

• Line 34 uses the SQL PREPARE statement to convert the STRING into an
executable statement, rec_all. This statement will be executed when needed, to
populate the rest of the values in the row of the program array.

• Lines 36 thru 37 DECLARE a SCROLL CURSOR num_curs to retrieve only the
store number from the customer table.

• Line 38 opens the SCROLL CURSOR num_curs.
• Lines 40 and 41 call the DISPLAY ARRAY statement, providing the COUNT to let

the statement know the total number of rows in the SQL result set.
• Lines 43 thru 62 contain the logic for the ON FILL BUFFER clause of the

DISPLAY ARRAY statement. This control block will be executed automatically
whenever a new page of data is required.

• Line 44 uses the built-in function to get the offset for the page, the starting point
for the retrieval of rows, and stores it in the variable ofs.

• Line 45 uses the built-in function to get the page length, and stores it in the
variable len.

• Lines 46 thru 62 contain a FOR loop to populate each row in the page with
values from the customer table. The variable i is incremented to populate
successive rows. The first value of i is 1.

• Lines 48 and 49 use the SCROLL CURSOR num_curs with the syntax FETCH
ABSOLUTE <row_number> to retrieve the store number from a specified row in
the result set, and to store it in row i of the program array. Since i was started at
1, the following calculation is used to determine the row number of the row to be
retrieved:

 (Offset for the page) PLUS i MINUS 1

Tutorial

1237

Notice that rows 1 thru (page_ length) of the program array are filled each
time a new page is required.

• Lines 50 and 51 execute the prepared statement rec_all to retrieve the rest of
the values for row i in the program array, using the store number retrieved by the
SCROLL CURSOR. Although this statement is within the FOR loop, it was
prepared earlier in the program, outside of the loop, to avoid unnecessary re-
processing each time the loop is executed.

• Lines 53 thru 61 test whether fetching the entire row was successful. If not, a
message is displayed to the user, and the CONTINUE FOR instruction continues
the FOR loop with the next iteration.

• Lines 64 thru 72 use an AFTER DISPLAY statement to get the row number of the
row in the array that the user had selected. If the dialog was cancelled, ret_num
is set to 0 and ret_name is set to blanks. Otherwise the values of ret_num and
ret_name are set based on the row number. The row number in the SCROLL
CURSOR result set does not correlate directly to the program array number,
because the program array was filled starting at row 1 each time. So the
following calculation is used to return the correct row number of the program
array:

 (Row number returned by ARR_CURR) MINUS
 (Offset for the page) PLUS 1

• Line 74 is the end of the DISPLAY ARRAY statement.
• Lines 76 and 77 close and free the cursor.
• Line 78 frees the prepared statement.
• Line 81 closes the window.
• Line 82 returns the values of the variables ret_num and ret_name to the calling

function.

Genero Business Development Language

1238

Tutorial Chapter 8: Array Input
Summary:

• INPUT ARRAY statement
• WITHOUT DEFAULTS clause
• The UNBUFFERED attribute
• COUNT and MAXCOUNT attributes
• Control Blocks
• Built-in Functions - ARR_CURR()
• Predefined Actions - insert and delete
• Example: Using a Screen Array to Modify Data

o Form Specification File
o The Main Block
o Function load_custall
o Function inparr_custall
o Function store_num_ok
o Function insert_cust
o Function update_cust
o Function delete_cust

This program uses a form and a screen array to allow the user to view and change
multiple records of a program array at once. The INPUT ARRAY statement and its
control blocks are used by the program to control and monitor the changes made by the
user to the records. As each record in the program array is Added, Updated, or Deleted,
the program logic makes corresponding changes in the rows of the customer database
table.

The example window shown below has been re-sized to fit on this page.

Tutorial

1239

 Display on Windows platform

The INPUT ARRAY statement
The INPUT ARRAY statement supports data entry by users into a screen array, and
stores the entered data in a program array of records. During the INPUT ARRAY
execution, the user can edit or delete existing records, insert new records, and move
inside the list of records. The program can then use the INSERT, DELETE or UPDATE
SQL statements to modify the appropriate database tables. The INPUT ARRAY
statement does not terminate until the user validates or cancels the dialog.

 INPUT ARRAY cust_arr WITHOUT DEFAULTS FROM sa_cust.*
 ATTRIBUTES (UNBUFFERED)

The example INPUT ARRAY statement binds the screen array fields in sa_cust to the
member records of the program array cust_arr. The number of variables in each record
of the program array must be the same as the number of fields in each screen record
(that is, in a single row of the screen array). Each mapped variable must have the same
data type or a compatible data type as the corresponding field.

WITHOUT DEFAULTS clause
The WITHOUT DEFAULTS clause prevents BDL from displaying any default values that
have been defined for form fields. You must use this clause if you want to see the values
of the program array.

The UNBUFFERED attribute
As in the INPUT statement, when the UNBUFFERED attribute is used, the INPUT
ARRAY statement is sensitive to program variable changes. If you need to display new
data during the execution, use the UNBUFFERED attribute and assign the values to the
program array row; the runtime system will automatically display the values to the
screen. This sensitivity applies to ON ACTION control blocks, as well.

COUNT and MAXCOUNT attributes
Some other attributes that can be used with an INPUT ARRAY statement are:

• The COUNT attribute of INPUT ARRAY defines the number of valid rows in the
program array to be displayed as default rows. When using a static array, if you
do not use the COUNT attribute, the runtime system cannot determine how much
data to display, so the screen array remains empty. When using a dynamic array,
the COUNT attribute is ignored: The number of elements in the dynamic array is
used.

Genero Business Development Language

1240

• The MAXCOUNT attribute defines the maximum number of data rows that can
be entered in the program array. In a dynamic array, the user can enter an
infinite number of rows if the MAXCOUNT attribute is not set.

Control Blocks
Your program can control and monitor the changes made by the user by using control
blocks with the INPUT ARRAY statement. The control blocks that are used in the
example program are:

• The BEFORE INPUT block - executed one time, before the runtime system gives
control to the user. You can implement initialization in this block.

• The BEFORE ROW block - executed each time the user moves to another row,
after the destination row is made the current one.

• The ON ROW CHANGE block - executed when the user moves to another row
after modifications have been made to the current row.

• The ON CHANGE <fieldname> block - executed when the cursor leaves a
specified field and the value was changed by the user after the field got the
focus.

• The BEFORE INSERT block - executed each time the user inserts a new row in
the array, before the new row is created and made the current one.

• The AFTER INSERT block - executed each time the user inserts a new row in
the array, after the new row is created. You can cancel the insert operation with
the CANCEL INSERT keywords.

• The BEFORE DELETE block - executed each time the user deletes a row from
the array, before the row is removed from the list. You can cancel the delete
operation with the CANCEL DELETE keywords.

For a more detailed explanation of the priority of control blocks see Input Array.

Built-in Functions - ARR_CURR
The language provides several built-in functions to use in an INPUT ARRAY statement.
The example program uses the ARR_CURR function to tell which array element is being
changed. This function returns the row number within the program array that is
displayed in the current line of a screen array.

Predefined actions
There are some pre-defined actions that are specific to the INPUT ARRAY statement, to
handle the insertion and deletion of rows in the screen array automatically:

• The insert action inserts a new row before current row. When the user has filled
this record, BDL inserts the data into the program array.

• The delete action deletes the current record from the display of the screen array
and from the program array, and redraws the screen array so that the deleted
record is no longer shown.

Tutorial

1241

• The append action adds a new row at the end of the list. When the user has
filled this record, BDL inserts the data into the program array.

As with the pre-defined actions accept and cancel actions discussed in Chapter 4, if
your form specification does not contain action views for these actions, default action
views (buttons on the form) are automatically created. Control attributes of the INPUT
ARRAY statement allow you to prevent the creation of these actions and their
accompanying buttons.

Example: Using a Screen Array to modify Data

The Form Specification File

The custallform.per form specification file displays multiple records at once, and is
similar to the form used in chapter 7. The item type of field f6, containing the state
values, has been changed to COMBOBOX to provide the user with a dropdown list when
data is being entered.

Form file (custallform.per)
01 SCHEMA custdemo
02
03 LAYOUT
04 TABLE
05 {
06 Id Name .. Zipcode Contact Phone
07 [f01][f02] [f07][f08][f09]
08 [f01][f02] [f07][f08][f09]
09 [f01][f02] [f07][f08][f09]
10 [f01][f02] [f07][f08][f09]
11 [f01][f02] [f07][f08][f09]
12 [f01][f02] [f07][f08][f09]
13 }
14 END
15 END
16
17 TABLES
18 customer
19 END
20
21 ATTRIBUTES
22 EDIT f01 = customer.store_num, REQUIRED;
23 EDIT f02 = customer.store_name, REQUIRED;
24 EDIT f03 = customer.addr;
25 EDIT f04 = customer.addr2;
26 EDIT f05 = customer.city;
27 COMBOBOX f6 = customer.state, ITEMS = ("IA", "IL", "WI");
28 EDIT f07 = customer.zipcode;
29 EDIT f08 = customer.contact_name;
30 EDIT f09 = customer.phone;
31 END

Genero Business Development Language

1242

32
33 INSTRUCTIONS
34 SCREEN RECORD sa_cust (customer.*);
35 END

The Main block

The single module program custall.4gl allows the user to update the customer table
using a form that displays multiple records at once.

Main block (custall.4gl)
01 SCHEMA custdemo
02
03 DEFINE cust_arr DYNAMIC ARRAY OF RECORD
04 store_num LIKE customer.store_num,
05 store_name LIKE customer.store_name,
06 addr LIKE customer.addr,
07 addr2 LIKE customer.addr2,
08 city LIKE customer.city,
09 state LIKE customer.state,
10 zipcode LIKE customer.zipcode,
11 contact_name LIKE customer.contact_name,
12 phone LIKE customer.phone
13 END RECORD
14
15
16 MAIN
17 DEFINE idx SMALLINT
18
19 DEFER INTERRUPT
20 CONNECT TO "custdemo"
21 CLOSE WINDOW SCREEN
22 OPEN WINDOW w3 WITH FORM "custallform"
23
24 CALL load_custall() RETURNING idx
25 IF idx > 0 THEN
26 CALL inparr_custall()
27 END IF
28
29 CLOSE WINDOW w3
30 DISCONNECT CURRENT
31
32 END MAIN

Notes:

• Lines 03 thru 13 define a dynamic array cust_arr having the same structure as
the customer table. The array is modular is scope.

• Line 17 defines a local variable idx, to hold the returned value from the
load_custall function.

Tutorial

1243

• Line 20 connects to the custdemo database.
• Line 22 opens a window with the form manycust. This form contains a screen

array sa_cust which is referenced in the program.
• Line 24 thru 27 call the function load_custall to load the array, which returns the

index of the array. If the load was successful (the returned index is greater than
0) the function inparr_custall is called. This function contains the logic for the
Input/Update/Delete of rows.

• Line 29 closes the window.
• Line 30 disconnects from the database.

Function load_custall

This function loads the program array with rows from the customer database table. The
logic to load the rows is identical to that in Chapter 7. Although this program loads all the
rows from the customer table, the program could be written to allow the user to query
first, for a subset of the rows. A query-by-example, as illustrated in chapter 4, can also
be implemented using a form containing a screen array such as manycust.

Function load_custall (custall.4gl)
01 FUNCTION load_custall()
02 DEFINE cust_rec RECORD LIKE customer.*
03
04
05 DECLARE custlist_curs CURSOR FOR
06 SELECT store_num,
07 store_name,
08 addr,
09 addr2,
10 city,
11 state,
12 zipcode,
13 contact_name,
14 phone
15 FROM customer
16 ORDER BY store_num
17
18
19 CALL cust_arr.clear()
20 FOREACH custlist_curs INTO cust_rec.*
21 CALL cust_arr.appendElement()
22 LET cust_arr[cust_arr.getLength()].* = cust_rec.*
23 END FOREACH
24
25 IF (cust_arr.getLength() == 0) THEN
26 DISPLAY "No rows loaded."
27 END IF
28
29 RETURN cust_arr.getLength()
30
31 END FUNCTION

Genero Business Development Language

1244

Notes:

• Line 02 defines a local record variable, cust_rec, to hold the rows fetched in
FOREACH.

• Lines 05 thru 16 declare the cursor custlist_curs to retrieve the rows from the
customer table.

• Lines 20 thru 23 retrieve the rows from the result set into the program array.
• Lines 25 thru 27 If the array is empty, we display a warning message.
• Line 29 returns the number of rows to the MAIN function.

Function inparr_custall

This is the primary function of the program, driving the logic for inserting, deleting, and
changing rows in the customer database table. Each time a record is added, deleted,
or changed on the form, the values from the current record in the program array are
used to update the customer table.

Function inparr_custall (custall.4gl)
01 FUNCTION inparr_custall(idx)
02
03 DEFINE curr_pa SMALLINT,
04 opflag CHAR(1)
05
06 INPUT ARRAY cust_arr WITHOUT DEFAULTS
07 FROM sa_cust.*
08 ATTRIBUTES (UNBUFFERED)
09
10 BEFORE INPUT
11 MESSAGE "OK exits/" ||
12 "Cancel exits & cancels current operation"
13
14 BEFORE ROW
15 LET curr_pa = ARR_CURR()
16 LET opflag = "N"
17
18 BEFORE INSERT
19 LET opflag = "T"
20
21 AFTER INSERT
22 LET opflag = "I"
23
24 BEFORE DELETE
25 IF NOT (delete_cust(curr_pa)) THEN
26 CANCEL DELETE
27 END IF
28
29 ON ROW CHANGE
30 IF (opflag <> "I") THEN
31 LET opflag = "U"
32 END IF

Tutorial

1245

33
34 BEFORE FIELD store_num
35 IF (opflag <> "T") THEN
36 NEXT FIELD store_name
37 END IF
38
39 ON CHANGE store_num
40 IF (opflag = "T") THEN
41 IF NOT store_num_ok(curr_pa) THEN
42 MESSAGE "Store already exists"
43 LET cust_arr[curr_pa].store_num = NULL
44 NEXT FIELD store_num
45 END IF
46 END IF
47
48 AFTER ROW
49 IF (INT_FLAG) THEN EXIT INPUT END IF
50 CASE
51 WHEN opflag = "I"
52 CALL insert_cust(curr_pa)
53 WHEN opflag = "U"
54 CALL update_cust(curr_pa)
55 END CASE
56
57 END INPUT
58
59 IF (INT_FLAG) THEN
60 LET INT_FLAG = FALSE
61 END IF
62
63 END FUNCTION -- inparr_custall

Notes:

• Line 03 defines the variable curr_pa, to hold the index number of the current
record in the program array.

• Line 04 defines the variable opflag, to indicate whether the operation being
performed on a record is an Insert ("I") or an Update ("U").

• Lines 06 thru 57 contain the INPUT ARRAY statement, associating the program
array cust_arr with the sa_cust screen array on the form. The attribute
WITHOUT DEFAULTS is used so the same statement can handle both Updates
and Inserts of new records. The UNBUFFERED attribute insures that values
entered into the program array are automatically displayed in the screen array on
the form.

• Lines 10 thru 12 BEFORE INPUT control block: before the INPUT ARRAY
statement is executed a MESSAGE is displayed to the user.

• Lines 14 thru 16 BEFORE ROW control block: when called in this block, the
ARR_CURR function returns the index of the record that the user is moving into
(which will become the current record). This is stored in a variable curr_pa, so
the index can be passed to other control blocks. We also initialize the opflag to
"N": This will be its value unless an update or insert is performed.

Genero Business Development Language

1246

• Lines 18 and 19 BEFORE INSERT control block: just before the user is allowed
to enter the values for a new record, the variable opflag is set to "T", indicating
an Insert operation is in progress.

• Lines 21 and 22 AFTER INSERT control block sets the opflag to "I" after the
insert operation has been completed.

• Lines 24 thru 27 BEFORE DELETE control block: Before the record is removed
from the program array, the function delete_cust is called, which verifies that the
user wants to delete the current record. In this function, when the user verifies
the delete, the index of the record is used to remove the corresponding row from
the database. Unless the delete_cust function returns TRUE, the record is not
removed from the program array.

• Lines 29 thru 32 ON ROW CHANGE control block: After row modification, the
program checks whether the modification was an insert of a new row. If not, the
opflag is set to "U" indicating an update of an existing row.

• Lines 34 thru 37 BEFORE FIELD store_num control block: the store_num field
should not be entered by the user unless the operation is an Insert of a new row,
indicated by the "T" value of opflag. The store_num column in the customer
database table is a primary key and cannot be updated. If the operation is not an
insert, the NEXT FIELD statement is used to move the cursor to the next field in
the program array, store_name, allowing the user to change all the fields in the
record of the program array except store_num.

• Lines 39 thru 46 ON CHANGE store_num control block: if the operation is an
Insert, the store_num_ok function is called to verify that the value that the user
has just entered into the field store_num of the current program array does not
already exist in the customer database table. If the store number does exist, the
value entered by the user is nulled out, and the cursor is returned to the
store_num field.

• Lines 48 thru 55 AFTER ROW control block: First, the program checks to see
whether the user wants to interrupt the INPUT operation. Then, opflag is
checked in a CASE statement, and the insert_cust or update_cust function is
called based on the opflag value. The index of the current record is passed to
the function so the database table can be modified.

• Line 57 indicates the end of the INPUT statement.
• Lines 59 thru 61 check the value of the interrupt flag INT_FLAG and re-set it to

FALSE if necessary.

Function store_num_ok

When a new record is being inserted into the program array, this function verifies that
the store number does not already exist in the customer database table. The logic in
this function is virtually identical to that used in Chapter 5.

Function store_num_ok (custall.4gl)
01 FUNCTION store_num_ok(idx)
02 DEFINE idx SMALLINT,
03 checknum LIKE customer.store_num,
04 cont_ok SMALLINT

Tutorial

1247

05
06 LET cont_ok = FALSE
07 WHENEVER ERROR CONTINUE
08 SELECT store_num INTO checknum
09 FROM customer
10 WHERE store_num =
11 cust_arr[idx].store_num
12 WHENEVER ERROR STOP
13 IF (SQLCA.SQLCODE = NOTFOUND) THEN
14 LET cont_ok = TRUE
15 ELSE
16 LET cont_ok = FALSE
17 IF (SQLCA.SQLCODE = 0) THEN
18 MESSAGE "Store Number already exists."
19 ELSE
20 ERROR SQLERRMESSAGE
21 END IF
22 END IF
23
24 RETURN cont_ok
25
26 END FUNCTION

Notes:

• Line 02 The index of the current record in the program array is stored in the
variable idx, passed to this function from the INPUT ARRAY control block ON
CHANGE store_num.

• Line 03 The variable checknum is defined to hold the store_num returned by
the SELECT statement.

• Line 06 sets the variable cont_ok to an initial value of FALSE. This variable is
used to indicate whether the store number is unique.

• Lines 07 thru 12 use an embedded SQL SELECT statement to check whether
the store_num already exists in the customer table. The index passed to this
function is used to obtain the value that was entered into the store_num field on
the form. The entire database row is not retrieved by the SELECT statement
since the only information required by this program is whether the store number
already exists in the table. The SELECT is surrounded by WHENEVER ERROR
statements.

• Lines 13 thru 22 test SQLCA.SQLCODE to determine the success of the
SELECT statement. The variable cont_ok is set to indicate whether the store
number entered by the user is unique.

• Line 24 returns the value of cont_ok to the calling function.

Function insert_cust

This function inserts a new row into the customer database table.

Function insert_cust (custall.4gl)

Genero Business Development Language

1248

01 FUNCTION insert_cust(idx)
02 DEFINE idx SMALLINT
03
04 WHENEVER ERROR CONTINUE
05 INSERT INTO customer
06 (store_num,
07 store_name,
08 addr,
09 addr2,
10 city,
11 state,
12 zipcode,
13 contact_name,
14 phone)
15 VALUES (cust_arr[idx].*)
16 WHENEVER ERROR STOP
17
18 IF (SQLCA.SQLCODE = 0) THEN
19 MESSAGE "Store added"
20 ELSE
21 ERROR SQLERRMESSAGE
22 END IF
23
24 END FUNCTION

Notes:

• Line 02 This function is called from the AFTER INSERT control block of the
INPUT ARRAY statement. The index of the record that was inserted into the
cust_arr program array is passed to the function and stored in the variable idx.

• Lines 04 thru 16 uses an embedded SQL INSERT statement to insert a row into
the customer database table. The values to be inserted into the customer table
are obtained from the record just inserted into the program array. The INSERT is
surrounded by WHENEVER ERROR statements.

• Lines 18 thru 22 test the SQLCA.SQLCODE to see if the insert into the database
was successful, and return an appropriate message to the user.

Function update_cust

This function updates a row in the customer database table. The functionality is very
simple for illustration purposes, but it could be enhanced with additional error checking
routines similar to the example in chapter 6.

Function update_cust (custall.4gl)
01 FUNCTION update_cust(idx)
02 DEFINE idx SMALLINT
03
04 WHENEVER ERROR CONTINUE
05 UPDATE customer
06 SET

Tutorial

1249

07 store_name = cust_arr[idx].store_name,
08 addr = cust_arr[idx].addr,
09 addr2 = cust_arr[idx].addr2,
10 city = cust_arr[idx].city,
11 state = cust_arr[idx].state,
12 zipcode = cust_arr[idx].zipcode,
13 contact_name = cust_arr[idx].contact_name,
14 phone = cust_arr[idx].phone
15 WHERE store_num = cust_arr[idx].store_num
16 WHENEVER ERROR STOP
17
18 IF (SQLCA.SQLCODE = 0) THEN
19 MESSAGE "Dealer updated."
20 ELSE
21 ERROR SQLERRMESSAGE
22 END IF
23
24 END FUNCTION

Notes:

• Line 02 The index of the current record in the cust_arr program array is passed
as idx from the ON ROW CHANGE control block.

• Lines 04 thru 16 use an embedded SQL UPDATE statement to update a row in
the customer database table. The index of the current record in the program
array is used to obtain the value of store_num that is to be matched in the
customer table. The customer row is updated with the values stored in the
current record of the program array. The UPDATE is surrounded by
WHENEVER ERROR statements.

• Lines 18 thru 22 test the SQLCA.SQLCODE to see if the update of the row in the
database was successful, and return an appropriate message to the user.

Function delete_cust

This function deletes a row from the customer database table. A modal Menu similar to
that illustrated in Chapter 6 is used to verify that the user wants to delete the row.

Function delete_cust (custall.4gl)
01 FUNCTION delete_cust(idx)
02 DEFINE idx SMALLINT,
03 del_ok SMALLINT
04
05 LET del_ok = FALSE
06
07 MENU "Delete" ATTRIBUTES (STYLE="dialog",
08 COMMENT="Delete this row?")
09 COMMAND "OK"
10 LET del_ok = TRUE
11 EXIT MENU
12 COMMAND "Cancel"

Genero Business Development Language

1250

13 LET del_ok = FALSE
14 EXIT MENU
15 END MENU
16
17 IF del_ok = TRUE THEN
18 WHENEVER ERROR CONTINUE
20 DELETE FROM customer
21 WHERE store_num = cust_arr[idx].store_num
22 WHENEVER ERROR STOP
23
24 IF (SQLCA.SQLCODE = 0) THEN
25 LET del_ok = TRUE
26 MESSAGE "Dealer deleted."
27 ELSE
28 LET del_ok = FALSE
29 ERROR SQLERRMESSAGE
30 END IF
31 END IF
32
33 RETURN del_ok
34
35 END FUNCTION

Notes:

• Line 02 The index of the current record in the cust_arr program array is passed
from the BEFORE DELETE control block of INPUT ARRAY, and stored in the
variable idx. The BEFORE DELETE control block is executed immediately
before the record is deleted from the program array, allowing the logic in this
function to be executed before the record is removed from the program array.

• Line 05 sets the initial value of del_ok to FALSE.
• Lines 07 thru 15 display the modal Menu to the user for confirmation of the

Delete.
• Lines 18 thru 22 use an embedded SQL DELETE statement to delete the row

from the customer database table. The variable idx is used to determine the
value of store_num in the program array record that is to be used as criteria in
the DELETE statement. This record in the program array has not yet been
removed, since this delete_cust function was called in a BEFORE DELETE
control block. The DELETE is surrounded by WHENEVER ERROR statements.

• Lines 24 thru 30 test the SQLCA.SQLCODE to see if the update of the row in the
database was successful, and return an appropriate message to the user. The
value del_ok is set based on the success of the SQL DELETE statement.

• Line 33 returns the variable del_ok to the BEFORE DELETE control block,
indicating whether the Delete of the customer row was successful.

Tutorial

1251

Tutorial Chapter 9: Reports
Summary:

• Genero BDL Reports
• The Report Driver
• The Report Definition

o DEFINE section
o OUTPUT section
o ORDER section
o FORMAT section

• Two-Pass Reports
• Example: Customer Report
• Interrupting a Report

o The interrupt Action View
o Refreshing the Display
o Using a ProgressBar

• Example: Interruption Handling

This program generates a simple report of the data in the customer database table. The
two parts of a report, the report driver logic and the REPORT program block (report
definition) are illustrated. Then the program is modified to display a window containing a
Progressbar, and allowing the user to interrupt the report before it is finished.

BDL Reports
Genero BDL reports are easy to design and generate. The output from a report can be
formatted so that the eye of the reader can easily pick out the important data.

Genero Business Development Language

1252

The program logic that specifies what data to report (the report driver) is separate from
the program logic that formats the output of the report (the report definition). This allows
the report driver to supply data for multiple reports simultaneously, if desired. And, you
can design template report definitions that might be used with report drivers that access
different database tables.

The Report Driver
The part of a program that generates the rows of report data (also known as input
records) is called the report driver. The primary concern of the row-producing logic is the
selection of rows of data. The actions of a report driver are:

1. Use the START REPORT statement to initialize each report to be produced. We
recommend that clauses regarding page setup and report destination be included
in this statement.

2. Use a forward-only database cursor to read rows from a database, if that is the
source of the report data.

3. Whenever a row of report data is available, use OUTPUT TO REPORT to send it
to the report definition.

4. If an error is detected, use TERMINATE REPORT to stop the report process.
5. When the last row has been sent, use FINISH REPORT to end the report.

From the standpoint of the row-producing side, these are the only statements required to
create a report.

The Report Definition
The report definition uses a REPORT program block to format the input records.
REPORT is global in scope. It is not, however, a function; it is not reentrant, and CALL
cannot invoke it.

The code within a REPORT program block consists of several sections, which must
appear in the order shown:

The DEFINE section

Here you define the variables passed as parameter to the report, and the
local variables. A report can have its own local variables for subtotals,
calculated results, and other uses.

The OUTPUT section (optional)

Although you can define page setup and destination information in this
section, the format of the report will be static. Providing this same
information in the START REPORT statement provides more flexibility.

Tutorial

1253

The ORDER BY section (optional)

Here you specify the required order for the data rows, when using
groupping. Include this ORDER BY section if values that the report
definition receives from the report driver are significant in determining
how BEFORE GROUP OF or AFTER GROUP OF control blocks will
process the data in the formatted report output. To avoid the creation of
additional resourcesto sort the data, use the ORDER EXTERNAL
statement in this section if the data to be used in the report has already
been sorted by an ORDER BY clause in the SQL statement.

The FORMAT section

Here you describe what is to be done at a particular stage of report
generation. The code blocks you write in the FORMAT section are the
heart of the report program block and contain all its intelligence. You can
use most BDL statements in the FORMAT section of a report; you cannot,
however, include any SQL statements.

BDL invokes the sections and blocks within a report program block non-
procedurally, at the proper time, as determined by the report data. You do
not have to write code to calculate when a new page should start, nor do
you have to write comparisons to detect when a group of rows has started
or ended. All you have to write are the statements that are appropriate to
the situation, and BDL supplies the “glue” to make them work.

You can write control blocks in the FORMAT section to be executed for
the following events:

o Top (header) of the first page of the report (FIRST
PAGE HEADER)

o Top (header) of every page after the first (PAGE
HEADER)

o Bottom (footer) of every page (PAGE TRAILER)
o Each new row as it arrives (ON EVERY ROW)
o The start end of a group of rows (BEFORE

GROUP OF) - a group is one or more rows having
equal values in a particular column.

o The end of a group of rows (AFTER GROUP OF) -
in this block, you typically print subtotals and other
aggregate data for the group that is ending. You
can use aggregate functions to calculate and
display frequencies, percentages, sums, averages,
minima, and maxima for this information.

o After the last row has been processed (ON LAST
ROW) - aggregate functions calculated over all the
rows of the report are typically printed here.

Genero Business Development Language

1254

Two-pass reports
A two-pass report is one that creates temporary tables, therefore there must be an active
connection to the database. The two-pass report handles sorts internally. During the first
pass, the report engine sorts the data and stores the sorted values in a temporary file in
the database. During the second pass, it calculates any aggregate values and produces
output from data in the temporary files.

If your report definition includes any of the following, a two-pass report is required:

• An ORDER BY section without the EXTERNAL keyword.
• The GROUP PERCENT(*) aggregate function anywhere in the report.
• Any aggregate function outside the AFTER GROUP OF control block.

Warning: Some databases do not support temporary tables. Avoid a two-pass
report for performance reasons and for portability.

Example: Customer Report

The Report Driver

Report Driver (custreport.4gl)
01 SCHEMA custdemo
02
03 MAIN
04 DEFINE pr_custrec RECORD
05 store_num LIKE customer.store_num,
06 store_name LIKE customer.store_name,
07 addr LIKE customer.addr,
08 addr2 LIKE customer.addr2,
09 city LIKE customer.city,
10 state LIKE customer.state,
11 zipcode LIKE customer.zipcode
12 END RECORD
13
14 CONNECT TO "custdemo"
15
16 DECLARE custlist CURSOR FOR
17 SELECT store_num,
18 store_name,
19 addr,
20 addr2,
21 city,
22 state,
23 zipcode
24 FROM customer
25 ORDER BY state, city
26
27 START REPORT cust_list TO FILE "customers.txt"

Tutorial

1255

28 WITH LEFT MARGIN = 5, TOP MARGIN = 2,
29 BOTTOM MARGIN = 2
30
31 FOREACH custlist INTO pr_custrec.*
32 OUTPUT TO REPORT cust_list(pr_custrec.*)
33 END FOREACH
34
35 FINISH REPORT cust_list
36
37 DISCONNECT CURRENT
38
39 END MAIN

Notes:

• Lines 04 thru 12 define a local program record pr_custrec, with a structure like
the customer database table.

• Line 14 connects to the custdemo database.
• Lines 16 thru 25 define a custlist cursor to retrieve the customer table data

rows, sorted by state, then city.
• Lines 27 thru 29 starts the REPORT program block named cust_list, and

includes a report destination and page formatting information.
• Lines 31 thru 33 retrieve the data rows one by one into the program record

pr_custrec and pass the record to the REPORT program block.
• Line 35 closes the report driver and executes any final REPORT control blocks to

finish the report.
• Line 37 disconnects from the custdemo database.

The Report Definition

Report definition (custreport.4gl
01 REPORT cust_list(r_custrec)
02 DEFINE r_custrec RECORD
03 store_num LIKE customer.store_num,
04 store_name LIKE customer.store_name,
05 addr LIKE customer.addr,
06 addr2 LIKE customer.addr2,
07 city LIKE customer.city,
08 state LIKE customer.state,
09 zipcode LIKE customer.zipcode
10 END RECORD
11
12 ORDER EXTERNAL BY r_custrec.state, r_custrec.city
13
14 FORMAT
15
16 PAGE HEADER
17 SKIP 2 LINES
18 PRINT COLUMN 30, "Customer Listing"
19 PRINT COLUMN 30, "As of ", TODAY USING "mm/dd/yy"

Genero Business Development Language

1256

20 SKIP 2 LINES
21
22 PRINT COLUMN 2, "Store #",
23 COLUMN 12, "Store Name",
24 COLUMN 40, "Address"
25
26 SKIP 2 LINES
27
28 ON EVERY ROW
29 PRINT COLUMN 5, r_custrec.store_num USING "####",
30 COLUMN 12, r_custrec.store_name CLIPPED,
31 COLUMN 40, r_custrec.addr CLIPPED;
32
33 IF r_custrec.addr2 IS NOT NULL THEN
34 PRINT 1 SPACE, r_custrec.addr2 CLIPPED, 1 space;
35 ELSE
36 PRINT 1 SPACE;
37 END IF
38
39 PRINT r_custrec.city CLIPPED, 1 SPACE,
40 r_custrec.state, 1 SPACE,
41 r_custrec.zipcode CLIPPED
42
43 BEFORE GROUP OF r_custrec.city
44 SKIP TO TOP OF PAGE
45
46 ON LAST ROW
47 SKIP 1 LINE
48 PRINT "TOTAL number of customers: ",
49 COUNT(*) USING "#,###"
50
51 PAGE TRAILER
52 SKIP 2 LINES
53 PRINT COLUMN 30, "-", PAGENO USING "<<", " -"
54
55 END REPORT

Notes:

• Line 01 The REPORT control block has the pr_custrec record passed as an
argument.

• Lines 02 thru 10 define a local program record r_custrec to store the values that
the calling routine passes to the report.

• Line 12 tells the REPORT control block that the records will be passed sorted in
order by state, then city. The ORDER EXTERNAL syntax is used to prevent a
second sorting of the program records, since they have already been sorted by
the SQL statement in the report driver.

• Line 14 is the beginning of the FORMAT section.
• Lines 16 thru 20 The PAGE HEADER block specifies the layout generated at the

top of each page.
Each PRINT statement starts a new line containing text or a value. The PRINT
statement can have multiple COLUMN clauses, which all print on the same line.
The COLUMN clause specifies the offset of the first character from the first
position after the left margin. The values to be printed can be program variables,

Tutorial

1257

static text, or built-in functions.
The built-in TODAY operator generates the current date; the USING clauses
formats this.
The SKIP statement inserts empty lines.
The PAGE HEADER for this report will appear as follows:

 <skipped line>
 <skipped line>
 Customer Listing
 As of <date>
 <skipped line>
 <skipped line>
 Store # Store Name Address
 <skipped line>
 <skipped line>

• Lines 28 thru 41 specifies the layout generated for each row. The data can be
read more easily if each program record passed to the report is printed on a
single row. Although there are four PRINT statements in this control block, the
first three PRINT statements are terminated by semi-colons. This suppresses
the new line signal, resulting in just a single row of printing.
The CLIPPED keyword eliminates any trailing blanks after the name, addresses,
and city values.
Any IF statement that is included in the FORMAT section must contain the same
number of PRINT/SKIP statements regardless of which condition is met.
Therefore, if r_custrec.addr2 is not NULL, a PRINT statement prints the value
followed by a single space; if it is NULL, a PRINT statement prints a single
space. As mentioned earlier, each PRINT statement is followed by a semicolon
to suppress the new-line.
The output for each row will be as follows:

 106 TrueTest Hardware 6123 N. Michigan Ave Chicago IL
60104
 101 Bandy's Hardware 110 Main Chicago IL 60068

• Lines 43 and 44 start a new page for each group containing the same value for
r_custrec.city.

• Lines 46 thru 49 specify a control block to be executed after the statements in
ON EVERY ROW and AFTER GROUP OF control block. This prints at the end of
the report. The aggregate function COUNT(*) is used to print the total number of
records passed to the report. The USING keyword formats the number. This
appears as follows:

 <skipped line>
 Total number of customers: <count>

• Lines 51 thru 53 specifies the layout generated at the bottom of each page. The
built-in function PAGENO is used to print the page number. The USING keyword
formats the number, left-justified.
This appears as follows:

Genero Business Development Language

1258

 <skipped line>
 <skipped line>
 - <pageno> -

Interrupting a Report
When a program performs a long process like a loop, a report, or a database query, the
lack of user interaction statements within the process can prevent the user from
interrupting it. In this program, the preceding example is modified to display a form
containing start, exit, and interrupt buttons, as well as a progress bar showing how close
the report is to completion.

The interrupt action view
In order to allow a user to stop a long-running report, for example, you can define an
action view with the name "interrupt". When the runtime system takes control of the
program, the client automatically enables a local interrupt action to let the user send an
asynchronous request to the program. This interruption request is interpreted by the
runtime system as a traditional interruption signal, as if it was generated on the server
side, and the INT_FLAG variable is set to TRUE.

Refreshing the Display
The Abstract User Interface tree on the front end is synchronized with the runtime
system AUI tree when a user interaction instruction takes the control. This means that
the user will not see any display as long as the program is doing batch processing, until
an interactive statement is reached. If you want to show something on the screen while
the program is running in a batch procedure, you must force synchronization with the
front end.

Tutorial

1259

The Interface class is a built-in class provided to manipulate the user interface. The
refresh() method of this class synchronizes the front end with the current AUI tree. You
do not need to instantiate this class before calling any of its methods:

 CALL ui.Interface.refresh()

Using a ProgressBar
One of the form item types is a PROGRESSBAR, a horizontal line with a progress
indicator. The position of the PROGRESSBAR is defined by the value of the
corresponding form field. The value can be changed from within a BDL program by using
the DISPLAY instruction to set the value of the field.

This type of form item does not allow data entry; it is only used to display integer values.
The VALUEMIN and VALUEMAX attributes of the PROGRESSBAR define the lower and
upper integer limit of the progress information. Any value outside this range will not be
displayed.

Example: Interruption Handling

The Form Specification File

A form containing a progress bar is defined in the form specification file reportprog.per.

Form (reportprog.per)
01 LAYOUT (TEXT="Report")
02 GRID
03 {
04
05 [f001]
06
07 [ib]
08
09
10 }
11 END
12 END
13
14 ATTRIBUTES
15 PROGRESSBAR f001 = formonly.rptbar, VALUEMIN=1,VALUEMAX=10;
16 BUTTON ib : interrupt, TEXT="Stop";
17 END

Notes:

• Line 05 contains the form field for the PROGRESSBAR.
• Line 07 contains the form field for the interrupt action view.

Genero Business Development Language

1260

• Line 15 defines the PROGRESSBAR as formonly since its type is not derived
from a database column. The values range from 1 to 10. The maximum value
for the PROGRESSBAR was chosen arbitrarily, and was set rather low since
there aren't many rows in the customer database table.

• Line 16 defines the button ib as an interrupt action view with TEXT of "Stop".

Modifications to custreports.4gl

The MAIN program block has been modified to open a window containing the form with
a PROGRESSBAR and a MENU, to allow the user to start the report and to exit. A new
function, cust_report, is added for interruption handling. The report definition, the
cust_list REPORT block, remains the same as in the previous example.

Changes to the MAIN program block (custreport2.4gl)
01 MAIN
02
03 DEFER INTERRUPT
04 CONNECT TO "custdemo"
05 CLOSE WINDOW SCREEN
06 OPEN WINDOW w3 WITH FORM "reportprog"
07
08 MENU "Reports"
09 ON ACTION start
10 MESSAGE "Report starting"
11 CALL cust_report()
12 ON ACTION exit
13 EXIT MENU
14 END MENU
15
16 CLOSE WINDOW w3
17 DISCONNECT CURRENT
18
19 END MAIN

Notes:

• Line 03 prevents the user from interrupting the program except by using the
interrupt action view.

• Line 06 Opens the window and form containing the PROGRESSBAR.
• Lines 08 thru 14 define a MENU with two actions:

start - displays a MESSAGE and calls the function cust_report.
exit - quits the MENU.

The cust_report function

This new function contains the report driver, together with the logic to determine whether
the user has attempted to interrupt the report.

Tutorial

1261

Function cust_report (custreport2.4gl)
21 FUNCTION cust_report()
22
23 DEFINE pr_custrec RECORD
24 store_num LIKE customer.store_num,
25 store_name LIKE customer.store_name,
26 addr LIKE customer.addr,
27 addr2 LIKE customer.addr2,
28 city LIKE customer.city,
29 state LIKE customer.state,
30 zipcode LIKE customer.zipcode
31 END RECORD,
32 rec_count, rec_total,
33 pbar, break_num INTEGER
34
35 LET rec_count = 0
36 LET rec_total = 0
37 LET pbar = 0
38 LET break_num = 0
39 LET INT_FLAG = FALSE
40
41 SELECT COUNT(*) INTO rec_total FROM customer
42
43 LET break_num = (rec_total/10)
44
45 DECLARE custlist CURSOR FOR
46 SELECT store_num,
47 store_name,
48 addr,
49 addr2,
50 city,
51 state,
52 zipcode
53 FROM CUSTOMER
54 ORDER BY state, city
55
56 START REPORT cust_list TO FILE "customers.txt"
57 FOREACH custlist INTO pr_custrec.*
58 OUTPUT TO REPORT cust_list(lr_custrec.*)
59 LET rec_count = rec_count+1
60 IF (rec_count MOD break_num)= 0 THEN
61 LET pbar = pbar+1
62 DISPLAY pbar TO rptbar
63 CALL ui.Interface.refresh()
64 IF (INT_FLAG) THEN
65 EXIT FOREACH
66 END IF
67 END IF
68 END FOREACH
69
70 IF (INT_FLAG) THEN
71 LET INT_FLAG = FALSE
72 MESSAGE "Report cancelled"
73 ELSE
74 FINISH REPORT cust_list
75 MESSAGE "Report finished"

Genero Business Development Language

1262

76 END IF
77
78 END FUNCTION

Notes:

• Lines 23 thru 31 now define the pr_custrec record in this function.
• Lines 32 thru 33 define some additional variables.
• Lines 35 thru 39 initialize the local variables.
• Line 38 sets INT_FLAG to FALSE.
• Line 41 uses an embedded SQL statement to retrieve the count of the rows in

the customer table and stores it in the variable rec_total.
• Line 43 calculates the value of break_num based on the maximum value of the

PROGRESSBAR, which is set at 10. After break_num rows have been
processed, the program will increment the PROGRESSBAR. The front end
cannot handle interruption requests properly if the display generates a lot of
network traffic, so we do not recommend refreshing the AUI and checking
INT_FLAG after every row.

• Lines 45 thru 54 declare the custlist cursor for the customer table.
• Line 56 starts the report, sending the output to the file custout.
• Lines 58 thru 68 contain the FOREACH statement to output each record to the

same report cust_list used in the previous example.
• Line 59 increments rec_count to keep track of how many records have been

output to the report.
• Line 60 tests whether a break point has been reached, using the MOD (Modulus)

function.
• Line 61 If a break point has been reached, the value of pbar is incremented.
• Line 62 The pbar value is displayed to the rptbar PROGRESSBAR form field.
• Line 63 The front end is synced with the current AUI tree.
• Line 64 thru 66 The value of INT_FLAG is checked to see whether the user has

interrupted the program. If so, the FOREACH loop is exited prematurely.
• Lines 70 thru 76 test INT_FLAG again and display a message indicating whether

the report finished or was interrupted. If the user did not interrupt the report, the
FINISH REPORT statement is executed.

Tutorial

1263

Tutorial Chapter 10: Localization
Summary:

• Localization Support
• Localized Strings
• Programming Steps
• Strings in Sources
• Generating Source String Files
• Compiling Source String Files
• Deploying Compiled String Files
• Example

Localization Support
Localization Support is a feature of the language that allows you to write application
supporting multi-byte character sets as well as date, numeric and currency formatting in
accordance with a locale.

Localization Support is based on the system libraries handling the locale, a set of
language and cultural rules.

See Localization for more details.

Localized Strings
Localized Strings allow you to internationalize your application using different languages,
and to customize it for specific industry markets in your user population. Any string that
is used in your Genero BDL program, such as messages to be displayed or the text on a
form, can be defined as a Localized String. At runtime, the Localized String is replaced
with text stored in a String File.

String Files must be compiled, and then deployed at the user site.

Genero Business Development Language

1264

Programming Steps
The following steps describe how to use localized strings in your sources:

1. Modify your form specification files and program module files to contain Localized
Strings by inserting the % sign in front of the strings that you wish to be replaced.

2. Use the -m option of fglform to extract the Localized Strings from each form
specification file into a separate Source String File (extension .str).

3. Use the -m option of fglcomp to extract the Localized Strings from each program
module into a separate Source String File (extension .str).

4. Concatenate the Source String Files together logically; for example, you may
have a common.str file containing the strings common to all applications, a
utility.str file containing the strings common to utilities, and an application.str
file with the strings specific to the particular application.

Tutorial

1265

5. At this point the names of the Localized Strings may be unwieldy, since they
were derived from the actual strings in the program files. You can modify the
string names in your Source String Files and the corresponding program files so
they form keys that are logical. For example:

 $"common.accept" = "OK"
 $"common.cancel"= "Cancel"
 $"common.quit" = "Quit"

6. Make the Source String Files available to the programming teams for use as a
reference when creating or modifying programs.

7. Copy the Source String Files, and modify the replacement text for each of your
market segments or user languages.

8. Compile the Source String Files (.42s).
9. Create the entries in FGLPROFILE to specify what string files must be used at

runtime.
10. Deploy .42s compiled string files to user sites.

Strings in Sources
A Localized String begins with a percent sign (%), followed by the name of the string
identifying the replacement text to be loaded from the Compiled String File. Since the
name is a string, you can use any characters in the name, including blanks.

LET s1 = %"Greetings"

The string "Greetings" is both the name of the string and the default text which would be
used if no string resource files are provided at runtime.

Genero Business Development Language

1266

Localized Strings can be used any place where a STRING literal can be used, including
form specification files.

 The SFMT() and LSTR() operators can be used to manipulate the contents of Localized
Strings. For example, the program line:

 DISPLAY SFMT(%"cust.valid", custnum)

reads from the associated Compiled String File:

 "cust.valid"="customer %1 is valid"

resulting in the following display when the value of custnum is 200:

 "customer 200 is valid"

Extracting Strings
You can generate a Source String File by extracting all of the Localized Strings from
your program module or form specification file, using the -m option of fglcomp or fglform:

 fglcomp -m mystring.4gl > mystring.str

The generated file would have the format:

 "Greetings" = "Greetings"

You could then change the replacement text in the file:

 "Greetings" = "Hello"

The source string file must have the extension .str.

Compiling Source String Files (fglmkstr)
Source String Files must be compiled to binary files in order to be used at runtime:

 fglmkstr mystring.str

The resulting Compiled String File has the extension .42s (mystring.42s).

Tutorial

1267

Deploying String Files
The Compiled String Files, produced by the fglmkstr tool, must be deployed on the
production sites. The file extension is .42s.

By default, the runtime system searches for a .42s file with the same name prefix as the
current .42r program.

You can specify a list of string files with entries in the FGLPROFILE configuration file:

 fglrun.localization.file.count = 2
 fglrun.localization.file.1.name = "firstfile"
 fglrun.localization.file.2.name = "secondfile"

The current directory and the path defined in the DBPATH environment variable, are
searched for the .42s Compiled String File.

Tip:

1. Create several string files with the same names, but locate them in different
directories. You can then easily switch from one set of string files to another, just
by changing the DBPATH environment variable. You typically create one string
file directory per language, and if needed, you can create subdirectories for each
code-set (strings/english/iso8859-1, strings/french/windows1252).

Example:

form.per - the form specification file

This form specification file uses the LABEL form item type to display the text associated
with the form fields containing data from the customer database table. LABEL item
types contain read-only values.

form.per
01 SCHEMA custdemo
02
03 LAYOUT
04 GRID
05 {
06 [lab1] [f01]
07
08 [lab2] [f02]
09
10 [lab3] [f03]
11 }
12 END --grid
13 END -- layout

Genero Business Development Language

1268

14
15 TABLES customer
16
17 ATTRIBUTES
18 LABEL lab1 : TEXT=%"customer.store_num";
19 EDIT f01 = customer.store_num,
20 COMMENT=%"customer.dealermsg";
21 LABEL lab2 : TEXT=%"customer.store_name";
22 EDIT f02 = customer.store_name;
23 LABEL lab3 : TEXT=%"customer.city";
24 EDIT f03 = customer.city;
25 END -- attributes

Notes:

• Lines 06 and 18: The form contains a LABEL, lab1; the TEXT of the LABEL is a
Localized String, customer.store_num.

• Line 20: The COMMENT of the EDIT f01 is a Localized String,
customer.dealermsg.

• Lines 08 and 21: The TEXT of the LABEL lab2 is a Localized String,
customer.store_name.

• Lines 10 and 23: The TEXT of the LABEL lab3 is a Localized String,
customer.city.

These strings will be replaced at runtime.

form.str - the String File associated with this form

After translation, the string source file would look like this:

01 "customer.store_num"="Store No"
02 "customer.dealernummsg"="This is the dealer number"
03 "customer.store_name"="Store Name"
04 "customer.city"="City"

prog.4gl - the program module

This program module opens the form containing Localized Strings:

Module prog.4gl
01 SCHEMA custdemo
02
03 MAIN
04 CONNECT TO "custdemo"
05 CLOSE WINDOW SCREEN
06 OPEN WINDOW w1 WITH FORM "stringform"
07 MESSAGE %"customer.msg"
08 MENU %"customer.menu"
09 ON ACTION query
10 CALL query_cust()
11 ON ACTION exit

Tutorial

1269

12 EXIT MENU
13 END MENU
14 CLOSE WINDOW w1
15 DISCONNECT CURRENT
16 END MAIN
17
18 FUNCTION query_cust() -- displays one row
19 DEFINE l_custrec RECORD
20 store_num LIKE customer.store_num,
21 store_name LIKE customer.store_name,
22 city LIKE customer.city
23 END RECORD,
24 msg STRING
25
26 WHENEVER ERROR CONTINUE
27 SELECT store_num, store_name, city
28 INTO l_custrec.*
29 FROM customer
30 WHERE store_num = 101
31 WHENEVER ERROR STOP
32
33 IF SQLCA.SQLCODE = 0 THEN
34 LET msg = SFMT(%"customer.valid",
35 l_custrec.store_num)
36 MESSAGE msg
37 DISPAY BY NAME l_custrec.*
38 ELSE
39 MESSAGE %"customer.notfound"
40 END IF
41
42 END FUNCTION

Notes:

• Lines 07, 08, 34 and 39 contain Localized Strings for the messages that the
program displays.

These strings will be replaced at runtime.

prog.str - the String File associated with this program module

After translation, the string source file would look like this:

01 "customer.msg"="Displays a Dealer"
02 "customer.menu"="Dealer"
03 "customer.valid"="Customer %1 is valid"
04 "customer.notfound"="Customer was not found"

Compiling the program

The program is compiled into cust.42r.

Genero Business Development Language

1270

 fgl2p -o cust.42r prog.4gl

Compiling the string files

Both string files must be compiled:

fglmkstr form.str
fglmkstr prog.str

The resulting Compiled String Files are form.42s and prog.42s.

Setting the list of compiled string files in FGLPROFILE

The list of Compiled String Files is specified in the FGLPROFILE configuration file. The
runtime system searches for a file with the "42s" extension in the current directory and in
the path list defined in the DBPATH environment variable. Specify the total number of
files, and list each file with an index number.

Example file fglprofile:

01 fglrun.localization.file.count = 2
02 fglrun.localization.file.1.name = "form"
03 fglrun.localization.file.2.name = "prog"

Setting the environment

Set the FGLPROFILE environment variable:

 export FGLPROFILE=./fglprofile

Running the program

Run the program:

 fglrun cust

The Resulting Form Display

Display of the form using the default values for the strings:

Tutorial

1271

Display of the form when the Compiled String File is deployed:

Genero Business Development Language

1272

Tutorial Chapter 11: Master/Detail
Summary:

• The Master-Detail sample
• The Makefile
• The Customer List module
• The Stock List mode
• The Master-Detail Form Specification File
• The Orders Program

o The MAIN program block
o Function setup_actions
o Function order_new
o Function order_insert
o Function order_query
o Function order_fetch
o Function order_select
o Function order_fetch_rel
o Function order_total
o Function order_close
o Function items_fetch
o Function items_show
o Function items_inpupd
o Function items_line_total
o Function item_insert
o Function item_update
o Function item_delete
o Function get_stock_info

The Master-Detail sample
The example discussed in this chapter is designed for the input of order information
(headers and order lines), illustrating a typical master-detail relationship. The form used
by the example contains fields from both the orders and items tables in the custdemo
database.

Tutorial

1273

 Display on Windows platforms

Since there are multiple items associated with a single order, the rows from the items
table are stored in a program array and displayed in a table container on the form. Most
of the functionality to query/add/update/delete has been covered in previous chapters;
this chapter will focus on the master/detail form and the unique features of the
corresponding program.

Note: This type of relationship could also be handled using Multiple Dialogs, allowing the
interactive statements to operate in parallel. See Multiple Dialogs for additional
information. There are extensive sample programs using Multiple Dialogs in the
<Genero-BDL-install-directory>/demo/MultipleDialogs directory.

The Makefile
The BDL modules and forms used by the application in this chapter are compiled/linked
by using a Makefile. This file is interpreted by the 'make' utility, which is a well-known
tool to build large programs based on multiple sources and forms.

The make utility reads the dependency rules defined in the Makefile for each program
component, and executes the commands associated with the rules.

This section only describes the Makefile used in this example. For more details about
Makefiles, see the make utility documentation.

Makefile
01 all:: orders
02
03 orders.42m: orders.4gl

Genero Business Development Language

1274

04 fglcomp -M orders.4gl
05
06 orderform.42f: orderform.per
07 fglform -M orderform.per
08
09 custlist.42m: custlist.4gl
10 fglcomp -M custlist.4gl
11
12 custlist.42f: custlist.per
13 fglform -M custlist.per
14
15 stocklist.42m: stocklist.4gl
16 fglcomp -M stocklist.4gl
17
18 stocklist.42f: stocklist.per
19 fglform -M stocklist.per
20
21 MODULES=\
22 orders.42m\
23 custlist.42m\
24 stocklist.42m
25
26 FORMS=\
27 orderform.42f\
28 custlist.42f\
29 stocklist.42f
30
31 orders:: $(MODULES) $(FORMS)
32 fgllink -o orders.42r $(MODULES)
33
34 run::
35 fglrun orders
36
37 clean::
38 rm -f *.42?

Notes:

• Line 01 defines the 'all' dependency rule that will be executed by default, and
depends from the rule 'orders' described on line 31. You execute this rule with
'make all', or 'make' since this is the first rule in the Makefile.

• Lines 03 and 04 define a dependency to compile the orders.4gl module into
orders.42m. The file on the left (orders.42m) depends from the file on the right
(orders.4gl), and the command to be executed is fglcomp -M orders.4gl.

• Lines 06 and 07 define a dependency to compile the orderform.per form.
• Lines 09 and 10 define a dependency to compile the custlist.4gl module.
• Lines 12 and 13 define a dependency to compile the custlist.per form.
• Lines 15 and 16 define a dependency to compile the stocklist.4gl module.
• Lines 18 and 19 define a dependency to compile the stocklist.per form.
• Lines 21 thru 24 define the list of compiled modules, used in the global 'orders'

dependency rule.
• Lines 26 thru 29 define the list of compiled form files, used in the global 'orders'

dependency rule.

Tutorial

1275

• Lines 31 and 32 is the global 'orders' dependency rule, defining modules or form
files to be created.

• Lines 34 and 35 define a rule and command to execute the program. You
execute this rule with 'make run'.

• Lines 37 and 38 define a rule and command to clean the directory. You execute
this rule with 'make clean'.

The Customer List Module
The custlist.4gl module defines a 'zoom' module, to let the user select a customer from
a list. The module could be re-used for any application that requires the user to select a
customer from a list.

This module uses the custlist.per form and is typical list handling using the DISPLAY
ARRAY statement, as discussed in Chapter 07. The display_custlist() function in this
module returns the customer id and the name. See the custlist.4gl source module for
more details.

In the application illustrated in this chapter, the main module orders.4gl will call the
display_custlist() function to retrieve a customer selected by the user.

01 ON ACTION zoom1
02 CALL display_custlist() RETURNING id, name
03 IF (id > 0) THEN
04 ...

The Stock List Module
The stocklist.4gl module defines a 'zoom' module, to let the user select a stock item
from a list. This module uses the stocklist.per form and is typical list handling using the
DISPLAY ARRAY statement, as discussed in Chapter 07. See the stocklist.4gl source
module for more details.

The main module orders.4gl will call the display_stocklist() function of the
stocklist.4gl module to retrieve a stock item selected by the user.

The function returns the stock item id only:

01 ON ACTION zoom2
02 LET id = display_stocklist()
03 IF (id > 0) THEN
04 ...

Genero Business Development Language

1276

The Master-Detail Form Specification File
The form specification file orderform.per defines a form for the orders program, and
displays fields containing the values of a single order from the orders table. The name
of the store is retrieved from the customer table, using the column store_num, and
displayed.

A screen array displays the associated rows from the items table. Although order_num
is also one of the fields in the items table, it does not have to be included in the screen
array or in the screen record, since the order number will be the same for all the items
displayed for a given order. For each item displayed in the screen array, the values in
the description and unit columns from the stock table are also displayed.

The values in FORMONLY fields are not retrieved from a database; they are calculated
by the BDL program based on the entries in other fields. In this form FORMONLY fields
are used to display the calculations made by the BDL program for item line totals and
the order total.

This form uses some of the attributes that can be assigned to fields in a form. See Form
Specification Files Attributes for a complete list of the available attributes.

Form orderform.per
01 SCHEMA custdemo
02
03 TOOLBAR
04 ITEM new (TEXT="Order", IMAGE="new", COMMENT="New order")
05 ITEM find (TEXT="Find", IMAGE="find")
06 SEPARATOR
07 ITEM append (TEXT="Line", IMAGE="new", COMMENT="New order line")
08 ITEM delete (TEXT="Del", IMAGE="eraser")
09 SEPARATOR
10 ITEM previous (TEXT="Prev")
11 ITEM next (TEXT="Next")
12 SEPARATOR
13 ITEM getitems (TEXT="Items", IMAGE="prop")
14 SEPARATOR
15 ITEM quit (TEXT="Quit", COMMENT="Exit the program", IMAGE="quit")
16 END
17
18 LAYOUT
19 VBOX
20 GROUP
21 GRID
22 {
23 Store #:[f01] [f02]
24 Order #:[f03] Order Date:[f04] Ship By:[f06]
25 Factory:[f05] [f07]
26 Order Total:[f14]
27 }
28 END
29 END -- GROUP
30 TABLE

Tutorial

1277

31 {
32 Stock# Description Qty Unit Price Total
33 [f08 |f09 |f10 |f11 |f12 |f13]
34 [f08 |f09 |f10 |f11 |f12 |f13]
35 [f08 |f09 |f10 |f11 |f12 |f13]
36 [f08 |f09 |f10 |f11 |f12 |f13]
37 }
38 END
39 END
40 END
41
42 TABLES
43 customer, orders, items, stock
44 END
45
46 ATTRIBUTES
47 BUTTONEDIT f01 = orders.store_num, REQUIRED, ACTION=zoom1;
48 EDIT f02 = customer.store_name, NOENTRY;
49 EDIT f03 = orders.order_num, NOENTRY;
50 DATEEDIT f04 = orders.order_date;
51 EDIT f05 = orders.fac_code, UPSHIFT;
52 EDIT f06 = orders.ship_instr;
53 CHECKBOX f07 = orders.promo, TEXT="Promotional",
54 VALUEUNCHECKED="N", VALUECHECKED="Y";
55 BUTTONEDIT f08 = items.stock_num, REQUIRED, ACTION=zoom2;
56 LABEL f09 = stock.description;
57 EDIT f10 = items.quantity, REQUIRED;
58 LABEL f11 = stock.unit;
59 LABEL f12 = items.price;
60 LABEL f13 = formonly.line_total TYPE DECIMAL(9,2);
61 EDIT f14 = formonly.order_total TYPE DECIMAL(9,2), NOENTRY;
62 END
63
64 INSTRUCTIONS
65 SCREEN RECORD sa_items(
66 items.stock_num,
67 stock.description,
68 items.quantity,
69 stock.unit,
70 items.price,
71 line_total
72)
73 END

Notes:

• Lines 03 thru 16 define a TOOLBAR section with typical actions.
• Lines 23 and 48 The field f02 is a LABEL, allowing no editing. It displays the

customer name associated with the orders store number
• Lines 19 and 49 Field f03 is the order number from the orders table.
• Lines 25 and 53 The field f07 is a CHECKBOX displaying the values of the

column promo in the orders table. The box will appear checked if the value in
the column is "Y", and unchecked if the value is "N".

Genero Business Development Language

1278

• Lines 26 and 61 The field f14 is a FORMONLY field This field displays the order
total calculated by the BDL program logic.

• Lines 30 thru 38 describe the TABLE container for the screen array.
• Lines 33, 56 and 58 The fields f09 and f11 are LABELS, and display the

description and unit of measure for the items stock number.
• Lines 33 and 60 the field f13 is a LABEL and FORMONLY. This field displays the

line total calculated for each line in the screen array.
• Lines 42 thru 44 The TABLES statement includes all the database tables that are

listed for fields in the Attributes section of the form.
• Line 47 The attribute REQUIRED forces the user to enter data in the field during

an INPUT statement.
• Line 51 The attribute UPSHIFT makes the runtime system convert lowercase

letters to uppercase letters, both on the screen display and in the program
variable that stores the contents of this field.

• Line 65 The screen record includes the names of all the fields shown in the
screen array.

The Orders Program orders.4gl
Much of the functionality is identical to that in earlier programs. The
query/add/delete/update of the orders table would be the same as the examples in
Chapter 4 and Chapter 6 . Only append and query are included in this program, for
simplicity. The add/delete/update of the items table is similar to that in Chapter 8. The
complete orders program is outlined below, with examples of any new functionality.

The MAIN program block

This program block contains the menu for the Orders program.

MAIN program block (orders.4gl)
01 SCHEMA custdemo
02
03 DEFINE order_rec RECORD
04 store_num LIKE orders.store_num,
05 store_name LIKE customer.store_name,
06 order_num LIKE orders.order_num,
07 order_date LIKE orders.order_date,
08 fac_code LIKE orders.fac_code,
09 ship_instr LIKE orders.ship_instr,
10 promo LIKE orders.promo
11 END RECORD,
12 arr_items DYNAMIC ARRAY OF RECORD
13 stock_num LIKE items.stock_num,
14 description LIKE stock.description,
15 quantity LIKE items.quantity,
16 unit LIKE stock.unit,

Tutorial

1279

17 price LIKE items.price,
18 line_total DECIMAL(9,2)
19 END RECORD
20
21 CONSTANT msg01 = "You must query first"
22 CONSTANT msg02 = "Enter search criteria"
23 CONSTANT msg03 = "Canceled by user"
24 CONSTANT msg04 = "No rows in table"
25 CONSTANT msg05 = "End of list"
26 CONSTANT msg06 = "Beginning of list"
27 CONSTANT msg07 = "Invalid stock number"
28 CONSTANT msg08 = "Row added"
29 CONSTANT msg09 = "Row updated"
30 CONSTANT msg10 = "Row deleted"
31 CONSTANT msg11 = "Enter order"
32 CONSTANT msg12 = "This customer does not exist"
33 CONSTANT msg13 = "Quantity must be greater than zero"
34
35 MAIN
36 DEFINE has_order, query_ok SMALLINT
37 DEFER INTERRUPT
38
39 CONNECT TO "custdemo"
40 CLOSE WINDOW SCREEN
41
42 OPEN WINDOW w1 WITH FORM "orderform"
43
44 MENU
45 BEFORE MENU
46 CALL setup_actions(DIALOG,FALSE,FALSE)
47 ON ACTION new
48 CLEAR FORM
49 LET query_ok = FALSE
50 CALL close_order()
51 LET has_order = order_new()
52 IF has_order THEN
53 CALL arr_items.clear()
54 CALL items_inpupd()
55 END IF
56 CALL setup_actions(DIALOG,has_order,query_ok)
57 ON ACTION find
58 CLEAR FORM
59 LET query_ok = order_query()
60 LET has_order = query_ok
61 CALL setup_actions(DIALOG,has_order,query_ok)
62 ON ACTION next
63 CALL order_fetch_rel(1)
64 ON ACTION previous
65 CALL order_fetch_rel(-1)
66 ON ACTION getitems
67 CALL items_inpupd()
68 ON ACTION quit
69 EXIT MENU
70 END MENU
71
72 CLOSE WINDOW w1

Genero Business Development Language

1280

73
74 END MAIN

Notes:

• Lines 03 thru 11 define a record with fields for all the columns in the orders table,
as well as store_name from the customer table.

• Lines 12 through 19 define a dynamic array with fields for all the columns in the
items table, as well as quantity and unit from the stock table, and a calculated
field line_total.

• Lines 21 thru 33 define constants to hold the program messages. This centralizes
the definition of the messages, which can be used in any function in the module.

• Lines 44 thru 65 define the main menu of the application.
• Line 46 is executed before the menu is displayed; it calls the setup_actions

function to disable navigation and item management actions by default. The
DIALOG predefined object is passed as the first parameter to the function.

• Lines 47 thru 56 perform the 'add' action to create a new order. The order_new
function is called, and if it returns TRUE, the items_inpupd function is called to
allow the user to enter items for the new order. Menu actions are
enabled/disabled depending on the result of the operation, using the
setup_actions function..

• Lines 57 thru 61 perform the 'find' action to search for orders in the database.
The order_query function is called and menu actions are enabled/disabled
depending on the result of the operation, using the setup_actions function..

• Lines 62 thru 65 handle navigation in the order list after a search. Function
order_fetch_rel is used to fetch the previous or next record.

• Line 67 calls the function items_inpupd to allow the user to edit the items
associated with the displayed order.

• Line 72 closes the window before leaving the program.

Function setup_actions

This function is used by the main menu to enable or disable actions based on the
context.

Function setup_actions (orders.4gl)
01 FUNCTION setup_actions(d, has_order, query_ok)
02 DEFINE d ui.Dialog,
03 has_order, query_ok SMALLINT
04 CALL d.setActionActive("next",query_ok)
05 CALL d.setActionActive("previous",query_ok)
06 CALL d.setActionActive("getitems",has_order)
07 END FUNCTION

Notes:

• Line 01 Three parameters are passed to the function:

Tutorial

1281

o d - the predefined Dialog object
o has_order - if the value is TRUE, indicates that

there is a new or existing order selected.
o query_ok - if the value is TRUE, indicates that the

search for orders was successful.

• Lines 04 and 05 use the ui.Dialog.setActionActive method to enable or disable
'next' and 'previous' actions based on the value of query_ok, which indicates
whether the search for orders was successful.

• Line 06 uses the same method to enable the 'getitems' action based on the
value of has_order, which indicates whether there is an order currently
selected.

Function order_new

This function handles the input of an order record.

Function order_new (orders.4gl)
01 FUNCTION order_new()
02 DEFINE id INTEGER, name STRING
03
04 MESSAGE msg11
05
06 INITIALIZE order_rec.* TO NULL
07 SELECT MAX(order_num)+1 INTO order_rec.order_num
08 FROM orders
09 IF order_rec.order_num IS NULL
10 OR order_rec.order_num == 0 THEN
11 LET order_rec.order_num = 1
12 END IF
13
14 LET int_flag = FALSE
15 INPUT BY NAME
16 order_rec.store_num,
17 order_rec.store_name,
18 order_rec.order_num,
19 order_rec.order_date,
20 order_rec.fac_code,
21 order_rec.ship_instr,
22 order_rec.promo
23 WITHOUT DEFAULTS
24 ATTRIBUTES(UNBUFFERED)
25
26 BEFORE INPUT
27 LET order_rec.order_date = TODAY
28 LET order_rec.fac_code = "ASC"
29 LET order_rec.ship_instr = "FEDEX"
30
31 ON CHANGE store_num
32 SELECT store_name INTO order_rec.store_name
33 FROM customer

Genero Business Development Language

1282

34 WHERE store_num = order_rec.store_num
35 IF (SQLCA.SQLCODE == NOTFOUND) THEN
36 ERROR msg12
37 NEXT FIELD store_num
38 END IF
39
40 ON ACTION zoom1
41 CALL display_custlist() RETURNING id, name
42 IF (id > 0) THEN
43 LET order_rec.store_num = id
44 LET order_rec.store_name = name
45 END IF
46
47 END INPUT
48
49 IF (int_flag) THEN
50 LET int_flag=FALSE
51 CLEAR FORM
52 MESSAGE msg03
53 RETURN FALSE
54 END IF
55
56 RETURN order_insert()
57
58 END FUNCTION

Notes:

• Lines 07 and 12 execute a SELECT to get a new order number from the
database. If no rows are found, the order number is initialized to 1.

• Lines 15 thru 47 use the INPUT interactive dialog statement to let the user input
the order data.

• Lines 26 thru 29 the BEFORE INPUT block initializes some members of the
order_rec record, as default values for input.

• Lines 31 thru 38 the ON CHANGE block on the store_num field retrieves the
customer name for the changed store_num from the customer table, and stores it
in the store_name field. If the customer doesn't exist in the customer table, an
error message displays.

• Lines 40 thru 45 implement the code to open the zoom window of the store_num
BUTTONEDIT field, when the action zoom1 is triggered. The function
display_custlist in the custlist.4gl module allows the user to select a customer
from a list. The action zoom1 is enabled during the INPUT statement only.

• Line 56 calls the order_insert function to perform the INSERT SQL statement.

Function order_insert

This function inserts a new record in the orders database table.

Function order_insert (orders.4gl)

Tutorial

1283

01 FUNCTION order_insert()
02
03 WHENEVER ERROR CONTINUE
04 INSERT INTO orders (
05 store_num,
06 order_num,
07 order_date,
08 fac_code,
09 ship_instr,
10 promo
11) VALUES (
12 order_rec.store_num,
13 order_rec.order_num,
14 order_rec.order_date,
15 order_rec.fac_code,
16 order_rec.ship_instr,
17 order_rec.promo
18)
19 WHENEVER ERROR STOP
20
21 IF (SQLCA.SQLCODE <> 0) THEN
22 CLEAR FORM
23 ERROR SQLERRMESSAGE
24 RETURN FALSE
25 END IF
27
28 MESSAGE "Order added"
29 RETURN TRUE
30
31 END FUNCTION

Notes:

• Lines 03 thru 19 implement the INSERT SQL statement to create a new row in
the orders table.

• Lines 21 thru 25 handle potential SQL errors, and display a message and return
FALSE if the insert was not successful..

• Lines 28 and 29 display a message and return TRUE in case of success.

Function order_query

This function allows the user to enter query criteria for the orders table. It calls the
function order_select to retrieve the rows from the database table.

Function order_query (orders.4gl)
01 FUNCTION order_query()
02 DEFINE where_clause STRING,
03 id INTEGER, name STRING
04
05 MESSAGE msg02

Genero Business Development Language

1284

06
07 LET int_flag = FALSE
08 CONSTRUCT BY NAME where_clause ON
09 orders.store_num,
10 customer.store_name,
11 orders.order_num,
12 orders.order_date,
13 orders.fac_code
14
15 ON ACTION zoom1
16 CALL display_custlist() RETURNING id, name
17 IF id > 0 THEN
18 DISPLAY id TO orders.store_num
19 DISPLAY name TO customer.store_name
20 END IF
21
22 END CONSTRUCT
23
24 IF (int_flag) THEN
25 LET int_flag=FALSE
26 CLEAR FORM
27 MESSAGE msg03
28 RETURN FALSE
29 END IF
30
31 RETURN order_select(where_clause)
32
33 END FUNCTION

Notes:

• Lines 08 thru 22 The CONSTRUCT statement allows the user to query on
specific fields, restricting the columns in the orders table that can be used for
query criteria.

• Lines 15 thru 20 handle the 'zoom1' action to let the user pick a customer from a
list. The function display_custlist is called, it returns the customer number and
name.

• Lines 24 through 29 check the value of the interrupt flag, and return FALSE if the
user has interrupted the query.

• Line 31 the query criteria stored in the variable where_clause is passed to the
function order_select. TRUE or FALSE is returned from the order_select
function.

Function order_fetch

This function retrieves the row from the orders table, and is designed to be re-used
each time a row is needed. If the retrieval of the row from the orders table is successful,
the function items_fetch is called to retrieve the corresponding rows from the items
table.

Tutorial

1285

Function fetch_order (orders.4gl)
01 FUNCTION order_fetch(p_fetch_flag)
02 DEFINE p_fetch_flag SMALLINT
03
04 IF p_fetch_flag = 1 THEN
05 FETCH NEXT order_curs INTO order_rec.*
06 ELSE
07 FETCH PREVIOUS order_curs INTO order_rec.*
08 END IF
09
10 IF (SQLCA.SQLCODE == NOTFOUND) THEN
11 RETURN FALSE
12 END IF
13
14 DISPLAY BY NAME order_rec.*
15 CALL items_fetch()
16 RETURN TRUE
17
18 END FUNCTION

Notes:

• Line 05 When the parameter passed to this function and stored in the variable
p_fetch_flag is 1, the FETCH statement retrieves the next row from the orders
table.

• Line 07 When the parameter passed to this function and stored in p_fetch_flag
is not 1, the FETCH statement retrieves the previous row from the orders table.

• Lines 10 thru 12 return FALSE if no row was found..
• Line 14 uses DISPLAY BY NAME to display the record order_rec.
• Line 15 calls the function items_fetch, to fetch all order lines.
• Line 16 returns TRUE indicating the fetch of the order was successful.

Function order_select

This function creates the SQL statement for the query and the corresponding cursor to
retrieve the rows from the orders table. It calls the function fetch_order.

Function order_select (orders.4gl)
01 FUNCTION order_select(where_clause)
02 DEFINE where_clause STRING,
03 sql_text STRING
04
05 LET sql_text = "SELECT "
05 || "orders.store_num, "
06 || "customer.store_name, "
07 || "orders.order_num, "
08 || "orders.order_date, "
09 || "orders.fac_code, "
10 || "orders.ship_instr, "

Genero Business Development Language

1286

11 || "orders.promo "
12 || "FROM orders, customer "
13 || "WHERE orders.store_num = customer.store_num "
14 || "AND " || where_clause
15
16 DECLARE order_curs SCROLL CURSOR FROM sql_text
17 OPEN order_curs
18 IF (NOT order_fetch(1)) THEN
19 CLEAR FORM
20 MESSAGE msg04
21 RETURN FALSE
22 END IF
23
24 RETURN TRUE
25
26 END FUNCTION

Notes:

• Lines 05 thru 14 contain the text of the SELECT statement with the query criteria
contained in the variable where_clause.

• Line 16 declares a SCROLL CURSOR for the SELECT statement stored in the
variable sql_text.

• Line 17 opens the SCROLL CURSOR.
• Line 18 thru 22 call the function order_fetch, passing a parameter of 1 to fetch

the next row, which in this case will be the first one. If the fetch is not successful,
FALSE is returned.

• Line 24 returns TRUE, indicating the fetch was successful.

Function order_fetch_rel

This function calls the function order_fetch to retrieve the rows in the database; the
parameter p_fetch_flag indicates the direction for the cursor movement. If there are no
more records to be retrieved, a message is displayed to the user.

Function order_fetch_rel
01 FUNCTION order_fetch_rel(p_fetch_flag)
02 DEFINE p_fetch_flag SMALLINT
03
04 MESSAGE " "
05 IF (NOT order_fetch(p_fetch_flag)) THEN
06 IF (p_fetch_flag = 1) THEN
07 MESSAGE msg05
08 ELSE
09 MESSAGE msg06
10 END IF
11 END IF
12
13 END FUNCTION

Tutorial

1287

Notes:

• Line 05 calls the function order_fetch, passing the variable p_fletch_flag to
indicate the direction of the cursor.

• Line 07 displays a message to indicate that the cursor is at the bottom of the
result set.

• Line 09 displays a message to indicate that the cursor is at the top of the result
set.

Function order_total

This function calculates the total price for all of the items contained on a single order.

Function order_total (orders.4gl)
01 FUNCTION order_total(arr_length)
02 DEFINE order_total DECIMAL(9,2),
03 i, arr_length SMALLINT
04
05 LET order_total = 0
06 IF arr_length > 0 THEN
07 FOR i = 1 TO arr_length
08 IF arr_items[i].line_total IS NOT NULL THEN
09 LET order_total = order_total + arr_items[i].line_total
10 END IF
11 END FOR
12 END IF
13
14 DISPLAY BY NAME order_total
15
16 END FUNCTION

Notes:

• Line 07 thru 11 contain a FOR loop adding the values of line_total from each
item in the program array arr_items, to calculate the total price of the order and
store it in the variable order_total.

• Line 14 displays the value of order_total on the form.

Function order_close

This function closes the cursor used to select orders from the database.

Function order_close (orders.4gl)
01 FUNCTION close_order()
02 WHENEVER ERROR CONTINUE

Genero Business Development Language

1288

03 CLOSE order_curs
04 WHENEVER ERROR STOP
05 END FUNCTION

Notes:

• Line 03 closes the order_curs cursor. The statement is surrounded by
WHENEVER ERROR, to trap errors if the cursor is not open.

Function items_fetch

This function retrieves the rows from the items table that match the value of order_num
in the order currently displayed on the form. The description and unit values are
retrieved from the stock table, using the column stock_num. The value for line_total is
calculated and retrieved. After displaying the items on the form, the function
order_total is called to calculate the total price of all the items for the current order.

Function items_fetch (orders.4gl)
01 FUNCTION items_fetch()
02 DEFINE item_cnt INTEGER,
03 item_rec RECORD
04 stock_num LIKE items.stock_num,
05 description LIKE stock.description,
06 quantity LIKE items.quantity,
07 unit LIKE stock.unit,
08 price LIKE items.price,
09 line_total DECIMAL(9,2)
10 END RECORD
11
12 IF order_rec.order_num IS NULL THEN
13 RETURN
14 END IF
15
16 DECLARE items_curs CURSOR FOR
17 SELECT items.stock_num,
18 stock.description,
19 items.quantity,
20 stock.unit,
21 items.price,
22 items.price * items.quantity line_total
23 FROM items, stock
24 WHERE items.order_num = order_rec.order_num
25 AND items.stock_num = stock.stock_num
26
27 LET item_cnt = 0
28 CALL arr_items.clear()
29 FOREACH items_curs INTO item_rec.*
30 LET item_cnt = item_cnt + 1
31 LET arr_items[item_cnt].* = item_rec.*
32 END FOREACH
33 FREE items_curs

Tutorial

1289

34
35 CALL items_show()
36 CALL order_total(item_cnt)
37
38 END FUNCTION

Notes:

• Line 02 defines a variable item_cnt to hold the array count.
• Line 12 returns from the function if the order number in the program record

order_rec is null.
• Lines 16 thru 25 declare a cursor for the SELECT statement to retrieve the rows

from the items table that have the same order number as the value in the
order_num field of the program record order_rec. The description and unit
values are retrieved from the stock table, using the column stock_num. The
value for line_total is calculated.

• Lines 29 thru 32 the FOREACH statement loads the dynamic array arr_items.
• Line 33 releases the memory associated with the cursor items_curs, which is

no longer needed.
• Lines 35 calls the items_show function to display the order lines to the form.
• Line 36 calls the function order_total to calculate the total price of the items on

the order.

Function items_show

This function displays the line items for the order in the screen array and returns
immediately.

Function items_show (orders.4gl)
01 FUNCTION items_show()
02 DISPLAY ARRAY arr_items TO sa_items.*
03 BEFORE DISPLAY
04 EXIT DISPLAY
05 END DISPLAY
06 END FUNCTION

Notes:

• Line 02 executes a DISPLAY ARRAY statement with the program array
containing the line items.

• Line 03 and 04 exit the instruction before control is turned over to the user.

Genero Business Development Language

1290

Function items_inpupd

This function contains the program logic to allow the user to input a new row in the
arr_items array, or to change or delete an existing row.

Function items_inpupd
01 FUNCTION items_inpupd()
02 DEFINE opflag CHAR(1),
03 item_cnt, curr_pa SMALLINT,
04 id INTEGER
05
06 LET opflag = "U"
07
08 LET item_cnt = arr_items.getLength()
09 INPUT ARRAY arr_items WITHOUT DEFAULTS FROM sa_items.*
10 ATTRIBUTES (UNBUFFERED, INSERT ROW = FALSE)
11
12 BEFORE ROW
13 LET curr_pa = ARR_CURR()
14 LET opflag = "U"
15
16 BEFORE INSERT
17 LET opflag = "I"
18 LET arr_items[curr_pa].quantity = 1
19
20 AFTER INSERT
21 CALL item_insert(curr_pa)
22 CALL items_line_total(curr_pa)
23
24 BEFORE DELETE
25 CALL item_delete(curr_pa)
26
27 ON ROW CHANGE
28 CALL item_update(curr_pa)
29 CALL items_line_total(curr_pa)
30
31 BEFORE FIELD stock_num
32 IF opflag = "U" THEN
33 NEXT FIELD quantity
34 END IF
35
36 ON ACTION zoom2
37 LET id = display_stocklist()
38 IF id > 0 THEN
39 IF (NOT get_stock_info(curr_pa,id)) THEN
40 LET arr_items[curr_pa].stock_num = NULL
41 ELSE
42 LET arr_items[curr_pa].stock_num = id
43 END IF
44 END IF
45
46 ON CHANGE stock_num
47 IF (NOT get_stock_info(curr_pa,
48 arr_items[curr_pa].stock_num)) THEN
49 LET arr_items[curr_pa].stock_num = NULL

Tutorial

1291

50 ERROR msg07
51 NEXT FIELD stock_num
52 END IF
53
54 ON CHANGE quantity
55 IF (arr_items[curr_pa].quantity <= 0) THEN
56 ERROR msg13
57 NEXT FIELD quantity
58 END IF
59
60 END INPUT
61
62 LET item_cnt = arr_items.getLength()
63 CALL ord_total(item_cnt)
64
65 IF (int_flag) THEN
66 LET int_flag = FALSE
67 END IF
68
69 END FUNCTION

Notes:

• Line 08 uses the getLength built-in function to determine the number of rows in
the array arr_items.

• Lines 9 thru 60 contain the INPUT ARRAY statement.
• Lines 12 and 14 use a BEFORE ROW clause to store the index of the current

row of the array in the variable curr_pa. We also set the opflag flag to "U", in
order to indicate we are in update mode.

• Lines 16 thru 18 use a BEFORE INSERT clause to set the value of opflag to "I" if
the current operation is an Insert of a new row in the array. Line 18 sets a default
value for the quantity.

• Lines 20 thru 22 An AFTER INSERT clause calls the item_insert function to add
the row to the database table, passing the index of the current row and calls the
items_line_total function, passing the index of the current row.

• Lines 24 thru 25 use a BEFORE DELETE clause, to call the function
item_delete, passing the index of the current row.

• Lines 27 thru 29 contain an ON ROW CHANGE clause to detect row
modification. The item_update function and the items_line_total function are
called, passing the index of the current row.

• Lines 31 thru 34 use a BEFORE FIELD clause to prevent entry in the
stock_num field if the current operation is an Update of an existing row.

• Lines 36 thru 44 implement the code for the 'zoom2' action, opening a list from
the stock table for selection.

• Lines 46 thru 52 use an ON CHANGE clause to check whether the stock number
for a new record that was entered in the field stock_num exists in the stock
table.

• Line 62 uses the getLength built-in function to determine the number of rows in
the array after the INPUT ARRAY statement has terminated.

• Line 63 calls the function order_total, passing the number of rows in the array.
• Lines 65 thru 67 re-set the INT_FLAG to TRUE if the user has interrupted the

INPUT statement.

Genero Business Development Language

1292

Function items_line_total

This function calculates the value of line_total for any new rows that are inserted into
the arr_items array.

Function items_line_total
01 FUNCTION items_line_total(curr_pa)
02 DEFINE curr_pa SMALLINT
03 LET arr_items[curr_pa].line_total =
04 arr_items[curr_pa].quantity * arr_items[curr_pa].price
05 END FUNCTION

Notes:

• Line 02 The index of the current row in the array is passed to this function and
stored in the variable curr_pa.

• Lines 03 and 04 calculate the line total for the current row in the array.

Function item_insert

This function inserts a new row into the items database table using the values input in
the current array record on the form.

Function item_insert
01 FUNCTION item_insert(curr_pa)
02 DEFINE curr_pa SMALLINT
03
04 WHENEVER ERROR CONTINUE
05 INSERT INTO items (
06 order_num,
07 stock_num,
08 quantity,
09 price
10) VALUES (
11 order_rec.order_num,
12 arr_items[curr_pa].stock_num,
13 arr_items[curr_pa].quantity,
14 arr_items[curr_pa].price
15)
16 WHENEVER ERROR STOP
17
18 IF (SQLCA.SQLCODE == 0) THEN
19 MESSAGE msg08
20 ELSE
21 ERROR SQLERRMESSAGE
22 END IF
23

Tutorial

1293

24 END FUNCTION

Notes:

• Line 02 the index of the current row in the array is passed to this function and
stored in the variable curr_pa.

• Lines 05 thru 15 The embedded SQL INSERT statement uses the value of
order_num from the current order record displayed on the form, together with
the values from the current row of the arr_items array, to insert a new row in the
items table.

Function item_update

This function updates a row in the items database table using the changes made to the
current array record in the form.

Function item_update
01 FUNCTION item_update(curr_pa)
02 DEFINE curr_pa SMALLINT
03
04 WHENEVER ERROR CONTINUE
05 UPDATE items SET
06 items.stock_num = arr_items[curr_pa].stock_num,
07 items.quantity = arr_items[curr_pa].quantity
08 WHERE items.stock_num = arr_items[curr_pa].stock_num
09 AND items.order_num = order_rec.order_num
10 WHENEVER ERROR STOP
11
12 IF (SQLCA.SQLCODE == 0) THEN
13 MESSAGE msg09
14 ELSE
15 ERROR SQLERRMESSAGE
16 END IF
17
18 END FUNCTION

Notes:

• Line 02 the index of the current row in the array is passed to this function and
stored in the variable curr_pa.

• Lines 05 thru 09 The embedded SQL UPDATE statement uses the value of
order_num in the current order_rec record, and the value of stock_num in the
current row in the arr_items array, to locate the row in the items database table
to be updated.

Genero Business Development Language

1294

Function item_delete

This function deletes a row from the items database table, based on the values in the
current record of the items array.

Function item_delete
01 FUNCTION item_delete(curr_pa)
02 DEFINE curr_pa SMALLINT
03
04 WHENEVER ERROR CONTINUE
05 DELETE FROM items
06 WHERE items.stock_num = arr_items[curr_pa].stock_num
07 AND items.order_num = order_rec.order_num
08 WHENEVER ERROR STOP
09
10 IF (SQLCA.SQLCODE == 0) THEN
11 MESSAGE msg10
12 ELSE
13 ERROR SQLERRMESSAGE
14 END IF
15
16 END FUNCTION

Notes:

• Line 02 the index of the current row in the array is passed to this function and
stored in the variable curr_pa.

• Lines 05 thru 07 The embedded SQL DELETE statement uses the value of
order_num in the current order_rec record, and the value of stock_num in the
current row in the arr_items array, to locate the row in the items database table
to be deleted.

Function get_stock_info

This function verifies that the stock number entered for a new row in the arr_items array
exists in the stock table. It retrieves the description, unit of measure, and the correct
price based on whether promotional pricing is in effect for the order.

Function get_stock_info
01 FUNCTION get_stock_info(curr_pa, id)
02 DEFINE curr_pa SMALLINT,
03 id INTEGER,
04 sqltext STRING
05
06 IF id IS NULL THEN
07 RETURN FALSE
08 END IF
09
10 LET sqltext="SELECT description, unit,"

Tutorial

1295

11 IF order_rec.promo = "N" THEN
12 LET sqltext=sqltext || "reg_price"
13 ELSE
14 LET sqltext=sqltext || "promo_price"
15 END IF
16 LET sqltext=sqltext ||
17 " FROM stock WHERE stock_num = ? AND fac_code = ?"
18
19 WHENEVER ERROR CONTINUE
20 PREPARE get_stock_cursor FROM sqltext
21 EXECUTE get_stock_cursor
22 INTO arr_items[curr_pa].description,
23 arr_items[curr_pa].unit,
24 arr_items[curr_pa].price
25 USING id, order_rec.fac_code
26 WHENEVER ERROR STOP
27
28 RETURN (SQLCA.SQLCODE == 0)
29
30 END FUNCTION

Notes:

• Line 02 the index of the current row in the array is passed to this function and
stored in the variable curr_pa.

• Lines 10 thru 17 check whether the promotional pricing is in effect for the current
order, and build a SELECT statement to retrieve the description, unit, and regular
or promotional price from the stock table for a new item that is being added to
the items table.

• Lines 20 thru 25 prepare and execute the SQL statement created before.
• Line 28 checks SQLCA.SQLCODE and returns TRUE if the database could be

updated without error.

Genero Business Development Language

1296

Tutorial Chapter 12: Changing the User Interface
Dynamically
Summary:

• Built-in Classes
• Using the Classes (Window Class example)

o Getting a reference to the object
o Calling a method

• Working with Forms
o Getting a reference to the object
o Specifying the name of a form item

• Changing the text, image, or style of a form item
• Hiding form items
• Adding Toolbars, Topmenus, and Action Defaults
• Specifying a function to initialize all forms
• Loading a ComboBox list
• Using the Dialog Class in an Interactive Statement

o Hiding Form Items
o Enabling and Disabling Fields

• Using the Interface Class
o Refresh the Interface
o Load custom XML files
o Identify the Genero Client

Built-in Classes
Included in the predefined functions that are built into Genero are special groups
(classes) of functions (methods) that act upon the objects that are created when your
program is running. Each class of methods interacts with a specific program object,
allowing you to change the appearance or behavior of the objects. Because these
methods act upon program objects, the syntax is somewhat different from that of
functions.

The classes are gathered together into packages:

• ui - classes related to the objects in the graphical user interface (GUI)
• base - classes related to non-GUI program objects
• om - classes that provide DOM and SAX document handling utilities

This tutorial focuses on using the classes and methods in the ui package to modify the
user interface at runtime.

Note: Variable names, class identifiers, and method names are not case-sensitive; the
capitalization used in the examples is for ease in reading.

Tutorial

1297

Using the Classes
This example for the Window Class also presents the general process that you should
use.

The methods in the Window Class interact with the Window objects in your program.

Getting a reference to the object

Before you can call any of the methods associated with Window objects, you must
identify the specific Window object that you wish to affect, and obtain a reference to it:

• Define a variable to hold the reference to the Window object. The data type of the
variable is the class identifier (ui.Window):

DEFINE mywin ui.Window

• Open a window in your program using the OPEN WINDOW or OPEN WINDOW
... WITH FORM ... instruction:

OPEN WINDOW w1 WITH FORM "testform"

• Get a reference to the specific Window object by using one of two "class
methods" provided by the Window Class. Class methods are called using the
class identifier (ui.Window). You can specify the Window object by name from
among the open windows in your program, or choose the current window.

LET mywin = ui.Window.getCurrent() -- returns a reference
to
 the current window
object

LET mywin = ui.Window.forName("w1")-- returns a reference
to
 the open window named
"w1"

Calling a method

Now that you have a reference to the object, you can use that reference to call any of
the methods listed as "object methods" in the Window Class documentation. For
example, to change the window title for the window referenced by mywin:

CALL mywin.setText("test")

See Window Class for a complete list of the methods in this class.

Genero Business Development Language

1298

Example 1:

01 MAIN
02 DEFINE mywin ui.Window
03
04 OPEN WINDOW w1 WITH FORM "testform"
05 LET mywin = ui.Window.getCurrent()
06 CALL mywin.setText("test")
07 MENU
08 ON ACTION quit
09 EXIT MENU
10 END MENU
11
12 END MAIN

Display on Windows platforms:

Warning: Using an object reference that has not been initialized or points to a non-
existent object (the window has been closed, the form object does not exist, etc.) results
in a run-time error that is not trappable; test for NULL prior to using an object reference
in your program code. For example, pass the object reference to a utility function for
testing:

FUNCTION cleanupForm(f)
 DEFINE f ui.Form
 IF f IS NULL THEN
 RETURN FALSE
 END IF
END FUNCTION

Working with Forms
The Form Class provides some methods that allow you to change the appearance or
behavior of items on a form.

Tutorial

1299

Getting a reference to the Form object

In order to use the methods, you must get a reference to the form object. The Window
Class has a method to get the reference to its associated form:

• Define variables for the references to the window object and to its form
object. The data type for the variables is the class identifier (ui.Window, ui.Form):

DEFINE f1 ui.Form, mywin ui.Window

• Open a form in your program using the OPEN WINDOW ... WITH FORM ...
instruction:

OPEN WINDOW w1 WITH FORM ("testform")

• Next, get a reference to the window object. Then, use the getForm() class
method of the Window Class to get a reference to the form object opened in that
window:

LET mywin = ui.Window.getCurrent()
LET f1 = mywin.getForm() -- returns reference to form

Once you have the reference to the form object, you can call any of the object methods
for the Form class:

 LET mywin = ui.Window.getCurrent()
 LET f1 = mywin.getForm() -- get reference to form
 -- call a Form Class method
 CALL f1.loadActionDefaults("mydefaults")

See the Form Class documentation for a complete list of methods.

Specifying the name of a form item

Some of the methods in the Form Class require you to provide the name of the form
item. The name of the form item in the Attributes section of the form specification file
corresponds to the name attribute of an element in the runtime form file. For example:

• In the Attributes section of the .per file

LABEL a1 : lb1, TEXT = "State";
EDIT a2 = state.state_name;
BUTTON a3 : quit, TEXT = "exit";
EDIT a4 = FORMONLY.pflag TYPE CHAR;

• In the runtime .42f file

<Label name="lb1" width="9" text="State" posY="0" posX="6"
gridWidth="9"/>

Genero Business Development Language

1300

<FormField name="state.state_name" colName="state_name"
sqlType="CHAR(15)"
 fieldId="0" sqlTabName="state" tabIndex="1">
<Button name="quit" width="5" text="exit" posY="4" posX="6"
gridWidth="5"/>
<FormField name="formonly.pflag" colName="pflag"
sqlType="CHAR" fieldId="1"
 sqlTabName="formonly" tabIndex="2">

Note: Formfield names specified as FORMONLY (FORMONLY.pflag)
are converted to lowercase (formonly.pflag).

Although Genero BDL is not case-sensitive, XML is. When Genero creates the runtime
XML file, the form item types and attribute names are converted using the CamelCase
convention:

• Form item type - the first letter is always capitalized, with subsequent letters in
lower-case, unless the type consists of multiple words joined together. In that
case, the first letter of every subsequent word is capitalized also (Label,
FormField, Button).

• Attribute name - the first letter is always lower-case, with subsequent letters in
lower-case, unless the name consists of multiple words joined together. In that
case, the first letter of every subsequent word is capitalized also (text, gridWidth,
colName).

If you use classes or methods in your code that require the form item type or attribute
name, respect the naming conventions.

Changing the text, image, and style properties of a form
item
Some methods of the Form Class allow you to change the value of specific properties of
form items.

Call the methods using the reference to the form object. Provide the name of the form
item and the value for the property:

• Text property - the value can be any text string. To set the text of the label
named "lb1":

CALL f1.setElementText("lb1", "Newtext")

• Image property - the value can be a simple file name, a complete or relative
path, or an URL (Uniform Resource Locator) path to an image server. To set the
image for the button named "quit":

CALL f1.setElementImage("quit", "exit.png")

Tutorial

1301

• Style property - the value can be a presentation style defined in the active
Presentation Styles file (.4st file). To set the style for the label named "lb1":

CALL f1.setElementStyle("lb1", "mystyle")

The style "mystyle" is an example of a specific style that was defined in a
custom Presentation Styles XML file, customstyles.4st. This style
changes the text color to blue:

<Style name=".mystyle" >
 <StyleAttribute name="textColor" value="blue" />
</Style>

By default, the runtime system searches for the default.4st Presentation
Style file. Use the following method to load a different Presentation Style
file:

CALL ui.interface.loadStyles("customstyles")

 The Load custom XML files section has more information about the
Interface class. See Presentation Styles for additional information about
styles and the format of a Presentation Styles file.

 Example 2:

01 MAIN
02 DEFINE mywin ui.Window,
03 f1 ui.Form
04 CALL ui.interface.loadStyles("customstyles")
05 OPEN WINDOW w1 WITH FORM "testform"
06 LET mywin = ui.Window.getCurrent()
07 CALL mywin.setText("test")
08 LET f1 = mywin.getForm()
09 MENU
10 ON ACTION changes
11 CALL f1.setElementText("lb1", "goodbye")
12 CALL f1.setElementText("quit", "leave")
13 CALL f1.setElementImage("quit", "exit.png")
14 CALL f1.setElementStyle("lb1", "mystyle")
15 ON ACTION quit
16 EXIT MENU
17 END MENU
18 END MAIN

Display on Windows platform after the changes button has been clicked:

Genero Business Development Language

1302

Hiding Form Items
You can use Form Class methods to change the value of the hidden property of form
items, hiding parts of the form from the user. Interactive instructions such as INPUT or
CONSTRUCT will automatically ignore a formfield that is hidden. The value can be:

• 0 - the form item is not hidden; it is visible
• 1 - the form item is hidden and cannot be made visible by the user
• 2 - the form item is hidden, but the user can make it visible, using the context

menu for a table, for example

By default, all form items are visible.

Call the methods using the reference to the form object. Provide the name of the form
item to the method and set the value for hidden.

• setFieldHidden() - this method can be used to hide formfields only. The prefix
in the name of the formfield (tablename. or formonly.) is optional:

CALL f1.setFieldHidden("state_name",1)

• setElementHidden() - this method hides any form item, including formfields. If
the item is a formfield, the name must include the prefix:

 CALL f1.setElementHidden("lb1", 1)
 CALL f1.setElementHidden("state.state_name",1)
 CALL f1.setElementHidden("formonly.pflag",1)

 Genero adjusts the display of the form to eliminate blank spaces caused by hiding
items, where possible.

Example 3:

01 SCHEMA custdemo
02 MAIN
03 DEFINE win ui.Window,
04 fm ui.Form,

Tutorial

1303

05 mycust record like customer.*
06 CONNECT TO "custdemo"
07 OPEN WINDOW w1 WITH FORM "hidecust"
08 SELECT * INTO mycust.* FROM customer
09 WHERE store_num = 101
10 DISPLAY BY NAME mycust.*
11 LET win = ui.Window.getCurrent()
12 LET fm = win.getForm()
13 MENU
14 ON ACTION hide
15 CALL fm.setFieldHidden("contact_name",1)
16 CALL fm.setFieldHidden("addr2", 1)
17 -- hide the label for contact name
18 CALL fm.setElementHidden("lbl", 1)
19 ON ACTION quit
20 EXIT MENU
21 END MENU
22 END MAIN

Display on Windows platforms (before hiding):

 After hiding:

Genero Business Development Language

1304

Adding toolbars, topmenus, and action defaults
The Form Class provides methods that apply topmenus, toolbars, and action defaults to
a form, to assist you in standardizing forms. The topmenus, toolbars, or action defaults
are defined in external XML files having the following extensions:

• Action Defaults - .4ad
• Toolbar - .4tb
• Topmenu - .4tm

 Call the methods using the reference to the form object and give the filename. Do not
specify a path or file extension in the file name. If the file is not in the current directory
and the path is not specified, Genero will search the directories indicated by the
DBPATH environment variable.

• Action defaults file - default attributes for form items associated with actions;
these action defaults are local to the form. See Action Defaults for information
about the format and contents of the file.

CALL f1.loadActionDefaults("mydefaults")

• Toolbar file - contains a toolbar definition to be used with the referenced form
object. See Toolbars for information about the format and contents of the file.

CALL f1.loadToolBar("mytoolbar")

• Topmenu file - contains a topmenu definition to be used with the referenced form
object. See Topmenus for information about the format and contents of the file.

CALL f1.loadTopMenu("mytopmenu")

Example 4:

01 MAIN
02 DEFINE mywin ui.Window,
03 f1 ui.Form
04 OPEN WINDOW w1 WITH FORM "testform"
05 LET mywin = ui.Window.forName("w1")
06 CALL mywin.setText("test")
07 LET f1 = mywin.getForm()
08 CALL f1.loadTopMenu("mytopmenu")
09 MENU
10 ON ACTION quit
11 EXIT MENU
12 END MENU
13
14 END MAIN

Display on Windows platforms:

Tutorial

1305

Specifying a Function to Initialize all Forms
To assist in standardizing forms, you can create an initializer function in your program
that will be called automatically whenever any form is opened. A reference to the form
object is passed by the runtime system to the function.

Example initializer function:

01 FUNCTION myforminit(f1)
02 DEFINE f1 ui.Form
03
04 IF f1 IS NOT NULL THEN
05 CALL f1.loadTopMenu("mytopmenu")
06 ...
07 END IF
07
08 END FUNCTION

The setDefaultInitializer method applies to all forms, rather than to a specific form
object. It is a class method, and you call it using the class name as a prefix. Specify the
name of the initializer function in lower-case letters:

CALL ui.Form.setDefaultInitializer("myforminit")

You can call the myforminit function in your program as part of a setup routine. The
myforminit function can be in any module in the program.

Example 5:

01 MAIN
02 CALL ui.Form.setDefaultInitializer("myforminit")
03 OPEN WINDOW w1 WITH FORM "testform"
04 MENU
05 ON ACTION quit
06 EXIT MENU
07 END MENU
08 OPEN WINDOW w2 WITH FORM "testform2"

Genero Business Development Language

1306

09 MENU
10 ON ACTION quit
11 EXIT MENU
12 END MENU
13 END MAIN

Display on Windows platforms:

Loading a ComboBox List
A ComboBox presents a list of values in a dropdown box on a form. The values are for
the underlying formfield. For example, the following form specification file contains a
ComboBox that represents the formfield customer.state:

01 SCHEMA custdemo
02 LAYOUT
03 GRID
04 {
05 Store #:[a0]
06 Name:[a1]
07 State:[a5]
08 }
09 END -- GRID
10 END
11 TABLES customer
12 ATTRIBUTES
13 EDIT a0=customer.store_num;

Tutorial

1307

14 EDIT a1=customer.store_name;
15 COMBOBOX a5=customer.state;
16 END

During an INPUT, INPUT ARRAY or CONSTRUCT statement the ComboBox is active,
and the user can select a value from the dropdown list. The value selected will be
stored in the formfield named customer.state.

Getting a reference to the object

The ComboBox Class contains methods that manage the values for a ComboBox. In
order to use these methods you must first obtain a reference to the ComboBox object:

• Define a variable for the reference to the ComboBox object. The data type for the
variables is the class identifier (ui.ComboBox):

DEFINE cb ui.ComboBox

• Open a form that contains a ComboBox using OPEN WINDOW ... WITH FORM
... :

OPEN WINDOW w1 WITH FORM ("testcb")

• Next, get a reference to the ComboBox object using the method provided. As a
"class method", this method is called using the class identifier. Provide the name
of the formfield to the method:

LET cb = ui.ComboBox.forName("customer.state")

 Once you have a reference to the ComboBox object, you can call any of the methods
defined in the class as "object methods":

• To add an item to a ComboBox list

You can instruct the ComboBox to store a code (the "name") in the
formfield that the ComboBox represents, but to display the description
(the "text") in the list to help the user make his selection. For example, to
store the value "IL" (name) in the formfield, but to display "Illinois" (text) to
the user:

CALL cb.additem("IL", "Illinois")

If text is NULL, name will be displayed.

• To clear the list of all values

CALL cb.clear()

• To remove an item from the list; provide the name

Genero Business Development Language

1308

CALL cb.removeitem("IL")

See the ComboBox Class documentation for a complete list of the methods.

Adding values to the ComboBox from a Database Table

An example in Tutorial Chapter 5 GUI Options loads a ComboBox with static values.
The following example retrieves the valid list of values from a database table (state)
instead:

Example 6:

01 SCHEMA custdemo
02 MAIN
03 DEFINE cb ui.ComboBox
04 CONNECT TO "custdemo"
05 OPEN WINDOW w1 WITH FORM "testcb"
06 LET cb = ui.ComboBox.forName("customer.state")
07 IF cb IS NOT NULL THEN
08 CALL loadcb(cb)
09 END IF
10 ...
11 END MAIN
12
13 FUNCTION loadcb(cb)
12 DEFINE cb ui.ComboBox,
13 l_state_code LIKE state.state_code,
14 l_state_name LIKE state.state_name
15
18 DECLARE mycurs CURSOR FOR
19 SELECT state_code, state_name FROM state
20 CALL cb.clear()
21 FOREACH mycurs INTO l_state_code, l_state_name
22 -- provide name and text for the ComboBox item
23 CALL cb.addItem(l_state_code,l_state_name)
24 END FOREACH
26 END FUNCTION

Display on Windows platforms

Tutorial

1309

As an alternative, this function can be specified as the initializer function for the
ComboBox in the form specification file. When the form is opened, The initializer
function is called automatically and a reference to the ComboBox object is passed to it.
Provide the name of the initializer function in lowercase:

ATTRIBUTES
COMBOBOX a5=customer.state, INITIALIZER = loadcb;

Using the Dialog Class in Interactive Statements
The Dialog Class provides methods that can only be called from within an interactive
instruction (dialog) such as MENU, INPUT, INPUT ARRAY, DISPLAY ARRAY and
CONSTRUCT. The methods are called through the predefined variable DIALOG, which
automatically provides a reference to the Dialog object.

Tutorial Chapter 5 Enhancing the Form illustrates the use of Dialog Class methods to
disable/enable actions during a MENU interactive statement.

Hiding Default Action Views

To hide default action views (the buttons that appear on the form when there is no
specific action view for an action), use the following Dialog Class method. Values for the
hidden state of the action view can be:

• 0 - FALSE, the action is visible
• 1 - TRUE, the action is hidden

 MENU
 BEFORE MENU
 CALL DIALOG.setActionHidden("next",1)
 ...
 END MENU

This example hides the action that has the name next. The reference to the DIALOG
object was provided by the runtime system.

Enabling and Disabling Fields

This method in the Dialog Class allows you to disable fields on a form during the
interactive statement; the field is still visible, but the user cannot edit the value. Values
for the active state of the field can be:

• 0 - FALSE, the field is disabled
• 1 - TRUE, the field is enabled

The reference to the DIALOG object is provided by the runtime system. Provide the
name of the field and its state to the method.

Genero Business Development Language

1310

The following example disables the store_name field during an INPUT statement:

 INPUT BY NAME customer.*
 BEFORE INPUT
 CALL DIALOG.setFieldActive("customer.store_name",0)
 ...
 END INPUT

See the Dialog Class documentation for a complete list of its methods.

Using the Interface Class
Methods in the Interface Class allow you interact with the user interface, as shown in the
examples below.

You do not need to get an object reference to the Interface; call the methods in the
Interface Class using the class identifier, ui.Interface.

Refresh the interface

The User Interface on the Client is synchronized with the DOM tree of the runtime
system when an interactive statement is active. If you want to show something on the
screen while the program is running in a batch procedure, you must force
synchronization with the front end.

As shown in the Tutorial Chapter 9 Reports, the changes made in the program to the
value of the progress bar are not displayed on the user's window, since the report is a
batch process and no user interaction is required. To force the changes in the progress
bar to be reflected on the screen, the following method from the Interface Class is used:

 CALL ui.Interface.refresh()

Load custom XML files

• Start Menus, Toolbar icons, and Topmenus can each be defined in a unique XML
file.

Use the appropriate extension:

• Start Menu - .4sm
• Toolbar - .4tb
• Topmenu - .4tm

Use the corresponding method to load the file:

CALL ui.Interface.loadStartMenu("mystartmenu")
CALL ui.Interface.loadTopMenu("tmstandard")

Tutorial

1311

CALL ui.Interface.loadToolbar("tbstandard")

Do not specify a path or file extension in the file name. The runtime
system automatically searches for a file with the correct extension in the
current directory and in the path list defined in the DBPATH environment
variable.

See the Start Menu, Topmenu, or Toolbar documentation for details on
the format and contents of the files.

• Custom Presentation Styles and global Action Defaults must each be defined in a
unique file.

Use the appropriate extension:

• Presentation Styles - .4st
• Action Defaults - .4ad

 Use the corresponding method to load the file:

CALL ui.Interface.loadStyles("mystyles")
CALL
ui.Interface.loadActionDefaults("mydefaults")

You can provide an absolute path with the corresponding extension, or a
simple file name without the extension. If you give the simple file name,
the runtime system searches for the file in the current directory. If the file
does not exist, it searches in the directories defined in the DBPATH
environment variable.

The action defaults are applied only once, to newly created elements. For
example, if you first load a toolbar, then you load a global Action defaults
file, the attribute of the toolbar items will not be updated with the last
loaded Action defaults.

See Presentation Styles and Action Defaults for details on the format and
contents of the file.

Identify the Genero client

You can use methods in the Interface Class to identify the type and version of the
Genero client currently being used by the program:

CALL ui.Interface.getFrontEndName() RETURNING typestring
CALL ui.Interface.getFrontEndVersion() RETURNING
versionstring

Each method returns a string. The type will be "Gdc" or "Console".

Some of the other methods in the ui.Interface class allow you to:

Genero Business Development Language

1312

• Set and retrieve program names and titles
• call Front End functions that reside on the Genero client
• work with MDI windows

See the Interface Class documentation for a complete list of the methods.

1313

ODI Adaptation Guide For Genero db 3.6x, 3.8x
Runtime configuration

Install Genero db and create a database
Prepare the runtime environment

Database concepts

Database concepts
Data consistency and concurrency management
Transactions handling
Defining database users
Setting privileges

Data dictionary

BOOLEAN data type
CHARACTER data types
NUMERIC data types
DATE and DATETIME data types
INTERVAL data type
SERIAL data type
ROWIDs
Very large data types
National character data types
The ALTER TABLE instruction
Constraints
Triggers and Stored Procedures
Name resolution of SQL objects
Setup database statistics
Data type conversion table

Data manipulation

Reserved words
Outer joins
Transactions handling
Temporary tables

Genero Business Development Language

1314

Substrings in SQL
Name resolution of SQL objects
String delimiters and object names
Getting one row with SELECT
MATCHES and LIKE conditions
SQL functions and constants
Querying system catalog tables
Syntax of UPDATE statements
The USER constant

BDL programming

SERIAL data type
IBM®Informix®specific SQL statements in BDL
INSERT cursors
Cursors WITH HOLD
SELECT FOR UPDATE
UPDATE/DELETE WHERE CURRENT OF <cursor>
The LOAD and UNLOAD instructions
SQL Interruption

Runtime configuration

Install Genero db and create a database

1. Install Genero db on your computer.

By default, Genero db is configured to run alone on a networked
machine, having client applications hosted on other machines.
Here are some tips to setup Genero db , you should change some
configuration parameters:

o If applications are co-located on the same
machine as the database server: By default,
Genero db uses nearly all the memory
available on the computer. To share the
memory with applications, you must change
the MEMORY_OVERRIDE parameter in
$ANTSHOME/Server/config.txt.

ODI Adaptation Guides

1315

o You can also use the networking=IPC
communication protocol in the data source
definition to get better performance.

o For production use, a caching RAID
controller on which to do logging is highly
recommended. For maximum data integrity,
LOG_MODE should be set to DURABLE,
and LOGPATH should point to a different
disk than the disk containing data. If
LOGPATH does not point to a disk
managed by a RAID controller,
LOG_MODE should be set to
OSDURABLE. See the database server
documentation for more details.

o Genero db by default relies on local-area-
network multicast to enable clients and
servers to find each other. If you have a
firewall, you must allow UDP connections
on port 12345 for the multicast address
255.0.0.37. If you want to disable multicast
search: on the server side, set
MULTICAST_ENABLED=FALSE in
$ANTSHOME/Server/config.txt. On the
client side, for Unix platforms, you must set
overridebroadcast=yes in the ODBC data
source definition. For Windows platforms,
check the "Override Multicast" option in
the ODBC data source configuration (click
the "Advanced" button, then click
"Connection Method" in the "Networking"
section).

2. Set up an ODBC data source, called mydb.

The defaults ODBC data source settings need to be
adapted:

o Set overridebroadcast=yes if you don't
need multicast, as described in (1).

o During the installation of Genero db, the
data source might have been created with a
login and password of the SYSTEM user. If
you leave these default user and password
entries, anyone can connect to the
database as the SYSTEM super user. You
must clean the user and password ODBC
parameters. This will force client programs
to specify a login and password to connect
to the database.

o By default, the Genero db client re-connects
automatically to the server if the connection
is lost. This is a useful feature as long as
the SQL session is stateless . However, if

Genero Business Development Language

1316

you create temporary tables or if you
change session parameters with ALTER
SESSION, the session context will be
silently lost if a re-connect occurs. To get an
SQL error when DB connection is lost, you
can deny the client to re-connect by setting
automaticfailover=no in the ODBC
parameters. Note that the Genero db client
does not re-connect automatically if a
transaction was started. In such case the
program gets and SQL error.

o Typical Genero FGL applications connect
only once to the database server. By
default, the Genero db client uses
connection aggregators, which re-use
connection resources and server bindings
for new connections. This is useful when the
same client process opens and closes many
connections, but is unnecessary overhead
in typical Genero FGL applications.
Additionally, using aggregation implies
multithreading. UNIX signal handling are not
thread safe. Since the runtime system uses
the UNIX signal() function, you must
disable aggregation by setting
noaggregates=0 in the ODBC data
source definition. On Windows platforms,
the noaggregators property can only be
changed with the registry editor, under the
ODBC.INI key.

o By default the ODBC client library uses a
large buffer to pre-fetch rows from the
server. This gives very good performance
but consumes memory. If your application
uses many cursors fetching large result
sets, you can reduce the memory footprint
with the fetchsize ODBC.INI parameter. On
the other hand, the Genero db client
maintains a statement pool by default.
When you FREE a cursor or statement in
your programs, the underlying ODBC
statement handle structure goes to the
statement pool for future reuse. You can
disable the ODBC statement pool by setting
the disableStmtPool ODBC.INI parameter
to Yes. When this parameter is set, fetch
buffers are freed as well.

3. Create a database user dedicated to your
application. You can use the antscmd tool.

 $ antscmd -d mydb -u SYSTEM -p SYSTEM

ODI Adaptation Guides

1317

 mydb> CREATE USER appadmin IDENTIFIED
BY "password";

You must grant privileges to this user:

 mydb> GRANT CREATE TABLE TO appadmin;
 mydb> GRANT CREATE VIEW TO appadmin;
 mydb> GRANT CREATE SYNONYM TO
appadmin;
 mydb> GRANT CREATE PROCEDURE TO
appadmin;
 mydb> GRANT CREATE SEQUENCE TO
appadmin;

4. Create the application tables.

Do not forget to convert Informix data types to
Genero db data types. See issue ODIADS100 for
more details.

Check for reserved words in your table and column
names.

Prepare the runtime environment

1. If you want to connect to a remote Genero db
server from an application server, you must have
ODBC properly configured on your application
server.

2. Verify if the ODBC environment is correct.

 $ antscmd -d dns-name -u appadmin -p
password

3. Verify the environment variable defining the search
path for shared libraries. On UNIX platforms, the
variable is specific to the operating system. For
example, on Solaris and Linux systems, it is
LD_LIBRARY_PATH.

4. Check the database client character set
(characterset ODBC parameter) The DB locale
must match the locale used by the runtime system
(LANG).

5. Set up the fglprofile entries for database
connections to your data source.

6. Create normal application users and define the
schema to be used.

With Genero db, a schema is created when
creating a user. If the APPADMIN user creates the
tables, the schema for application tables will be
"APPADMIN".

Genero Business Development Language

1318

In order to make application tables visible to normal
DB users, you can specify a default schema for
normal users by adding the DEFAULT SCHEMA
clause in CREATE USER:

 mydb> CREATE USER username IDENTIFIED
BY password DEFAULT SCHEMA appadmin;

You can also use the following FGLPROFILE entry
to make the database driver select a default
schema after connection:

 dbi.database.dbname.ads.schema =
"name"
Here <dbname> identifies the database name
used in the BDL program (DATABASE dbname)
and <name> is the schema name to be used.

If needed, database users can be authenticated as
Operating System users. In order to create a DB
user authenticated by the operating system, use
the IDENTIFIED EXTERNALLY clause in CREATE
USER:

 mydb> CREATE USER username IDENTIFIED
EXTERNALLY;

The OS users will be able to connect to the
database if the $ANTSHOME/Server/ants.rhosts
file contains an entry to identify the OS user. See
the Genero db documentation for more details.

Warning: Pay attention to the user name, which is
case-sensitive. You must specify the user name in
double quotes; otherwisem, the name defaults to
uppercase letters.

7. Grant privileges to application users:

By default the tables created by the appadmin user
cannot be modified by the application users; you
must first grant privileges:

 mydb> GRANT SELECT, INSERT, UPDATE,
DELETE ON tablename TO username;

You can do this for all existing and future users by
specifying PUBLIC as the grantee:

 mydb> GRANT SELECT, INSERT, UPDATE,
DELETE ON tablename TO PUBLIC;

If the database has stored procedures, you must

ODI Adaptation Guides

1319

also grant execute permission to application users:

 mydb> GRANT EXECUTE ON procname TO
username;

8. In order to connect to Genero db, you must have a
database driver "dbmads*" installed.

ODIADS001 - DATE and DATETIME data types
Informix provides two data types to store date and time information:

• DATE = for year, month and day storage.
• DATETIME = for year to fraction of a second (1-5) storage.

Genero db provides four data types to store date and time information:

• DATE = for year, month, and day storage.
• TIME = for hour, minute, and second storage.
• TIMESTAMP = for year, month, day, hour, min, second, and fraction of second

storage.
• DATETIME = Synonym for TIMESTAMP.

String representing date time information:

Informix is able to convert quoted strings to DATE / DATETIME data, if the string
formatting matches the formatting set by environment parameters (i.e. DBDATE,
GL_DATETIME).

Genero db can also convert quoted strings to DATE / TIME / TIMESTAMP; by default,
date/time formats follow the ISO standard (2005-01-30). You can control date/time
format with the ANTS locale settings (ANTS_DATE_FORMAT, ANTS_TIME_FORMAT,
ANTS_TIMESTAMP_FORMAT).

Date arithmetic:

• Informix supports date arithmetic on DATE and DATETIME values. The result of
an arithmetic expression involving dates or times is a number of days when only
DATEs are used, and an INTERVAL value if a DATETIME is used in the
expression.

• In Genero db, the result of an arithmetic expression involving DATE values is a
number of days. You can subtract or add a integer to a DATE column.

• Informix automatically converts an integer to a date when the integer is used to
set a value of a date column. Genero db does not do this conversion; review your
code and change it to use a DATE type variable.

• Complex DATETIME expressions (involving INTERVAL values for example) are
Informix-specific and have no equivalent in Genero db.

Genero Business Development Language

1320

Solution:

The Genero db DATE type is used for Informix DATE data.

Informix DATETIME data with a precision from HOUR TO SECOND is stored in a
Genero db TIME column. DATETIME data with any other precision is stored in Genero
db TIMESTAMP columns. The database interface makes the conversion automatically.
Missing date or time parts default to 1900-01-01 00:00:00. For example, when using a
DATETIME HOUR TO MINUTE with the value of "11:45", the Genero db DATETIME
value will be "1900-01-01 11:45:00".

Warning: Using integers (the number of days since 1899/12/31) as dates is supported
by Genero db in a SELECT INTO statement but not in a WHERE clause. Check your
code to detect the use of integers with DATE columns. Also note that SELECT
TO_NUM('1900-01-01' AS INT) will return 0 and not 1. (With Informix & Genero db, a
date of 1900/1/1 when selected into an INTEGER will return 1.)

Warning: Literal DATETIME expressions (i.e. DATETIME 1999-10-12 YEAR TO DAY)
are not converted.

Warning: It is strongly recommended that you use BDL variables in dynamic SQL
statements instead of quoted strings representing DATEs. For example:
 LET stmt = "SELECT ... FROM customer WHERE create_date >'",
adate,"'"
is not portable. Use a question mark place holder instead and OPEN the cursor by
USING a date:
 LET stmt = "SELECT ... FROM customer WHERE create_date > ?"

Note: Most arithmetic expressions involving dates (for example, to add or remove a
number of days from a date) will produce the same results with Genero db.

Warning: DATE arithmetic expressions using SQL parameters (USING variables) are
not fully supported. For example: "SELECT ... WHERE datecol < ? + 1" generates
an error at PREPARE time.

Warning: SQL Statements using expressions with EXTEND must be reviewed and
adapted to the native syntax.

ODIADS003 - Reserved words
SQL object names, like table and column names, cannot be SQL reserved words in
Genero db. An example of a common word which is part of the Genero db SQL grammar
is 'level'

Solution:

ODI Adaptation Guides

1321

You must rename those table or column names that are Genero db reserved words.
Genero db reserved keywords are listed in the Genero db documentation.
Another solution is to enclose the table/column name in double quotes. Double-quoted
table/column names are case-sensitive. If this double-quoted syntax is used, all
subsequent references to this table/column must be in the same double-quoted format.

ODIADS004 - ROWIDs
Genero db provides ROWIDs, but the data type is different from Informix. Informix
ROWIDs are INTEGERs, while Genero db ROWIDs are BIGINT.

Warning: Genero db ROWIDs can be used to identify a unique row during the lifetime of
the transaction. After the transaction is committed, the ROWID may change.

With Informix, SQLCA.SQLERRD[6] contains the ROWID of the last INSERTed or
UPDATEd row. This is not currently supported with Genero db.

Solution:

Warning: Genero db ROWIDs are not fully compatible with Informix ROWIDs.

It is recommended that you review the code and remove any usage of ROWIDs, as their
usage is not portable to other databases and may lead to problems when the code runs
against any other databases. (For example, Oracle has ROWIDs, but they are CHARs
instead of numeric.)

ODIADS005 - SERIAL data type
Informix SERIAL data type and automatic number production:

• The table column must be of type SERIAL.
• To generate a new serial, no value or a zero value is specified in the INSERT

statement:
 INSERT INTO tab1 (c) VALUES ('aa')
 INSERT INTO tab1 (k, c) VALUES (0, 'aa')

• After INSERT, the new SERIAL value is provided in SQLCA.SQLERRD[2].

Informix allows you to insert rows with a value other than zero for a serial column. Using
an explicit value automatically increments the internal serial counter, to avoid conflicts
with future INSERTs that are using a zero value:
 CREATE TABLE tab (k SERIAL); --> internal counter = 0
 INSERT INTO tab VALUES (0); --> internal counter = 1
 INSERT INTO tab VALUES (10); --> internal counter = 10
 INSERT INTO tab VALUES (0); --> internal counter = 11

Genero Business Development Language

1322

 DELETE FROM tab; --> internal counter = 11
 INSERT INTO tab VALUES (0); --> internal counter = 12

Genero db supports SERIAL the same as in Informix.

Solution:

When using Genero db, the SERIAL data type works the same as in Informix. After an
insert, sqlca.sqlerrd[2] holds the last generated serial value.

CREATE [TEMP] TABLE with a SERIAL column works as in Informix.

ODIADS006 - Outer joins
The Genero db syntax for OUTER joins is different from Informix:

In Informix SQL, outer tables are defined in the FROM clause using the OUTER
keyword:

SELECT ... FROM a, OUTER(b)
 WHERE a.key = b.akey
SELECT ... FROM a, OUTER(b,OUTER(c))
 WHERE a.key = b.akey
 AND b.key1 = c.bkey1
 AND b.key2 = c.bkey2

Genero db version 3.60 supports the same OUTER joins syntax as Informix.

Warning: Genero db version 3.4 does not support Informix-style OUTER joins.

Genero db also supports ANSI syntax joins:

SELECT ... FROM a, LEFT OUTER JOIN b ON a.key = b.key
SELECT ... FROM a
 LEFT OUTER JOIN b LEFT OUTER JOIN c
 ON ((b.key1 = c.bkey1) AND (b.key2 = c.bkey2)) ON (
(a.key = b.akey))

Solution:

None required.

ODI Adaptation Guides

1323

ODIADS007a - Database concepts
Most BDL applications use only one database instance (in the meaning of Informix). But
Informix servers can handle multiple database instances, while Genero db servers
manage only one database instance. However, Genero db can manage multiple
schemas.

 SELECT * FROM stores.customer

Solution:

With Genero db, you can create as many users as database schemas are needed. You
typically dedicate a database user to administer each occurrence of the application
database (i.e. schema in Genero db).

Any user can select the current database schema with the following SQL command:

 SET SCHEMA "<schema>"

Using this instruction, any user can access the tables without giving the owner prefix, as
long as the table owner has granted privileges required to access the tables.

Genero db users can be associated to a default schema as follows:

 CREATE USER "<username>" IDENTIFIED ...
 DEFAULT SCHEMA "<schema>"

This is the preferred way to assign a schema to DB users.

You can also make the database interface select the current schema automatically using
the following FGLPROFILE entry:

 dbi.database.<dbname>. ads. schema = "<schema>"

Warning: double-quoted schema/user names are case-sensitive.

ODIADS008a - Data consistency and concurrency
management
Data consistency involves readers that want to access data currently being modified.
Concurrency data access involves several writers accessing the same data for
modification. Locking granularity defines the amount of data involved when a lock is set
(row, page, table, and other groupings).

Informix:

Genero Business Development Language

1324

Informix uses a locking mechanism to handle data consistency and concurrency. When
a process changes database information with UPDATE, INSERT or DELETE, an
exclusive lock is set on the touched rows. The lock remains active until the end of the
transaction. Statements performed outside a transaction are treated as a transaction
containing a single operation, and release the locks immediately after execution.
SELECT statements can set shared locks according to the isolation level. In case of
locking conflicts (for example, when two processes want to acquire an exclusive lock on
the same row for modification, or when a writer is trying to modify data protected by a
shared lock), the behavior of a process can be changed by setting the lock wait mode.

Control:

• Lock wait mode: SET LOCK MODE TO ...
• Isolation level: SET ISOLATION TO ...
• Locking granularity: CREATE TABLE ... LOCK MODE {PAGE|ROW}
• Explicit exclusive lock: SELECT ... FOR UPDATE

Defaults:

• The default isolation level is READ COMMITTED.
• The default lock wait mode is NOT WAIT.
• The default locking granularity is PAGE.

Genero db:

Genero db does not use the same locking mechanism as Informix to handle
concurrency; however, it behaves the same way in terms of concurrency.

The following transaction control instructions have been implemented in Genero db:

• Lock wait mode: SET LOCK MODE TO ...
• Isolation level: SET TRANSACTION ISOLATION LEVEL ...
• Explicit exclusive lock: SELECT ... FOR UPDATE

Solution:

You can use the same transaction control instructions and update clauses as in Informix:

• SET LOCK MODE ...
• SELECT ... FOR UPDATE

Warning: The SET ISOLATION TO ... Informix syntax is replaced by SET
TRANSACTION ISOLATION LEVEL ... in Genero db.

Warning: The LOCK MODE {PAGE|ROW} is not provided by Genero db. This is specific to
data storage mechanisms and cannot be supported in the Genero db concurrency
model.

ODI Adaptation Guides

1325

ODIADS008b - SELECT FOR UPDATE
Many BDL programs implement pessimistic locking in order to prevent several users
editing the same rows at the same time.

 DECLARE cc CURSOR FOR
 SELECT ... FOR UPDATE [OF column-list]
 OPEN cc
 FETCH cc <-- lock is acquired
 CLOSE cc <-- lock is released

• The row must be fetched in order to set the lock.
• If the cursor is local to a transaction, the lock is released when the transaction

ends.
If the cursor is declared "WITH HOLD", the lock is released when the cursor is
closed.

Genero db allows individual and exclusive row locking with:

 SELECT ... FOR UPDATE [OF column-list]

• A lock is acquired for each selected row when the cursor is opened (before the
first fetch).

• The lock is only released when the transaction ends.
• FOR UPDATE cursors can only be OPENed inside a transaction.

Genero db locking granularity is at the row level.

To control the behavior of the program when locking rows, Informix provides a specific
instruction to set the wait mode:

 SET LOCK MODE TO { WAIT | NOT WAIT | WAIT seconds }

The default mode is NOT WAIT. This is an Informix-specific SQL statement.

Solution:

Genero db supports SELECT .. FOR UPDATE as in Informix, but the rows are locked
when the cursor is opened, not when the first row is fetched.

Ensure that the use of 'FOR UPDATE' is always inside a transaction.

Ensure that you COMMIT the transaction as soon as possible to prevent rows being
locked longer than necessary.

Genero Business Development Language

1326

ODIADS009a - Transactions handling
Informix and Genero db handle transactions in a similar manner but with minor
differences.

In both Informix and Genero db, transactions must be started with BEGIN WORK and
finished with COMMIT WORK or ROLLBACK WORK.

Statements executed outside a transaction are automatically committed.

Warning: With Informix in native mode (non-ANSI), DDL statements can be executed
(and cancelled) in transactions. Genero db does not support DDL statements inside
transactions.

Solution:

Regarding transaction control instructions, existing applications do not have to be
modified in order to work with Genero db.

Warning: You must extract the DDL statements from transaction blocks.

Transactions in stored procedures: avoid using transactions in stored procedures and
allow the client applications to handle transactions, in accordance with the transaction
model.

See also ODIADS008b

ODIADS010 - BOOLEAN data type
Informix provides the BOOLEAN data type, as a "Built-in Opaque Data Type". It is used
to store Boolean values. You can use the character literals 't' for true and 'f' for false.

Genero db 3.4 does not have a BOOLEAN type.

Warning: Genero db 3.60 has implemented a BOOLEAN type which can store the
following values (case-insensitive): TRUE/FALSE or 1/0. You can't use the 't' or 'f'
character values instead.

Solution:

We don't recommend the use of the BOOLEAN Genero db datatype.

You must review the database creation scripts and the programs. Replace any
BOOLEAN column by a CHAR(1).

ODI Adaptation Guides

1327

ODIADS011a - CHARACTER data types
Informix provides the CHAR and VARCHAR data types to store characters. CHAR
columns can store up to 32,767 characters; VARCHARs are limited to 255 characters.
Starting with IDS 2000, Informix provides the LVARCHAR data type which is limited to
2K characters.

Genero db provides the CHAR and VARCHAR data types. Both data types support a
length of 60000 bytes (or 3000 if the column is indexed).

String comparison semantics are equivalent in Informix and Genero db:

• Trailing blanks are ignored when comparing CHAR and VARCHAR values.
• Genero db treats empty strings as NOT NULL values (like Informix).

Solution:

The database interface supports character string variables in SQL statements for input
(USING) and output (INTO).

ODIADS012 - Constraints

Constraint naming syntax:

Both INFORMIX and Genero db support primary key, unique, foreign key, default and
check constraints, but the constraint naming syntax is different : Genero db expects the
"CONSTRAINT" keyword before the constraint specification and INFORMIX expects it
after.

UNIQUE constraint example:

INFORMIX Genero db

CREATE TABLE scott.emp (
...
empcode CHAR(10) UNIQUE
 [CONSTRAINT pk_emp],
...

CREATE TABLE scott.emp (
...
empcode CHAR(10)
 [CONSTRAINT pk_emp]
UNIQUE,
...

Primary keys:

Like INFORMIX, Genero db creates an index to enforce PRIMARY KEY constraints
(some RDBMS do not create indexes for constraints).

Unique constraints:

Genero Business Development Language

1328

Like INFORMIX, Genero db creates an index to enforce UNIQUE constraints (some
RDBMS do not create indexes for constraints).

Warning: Using CREATE UNIQUE INDEX is silently converted to a unique constraint.
To drop an index created as CREATE UNIQUE INDEX, you must do an ALTER TABLE
DROP CONSTRAINT.

Warning: When using a unique constraint, INFORMIX allows only one row with a NULL
value, while Genero db allows several rows with NULL!

Foreign keys:

Both INFORMIX and Genero db support the ON DELETE CASCADE option. To defer
constraint checking, INFORMIX provides the SET CONSTRAINT command while
Genero db provides the DISABLE CONSTRAINTS hint.

Check constraints:

Warning: The check condition may be any valid expression that can be evaluated to
TRUE or FALSE, including functions and literals. You must verify that the expression is
not INFORMIX specific.

Null constraints:

INFORMIX and Genero db support not null constraints, but INFORMIX does not allow
you to give a name to "NOT NULL" constraints.

Solution:

Constraint naming syntax:

The database interface does not convert constraint naming expressions when creating
tables from BDL programs. Review the database creation scripts to adapt the constraint
naming clauses for Genero db.

ODIADS013 - Triggers and Stored Procedures
Genero db supports the Informix trigger and stored procedure language.

See Genero db documentation for more details.

Solution:

None required.

ODI Adaptation Guides

1329

ODIADS016a - Defining database users
Informix users are defined at the operating system level. They must be members of the
'Informix' group. The database administrator must grant CONNECT, RESOURCE or
DBA privileges to those users.

Genero db users must be registered in the database. They are created by the database
administrator with the following command:
 CREATE USER <username> IDENTIFIED BY <pswd>

or for Operating System authentication:
 CREATE USER <username> IDENTIFIED EXTERNALLY

Note: For defining database users, there is a file in the <install directory of the
database>/Server/ants.rhosts . See the Genero db documentation for more information.

Solution:

For migration and testing purposes only, you can specify the user name and password in
the FGLPROFILE.

For a live system, it is recommended that you use the CONNECT TO statement and
supply the user name and password, or create database users IDENTIFIED
EXTERNALLY.

ODIADS016b - Setting privileges
Informix and Genero db user privileges management are similar.

Genero db provides roles to group privileges which then can be assigned to users.
Starting with version 7.20, Informix also provides roles.

Informix users must have at least the CONNECT privilege to access the database:
 GRANT CONNECT TO (PUBLIC|user)

To be able to create tables, views or synonyms, Genero db users need:
 GRANT CREATE TABLE TO <user>
 GRANT CREATE VIEW TO <user>
 GRANT CREATE SYNONYM TO <user>

Warning: Genero db does NOT provide the Informix CONNECT, RESOURCE and DBA
roles.

Solution:

In Genero db, roles can be created with database privileges to simulate Informix system
roles.

Genero Business Development Language

1330

ODIADS017 - Temporary tables
Informix supports temporary tables with the following statements:

 SELECT ... INTO TEMP tmpname
 CREATE TEMP TABLE tmpname (...)

Genero db supports the same temporary table instructions as Informix.

Solution:

None required.

ODIADS018 - Substrings in SQL
Informix SQL statements can use substrings on columns defined with the character data
type:
 SELECT ... FROM tab1 WHERE col1[2,3] = 'RO'
 SELECT ... FROM tab1 WHERE col1[10] = 'R' -- Same as col1[10,10]
 UPDATE tab1 SET col1[2,3] = 'RO' WHERE ...
 SELECT ... FROM tab1 ORDER BY col1[1,3]

Genero db provides the SUBSTRING() function, to extract a sub-string from a string
expression:
 SELECT FROM tab1 WHERE SUBSTRING(col1,2,2) = 'RO'
 SELECT SUBSTRING('Some text' FROM 6 FOR 3) -- Gives 'tex'

Genero db 3.60 has implemented the col[x,y] expression but not the col[x] one.

Solution:

The Genero db driver will convert SQL expressions containing Informix substring syntax
for you. It is recommended, however, that you replace all Informix col[x,y]
expressions with SUBSTRING(col FROM x FOR y-x+1).

Warning: In UPDATE instructions, setting column values using subscripts will produce
an error with Genero db:
 UPDATE tab1 SET col1[2,3] = 'RO' WHERE ...
is converted to:
 UPDATE tab1 SET SUBSTRING(col1 FROM 2 FOR 3-2+1) = 'RO' WHERE ...

ODI Adaptation Guides

1331

ODIADS019 - Name resolution of SQL objects
Informix uses the following to identify an SQL object:
 [database[@dbservername]:][{owner|"owner"}.]identifier

The ANSI convention is to use double-quotes for identifier delimiters (For example:
"tabname"."colname").

Warning: When using double-quoted identifiers, both Informix and Genero db become
case-sensitive. Unlike Informix, Genero db object names are stored in UPPERCASE in
system catalogs. That means that SELECT "col1" FROM "tab1" will produce an error if
those objects are created without double-quotes; they are identified by COL1 and TAB1
in Genero db system catalogs.

With Informix ANSI-compliant databases:

• The table name must include "owner", unless the connected user is the owner of
the database object.

• The database server shifts the owner name to uppercase letters before the
statement executes, unless the owner name is enclosed in double quotes.

With Genero db, an object name takes the following form:
 [(schema|"schema").](identifier|"identifier")

Object names are limited to 128 chars in Genero db.

A Genero db schema is owned by a user (usually the application administrator).

Solution:

Check that you do not use single-quoted or double-quoted table names or column
names in your static SQL statements. Those quotes must be removed because the
database interface automatically converts double quotes to single quotes, and Genero
db does not allow single quotes as database object name delimiters.

See also issue ODIADS007a

ODIADS020 - String delimiters and object names
The ANSI string delimiter character is the single quote ('string'). Double quotes are used
to delimit database object names ("object-name").

Example: WHERE "tabname"."colname" = 'a string value'

Genero Business Development Language

1332

Informix allows double quotes as string delimiters, but Genero db doesn't. This is an
important distinction, as many BDL programs use double quotes to delimit the strings in
SQL commands.

Remark: This problem concerns only double quotes within dynamic SQL statements.
Double quotes used in pure BDL string expressions are not subject to SQL compatibility
problems. Double-quoted string literals in static SQL statements are converted to single-
quoted strings by compilers.

Genero db implements ANSI-compliant SQL syntax and therefore does not support
double-quoted string literals; only database object names can be double-quoted.

Solution:

The Genero db driver can automatically replace all double quotes with single quotes.

Escaped string delimiters can be used inside strings like the following:

'This is a single quote: '''
'This is a single quote: \''
"This is a double quote: """
"This is a double quote: \""

Warning: Database object names cannot be delimited by double quotes, because the
database interface cannot determine the difference between a database object name
and a quoted string!

For example, if the program executes the SQL statement:
 WHERE "tabname"."colname" = "a string value"
replacing all double quotes with single quotes would produce:
 WHERE 'tabname'.'colname' = 'a string value'
This would produce an error since 'tabname'.'colname' is not allowed by Genero
db.

Although double quotes are replaced automatically in SQL statements, you should use
only single quotes to enforce portability.

ODIADS021 - NUMERIC data types
Informix supports several data types to store numbers:

Informix data type Synonym Description
SMALLINT 16 bit integer (-2^15 to 2^15)
INTEGER INT 32 bit integer (-2^31 to 2^31)
DECIMAL(p) DEC(p) Floating-point decimal number
DECIMAL(p,s) DEC(p,s) / Fixed-point decimal number

ODI Adaptation Guides

1333

NUMERIC(p,s)
MONEY Equivalent to DECIMAL(16,2)
MONEY(p) Equivalent to DECIMAL(p,2)
MONEY(p,s) Equivalent to DECIMAL(p,s)

SMALLFLOAT REAL approximate floating point (C
float)

FLOAT(n) DOUBLE
PRECISION

approximate floating point (C
double). n is ignored !

Genero db supports the following:

Genero db data type Pseudotype Description
SMALLINT TINYINT / BIT 16 bit integer
INT / INTEGER 32 bit integer
BIGINT 64 bit integer

DECIMAL(p,s) Fixed-point decimal number
(p<=15)

NUMERIC(p,s) Fixed-point decimal number
(p<=15)

MONEY Number with precision nearly 19
and scale 4

DOUBLE / DOUBLE
PRECISION / REAL

SMALLFLOAT /
FLOAT(n)

approximate floating point (C
double)

Warning: The only difference between DECIMAL and NUMERIC is that NUMERIC
guarantees the specified precision, whereas DECIMAL guarantees at least the specified
precision.

Warning: A pseudotype is accepted anywhere a regular type name is, but is silently
converted into another type which is supported by Genero db.

Solution:

We recommend that you use the following conversion rules:

Informix data type Genero db data type
SMALLINT SMALLINT
INTEGER INTEGER

DECIMAL(p) DOUBLE / DOUBLE PRECISION /
REAL

DECIMAL(p,s) DECIMAL(p,s)
MONEY(p,s) DECIMAL(p,s)

Genero Business Development Language

1334

SMALLFLOAT DOUBLE / DOUBLE PRECISION /
REAL

FLOAT(n) DOUBLE / DOUBLE PRECISION /
REAL

Warning: Genero db 3.60 DECIMAL can store up to 15 digits, while Informix DECIMAL
can store 32. A future version of Genero db will support DECIMAL (p<=32,s).

ODIADS022 - Getting one row with SELECT
With Informix, you must use the SYSTABLES system table with a condition on the table
id:

SELECT user FROM systables WHERE tabid=1

With Genero db some statements can be as follows:

PREPARE pre FROM "SELECT USER" EXECUTE pre INTO l_user

Solution:

Check the BDL sources for "FROM systables WHERE tabid=1" and use dynamic SQL to
resolve this problem.

ODIADS024 - MATCHES and LIKE in SQL conditions
Informix and Genero db both support MATCHES and LIKE in SQL statements.

MATCHES allows you to use brackets to specify a set of matching characters at a given
position:
 (col MATCHES '[Pp]aris')
 (col MATCHES '[0-9][a-z]*')

In this case, the LIKE statement has no equivalent feature.

Genero db implements the MATCHES operator.

Solution:

None required.

See also: MATCHES operator in SQL Programming.

ODI Adaptation Guides

1335

ODIADS025 - Informix specific SQL statements in BDL
The BDL compiler supports several Informix-specific SQL statements that have no
meaning when using Genero db:

• CREATE DATABASE
• DROP DATABASE
• START DATABASE (SE only)
• ROLLFORWARD DATABASE
• SET [BUFFERED] LOG
• CREATE TABLE with special options (storage, lock mode, etc.)

Solution:

Review your BDL source and remove all static SQL statements which are Informix-
specific SQL statements.

ODIADS028 - INSERT cursors
Informix supports insert cursors. An "insert cursor" is a special BDL cursor declared with
an INSERT statement instead of a SELECT statement. When this kind of cursor is open,
you can use the PUT instruction to add rows and the FLUSH instruction to insert the
records into the database.

For Informix database with transactions, OPEN, PUT and FLUSH instructions must be
executed within a transaction.

Genero db does not support insert cursors.

Solution:

Insert cursors are emulated by the Genero db driver.

ODIADS029 - SQL functions and constants
Almost all Informix functions and SQL constants have a different name or behavior in
Genero db.

Comparison list of functions and constants:

Informix Genero db

Genero Business Development Language

1336

today current_date / today (synonyms)
current year to second current_timestamp
day(value) dayofmonth(d '2002-12-31')
extend(dtvalue, first to last) to_date(dtvalue, '<format>')
mdy(m,d,y) mdy(m,d,y)
month(date) month(date)
weekday(date) dayofweek(date '2002-12-31')
year(date) year(date)
date("string" | integer) to_date('string', '<format>')

No equivalent with integer.

user user ! Uppercase/lowercase: See
ODIADS047

trim([leading | trailing | both "char"
FROM] "string")

trim([[leading | trailing | both] [
pad_character] from] string)

length(c) length(c)
pow(x,y) pow(x,y)

Solution:

Warning: You must review the SQL statements using CURRENT / EXTEND
expressions.

ODIADS030 - Very large data types
Informix uses the TEXT and BYTE data types to store very large texts or images.

Genero db 3.4 provides CLOB and BLOB data types, and provides TEXT/BYTE
synonyms for Informix compatibility.

Solution:

None required.

TEXT & BYTE are supported by Genero db and by the ADS database driver.

ODIADS031 - Cursors WITH HOLD
Informix closes opened cursors automatically when a transaction ends unless the WITH
HOLD option is used in the DECLARE instruction.

ODI Adaptation Guides

1337

By default Genero db keeps cursors open when a transaction ends (however, FOR
UPDATE locks are released at the end of a transaction).

Solution:

BDL cursors are automatically closed when a COMMIT WORK or ROLLBACK WORK is
performed.

WITH HOLD cursors with a SELECT FOR UPDATE can be supported, if the table has a
primary key or a unique index.

ODIADS032 - UPDATE/DELETE WHERE CURRENT OF
<cursor>
Informix allows positioned UPDATEs and DELETEs with the "WHERE CURRENT OF
<cursor>" clause, if the cursor has been DECLARED with a SELECT ... FOR UPDATE
statement.

Warning: UPDATE/DELETE ... WHERE CURRENT OF <cursor> is supported by the
Genero db API. However, the cursor must be OPENed and used inside a transaction.

 DECLARE cur1 CURSOR FOR SELECT * FROM mytable WHERE 1=1 FOR UPDATE
 BEGIN WORK
 OPEN cur1
 FETCH cur1 INTO x,chr
 UPDATE mytable SET mycol2 = "updated" WHERE CURRENT OF cur1
 CLOSE cur1
 COMMIT WORK

Solution:

Check that your programs correctly put WHERE CURRENT OF <cursorname> inside a
transaction.

ODIADS033 - Querying system catalog tables
Both Informix and Genero db provides system catalog tables, however the table names
and structure are different.

Genero db provides the standard views for system catalog:
INFORMATION_SCHEMA.TABLES, INFORMATION_SCHEMA.COLUMNS, and so on.

Solution:

Genero Business Development Language

1338

Warning: No automatic conversion of Informix system tables is provided by the
database interface.

ODIADS034 - Syntax of UPDATE statements
Informix allows a specific syntax for UPDATE statements:

 UPDATE table SET (<col-list>) = (<val-list>)

Genero db supports this syntax.

BDL programs can have the following type of statements:

 UPDATE table SET table.* = myrecord.*
 UPDATE table SET * = myrecord.*

Static UPDATE statements using the above syntax are converted by the compiler to the
standard form:

 UPDATE table SET column=value [,...]

Solution:

None required.

ODIADS036 - INTERVAL data type
Informix's INTERVAL data type stores a value that represents a span of time. INTERVAL
types are divided into two classes: year-month intervals and day-time intervals.

Genero db does not provide a data type similar to Informix INTERVAL.

Solution:

Warning: INTERVAL data types are not supported by Genero db 3.4.

It is not recommended that you use the INTERVAL data type because Genero db has no
equivalent native data type. This would cause problems when doing INTERVAL
arithmetic on the database server side. However, INTERVAL values can be stored in
CHAR columns.

Remark: Genero db will support INTERVALs in a future version.

ODI Adaptation Guides

1339

ODIADS040 - National characters data types
Informix provides the NCHAR & NVARCHAR data types to store locale-dependent
character data, using a specific collation order.

Genero db 3.6 has the same internationalization solution.

Solution:

None required with Genero db 3.6.

ODIADS046 - The LOAD and UNLOAD instructions
Informix provides SQL instructions to export data from a database table and import data
into a database table: The UNLOAD instruction copies rows from a database table into a
text file; the LOAD instructions insert rows from a text file into a database table.

Genero db does not provide LOAD and UNLOAD instructions.

Genero db provides an Import/Export Utility (impexp) that will convert a specified set of
tables, or an entire database, to or from a Comma Separated Value (CSV) external
format.

Solution:

In 4gl programs, the LOAD and UNLOAD instructions are supported with Genero db,
with some limitations:

Warning: There is a difference when you use Genero db DATETIME columns.
DATETIME columns created in Genero db are equivalent to Informix DATETIME YEAR
TO SECOND columns. In LOAD and UNLOAD, all Genero db DATE columns are
treated as Informix DATETIME YEAR TO SECOND columns and thus will be unloaded
with the "YYYY-MM-DD hh:mm:ss" format.

Warning: When using an Informix database, simple dates are unloaded using the
DBDATE format (ex: "23/12/1998"). As a result, unloading from an Informix database for
loading into an Genero db is not supported.

ODIADS047 - The USER constant
Both Informix and Genero db provide the USER constant, which identifies the current
user connected to the database server. However, there is a difference:

Genero Business Development Language

1340

• Informix returns the user identifier as defined in the operating system, where it
can be case-sensitive (UNIX) or not (NT).

• Genero db returns the user identifier that is stored in the database. By default,
Genero db converts the user name to uppercase letters if you do not put the user
name in double quotes when creating it.

This is important if your application stores user names in database records (for example,
to audit data modifications). You can, for example, connect to Genero db with the name
'scott', and perform the following SQL operations:
 (1) INSERT INTO mytab (creator, comment)
 VALUES (USER, 'example');
 (2) SELECT * FROM mytab
 WHERE creator = 'scott';
The first command inserts 'SCOTT' (in uppercase letters) in the author column. The
second statement will not find the row.

Solution:

When creating a user in Genero db, you can put double quotes around the user name in
order to force Genero db to store the given user identifier as is:

CREATE USER "scott" IDENTIFIED BY <pswd>

To verify the user names defined in Genero db, connect as SYSTEM and list the records
of the ALL_USERS table as follows:

CREATE USER john IDENTIFIED BY <pswd>

SELECT user_name FROM table_of_users

USER_NAME

SYSTEM
JOHN
scott

ODIADS051 - Setup database statistics
Informix provides a special instruction to compute database statistics in order to help the
optimizer determine the best query execution plan:

UPDATE STATISTICS ...

Genero db provides the following instruction to collect statistics:

SET GATHERSTATS tablename

ODI Adaptation Guides

1341

Solution:

Replace the UPDATE STATISTICS by multiple SET GATHERSTATS statements (one
for each table)

ODIADS053 - The ALTER TABLE instruction
Informix and Genero db have different implementations of the ALTER TABLE instruction.
For example, Informix allows you to use multiple ADD clauses separated by commas;
this is not supported by Genero db.

Informix:
 ALTER TABLE customer ADD(col1 INTEGER), ADD(col2 CHAR(20))

Genero db:
 ALTER TABLE customer ADD COLUMN col1 INTEGER ADD COLUMN col2
CHAR(20)

Solution:

Warning: No automatic conversion is done by the database interface. There is no real
standard for this instruction (that is, no common syntax for all database servers). Read
the SQL documentation and review the SQL scripts or the BDL programs in order to use
the database server-specific syntax for ALTER TABLE.

ODIADS054 - SQL Interruption
With Informix, it is possible to interrupt a long running query if the SQL INTERRUPT ON
option is set by the Genero program. The database server returns SQLCODE -213,
which can be trapped to detect a user interruption.

 MAIN
 DEFINE n INTEGER
 DEFER INTERRUPT
 OPTIONS SQL INTERRUPT ON
 DATABASE test1
 WHENEVER ERROR CONTINUE
 -- Start long query (self join takes time)
 -- From now on, user can hit CTRL-C in TUI mode to stop the query
 SELECT COUNT(*) INTO n FROM customers a, customers b
 WHERE a.cust_id <> b.cust_id
 IF SQLCA.SQLCODE == -213 THEN
 DISPLAY "Statement was interrupted by user..."
 EXIT PROGRAM 1
 END IF
 WHENEVER ERROR STOP

Genero Business Development Language

1342

 ...
 END MAIN

Genero db 3.80 supports SQL Interruption in a similar way as Informix. The db client
must issue an SQLCancel() ODBC call to interrupt a query.

Solution:

The Genero db database driver supports SQL interruption and converts the native SQL
error code -30005 to the Informix error code -213.

Warning: Make sure you have Genero db 3.80 or higher installed. Older versions do not
support SQL interruption.

Note that when writing these lines, Genero db 3.80 does not support interruption of a
DDL statement or an SQL statement waiting for a lock to be released (such as SELECT
FOR UPDATE). Those limitations should be removed in a later Genero db version.

ODIADS100 - Data type conversion table

Informix Data Types Genero db Data Types
BIGINT BIGINT
BLOB BLOB
BOOLEAN CHAR(1)
BYTE BYTE (= BLOB)
CHAR(n) CHAR(n)
CHARACTER VARYING(n,m) VARCHAR(n,m) (= VARCHAR (n))
CHARACTER(n) CHARACTER(n) (= CHAR (n))
CLOB CLOB
DATE DATE
DATETIME HOUR TO SECOND TIME
DATETIME x TO y (not HOUR TO
SECOND) TIMESTAMP

DEC DECIMAL
DECIMAL(p) DOUBLE
DECIMAL(p,s) DECIMAL(p,s)! p<=15
DOUBLE DOUBLE
DOUBLE PRECISION DOUBLE PRECISION (= DOUBLE)
FLOAT(n) FLOAT(n) (= DOUBLE)
INT INT
INT8 INT8 (= BIGINT)

ODI Adaptation Guides

1343

INTEGER INTEGER
INTERVAL x TO y CHAR(50)
MONEY(p,s) DECIMAL(p,s)! p<=15
NCHAR(n) NCHAR(n)
NUMERIC(p,s) NUMERIC(p,s)
NVARCHAR(n) NVARCHAR(n)
REAL REAL (= DOUBLE)
SERIAL SERIAL
SERIAL8 SERIAL8
SMALLFLOAT SMALLFLOAT (= DOUBLE)
SMALLINT SMALLINT
TEXT TEXT (= CLOB)
VARCHAR(n,m) VARCHAR(n,m) (= VARCHAR(n))
VARCHAR(n) VARCHAR(n)

ODIADS101 - GeneroDB Sql Error management
For a general idea on how Four J's ODI handles SqlErrors in the BDL language, check
the following links:

Error Handling
SQL Errors
STATUS
SQLSTATE
SQLERRMESSAGE
SQLCA Record
Portability: SQLCA

GeneroDB has some specific rules that need to be highlighted:

1. Normally, you should use SQLSTATE, because this is the ANSI/ISO standard.
SQLSTATE defines unified codes so that you can write programs for different
RDBMS. However, only some RDBMS - and only in their recent versions -
support SQLSTATE. GeneroDB is not one of them. So we would suggest that
you keep using SQLCA.SQLCODE (which gives the Informix error code).

• The native Genero db error code is stored in
SQLCA.SQLERRD[2] register

• The native Genero db error message is stored in
SQLERRMESSAGE operator

• The generic Informix error code is stored in
SQLCA.SQLCODE register

Genero Business Development Language

1344

So far, we convert the following native Genero db errors:

Genero db
SQLCA.SQLERRD[2]

Informix
SQLCA.SQLCODE

Error description
(SQLERRMESSAGE)

-1 -201 syntax error
-3 -206 table not found
-4 -201 syntax error
-6 -217 column not found
-17 -743 object exists
-24 -201 syntax error
-35 -236 cols/vals mismatch
-10012 -768 internal / untranslatable error
-10013 -768 internal / untranslatable error
-10014 -213 SQL interrupted

-30004 -263 Cannot wait on another
session.

-30005 -213 SQL interrupted
-60001 -268 Uniqueness constraint violation.
-80002 -387 no connect permission

2. There's no one-to-one error conversion even from Informix to GeneroDB. If you
take a look at the exhaustive list of Informix error:s
http://www-306.ibm.com/software/data/informix/pubs/library/ierrors.htm

Many different formerly Informix errors can be returned by the ODI driver;
For example, fetch on open cursor, commit on unopened transaction, ...

If an unexpected problem happens on the ODBC driver end (could not
create temporary table, ...), the driver will return:

SQLCA.SQLCODE SQLERRMESSAGE
-768 Internal error in routine routine-name

List of known errors the GeneroDB ODBC driver can return:

SQLCA.SQLERRD[2] SQLERRMESSAGE Cause
-213 Query canceled Long running query

interrupted by user
-254 Too many or too few host

variables given.
PREPARE s FROM
"insert into t values (?,?)"
EXECUTE s USING x,y,z
(z en trop)

-255 Not in transaction. OPEN insert cursor

ODI Adaptation Guides

1345

without BEGIN WORK
-284 A subquery has not

returned exactly one row.
SELECT * INTO ... FROM
tab, returns more than
one row

-400 Fetch attempted on
unopened cursor.

FETCH on cursor not
opened

-404 The cursor or statement is
not available.

OPEN cursor after a
FREE

-410 Prepare statement failed or
was not executed.

EXECUTE a statement
where PREPARE has
failed

-413 Insert attempted on
unopened cursor.

PUT on insert cursor not
opened

-481 Invalid statement name or
statement was not
prepared.

EXECUTE a statement
without PREPARE

-482 Invalid operation on a non-
SCROLL cursor.

FETCH LAST/PREV/... on
non SCROLL cursor

-526 Updates are not allowed on
a scroll cursor.

SELECT FOR UPDATE
with SCROLL cursor

-535 Already in transaction. BEGIN WORK x2
-6370 Unsupported SQL feature. CREATE DATABASE,

SET CONNECTION
DORMANT, CREATE
PROCEDURE FROM,
DATABASE IN
EXCLUSIVE MODE,
CONNECT TO @server,
...

3. If an unknown error comes from the DB Server and therefore is not mapped as
an Informix error, you'll get:

SQLCA.SQLCODE SQLERRMESSAGE
-6372 General SQL error, check SQLCA.SQLERRD[2]

As said previously, you can always check the native SQL error in the
SQLCA.SQLERRD[2] register or in the FGLSQLDEBUG output.

Example:

Here is a suggestion to trap an unknown error (-768 or -6372):

 MAIN
 WHENEVER ERROR CONTINUE
 CONNECT TO dsn_connectstring
 IF STATUS <> 0 THEN

Genero Business Development Language

1346

 DISPLAY "ERROR: Connection to the database failed."
 DISPLAY SQLCA.SQLCODE, ": ", SQLCA.SQLERRD[2], "-" ,
SQLERRMESSAGE
 EXIT PROGRAM 1
 END IF
 WHENEVER ERROR STOP
 END MAIN

ODI Adaptation Guides

1347

ODI Adaptation Guide For DB2 UDB 7.x, 8.x, 9x
Runtime configuration

Install DB2 and create a database
Prepare the runtime environment

Database concepts

Database concepts
Data storage concepts
Data consistency and concurrency management
Transactions handling
Defining database users
Setting privileges

Data dictionary

CHARACTER data types
NUMERIC data types
DATE and DATETIME data types
INTERVAL data type
SERIAL data type
ROWIDs
Very large data types
National character data types
Constraints
Triggers
Stored procedures
Name resolution of SQL objects
Setup database statistics
The ALTER TABLE instruction
Data type conversion table

Data manipulation

Reserved words
Outer joins
Transactions handling

Genero Business Development Language

1348

Temporary tables
Substrings in SQL
Name resolution of SQL objects
String delimiters and object name delimiters
Getting one row with SELECT
MATCHES and LIKE conditions
SQL functions and constants
Querying system catalog tables
The GROUP BY clause
The star in SELECT statements
The LENGTH() function

BDL programming

SERIAL data type
INFORMIX specific SQL statements in BDL
INSERT cursors
Cursors WITH HOLD
SELECT FOR UPDATE
SQL parameters limitation
The LOAD and UNLOAD instructions
SQL Interruption

Connecting to DB2 OS/400

DB2 Architecture on OS/400

Log in to the AS/400 server

Collection (Schema) Creation
Source Physical File Creation
Trigger Creation
Permission Definition
Relational DB Directory Entry Creation
DB2 Client Configuration on Windows

Differences Between DB2 UNIX & DB2 OS/400
Naming Conventions

ODI Adaptation Guides

1349

Runtime configuration

Install DB2 and create a database

1. Install the IBM DB2 Universal Server on your
database server.

2. Create a DB2 database entity: dbname
3. Declare a database user dedicated to your

application: the application administrator. This
user will manage the database schema of the
application (all tables will be owned by it).

4. Give all requested database administrator
privileges to the application administrator.

5. If you plan to use temporary table emulation, you
must setup the database for DB2 global temporary
tables (create a user temporary tablespace and
grant privileges to all users).

See issue ODIDB2017 for more details.

6. Connect as the application administrator:

 $ db2 "CONNECT TO dbname USER
appadmin USING password"

7. Create the application tables. Do not forget to
convert Informix data types to DB2 data types. See
issue ODIDB2100 for more details.

8. If you plan to use SERIAL column emulation, you
must prepare the database. See issue ODIDB2005
for more details.

Prepare the runtime environment

1. If you want to connect to a remote DB2 server, the
IBM DB2 Client Application Enabler must be
installed and configured on the computer running
the BDL applications. You must declare the data
source set up as follows:

1. Login as root.
2. Create a user dedicated to the db2 client
instance environment, for example, "db2cli1".
3. Create a client instance environment with the
db2icrt tool as in following example:
 # db2dir/instance/db2icrt -a server
-s client instance-user
4. Login as the instance user (environment should
be set automatically, verify DB2DIR).
5. Catalog the remote server node:
 # db2 "catalog tcpip node db2node
remote hostname server tcp-service"

Genero Business Development Language

1350

6. Catalog the remote database:
 # db2 "catalog database datasource
at node db2node authentication server"
7. Test the connection to the remote database:
 # db2 "connect to datasource user
dbuser using password"
 (where dbuser is a database user declared on
the remote database server).

See IBM DB2 documentation for more details.

2. IMPORTANT WARNING: You may need to set the
PATCH2=15 configuration parameter in the
DB2CLI.INI file, if you have a non-English
environment; otherwise DECIMAL values will not
be interpreted as expected:
 [datasource]
 PATCH2=15
For more details, see the DB2 README.TXT file in
the SQLLIB directory.

3. Check the database locale settings
(DB2CODEPAGE, etc). The DB locale must match
the locale used by the runtime system (LANG).

4. Setup the fglprofile entries for database
connections.

5. Define the database schema selection if needed.
Use the following entry to define the database
schema to be used by the application. The
database interface will automatically perform a
"SET SCHEMA <name>" instruction to switch to a
specific schema:

 dbi.database.dbname.schema = 'name'

Here dbname identifies the database name used in
the BDL program (DATABASE dbname) and
name is the schema name to be used in the SET
SCHEMA instruction. If this entry is not defined, no
"SET SCHEMA" instruction is executed and the
current schema defaults to the user's name.

6. In order to connect to IBM DB2, you must have a
database driver "dbmdb2*" installed.

ODIDB2001 - DATE and DATETIME data types
INFORMIX provides two data types to store date and time information:

• DATE = for year, month and day storage.
• DATETIME = for year to fraction(1-5) storage.

ODI Adaptation Guides

1351

IBM DB2 provides only one data type to store dates :

• DATE = for year, month, day storage.
• TIME = for hour, minute, second storage.
• TIMESTAMP = for year, month, day, hour, minute, second, fraction storage.

String representing date time information:

INFORMIX is able to convert quoted strings to DATE / DATETIME data if the string
content matches environment parameters (i.e. DBDATE, GL_DATETIME). As
INFORMIX, IBM DB2 can convert quoted strings to dates, times or timestamps. Only
one format is possible: 'yyyy-mm-dd' for dates, 'hh:mm:ss' for times and 'yyyy-mm-dd
hh:mm:ss:f' for timestamps.

Date time arithmetic:

• INFORMIX supports date arithmetic on DATE and DATETIME values. The result
of an arithmetic expression involving dates/times is a number of days when only
DATEs are used and an INTERVAL value if a DATETIME is used in the
expression.

• In IBM DB2, the result of an arithmetic expression involving DATE values is a
NUMBER of days, the decimal part is the fraction of the day (0.5 = 12H00,
2.00694444 = (2 + (10/1440)) = 2 days and 10 minutes)).

• INFORMIX automatically converts an integer to a date when the integer is used
to set a value of a date column. IBM DB2 does not support this automatic
conversion.

• Complex DATETIME expressions (involving INTERVAL values for example) are
INFORMIX specific and have no equivalent in IBM DB2.

Solution:

DB2 has the same DATE data type as INFORMIX (year, month, day). So you can use
DB2 DATE data type for Informix DATE columns.

DB2 TIME data type can be used to store INFORMIX DATETIME HOUR TO SECOND
values. The database interface makes the conversion automatically.

INFORMIX DATETIME values with any precision from YEAR to FRACTION(5) can be
stored in DB2 TIMESTAMP columns. The database interface makes the conversion
automatically. Missing date or time parts default to 1900-01-01 00:00:00.0. For example,
when using a DATETIME HOUR TO MINUTE with the value of "11:45", the DB2
TIMESTAMP value will be "1900-01-01 11:45:00.0".

Warning: Using integers as a number of days in an expression with dates is not
supported by IBM DB2. Check your code to detect where you are using integers with
DATE columns.

Warning: Literal DATETIME and INTERVAL expressions (i.e. DATETIME (1999-10-12)
YEAR TO DAY) are not converted.

Genero Business Development Language

1352

Warning: It is strongly recommended that you use BDL variables in dynamic SQL
statements instead of quoted strings representing DATEs. For example :
 LET stmt = "SELECT ... FROM customer WHERE creat_date >'",
adate,"'"
is not portable, use a question mark place holder instead and OPEN the cursor USING
adate:
 LET stmt = "SELECT ... FROM customer WHERE creat_date > ?"

Warning: DATE arithmetic expressions using SQL parameters (USING variables) are
not fully supported. For example: "SELECT ... WHERE datecol < ? + 1" generate an
error at PREPARE time.

Warning: SQL Statements using expressions with TODAY / CURRENT / EXTEND
must be reviewed and adapted to the native syntax.

ODIDB2003 - Reserved words

Even if IBM DB2 allows SQL reserved keywords as SQL object names ("create table
table (column int)"), you should take care in your existing database schema and
check that you do not use DB2 SQL words. An example of a common word which is part
of DB2 SQL grammar is 'alias'.

Solution:

See IBM DB2 documentation for reserved keywords.

ODIDB2004 - ROWIDs
INFORMIX rowids are implicit INTEGER columns managed by the database server.

IBM DB2 tables have no ROWIDs.

Solution:

If the BDL application uses ROWIDs, the program logic should be reviewed in order to
use the real primary keys (usually, serials which can be supported).

However, if your existing INFORMIX application depends on using ROWID values, you
can use the DB2 GENERATE_UNIQUE built-in function, or the IDENTITY attribute of the
INTEGER or BIGINT data types, to simulate this functionality.

All references to SQLCA.SQLERRD[6] must be removed because this variable will not
hold the ROWID of the last INSERTed or UPDATEd row when using the IBM DB2
interface.

ODI Adaptation Guides

1353

ODIDB2005 - SERIAL data type
INFORMIX SERIAL data type and automatic number production:

• The table column must be of type SERIAL.
• To generate a new serial, no value or zero value is given to the INSERT

statement:
 INSERT INTO tab1 (c) VALUES ('aa')
 INSERT INTO tab1 (k, c) VALUES (0, 'aa')

• After INSERT, the new SERIAL value is provided in SQLCA.SQLERRD[2].

INFORMIX allows you to insert rows with a value different from zero for a serial column.
Using an explicit value will automatically increment the internal serial counter, to avoid
conflicts with future INSERTs that are using a zero value:
 CREATE TABLE tab (k SERIAL); --> internal counter = 0
 INSERT INTO tab VALUES (0); --> internal counter = 1
 INSERT INTO tab VALUES (10); --> internal counter = 10
 INSERT INTO tab VALUES (0); --> internal counter = 11
 DELETE FROM tab; --> internal counter = 11
 INSERT INTO tab VALUES (0); --> internal counter = 12

IBM DB2 has no equivalent for INFORMIX SERIAL columns.

DB2 version 7.1 supports IDENTITY columns:
 CREATE TABLE tab (k INTEGER GENERATED ALWAYS AS IDENTITY);
To get the last generated IDENTITY value after an INSERT, DB2 provides the following
function:
 IDENTITY_VAL_LOCAL()

DB2 version 8.1 supports SEQUENCES:
 CREATE SEQUENCE sq1 START WITH 100;
To create a new sequence number, you must use the "NEXTVAL FOR" operator:
 INSERT INTO table VALUES (NEXTVAL FOR sq1, ...)
To get the last generated sequence number, you must use the "PREVVAL FOR"
operator:
 SELECT PREVVAL FOR sq1 ...

Solution:

You are free to use IDENTITY columns (1) or insert triggers using SEQUENCES (2).
The first solution is faster, but does not allow explicit serial value specification in insert
statements; the second solution is slower but allows explicit serial value specification.
You can start to use the second solution to make unmodified 4gl programs work on DB2,
but you should update your code to use native IDENTITY columns for performance.

Warning: The second method (trigseq) works only with DB2 version 8 and higher.

Genero Business Development Language

1354

The serial emulation type is defined by the following FGLPROFILE entry:

 dbi.database.<dbname>.ifxemul.datatype.serial.emulation =
{"native"|"trigseq"}

The 'native' value defines the IDENTITY column technique and the 'trigseq' defines the
trigger technique.

This entry must be used with:

 dbi.database.<dbname>.ifxemul.datatype.serial = {true|false}

If the datatype.serial entry is set to false, the emulation method specification entry
is ignored.

Warning: When no entry is specified, the default is SERIAL emulation enabled with
'native' method (IDENTITY-based).

1. Using IDENTITY columns

In database creation scripts, all SERIAL[(n)] data types must be converted by hand to
INTEGER GENERATED ALWAYS AS IDENTITY[(START WITH n, INCREMENT BY
1)].

Tables created from the BDL programs can use the SERIAL data type : When a BDL
program executes a CREATE [TEMP] TABLE with a SERIAL column, the database
interface automatically converts the "SERIAL[(n)]" data type to an IDENTITY
specification.

In BDL, the new generated SERIAL value is available from the SQLCA.SQLERRD[2]
variable. This is supported by the database interface which performs a call to the
IDENTITY_VAL_LOCAL() function.

Warning: Since IBM DB2 does not allow you to specify the value of IDENTITY columns,
it is mandatory to convert all INSERT statements to remove the SERIAL column from the
list.
For example, the following statement:
 INSERT INTO tab (col1,col2) VALUES (0, p_value)
must be converted to:
 INSERT INTO tab (col2) VALUES (p_value)

2. Using triggers with the SEQUENCE

In database creation scripts, all SERIAL[(n)] data types must be converted to INTEGER
data types and you must create a sequence and a trigger for each table using a SERIAL.
To know how to write those triggers, you can create a small Genero program that
creates a table with a SERIAL column. Set the FGLSQLDEBUG environment variable
and run the program. The debug output will show you the native SQL commands to
create the sequence and the trigger.

ODI Adaptation Guides

1355

Tables created from the BDL programs can use the SERIAL data type : When a BDL
program executes a CREATE [TEMP] TABLE with a SERIAL column, the database
interface automatically converts the "SERIAL[(n)]" data type to "INTEGER" and creates
the sequence and the insert trigger.

Warning: IBM DB2 performs NOT NULL data controls before the execution of triggers. If
the serial column must be NOT NULL (for example, because it is part of the primary
key), you cannot specify a NULL value for that column in INSERT statements.
For example, the following statement :
 INSERT INTO tab VALUES (NULL,p_value)
must be converted to :
 INSERT INTO tab (col2) VALUES (p_value)

Warning: IBM DB2 triggers are not automatically dropped when the corresponding table
is dropped. They become inoperative instead. Database administrators must take care
of this behavior when managing schemas.

Warning: With IBM DB2, INSERT statements using NULL for the SERIAL column will
produce a new serial value, not a NULL like INFORMIX does :
 INSERT INTO tab (col_serial, col_data) VALUES (NULL, 'data'
)
This behavior is mandatory in order to support INSERT statements which do not use the
serial column :
 INSERT INTO tab (col_data) VALUES ('data')
Check if your application uses tables with a SERIAL column that can contain a NULL
value.

Warning: With DB2, trigger creation is not allowed on temporary tables. Therefore, the
"trigseq" method cannot work with temporary tables using serials.

ODIDB2006 - Outer joins
The syntax of OUTER joins is very different in INFORMIX and IBM DB2:

In INFORMIX SQL, outer tables are defined in the FROM clause with the OUTER
keyword:

SELECT ... FROM cust, OUTER(order)
 WHERE cust.key = order.custno
SELECT ... FROM cust, OUTER(order,OUTER(item))
 WHERE cust.key = order.custno
 AND order.key = item.ordno
 AND order.accepted = 1

IBM DB2 supports the ANSI outer join syntax:

SELECT ... FROM cust LEFT OUTER JOIN order
 ON cust.key = order.custno

Genero Business Development Language

1356

SELECT ...
 FROM cust LEFT OUTER JOIN order
 LEFT OUTER JOIN item
 ON order.key = item.ordno
 ON cust.key = order.custno
 WHERE order.accepted = 1

See the IBM DB2 SQL reference for a complete description of the syntax.

Solution:

The IBM DB2 interface can convert most INFORMIX OUTER specifications to IBM DB2
outer joins.

Prerequisites :

1. In the FROM clause, the main table must be the first item and the outer tables
must figure from left to right in the order of outer levels.
 Example which does not work : "FROM OUTER(tab2), tab1".

2. The outer join in the WHERE clause must use the table name as prefix.
 Example : "WHERE tab1.col1 = tab2.col2".

Restrictions :

1. Additional conditions on outer table columns cannot be detected and therefore
are not supported :
 Example : "... FROM tab1, OUTER(tab2) WHERE tab1.col1 = tab2.col2 AND
tab2.colx > 10".

2. Statements composed by 2 or more SELECT instructions using OUTERs are not
supported.
 Example : "SELECT ... UNION SELECT" or "SELECT ... WHERE col IN
(SELECT...)"

Remarks :

1. Table aliases are detected in OUTER expressions.
 OUTER example with table alias : "OUTER(tab1 alias1)".

2. In the outer join, <outer table>.<col> can be placed on both right or left sides of
the equal sign.
 OUTER join example with table on the left : "WHERE outertab.col1 =
maintab.col2 ".

3. Table names detection is not case-sensitive.
 Example : "SELECT ... FROM tab1, TAB2 WHERE tab1.col1 = tab2.col2".

4. Temporary tables are supported in OUTER specifications.

ODI Adaptation Guides

1357

ODIDB2007a - Database concepts
As INFORMIX, an IBM DB2 database server can handle more than one database entity.
INFORMIX servers have an ID (INFORMIXSERVER) and databases are identified by
name. IBM DB2 instances are identified by the DB2INSTANCE environment variable
and databases have to be cataloged as data sources (see IBM DB2 documentation for
more details).

ODIDB2008a - Data consistency and concurrency
management
Data consistency involves readers that want to access data currently modified by
writers and concurrency data access involves several writers accessing the same data
for modification. Locking granularity defines the amount of data concerned when a lock
is set (row, page, table, ...).

INFORMIX

INFORMIX uses a locking mechanism to manage data consistency and concurrency.
When a process modifies data with UPDATE, INSERT or DELETE, an exclusive lock is
set on the affected rows. The lock is held until the end of the transaction. Statements
performed outside a transaction are treated as a transaction containing a single
operation and therefore release the locks immediately after execution. SELECT
statements can set shared locks according the isolation level. In case of locking conflicts
(for example, when two processes want to acquire an exclusive lock on the same row for
modification or when a writer is trying to modify data protected by a shared lock), the
behavior of a process can be changed by setting the lock wait mode.

Control :

• Isolation level : SET ISOLATION TO ...
• Lock wait mode : SET LOCK MODE TO ...
• Locking granularity : CREATE TABLE ... LOCK MODE {PAGE|ROW}
• Explicit locking : SELECT ... FOR UPDATE

Defaults :

• The default isolation level is read committed.
• The default lock wait mode is "not wait".
• The default locking granularity is on per page.

IBM DB2

As in INFORMIX, IBM DB2 uses locks to manage data consistency and concurrency.
The database manager sets exclusive locks on the modified rows and shared locks
when data is read, according to the isolation level. The locks are held until the end of the

Genero Business Development Language

1358

transaction. When multiple processes want to access the same data, the latest
processes must wait until the first finishes its transaction. The lock granularity is at the
row or table level. For more details, see DB2's Administration Guide, "Application
Consideration".

Control :

• Lock wait mode : Always WAIT. Only the Lock Timeout can be changed, but this
is a global database parameter.

• Isolation level : Can be set through an API function call or with a database client
configuration parameter.

• Locking granularity : Row level or Table level.
• Explicit locking : SELECT ... FOR UPDATE

Defaults :

• The default isolation level is Cursor Stability (readers cannot see uncommitted
data, no shared lock is set when reading data).

Solution:

For portability, it is recommended that you work with INFORMIX in the read committed
isolation level, to make processes wait for each other (lock mode wait) and to create
tables with the "lock mode row" option.

See INFORMIX and IBM DB2 documentation for more details about data consistency,
concurrency and locking mechanisms.

ODIDB2008b - SELECT FOR UPDATE
A lot of BDL programs use pessimistic locking in order to prevent several users editing
the same rows at the same time.

 DECLARE cc CURSOR FOR
 SELECT ... FROM tab WHERE ... FOR UPDATE
 OPEN cc
 FETCH cc <-- lock is acquired
 ...
 CLOSE cc <-- lock is released

In both INFORMIX and DB2, locks are released when closing the cursor or when the
transaction ends.

DB2's locking granularity is at the row level.

To control the behavior of the program when locking rows, INFORMIX provides a
specific instruction to set the wait mode :

ODI Adaptation Guides

1359

 SET LOCK MODE TO { WAIT | NOT WAIT | WAIT seconds }

The default mode is NOT WAIT. This as an INFORMIX specific SQL statement.

Warning: DB2 has no equivalent for "SET LOCK MODE TO NOT WAIT". The "Lock
timeout" can be changed but this is a database parameter (global to all processes)!

Solution:

Warning : The database interface is based on an emulation of an Informix engine using
transaction logging. Therefore, opening a SELECT ... FOR UPDATE cursor declared
outside a transaction will raise an SQL error -255 (not in transaction).

You must review the program logic if you use pessimistic locking because it is based on
the NOT WAIT mode which is not supported by IBM DB2.

ODIDB2009a - Transactions handling
INFORMIX and IBM DB2 handle transactions differently. The differences in the
transactional models can affect the program logic.

INFORMIX native mode (non ANSI) :

• DDL statements can be executed (and canceled) in transactions.
• Transactions must be started with BEGIN WORK. Statements executed outside

of a transaction are automatically committed.

IBM DB2 :

• DDL statements can be executed (and canceled) in transactions.
• Beginning of transactions are implicit; two transactions are delimited by COMMIT

or ROLLBACK.

Transactions in stored procedures : avoid using transactions in stored procedures to
allow the client applications to handle transactions, in accordance with the transaction
model.

Solution:

The INFORMIX behavior is simulated with an auto-commit mode in the IBM DB2
interface. A switch to the explicit commit mode is done when a BEGIN WORK is
performed by the BDL program.

Regarding the transaction control instructions, the BDL applications do not have to be
modified in order to work with IBM DB2.

Genero Business Development Language

1360

See also ODIDB2008b

ODIDB2011a - CHARACTER data types
As in INFORMIX, IBM DB2 provides the CHAR and VARCHAR data types to store
character data.

INFORMIX CHAR type can store up to 32767 characters and the VARCHAR data type is
limited to 255 characters.

IBM DB2 CHAR are limited to 254 characters and VARCHAR can be 32672 characters
in size.

Solution:

The database interface supports character string variables in SQL statements for input
(BDL USING) and output (BDL INTO).

Warning: Check that your database schema does not use CHAR or VARCHAR types
with a length exceeding the DB2 limits.

ODIDB2012 - Constraints
Constraint naming syntax:

Both INFORMIX and BD2 support primary key, unique, foreign key, default and check
constraints. But the constraint naming syntax is different : DB2 expects the
"CONSTRAINT" keyword before the constraint specification, and INFORMIX expects it
after.

UNIQUE constraint example:

INFORMIX IBM DB2

CREATE TABLE scott.emp (
...
empcode CHAR(10) UNIQUE
 [CONSTRAINT pk_emp],
...

CREATE TABLE scott.emp (
...
empcode CHAR(10)
 [CONSTRAINT pk_emp]
UNIQUE,
...

Primary keys:

ODI Adaptation Guides

1361

Like INFORMIX, DB2 creates an index to enforce PRIMARY KEY constraints (some
RDBMS do not create indexes for constraints). Using "CREATE UNIQUE INDEX" to
define unique constraints is obsolete (use primary keys or a secondary key instead).

Warning: DB2 primary key constraints do not allow NULLs; make sure your tables do
not contain NULLs in the primary key columns.

Unique constraints:

Like INFORMIX, DB2 creates an index to enforce UNIQUE constraints (some RDBMS
do not create indexes for constraints).

Warning: DB2 unique constraints do not allow NULLs; make sure your tables do not
contain NULLs in the unique columns.

Foreign keys:

Both INFORMIX and DB2 support the ON DELETE CASCADE option.

Check constraints:

Warning : The check condition may be any valid expression that can be evaluated to
TRUE or FALSE, including functions and literals. You must verify that the expression is
not INFORMIX specific.

Null constraints:

INFORMIX and DB2 support not null constraints, but INFORMIX does not allow you to
give a name to "NOT NULL" constraints.

Solution:

Constraint naming syntax:

The database interface does not convert constraint naming expressions when creating
tables from BDL programs. Review the database creation scripts to adapt the constraint
naming clauses for DB2.

ODIDB2013 - Triggers
INFORMIX and IBM DB2 provide triggers with similar features, but the trigger creation
syntax and the programming languages are totally different.

INFORMIX triggers define which stored procedures must be called when a database
event occurs (before | after insert | update | delete ...), while IBM DB2 triggers can hold
a procedural block.

Genero Business Development Language

1362

IBM DB2 provides specific syntax to define triggers. See documentation for more details.

Solution:

INFORMIX triggers must be converted to IBM DB2 triggers "by hand".

ODIDB2014 - Stored procedures
Both INFORMIX and IBM DB2 support stored procedures and user functions, but the
programming languages are totally different.

INFORMIX implements the SPL language, while DB2 allows you to write stored
procedures or user defined functions in the DB2 SQL or with an external language, such
as JAVA, C or C++.

Solution:

INFORMIX stored procedures must be converted to IBM DB2 "by hand".

ODIDB2016a - Defining database users
INFORMIX users are defined at the operating system level, they must be members of
the 'informix' group, and the database administrator must grant CONNECT, RESOURCE
or DBA privileges to those users.

IBM DB2 users are operating system users with a specific DB2 environment. The
database administrator must grant the CONNECT authority to these users.

Database authorities involve actions on a database as a whole. When a database is
created, some authorities are automatically granted to anyone who accesses the
database. For example, CONNECT, CREATETAB, BINDADD and IMPLICIT_SCHEMA
authorities are granted to all users. Database privileges involve actions on specific
objects within the database. When a database is created, some privileges are
automatically granted to anyone who accesses the database. For example, SELECT
privilege is granted on catalog views and EXECUTE and BIND privilege on each
successfully bound utility is granted to all users.

Together, privileges and authorities act to control access to an instance and its database
objects. Users can access only those objects for which they have the appropriate
authorization, that is, the required privilege or authority.

Warning: As in INFORMIX, DB2 user names that connect to the database server must
be a maximum of eight characters long.

ODI Adaptation Guides

1363

Solution:

Setup the IBM DB2 environment for each user as described in the documentation.

ODIDB2016b - Setting privileges
INFORMIX and IBM DB2 user privileges management is quite similar.

IBM DB2 provides user groups to define.

INFORMIX users must have at least the CONNECT privilege to access the database:
 GRANT CONNECT TO (PUBLIC|user)

IBM DB2 users must have at least the CONNECT authority to access the database.
font face="Courier New"> GRANT CONNECT ON DATABASE TO
(PUBLIC|user|group)

Solution:

Make sure DB2 users have the right privileges to access the database.

See also Temporary Tables

ODIDB2017 - Temporary tables

INFORMIX temporary tables are created through the CREATE TEMP TABLE DDL
instruction or through a SELECT ... INTO TEMP statement. Temporary tables are
automatically dropped when the SQL session ends, but they can also be dropped with
the DROP TABLE command. There is no name conflict when several users create
temporary tables with the same name.

Remark : BDL reports create a temporary table when the rows are not sorted externally
(by the source SQL statement).

INFORMIX allows you to create indexes on temporary tables. No name conflict occurs
when several users create an index on a temporary table by using the same index
identifier.

IBM DB2 7 supports the DECLARE GLOBAL TEMPORARY TABLE instruction. Native
DB2 temporary tables are quite similar to Informix temporary tables with some
exceptions:

• A 'user temporary table space' must exist for the database.
• Users must have 'USE' privilege on a 'user temporary table space'.

Genero Business Development Language

1364

• For usage, the temporary table name must be prefixed by 'SESSION'.
• No constraints or indexes can be created on temporary tables.

For more details, see the DB2 documentation.

Solution:

In accordance with some prerequisites, temporary tables creation in BDL programs can
be supported by the database interface.

How does it work ?

• INFORMIX specific statements involving temporary table creation are
automatically converted to IBM DB2 "DECLARE GLOBAL TEMPORARY TABLE"
statements.

• Once the temporary table has been created, all other SQL statements performed
in the current SQL session are parsed to add the SESSION prefix to the table
name automatically.

Prerequisites:

• DB2 prerequisites to create global temporary tables. See DB2 documentation for
more details.

Limitations:

• Tokens matching the original table names are converted to unique names in all
SQL statements. Make sure you are not using a temp table name for other
database objects, like columns. The following example illustrates this limitation :
 CREATE TEMP TABLE tmp1 (col1 INTEGER, col2 CHAR(20))
 SELECT tmp1 FROM table_x WHERE ...

• Warning: Only the 'native' serial emulation mode is supported with temporary
tables. See the issue about SERIALs for more details.

ODIDB2018 - Substrings in SQL
INFORMIX SQL statements can use subscripts on columns defined with the character
data type:
 SELECT ... FROM tab1 WHERE col1[2,3] = 'RO'
 SELECT ... FROM tab1 WHERE col1[10] = 'R' -- Same as
col1[10,10]
 UPDATE tab1 SET col1[2,3] = 'RO' WHERE ...
 SELECT ... FROM tab1 ORDER BY col1[1,3]

.. while IBM DB2 provides the SUBSTR() function, to extract a substring from a string
expression:

ODI Adaptation Guides

1365

 SELECT FROM tab1 WHERE SUBSTR(col1,2,2) = 'RO'
 SELECT SUBSTR('Some text',6,3) FROM DUAL -- Gives 'tex'

Solution:

You must replace all Informix col[x,y] expressions by SUBSTR(col,x,y-x+1).

Warning : In UPDATE instructions, setting column values through subscripts will
produce an error with IBM DB2:
 UPDATE tab1 SET col1[2,3] = 'RO' WHERE ...
is converted to :
 UPDATE tab1 SET SUBSTR(col1,2,3-2+1) = 'RO' WHERE ...

Warning: Column subscripts in ORDER BY expressions produce an error with IBM
DB2:
 SELECT ... FROM tab1 ORDER BY col1[1,3]
is converted to :
 SELECT ... FROM tab1 ORDER BY SUBSTR(col1,1,3-1+1)

ODIDB2019 - Name resolution of database objects

Case sensitivity in object names:

INFORMIX database object names are not case-sensitive in non-ANSI databases.

 CREATE TABLE Tab1 (Key INT, Col1 CHAR(20))
 SELECT COL1 FROM TAB1

IBM DB2 database object names are case-sensitive. When a name is used without
double quotes, it is automatically converted to uppercase letters. When using double
quotes, the names are not converted:

 CREATE TABLE tab1 (Key INT, Col1 CHAR(20))
 => Table name is "TAB1", column names are "KEY" and "COL1"

 CREATE TABLE "Tab1" ("Key" INT, "Col1" CHAR(20))
 => Table name is "Tab1", column names are "Key" and "Col1"

The DB2 schema concept:

With non-ANSI INFORMIX databases, you do not have to give a schema name before
the tables when executing an SQL statement.

 SELECT ... FROM <table> WHERE ...

Genero Business Development Language

1366

In an IBM DB2 database, tables always belong to a database schema. When executing
a SQL statement, a schema name must be used as the high-order part of a two-part
object name, unless the current schema corresponds to the table's schema.

The default (implicit) schema is the current user's name but it can be changed with the
"SET SCHEMA" instruction.

Example: The table "TAB1" belongs to the schema "SCH1". User "MARK" (implicit
schema is "MARK") wants to access "TAB1" in a SELECT statement :

 SELECT ... FROM TAB1 WHERE ...
 => Error "MARK"."TAB1" is an undefined name. SQLSTATE=42704
 SELECT ... FROM SCH1.TAB1 WHERE ...
 => OK.
 SET SCHEMA SCH1
 => Changes the current schema to SCH1.
 SELECT ... FROM TAB1 WHERE ...
 => OK.

DB2 provides "aliases", but they cannot be used to make a database object name public
because aliases belong to schemas also.

Solution:

Case sensitivity in object names:

Avoid the usage of double quotes around the database object names. All names will be
converted to uppercase letters.

The DB2 schema concept:

After a connection, the database interface can automatically execute a "SET SCHEMA
<name>" instruction if the following FGLPROFILE entry is defined:

 dbi.database.<dbname>.schema = "<name>"

Here <dbname> identifies the database name used in the BDL program (DATABASE
dbname) and <name> is the schema name to be used in the SET SCHEMA instruction.
If this entry is not defined, no "SET SCHEMA" instruction is executed and the current
schema defaults to the user's name.

Examples:
 dbi.database.stores.schema = "STORES1"
 dbi.database.accnts.schema = "ACCSCH"

Warning: DB2 does not check the schema name when the SET SCHEMA instruction is
executed. Setting a wrong schema name results in "undefined name" errors when
performing subsequent SQL instructions like SELECT, UPDATE, INSERT.

ODI Adaptation Guides

1367

In accordance with this automatic schema selection, you must create a DB2 schema for
your application :

1. Connect as a user with the DBADM authority.
2. Create an administrator user dedicated to your application. For example,

"STORESADM". Make sure this user has the IMPLICIT_SCHEMA privilege (this
is the default in DB2).

3. Connect as the application administrator "STORESADM" to create all database
objects (tables, indexes, ...). In our example, a "STORESADM" schema will be
created implicitly and all database objects will belong to this schema.

As a second option you can create a specific schema with the following SQL command :
 CREATE SCHEMA "<name> " AUTHORIZATION "<appadmin> "
See IBM DB2 manuals for more details about schemas.

Warning: Case sensitivity: When executing the "SET SCHEMA" instruction, the
database interface does not use double quotes around the schema name (= name is
converted to uppercase letters). Make sure that the schema name is created with
uppercase letters in the database.

ODIDB2020 - String delimiters
The ANSI string delimiter character is the single quote ('string'). Double quotes are used
to delimit database object names ("object-name").

Example: WHERE "tabname"."colname" = 'a string value'

INFORMIX allows double quotes as string delimiters, but IBM DB2 doesn't. This is
important since many BDL programs use that character to delimit the strings in SQL
commands.

Remark : This problem concerns only double quotes within SQL statements. Double
quotes used in pure BDL string expressions are not subject of SQL compatibility
problems.

Solution:

The IBM DB2 database interface can automatically replace all double quotes by single
quotes.

Escaped string delimiters can be used inside strings like the following :

 'This is a single quote : '''
 'This is a single quote : \''
 "This is a double quote : """
 "This is a double quote : \""

Genero Business Development Language

1368

Warning: Database object names cannot be delimited by double quotes because the
database interface cannot determine the difference between a database object name
and a quoted string!

For example, if the program executes the SQL statement:
 WHERE "tabname"."colname" = "a string value"
replacing all double quotes by single quotes would produce:
 WHERE 'tabname'.'colname' = 'a string value'
This would produce an error since 'tabname'.'colname' is not allowed by IBM DB2.

Although double quotes are automatically replaced in SQL statements, you should use
only single quotes to enforce portability.

ODIDB2021a - NUMERIC data types
INFORMIX provides several data types to store numbers :

INFORMIX Data Type Description
SMALLINT 16 bit integer (-2^15 to 2^15)
INT/INTEGER 32 bit integer (-2^31 to 2^31)
DEC/DECIMAL(p) Floating-point decimal number
DEC/DECIMAL(p,s) Fixed-point decimal number
MONEY Equivalent to DECIMAL(16,2)
MONEY(p) Equivalent to DECIMAL(p,2)
MONEY(p,s) Equivalent to DECIMAL(p,s)
REAL/SMALLFLOAT approx floating point (C float)
DOUBLE PREC./FLOAT approx floating point (C double)

IBM DB2 numeric data types are compatible with INFORMIX numeric data types, except
for the following:

INFORMIX Data Type IBM DB2 equivalent

DECIMAL(p) Floating point decimals are not supported in
DB2!

DECIMAL(32[,s]) DB2 decimals maximum precision is 31
digits!

MONEY DECIMAL(16,2)
MONEY(p) DECIMAL(p,2)
MONEY(p,s) DECIMAL(p,s)

Solution:

ODI Adaptation Guides

1369

SQL scripts to create databases must be converted manually. Tables created from BDL
programs do not have to be converted; the database interface detects the MONEY data
type and uses the DECIMAL type for DB2.

Warning: Floating point decimals (DECIMAL(P)) are not supported with DB2.

Warning: The maximum precision for DB2 decimals is 31 digits, while Informix supports
32 digits.

ODIDB2022 - Getting one row with SELECT
With INFORMIX, you must use the system table with a condition on the table id :

 SELECT user FROM systables WHERE tabid=1

With IBM DB2, you have to do the following :

 SELECT user FROM SYSIBM.SYSTABLES WHERE NAME='SYSTABLE'

Solution:

Check the BDL sources for "FROM systables WHERE tabid=1" and use dynamic
SQL to resolve this problem.

ODIDB2024 - MATCHES and LIKE in SQL conditions
INFORMIX supports MATCHES and LIKE in SQL statements, while IBM DB2 supports
the LIKE statement only.

MATCHES allows you to use brackets to specify a set of matching characters at a given
position :
 (col MATCHES '[Pp]aris').
 (col MATCHES '[0-9][a-z]*').
In this case, the LIKE statement has no equivalent feature.

The following substitutions must be made to convert a MATCHES condition to a LIKE
condition :

• MATCHES keyword must be replaced by LIKE.
• All '*' characters must be replaced by '%'.
• All '?' characters must be replaced by '_'.
• Remove all brackets expressions.

Solution:

Genero Business Development Language

1370

Warning: SQL statements using MATCHES expressions must be reviewed in order to
use LIKE expressions.

See also: MATCHES operator in SQL Programming.

ODIDB2025 - INFORMIX specific SQL statements in BDL
The BDL compiler supports several INFORMIX specific SQL statements that have no
meaning when using IBM DB2:

• CREATE DATABASE
• DROP DATABASE
• START DATABASE (SE only)
• ROLLFORWARD DATABASE
• SET [BUFFERED] LOG
• CREATE TABLE with special options (storage, lock mode, etc.)

Solution:

Review your BDL source and remove all static SQL statements that are INFORMIX
specific.

ODIDB2028 - INSERT cursors
INFORMIX supports insert cursors. An "insert cursor" is a special BDL cursor declared
with an INSERT statement instead of a SELECT statement. When this kind of cursor is
open, you can use the PUT instruction to add rows and the FLUSH instruction to insert
the records into the database.

For INFORMIX databases with transactions, OPEN, PUT and FLUSH instructions must
be executed within a transaction.

IBM DB2 does not support insert cursors.

Solution:

Insert cursors are emulated by the IBM DB2 database interface.

ODI Adaptation Guides

1371

ODIDB2029 - SQL functions and constants
Both INFORMIX and DB2 provide numerous built-in SQL functions. Most INFORMIX
SQL functions have the same name and purpose in DB2 (DAY(), MONTH(), YEAR(),
UPPER(), LOWER(), LENGTH()).

INFORMIX IBM DB2
today current date
current hour to second current time
current year to fraction(5) current timestamp
trim([leading | trailing | both "char"
FROM] "string") ltrim() and rtrim()

pow(x,y) power(x,y)

Solution:

Warning: You must review the SQL statements using TODAY / CURRENT / EXTEND
expressions.

You can create user defined functions (UFs) in the DB2 database.

ODIDB2030 - Very large data types
Both INFORMIX and IBM DB2 provide special data types to store very large texts or
images.

IBM DB2 recommends the following conversion rules :

INFORMIX Data Type IBM DB2 Data Type
TEXT LONG VARCHAR or CLOB
BYTE BLOB, VARGRAPHIC or DBCLOB

Solution:

The DB2 database interface can convert BDL TEXT data to CLOB and BYTE data to
BLOB.

Warning: DB2 CLOB and BLOB columns are created with a size of 500K.

Genero Business Development Language

1372

ODIDB2031 - Cursors WITH HOLD
INFORMIX provides the WITH HOLD option to prevent cursors being closed when a
transaction ends.

Warning: This feature is well supported when using the DB2 interface, except when a
transaction is canceled with a ROLLBACK, because DB2 automatically closes all
cursors when you rollback a transaction.

Solution:

Check that your source code does not use WITH HOLD cursors after transactions
canceled with ROLLBACK.

ODIDB2033 - Querying system catalog tables
As in INFORMIX, IBM DB2 provides system catalog tables (systables,syscolumns,etc.)
in each database, but the table names and their structures are quite different.

Solution:

Warning: No automatic conversion of INFORMIX system tables is provided by the
database interface.

ODIDB2036 - INTERVAL data type
INFORMIX INTERVAL data type stores a value that represents a span of time.
INTERVAL types are divided into two classes : year-month intervals and day-time
intervals.

DB2 does not provide a data type corresponding the INFORMIX INTERVAL data type.

Solution:

Warning: The INTERVAL data type is not well supported because the database server
has no equivalent native data type. However, BDL INTERVAL values can be stored into
and retrieved from CHAR columns.

ODI Adaptation Guides

1373

ODIDB2039 - Data storage concepts
An attempt should be made to preserve as much of the storage information as possible
when converting from INFORMIX to IBM DB2. Most important storage decisions made
for INFORMIX database objects (like initial sizes and physical placement) can be reused
for the IBM DB2 database.

Storage concepts are quite similar in INFORMIX and in IBM DB2, but the names are
different.

The following table compares INFORMIX storage concepts to IBM DB2 storage
concepts :

INFORMIX IBM DB2
Physical units of storage
The largest unit of physical disk space
is a "chunk", which can be allocated
either as a cooked file (I/O is controlled
by the OS) or as raw device (=UNIX
partition, I/O is controlled by the
database engine). A "dbspace" uses at
least one "chunk" for storage.
You must add "chunks" to "dbspaces"
in order to increase the size of the
logical unit of storage.

One or more "containers" are created
for each "tablespace" to physically store
the data of all logical structures. Like
INFORMIX "chunks", "containers" can
be an OS file or a raw device.
You can add "containers" to a
"tablespace" in order to increase the
size of the logical unit of storage or you
can define EXTEND options.

A "page" is the smallest physical unit of
disk storage that the engine uses to
read from and write to databases.
A "chunk" contains a certain number of
"pages".
The size of a "page" must be equal to
the operating system's block size.

At the finest level of granularity, IBM
DB2 stores data in "data blocks" with
size corresponding to a multiple of the
operating system's block size.
You set the "data block" size when
creating the database.

An "extent" consists of a collection of
contiguous "pages" that the engine
uses to allocate both initial and
subsequent storage space for database
tables.
When creating a table, you can specify
the first extent size and the size of
future extents with the EXTENT SIZE
and NEXT EXTENT options.
For a single table, "extents" can be
located in different "chunks" of the
same "dbspace".

An "extent" is a specific number of
contiguous "data blocks", obtained in a
single allocation.
When creating a table, you can specify
the first extent size and the size of
future extents with the STORAGE()
option.
For a single table, "extents" can be
located in different "data files" of the
same "tablespace".

Logical units of storage
A "table" is a logical unit of storage that Same concept as INFORMIX.

Genero Business Development Language

1374

contains rows of data values.
A "database" is a logical unit of storage
that contains table and index data.
Each database also contains a system
catalog that tracks information about
database elements like tables, indexes,
stored procedures, integrity constraints
and user privileges.

Same concept as INFORMIX.

An IBM DB2 instance can manage
several databases.

Database tables are created in a
specific "dbspace", which defines a
logical place to store data.
If no dbspace is given when creating
the table, INFORMIX defaults to the
current database dbspace.

Database tables are created in a
specific "tablespace", which defines a
logical place to store data. The main
difference with Informix "dbspaces", is
that IBM DB2 tablespaces belong to a
"database", while Informix "dbspaces"
are external to a database.

Other concepts
When initializing an INFORMIX engine,
a "root dbspace" is created to store
information about all databases,
including storage information (chunks
used, other dbspaces, etc.).

Each IBM DB2 database uses a set of
"control files" to store internal
information. These files are located in a
dedicated directory :
".../$DB2INSTANCE/NODEnnnn"

The "physical log" is a set of
continuous disk pages where the
engine stores "before-images" of data
that has been modified during
processing.

The "logical log" is a set of "logical-log
files" used to record logical operations
during on-line processing. All transaction
information is stored in the logical log
files if a database has been created with
transaction log.

INFORMIX combines "physical log" and
"logical log" information when doing fast
recovery. Saved "logical logs" can be
used to restore a database from tape.

DB2 uses "database log files" to
record SQL transactions.

ODIDB2040 - National characters data types
INFORMIX : NCHAR & NVARCHAR
IBM DB2 : ?

Solution:

ODI Adaptation Guides

1375

Warning: National character data types are not supported yet.

ODIDB2043 - SQL parameters limitation
The IBM DB2 SQL parser does not allow some uses of the '?' SQL parameter marker.

The following SQL expressions are not supported :

 ? IS [NOT] NULL
 ? <operator> ?
 <function>(?)

SQL instructions containing these expressions raise an error during the statement
preparation.

Solution:

Check that your BDL programs do not use these kinds of conditional expressions.

If you really need to test a BDL variable during the execution of a SQL statement, you
must use the CAST() function for DB2 only :
 WHERE CAST(? AS INTEGER) IS NULL
See the DB2 documentation for more details.

ODIDB2046 - The LOAD and UNLOAD instructions
INFORMIX provides two SQL instructions to export / import data from / into a database
table: The UNLOAD instruction copies rows from a database table into an text file, and
the LOAD instruction inserts rows from an text file into a database table.

IBM DB2 does not provide LOAD and UNLOAD instructions.

Solution:

LOAD and UNLOAD instructions are supported.

Warning: There is a difference when using DB2 TIME and TIMESTAMP columns: TIME
columns created in the IBM DB2 database are similar to INFORMIX DATETIME HOUR
TO SECOND columns. In LOAD and UNLOAD, all DB2 TIME columns are treated as
INFORMIX DATETIME HOUR TO SECOND columns and thus will be unloaded with the
"hh:mm:ss" format.

Genero Business Development Language

1376

Warning: When using an INFORMIX database, simple dates are unloaded with the
DBDATE format (ex: "23/12/1998"). Therefore, unloading from an INFORMIX database
for loading into an DB2 database is not supported.

ODIDB2051 - Setup database statistics
INFORMIX provides a special instruction to compute database statistics in order to
improve query optimization plans :

 UPDATE STATISTICS [options]

IBM DB2 provides the following equivalent:

 RUNSTATS ON TABLE full-qualified-table-name [options]

Warning: RUNSTATS is not a SQL instruction, it is a DB2 command and therefore
cannot be executed from a BDL program.

Solution:

You must execute the RUNSTATS command manually from a DB2 Command Center.

ODIDB2052 - The GROUP BY clause
INFORMIX allows you to use column numbers in the GROUP BY clause

 SELECT ord_date, sum(ord_amount) FROM order GROUP BY 1

IBM DB2 does not support column numbers in the GROUP BY clause.

Solution:

Use column names instead:

 SELECT ord_date, sum(ord_amount) FROM order GROUP BY
ord_date

ODIDB2053 - The ALTER TABLE instruction
INFORMIX and IBM DB2 use different implementations of the ALTER TABLE
instruction.

ODI Adaptation Guides

1377

For example:

INFORMIX allows you to use multiple ADD clauses separated by commas. DB2 does
not expect braces and the comma separator :

INFORMIX:
 ALTER TABLE customer ADD(col1 INTEGER), ADD(col2 CHAR(20))
IBM DB2:
 ALTER TABLE customer ADD col1 INTEGER ADD col2 CHAR(20)

Depending on the values currently stored, INFORMIX can change the data type of a
column, while DB2 only supports changing the size of CHAR and VARCHAR columns :

INFORMIX:
 ALTER TABLE customer MODIFY (col1 INTEGER)
IBM DB2:
 ALTER TABLE customer ALTER COLUMN col1 SET DATA TYPE
VARCHAR(200)

Solution:

Warning: No automatic conversion is done by the database interface. Read the SQL
documentation and review the SQL scripts or the BDL programs in order to use the
database server specific syntax for ALTER TABLE.

ODIDB2054 - The star (asterisk) in SELECT statements
Informix allows you to use the star character in the select list along with other
expressions :

 SELECT col1, * FROM tab1 ...

IBM DB2 does not support this. You must use the table name as a prefix to the star :

 SELECT col1, tab1.* FROM tab1 ...

Solution:

Always use the table name with stars.

ODIDB2055 - The LENGTH() function
INFORMIX provides the LENGTH() function:

Genero Business Development Language

1378

 SELECT LENGTH("aaa"), LENGTH(col1) FROM table

IBM DB2 has a equivalent function with the same name, but there is some difference:

Informix does not count the trailing blanks neither for CHAR not for VARCHAR
expressions, while IBM DB2 counts the trailing blanks.

With the IBM DB2 LENGTH function, when using a CHAR column, values are always
blank padded, so the function returns the size of the CHAR column. When using a
VARCHAR column, trailing blanks are significant, and the function returns the number of
characters, including trailing blanks.

Solution:

You must check if the trailing blanks are significant when using the LENGTH() function.

If you want to count the number of character by ignoring the trailing blanks, you must
use the RTRIM() function:

 SELECT LENGTH(RTRIM(col1)) FROM table

ODIDB2056 - SQL Interruption
With Informix, it is possible to interrupt a long running query if the SQL INTERRUPT ON
option is set by the Genero program. The database server returns SQLCODE -213,
which can be trapped to detect a user interruption.

 MAIN
 DEFINE n INTEGER
 DEFER INTERRUPT
 OPTIONS SQL INTERRUPT ON
 DATABASE test1
 WHENEVER ERROR CONTINUE
 -- Start long query (self join takes time)
 -- From now on, user can hit CTRL-C in TUI mode to stop the query
 SELECT COUNT(*) INTO n FROM customers a, customers b
 WHERE a.cust_id <> b.cust_id
 IF SQLCA.SQLCODE == -213 THEN
 DISPLAY "Statement was interrupted by user..."
 EXIT PROGRAM 1
 END IF
 WHENEVER ERROR STOP
 ...
 END MAIN

DB2 UDB 9 supports SQL Interruption in a similar way as Informix. The db client must
issue an SQLCancel() ODBC call to interrupt a query.

Solution:

ODI Adaptation Guides

1379

The DB2 database driver supports SQL interruption and converts the native SQL error
code -952 to the Informix error code -213.

ODIDB2100 - Data type conversion table

INFORMIX Data Types DB2 Data Types
CHAR(n) CHAR(n) (limit = 254c!)

VARCHAR(n) VARCHAR(n) (limit =
32672c!)

INTEGER INTEGER
SMALLINT SMALLINT
FLOAT[(n)] FLOAT(n)
SMALLFLOAT SMALLFLOAT

DECIMAL(p) No floating point
equivalent!

DECIMAL(p,s) DECIMAL(p,s) (limit = 31
digits)

MONEY(p,s) DECIMAL(p,s) (limit = 31
digits)

DATE DATE
DATETIME HOUR TO SECOND TIME
DATETIME q1 TO q2 TIMESTAMP
INTERVAL q1 TO q2 CHAR(n)

Connecting to DB2 OS/400
Note : some of the following actions can be taken via the OS/400 Operations Navigator.

DB2 Architecture on OS/400

On OS/400 machines, the DB2 Universal Database is integrated to the operating
system. Therefore, some concepts change. For example, the physical organization of
the database is quite different from UNIX or Windows platforms.

Common terms:

SQL Terms DB2 OS/400 Terms
Table Physical file

Genero Business Development Language

1380

Row Record
Column Field
Index Keyed logical file, access path
View Non keyed logical file

Schema Library, Collection, Schema (OS/400
V5R1 only)

Log Journal
Isolation Level Commitment control level

A Collection is a library containing a Journal, Journal Receivers, Views on the database
catalogues.

Login to the AS/400 server

First, login to the AS/400 machine with a 5250 display emulation. All the commands are
executed in the 5250 display emulation (or telnet connection).

Collection (Schema) Creation

A collection or library in DB2 for OS/400 is equivalent to a schema in DB2 for UNIX.

1. Launch "Interactive SQL"

STRSQL COMMIT(*NONE)

2. Create a Collection

CREATE COLLECTION
Press F4
Enter field values:
 LIBRARY : name of the collection (Schema)
 ASP : 1
 WITH DATA DICTIONARY : Y
Press ENTER
Press F3 to quit (choose Option 1 (save and exit)).

Note: The name of the Schema should not begin with “Q”; libraries beginning with “Q”
are system libraries.

This procedure creates:

• A library for your new database,
• A catalog with a data dictionary,
• A journal (QSQJRN),
• A journal receiver (QSQJRN0001).

ODI Adaptation Guides

1381

Source Physical File Creation

Each table in the database is stored in a Physical file. They can be created in the control
center with SQL scripts (CREATE TABLE), or with OS/400 commands.

The table creation script file must be copied in the library in the form:
library/sourcefile.member

Creation of a physical file:

Type:
 CRTSRCPF
Enter field values:
 FILE = name of the table (10 characters max).
 LIBRARY = name of the library in which the table is created (schema).
 RECORD LENGTH = length of the script creation file (in bytes)
 MEMBER = *FILE

Execution of the SQL creation script:

Type
 RUNSQLSTM
Press F10 for additional parameters
Enter field values:
 SOURCE FILE = name of the source file of the script creation file
 LIBRARY = name of the library (schema)
 SOURCE MEMBER = name of the member of the script creation file
 NAMING FIELD = *SQL (SQL Naming convention library.table)
 COMMITMENT CONTROL = *NONE
 IBM SQL FLAGGING FIELD = *FLAG

If errors occur, you can use WRKSPLF to display error information saved in the spool
file. Use option 5 in the Opt Field on the line of the script file you tried to execute.

Trigger Creation

With DB2 on OS/400, triggers need to be external programs written in a high level
language such as C, COBOL, RPG, or PL/I.

To create a trigger, use the following steps:

1. Create an OS/400 Source file for the trigger programs

Create a source physical file on your AS/400 for the trigger programs. Each trigger
program will be stored in a separate member within this source file.

Type:
 CRTSRCPF FILE(library/file)
where:

Genero Business Development Language

1382

 - library : name of the library you created for your new database
 - file : name you want to call the trigger source physical file

The file name should be ten characters or fewer.

2. Create a member for each trigger program

Create a source file member for each trigger program. After the creation of trigger
programs (in the next step), the programs will be forwarded to these members.

Type:
 ADDPFM
Enter field values:
 FILE = name of the source file you just created
 LIBRARY = name of the library you created for your database
 MEMBER = name you want to give the trigger source member

Repeat this operation for each trigger.

3. Create trigger programs in an OS/400 supported high level language

The OS/400-compatible languages include: ILE C/400, ILE COBOL, ILE RPG, COBOL,
PL/I, and RPG.
The script creation file of the trigger should be send via FTP into
library/sourcefile.member, where sourcefile and member are the values specified in the
previous step.

4. Compile the trigger programs

Once the trigger programs are in AS/400 members, you can compile them. Use
whichever compiler is appropriate for the language you used to create the trigger
program.

5. Bind the trigger programs

After you compile the trigger programs, "bind" each compiled program file. Binding will
establish a relationship between the program and any tables or views the program
specifies.

Type:
 CRTPGM PGM (library/program) ACTGRP(*CALLER)
where:
 library is the name of the library you created for your new database
 program is the name of the compiled trigger program

Repeat this operation for each trigger.

6. Add the trigger programs to physical files

ODI Adaptation Guides

1383

The final step for migrating triggers is to add each program to a physical file. This will tie
the trigger program to the table that calls it.

Type:
 ADDPFTRG
Enter field values:
 PHYSICAL FILE = name of the table you want to attach the trigger to
 PHYSICAL FILE LIBRARY = name of the database library
 TRIGGER TIME = either *BEFORE or *AFTER.
 TRIGGER EVENT = *INSERT, *DELETE, or *UPDATE.
 PROGRAM = name of the compiled program file
 PROGRAM LIBRARY = name of the database library.
 REPLACE TRIGGER = *YES.
 ALLOW REPEATED CHANGES = *YES.

Note:: The trigger program should be in the same library as the database.

The trigger program is now tied to the table specified in the Physical File field and will be
called each time the database action you specified above occurs. The trigger program
may be called from interactive SQL, another AS/400 program, or an ODBC insert,
delete, update, or procedure call.

Permission Definition

On OS/400, database security is managed at the operating system level, not at the
database level. When you set up permissions for the database, you determine the
degree of access (read, add, delete, etc.) individual users, groups, and authorization lists
may have. This operation can easily be done via Operation Navigator.

The privileges must include the following system authorities:

• *USE to the Create Physical File (CRTPF) command.
• *EXECUTE and *ADD to the library into which the table is created.
• *OBJOPR and *OBJMGT to the journal.
• *CHANGE to the data dictionary if the library into which the table is created is an

SQL collection with a data dictionary.

To define a foreign key, the privileges must include the following on the parent table:

• The REFERENCES privilege or object management authority for the table.
• The REFERENCES privilege on each column of the specified parent key.
• Ownership of the table.

The REFERENCES privilege on a table consists of:

• Being the owner of the table.
• Having the REFERENCES privilege to the table.
• Having the system authorities of either *OBJREF or *OBJMGT to the table.

Genero Business Development Language

1384

The REFERENCES privilege on a column consists of:

• Being the owner of the table.
• Having the REFERENCES privilege to the column.
• Having the system authority of *OBJREF to the column or the system authority of

*OBJMGT to the table.

To EXECUTE a user-defined function, the privilege consists of:

• Being owner of the user-defined function.
• Having EXECUTE privilege to the user-defined function.
• Having the system authorities of *OBJOPR and *EXECUTE to the user-defined

function.

Relational DB Directory Entry Creation

The relational database directory is equivalent to the database directory of the DB2
client. This is necessary to access the database with DRDA clients (Distributed
Relational Database Architecture) like DB2 client.

Use the WRKRDBDIRE tool to add the entry in the database directory:

• Type
WRKDBDIRE

• Type Option 1 (add)
• Enter field values:

 ADDRESS = *LOCAL
 TYPE = *IP

Start the DDM server on the OS/400 which listens on the DRDA 446 port:

• Type STRTCPSVR *DDM

Start the database server:

• Type STRHOSTSVR
• Enter field values:

 SERVER TYPE = *DATABASE
REQUIRED PROTOCOL : *ANY

The DDM/DRDA server that listens on TCP/IP port 446 handles requests from a DRDA
client (examples are DB2 Connect or another AS/400).

The database server is not needed for DRDA clients, but it is needed for Client Access.

If a TCP/IP connection is desired, then your AS/400 server cannot have a release prior
to V4R2 installed.

ODI Adaptation Guides

1385

To manually configure the connection via the DB2 command line, you will need to enter
catalog commands:

> db2 catalog tcpip node <node-name> remote <as400-adress> server
446
> db2 catalog db <db-name-alias> at node <node-name>
authentication dcs
> db2 catalog dcs db <db-name-alias> as <local-RDB-name-of-AS400>

If you catalogue the DB2 UDB for iSeries server incorrectly, you may get an SQL5048N
error message. SQL7008N is another common error in that the DB2 UDB for iSeries
tables being accessed on the server are not being journaled. To correct the SQL7008N
error, you need to start journaling your tables or change the isolation level to No Commit.

The proper CCSID value (normally 37 for US English customers) is needed for any
tables on the iSeries accessed via DB2 Connect. You can view the CCSID value with
the DSPFD CL command or Operations Navigator. CCSID values can be changed with
the ALTER TABLE statement or CHGPF CL command. Furthermore, to successfully
connect, you may need to change one of the following: the CCSID of the job, the CCSID
of the user profile used, or the system CCSID value (QCCSID) if it's the default 65535.

DB2 Client Configuration on Windows

To configure a DB2 client on Windows platforms, use the Client Configuration Assistant.
This tool is available only under Microsoft Windows. Under Unix, you have to use the
command line as described in the previous chapter.

1. Source:

- Select “Manually configure a connection to a database”.

2. Protocol:

- Select “TCP/IP”.

- Check “The database physically resides on a host or AS/400 System”.

3. TCP/IP:

- Host Name : AS/400 system name.

- Port Number : Port where DDM/DRDA server is listening (default : 446).

4. Database:

- Database name : name defined in the relational database directory
entries (with WRKRDBDIRE).

5. ODBC:

Genero Business Development Language

1386

- You can register the database as an ODBC data source. Not needed for
DRDA connection used by ODI.

6. Node Options:

- Optional, but needed to access the database via the control center.

- System name : AS/400 system name.

- Instance name : not used for a connection to AS400 (because only one
instance is running on an AS/400).

- Operating System : OS/400.

7. Security Options:

- Optional.

8. Host or AS400 Options:

- Optional.

Differences Between DB2 UNIX & DB2 OS/400

Some of the differences between DB2 for Unix/Windows and DB2 for OS/400 are:

• There is only one database on a system; you can not create two instances on the
same database server. The database is a single system-wide database. The
database name used for the connect statement is the name of the system.
Schemas (Collections) can be used to manage different logical databases on the
same OS/400 machine.

• There is no TABLESPACE concept on DB2 for iSeries. All the storage is
controlled by the database manager and operating system.

• The identity column is not supported (for serial emulation).
• The SET SCHEMA SQL command is not supported.
• NUMERIC data type is defined as zoned decimal on DB2 for iSeries and packed

decimal on other platforms.
• The FLOAT data type does not use the same storage. For portability across

platforms, do not use FLOAT(n).
• Not all features of the CREATE FUNCTION statement are supported on each

platform (see documentation).
• iSeries prior to V5R1 requires the statement to be processed by a special

schema processor. iSeries as of V5R1 would require this only if the statement
includes other DDL statements.

• OS/400 supports “SET DEFAULT” clause ON DELETE.
• OS/400 supports DROP statement with CASCADE behavior.
• Syntaxes of CREATE, ALTER and RENAME TABLE are different on the two

systems.

ODI Adaptation Guides

1387

Naming Conventions

The naming convention defines how database tables are identified.

DB2 OS/400 can use two kinds of naming conventions:

• The *SQL naming convention.
The table has to be qualified with the name of the collection (schema) which
must be the same name as the user connected to the database. All tables have
to be in the same database.

• The *SYS naming convention.
If a table is unqualified, it will be searched for in the *CURLIB collection. You can
change the library list with the ADDLIBLE command. You may create a small CL
program attached to the profile that will change the library list on sign on. You
can also globally change the user portion of the library list using the QUSRLIBL
system variable, but this would affect all users on the system.

Genero Business Development Language

1388

ODI Adaptation Guide For Oracle 8.x, 9.x, 10.x,
11.x
Runtime configuration

Install ORACLE and create a database
Prepare the runtime environment

Database concepts

Database concepts
Data storage concepts
Data consistency and concurrency management
Transactions handling
Defining database users
Setting privileges

Data dictionary

CHARACTER data types
NUMERIC data types
DATE and DATETIME data types
INTERVAL data type
SERIAL data type
ROWIDs
Very large data types
National character data types
The ALTER TABLE instruction
Constraints
Triggers
Stored procedures
Name resolution of SQL objects
Setup database statistics
NULLs in indexed columns
Data type conversion table

Data manipulation

ODI Adaptation Guides

1389

Reserved words
Outer joins
Transactions handling
Temporary tables
Substrings in SQL
The LENGTH() function
Empty character strings
Name resolution of SQL objects
String delimiters and object names
Getting one row with SELECT
MATCHES and LIKE conditions
SQL functions and constants
Querying system catalog tables
Syntax of UPDATE statements
The USER constant
The GROUP BY clause
The star in SELECT statements

BDL programming

SERIAL data type
Handling SQL errors when preparing statements
INFORMIX specific SQL statements in BDL
INSERT cursors
Cursors WITH HOLD
SELECT FOR UPDATE
UPDATE/DELETE WHERE CURRENT OF <cursor>
The LOAD and UNLOAD instructions
SQL Interruption

Runtime configuration

Install Oracle and create a database

1. Install the ORACLE Server on your computer.
2. Create and setup the Oracle instance.
3. Set up and start a listener if you plan to use a

client / server architecture.

Genero Business Development Language

1390

4. Create a database user dedicated to your
application, the application administrator which
will manage the database tables of the application:

 $ sqlplus / AS SYSDBA
 ...
 sqlplus> CREATE USER appadmin
IDENTIFIED BY password;

You must grant privileges to this user:

 sqlplus> GRANT CONNECT, RESOURCE TO
appadmin;

5. If you plan to use the default temporary table
emulation, you must create the TEMPTABS
tablespace. Note that this tablespace must be
created as permanent tablespace. See issue
ODIORA017 for more details:

 sqlplus> CREATE TABLESPACE TEMPTABS
 DATAFILE 'file'
 SIZE 1M AUTOEXTEND ON NEXT
1K;

6. Connect as the application administrator:

 sqlplus> CONNECT appadmin/password

7. Create the application tables. Do not forget to
convert Informix data types to Oracle data types.
See issue ODIORA100 for more details. Check for
reserved words in your table and column names:
Oracle 8i provides the V$RESERVED_WORDS
view to track Oracle reserved words.

8. If you plan to use SERIAL emulation, you must
choose an emulation method. You are free to use a
technique based on SEQUENCES or based on the
SERIALREG registration table. If you want to use
the registration table technique, you must create
the SERIALREG table and create a INSERT
TRIGGER for each table using a SERIAL. See
issue ODIORA005 for more details.

Prepare the runtime environment

1. If you want to connect to a remote Oracle server
from an application server, you must install the
ORACLE Client Software on your application
server and configure this part.

2. Verify if the ORACLE environment variables are
correct (ORACLE_HOME,ORACLE_SID). If you

ODI Adaptation Guides

1391

are using the TNS protocol, verify if the ORACLE
listener is started on the server. For testing, you
can make a connection test with the SQL*Plus tool:

 $ sqlplus username/password@service

3. Verify the environment variable defining the search
path for shared libraries. On UNIX platforms, the
variable is specific to the operating system, it can
be LIBPATH (AIX), LD_LIBRARY_PATH
(SOLARIS) or SHLIB_PATH (HP). On Windows
platforms, the OCI.DLL must exist in
%ORACLE_HOME%\bin and the PATH
environment variable must contain this directory.

4. Check the database locale settings (NLS_LANG,
NLS_DATE_FORMAT, etc). The DB locale must
match the locale used by the runtime system
(LANG).

5. Set up the fglprofile entries for database
connections.

6. Set up fglprofile for the SERIAL emulation method.
The following entry defines the SERIAL emulation
method. You can either use the SEQUENCE based
trigger or the SERIALREG based trigger method:

dbi.database.dbname.ifxemul.datatype.s
erial.emulation = "(native|regtable)"
The value 'native' selects the SEQUENCE based
method and the value 'regtable' selects the
SERIALREG based method. This entry has no
effect if
dbi.database.<dbname>.ifxemul.datatype.serial
is set to 'false'.
The default is SERIAL emulation enabled with
native method (SEQUENCE-based). See issue
ODIORA005 for more details.

7. Define the database schema selection if needed.
Warning : This is only supported in Oracle 8i (8.1.5)
and higher. The following entry defines the
database schema to be used by the application.
The database interface automatically executes an
"ALTER SESSION SET CURRENT_SCHEMA
<owner>" instruction to switch to a specific schema:

 dbi.database.dbname.ora.schema =
"name>"

Here dbname identifies the database name used in
the BDL program (DATABASE dbname) and
name is the schema name to be used in the ALTER
SESSION instruction. If this entry is not defined, no

Genero Business Development Language

1392

"ALTER SESSION" instruction is executed and the
current schema defaults to the user's name.

8. Define pre-fetch parameters. Oracle offers high
performance by pre-fetching rows in memory. The
pre-fetching parameters can be tuned with the
following entries:

dbi.database.dbname.ora.prefetch.rows
= integer

dbi.database.dbname.ora.prefetch.memor
y = integer # in bytes

Note: These values will be applied to all application
cursors.

The interface pre-fetches rows up to the
prefetch.rows limit unless the prefetch.memory limit
is reached, in which case the interface returns as
many rows as will fit in a buffer of size
prefetch.memory. By default, pre-fetching is on and
defaults to 10 rows, the memory parameter is set to
zero, which means that memory size is not included
in computing the number of rows to prefetch.

9. If needed, define a specific command to generate
session identifiers with this FGLPROFILE setting:

 dbi.database.dbname.ora.sid.command
= "SELECT ..."

This unique session identifier will be used to create
table names for temporary table emulation.
By default, the database driver will use "SELECT
USERENV('SESSIONID') FROM DUAL".

10. The default temporary table emulation uses regular
permanent tables. If this does not fit you needs, you
can use GLOBAL TEMPORARY TABLES with this
FGLPROFILE setting:

dbi.database.dbname.ifxemul.temptables
.emulation = "global"

11. In order to connect to ORACLE, you must have a
database driver "dbmora*" installed.

ODI Adaptation Guides

1393

ODIORA001 - DATE and DATETIME data types
INFORMIX provides two data types to store date and time information:

• DATE = for year, month and day storage.
• DATETIME = for year to fraction(1-5) storage.

ORACLE provides only the following data types to store date and time data:

• DATE = for year, month, day, hour, min, second storage.
• TIMESTAMP (Oracle 9i) = for year, month, day, hour, min, second, fraction

storage.

String representing date time information:

INFORMIX is able to convert quoted strings to DATE / DATETIME data if the string
contains matching environment parameters (i.e. DBDATE, GL_DATETIME).

As in INFORMIX, ORACLE can convert quoted strings to DATE or TIMESTAMP data if
the contents of the string matches the NLS date format parameters
(NLS_DATE_FORMAT, NLS_TIMESTAMP_FORMAT). The TO_DATE() and
TO_TIMESTAMP() SQL functions convert strings to dates or timestamps, according to a
given format. The TO_CHAR() SQL function allows you to convert dates or timestamps
to strings, according to a given format.

Date arithmetic:

• INFORMIX supports date arithmetic on DATE and DATETIME values. The result
of an arithmetic expression involving dates/times is a number of days when only
DATEs are used, and an INTERVAL value if a DATETIME is used in the
expression. In ORACLE, the result of an arithmetic expression involving DATE
values is a NUMBER of days; the decimal part is the fraction of the day (0.5 =
12H00, 2.00694444 = (2 + (10/1440)) = 2 days and 10 minutes). The result of
an expression involving Oracle TIMESTAMP data is of type INTERVAL. See
Oracle documentation for more details.

• INFORMIX automatically converts an integer to a date when the integer is used
to set a value of a date column. ORACLE does not support this automatic
conversion.

• Complex DATETIME expressions (involving INTERVAL values for example) are
INFORMIX specific and have no equivalent in ORACLE.

• To compare dates that have time data in ORACLE, you can use the ROUND() or
TRUNC() SQL functions.

Solution:

The ORACLE DATE type is used for INFORMIX DATE data. The database interface
automatically sets the time part to midnight (00:00:00) during input/output operations.
You must be very careful since manual modifications of the database might set the time
part, for example :

Genero Business Development Language

1394

 UPDATE table SET date_col = SYSDATE
(SYSDATE is equivalent to CURRENT YEAR TO SECOND in INFORMIX).
After this kind of update, when columns have date values with a time part different from
midnight, some SELECT statements might not return all the expected rows.

INFORMIX DATETIME data with any precision from YEAR to SECOND is stored in
ORACLE DATE columns. The database interface makes the conversion automatically.
Missing date or time parts default to 1900-01-01 00:00:00. For example, when using a
DATETIME HOUR TO MINUTE with the value of "11:45", the ORACLE DATE value will
be "1900-01-01 11:45:00".

When using ORACLE 9i, INFORMIX DATETIME YEAR TO FRACTION(n) data is stored
in ORACLE TIMESTAMP columns. The TIMESTAMP data type can store up to 9 digits
in the fractional part, and therefore can store all precisions of INFORMIX DATETIME.

Warning: Using integers (number of days since 1899/12/31) as dates is not supported
by ORACLE. Check your code to detect where you are using integers with DATE
columns.

Warning: Literal DATETIME and INTERVAL expressions (i.e. DATETIME (1999-10-12)
YEAR TO DAY) are not converted.

Warning: It is strongly recommended that you use BDL variables in dynamic SQL
statements instead of quoted strings representing DATEs. For example :
 LET stmt = "SELECT ... FROM customer WHERE creat_date >'",
adate,"'"
is not portable. Use a question mark place holder instead and OPEN the cursor by
USING adate :
 LET stmt = "SELECT ... FROM customer WHERE creat_date > ?"

Warning: Most arithmetic expressions involving dates (for example, to add or remove a
number of days from a date) will produce the same result with ORACLE. But keep in
mind that ORACLE evaluates date arithmetic expressions to NUMBERs (
<days>.<fraction>) while INFORMIX evaluates to INTEGERs when only DATEs are
used in the expression, or to INTERVALs if at least one DATETIME is used in the
expression.

Warning: DATE arithmetic expressions using SQL parameters (USING variables) are
not fully supported. For example: " SELECT ... WHERE datecol < ? + 1" generates
an error at PREPARE time.

Warning: SQL Statements using expressions with TODAY / CURRENT / EXTEND
must be reviewed and adapted to the native syntax.

ODI Adaptation Guides

1395

ODIORA003 - Reserved words
SQL object names like table and column names cannot be SQL reserved words in
ORACLE.

An example of a common word which is part of the ORACLE SQL grammar is 'level'.

Solution:

Table or column names which are ORACLE reserved words must be renamed.

ORACLE reserved keywords are listed in the ORACLE documentation, or Oracle 8i
provides the V$RESERVED_WORDS view to track Oracle reserved words. All BDL
application sources must be verified. To check if a given keyword is used in a source,
you can use UNIX 'grep' or 'awk' tools. Most modifications can be done automatically
with UNIX tools like 'sed' or 'awk'.

ODIORA004 - ROWIDs
ORACLE provides ROWIDs but the data type is different: INFORMIX rowids are
INTEGERs while ORACLE rowids are CHAR(18).

ORACLE ROWIDs are physical addresses of the rows. For example :
AAAA8mAALAAAAQkAAA

Since ORACLE rowids are physical addresses, they cannot be used as permanent row
identifiers (After a DELETE, an INSERT statement might reuse the physical place of the
deleted row, to store the new row).

With INFORMIX, SQLCA.SQLERRD[6] contains the ROWID of the last INSERTed or
UPDATEd row. This is not supported with ORACLE because ORACLE ROWID are not
INTEGERs.

Solution:

If the BDL application uses INFORMIX rowids as primary keys, the program logic should
be reviewed in order to use the real primary keys (usually, serials which can be
supported) or ORACLE rowids as CHAR(18) (INFORMIX rowids will fit in this char data
type).

If you cannot avoid the use of rowids, you must change the type of the variables which
hold ROWID values. Instead of using INTEGER, you must use CHAR(18). INFORMIX
rowids (INTEGERs) will automatically fit into a CHAR(18) variable.

Genero Business Development Language

1396

All references to SQLCA.SQLERRD[6] must be removed because this variable will not
contain the ROWID of the last INSERTed or UPDATEd row when using the ORACLE
interface.

ODIORA005 - SERIAL data type
INFORMIX SERIAL data type and automatic number production :

• The table column must be of type SERIAL.
• To generate a new serial, no value or zero value is given to the INSERT

statement :
 INSERT INTO tab1 (c) VALUES ('aa')
 INSERT INTO tab1 (k, c) VALUES (0, 'aa')

• After INSERT, the new SERIAL value is provided in SQLCA.SQLERRD[2].

ORACLE sequences :

• Sequences are totally detached from tables.
• The purpose of sequences is to provide unique integer numbers.
• Sequences are identified by a sequence name.
• To create a sequence, you must use the CREATE SEQUENCE statement.

Once a sequence is created, it is permanent (like a table).
• To get a new sequence value, you must use the nextval keyword, preceded by

the name of the sequence.
The <seqname>.nextval expression can be used in INSERT statements :
 INSERT INTO tab1 VALUES (tab1_seq.nextval, ...)

• To get the last generated number, ORACLE provides the currval keyword :
 SELECT <seqname>.currval FROM DUAL

Remark: In order to improve performance, ORACLE can handle a set of sequences in
the cache (See CREATE SEQUENCE syntax in the ORACLE documentation).

INFORMIX allows you to insert rows with a value different from zero for a serial column.
Using an explicit value will automatically increment the internal serial counter, to avoid
conflicts with future INSERTs that are using a zero value:
 CREATE TABLE tab (k SERIAL); --> internal counter = 0
 INSERT INTO tab VALUES (0); --> internal counter = 1
 INSERT INTO tab VALUES (10); --> internal counter = 10
 INSERT INTO tab VALUES (0); --> internal counter = 11
 DELETE FROM tab; --> internal counter = 11
 INSERT INTO tab VALUES (0); --> internal counter = 12

Solution:

When using Oracle, the SERIAL data type can be emulated with INSERT TRIGGERs. In
BDL programs, the SQLCA structure is filled as expected (after an insert,
sqlca.sqlerrd[2] holds the last generated serial value).

ODI Adaptation Guides

1397

The triggers can be created manually during the database creation procedure, or
automatically from a BDL program: When a BDL program executes a CREATE [TEMP]
TABLE with a SERIAL column, the Oracle interface automatically converts the SERIAL
data type to NUMBER(10,0) and dynamically creates the trigger. For temporary tables,
the trigger is dropped automatically after a "DROP TABLE temptab" or when the
program disconnects from the database.

Warning: Users executing programs which create tables with SERIAL columns must
have the CONNECT and RESOURCE roles assigned to create triggers and sequences.

In database creation scripts, all SERIAL[(n)] data types must be converted to
NUMBER(10,0) data types and you must create the triggers (and the sequences when
using sequence-based triggers). See below for more details.

Warning : With Oracle, INSERT statements using NULL for the SERIAL column will
produce a new serial value, not a NULL as INFORMIX does:
 INSERT INTO tab (col1,col2) VALUES (NULL,'data')
This behavior is mandatory in order to support INSERT statements which do not use the
serial column :
 INSERT INTO tab (col2) VALUES ('data')
Check whether your application uses tables with a SERIAL column that can contain a
NULL value.

Warning: Since the INFORMIX SERIAL data type simulation is implemented in the
ORACLE database, inserting rows with ORACLE tools like SQL*Plus or SQL*Loader will
raise the INSERT triggers. When loading big tables, you can disable triggers with
ALTER TRIGGER [ENABLE | DISABLE] (see ORACLE documentation for more details).
After re-activation of the serial triggers, the SERIAL sequences must be re-initialized
(use serialpkg.create_sequence('tab','col') or re-execute the PL/SQL script containing
the sequence and trigger creation.

You are free to use SEQUENCE based insert triggers (1) or SERIALREG based
insert triggers (2). The second solution needs the SERIALREG table to register serials.

With the following fglprofile entry, you define the technique to be used for SERIAL
emulation:

 dbi.database.<dbname>.ifxemul.datatype.serial.emulation =
{"native"|"regtable"}

The 'native' value defines the SEQUENCE-based technique and the 'regtable' defines
the SERIALREG-based technique.

This entry must be used with :

 dbi.database.<dbname>.ifxemul.serial = {true|false}

If this entry is set to false, the emulation method specification entry is ignored.

Genero Business Development Language

1398

When no entry is specified, the default is SERIAL emulation enabled with 'native' method
(SEQUENCE-based).

1. Using SEQUENCES based triggers

Each table having a SERIAL column needs an INSERT TRIGGER and a SEQUENCE
dedicated to SERIAL generation.

To know how to write those sequences and triggers, you can create a small Genero
program that creates a table with a SERIAL column. Set the FGLSQLDEBUG
environment variable and run the program. The debug output will show you the native
SQL commands to create the sequence and the trigger.

2. Using SERIALREG based triggers

Each table having a SERIAL column needs an INSERT TRIGGER which uses the
SERIALREG table dedicated to SERIAL registration.

First, you must prepare the database and create the SERIALREG table as follows:

CREATE TABLE SERIALREG (
 TABLENAME VARCHAR2(50) NOT NULL,
 LASTSERIAL NUMBER(10,0) NOT NULL,
 PRIMARY KEY (TABLENAME)
)

Warning: This table must exist in the database before creating the serial triggers.

In database creation scripts, all SERIAL[(n)] data types must be converted to INTEGER
data types and you must create one trigger for each table. To know how to write those
triggers, you can create a small Genero program that creates a table with a SERIAL
column. Set the FGLSQLDEBUG environment variable and run the program. The debug
output will show you the native trigger creation command.

Warning : The serial production is based on the SERIALREG table which registers the
last generated number for each table. If you delete rows of this table, sequences will
restart at start values and you might get duplicated values.

ODIORA006 - Outer joins
The syntax of OUTER joins is very different in INFORMIX and ORACLE :

In INFORMIX SQL, outer tables are defined in the FROM clause with the OUTER
keyword :

SELECT ... FROM a, OUTER(b) WHERE a.key = b.akey

ODI Adaptation Guides

1399

SELECT ... FROM a, OUTER(b,OUTER(c)) WHERE a.key = b.akey
AND b.key1 = c.bkey1 AND b.key2 = c.bkey2

ORACLE expects the (+) operator in the join condition. You must set a (+) after columns
of the tables which must have NULL values when no record matches the condition:

SELECT ... FROM a, b WHERE a.key = b.key (+)
SELECT ... FROM a, b, c WHERE a.key = b.akey (+)
 AND b.key1 = c.bkey1 (+)
 AND b.key2 = c.bkey2 (+)

When using additional conditions on outer tables, the (+) operator also has to be used.
For example :

SELECT ... FROM a, OUTER(b) WHERE a.key = b.akey AND b.colx
> 10

Must be converted to :

SELECT ... FROM a, b WHERE a.key = b.akey (+)
 AND b.colx (+) > 10

The ORACLE outer joins restriction :

In a query that performs outer joins of more than two pairs of tables, a single table can
only be the NULL generated table for one other table. The following case is not allowed :
WHERE a.col = b.col (+) AND b.col (+) = c.col

Solution:

The Oracle interface can convert most INFORMIX OUTER specifications to Oracle outer
joins.

Prerequisites :

1. In the FROM clause, the main table must be the first item and the outer tables
must figure from left to right in the order of outer levels.
 Example which does not work : "FROM OUTER(tab2), tab1 ".

2. The outer join in the WHERE part must use the table name as prefix.
 Example : "WHERE tab1.col1 = tab2.col2 ".

Restrictions :

1. Statements composed by 2 or more SELECT instructions are not supported.
 Example : "SELECT ... UNION SELECT" or "SELECT ... WHERE col IN
(SELECT...)"

Notes::

Genero Business Development Language

1400

1. Table aliases are detected in OUTER expressions.
 OUTER example with table alias : "OUTER(tab1 alias1)".

2. In the outer join, <outer table>.<col> can be placed on both right or left sides of
the equal sign.
 OUTER join example with table on the left : "WHERE outertab.col1 =
maintab.col2 ".

3. Table names detection is not case-sensitive.
 Example : "SELECT ... FROM tab1, TAB2 WHERE tab1.col1 =
tab2.col2".

4. Temporary tables are supported in OUTER specifications.

ODIORA007a - Database concepts
Most of BDL applications use only one database entity (in the meaning of INFORMIX).
But the same BDL application can connect to different occurrences of the same
database schema, allowing several users to connect to those different databases.

INFORMIX servers can handle multiple database entities, while ORACLE servers
manage only one database. ORACLE can manage multiple schemas, but by default
other users must give the owner name as prefix to the table name:

 SELECT * FROM stores.customer

Solution:

In an ORACLE database, each user can manage his own database schema. You can
dedicate a database user to administer each occurrence of the application database.

Starting with version 8.1.5, any user can select the current database schema with the
following SQL command:

 ALTER SESSION SET CURRENT_SCHEMA = "<schema>"

Using this instruction, any user can access the tables without giving the owner prefix as
long as the table owner has granted the privileges to access the tables.

You can make the database interface select the current schema automatically with the
following fglprofile entry :

 dbi.database.<dbname>.schema = "<schname>"

When using multiple database schemas, it is recommended that you create them in
separated tablespaces to enable independent backups and keep logical sets of tables
together. The simplest way is to define a default tablespace when creating the schema
owner :

ODI Adaptation Guides

1401

 CREATE USER <user> IDENTIFIED BY <pswd>
 DEFAULT TABLESPACE <tabspacename>
 TEMPORARY TABLESPACE <tmptabspace>

ODIORA008a - Data consistency and concurrency
management
Data consistency involves readers that want to access data currently modified by
writers and concurrency data access involves several writers accessing the same data
for modification. Locking granularity defines the amount of data concerned when a lock
is set (row, page, table, ...).

INFORMIX

INFORMIX uses a locking mechanism to handle data consistency and concurrency.
When a process changes database information with UPDATE, INSERT or DELETE, an
exclusive lock is set on the touched rows. The lock remains active until the end of the
transaction. Statements performed outside a transaction are treated as a transaction
containing a single operation and therefore release the locks immediately after
execution. SELECT statements can set shared locks according to the isolation level.
In case of locking conflicts (for example, when two processes want to acquire an
exclusive lock on the same row for modification or when a writer is trying to modify data
protected by a shared lock), the behavior of a process can be changed by setting the
lock wait mode.

Control:

• Lock wait mode : SET LOCK MODE TO ...
• Isolation level : SET ISOLATION TO ...
• Locking granularity : CREATE TABLE ... LOCK MODE {PAGE|ROW}
• Explicit exclusive lock : SELECT ... FOR UPDATE

Defaults:

• The default isolation level is read committed.
• The default lock wait mode is "not wait".
• The default locking granularity is page.

ORACLE

When data is modified, exclusive locks are set and held until the end of the transaction.
For data consistency, ORACLE uses a multi-version consistency model: a copy of the
original row is kept for readers before performing writer modifications. Readers do not
have to wait for writers as in INFORMIX. The simplest way to think of Oracle's
implementation of read consistency is to imagine each user accessing a private copy of
the database, hence the multi-version consistency model. The lock wait mode cannot
be changed session wide as in INFORMIX; the waiting behavior can be controlled with a

Genero Business Development Language

1402

SELECT FOR UPDATE NOWAIT only. Locks are set at the row level in ORACLE, and
this cannot be changed.

Control :

• Lock wait mode (on SELECT only): SELECT ... FOR UPDATE NOWAIT
• Isolation level : SET TRANSACTION ISOLATION LEVEL TO ...
• Explicit exclusive lock : SELECT ... FOR UPDATE [NOWAIT]

Defaults :

• The default isolation level is Read Committed (readers cannot see uncommitted
data, no shared lock is set when reading data).

The main difference between INFORMIX and ORACLE is that readers do not have to
wait for writers in ORACLE.

Solution:

ORACLE does not provide a dirty read mode, the (session wide) lock wait mode cannot
be changed and the locking precision is always at the row level. Based on this, it is
recommended that you work with INFORMIX in the read committed isolation level
(default), make processes wait for each other (lock mode wait), and use the default
page-level locking granularity.

See INFORMIX and ORACLE documentation for more details about data consistency,
concurrency and locking mechanisms.

ODIORA008b - SELECT FOR UPDATE
A lot of BDL programs use pessimistic locking in order to prevent several users editing
the same rows at the same time.

 DECLARE cc CURSOR FOR
 SELECT ... FOR UPDATE [OF col-list]
 OPEN cc
 FETCH cc <-- lock is acquired
 CLOSE cc <-- lock is released

• The row must be fetched in order to set the lock.
• If the cursor is local to a transaction, the lock is released when the transaction

ends.
If the cursor is declared "WITH HOLD", the lock is released when the cursor is
closed.

ORACLE allows individual and exclusive row locking with :

ODI Adaptation Guides

1403

 SELECT ... FOR UPDATE [OF col-list]

• A lock is acquired for each selected row when the cursor is opened, before the
first fetch.

• Cursors using SELECT ... FOR UPDATE are automatically closed when the
transaction ends;
Warning : Locks are not released when a cursor is closed.

ORACLE's locking granularity is at the row level.

To control the behavior of the program when locking rows, INFORMIX provides a
specific instruction to set the wait mode :

 SET LOCK MODE TO { WAIT | NOT WAIT | WAIT seconds }

The default mode is NOT WAIT. This as an INFORMIX specific SQL statement.

In order to simulate the same behavior in ORACLE, your can use the NOWAIT keyword
in the SELECT ... FOR UPDATE statement, as follows:

 SELECT ... FOR UPDATE [OF col-list] NOWAIT

With this option, ORACLE immediately returns an SQL error if the row is locked by
another user.

Solution:

Warning: The database interface is based on an emulation of an Informix engine using
transaction logging. Therefore, opening a SELECT ... FOR UPDATE cursor declared
outside a transaction will raise an SQL error -255 (not in transaction).

Warning : Cursors declared with SELECT ... FOR UPDATE using the "WITH HOLD"
clause cannot be supported with ORACLE. See ODIORA031 and ODIORA032 for more
details.

If your BDL application is using pessimistic locking with SELECT ... FOR UPDATE, you
must review the program logic to OPEN cursor and CLOSE cursor statements inside
transactions (BEGIN WORK + COMMIT WORK / ROLLBACK WORK).

ODIORA009a - Transactions handling
INFORMIX and ORACLE handle transactions differently. The differences in the
transactional models can affect the program logic.

INFORMIX native mode (non ANSI):

• DDL statements can be executed (and canceled) in transactions.

Genero Business Development Language

1404

• Transactions must be started with BEGIN WORK. Statements executed outside
of a transaction are automatically committed.

ORACLE :

• Beginnings of transactions are implicit; two transactions are delimited by
COMMIT or ROLLBACK.

• The current transaction is automatically committed when a DDL statement is
executed.

Transactions in stored procedures: avoid using transactions in stored procedures to
allow the client applications to handle transactions, in accordance with the transaction
model.

Solution:

Regarding transaction control instructions, BDL applications do not have to be modified
in order to work with ORACLE. The INFORMIX behavior is simulated with an auto-
commit mode in the ORACLE interface. A switch to the explicit commit mode is done
when a BEGIN WORK is performed by the BDL program.

Warning : When executing a DDL statement inside a transaction, ORACLE
automatically commits the transaction. Therefore, you must extract the DDL statements
from transaction blocks.

See also ODIORA008b

ODIORA010 - Handling SQL errors when preparing
statements
The ORACLE interface is implemented with the ORACLE Call Interface (OCI). This
library does not provide a way to send SQL statements to the database server during the
BDL PREPARE instruction, as in the INFORMIX interface. The statement is sent to the
server only when opening the cursors or when executing the statement.

Therefore, when preparing an SQL statement with the BDL PREPARE instruction, no
SQL errors can be returned if the statement has syntax errors, or if a column or a table
name does not exist in the database. However, an SQL error will occur after the OPEN
or EXECUTE instructions.

Solution:

Make sure your BDL programs do not test the STATUS or SQLCA.SQLCODE variable
just after PREPARE instructions.

ODI Adaptation Guides

1405

Change the program logic in order to handle the SQL errors when opening the cursors
(OPEN) or when executing SQL statements (EXECUTE).

ODIORA011a - CHARACTER data types
INFORMIX provides the CHAR and VARCHAR data types to store characters. CHAR
columns can store up to 32767 chars, and VARCHARs are limited to 255. Starting with
IDS 2000, INFORMIX provides the LVARCHAR data type which is limited to 2K.

ORACLE provides the CHAR and VARCHAR2 data types. CHAR columns can have a
length of 2000 and VARCHAR2 can have a length of 4000. VARCHAR is a synonym to
VARCHAR2, but you should not use VARCHAR because the behavior may change in
future server versions. See the ORACLE documentation for more details.

Warning : When comparing VARCHAR2 values in ORACLE, the trailing blanks are
significant; this is not the case when using INFORMIX VARCHARs. But comparison with
columns of type CHAR is similar to INFORMIX. See blank-padded and non-padded
comparison semantics in ORACLE documentation.

Data type INFORMIX ORACLE
CHAR 'aaa ' = 'aaa' 'aaa ' = 'aaa'
VARCHAR 'aaa ' = 'aaa' 'aaa ' <> 'aaa'

Warning: ORACLE treats empty strings like NULL values; INFORMIX doesn't. See
issue ODIORA011c for more details.

Solution:

The database interface supports character string variables in SQL statements for input
(BDL USING) and output (BDL INTO).

Warning: Based on the comparison semantics, we recommend that you use ORACLE
CHARs for INFORMIX CHARs. Take care if you want to use ORACLE VARCHAR2,
since the comparison of values having trailing blanks is different.

Warning: Check that your database schema does not use CHAR or VARCHAR types
with a length exceeding the ORACLE limit.

ODIORA011b - The LENGTH() function
INFORMIX provides the LENGTH() function:

 SELECT LENGTH("aaa"), LENGTH(col1) FROM table

Genero Business Development Language

1406

Oracle has a equivalent function with the same name, but there is some difference:

Informix does not count the trailing blanks neither for CHAR not for VARCHAR
expressions, while Oracle counts the trailing blanks.

With the Oracle LENGTH function, when using a CHAR column, values are always blank
padded, so the function returns the size of the CHAR column. When using a VAR CHAR
column, trailing blanks are significant, and the function returns the number of characters,
including trailing blanks.

The INFORMIX LENGTH() function returns 0 when the given string is empty. That
means, LENGTH('') is 0.

Since ORACLE handles empty strings ('') as NULL values, writing "LENGTH('')" is
equivalent to "LENGTH(NULL)". In this case, the function returns NULL.

Solution:

The ORACLE database interface cannot simulate the behavior of the INFORMIX
LENGTH() function.

You must check if the trailing blanks are significant when using the LENGTH() function.

If you want to count the number of character by ignoring the trailing blanks, you must
use the RTRIM() function:

 SELECT LENGTH(RTRIM(col1)) FROM table

SQL conditions which verify that the result of LENGTH() is greater that a given number
do not have to be changed, because the expression evaluates to false if the given string
is empty (NULL>n) :
 SELECT * FROM x WHERE LENGTH(col)>0

Only SQL conditions that compare the result of LENGTH() to zero will not work if the
column is NULL. You must check your BDL code for such conditions :
 SELECT * FROM x WHERE LENGTH(col)=0

In this case, you must add a test to verify if the column is null:
 SELECT * FROM x WHERE (LENGTH(col)=0 OR col IS NULL)

In addition, when retrieving the result of a LENGTH() expression into a BDL variable,
you must check that the variable is not NULL.

In ORACLE, you can use the NVL() function in order to get a non-null value :
 SELECT * FROM x WHERE NVL(LENGTH(c),0)=0

INFORMIX Dynamic Server 7.30 supports the NVL() function, as in ORACLE. So you
can write the same SQL for both INFORMIX 7.30 and ORACLE 8, as shown in the
above example.

ODI Adaptation Guides

1407

If the INFORMIX version supports stored procedures, you can create the following
stored procedure in the INFORMIX database in order to use NVL() expressions :

 create procedure nvl(val char(512), def char(512))
 returning char(512);
 if val is null then
 return def;
 else
 return val;
 end if;
 end procedure;

With this stored procedure, you can write NVL() expressions like NVL(LENGTH(c),0).
This should work in almost all cases and provides upward compatibility with INFORMIX
Dynamic Server 7.30.

ODIORA011c - Empty character strings
INFORMIX SQL and ORACLE SQL handle empty quoted strings differently. ORACLE
SQL does not distinguish between '' and NULL, while INFORMIX SQL treats'' (or ""
) as a string with a length of zero.

Warning: Using literal string values which are empty ('') for INSERT or UPDATE
statements will result in the storage of NULLs with ORACLE, while INFORMIX would
store the value as a string with a length of zero:

insert into tab1 (col1, col2) values (NULL, '')

Warning: Using the comparison expression (col='') with ORACLE has no meaning
because an empty string is equivalent to NULL; (col=NULL) expressions will always
evaluate to FALSE because this is not a correct expression: The expression should be (
col IS NULL).

select * from tab1 where col2 IS NULL

In Informix 4GL, when setting a variable with an empty string constant, it is automatically
set to a NULL value. When using one or more space characters, the value is set to one
space character:

define x char(10)
let x = ""
if x is null then -- evaluates to TRUE
let x = " "
if x = " " then -- evaluates to TRUE

Solution:

Genero Business Development Language

1408

The ORACLE database interface cannot automatically convert comparison expressions
like (col="") to (col IS NULL) because this would require an SQL grammar parser.
The interface could convert expressions like (col=""), but it would do this for the whole
SQL statement:

UPDATE tab1 SET col1 = "" WHERE col2 = ""

Would be converted to an incorrect SQL statement:

UPDATE tab1 SET col1 IS NULL WHERE col2 IS NULL

To increase portability, you should avoid the usage of literal string values with a length of
zero in SQL statements; this would resolve storage and Boolean expressions evaluation
differences between INFORMIX and ORACLE.

NULL or program variables can be used instead. Program variables set with empty
strings (let x="") are automatically converted to NULL by BDL and therefore are
stored as NULL when using both INFORMIX or ORACLE databases.

ODIORA012 - Constraints

Constraint naming syntax:

Both INFORMIX and ORACLE support primary key, unique, foreign key, default and
check constraints, but the constraint naming syntax is different : ORACLE expects the
"CONSTRAINT" keyword before the constraint specification and INFORMIX expects it
after.

UNIQUE constraint example:

INFORMIX ORACLE

CREATE TABLE scott.emp (
...
empcode CHAR(10) UNIQUE
 [CONSTRAINT pk_emp],
...

CREATE TABLE scott.emp (
...
empcode CHAR(10)
 [CONSTRAINT pk_emp]
UNIQUE,
...

Primary keys:

Like INFORMIX, ORACLE creates an index to enforce PRIMARY KEY constraints
(some RDBMS do not create indexes for constraints). Using "CREATE UNIQUE
INDEX" to define unique constraints is obsolete (use primary keys or a secondary key
instead).

ODI Adaptation Guides

1409

Unique constraints:

Like INFORMIX, ORACLE creates an index to enforce UNIQUE constraints (some
RDBMS do not create indexes for constraints).

Warning: When using a unique constraint, INFORMIX allows only one row with a NULL
value, while ORACLE allows several rows with NULL! Using CREATE UNIQUE INDEX
is obsolete.

Foreign keys:

Both INFORMIX and ORACLE support the ON DELETE CASCADE option. To defer
constraint checking, INFORMIX provides the SET CONSTRAINT command while
ORACLE provides the ENABLE and DISABLE clauses.

Check constraints:

Warning: The check condition may be any valid expression that can be evaluated to
TRUE or FALSE, including functions and literals. You must verify that the expression is
not INFORMIX specific.

Null constraints:

INFORMIX and ORACLE support not null constraints, but INFORMIX does not allow you
to give a name to "NOT NULL" constraints.

Solution:

Constraint naming syntax:

The database interface does not convert constraint naming expressions when creating
tables from BDL programs. Review the database creation scripts to adapt the constraint
naming clauses for ORACLE.

ODIORA013 - Triggers
INFORMIX and ORACLE provide triggers with similar features, but the trigger creation
syntax and the programming languages are totally different.

INFORMIX triggers define the stored procedures to be called when a database event
occurs (before | after insert | update | delete ...), while ORACLE triggers can hold a
procedural block.

In ORACLE, triggers can be created with 'CREATE OR REPLACE' to keep privileges
settings. With INFORMIX, you must drop and create again.

Genero Business Development Language

1410

ORACLE V8 provides an 'INSTEAD OF' option to completely replace the INSERT,
UPDATE or DELETE statement. This is provided to implement complex storage
operations, for example on views that are usually read-only (you can attach triggers to
views).

Warning: ORACLE allows you to create multiple triggers on the same table for the same
trigger event, but it does not guarantee the execution order.

Solution:

INFORMIX triggers must be converted to ORACLE triggers "by hand".

ODIORA014 - Stored procedures
Both INFORMIX and ORACLE support stored procedures, but the programming
languages are totally different : SPL for INFORMIX versus PL/SQL for ORACLE.

In Oracle, stored procedures and functions can be implemented in packages (similar to
BDL modules). This is a powerful feature which enables structured procedural
programming in the database. ORACLE itself implements system tools with packages
(dbms_sql, dbms_output, dbms_lock). Procedures, functions and packages can be
created with 'CREATE OR REPLACE' to keep privileges settings.
With INFORMIX, you must drop and create again.

Warning: ORACLE uses a different privilege context when using dynamic SQL in
PL/SQL; roles are not effective. Users must have direct privileges settings in order to
perform DDL or DML operations inside dynamic SQL.

Solution:

INFORMIX stored procedures must be converted to ORACLE "by hand".

Try to use ORACLE packages in order to group stored procedures into modules.

ODIORA016a - Defining database users
INFORMIX users are defined at the operating system level, they must be members of
the 'informix' group, and the database administrator must grant CONNECT, RESOURCE
or DBA privileges to those users.

ORACLE users must be createed in the database with a CREATE USER command.
Oracle supports different sort of user authentications.
Following command defines a user authenticated by the database server (must give
username and password to connect):

ODI Adaptation Guides

1411

 CREATE USER <username> IDENTIFIED BY <pswd>
Users defined at the operating system level can be declared as ORACLE users with the
"IDENTIFIED EXTERNALLY" clause :
 CREATE USER OPS$<username> IDENTIFIED EXTERNALLY
In this case, ORACLE trusts the operating system, and users can connect to the
database without giving any user name and password.

Warning: By default, database users authenticated by the operating systems have a
name with the "OPS$" prefix. The 'OPS$' prefix can be changed with the
OS_AUTHENT_PREFIX server parameter. You can set this parameter to blank ("") in
order to use the same user names in the system and in the ORACLE database. See
ORACLE documentation ("Server Administrators Guide", "User authentication") for
more details.

Warning: When creating a user with OS authentication, the user name in the database
must be in uppercase letters, even if the OS user name is lowercase.

Warning: For Windows NT operating system authentication to work, the
SQLNET.AUTHENTICATION_SERVICES parameter must be set as follows in
%ORACLE_HOME%\NETWORK\ADMIN\SQLNET.ORA :

 SQLNET.AUTHENTICATION_SERVICES = (NTS)

Solution:

Based on the application logic (is it a multi-user application ?), you must create one or
several ORACLE users. As INFORMIX users are operating system users, we
recommend that you use the OS authentication services offered by ORACLE.

ODIORA016b - Setting privileges
INFORMIX and ORACLE user privileges management are quite similar.

ORACLE provides roles to group privileges which then can be assigned to users.
Starting with version 7.20, INFORMIX provides roles too. But users must execute the
SET ROLE statement in order to enable a role. ORACLE users do not have to explicitly
set a role, they are assigned to a default privilege domain (set of roles). More than one
role can be enabled at a time with ORACLE.

INFORMIX users must have at least the CONNECT privilege to access the database:
 GRANT CONNECT TO (PUBLIC|user)

ORACLE users must have at least the CREATE SESSION privilege to access the
database. This privilege is part of the CONNECT role.
 GRANT CONNECT TO (PUBLIC|user)

Genero Business Development Language

1412

Warning: INFORMIX database privileges do NOT correspond exactly to ORACLE
CONNECT, RESOURCE and DBA roles. However, roles can be created with equivalent
privileges.

Solution:

Create a role which groups INFORMIX CONNECT privileges, and assign this role to the
application users :

CREATE ROLE ifx_connect IDENTIFIED BY oracle;
GRANT CREATE SESSION, ALTER SESSION, CREATE ANY VIEW, ...
TO ifx_connect;
GRANT ifx_connect TO user1;

ODIORA017 - Temporary tables

INFORMIX temporary tables are created through the CREATE TEMP TABLE DDL
instruction or through a SELECT ... INTO TEMP statement. Temporary tables are
automatically dropped when the SQL session ends, but they can also be dropped with
the DROP TABLE command. There is no name conflict when several users create
temporary tables with the same name.

Remark: BDL reports create a temporary table when the rows are not sorted externally
(by the source SQL statement).

INFORMIX allows you to create indexes on temporary tables. No name conflict occurs
when several users create an index on a temporary table by using the same index
identifier.

ORACLE does not support temporary tables as Informix does. ORACLE 8.1 provides
GLOBAL TEMPORARY TABLEs which are shared among processes (only data is
temporary and local to a SQL process). INFORMIX does not shared temp tables among
SQL processes; each process can create its own temp table without table name
conflicts.

Solution:

In accordance with some prerequisites, temporary tables creation in BDL programs can
be supported by the database interface.

The temporary table emulation can use regular tables or GLOBAL TEMPORARY tables.
The way the driver converts Informix temp table statements to Oracle regular tables or
global temporary tables is driven by the following FGLPROFILE entry:

dbi.database.<dbname>.ifxemul.temptables.emulation = { "default"
| "global" }

ODI Adaptation Guides

1413

By default, the database driver uses regular tables (default emulation). This default
emulation provides maximum compatibility with Informix temporary tables, but requires
real table creation which can be a significant overhead with Oracle. The global emulation
uses native Oracle Global Temporary Tables, requiring only one initial table creation and
thus making programs run faster. However, the global emulation mode has to be used
carefully because of some limitations and constraints.

Warning: When creating a temporary table, you perform a Data Definition Language
statement. Oracle automatically commits the current transaction when executing a DDL
statement. Therefore, you must avoid temp table creation/destruction in transactions.

Using the default temporary table emulation

How does the default emulation work?

• INFORMIX CREATE TEMP TABLE and SELECT INTO TEMP statements are
automatically converted to ORACLE "CREATE TABLE". The name of the
temporary table is converted to a unique table name.

• Tables are created in the current schema.
• Temporary tables are created with the option TABLESPACE TEMPTABS so that

data is stored in a dedicated tablespace named "TEMPTABS". Storing temporary
table data in a separated tablespace allows you to use a physical device which
can be different from the disk drive used for real data storage. Additionally,
backups can be performed without the data of temporary tables. Of course this
tablespace must exist otherwise temporary table creation will fail. This
tablespace is not needed when using GLOBAL TEMPORARY tables.

• Once the temporary table has been created, all other SQL statements performed
in the current SQL session are parsed to convert the original table name to the
corresponding unique table name.

• When the BDL program disconnects from the database (for example, when it
ends or when a CLOSE DATABASE instruction is executed), the tables which
have not been removed with an explicit "DROP TABLE" are automatically
removed by the database interface. However, if the program crashes, the tables
will remain in the database, so you may need to cleanup the database from time
to time.

Prerequisites when using the default emulation:

• Application users must have sufficient privileges to create database tables in
their own schema (usually, "CONNECT" and "RESOURCE" roles).

• When using the default emulation based on permanent tables, you must create a
dedicated tablespace named "TEMPTABS".
Warning: The TEMPTABS tablespace must be of type "permanent", as it will
hold permanent tables used to emulate Informix temp tables.
Make sure it is big enough to hold all the data, and check for automatic
extension.
For more details, see "CREATE TABLESPACE" in the Oracle documentation.

Limitations of the default emulation:

Genero Business Development Language

1414

• Warning: When using the default emulation, the real name of an emulated
temporary table will get the following format:
 tt<number>_<original_name>
Where <number> is the Oracle AUDSID session id returned by:
 SELECT USERENV('SESSIONID') FROM DUAL
As Oracle 9i and 10g table names can't exceed 30 characters in length, and
since session ids are persistent over server shutdown, you must pay attention to
the names of your temporary tables. For example, if you create a temp table with
the name TEMP_CUSTOMER_INVOICES (22c) it leaves 30 - (3 + 22) = 5
characters left for the session id, which gives a limit of 99999 sessions.
To workaround this limitation, you can provide your own SQL command to
generate a unique session id with the following FGLPROFILE entry:
 dbi.database.<dbname>.ora.sid.command = "select ..."
As an example, you can use the SID column value from V$SESSION:
 SELECT SID FROM V$SESSION WHERE AUDSID =
USERENV('SESSIONID')

• You are not allowed to use the unique table name format in your own database
schema. Make sure you are not using table or column names with the following
format:
 tt<number>_<original_name>

• Tokens matching the original table names are converted to unique names in all
SQL statements. Make sure you are not using the temp table name for other
database objects, like columns. The following example illustrates this limitation :
 CREATE TABLE tab1 (key INTEGER, tmp1 CHAR(20))
 CREATE TEMP TABLE tmp1 (col1 INTEGER, col2 CHAR(20))
 SELECT tmp1 FROM tab1 WHERE ...

Maintenance of default emulation:

• If you want to list the tables created by specific user, do the following:
 SELECT * FROM ALL_TABLES WHERE OWNER = '<user_name>'
Remark: as with other database object names, the user name is stored in
uppercase letters if it has been created without using double quotes (create
user scott ... = stored name is "SCOTT").

Creating indexes on temporary tables with default emulation:

• Indexes created on temporary tables must have unique names too. The
database interface detects CREATE INDEX statements which are using
temporary tables and converts the index name to unique names.

• DROP INDEX statements are also detected to replace the original index name by
the real name.

SERIALs in temporary table creation with default emulation:

• You can use the SERIAL data type when creating a temporary table.
Sequences and triggers will be created in the current schema.
See issue about SERIALs for more details.

ODI Adaptation Guides

1415

Using the global temporary table emulation

Warning: The global temporary table emulation is provided to get benefit of the Oracle
GLOBAL TEMPORARY TABLES, by sharing the same table structure with multiple SQL
sessions, reducing the cost of the CREATE TABLE statement execution. However, this
emulation does not provide the same level of Informix compatibility as the default
emulation, and must be used carefully. See below for more details about the limitations
and constraints.

How does the global emulation work?

• INFORMIX CREATE TEMP TABLE and SELECT INTO TEMP statements are
automatically converted to ORACLE "CREATE GLOBAL TEMPORARY TABLE".
The original table name is kept, but it gets a "TEMPTABS" schema prefix, to
share the underlying table structure with other database users.

• The Global Temporary Tables are created with the "ON COMMIT PRESERVE
ROWS" option, to keep the rows in the table when a transaction ends.

• The Global Temporary Tables are created in a specific schema called
"TEMPTABS". If the table exists already, error ORA-00955 will just be ignored by
the database driver. This allows to do several CREATE TEMP TABLE
statements in your programs with no SQL error, to emulate the Informix behavior.
This works fine as long as the table name is unique for a given structure (column
count and data types must match).

• Once the Global Temporary Table has been created, all other SQL statements
performed in the current SQL session are parsed to convert the original table
name to TEMPTABS.original-tablename.

• When doing a DROP TABLE temp-table statement in the program, the database
driver converts it to a DELETE statement, to remove all data added by the
current session. A next CREATE TEMP TABLE or SELECT INTO TEMP will fail
with error ORA-00955 but since this error is ignored, it will be transparent for the
program. Note that we can't use TRUNCATE TABLE because that would
required at least DROP ANY TABLE privileges for all users.

• When the BDL program disconnects from the database (for example, when it
ends or when a CLOSE DATABASE instruction is executed), the tables which
have not been dropped by the program with an explicit DROP TABLE statement
will be automatically cleaned by Oracle.

Prerequisites when using the global emulation:

• You must create a database user (schema) dedicated to this emulation, with the
name "TEMPTABS".

• All database users must have sufficient privileges to use Global Temporary
Tables in the TEMPTABS schema: If you want programs to create Global
Temporary Table on the fly, you must grant a CREATE ANY TABLE + CREATE
ANY INDEX system privilege to all users. But this means that all users will be
able to create/drop tables in any schema (Here Oracle (10g) is missing some
fine-grained system privilege to create/drop tables in a particular schema). You
better "prepare" the database by creating the Global Temporary Table with the
TEMPTABS user (do not forget to specify ON COMMIT PRESERVE ROWS
option), and give INSERT, UPDATE, DELETE and SELECT object privileges to

Genero Business Development Language

1416

PUBLIC, for example:
 CREATE GLOBAL TEMPORARY TABLE temptabs.mytable
 (k INT PRIMARY KEY, c CHAR(10)) ON COMMIT
PRESERVE ROWS;
 CREATE UNIQUE INDEX temptabs.ix1 ON temptabs.mytable (C
)
 GRANT SELECT, UPDATE, INSERT, DELETE ON temptabs.mytable
TO PUBLIC;

Limitations of the global emulation:

• Warning: Global Temporary Tables are shared by multiple users/sessions. In
order to have the global emulation working properly with your application, each
temporary table name must be unique for a given table structure, for all
programs. You must for example avoid to use generic names such as tmp1. It is
recommended to use table names as follows:
 CREATE TEMP TABLE custinfo_1 (cust_id INTEGER, cust_name
VARCHAR(50))
 CREATE TEMP TABLE custinfo_2 (cust_id INTEGER, cust_name
VARCHAR(50), cust_addr VARCHAR(200))

• Tokens matching the original table names are converted to unique names in all
SQL statements. Make sure you are not using the temp table name for other
database objects, like columns. The following example illustrates this limitation :
 CREATE TABLE tab1 (key INTEGER, tmp1 CHAR(20))
 CREATE TEMP TABLE tmp1 (col1 INTEGER, col2 CHAR(20))
 SELECT tmp1 FROM tab1 WHERE ...

Creating indexes on temporary tables with global emulation:

• Indexes created on temporary tables get also the TEMPTABS schema prefix.
• When executing a DROP INDEX statement on a temporary table in a program,

the database driver just ignores the statement.

SERIALs in temporary table creation with global emulation :

• You can use the SERIAL data type when creating a temporary table.
Sequences and triggers will be created in the TEMPTABS schema too.
See issue about SERIALs for more details.

ODIORA018 - Substrings in SQL
INFORMIX SQL statements can use subscripts on columns defined with the character
data type :
 SELECT ... FROM tab1 WHERE col1[2,3] = 'RO'
 SELECT ... FROM tab1 WHERE col1[10] = 'R' -- Same as
col1[10,10]
 UPDATE tab1 SET col1[2,3] = 'RO' WHERE ...
 SELECT ... FROM tab1 ORDER BY col1[1,3]

ODI Adaptation Guides

1417

.. while ORACLE provides the SUBSTR() function, to extract a sub-string from a string
expression :
 SELECT FROM tab1 WHERE SUBSTR(col1,2,2) = 'RO'
 SELECT SUBSTR('Some text',6,3) FROM DUAL -- Gives 'tex'

Solution:

You must replace all Informix col[x,y] expressions by SUBSTR(col,x,y-x+1).

Warning: In UPDATE instructions, setting column values through subscripts will
produce an error with ORACLE :
 UPDATE tab1 SET col1[2,3] = 'RO' WHERE ...
is converted to:
 UPDATE tab1 SET SUBSTR(col1,2,3-2+1) = 'RO' WHERE ...

ODIORA019 - Name resolution of SQL objects
INFORMIX uses the following form to identify an SQL object:
 [database[@dbservername]:][{owner|"owner"}.]identifier

The ANSI convention is to use double quotes for identifier delimiters (For example :
"tabname"."colname").

Warning: When using double-quoted identifiers, both INFORMIX and ORACLE become
case sensitive. Unlike INFORMIX, ORACLE database object names are stored in
UPPERCASE in system catalogs. That means that SELECT "col1" FROM "tab1" will
produce an error because those objects are identified by "COL1" and "TAB1" in
ORACLE system catalogs.

Remark: in INFORMIX ANSI compliant databases:

• The table name must include "owner", unless the connected user is the owner of
the database object.

• The database server shifts the owner name to uppercase letters before the
statement executes, unless the owner name is enclosed in double quotes.

With ORACLE, an object name takes the following form:
 [(schema|"schema").](identifier|"identifier")[@database-link]

Remark: ORACLE has separate namespaces for different classes of objects (tables,
views, triggers, indexes, clusters).

Object names are limited to 30 chars in ORACLE.

An ORACLE database schema is owned by a user (usually, the application
administrator) and this user must create PUBLIC SYNONYMS to provide a global scope

Genero Business Development Language

1418

for his table names. PUBLIC SYNONYMS can have the same name as the schema
objects they point to.

Solution:

Check that you do not use singl-quoted or double-quoted table names or column names
in your source. Those quotes must be removed because the database interface
automatically converts double quotes to single quotes, and ORACLE does not allow
single quotes as database object name delimiters.

See also issue ODIORA007a

ODIORA020 - String delimiters and object names
The ANSI string delimiter character is the single quote ('string'). Double quotes are used
to delimit database object names ("object-name").

Example: WHERE "tabname"."colname" = 'a string value'

INFORMIX allows double quotes as string delimiters, but ORACLE doesn't. This is
important, since many BDL programs use that character to delimit the strings in SQL
commands.

Remark: this problem concerns only double quotes within SQL statements. Double
quotes used in pure BDL string expressions are not subject to SQL compatibility
problems.

Solution:

The ORACLE database interface can automatically replace all double quotes by single
quotes.

Escaped string delimiters can be used inside strings like the following :

 'This is a single quote : '''
 'This is a single quote : \''
 "This is a double quote : """
 "This is a double quote : \""

Warning: Database object names cannot be delimited by double quotes because the
database interface cannot determine the difference between a database object name
and a quoted string !

For example, if the program executes the SQL statement:
 WHERE "tabname"."colname" = "a string value"
replacing all double quotes by single quotes would produce :

ODI Adaptation Guides

1419

 WHERE 'tabname'.'colname' = 'a string value'
This would produce an error since 'tabname'.'colname' is not allowed by ORACLE.

Although double quotes are replaced automatically in SQL statements, you should use
only single quotes to enforce portability.

ODIORA021 - NUMERIC data types
INFORMIX supports several data types to store numbers:

INFORMIX data type Description
SMALLINT 16 bit integer (-2^15 to 2^15)
INT/INTEGER 32 bit integer (-2^31 to 2^31)
DEC/DECIMAL(p) Floating-point decimal number
DEC/DECIMAL(p,s) Fixed-point decimal number
MONEY Equivalent to DECIMAL(16,2)
MONEY(p) Equivalent to DECIMAL(p,2)
MONEY(p,s) Equivalent to DECIMAL(p,s)
REAL/SMALLFLOAT approx floating point (C float)
DOUBLE PREC./FLOAT approx floating point (C double)

ORACLE supports only one data type to store numbers:

ORACLE data type Description
NUMBER(p,s)
 (1<=p<= 38, -84<=s<=127) Fixed point decimal numbers.

NUMBER(p)
 (1<=p<= 38) Integer numbers with a precision of p.

NUMBER Floating point decimals with a precision of
38.

FLOAT(b)
 (1<=b<= 126)

Floating point numbers with a binary
precision b.

FLOAT Floating point numbers with a binary
precision of 126.

ANSI types like SMALLINT, INTEGER, FLOAT are supported by ORACLE but will be
respectively converted to ORACLE native data types NUMBER(38), NUMBER(38) and
NUMBER.

Genero Business Development Language

1420

Warning: When dividing INTEGERs or SMALLINTs, INFORMIX rounds the result (7 / 2
= 3), while ORACLE doesn't, because it does not have a native integer data type (7 / 2
= 3.5)

Solution:

We recommend that you use the following conversion rules:

INFORMIX data type ORACLE data type
DECIMAL(p,s), MONEY(p,s) NUMBER(p,s)
DECIMAL(p) FLOAT(b)
SMALLINT NUMBER(5,0)
INTEGER NUMBER(10,0)
SMALLFLOAT NUMBER
FLOAT NUMBER

Avoid dividing integers in SQL statements. If you do divide an integer, use the TRUNC()
function with ORACLE.

ODIORA022 - Getting one row with SELECT
With INFORMIX, you must use the system table with a condition on the table id :

 SELECT user FROM systables WHERE tabid=1

Oracle provides the DUAL table to generate one row only.

 SELECT user FROM DUAL

Solution:

Check the BDL sources for "FROM systables WHERE tabid=1" and use dynamic SQL to
resolve this problem.

ODIORA024 - MATCHES and LIKE in SQL conditions
INFORMIX supports MATCHES and LIKE in SQL statements, while ORACLE supports
the LIKE statement only.

MATCHES allows you to use brackets to specify a set of matching characters at a given
position :

ODI Adaptation Guides

1421

 (col MATCHES '[Pp]aris').
 (col MATCHES '[0-9][a-z]*').
In this case, the LIKE statement has no equivalent feature.

The following substitutions must be done to convert a MATCHES condition to a LIKE
condition:

• MATCHES keyword must be replaced by LIKE.
• All '*' characters must be replaced by '%'.
• All '?' characters must be replaced by '_'.
• Remove all brackets expressions.

Solution:

Warning: SQL statements using MATCHES expressions must be reviewed in order to
use LIKE expressions.

ORACLE provides the TRANSLATE function which can be used to replace MATCHES in
specific cases. The TRANSLATE function replaces all occurrences of characters listed in
a 'from' set, with the corresponding character defined in a 'to' set.
INFORMIX : WHERE col MATCHES '[0-9][0-9][0-9]'
ORACLE : WHERE TRANSLATE(col,'0123456789','9999999999')='999'

See also: MATCHES operator in SQL Programming.

ODIORA025 - INFORMIX specific SQL statements in BDL
The BDL compiler supports several INFORMIX specific SQL statements that have no
meaning when using ORACLE:

deleted the next sentence as not necessary

• CREATE DATABASE
• DROP DATABASE
• START DATABASE (SE only)
• ROLLFORWARD DATABASE
• SET [BUFFERED] LOG
• CREATE TABLE with special options (storage, lock mode, etc.)

Solution:

Review your BDL source and remove all static SQL statements which are INFORMIX
specific.

Genero Business Development Language

1422

ODIORA028 - INSERT cursors
INFORMIX supports insert cursors. An "insert cursor" is a special BDL cursor declared
with an INSERT statement instead of a SELECT statement. When this kind of cursor is
open, you can use the PUT instruction to add rows and the FLUSH instruction to insert
the records into the database.

For INFORMIX database with transactions, OPEN, PUT and FLUSH instructions must
be executed within a transaction.

ORACLE does not support insert cursors.

Solution:

Insert cursors are emulated by the ORACLE database interface.

ODIORA029 - SQL functions and constants
Almost all INFORMIX functions and SQL constants have a different name or behavior in
ORACLE.

Here is a comparison list of functions and constants:

INFORMIX ORACLE
today trunc(sysdate)
current year to second sysdate
day(value) to_number(to_char(value, 'dd'))

extend(dtvalue, first to last)
to_date(nvl(to_char(dtvalue, 'fmt-
mask'), '19000101000000'), 'fmt-
mask')

mdy(m,d,y)
to_date(to_char(m,'09') ||
to_char(d,'09') ||
 to_char(y,'0009'), 'MMDDYYYY')

month(date) to_number(to_char(date, 'mm'))
weekday(date) to_number(to_char(date, 'd')) -1
year(date) to_number(to_char(date, 'yyyy'))

date("string" | integer) No equivalent - Depends from
DBDATE in IFX

user user ! Uppercase/lowercase: See
ODIORA047

trim([leading | trailing | both "char"
FROM] "string") ltrim() and rtrim()

ODI Adaptation Guides

1423

length(c) length(c) ! Different behavior: See
ODIORA011b

pow(x,y) power(x,y)

Solution:

Warning: You must review the SQL statements using TODAY / CURRENT / EXTEND
expressions.

You can define stored functions in the ORACLE database, to simulate INFORMIX
functions. This works only for functions that are not already provided by ORACLE:

 create or replace function month(adate in date)
 return number
 is
 v_month number;
 begin
 v_month := to_number(to_char(adate, 'mm'));
 return (v_month);
 end month;

You can find the scripts to create those stored functions in the ifxf_ora.sql script
provided in the Adaptation Kit.

ODIORA030 - Very large data types
INFORMIX uses the TEXT and BYTE data types to store very large texts or
images.ORACLE 8 provides CLOB, BLOB, and BFILE data types. Columns of these
types store a kind of pointer (lob locator). This technique allows you to use more than
one CLOB / BLOB / BFILE column per a table.

Solution:

The ORACLE database interface can convert BDL TEXT data to CLOB and BYTE data
to BLOB.

Warning : ORACLE BFILEs are not supported.

ODIORA031 - Cursors WITH HOLD
INFORMIX closes opened cursors automatically when a transaction ends unless the
WITH HOLD option is used in the DECLARE instruction. In ORACLE, opened cursors
using SELECT statements without a FOR UPDATE clause are not closed when a

Genero Business Development Language

1424

transaction ends. Actually, all ORACLE cursors are 'WITH HOLD' cursors unless the
FOR UPDATE clause is used in the SELECT statement.

Solution:

BDL cursors that are not declared "WITH HOLD" are automatically closed by the
database interface when a COMMIT WORK or ROLLBACK WORK is performed.

Warning: Since ORACLE automatically closes FOR UPDATE cursors when the
transaction ends, opening cursors declared FOR UPDATE and WITH HOLD results in
an SQL error that does not normally appear with INFORMIX, in the same conditions.
Review the program logic in order to find another way to set locks.

ODIORA032 - UPDATE/DELETE WHERE CURRENT OF
<cursor>
INFORMIX allows positioned UPDATEs and DELETEs with the "WHERE CURRENT OF
<cursor>" clause, if the cursor has been DECLARED with a SELECT ... FOR UPDATE
statement.

Warning: UPDATE/DELETE ... WHERE CURRENT OF <cursor> is not support by the
Oracle database API. However, ROWIDs can be used for positioned updates/deletes.

Solution:

UPDATE/DELETE ... WHERE CURRENT OF instructions are managed by the ORACLE
database interface. The ORACLE database interface replaces "WHERE CURRENT OF
<cursor>" by "WHERE ROWID=:rid" and sets the value of the ROWID returned by the
last FETCH done with the given cursor..

ODIORA033 - Querying system catalog tables
As in INFORMIX, ORACLE provides system catalog tables (actually, system views). But
the table names and their structure are quite different.

Solution:

Warning: No automatic conversion of INFORMIX system tables is provided by the
database interface.

ODI Adaptation Guides

1425

ODIORA034 - Syntax of UPDATE statements
INFORMIX allows a specific syntax for UPDATE statements :

 UPDATE table SET (<col-list>) = (<val-list>)

or

 UPDATE table SET table.* = myrecord.*
 UPDATE table SET * = myrecord.*

Solution:

Static UPDATE statements using the above syntax are converted by the compiler to
the standard form:
 UPDATE table SET column=value [,...]

ODIORA036 - INTERVAL data type
INFORMIX's INTERVAL data type stores a value that represents a span of time.
INTERVAL types are divided into two classes : year-month intervals and day-time
intervals.

ORACLE 8i does not provide a data type similar to Informix INTERVAL.

Starting from version 9i, ORACLE provides the INTERVAL data type similar to
INFORMIX, with two classes (YEAR TO MONTH and DAY TO SECOND), but Oracle's
INTERVAL cannot be defined with a precision different from these two classes (for
example, you cannot define an INTERVAL HOUR TO MINUTE in Oracle). The class
DAY TO SECOND(n) is equivalent to the INFORMIX INTERVAL class DAY TO
FRACTION(n).

Solution:

When using Oracle 8i

It is not recommended that you use the INTERVAL data type because Oracle 8i has no
equivalent native data type. This would cause problems when doing INTERVAL
arithmetic on the database server side. However, INTERVAL values can be stored in
CHAR columns.

When using Oracle 9i and higher

Informix INTERVAL YEAR(n) TO MONTH data is stored in Oracle INTERVAL YEAR(n)
TO MONTH columns. These data types are equivalent.

Genero Business Development Language

1426

Informix INTERVAL DAY(n) TO FRACTION(p) data is stored in Oracle INTERVAL
DAY(n) TO SECOND(p) columns. These data types are equivalent.

Other Informix INTERVAL types must be stored in CHAR() columns as with Oracle 8i,
because the high qualifier precision cannot be specified with Oracle INTERVALs. For
example, Informix INTERVAL HOUR(5) TO MINUTE has no native equivalent in Oracle.

ODIORA039 - Data storage concepts
An attempt should be made to preserve as much of the storage specification as possible
when converting from INFORMIX to ORACLE. Most important storage decisions made
for INFORMIX database objects (like initial sizes and physical placement) can be reused
for the ORACLE database.

Storage concepts are quite similar in INFORMIX and in ORACLE, but the names are
different.

The following table compares INFORMIX storage concepts to ORACLE storage
concepts :

INFORMIX ORACLE
Physical units of storage
The largest unit of physical disk space
is a "chunk", which can be allocated
either as a cooked file (I/O is controlled
by the OS) or as raw device (=UNIX
partition, I/O is controlled by the
database engine). A "dbspace" uses at
least one "chunk" for storage.
You must add "chunks" to "dbspaces"
in order to increase the size of the
logical unit of storage.

One or more "data files" are created
for each "tablespace" to physically store
the data of all logical structures. Like
INFORMIX "chunks", a "data file" can
be an OS file or a raw device.
You can add "data files" to a
"tablespace" in order to increase the
size of the logical unit of storage or you
can use the AUTOEXTEND option
when using OS files.

A "page" is the smallest physical unit of
disk storage that the engine uses to
read from and write to databases.
A "chunk" contains a certain number of
"pages".
The size of a "page" must be equal to
the operating system's block size.

At the finest level of granularity,
ORACLE stores data in "data blocks"
which size corresponds to a multiple of
the operating system's block size.
You set the "data block" size when
creating the database.

An "extent" consists of a collection of
contiguous "pages" that the engine
uses to allocate both initial and
subsequent storage space for database
tables.
When creating a table, you can specify

An "extent" is a specific number of
contiguous "data blocks", obtained in a
single allocation.
When creating a table, you can specify
the first extent size and the size of
future extents with the STORAGE()

ODI Adaptation Guides

1427

the first extent size and the size of
future extents with the EXTENT SIZE
and NEXT EXTENT options.
For a single table, "extents" can be
located in different "chunks" of the
same "dbspace".

option.
For a single table, "extents" can be
located in different "data files" of the
same "tablespace".

Logical units of storage
A "table" is a logical unit of storage that
contains rows of data values.

Same concept as INFORMIX.

A "database" is a logical unit of storage
that contains table and index data.
Each database also contains a system
catalog that tracks information about
database elements like tables, indexes,
stored procedures, integrity constraints
and user privileges.

Same concept as INFORMIX, but one
ORACLE instance can manage only
one database, in the meaning of
INFORMIX.

Database tables are created in a
specific "dbspace", which defines a
logical place to store data.
If no dbspace is given when creating
the table, INFORMIX defaults to the
current database dbspace.

Database tables are created in a
specific "tablespace", which defines a
logical place to store data.
If no tablespace is given when creating
the table, ORACLE defaults to the
user's default tablespace.

The total disk space allocated for a
table is the "tblspace", which includes
"pages" allocated for data, indexes,
blobs, tracking page usage within table
extents.
Warning: Do not confuse the
INFORMIX "tblspace" concept and
ORACLE "tablespaces".

A "segment" is a set of "extents"
allocated for a certain logical structure.
There are four different types of
segments, including data segments,
index segments, rollback segments and
temporary segments.

Other concepts
When initializing an INFORMIX engine,
a "root dbspace" is created to store
information about all databases,
including storages information (chunks
used, other dbspaces, etc.)

Each ORACLE database has a
"control file" that records the physical
structure of the database, like the
database name, location and names of
"data files" and "redo log" files, and
time stamp of database creation.

The "physical log" is a set of
continuous disk pages where the
engine stores "before-images" of data
that has been modified during
processing.

The "logical log" is a set of "logical-log
files" used to record logical operations
during on-line processing. All transaction

A "rollback segment" records the
actions of SQL transactions that could
be rolled back, and it records the data
as it existed before an operation in a
transaction.

The "redo log files" hold all changes
made to the database, in case the
database experiences an instance

Genero Business Development Language

1428

information is stored in the logical log
files if a database has been created with
transaction log.

INFORMIX combines "physical log" and
"logical log" information when doing fast
recovery. Saved "logical logs" can be
used to restore a database from tape.

failure.
Each database has at least two "redo
log files".
Redo entries record data that can be
used to reconstruct all changes made
to the database, including the rollback
segments stored in the database
buffers of the SGA. Therefore, the
online redo log also protects rollback
data.

ODIORA040 - National characters data types
INFORMIX: NCHAR & NVARCHAR
ORACLE: NCHAR & NVARCHAR2

- Only OCI V8 supports NCHAR datatype.
- String constants must be preceded by the character 'N'.

Solution:

Warning: National character data types are not supported yet.

ODIORA046 - The LOAD and UNLOAD instructions
INFORMIX provides two SQL instructions to export / import data from / into a database
table: The UNLOAD instruction copies rows from a database table into a text file and the
LOAD instructions insert rows from a text file into a database table.

ORACLE does not provide LOAD and UNLOAD instructions, but provides external tools
like SQL*Plus and SQL*Loader.

Solution:

In 4gl programs, the LOAD and UNLOAD instructions are supported with ORACLE, with
some limitations:

Warning: There is a difference when using ORACLE DATE columns. DATE columns
created in the ORACLE database are equivalent to INFORMIX DATETIME YEAR TO
SECOND columns. In LOAD and UNLOAD, all ORACLE DATE columns are treated as
INFORMIX DATETIME YEAR TO SECOND columns and thus will be unloaded with the
"YYYY-MM-DD hh:mm:ss" format.
The same problem appears for INFORMIX INTEGER and SMALLINT values, which are

ODI Adaptation Guides

1429

stored in an ORACLE database as NUMBER(?) columns. Those values will be unloaded
as INFORMIX DECIMAL(10) and DECIMAL(5) values, that is, with a trailing dot-zero
".0".

Warning: When using an INFORMIX database, simple dates are unloaded using the
DBDATE format (ex: "23/12/1998"). Therefore, unloading from an INFORMIX database
for loading into an ORACLE database is not supported.

ODIORA047 - The USER constant
Both INFORMIX and ORACLE provide the USER constant, which identifies the current
user connected to the database server.

Example:

INFORMIX: SELECT USER FROM systables WHERE tabid=1
ORACLE: SELECT USER FROM DUAL

However, there is a difference:

• INFORMIX returns the user identifier as defined in the operating system, where it
can be case sensitive (UNIX) or not (NT).

• ORACLE returns the user identifier which is stored in the database. By default
ORACLE converts the user name to uppercase letters, if you do not put the user
name in double quotes when creating it.

This is important if your application stores user names in database records (for example,
to audit data modifications). You can, for example, connect to ORACLE with the name
'scott', and perform the following SQL operations :
 (1) INSERT INTO mytab (creator, comment)
 VALUES (USER, 'example');
 (2) SELECT * FROM mytab
 WHERE creator = 'scott';
The first command inserts 'SCOTT' (in uppercase letters) in the creator column. The
second statement will not find the row.

Solution:

When creating a user in ORACLE, you can put double quotes around the user name in
order to force ORACLE to store the given user identifier as is :

CREATE USER "scott" IDENTIFIED BY <pswd>

To verify the user names defined in the ORACLE database, connect as SYSTEM and
list the records of the ALL_USERS table as follows :

 SELECT * FROM ALL_USERS

Genero Business Development Language

1430

 USERNAME USER_ID CREATED
 --
 SYS 0 02-OCT-98
 SYSTEM 5 02-OCT-98
 DBSNMP 17 02-OCT-98
 FBDL 20 03-OCT-98
 Toto 21 03-OCT-98

ODIORA051 - Setup database statistics
INFORMIX provides a special instruction to compute database statistics in order to help
the optimizer to find the right query execution plan :

UPDATE STATISTICS ...

Oracle has the following instruction to compute database statistics:

ANALYZE ...

See Oracle documentation for more details.

Solution:

Centralize the optimization instruction in a function.

ODIORA052 - The GROUP BY clause
INFORMIX allows you to use column numbers in the GROUP BY clause

 SELECT ord_date, sum(ord_amount) FROM order GROUP BY 1

Oracle does not support column numbers in the GROUP BY clause.

Solution:

Use column names instead:

 SELECT ord_date, sum(ord_amount) FROM order GROUP BY ord_date

ODI Adaptation Guides

1431

ODIORA053 - The ALTER TABLE instruction
INFORMIX and ORACLE have different implementations of the ALTER TABLE
instruction. For example, INFORMIX allows you to use multiple ADD clauses separated
by commas. This is not supported by ORACLE :

INFORMIX:
 ALTER TABLE customer ADD(col1 INTEGER), ADD(col2 CHAR(20))

ORACLE:
 ALTER TABLE customer ADD(col1 INTEGER, col2 CHAR(20))

Solution:

Warning: No automatic conversion is done by the database interface. There is no real
standard for this instruction (that is, no common syntax for all database servers). Read
the SQL documentation and review the SQL scripts or the BDL programs in order to use
the database server specific syntax for ALTER TABLE.

ODIORA054 - The star (asterisk) in SELECT statements
Informix allows you to use the star character in the select list along with other
expressions :

 SELECT col1, * FROM tab1 ...

Oracle does not support this. You must use the table name as a prefix to the star:

SELECT col1, tab1.* FROM tab1 ...

Solution:

Always use the table name before the star.

ODIORA055 - NULLs in indexed columns
Oracle btree indexes do not store null values, while Informix btree indexes do. This
means that if you index a single column and select all the rows where that column is null,
Informix will do an indexed read to fetch just those rows, but Oracle will do a sequential
scan of all rows to find them. Having an index unusable for "is null" criteria can also
completely change the behavior and performance of more complicated selects without
causing a sequential scan.

Solution:

Genero Business Development Language

1432

Declare the indexed columns as NOT NULL with a default value and change the
programmatic logic. If you do not want to change the programs, partitioning the table so
that the nulls have a partition of their own will reduce the sequential scan to just the nulls
(un-indexed) partition, which is relatively fast.

ODIORA056 - SQL Interruption
With Informix, it is possible to interrupt a long running query if the SQL INTERRUPT ON
option is set by the Genero program. The database server returns SQLCODE -213,
which can be trapped to detect a user interruption.

 MAIN
 DEFINE n INTEGER
 DEFER INTERRUPT
 OPTIONS SQL INTERRUPT ON
 DATABASE test1
 WHENEVER ERROR CONTINUE
 -- Start long query (self join takes time)
 -- From now on, user can hit CTRL-C in TUI mode to stop the query
 SELECT COUNT(*) INTO n FROM customers a, customers b
 WHERE a.cust_id <> b.cust_id
 IF SQLCA.SQLCODE == -213 THEN
 DISPLAY "Statement was interrupted by user..."
 EXIT PROGRAM 1
 END IF
 WHENEVER ERROR STOP
 ...
 END MAIN

Oracle supports SQL Interruption in a similar way as Informix. The db client must issue
an OCIBreak() OCI call to interrupt a query.

Solution:

The ORACLE database driver supports SQL interruption and converts the native SQL
error code -1013 to the Informix error code -213.

ODIORA100 - Data type conversion table

INFORMIX Data Types ORACLE Data Types

CHAR(n) CHAR(n) (Oracle limit =
2000c!)

VARCHAR(n) VARCHAR2(n) (Oracle limit =
4000c!)

INTEGER NUMBER(10)

ODI Adaptation Guides

1433

SMALLINT NUMBER(5)
FLOAT[(n)] NUMBER
SMALLFLOAT NUMBER
DECIMAL(p,s) NUMBER(p,s)
DECIMAL(p) FLOAT(p*3.32193)
MONEY(p,s) NUMBER(p,s)
TEXT CLOB (Oracle >=8i only)
BYTE BLOB (Oracle >=8i only)
DATE DATE
DATETIME YEAR TO YEAR DATE
DATETIME YEAR TO MONTH DATE
DATETIME YEAR TO DAY DATE
DATETIME YEAR TO HOUR DATE
DATETIME YEAR TO MINUTE DATE
DATETIME YEAR TO SECOND DATE
DATETIME YEAR TO
FRACTION(n)

TIMESTAMP(n) (Oracle >=9i
only)

DATETIME MONTH TO MONTH DATE
DATETIME MONTH TO DAY DATE
DATETIME MONTH TO HOUR DATE
DATETIME MONTH TO MINUTE DATE
DATETIME MONTH TO SECOND DATE
DATETIME MONTH TO
FRACTION(n) (Oracle >=9i only)

DATETIME DAY TO DAY DATE
DATETIME DAY TO HOUR DATE
DATETIME DAY TO MINUTE DATE
DATETIME DAY TO SECOND DATE

DATETIME DAY TO FRACTION(n) TIMESTAMP(n) (Oracle >=9i
only)

DATETIME HOUR TO HOUR DATE
DATETIME HOUR TO MINUTE DATE
DATETIME HOUR TO SECOND DATE
DATETIME HOUR TO
FRACTION(n)

TIMESTAMP(n) (Oracle >=9i
only)

DATETIME MINUTE TO MINUTE DATE
DATETIME MINUTE TO SECOND DATE
DATETIME MINUTE TO
FRACTION(n)

TIMESTAMP(n) (Oracle >=9i
only)

DATETIME SECOND TO SECOND DATE
DATETIME SECOND TO TIMESTAMP(n) (Oracle >=9i

Genero Business Development Language

1434

FRACTION(n) only)
DATETIME FRACTION TO
FRACTION(n)

TIMESTAMP(n) (Oracle >=9i
only)

INTERVAL YEAR[(n)] TO MONTH

Oracle >=9i:
 INTERVAL YEAR[(n)] TO
MONTH
Oracle <9i:
 CHAR(50)

INTERVAL MONTH[(n)] TO
MONTH CHAR(50)

INTERVAL DAY[(n)] TO
FRACTION(p)

Oracle >=9i:
 INTERVAL DAY[(n)] TO
SECOND(p)
Oracle <9i:
 CHAR(50)

INTERVAL HOUR[(n)] TO HOUR CHAR(50)
INTERVAL HOUR[(n)] TO
MINUTE CHAR(50)

INTERVAL HOUR[(n)] TO
SECOND CHAR(50)

INTERVAL HOUR[(n)] TO
FRACTION(p) CHAR(50)

INTERVAL MINUTE[(n)] TO
MINUTE CHAR(50)

INTERVAL MINUTE[(n)] TO
SECOND CHAR(50)

INTERVAL MINUTE[(n)] TO
FRACTION(p) CHAR(50)

INTERVAL SECOND[(n)] TO
SECOND CHAR(50)

INTERVAL SECOND[(n)] TO
FRACTION(p) CHAR(50)

INTERVAL FRACTION[(n)] TO
FRACTION CHAR(50)

ODI Adaptation Guides

1435

ODI Adaptation Guide For SQL Server 2000, 2005,
2008
Runtime configuration

Install SQL Server and create a database
Prepare the runtime environment

Database concepts

Database concepts
Data storage concepts
Data consistency and concurrency management
Transactions handling
Defining database users
Setting privileges

Data dictionary

CHARACTER data types
NUMERIC data types
DATE and DATETIME data types
INTERVAL data type
SERIAL data type
ROWIDs
Case sensitivity
Very large data types
National character data types
The ALTER TABLE instruction
Constraints
Triggers
Stored procedures
Name resolution of SQL objects
Setup database statistics
Data type conversion table

Data manipulation

Genero Business Development Language

1436

Reserved words
Outer joins
Transactions handling
Temporary tables
Substrings in SQL
Name resolution of SQL objects
String delimiters
Getting one row with SELECT
MATCHES and LIKE conditions
Querying system catalog tables
Syntax of UPDATE statements
The LENGTH() function

BDL programming

Executing SQL statements
SERIAL data type
INFORMIX specific SQL statements in BDL
INSERT cursors
Cursors WITH HOLD
SELECT FOR UPDATE
The LOAD and UNLOAD instructions
SQL Interruption

Runtime configuration

Install SQL Server and create a database

1. Install the Microsoft SQL Server on your computer.
2. Create a SQL Server database entity with the SQL

Server Management Studio.

In the database properties:

o Choose the right code page / collation to
get a case-sensitive database; this cannot
be changed later.

o Make sure the "ANSI NULL Default" option
is TRUE if you want to have the same
default NULL constraint as in INFORMIX
(i.e. a column created without NULL

ODI Adaptation Guides

1437

constraint will allow null values, users must
specify NOT NULL to deny nulls).

o Make sure the "Quoted Identifiers
Enabled" option is FALSE to use database
object names without quotes as in
INFORMIX.

3. Create and declare a database user dedicated to
your application: the application administrator.

4. If you plan to use SERIAL emulation based on
triggers using a registration table, create the
SERIALREG table and create the serial triggers for
all tables using a SERIAL. See issue ODIMSV005
for more details.

5. Create the application tables. Do not forget to
convert INFORMIX data types to SQL Server data
types. See issue ODIMSV100 for more details.
Warning: In order to make application tables
visible to all users, make sure that the tables are
created with the 'dbo' owner.

Prepare the runtime environment

1. Warning: Genero FGL 2.11 provides three kind
of SQL Server drivers identified by the following
codes: MSV, SNC and FTM.
All drivers are based on the ODBC API.

o The MSV driver works with the Microsoft
Data Access Component ODBC driver
(SQLSVR32.DLL), and can be used with
SQL Server 2000.
The MSV driver is supported since first
versions of Genero FGL, but is not
available for SQL Server 2008.

o If you have SQL Server 2005 (or higher) it
is recommended to use the SNC driver
based on the new SQL Native Client
ODBC driver (SQLNCLI.DLL). This is the
new ODBC driver recommended by
Microsoft for SQL Server 2005 and +.
Note that the SNC driver is not
supported in a VC++ 6 environment.
The SNC driver is supported starting
from Genero FGL 2.10.

o If you need to connect from a UNIX
platform to SQL Server, you can use the
FTM driver. This driver is based on the
FreeTDS client open source software
(www.freetds.org). You need at least
FreeTDS version 0.82.

Genero Business Development Language

1438

The FTM driver is supported starting
from Genero FGL 2.11.

2. An ODBC data source must be configured to allow
BDL program to establish connections to SQL
Server. Make sure you select the correct ODBC
driver (MSV = "SQL Server", SNC = "SQL Native
Client", FTM = "FreeTDS").
Warning: When using the FTM driver (FreeTDS),
you have to define the ODBCINI and ODBCINST
environment variable to point to the odbc.ini and
odbcinst.ini files.

3. When using an MSV or SNC driver, you must have
the Microsoft SQL Server Native Client installed
on the computer running Genero applications.

4. When using the FTM driver, you must install
FreeTDS. Note that in this case, there is no need to
install a driver manager like unixODBC: The FTM
driver is linked directly with the libtdsodbc.so
shared library. However, you must create the
odbc.ini and odbcinst.ini files to defined the data
source. See FreeTDS documentation for more
details about the data source configuration in
ODBC files.

5. Warning: On Windows platforms, BDL programs
are executed in a CONSOLE environment, not a
GUI environment. CONSOLE and GUI
environments may use different code pages on
your system. Start the SQL Server Configuration
Manager to setup your client environment and
make sure no wrong character conversion occurs.
See Microsoft SQL Server documentation for more
details.

6. If needed, set up the fglprofile entries for database
connections.

7. Check that the Genero distribution package has
installed the database driver you need (i.e. a
"dbmmsv*", "dbmsnc*" or "dbmftm*" driver must
be installed.

ODIMSV001 - DATE and DATETIME data types
INFORMIX provides two data types to store dates and time information:

• DATE = for year, month and day storage.
• DATETIME = for year to fraction(1-5) storage.

Microsoft SQL Server provides two data type to store dates:

ODI Adaptation Guides

1439

• DATETIME = for year, month, day, hour, min, second, fraction(3) storage (from
January 1, 1753 through December 31, 9999). Values are rounded to increments
of .000, .003, or .007 seconds.

• SMALLDATETIME = for year, month, day, hour, minutes storage (from January
1, 1900, through June 6, 2079). Values with 29.998 seconds or lower are
rounded down to the nearest minute; values with 29.999 seconds or higher are
rounded up to the nearest minute.

Starting with Microsoft SQL Server 2008, following new date data types are available:

• DATE = for year, month, day storage as Informix DATEs.
• TIME(n) = for hour, minute, second and fraction(7) storage. Here n defines the

precision of fractional seconds.
• DATETIME2(n) = for year, month, day, hour, minute, second and fraction(7)

storage. Here n defines the precision of fractional seconds.
• DATETIMEOFFSET(n) = for year, month, day, hour, minute, second, fraction(7)

and time zone information storage. Here n defines the precision of fractional
seconds.

String representing date time information:

INFORMIX is able to convert quoted strings to DATE / DATETIME data if the string
contents matches environment parameters (i.e. DBDATE, GL_DATETIME). As in
INFORMIX, Microsoft SQL Server can convert quoted strings to DATETIME data. The
CONVERT() SQL function allows you to convert strings to dates.

Date time arithmetic:

• INFORMIX supports date arithmetic on DATE and DATETIME values. The result
of an arithmetic expression involving dates/times is a number of days when only
DATEs are used and an INTERVAL value if a DATETIME is used in the
expression.

• INFORMIX automatically converts an integer to a date when the integer is used
to set a value of a date column. Microsoft SQL Server does not support this
automatic conversion.

• Complex DATETIME expressions (involving INTERVAL values for example) are
INFORMIX specific and have no equivalent in Microsoft SQL Server.

• Microsoft SQL Server does not allow direct arithmetic operations on datetimes;
the date handling SQL functions must be used instead (DATEADD &
DATEDIFF).

• The SQL Server provides equivalent functions for YEAR(), MONTH() and DAY().
Be careful with the DAY(n) function on SQL Server because it begins from
January 1, 1900 while INFORMIX begins from December 31, 1899.

INFORMIX Microsoft SQL Server
select day(0), month(0),
year(0) FROM systables WHERE
tabid=1;
------ ------ ------

select day(0), month(0),
year(0)
----------- ----------- -----

Genero Business Development Language

1440

 31 12 1899
1 Row(s) affected

 1
1 1900
(1 row(s) affected)

• The SQL Server equivalent for WEEKDAY() is the DATEPART(dw,<date>)
function. The weekday date part depends on the value set by SET DATEFIRST
n, which sets the first day of the week (1=Monday...7=Sunday-default).

• SQL Server uses a different basis for the day of the week. In SQL Server,
Sunday is day 7 and Monday is day 1 while INFORMIX defines Sunday as the
day 0 (zero) and Monday as 1.

Solution:

The SQL Server drivers will automatically map Informix date/time types to native SQL
Server type, according the the server version. Conversions are described in this table:

INFORMIX date/time
type Microsoft SQL Server date/time type

 Before SQL Server 2008 Since SQL Server 2008
DATE DATETIME DATE
DATETIME HOUR TO
SECOND

DATETIME (filled
with 1900-01-01) TIME(0)

DATETIME HOUR TO
FRACTION(n)

DATETIME (filled
with 1900-01-01) TIME(n)

DATETIME YEAR TO
SECOND DATETIME DATETIME2(0)
Any other sort of
DATETIME type

DATETIME (filled
with 1900-01-01) DATETIME2(n)

With SQL Server 2005 and lower, INFORMIX DATETIME with any precision from YEAR
to FRACTION(3) is stored in SQL Server DATETIME columns.

For heterogeneous DATETIME types like DATETIME HOUR TO MINUTE, the database
interface fills missing date or time parts to 1900-01-01 00:00:00.0. For example, when
using a DATETIME HOUR TO MINUTE with the value of "11:45", the SQL Server
datetime value will be "1900-01-01 11:45:00.0".

Warning: SQL Server SMALLDATETIME can store dates from January 1, 1900, through
June 6, 2079. Therefore, we do not recommend to use this data type.

Warning: With SQL Server 2005 and lower, the fractional second part of a SQL Server
DATETIME has a precision of 3 digits while INFORMIX has a precision up to 5 digits. Do
not try to insert a datetime value in a SQL Server DATETIME with a precision more than
3 digits or a conversion error could occur. You can use the MS SUBSTRING() function
to truncate the fraction part of the INFORMIX datetimes or another BDL solution. The
fraction part of a SQL Server DATETIME is an approximate value. For example, when
you insert a datetime value with a fraction of 111, the database actually stores 110. This
may cause problems because INFORMIX DATETIMEs with a fraction part are exact
values with a precision up to 5 digits. Starting with SQL Server 2008, the DATETIME2

ODI Adaptation Guides

1441

native type will be used. This new type can store fraction of seconds with a precision of 7
digits, so Informix DATETIME values can be stored without precision lost.

Warning: When migrating to SQL Server 2008, you must pay attention if the database
has DATETIME columns used to store Informix DATETIME HOUR TO SECOND or
DATETIME HOUR TO FRACTION(n) types: Before version 2008, those types were
stored in SQL Server DATETIME columns (filling missing date part with 1900-01-01).
The SNC driver for SQL Server 2008 maps now DATETIME HOUR TO SECOND /
FRACTION(n) to a TIME data type, which is not compatible with an SQL Server
DATETIME type. To solve this problem, SQL Server DATETIME columns used to store
DATETIME HOUR TO SECOND/FRACTION(n) must be converted to TIME columns
(ALTER TABLE).

Warning: When fetching a TIME or DATETIME2 with a precision that is greater as 5
(the 4gl DATETIME precision limit), the database interface will allocate a buffer of
VARCHAR(16) for the TIME and VARCHAR(27) for the DATETIME2 column. As a
result, you can fetch such data into a CHAR or VARCHAR variable.

Warning: Using integers as a number of days in an expression with dates is not
supported by SQL Server. Check your code to detect where you are using integers with
DATE columns.

Warning: Literal DATETIME and INTERVAL expressions (i.e. DATETIME (1999-10-12)
YEAR TO DAY) are not converted.

Warning: It is strongly recommended to use BDL variables in dynamic SQL statements
instead of quoted strings representing DATEs. For example :
 LET stmt = "SELECT ... FROM customer WHERE creat_date >'",
adate,"'"
is not portable; use a question mark place holder instead and OPEN the cursor USING
adate:
 LET stmt = "SELECT ... FROM customer WHERE creat_date > ?"

Warning: Review the program logic if you are using the INFORMIX WEEKDAY()
function because SQL Server uses a different basis for the days numbers (Monday = 1
).

Warning: SQL Statements using expressions with TODAY / CURRENT / EXTEND
must be reviewed and adapted to the native syntax. Use the MS GETDATE() function to
get the system current date.

ODIMSV003 - Reserved words
Microsoft Transact-SQL does not allow you to use reserved words as database object
names (tables, columns, constraint, indexes, triggers, stored procedures, ...). An
example of a common word which is part of SQL Server grammar is 'go' (see the
'Reserved keywords' section in the SQL Server Documentation).

Genero Business Development Language

1442

Solution:

Database objects having a name which is a Transact-SQL reserved word must be
renamed.

All BDL application sources must be verified. To check if a given keyword is used in a
source, you can use UNIX 'grep' or 'awk' tools. Most modifications can be automatically
done with UNIX tools like 'sed' or 'awk'.

Warning: You can use SET QUOTED_IDENTIFIER ON with double-quotes to enforce
the use of keywords in the database objects naming, but it is not recommended.

ODIMSV004 - ROWIDs
When creating a table, INFORMIX automatically adds a "ROWID" column of type integer
(applies to non-fragmented tables only). The ROWID column is auto-filled with a unique
number and can be used like a primary key to access a given row.

Microsoft SQL Server tables have no ROWIDs.

Solution:

If the BDL application uses ROWIDs, the program logic should be reviewed in order to
use the real primary keys (usually, serials which can be supported).

However, if your existing INFORMIX application depends on using ROWID values, you
can use the IDENTITY property of the DECIMAL, INT, NUMERIC, SMALLINT, BIGINT,
or TINYINT data types, to simulate this functionality.

All references to SQLCA.SQLERRD[6] must be removed because this variable will not
hold the ROWID of the last INSERTed or UPDATEd row when using the Microsoft SQL
Server interface.

ODIMSV005 - SERIAL data type
INFORMIX SERIAL data type and automatic number production:

• The table column must be of type SERIAL.
• To generate a new serial, no value or a zero value is given to the INSERT

statement:
 INSERT INTO tab1 (c) VALUES ('aa')
 INSERT INTO tab1 (k, c) VALUES (0, 'aa')

• After INSERT, the new SERIAL value is provided in SQLCA.SQLERRD[2].

ODI Adaptation Guides

1443

INFORMIX allows you to insert rows with a value different from zero for a serial column.
Using an explicit value will automatically increment the internal serial counter, to avoid
conflicts with future INSERTs that are using a zero value:
 CREATE TABLE tab (k SERIAL); --> internal counter = 0
 INSERT INTO tab VALUES (0); --> internal counter = 1
 INSERT INTO tab VALUES (10); --> internal counter = 10
 INSERT INTO tab VALUES (0); --> internal counter = 11
 DELETE FROM tab; --> internal counter = 11
 INSERT INTO tab VALUES (0); --> internal counter = 12

Microsoft SQL Server IDENTITY columns:

• When creating a table, the IDENTITY keyword must be specified after the
column data type:
 CREATE TABLE tab1 (k integer identity, c char(10))

• You can specify a start value and an increment with "identity(start,incr)".
 CREATE TABLE tab1 (k integer identity(100,2), ...

• A new number is automatically created when inserting a new row:
 INSERT INTO tab1 (c) VALUES ('aaa')

• To get the last generated number, Microsoft SQL Server provides a global
variable:
 SELECT @@IDENTITY

• To put a specific value into a IDENTITY column, the SET command must be
used:
 SET IDENTITY_INSERT tab1 ON
 INSERT INTO tab1 (k, c) VALUES (100, 'aaa')
 SET IDENTITY_INSERT tab1 OFF

INFORMIX SERIALs and MS SQL Server IDENTITY columns are quite similar; the main
difference is that MS SQL Server does not allow you to use the zero value for the
identity column when inserting a new row.

This problem cannot be resolved with triggers because Microsoft SQL Server does not
support row-level triggers (INSERT Triggers are fired only once per INSERT statement).

Solution:

To emulation INFORMIX serials, you can use IDENTITY columns (1) or insert triggers
based on the SERIALREG table (2). The first solution is faster, but does not allow
explicit serial value specification in insert statements; the second solution is slower but
allows explicit serial value specification.

Warning: The second emulation based on triggers is provided to simplify the
conversion to SQL Server. We strongly recommend you to use native IDENTITY
columns instead.

With the following fglprofile entry, you define the technique to be used for SERIAL
emulation :

Genero Business Development Language

1444

 dbi.database.<dbname>.ifxemul.datatype.serial.emulation =
{"native"|"regtable"}

The 'native' value defines the IDENTITY column technique and the 'regtable' defines
the trigger technique.

This entry must be used with:

 dbi.database.<dbname>.ifxemul.datatype.serial = {true|false}

If this entry is set to false, the emulation method specification entry is ignored.

Warning: When no entry is specified, the default is SERIAL emulation enabled with
'native' method (IDENTITY-based).

1. Using IDENTITY columns

In database creation scripts, all SERIAL[(n)] data types must be converted by hand to
INTEGER IDENTITY[(n,1)] data types.

Tables created from the BDL programs can use the SERIAL data type : When a BDL
program executes a CREATE [TEMP] TABLE with a SERIAL column, the database
interface automatically converts the "SERIAL[(n)]" data type to "INTEGER
IDENTITY[(n,1)]".

In BDL, the new generated SERIAL value is available from the SQLCA.SQLERRD[2]
variable. This is supported by the database interface which performs a "SELECT
@@IDENTITY".

Warning: By default (see SET IDENTITY_INSERT), MS SQL Server does not allow you
to specify the IDENTITY column in INSERT statements; you must convert all INSERT
statements to remove that column from the list.
For example, the following statement:
 INSERT INTO tab (col1,col2) VALUES (0, p_value)
must be converted to :
 INSERT INTO tab (col2) VALUES (p_value)

Since 2.10.06, SELECT * FROM table INTO TEMP with original table having an
IDENTITY column are supported: The database driver converts the INFORMIX SELECT
INTO TEMP to the following sequence of statements:

1. SELECT <selection items> INTO #table FROM ... WHERE 1=2
2. SET IDENTITY_ INSERT #table ON
3. INSERT INTO #table (column-list) SELECT <original select clauses>
4. SET IDENTITY_ INSERT #table OFF

See also temporary tables.

2. Using triggers with the SERIALREG table

ODI Adaptation Guides

1445

First, you must prepare the database and create the SERIALREG table as follows:

CREATE TABLE serialreg (
 tablename VARCHAR(50) NOT NULL,
 lastserial INTEGER NOT NULL,
 PRIMARY KEY (tablename)
)

Warning: Note that the SERIALREG table and columns have to be created with lower
case names, since the SQL Server database is created with case sensitive names,
because triggers are using this table in lower case.

In database creation scripts, all SERIAL[(n)] data types must be converted to INTEGER
data types and you must create one trigger for each table. To know how to write those
triggers, you can create a small Genero program that creates a table with a SERIAL
column. Set the FGLSQLDEBUG environment variable and run the program. The debug
output will show you the native trigger creation command.

Tables created from the BDL programs can use the SERIAL data type. When a BDL
program executes a CREATE [TEMP] TABLE with a SERIAL column, the database
interface automatically converts the "SERIAL[(n)]" data type to "INTEGER" and creates
the insert triggers.

Warning: This serial emulation is only supported with SQL Server 2000 and higher,
because it is implemented with INSTEAD OF triggers.

Warning: SQL Server does not allow you to create triggers on temporary tables.
Therefore, you cannot create temp tables with a SERIAL column when using this
solution.

Warning: SELECT ... INTO TEMP statements using a table created with a SERIAL
column do not automatically create the SERIAL triggers in the temporary table. The type
of the column in the new table is INTEGER.

Warning: When a table is dropped, all associated triggers are also dropped.

Warning: INSERT statements using NULL for the SERIAL column will produce a new
serial value, instead of using NULL:
 INSERT INTO tab (col1,col2) VALUES (NULL,'data')
This behavior is mandatory in order to support INSERT statements which do not use the
serial column:
 INSERT INTO tab (col2) VALUES ('data')
Check if your application uses tables with a SERIAL column that can contain a NULL
value.

Warning: The serial production is based on the SERIALREG table which registers the
last generated number for each table. If you delete rows of this table, sequences will
restart at 1 and you will get unexpected data.

Genero Business Development Language

1446

ODIMSV006 - Outer joins
The syntax of OUTER joins is quite different in INFORMIX and Microsoft SQL Server :

In INFORMIX SQL, outer tables are defined in the FROM clause with the OUTER
keyword:

SELECT ... FROM cust, OUTER(order)
 WHERE cust.key = order.custno
SELECT ... FROM cust, OUTER(order,OUTER(item))
 WHERE cust.key = order.custno
 AND order.key = item.ordno
 AND order.accepted = 1

Microsoft SQL Server supports the ANSI outer join syntax :

SELECT ... FROM cust LEFT OUTER JOIN order
 ON cust.key = order.custno
SELECT ...
 FROM cust LEFT OUTER JOIN order
 ON cust.key = order.custno
 LEFT OUTER JOIN item
 ON order.key = item.ordno
 WHERE order.accepted = 1

Remark: The old way to define outers in SQL Server looks like the following :

SELECT ... FROM a, b WHERE a.key *= b.key

See the SQL Server reference manual for a complete description of the syntax.

Solution:

The Microsoft SQL Server interface can convert simple INFORMIX OUTER
specifications to Microsoft SQL Server ANSI outer joins.

Prerequisites:

1. The outer join in the WHERE part must use the table name as prefix.
 Example : "WHERE tab1.col1 = tab2.col2 ".

2. Additional conditions on outer table columns cannot be detected and therefore
are not supported :
 Example : "... FROM tab1, OUTER(tab2) WHERE tab1.col1 = tab2.col2 AND
tab2.colx > 10".

3. Statements composed of 2 or more SELECT instructions using OUTERs are not
supported.
 Example : "SELECT ... UNION SELECT" or "SELECT ... WHERE col IN
(SELECT...)"

Remarks:

ODI Adaptation Guides

1447

1. Table aliases are detected in OUTER expressions.
 OUTER example with table alias : "OUTER(tab1 alias1)".

2. In the outer join, <outer table>.<col> can be placed on both right or left sides of
the equal sign.
 OUTER join example with table on the left : "WHERE outertab.col1 =
maintab.col2 ".

3. Table names detection is not case-sensitive.
 Example : "SELECT ... FROM tab1, TAB2 WHERE tab1.col1 = tab2.col2".

4. Temporary tables are supported in OUTER specifications.

ODIMSV007a - Database concepts
As in INFORMIX, an SQL Server engine can manage multiple database entities. When
creating a database object like a table, Microsoft SQL Server allows you to use the same
object name in different databases.

ODIMSV008a - Data consistency and concurrency
management
Data consistency involves readers which want to access data currently modified by
writers and concurrency data access involves several writers accessing the same data
for modification. Locking granularity defines the amount of data concerned when a lock
is set (row, page, table, ...).

INFORMIX

INFORMIX uses a locking mechanism to manage data consistency and concurrency.
When a process modifies data with UPDATE, INSERT or DELETE, an exclusive lock is
set on the affected rows. The lock is held until the end of the transaction. Statements
performed outside a transaction are treated as a transaction containing a single
operation and therefore release the locks immediately after execution. SELECT
statements can set shared locks according to the isolation level. In case of locking
conflicts (for example, when two processes want to acquire an exclusive lock on the
same row for modification or when a writer is trying to modify data protected by a shared
lock), the behavior of a process can be changed by setting the lock wait mode.

Control:

• Isolation level : SET ISOLATION TO ...
• Lock wait mode : SET LOCK MODE TO ...
• Locking granularity : CREATE TABLE ... LOCK MODE {PAGE|ROW}
• Explicit locking : SELECT ... FOR UPDATE

Defaults:

Genero Business Development Language

1448

• The default isolation level is READ COMMITTED.
• The default lock wait mode is NOT WAIT.
• The default locking granularity is per page.

SQL Server

As in INFORMIX, SQL Server uses locks to manage data consistency and concurrency.
The database manager sets exclusive locks on the modified rows and shared locks
when data is read, according to the isolation level. The locks are held until the end of the
transaction. When multiple processes want to access the same data, the latest
processes must wait until the first finishes its transaction or the lock timeout occurred.
The locking strategy of SQL Server is row locking with possible promotion to page or
table locking. SQL Server dynamically determines the appropriate level at which to place
locks for each Transact-SQL statement.

Control:

• Lock wait mode : SET LOCK_TIMEOUT <milliseconds> (returns error 1222 on
time out).

• Isolation level : SET TRANSACTION ISOLATION LEVEL ...
• Locking granularity : Row, Page or Table level (Automatic - See Dynamic

Locking).
• Explicit locking : SELECT ... FROM ... WITH (UPDLOCK) (See Locking Hints)

Defaults:

• The default isolation level is READ COMMITTED (readers cannot see
uncommitted data).

• The default LOCK_TIMEOUT is -1 (indicates no time-out period, wait forever).

Solution:

For portability, it is recommended that you work with INFORMIX in the read committed
isolation level, to make processes wait for each other (lock mode wait) and to create
tables with the "lock mode row" option.

See INFORMIX and SQL Server documentation for more details about data consistency,
concurrency and locking mechanisms.

When using SET LOCK MODE and SET ISOLATION LEVEL instructions in BDL, the
database interface sets automatically the native database session options.

ODIMSV008b - SELECT FOR UPDATE
A lot of BDL programs use pessimistic locking in order to avoid several users editing the
same rows at the same time.

ODI Adaptation Guides

1449

 DECLARE cc CURSOR FOR
 SELECT ... FOR UPDATE
 OPEN cc
 FETCH cc <-- lock is acquired
 CLOSE cc <-- lock is released

• A transaction must be started before opening cursors declared for update.
• The row must be fetched in order to set the lock.
• The lock is released when the transaction ends (if the cursor is not declared

"WITH HOLD") or when the cursor is closed.

Microsoft SQL Server allows individual and exclusive row locking by using the
(UPDLOCK) hint after the table names in the FROM clause :

 SELECT ... FROM tab1 WITH (UPDLOCK) WHERE ...

The FOR UPDATE clause is not mandatory; the (UPDLOCK) hint is important.

• Individual locks are acquired when fetching the rows.
• When the cursor (WITH HOLD) is opened outside a transaction, locks are

released when the cursor is closed.
• When the cursor is opened inside a transaction, locks are released when the

transaction ends.

SQL Server's locking granularity is at the row level, page level or table level (the level is
automatically selected by the engine for optimization).

To control the behavior of the program when locking rows, INFORMIX provides a
specific instruction to set the wait mode :

 SET LOCK MODE TO { WAIT | NOT WAIT | WAIT seconds }

The default mode is NOT WAIT. This as an INFORMIX specific SQL statement.

Solution:

The Genero Driver for MS SQL Server uses the SCROLL LOCKS concurrency options
for cursors (SQL_ATTR_CONCURRENCY = SQL_CONCUR_LOCK).

This option implements pessimistic concurrency control, in which the application
attempts to lock the underlying database rows at the time they are read into the cursor
result set.
When using server cursors, an update lock is placed on the row when it is read into the
cursor.
If the cursor is opened within a transaction, the transaction update lock is held until the
transaction is either committed or rolled back; the cursor lock is dropped when the next
row is fetched.
If the cursor has been opened outside a transaction, the lock is dropped when the next
row is fetched.
Therefore, a cursor should be opened in a transaction whenever the user wants full

Genero Business Development Language

1450

pessimistic concurrency control.
An update lock prevents any other task from acquiring an update or exclusive lock,
which prevents any other task from updating the row.
An update lock, however, does not block a shared lock, so it does not prevent other
tasks from reading the row unless the second task is also requesting a read with an
update lock.

SELECT FOR UPDATE statements are well supported in BDL as long as they are used
inside a transaction. Avoid cursors declared WITH HOLD.

Warning: SQL Server locks the rows when you open the cursor. You will have to test
SQLCA.SQLCODE after doing an OPEN.

Warning: The database interface is based on an emulation of an INFORMIX engine
using transaction logging. Therefore, opening a SELECT ... FOR UPDATE cursor
declared outside a transaction will raise an SQL error -255 (not in transaction).

Warning: The SELECT FOR UPDATE statement cannot contain an ORDER BY clause
if you want to perform positioned updates/deletes with WHERE CURRENT OF.

Warning: Cursors declared with SELECT ... FOR UPDATE using the "WITH HOLD"
clause cannot be supported with SQL Server.

You must review the program logic if you use pessimistic locking because it is based on
the NOT WAIT mode which is not supported by SQL Server.

ODIMSV009 - Transactions handling
INFORMIX and Microsoft SQL Server handle transactions in a similar manner.

INFORMIX native mode (non ANSI):

• Transactions are started with "BEGIN WORK".
• Transactions are validated with "COMMIT WORK".
• Transactions are canceled with "ROLLBACK WORK".
• Statements executed outside of a transaction are automatically committed.
• DDL statements can be executed (and canceled) in transactions.

Microsoft SQL Server:

• Transactions are started with "BEGIN TRANSACTION [name]".
• Transactions are validated with "COMMIT TRANSACTION [name]".
• Transactions are canceled with "ROLLBACK TRANSACTION [name]".
• Transactions save points can be placed with "SAVE TRANSACTION [name]".
• Microsoft SQL Server supports named and nested transactions.

ODI Adaptation Guides

1451

• Statements executed outside of a transaction are automatically committed
(autocommit mode).
This behavior can be changed with "SET IMPLICIT_TRANSACTION ON".

• DDL statements are not supported in transactions blocks.

Transactions in stored procedures : avoid using transactions in stored procedure to allow
the client applications to handle transactions, according to the transaction model.

Solution:

INFORMIX transaction handling commands are automatically converted to Microsoft
SQL Server instructions to start, validate or cancel transactions.

Regarding the transaction control instructions, the BDL applications do not have to be
modified in order to work with Microsoft SQL Server.

ODIMSV011 - CHARACTER data types
As in INFORMIX, Microsoft SQL Server provides the CHAR and VARCHAR data types
to store character data.

INFORMIX CHAR type can store up to 32767 characters and the VARCHAR data type is
limited to 255 characters.

Microsoft SQL Server CHAR and VARCHAR both have a limit of 8000 characters.

Microsoft SQL server provides the TEXT data type to store large character strings. Only
the LIKE operator can be used for searches. TEXT columns cannot be used in classic
comparison expressions (as col = 'value').

Solution:

The database interface supports character string variables in SQL statements for input
(BDL USING) and output (BDL INTO) up to the limit defined by Microsoft SQL Server for
CHAR and VARCHAR data types.

Warning: Check that your database schema does not use CHAR or VARCHAR types
with a length exceeding the SQL Server limit.

Warning: TEXT values cannot be used as input or output parameters in SQL
statements and therefore are not supported.

See also: National character data types

Genero Business Development Language

1452

ODIMSV012 - Constraints
Constraint naming syntax:

Both INFORMIX and Microsoft SQL Server support primary key, unique, foreign key,
default and check constraints. But the constraint naming syntax is different : SQL Server
expects the "CONSTRAINT" keyword before the constraint specification and INFORMIX
expects it after.

UNIQUE constraint example:

INFORMIX Microsoft SQL Server
CREATE TABLE scott.emp (
...
empcode CHAR(10) UNIQUE
 [CONSTRAINT pk_emp],
...

CREATE TABLE scott.emp (
...
empcode CHAR(10)
 [CONSTRAINT pk_emp]
UNIQUE,
...

Warning: SQL Server does not produce an error when using the INFORMIX syntax of
constraint naming

The NULL / NOT NULL constraint:

Warning: Microsoft SQL Server creates columns as NOT NULL by default, when no
NULL constraint is specified (colname datatype {NULL | NOT NULL}). A special
option is provided to invert this behavior: ANSI_NULL_DFLT_ON. This option can be
enabled with the SET command, or in the database options of SQL Server Management
Studio.

Solution:

Constraint naming syntax:

The database interface does not convert constraint naming expressions when creating
tables from BDL programs. Review the database creation scripts to adapt the constraint
naming clauses for Microsoft SQL Server.

The NULL / NOT NULL constraint:

Warning: Before using a database, you must check the "ANSI NULL Default" option in
the database properties if you want to have the same default NULL constraint as in
INFORMIX databases.

ODI Adaptation Guides

1453

ODIMSV013 - Triggers
INFORMIX and Microsoft SQL Server provide triggers with similar features, but the
programming languages are totally different.

Warning: Microsoft SQL Server does not support "BEFORE" triggers.

Warning: Microsoft SQL Server does not support row-level triggers.

Solution:

INFORMIX triggers must be converted to Microsoft SQL Server triggers "by hand".

ODIMSV014 - Stored procedures
Both INFORMIX and Microsoft SQL Server support stored procedures, but the
programming languages are totally different :

• INFORMIX stored procedures must be written in SPL.
• Microsoft SQL Server stored procedures must be written in Transact-SQL.

Solution:

INFORMIX stored procedures must be converted to Microsoft SQL Server "by hand".

ODIMSV016a - Defining database users
INFORMIX users are defined at the operating system level, they must be members of
the 'informix' group, and the database administrator must grant CONNECT, RESOURCE
or DBA privileges to those users.

Before a user can access an SQL Server database, the system administrator (SA) must
add the user's login to the SQL Server Login list and add a user name for that
database. The user name is a name that is assigned to a login ID for the purpose of
allowing that user to access a specified database. Database users are members of a
user group; the default group is 'public'.

Microsoft SQL Server offers two authentication modes : The SQL Server
authentication mode, which requires a login name and a password, and the Windows
NT authentication mode, which uses the security mechanisms within Windows NT
when validating login connections. With this mode, user do not have to enter a login ID
and password - their login information is taken directly from the network connection.

Genero Business Development Language

1454

Warning: SQL Server 2000 supports only Windows NT authentication by default. If you
want to use SQL Server authentication, you must change a parameter in the server
properties.

Solution:

Both SQL Server and Windows NT authentication methods can be used to allow BDL
program users to connect to Microsoft SQL Server and access a specific database.

See SQL Server documentation for more details on database logins and users.

ODIMSV016b - Setting privileges
INFORMIX and Microsoft SQL Server user privileges management are quite similar.

Microsoft SQL Server provides user groups to grant or revoke permissions to more
than one user at the same time.

ODIMSV017 - Temporary tables

INFORMIX temporary tables are created through the CREATE TEMP TABLE DDL
instruction or through a SELECT ... INTO TEMP statement. Temporary tables are
automatically dropped when the SQL session ends, but they can also be dropped with
the DROP TABLE command. There is no name conflict when several users create
temporary tables with the same name.

Remark : BDL reports create a temporary table when the rows are not sorted externally
(by the source SQL statement).

INFORMIX allows you to create indexes on temporary tables. No name conflict occurs
when several users create an index on a temporary table by using the same index
identifier.

Microsoft SQL Server provides local (SQL session wide) or global (database wide)
temporary tables by using the '#' or '##' characters as table name prefix. No 'TEMP'
keyword is required in CREATE TABLE, and the INTO clause can be used within a
SELECT statement to create and fill a temporary table in one step :

 CREATE TABLE #temp1 (kcol INTEGER,)
 SELECT * INTO #temp2 FROM customers WHERE ...

Solution:

ODI Adaptation Guides

1455

In BDL, INFORMIX temporary tables instructions are converted to generate native SQL
Server temporary tables.

Warning: Microsoft SQL Server does not support scroll cursors based on a temporary
table.

ODIMSV018 - Substrings in SQL
INFORMIX SQL statements can use subscripts on columns defined with the character
data type:
 SELECT ... FROM tab1 WHERE col1[2,3] = 'RO'
 SELECT ... FROM tab1 WHERE col1[10] = 'R' -- Same as
col1[10,10]
 UPDATE tab1 SET col1[2,3] = 'RO' WHERE ...
 SELECT ... FROM tab1 ORDER BY col1[1,3]

.. while Microsoft SQL Server provides the SUBSTR() function, to extract a substring
from a string expression:
 SELECT FROM tab1 WHERE SUBSTRING(col1,2,2) = 'RO'
 SELECT SUBSTRING('Some text',6,3) FROM tab1 -- Gives 'tex'

Solution:

You must replace all INFORMIX col[x,y] expressions by SUBSTRING(col,x,y-x+1).

Warning: In UPDATE instructions, setting column values through subscripts will
produce an error with Microsoft SQL Server:
 UPDATE tab1 SET col1[2,3] = 'RO' WHERE ...
is converted to:
 UPDATE tab1 SET SUBSTRING(col1,2,3-2+1) = 'RO' WHERE ...

Warning: Column subscripts in ORDER BY expressions are also converted and
produce an error with Microsoft SQL Server:
 SELECT ... FROM tab1 ORDER BY col1[1,3]
is converted to:
 SELECT ... FROM tab1 ORDER BY SUBSTRING(col1,1,3-1+1)

ODIMSV019 - Name resolution of SQL objects
INFORMIX uses the following form to identify an SQL object:
 [database[@dbservername]:][{owner|"owner"}.]identifier

With Microsoft SQL Server, an object name takes the following form:
 [[database.]owner.]identifier

Genero Business Development Language

1456

Object names are limited to 128 characters in SQL Server and cannot start with one of
the following characters : @ (local variable) # (temp object).

To support double quotes as string delimiters in SQL Server, switch OFF the database
option "Use quoted identifiers" in the database properties panel. But quoted table and
column names are not supported when this option is OFF.

Solution:

Switch OFF the database option "Use quoted identifiers" to support double quoted
strings.

Check for single or double quoted table or column names in your source and remove
them.

ODIMSV020 - String delimiters
The ANSI string delimiter character is the single quote ('string'). Double quotes are used
to delimit database object names ("object-name").

Example: WHERE "tabname"."colname" = 'a string value'

INFORMIX allows double quotes as string delimiters, but SQL Server doesn't. This is
important, since many BDL programs use that character to delimit the strings in SQL
commands.

Note: This problem concerns only double quotes within SQL statements. Double quotes
used in BDL string expressions are not subject of SQL compatibility problems.

National character strings:

With SQL Server, all UNICODE strings must be prefaced with an N character:

 UPDATE cust SET cust_name = N'���' WHERE cust_id=123

If you don't specify the N prefix, SQL Server will convert the characters from the current
system locale to the database locale. If the string

Solution:

The SQL Server database interface can automatically replace all double quotes by
single quotes.

Escaped string delimiters can be used inside strings like the following:

ODI Adaptation Guides

1457

 'This is a single quote : '''
 'This is a single quote : \''
 "This is a double quote : """
 "This is a double quote : \""

Warning: Database object names cannot be delimited by double quotes because the
database interface cannot determine the difference between a database object name
and a quoted string !

For example, if the program executes the SQL statement:
 WHERE "tabname"."colname" = "a string value"
replacing all double quotes by single quotes would produce :
 WHERE 'tabname'.'colname' = 'a string value'
This would produce an error since 'tabname'.'colname' is not allowed by ORACLE.

Although double quotes are replaced automatically in SQL statements, you should use
only single quotes to enforce portability.

National character strings:

When using the snc driver, all string literals of an SQL statement are automatically
changed to get the N prefix. Thus, you don't need to add the N prefix by hand in all of
your programs. This solution makes by the way your Genero code portable to other
databases.

With the snc driver, character string data is converted from the current FGL locale to
Wide Char (UTF-16), before is it used in an ODBC call such as SQLPrepareW or
SQLBindParameter(SQL_C_WCHAR). When fetching character data, the snc driver
converts from Wide Char to the current FGL locale. The current FGL locale is defined by
LANG, and if LANG is not defined, the default is the ANSI Code Page of the system.

ODIMSV021 - NUMERIC data types
Microsoft SQL Server offers numeric data types which are quite similar to INFORMIX
numeric data types. The table below shows general conversion rules for numeric data
types :

INFORMIX Microsoft SQL Server
SMALLINT SMALLINT
INTEGER (synonym: INT) INTEGER (synonym: INT)
DECIMAL[(p[,s)] (synonyms: DEC,
NUMERIC)
DECIMAL(p,s) defines a fixed point
decimal where p is the total number
of significant digits and s the number

DECIMAL[(p[,s)] (synonyms: DEC,
NUMERIC)
DECIMAL[(p[,s])] defines a fixed point
decimal where p is the total number
of significant digits and s the number

Genero Business Development Language

1458

of digits that fall on the right of the
decimal point.
DECIMAL(p) defines a floating point
decimal where p is the total number
of significant digits.
The precision p can be from 1 to 32.
DECIMAL is treated as
DECIMAL(16).

of digits that fall on the right of the
decimal point. The maximum
precision is 38.
Without any decimal storage
specification, the precision defaults to
18 and the scale defaults to zero:
- DECIMAL in SQL Server =
DECIMAL(18,0) in INFORMIX
- DECIMAL(p) in SQL Server =
DECIMAL(p,0) in INFORMIX

MONEY[(p[,s])

SQL Server provides the MONEY
and SMALLMONEY data types, but
the currency symbol handling is quite
different. Therefore, INFORMIX
MONEY columns should be
implemented as DECIMAL columns
in SQL Server.

SMALLFLOAT (synonyms: REAL) REAL
FLOAT[(n)] (synonyms: DOUBLE
PRECISION)
The precision (n) is ignored.

FLOAT(n) (synonyms: DOUBLE
PRECISION)
Where n must be from 1 to 15.

Solution:

In BDL programs :

When creating tables from BDL programs, the database interface automatically converts
INFORMIX data types to corresponding Microsoft SQL Server data types.

Database creation scripts:

• SMALLINT and INTEGER columns do not have to use another data type in SQL
Server.

• For DECIMALs, check the precision limit. Always use a precision and a scale.
• Convert MONEY columns to DECIMAL(p,s) columns. Always use a precision and

a scale.
• Convert SMALLFLOAT columns to REAL columns.
• Since FLOAT precision is ignored in INFORMIX, convert this data type to

FLOAT(15).

ODIMSV022 - Getting one row with SELECT
With INFORMIX, you must use the system table with a condition on the table id :

 SELECT user FROM systables WHERE tabid=1

ODI Adaptation Guides

1459

With SQL Server, you can omit the FROM clause to generate one row only:

 SELECT user

Solution:

Check the BDL sources for "FROM systables WHERE tabid=1" and use dynamic
SQL to resolve this problem.

ODIMSV024 - MATCHES and LIKE in SQL conditions
INFORMIX supports MATCHES and LIKE in SQL statements, while Microsoft SQL
Server supports the LIKE statement only.

The MATCHES operator of INFORMIX uses the star (*), question mark (?) and square
braces ([]) wildcard characters.
The LIKE operator of SQL Server offers the percent (%), underscore (_) and square
braces ([]) wildcard characters.

The following substitutions must be made to convert a MATCHES condition to a LIKE
condition :

• MATCHES keyword must be replaced by LIKE.
• All '*' characters must be replaced by '%'.
• All '?' characters must be replaced by '_'.

Solution:

Warning: SQL statements using MATCHES expressions must be reviewed in order to
use LIKE expressions.

See also: MATCHES operator in SQL Programming.

ODIMSV025 - INFORMIX specific SQL statements in BDL
The BDL compiler supports several INFORMIX specific SQL statements that have no
meaning when using Microsoft SQL Server.

Examples:

• CREATE DATABASE dbname IN dbspace WITH BUFFERED LOG
• START DATABASE (SE only)
• ROLLFORWARD DATABASE
• CREATE TABLE ... IN dbspace WITH LOCK MODE ROW

Genero Business Development Language

1460

Solution:

Review your BDL source and remove all static SQL statements that are INFORMIX
specific.

ODIMSV028 - INSERT cursors
INFORMIX supports insert cursors. An "insert cursor" is a special BDL cursor declared
with an INSERT statement instead of a SELECT statement. When this kind of cursor is
open, you can use the PUT instruction to add rows and the FLUSH instruction to insert
the records into the database.

For INFORMIX database with transactions, OPEN, PUT and FLUSH instructions must
be executed within a transaction.

Microsoft SQL Server does not support insert cursors.

Solution:

Insert cursors are emulated by the Microsoft SQL Server database interface.

ODIMSV030 - Very large data types
INFORMIX and Genero support the TEXT and BYTE types. TEXT is used to store large
text data, while BYTE is used to store large binary data like images or sound.

Microsoft SQL Server provides text, ntext and image data types to store large data, but
these data types are considered as obsolete in SQL Server 2005 and will be removed in
a future version. When using SQL Server 2005, Microsoft recommends to user
varchar(max), nvarchar(max) and varbinary(max) data type instead. These "max"
data types are not supported with the msv database driver, since it is based on MDAC
ODBC. You must use the new snc driver based on the SQL Native Client ODBC driver
shipped with SQL Server 2005.

Solution:

When using the msv database driver based on MDAC ODBC, the TEXT and BYTE data
types of a static CREATE TABLE statement are converted to text and image SQL
Server types.

When using the snc database driver based on SQL Native Client ODBC, the TEXT and
BYTE data types of a static CREATE TABLE statement are converted to varchar(max)
and varbinary(max) SQL Server types.

ODI Adaptation Guides

1461

Both msv and snc drivers make the appropriate bindings to use TEXT and BYTE types
as SQL parameters and fetch buffers.

ODIMSV031 - Cursors WITH HOLD
INFORMIX automatically closes opened cursors when a transaction ends unless the
WITH HOLD option is used in the DECLARE instruction.

Microsoft SQL Server does not close cursors when a transaction ends. You can change
this behavior using the SET CURSOR_CLOSE_ON_COMMIT ON.

Solution:

BDL cursors that are not declared "WITH HOLD" are automatically closed by the
database interface when a COMMIT WORK or ROLLBACK WORK is performed by the
BDL program.

ODIMSV033 - Querying system catalog tables
As in INFORMIX, Microsoft SQL Server provides system catalog tables
(sysobjects,syscolumns,etc) in each database, but the table names and their structure
are quite different.

Solution:

Warning: No automatic conversion of INFORMIX system tables is provided by the
database interface.

ODIMSV034 - Syntax of UPDATE statements
INFORMIX allows a specific syntax for UPDATE statements:

 UPDATE table SET (<col-list>) = (<val-list>)

or

 UPDATE table SET table.* = myrecord.*
 UPDATE table SET * = myrecord.*

Solution:

Genero Business Development Language

1462

Static UPDATE statements using the above syntax are converted by the compiler to
the standard form :

 UPDATE table SET column=value [,...]

ODIMSV035 - The LENGTH() function
INFORMIX provides the LENGTH() function:

 SELECT LENGTH("aaa"), LENGTH(col1) FROM table

Microsoft SQL Server has a equivalent function called LEN().

Do not confuse LEN() with DATALEN(), which returns the data size used for
storage(number of bytes).

Both INFORMIX and SQL Server ignore trailing blanks when computing the length of a
string.

Solution:

You must adapt the SQL statements using LENGTH() and use the LEN() function.

Warning: If you create a user function in SQL Server as follows:

create function length(@s varchar(8000))
returns integer
as
begin
return len(@s)
end

You must qualify the function with the owner name:

 SELECT dbo.length(col1) FROM table

ODIMSV036 - INTERVAL data type
INFORMIX's INTERVAL data type stores a value that represents a span of time.
INTERVAL types are divided into two classes : year-month intervals and day-time
intervals.

SQL Server does not provide a data type corresponding to the INFORMIX INTERVAL
data type.

ODI Adaptation Guides

1463

Solution:

Warning: The INTERVAL data type is not well supported because the database server
has no equivalent native data type. However, you can store into and retrieve from CHAR
columns BDL INTERVAL values.

ODIMSV039 - Data storage concepts
An attempt should be made to preserve as much of the storage information as possible
when converting from INFORMIX to Microsoft SQL Server. Most important storage
decisions made for INFORMIX database objects (like initial sizes and physical
placement) can be reused in an SQL Server database.

Storage concepts are quite similar in INFORMIX and in Microsoft SQL Server, but the
names are different.

The following table compares INFORMIX storage concepts to Microsoft SQL Server
storage concepts :

INFORMIX Microsoft SQL Server
Physical units of storage
The largest unit of physical disk space
is a "chunk", which can be allocated
either as a cooked file (I/O is
controlled by the OS) or as raw device
(=UNIX partition, I/O is controlled by
the database engine). A "dbspace"
uses at least one "chunk" for storage.
You must add "chunks" to "dbspaces"
in order to increase the size of the
logical unit of storage.

SQL Server uses "filegroups", based on
Windows NT operating system files and
therefore define the physical location of
data.

A "page" is the smallest physical unit
of disk storage that the engine uses to
read from and write to databases.
A "chunk" contains a certain number
of "pages".
The size of a "page" must be equal to
the operating system's block size.

As in INFORMIX, SQL Server stores
data in "pages" with a size fixed at 2Kb
in V6.5 and 8Kb in V7 and later.

An "extent" consists of a collection of
continuous "pages" that the engine
uses to allocate both initial and
subsequent storage space for
database tables.
When creating a table, you can
specify the first extent size and the

An "extent" is a specific number of 8
contiguous pages, obtained in a single
allocation.
Extents are allocated in the filegroup
used by the database.

Genero Business Development Language

1464

size of future extents with the
EXTENT SIZE and NEXT EXTENT
options.
For a single table, "extents" can be
located in different "chunks" of the
same "dbspace".
Logical units of storage
A "table" is a logical unit of storage
that contains rows of data values.

Same concept as INFORMIX.

A "database" is a logical unit of
storage that contains table and index
data. Each database also contains a
system catalog that tracks information
about database elements like tables,
indexes, stored procedures, integrity
constraints and user privileges.

Same concept as INFORMIX.
When creating a "database", you must
specify which "database devices" (V6.5)
or "filegroup" (V7) has to be used for
physical storage.

Database tables are created in a
specific "dbspace", which defines a
logical place to store data.
If no dbspace is given when creating
the table, INFORMIX defaults to the
current database dbspace.

Database tables are created in a
database based on "database devices"
(V6.5) or a "filegroup" (V7), which
defines the physical storage.

The total disk space allocated for a
table is the "tblspace", which includes
"pages" allocated for data, indexes,
blobs, tracking page usage within
table extents..

No equivalent.

Other concepts
When initializing an INFORMIX
engine, a "root dbspace" is created to
store information about all databases,
including storage information (chunks
used, other dbspaces, etc.).

SQL Server uses the "master" database
to hold system stored procedures,
system messages, SQL Server logins,
current activity information, configuration
parameters of other databases.

The "physical log" is a set of
continuous disk pages where the
engine stores "before-images" of data
that has been modified during
processing.
The "logical log" is a set of "logical-
log files" used to record logical
operations during on-line processing.
All transaction information is stored in
the logical log files if a database has
been created with transaction log.
INFORMIX combines "physical log"
and "logical log" information when

Each database has its own "transaction
log" that records all changes to the
database. The "transaction log" is based
on a "database device" (V6.5) or
"filegroup" (V7) which is specified when
creating the database.
SQL Server checks the "transaction
logs" for automatic recovery.

ODI Adaptation Guides

1465

doing fast recovery. Saved "logical
logs" can be used to restore a
database from tape.

ODIMSV040 - National characters data types
INFORMIX offers the NCHAR and NVARCHAR data types to store strings in a localized
character set. The only difference between CHAR/VARCHAR and NCHAR/NVARCHAR
in Informix is for sorting: N type use the collation order, while normal types use the byte
order.

NCHAR/NVARCHAR in SQL Server :

Microsoft SQL Server translates the bit patterns in char, varchar, and text columns to
characters using the definitions in the code page installed with SQL Server. Client
computers use the code page installed with the operating system to interpret character
bit patterns. There are many different code pages. Some characters appear on some
code pages, but not on others. Some characters are defined with one bit pattern on
some code pages, and with a different bit pattern on other code pages. When you build
international systems that must handle different languages, it becomes difficult to pick
code pages for all the computers that meet the language requirements of multiple
countries. It is also difficult to ensure that every computer performs the correct
translations when interfacing with a system using a different code page.

The Unicode specification addresses this problem by using 2 bytes to encode each
character. There are enough different patterns (65,536) in 2 bytes for a single
specification covering the most common business languages. Because all Unicode
systems consistently use the same bit patterns to represent all characters, there is no
problem with characters being converted incorrectly when moving from one system to
another.

In Microsoft SQL Server, these data types support Unicode data:

• nchar
• nvarchar
• ntext

Use of nchar, nvarchar, and ntext is the same as char, varchar, and text, respectively,
except:

• Unicode supports a wider range of characters.
• More space is needed to store Unicode characters (x2).
• The maximum size of nchar and nvarchar columns is 4,000 characters, not

8,000 characters like char and varchar.
• Unicode string literals are specified with a leading N. For example: N’���’

Genero Business Development Language

1466

Solution:

National character set data types are not supported properly with the msv driver. You
must use the snc driver based on the SQL Native Client library.

With the snc driver, NCHAR / NVARCHAR and NTEXT SQL Server column data types
can be used in tables. However, you must use CHAR / VARCHAR / TEXT Genero types
for program variable to hold NCHAR, NVARCHAR and NTEXT data. Make sure the size
of the program variables is large enough to hold all sort of UNICODE characters in the
code page used by the program. For example, using byte length semantics and a UTF-8
code page, an NCHAR(10) value can be hold in a CHAR(40) program variable, because
some UTF-8 characters can be encoded on 4 bytes. If you want to store 10 of such
characters you will need 40 bytes.

When using the snc driver, all string literals of an SQL statement are automatically
changed to get the N prefix. Thus, you don't need to add the N prefix by hand in all of
your programs. This solution makes by the way your Genero code portable to other
databases.

With the snc driver, character string data is converted from the current FGL locale to
Wide Char (UTF-16), before is it used in an ODBC call such as SQLPrepareW or
SQLBindParameter(SQL_C_WCHAR). When fetching character data, the snc driver
converts from Wide Char to the current FGL locale. The current FGL locale is defined by
LANG, and if LANG is not defined, the default is the ANSI Code Page of the system.

ODIMSV041 - Executing SQL statements
The database driver for Microsoft SQL Server is based on ODBC. The ODBC driver
implementation provided with SQL Server uses system stored procedures to prepare
and execute SQL statements (You can see this with the Profiler).

Some Transact-SQL statements like SET DATEFORMAT have a local execution context
effect (for example, when executed in a stored procedure, it is reset to the previous
values when procedure execution is finished).

To support such statements in BDL programs, the database driver uses the
SQLExecDirect() ODBC API function when the SQL statement is not a SELECT,
INSERT, UPDATE or DELETE. This way the SET statement is executed 'directly',
without using the system stored procedures. The result is that the SET statement has
the expected effect (i.e. a permanent effect).

However, if the SQL statement uses parameters, the ODBC driver forces the use of
system stored procedures to execute the statement.

See the MSDN for more details about system stored procedures used by Microsoft APIs.

ODI Adaptation Guides

1467

ODIMSV046 - The LOAD and UNLOAD instructions
INFORMIX provides two SQL instructions to export / import data from / into a database
table: The UNLOAD instruction copies rows from a database table into an text file and
the LOAD instruction inserts rows from an text file into a database table.

Warning: Microsoft SQL Server has LOAD and UNLOAD instructions, but those
commands are related to database backup and recovery. Do not confuse with
INFORMIX commands.

Solution:

LOAD and UNLOAD instructions are supported.

Warning: The LOAD instruction does not work with tables using emulated SERIAL
columns because the generated INSERT statement holds the "SERIAL" column which is
actually a IDENTITY column in SQL Server. See the limitations of INSERT statements
when using SERIALs.

Warning: With Microsoft SQL Server versions prior to 2008, INFORMIX DATE data is
stored in DATETIME columns, but DATETIME columns are similar to INFORMIX
DATETIME YEAR TO FRACTION(3) columns. Therefore, when using LOAD and
UNLOAD, those columns are converted to text data with the format "YYYY-MM-DD
hh:mm:ss.fff". However, since SQL Server 2008, INFORMIX DATE data is stored in SQL
Server DATE columns, so the result of a LOAD or UNLOAD statement is equivalent
when using a DATE column with SQL Server 2008.

Warning: With Microsoft SQL Server versions prior to 2008, INFORMIX DATETIME
data is stored in DATETIME columns, but DATETIME columns are similar to INFORMIX
DATETIME YEAR TO FRACTION(3) columns. Therefore, when using LOAD and
UNLOAD, those columns are converted to text data with the format "YYYY-MM-DD
hh:mm:ss.fff". With SQL Server 2008, INFORMIX DATETIME data is stored in SQL
Server DATETIME2(n<=5) or TIME(n<=5) columns. Concerning DATETIME2(n<=5)
columns, the result of LOAD and UNLOAD is equivalent to INFORMIX DATETIME
columns, as long as the original INFORMIX type starts with the YEAR qualifier. The text
data will be "YYYY-MM-DD hh:mm:ss.<fraction-digits>", where fraction-digits depends
on the precision (n) of the DATETIME2(n) column. Concerning TIME(n) columns, the
type is converted to an INFORMIX DATETIME HOUR TO SECOND or FRACTION(n).
The text data will be be "hh:mm:ss.<fraction-digits>", where fraction-digits depends on
the precision (n) of the TIME(n) column.

Warning: When using an INFORMIX database, simple dates are unloaded with the
DBDATE format (ex: "23/12/1998"). Therefore, unloading from an INFORMIX database
for loading into a Microsoft SQL Server database is not supported.

Genero Business Development Language

1468

ODIMSV047 - Case sensitivity
In INFORMIX, database object names like table and column names are not case
sensitive :

CREATE TABLE Customer (Custno INTEGER, ...)
SELECT CustNo FROM cuSTomer ...

In SQL Server, database object names and character data are case-insensitive by
default:

CREATE TABLE Customer (Custno INTEGER, CustName
CHAR(20))
INSERT INTO CUSTOMER VALUES (1, 'TECHNOSOFT')
SELECT CustNo FROM cuSTomer WHERE custname =
'techNOSoft'

The installation program of SQL Server allows you to customize the sort order. The sort
order specifies the rules used by SQL Server to collate, compare, and present character
data. It also specifies whether SQL Server is case-sensitive.

Solution:

Select the case-sensitive sort order when installing SQL Server.

ODIMSV051 - Setup database statistics
INFORMIX provides a special instruction to compute database statistics in order to help
the optimizer find the right query execution plan :

UPDATE STATISTICS ...

Microsoft SQL Server offers a similar instruction, but it uses different clauses :

UPDATE STATISTICS ...

See SQL Server documentation for more details.

Solution:

Centralize the optimization instruction in a function.

ODI Adaptation Guides

1469

ODIMSV052 - String concatenation operator
INFORMIX concatenation operator is the double pipe (||) :

 SELECT firstname || ' ' || lastname FROM employee

Microsoft SQL Server concatenation operator is the plus sign :

 SELECT firstname + ' ' + lastname FROM employee

Solution:

The database interface detects double-pipe operators in SQL statements and converts
them to a plus sign automatically.

ODIMSV053 - The ALTER TABLE instruction
INFORMIX and MS SQL Server use different implementations of the ALTER TABLE
instruction. For example, INFORMIX allows you to use multiple ADD clauses separated
by comma. This is not supported by SQL Server :

INFORMIX:
 ALTER TABLE customer ADD(col1 INTEGER), ADD(col2 CHAR(20))

SQL Server:
 ALTER TABLE customer ADD col1 INTEGER, col2 CHAR(20)

Solution:

Warning: No automatic conversion is done by the database interface. There is even no
real standard for this instruction (that is, no common syntax for all database servers).
Read the SQL documentation and review the SQL scripts or the BDL programs in order
to use the database server specific syntax for ALTER TABLE.

ODIMSV054 - SQL Interruption
With Informix, it is possible to interrupt a long running query if the SQL INTERRUPT ON
option is set by the Genero program. The database server returns SQLCODE -213,
which can be trapped to detect a user interruption.

 MAIN
 DEFINE n INTEGER
 DEFER INTERRUPT
 OPTIONS SQL INTERRUPT ON

Genero Business Development Language

1470

 DATABASE test1
 WHENEVER ERROR CONTINUE
 -- Start long query (self join takes time)
 -- From now on, user can hit CTRL-C in TUI mode to stop the query
 SELECT COUNT(*) INTO n FROM customers a, customers b
 WHERE a.cust_id <> b.cust_id
 IF SQLCA.SQLCODE == -213 THEN
 DISPLAY "Statement was interrupted by user..."
 EXIT PROGRAM 1
 END IF
 WHENEVER ERROR STOP
 ...
 END MAIN

SQL Server 2005 supports SQL Interruption in a similar way as Informix. The db client
must issue an SQLCancel() ODBC call to interrupt a query.

Solution:

The SNC database driver supports SQL interruption and converts the SQLSTATE
HY008 to the Informix error code -213.

Warning: Make sure you have SQL Server 2005 or higher installed and that you use the
SNC driver.

ODIMSV100 - Data type conversion table

INFORMIX Data
Types

SQL Server Data
Types (<2008)

SQL Server Data
Types (>=2008)

CHAR(n) CHAR(n) (limit =
8000c!)

CHAR(n) (limit =
8000c!)

VARCHAR(n) VARCHAR(n) (limit
= 8000c!)

VARCHAR(n) (limit
= 8000c!)

INTEGER INTEGER INTEGER
SMALLINT SMALLINT SMALLINT
FLOAT[(n)] FLOAT(n) FLOAT(n)
SMALLFLOAT REAL REAL
DECIMAL(p,s) DECIMAL(p,s) DECIMAL(p,s)
MONEY(p,s) DECIMAL(p,s) DECIMAL(p,s)
DATE DATETIME DATE
DATETIME HOUR
TO MINUTE DATETIME TIME(0)

DATETIME HOUR
TO FRACTION(n) DATETIME TIME(n)

DATETIME YEAR DATETIME DATETIME2(0)

ODI Adaptation Guides

1471

TO SECOND
Other sort of
DATETIME type DATETIME DATETIME2(n)

INTERVAL q1 TO
q2 CHAR(n) CHAR(n)

TEXT VARCHAR(MAX) VARCHAR(MAX)
BYTE VARBINARY(MAX) VARBINARY(MAX)

Genero Business Development Language

1472

ODI Adaptation Guide For PostgreSQL 8.0.2, 8.1.x,
8.2.x, 8.3.x
Runtime configuration

Install PostgreSQL and create a database
Prepare the runtime environment

Database concepts

Database concepts
Data storage concepts
Data consistency and concurrency management
Transactions handling
Defining database users
Setting privileges

Data dictionary

CHARACTER data types
NUMERIC data types
DATE and DATETIME data types
INTERVAL data type
SERIAL data type
ROWIDs
Very large data types
National character data types
Constraints
Triggers
Stored procedures
Name resolution of SQL objects
Data type conversion table

Data manipulation

Reserved words
Outer joins
Transactions handling

ODI Adaptation Guides

1473

Temporary tables
Substrings in SQL
The LENGTH() function
Name resolution of SQL objects
String delimiters
Using column aliases in SELECT
MATCHES and LIKE conditions
Querying system catalog tables
Syntax of UPDATE statements
The LENGTH() function

BDL programming

SERIAL data type
Handling SQL errors when preparing statements
INFORMIX specific SQL statements in BDL
INSERT cursors
Cursors WITH HOLD
SELECT FOR UPDATE
UPDATE/DELETE WHERE CURRENT OF <cursor>
The LOAD and UNLOAD instructions
SQL Interruption

Runtime configuration

Install PostgreSQL and create a database

1. Compile and install the PostgreSQL Server on your
computer. PostgreSQL is a free database, you can
download the sources from www.postgresql.org.

2. Set configuration parameters in postgresql.conf:

Warning for PGS 8.1 and 8.2: UPDATE / DELETE WHERE
CURRENT OF needs oid column support. Starting with
PostgreSQL version 8.1, user tables do not get the oid column by
default. You must set the default_with_oid configuration
parameter to "on" in order to get oid columns created. You do no
more need to set this parameter with PostgreSQL 8.3 when using
the dbmpgs83x driver.

Genero Business Development Language

1474

3. Start a postmaster process to listen to database
client connections.

Warning: If you want to connect through TCP (for
example from a Windows PostgreSQL client), you
must start postmaster with the -i option and setup
the pg_hba.conf file for security (trusted hosts and
users).

4. Create a PostgreSQL database with the createdb
utility:

 $ createdb -h hostname dbname

5. If you plan to use SERIAL emulation, you must
create the plpgsql procedure language, because
the database interface uses this language to create
serial triggers:

 $ createlang -h hostname plpgsql
dbname

6. Connect to the database as the administrator user
and create a database user dedicated to your
application, the application administrator:

 dbname=# CREATE USER appadmin
PASSWORD 'password';
 CREATE USER
 dbname=# GRANT ALL PRIVILEGES ON
DATABASE dbname TO appadmin;
 GRANT
 dbname=# \q

7. Create the application tables. Do not forget to
convert Informix data types to PostgreSQL data
types. See issue ODIPGS100 for more details.

8. If you plan to use the SERIAL emulation, you must
prepare the database. See issue ODIPGS005 for
more details.

Prepare the runtime environment

1. The PostgreSQL client software is required to
connect to a database server. Check if the
PostgreSQL client library (libpq.*) is installed on
the machine where the 4gl programs run.

2. Set up the fglprofile entries for database
connections

3. In order to connect to PostgreSQL, you must have
a database driver "dbmpgs*" installed.

Warning: On HP/UX LP64, the database driver

ODI Adaptation Guides

1475

must be linked with the libxnet library if you want to
use networking.

ODIPGS001 - DATE and DATETIME data types
INFORMIX provides two data types to store dates and time information:

• DATE = for year, month and day storage.
• DATETIME = for year to fraction(1-5) storage.

PostgreSQL provides the following data type to store dates:

• DATE = for year, month, day storage.
• TIME [(p)] [{with|without} time zone] = for hour, minute, second and fraction

storage.
• TIMESTAMP [(p)] [{with|without} time zone] = for year, month, day, hour,

minute, second, fraction storage.

String representing date time information:

INFORMIX is able to convert quoted strings to DATE / DATETIME data if the string
contents matches environment parameters (i.e. DBDATE, GL_DATETIME). As in
INFORMIX, PostgreSQL can convert quoted strings to date time data according to the
DateStyle session parameter. PostgreSQL always accepts ISO date time strings.

Date arithmetic:

• INFORMIX supports date arithmetic on DATE and DATETIME values. The result
of an arithmetic expression involving dates/times is a number of days when only
DATEs are used and an INTERVAL value if a DATETIME is used in the
expression.

• In PostgreSQL, the result of an arithmetic expression involving DATE values is
an INTEGER representing a number of days.

• INFORMIX automatically converts an integer to a date when the integer is used
to set a value of a date column. PostgreSQL does not support this automatic
conversion.

• Complex DATETIME expressions (involving INTERVAL values for example) are
INFORMIX specific and have no equivalent in PostgreSQL.

Solution:

PostgreSQL has the same DATE data type as INFORMIX (year, month, day). So you
can use PostgreSQL DATE data type for Informix DATE columns.

PostgreSQL TIME(0) WITHOUT TIME ZONE data type can be used to store INFORMIX
DATETIME HOUR TO SECOND values. The database interface makes the conversion
automatically.

Genero Business Development Language

1476

INFORMIX DATETIME values with any precision from YEAR to FRACTION(5) can be
stored in PostgreSQL TIMESTAMP(5) WITHOUT TIME ZONE columns. The database
interface makes the conversion automatically. Missing date or time parts default to 1900-
01-01 00:00:00.0. For example, when using a DATETIME HOUR TO MINUTE with the
value of "11:45", the PostgreSQL TIMESTAMP value will be "1900-01-01 11:45:00.0".

Warning: SQL Statements using expressions with TODAY / CURRENT / EXTEND
must be reviewed and adapted to the native syntax.

Warning: Literal DATETIME and INTERVAL expressions (i.e. DATETIME (1999-10-12)
YEAR TO DAY) are not converted.

ODIPGS003 - Reserved words
SQL object names like table and column names cannot be SQL reserved words in
PostgreSQL.

Solution:

Table or column names which are PostgreSQL reserved words must be renamed.

ODIPGS004 - ROWIDs
PostgreSQL tables are automatically created with a OID column (Object Identifier) of
type INTEGER. The behavior is equivalent to INFORMIX ROWID columns.

Solution:

The database automatically converts ROWID keywords to OID for PostgreSQL. So you
can execute "SELECT ROWID FROM" and "UPDATE .. WHERE ROWID = ?"
statements as with INFORMIX.

Warning: SQLCA.SQLERRD[6] is not supported. All references to
SQLCA.SQLERRD[6] must be removed because this variable will not hold the ROWID
of the last INSERTed or UPDATEd row when using the PostgreSQL interface.

ODIPGS005 - SERIAL data type
INFORMIX SERIAL data type and automatic number production:

• The table column must be of type SERIAL.

ODI Adaptation Guides

1477

• To generate a new serial, no value or zero value is given to the INSERT
statement:
 INSERT INTO tab1 (c) VALUES ('aa')
 INSERT INTO tab1 (k, c) VALUES (0, 'aa')

• After INSERT, the new SERIAL value is provided in SQLCA.SQLERRD[2].
• INFORMIX allows you to insert rows with a value different from zero for a serial

column. Using an explicit value will automatically increment the internal serial
counter, to avoid conflicts with future INSERT statements that are using a zero
value :
 CREATE TABLE tab (k SERIAL); --> internal counter = 0
 INSERT INTO tab VALUES (0); --> internal counter =
1
 INSERT INTO tab VALUES (10); --> internal counter =
10
 INSERT INTO tab VALUES (0); --> internal counter =
11
 DELETE FROM tab; --> internal counter =
11
 INSERT INTO tab VALUES (0); --> internal counter =
12

PostgreSQL SERIAL data type:

• This data type has the same name but is NOT the same as INFORMIX SERIALs.
• You cannot define a start value (SERIAL(100)).
• You must omit the column name when inserting rows because the technique is

based on default values.
• You can insert a specific value but the next serial will be generated from the

sequence.
• When you drop the table you must drop the sequence too.

PostgreSQL sequences:

• Sequences are totally detached from tables.
• The purpose of sequences is to provide unique integer numbers.
• Sequences are identified by a sequence name.
• To create a sequence, you must use the CREATE SEQUENCE statement.

Once a sequence is created, it is permanent (like a table).
• To get a new sequence value, you must use the nextval function:

 INSERT INTO tab1 VALUES (nextval('tab1_seq'), ...
)

• To get the last generated number, PostgreSQL provides the currval function :
 SELECT currval('tab1_seq') FROM DUAL

Solution:

The INFORMIX SERIAL data type can be emulated with three methods, according to
FGLPROFILE settings:

Genero Business Development Language

1478

1. When dbi.database.<dbname>.ifxemul.datatype.serial.emulation = "native" (the
default), the native PostgreSQL SERIAL data type is used. The sqlca.sqlerrd[2]
register is NOT filled as expected.

2. When dbi.database.<dbname>.ifxemul.datatype.serial.emulation = "regtable", the
SERIAL data type is emulated with a PostgreSQL INTEGER data type and
INSERT triggers using the table SERIALREG which is dedicated to sequence
production. After an insert, sqlca.sqlerrd[2] register holds the last generated
serial value.

3. When dbi.database.<dbname>.ifxemul.datatype.serial.emulation = "trigseq", the
SERIAL data type is emulated with a PostgreSQL INTEGER data type and
INSERT triggers using a sequence <tablename>_seq. After an insert,
sqlca.sqlerrd[2] register holds the last generated serial value.

Warning: When using solution 1 (which is the default), the sqlca.sqlerrd[2] register is
not set after an INSERT. You must configure FGLPROFILE to use solution 2 or 3 when
you need this feature.

When using solution 2 or 3, the triggers can be created manually during the application
database installation procedure, or automatically from a BDL program: When a BDL
program executes a CREATE [TEMP] TABLE with a SERIAL column, the database
interface automatically converts the SERIAL data type to INTEGER and dynamically
creates the triggers. However, when using solution 2, the table SERIALREG must be
created before the triggers. The serial production is based on the SERIALREG table
which registers the last generated number for each table. If you delete rows of this table,
sequences will restart at 1 and you will get unexpected data.

If you plan to use the second method, you must create the SERIALREG table as follows:

CREATE TABLE SERIALREG (
 TABLENAME VARCHAR(50) NOT NULL,
 LASTSERIAL INTEGER NOT NULL,
 PRIMARY KEY (TABLENAME)
)

Warning: This table must exist in the database before creating the serial triggers.

In database creation scripts, all SERIAL[(n)] data types must be converted to INTEGER
data types and you must create one trigger for each table. To know how to write those
triggers, you can create a small Genero program that creates a table with a SERIAL
column. Set the FGLSQLDEBUG environment variable and run the program. The debug
output will show you the native trigger creation command.

Warning: With PostgreSQL, INSERT statements using NULL for the SERIAL column
will produce a new serial value, not a NULL like INFORMIX does:
 INSERT INTO tab (col1,col2) VALUES (NULL,'data')
This behavior is mandatory in order to support INSERT statements which do not use the
serial column:
 INSERT INTO tab (col2) VALUES ('data')
Check if your application uses tables with a SERIAL column that can contain a NULL
value.

ODI Adaptation Guides

1479

ODIPGS006 - Outer joins
In INFORMIX SQL, outer tables are defined in the FROM clause with the OUTER
keyword:

SELECT ... FROM a, OUTER(b)
 WHERE a.key = b.akey
SELECT ... FROM a, OUTER(b,OUTER(c))
 WHERE a.key = b.akey
 AND b.key1 = c.bkey1
 AND b.key2 = c.bkey2

PostgreSQL supports the ANSI outer join syntax:

SELECT ... FROM cust LEFT OUTER JOIN order
 ON cust.key = order.custno
SELECT ...
 FROM cust LEFT OUTER JOIN order
 LEFT OUTER JOIN item
 ON order.key = item.ordno
 ON cust.key = order.custno
 WHERE order.cdate > current date

See the PostgreSQL reference for a complete description of the syntax.

Solution:

The PostgreSQL interface can convert most INFORMIX OUTER specifications to ANSI
outer joins.

Prerequisites:

1. In the FROM clause, the main table must be the first item and the outer tables
must figure from left to right in the order of outer levels.
 Example which does not work : "FROM OUTER(tab2), tab1".

2. The outer join in the WHERE part must use the table name as prefix.
 Example : "WHERE tab1.col1 = tab2.col2".

Restrictions:

1. Additional conditions on outer table columns cannot be detected and therefore
are not supported:
 Example : "... FROM tab1, OUTER(tab2) WHERE tab1.col1 =
tab2.col2 AND tab2.colx > 10".

2. Statements composed of 2 or more SELECT instructions using OUTERs are not
supported.
 Example : "SELECT ... UNION SELECT" or "SELECT ... WHERE col
IN (SELECT...)"

Genero Business Development Language

1480

Remarks:

1. Table aliases are detected in OUTER expressions.
 OUTER example with table alias : "OUTER(tab1 alias1)".

2. In the outer join, <outer table>.<col> can be placed on both right or left sides of
the equal sign.
 OUTER join example with table on the left : "WHERE outertab.col1 =
maintab.col2 ".

3. Table names detection is not case-sensitive.
 Example : "SELECT ... FROM tab1, TAB2 WHERE tab1.col1 =
tab2.col2".

4. Temporary tables are supported in OUTER specifications.

ODIPGS007a - Database concepts
Most BDL applications use only one database entity (in the meaning of INFORMIX). But
the same BDL application can connect to different occurrences of the same database
schema, allowing several users to connect to those different databases.

Like INFORMIX servers, PostgreSQL can handle multiple database entities. Tables
created by a user can be accessed without the owner prefix by other users as long as
they have access privileges to these tables.

Solution:

Create a PostgreSQL database for each INFORMIX database.

ODIPGS008a - Data consistency and concurrency
management
Data consistency involves readers which want to access data currently modified by
writers and concurrency data access involves several writers accessing the same data
for modification. Locking granularity defines the amount of data concerned when a lock
is set (row, page, table, ...).

INFORMIX

INFORMIX uses a locking mechanism to handle data consistency and concurrency.
When a process changes database information with UPDATE, INSERT or DELETE, an
exclusive lock is set on the touched rows. The lock remains active until the end of the
transaction. Statements performed outside a transaction are treated as a transaction
containing a single operation and therefore release the locks immediately after
execution. SELECT statements can set shared locks according to the isolation level.
In case of locking conflicts (for example, when two processes want to acquire an

ODI Adaptation Guides

1481

exclusive lock on the same row for modification or when a writer is trying to modify data
protected by a shared lock), the behavior of a process can be changed by setting the
lock wait mode.

Control:

• Lock wait mode : SET LOCK MODE TO ...
• Isolation level : SET ISOLATION TO ...
• Locking granularity : CREATE TABLE ... LOCK MODE {PAGE|ROW}
• Explicit exclusive lock : SELECT ... FOR UPDATE

Defaults:

• The default isolation level is read committed.
• The default lock wait mode is "not wait".
• The default locking granularity is per page.

PostgreSQL

When data is modified, exclusive locks are set and held until the end of the transaction.
For data consistency, PostgreSQL uses a multi-version consistency model: A copy of
the original row is kept for readers before performing writer modifications. Readers do
not have to wait for writers as in INFORMIX. The simplest way to think of PostgreSQL
implementation of read consistency is to imagine each user operating a private copy of
the database, hence the multi-version consistency model. The lock wait mode cannot
be changed as in INFORMIX. Locks are set at the row level in PostgreSQL and this
cannot be changed.

Control:

• No lock wait mode control is provided.
• Isolation level : SET TRANSACTION ISOLATION LEVEL ...
• Explicit exclusive lock : SELECT ... FOR UPDATE

Defaults:

• The default isolation level is Read Committed.

The main difference between INFORMIX and PostgreSQL is that readers do not have to
wait for writers in PostgreSQL.

Solution:

For portability, it is recommended that you work with INFORMIX in the read committed
isolation level, make processes wait for each other (lock mode wait), and create tables
with the "lock mode row" option.

See INFORMIX and PostgreSQL documentation for more details about data
consistency, concurrency and locking mechanisms.

Genero Business Development Language

1482

ODIPGS008b - SELECT FOR UPDATE
A lot of BDL programs use pessimistic locking in order to avoid several users editing the
same rows at the same time.

 DECLARE cc CURSOR FOR
 SELECT ... FROM tab WHERE ... FOR UPDATE
 OPEN cc
 FETCH cc <-- lock is acquired
 ...
 CLOSE cc <-- lock is released

In both INFORMIX and PostgreSQL, locks are released when closing the cursor or when
the transaction ends.

PostgreSQL locking granularity is at the row level.

To control the behavior of the program when locking rows, INFORMIX provides a
specific instruction to set the wait mode:

 SET LOCK MODE TO { WAIT | NOT WAIT | WAIT seconds }

The default mode is NOT WAIT. This as an INFORMIX specific SQL statement.

Warning: PostgreSQL has no equivalent for "SET LOCK MODE TO NOT WAIT".

Solution:

Warning: The database interface is based on an emulation of an Informix engine using
transaction logging. Therefore, opening a SELECT ... FOR UPDATE cursor declared
outside a transaction will raise an SQL error -255 (not in transaction).

You must review the program logic if you use pessimistic locking because it is based on
the NOT WAIT mode which is not supported by PostgreSQL.

ODIPGS009 - Transactions handling
INFORMIX and PostgreSQL handle transactions in a similar manner.

INFORMIX native mode (non ANSI):

• Transactions are started with "BEGIN WORK".
• Transactions are validated with "COMMIT WORK".
• Transactions are canceled with "ROLLBACK WORK".

ODI Adaptation Guides

1483

• Statements executed outside of a transaction are automatically committed.
• DDL statements can be executed (and canceled) in transactions.

PostgreSQL:

• Transactions are started with "BEGIN WORK".
• Transactions are validated with "COMMIT WORK".
• Transactions are canceled with "ROLLBACK WORK".
• Statements executed outside of a transaction are automatically committed.
• DDL statements can be executed (and canceled) in transactions.
• If an SQL error occurs in a transaction, the whole transaction is aborted.

Transactions in stored procedures: avoid using transactions in stored procedures to
allow the client applications to handle transactions, according to the transaction model.

Warning: The main difference between Informix and PostgreSQL resides in the fact that
PostgreSQL cancels the whole transaction if an SQL error occurs in one of the
statements executed inside the transaction. The following code example illustrates this
difference:

 CREATE TABLE tab1 (k INT PRIMARY KEY, c CHAR(10))
 WHENEVER ERROR CONTINUE
 BEGIN WORK
 INSERT INTO tab1 (1, 'abc')
 INSERT INTO tab1 (1, 'abc') -- PK constraint violation = SQL
Error
 COMMIT WORK

With Informix, this code will leave the table with one row inside, since the first INSERT
statement succeeded. With PostgreSQL, the table will remain empty after executing this
piece of code, because the server will rollback the whole transaction.

Solution:

INFORMIX transaction handling commands are automatically converted to PostgreSQL
instructions to start, validate or cancel transactions.

Regarding the transaction control instructions, the BDL applications do not have to be
modified in order to work with PostgreSQL.

Warning: You must review the SQL statements inside BEGIN WORK / COMMIT WORK
instruction and check if these can raise and SQL error. With PostgreSQL, the whole
transaction will be aborted. The code example shown above could for example be
converted to this:

 CREATE TABLE tab1 (k INT PRIMARY KEY, c CHAR(10))
 WHENEVER ERROR CONTINUE
 BEGIN WORK
 INSERT INTO tab1 (1, 'abc')
 IF SQLCA.SQLCODE < 0 THEN ROLLBACK WORK GOTO _END_ END IF

Genero Business Development Language

1484

 INSERT INTO tab1 (1, 'abc') -- PK constraint violation = SQL
Error
 IF SQLCA.SQLCODE < 0 THEN ROLLBACK WORK GOTO _END_ END IF
 COMMIT WORK
LABEL _END_:
 ...

ODIPGS010 - Handling SQL errors when preparing
statements
The PostgreSQL connector is implemented with the PostgreSQL libpq API. This library
does not provide a way to send SQL statements to the database server during the BDL
PREPARE instruction, like the INFORMIX interface. The statement is sent to the server
only when opening the cursors or when executing the statement.

Therefore, when preparing an SQL statement with the BDL PREPARE instruction, no
SQL errors can be returned if the statement has syntax errors or if a column or a table
name does not exist in the database.

However, an SQL error will occur after the OPEN or EXECUTE instructions.

Solution:

Check that your BDL programs do not test STATUS or SQLCA.SQLCODE variable just
after PREPARE instructions.

Change the program logic in order to handle the SQL errors when opening the cursors
(OPEN) or when executing SQL statements (EXECUTE).

ODIPGS011a - CHARACTER data types
As in INFORMIX, PostgreSQL provides the CHAR and VARCHAR data types to store
character data.

INFORMIX CHAR type can store up to 32767 characters and the VARCHAR data type is
limited to 255 characters.

Since PostgreSQL CHAR and VARCHAR have a size limit of 1GB.

Solution:

The database interface supports character string variables in SQL statements for input
(BDL USING) and output (BDL INTO).

ODI Adaptation Guides

1485

ODIPGS011b - The LENGTH() function
Warning: PostgreSQL raises an error if the LENGTH() parameter is NULL. INFORMIX
returns zero instead.

Solution:

The PostgreSQL database interface cannot simulate the behavior of the INFORMIX
LENGTH() SQL function.

Review the program logic and make sure you do not pass NULL values to the
LENGTH() SQL function.

ODIPGS012 - Constraints

Constraint naming syntax:

Both INFORMIX and PostgreSQL support primary key, unique, foreign key, default and
check constraints, but the constraint naming syntax is different. PostgreSQL expects the
"CONSTRAINT" keyword before the constraint specification and INFORMIX expects it
after.

UNIQUE constraint example:

INFORMIX PostgreSQL

CREATE TABLE scott.emp (
...
empcode CHAR(10) UNIQUE
 [CONSTRAINT pk_emp],
...

CREATE TABLE scott.emp (
...
empcode CHAR(10)
 [CONSTRAINT pk_emp]
UNIQUE,
...

Unique constraints:

Warning: When using a unique constraint, INFORMIX allows only one row with a NULL
value, while PostgreSQL allows several rows with NULL!

Solution:

The database interface does not convert constraint naming expressions when creating
tables from BDL programs. Review the database creation scripts to adapt the constraint
naming clauses for PostgreSQL.

Genero Business Development Language

1486

ODIPGS013 - Triggers
INFORMIX and PostgreSQL provide triggers with similar features, but the trigger
creation syntax and the programming languages are totally different.

Solution:

INFORMIX triggers must be converted to PostgreSQL triggers "by hand".

ODIPGS014 - Stored procedures
Both INFORMIX and PostgreSQL support stored procedures, but the programming
languages are totally different. With PostgreSQL you must create the stored procedure
language before writing triggers or stored procedures.

Solution:

INFORMIX stored procedures must be converted to PostgreSQL manually.

ODIPGS016a - Defining database users
INFORMIX users are defined at the operating system level, they must be members of
the 'informix' group, and the database administrator must grant CONNECT, RESOURCE
or DBA privileges to those users.

PostgreSQL users must be registered in the database. They are created by the
createuser utility:

 $ createuser --username=<username> --password

Solution:

According to the application logic (is it a multi-user application ?), you have to create one
or several PostgreSQL users.

ODIPGS016b - Setting privileges
INFORMIX and PostgreSQL user privileges management are quite similar.

ODI Adaptation Guides

1487

PostgreSQL provides user groups to grant or revoke permissions to more than one
user at the same time.

ODIPGS017 - Temporary tables

INFORMIX temporary tables are created through the CREATE TEMP TABLE DDL
instruction or through a SELECT ... INTO TEMP statement. Temporary tables are
automatically dropped when the SQL session ends, but they can be dropped with the
DROP TABLE command. There is no name conflict when several users create
temporary tables with the same name.

INFORMIX allows you to create indexes on temporary tables. No name conflict occurs
when several users create an index on a temporary table by using the same index
identifier.

PostgreSQL support temporary tables as INFORMIX does, with a little syntax difference
in the SELECT INTO TEMP instruction.

Solution:

Temporary tables are well supported with native PostgreSQL temp tables.

ODIPGS018 - Substrings in SQL
INFORMIX SQL statements can use subscripts on columns defined with the character
data type:

 SELECT ... FROM tab1 WHERE col1[2,3] = 'RO'
 SELECT ... FROM tab1 WHERE col1[10] = 'R' -- Same as
col1[10,10]
 UPDATE tab1 SET col1[2,3]= 'RO' WHERE ...
 SELECT ... FROM tab1 ORDER BY col1[1,3]

.. while PostgreSQL provides the SUBSTR() function, to extract a substring from a
string expression:

 SELECT FROM tab1 WHERE SUBSTRING(col1 from 2 for 2) =
'RO'
 SELECT SUBSTRING('Some text' from 6 for 3) ... -- Gives
'tex'

Solution:

Genero Business Development Language

1488

You must replace all Informix col[x,y] expressions by SUBSTRING(col from x for (y-x+1)
).

Warning: In UPDATE instructions, setting column values through subscripts will
produce an error with PostgreSQL :
 UPDATE tab1 SET col1[2,3] = 'RO' WHERE ...
is converted to:
 UPDATE tab1 SET SUBSTRING(col1 from 2 for (3-2+1)) = 'RO'
WHERE ...

Warning: Column subscripts in ORDER BY expressions are also converted and
produce an error with PostgreSQL:
 SELECT ... FROM tab1 ORDER BY col1[1,3]
is converted to:
 SELECT ... FROM tab1 ORDER BY SUBSTRING(col1 from 1 for(3-
1+1))

ODIPGS019 - Name resolution of SQL objects
INFORMIX uses the following form to identify an SQL object :

 [database[@dbservername]:][{owner|"owner"}.]identifier

With PostgreSQL, an object name takes the following form:
 [owner.]identifier

Solution:

Check for single or double quoted table or column names in your source and remove
them.

ODIPGS020 - String delimiters
The ANSI string delimiter character is the single quote ('string'). Double quotes are used
to delimit database object names ("object-name").

Example: WHERE "tabname"."colname" = 'a string value'

INFORMIX allows double quotes as string delimiters, but PostgreSQL doesn't. This is
important since many BDL programs use that character to delimit the strings in SQL
commands.

Note: This problem concerns only double quotes within SQL statements. Double quotes
used in pure BDL string expressions are not subject to SQL compatibility problems.

ODI Adaptation Guides

1489

Solution:

The PostgreSQL database interface can automatically replace all double quotes by
single quotes.

Escaped string delimiters can be used inside strings like following:

 'This is a single quote: '''
 'This is a single quote : \''
 "This is a double quote : """
 "This is a double quote : \""

Warning: Database object names cannot be delimited by double quotes because the
database interface cannot determine the difference between a database object name
and a quoted string!

For example, if the program executes the SQL statement:
 WHERE "tabname"."colname" = "a string value"
replacing all double quotes by single quotes would produce:
 WHERE 'tabname'.'colname' = 'a string value'
This would produce an error since 'tabname'.'colname' is not allowed by
PostgreSQL.

Although double quotes are replaced automatically in SQL statements, you should use
only single quotes to enforce portability.

ODIPGS021 - NUMERIC data types
INFORMIX supports several data types to store numbers:

INFORMIX Data Type Description
SMALLINT 16 bit integer (-2^15 to 2^15)
INT/INTEGER 32 bit integer (-2^31 to 2^31)
DEC/DECIMAL(p) Floating-point decimal number
DEC/DECIMAL(p,s) Fixed-point decimal number
MONEY Equivalent to DECIMAL(16,2)
MONEY(p) Equivalent to DECIMAL(p,2)
MONEY(p,s) Equivalent to DECIMAL(p,s)
REAL/SMALLFLOAT approx floating point (C float)
DOUBLE PREC./FLOAT approx floating point (C double)

Solution:

Genero Business Development Language

1490

PostgreSQL supports the following data types to store numbers:

PostgreSQL data type Description
NUMERIC(p,s) Decimals (no limit)
DECIMAL(p,s) Decimals (8000 digits)
FLOAT4 4 bytes variable precision
FLOAT8 8 bytes variable precision
INT2 2 bytes integer
INT4 4 bytes integer
INT8 8 bytes integer

ANSI types like SMALLINT, INTEGER, FLOAT are supported by PostgreSQL as aliases
to INT2, INT4 and FLOAT8 native types.

ODIPGS022 - Using column aliases in SELECT
PostgreSQL expects the ANSI notation for column aliases :

 SELECT col1 AS col1_alias FROM ...

INFORMIX supports the ANSI notation.

Solution:

Warning: The database interface cannot convert INFORMIX alias specification to the
ANSI notation.

Review your programs and replace the INFORMIX notation with the ANSI form.

ODIPGS024 - MATCHES and LIKE in SQL conditions
INFORMIX supports MATCHES and LIKE in SQL statements. PostgreSQL supports the
LIKE statement as in INFORMIX, plus the ~ operators that are similar but different from
the INFORMIX MATCHES operator.

MATCHES allows brackets to specify a set of matching characters at a given position :
 (col MATCHES '[Pp]aris').
 (col MATCHES '[0-9][a-z]*').
In this case, the LIKE statement has not equivalent feature.

ODI Adaptation Guides

1491

The following substitutions must be made to convert a MATCHES condition to a LIKE
condition :

• MATCHES keyword must be replaced by LIKE.
• All '*' characters must be replaced by '%'.
• All '?' characters must be replaced by '_'.
• Remove all brackets expressions.

PostgreSQL ~ operator expects regular expressions as follows:
 (col ~ 'a.*')

Solution:

Warning: SQL statements using MATCHES expressions must be reviewed in order to
use LIKE expressions.

See also: MATCHES operator in SQL Programming.

ODIPGS025 - INFORMIX specific SQL statements in BDL
The BDL compiler supports several INFORMIX specific SQL statements that have no
meaning when using PostgreSQL.

• CREATE DATABASE
• DROP DATABASE
• START DATABASE (SE only)
• ROLLFORWARD DATABASE
• SET [BUFFERED] LOG
• CREATE TABLE with special options (storage, lock mode, etc.)

Solution:

Review your BDL source and remove all static SQL statements which are INFORMIX
specific.

ODIPGS028 - INSERT cursors
INFORMIX supports insert cursors. An "insert cursor" is a special BDL cursor declared
with an INSERT statement instead of a SELECT statement. When this kind of cursor is
open, you can use the PUT instruction to add rows and the FLUSH instruction to insert
the records into the database.

For INFORMIX database with transactions, OPEN, PUT and FLUSH instructions must
be executed within a transaction.

Genero Business Development Language

1492

PostgreSQL does not support insert cursors.

Solution:

Insert cursors are emulated by the PostgreSQL database interface.

ODIPGS030 - Very large data types
Both INFORMIX and PostgreSQL Server provide special data types to store very large
texts or images, but the names are different:

INFORMIX Data Type PostgreSQL Data Type
TEXT TEXT
BYTE BYTEA

Solution:

Very large data types are not supported yet by the PostgreSQL database interface.

ODIPGS031 - Cursors WITH HOLD
INFORMIX closes opened cursors automatically when a transaction ends unless the
WITH HOLD option is used in the DECLARE instruction. In PostgreSQL, opened cursors
using SELECT statements without a FOR UPDATE clause are not closed when a
transaction ends. Actually, all PostgreSQL cursors are 'WITH HOLD' cursors unless the
FOR UPDATE clause is used in the SELECT statement.

Warning: Cursors declared FOR UPDATE and using the WITH HOLD option cannot be
supported with PostgreSQL because FOR UPDATE cursors are automatically closed by
PostgreSQL when the transaction ends.

Solution:

BDL cursors that are not declared "WITH HOLD" are automatically closed by the
database interface when a COMMIT WORK or ROLLBACK WORK is performed.

Warning: Since PostgreSQL automatically closes FOR UPDATE cursors when the
transaction ends, opening cursors declared FOR UPDATE and WITH HOLD option
results in an SQL error that does not normally appear with INFORMIX, in the same
conditions. Review the program logic in order to find another way to set locks.

ODI Adaptation Guides

1493

ODIPGS032 - UPDATE/DELETE WHERE CURRENT OF
<cursor>
INFORMIX allows positioned UPDATEs and DELETEs with the "WHERE CURRENT OF
<cursor>" clause, if the cursor has been DECLARED with a SELECT ... FOR UPDATE
statement.

PGS 8.1 and 8.2: UPDATE/DELETE ... WHERE CURRENT OF <cursor> is not
supported by PostgreSQL. However, you can use the OID column to do positioned
updates/deletes.

Since PGS 8.3: UPDATE/DELETE ... WHERE CURRENT OF <cursor> is supported by
PostgreSQL with server-side cursors created with a DECLARE statement.

Solution:

With PostgreSQL 8.1 (dbmpgs81x) and 8.2 (dbmpgs82x):

UPDATE/DELETE ... WHERE CURRENT OF instructions are managed by the
PostgreSQL database interface. The PostgreSQL database interface replaces "WHERE
CURRENT OF <cursor>" by "WHERE OID = ?" and sets the value of the Object
Identifier returned by the last FETCH done with the given cursor..

Warning PGS 8.1 and 8.2: Starting with PostgreSQL version 8.1, user tables do not get
the oid column by default. You must set the default_with_oid configuration parameter
in the postgresql.conf file.

With PostgreSQL 8.3 (dbmpgs83x) and higher:

UPDATE/DELETE ... WHERE CURRENT OF instructions are just executed as is. Since
SELECT FOR UPDATE statements are now executed with a server cursor by using a
DECLARE PostgreSQL statement, native positioned update/delete takes place.

ODIPGS033 - Querying system catalog tables
As in INFORMIX, PostgreSQL provides system catalog tables (actually, system views).
But the table names and their structure are quite different.

Solution:

Warning: No automatic conversion of INFORMIX system tables is provided by the
database interface.

Genero Business Development Language

1494

ODIPGS034 - Syntax of UPDATE statements
INFORMIX allows a specific syntax for UPDATE statements:

 UPDATE table SET (<col-list>) = (<val-list>)

or

 UPDATE table SET table.* = myrecord.*
 UPDATE table SET * = myrecord.*

Solution:

Static UPDATE statements using the above syntax are converted by the compiler to
the standard form:

 UPDATE table SET column=value [,...]

ODIPGS035 - The LENGTH() function
INFORMIX provides the LENGTH() function:

 SELECT LENGTH("aaa"), LENGTH(col1) FROM table

PostgreSQL has a equivalent function with the same name, but there is some difference:

Informix does not count the trailing blanks neither for CHAR not for VARCHAR
expressions, while PostgreSQL counts the trailing blanks.

With the PostgreSQL LENGTH function, when using a CHAR column, values are always
blank padded, so the function returns the size of the CHAR column. When using a
VARCHAR column, trailing blanks are significant, and the function returns the number of
characters, including trailing blanks.

Solution:

You must check if the trailing blanks are significant when using the LENGTH() function.

If you want to count the number of character by ignoring the trailing blanks, you must
use the RTRIM() function:

ODI Adaptation Guides

1495

ODIPGS036 - INTERVAL data type
INFORMIX INTERVAL data type stores a value that represents a span of time.
INTERVAL types are divided into two classes : year-month intervals and day-time
intervals.

PostgreSQL provides an INTERVAL data type, but it is totally different from the
INFORMIX INTERVAL type. For example, you specify a INTERVAL literal as follows :

 25 years 2 months 23 days

Solution:

Warning: The INTERVAL data type is not well supported because the database server
has no equivalent native data type. However, you can store into and retrieve from CHAR
columns BDL INTERVAL values.

ODIPGS039 - Data storage concepts
An attempt should be made to preserve as much of the storage information as possible
when converting from INFORMIX to PostgreSQL. Most important storage decisions
made for INFORMIX database objects (like initial sizes and physical placement) can be
reused for the PostgreSQL database.

Storage concepts are quite similar in INFORMIX and in PostgreSQL, but the names are
different.

ODIPGS040 - National characters data types
INFORMIX: NCHAR & NVARCHAR
PostgreSQL:

Solution:

Warning: National character data types are not supported yet.

ODIPGS046 - The LOAD and UNLOAD instructions
INFORMIX provides two SQL instructions to export / import data from / into a database
table: The UNLOAD instruction copies rows from a database table into a text file and the
LOAD instructions insert rows from a text file into a database table.

Genero Business Development Language

1496

PostgreSQL does not provide LOAD and UNLOAD instructions, but provides external
tools like SQL*Plus and SQL*Loader.

Solution:

LOAD and UNLOAD instructions are supported.

Warning: There is a difference when using PostgreSQL DATE columns: DATE columns
created in the PostgreSQL database are similar to INFORMIX DATETIME YEAR TO
SECOND columns. In LOAD and UNLOAD, all PostgreSQL DATE columns are treated
as INFORMIX DATETIME YEAR TO SECOND columns and thus will be unloaded with
the "YYYY-MM-DD hh:mm:ss" format.
The same problem appears for INFORMIX INTEGER and SMALLINT values which are
stored in a PostgreSQL database as NUMBER(?) columns. Those values will be
unloaded as INFORMIX DECIMAL(10) and DECIMAL(5) values, that is, with a trailing
dot-zero ".0".

Warning: When using an INFORMIX database, simple dates are unloaded with the
DBDATE format (ex: "23/12/1998"). Therefore, unloading from an INFORMIX database
for loading into an PostgreSQL database is not supported.

Warning: UNLOAD instructions based on SELECT statements using date expressions
as "WHERE ?-datecol>?" are not supported because of database server limitations.
A syntax error would be raised in this case.

ODIPGS047 - SQL Interruption
With Informix, it is possible to interrupt a long running query if the SQL INTERRUPT ON
option is set by the Genero program. The database server returns SQLCODE -213,
which can be trapped to detect a user interruption.

 MAIN
 DEFINE n INTEGER
 DEFER INTERRUPT
 OPTIONS SQL INTERRUPT ON
 DATABASE test1
 WHENEVER ERROR CONTINUE
 -- Start long query (self join takes time)
 -- From now on, user can hit CTRL-C in TUI mode to stop the query
 SELECT COUNT(*) INTO n FROM customers a, customers b
 WHERE a.cust_id <> b.cust_id
 IF SQLCA.SQLCODE == -213 THEN
 DISPLAY "Statement was interrupted by user..."
 EXIT PROGRAM 1
 END IF
 WHENEVER ERROR STOP
 ...
 END MAIN

ODI Adaptation Guides

1497

PostgreSQL supports SQL Interruption in a similar way as Informix. The db client must
issue an PQcancel() libPQ call to interrupt a query.

Solution:

The PostgreSQL database driver supports SQL interruption and converts the
SQLSTATE code 57014 to the Informix error code -213.

ODIPGS100 - Data type conversion table

INFORMIX Data Types PostgreSQL Data Types
CHAR(n) CHAR(n)
VARCHAR(n) VARCHAR(n)
INTEGER INT4
SMALLINT INT2
FLOAT[(n)] FLOAT4
SMALLFLOAT FLOAT8
DECIMAL(p,s) NUMERIC(p,s)
MONEY(p,s) NUMERIC(p,s)
DATE DATE
DATETIME HOUR TO SECOND TIME(0) WITHOUT TIME ZONE
DATETIME YEAR TO FRACTION(p) TIMESTAMP(p) WITHOUT TIME ZONE
INTERVAL q1 TO q2 N/A

Genero Business Development Language

1498

ODI Adaptation Guide For MySQL 4.1.x, 5.0.x,
5.1.x
Runtime configuration

Install MySQL and create a database
Prepare the runtime environment

Database concepts

Database concepts
Data storage concepts
Data consistency and concurrency management
Transactions handling
Defining database users

Data dictionary

CHARACTER data types
NUMERIC data types
DATE and DATETIME data types
INTERVAL data type
SERIAL data type
ROWIDs
Constraints
Name resolution of SQL objects
Data type conversion table

Data manipulation

Reserved words
Outer joins
Transactions handling
Temporary tables
Substrings in SQL
Name resolution of SQL objects
Database object name delimiters
MATCHES and LIKE conditions

ODI Adaptation Guides

1499

Syntax of UPDATE statements

BDL programming

SERIAL data type
Handling SQL errors when preparing statements
INFORMIX specific SQL statements in BDL
INSERT cursors
Cursors WITH HOLD
SELECT FOR UPDATE
UPDATE/DELETE WHERE CURRENT OF <cursor>
The LOAD and UNLOAD instructions
SQL Interruption

Runtime configuration

Install MySQL and create a database

1. Warning: Supported MySQL versions are 4.1.2
and higher.

2. Compile and/or install the MySQL Server on your
computer. MySQL is a free database; you can
download the sources or binary packages from
www.mysql.com. For more details about MySQL
installation and configuration, read the
documentation.

3. Configure the database server.
Warning: In order to have transaction support by
default, you must define INNODB as default
storage engine:
In the my.cnf or my.ini file, you must have these
lines:
 [mysqld]
 default-storage-engine = INNODB
You can also set the default table type option in the
command line when starting the engine:
 mysqld_safe --
default_table_type=InnoDB

4. The mysqld process must be started to listen to
database client connections. See MySQL
documentation for more details about starting the
database server process.

Genero Business Development Language

1500

5. Create a database user dedicated to your
application, the application administrator.
Connect as the MySQL root user and GRANT all
privileges to this user:
 mysql -u root
 ...
 mysql> grant all privileges on *.*
 to
'mysuser'@'localhost'
 identified by
'password';

6. Connect as the application administrator and create
a MySQL database with the CREATE DATABASE
statement:
 mysql -u mysuser
 ...
 mysql> create database mydatabase;

7. Create the application tables. Do not forget to
convert Informix data types to MySQL data types.
See issue ODIMYS100 for more details. If you have
a transactional-safe table handler activated by
default, you do not need to specify the TYPE
option.

Prepare the runtime environment

1. The MySQL client software is required to connect
to a database server. Check if the MySQL client
library (libmysqlclient.*) is installed on the system.

Warning: MySQL ships the client library as a
simple .a archive, there is no shared library
provided by default. You must create a .so or
.DLL library in order to use one of the MySQL
ODI drivers of Genero.

For example, to create a libmysqlclient.so shared
library on Linux, execute the following commands:

$ cd $MYSQLDIR/lib
$ mkdir tmp
$ cd tmp
$ ar -x ../libmysqlclient.a
$ gcc --shared -o ../libmysqlclient.so
*.o -lz
$ cd ..
% rm -rf tmp

2. Set up the fglprofile entries for database
connections.

3. In order to connect to MySQL, you must have a
database driver "dbmmys*" installed.

ODI Adaptation Guides

1501

ODIMYS001 - DATE and DATETIME data types
INFORMIX provides two data types to store dates and time information:

• DATE = for year, month and day storage.
• DATETIME = for year to fraction(1-5) storage.

MySQL provides the following data type to store dates:

• DATE = for year, month, day storage.
• TIME = for hour, minute, second storage.
• DATETIME = for year, month, day, hour, minute, second storage.
• TIMESTAMP = automatically updated when row is touched.

String representing date time information:

INFORMIX is able to convert quoted strings to DATE / DATETIME data if the string
contents matches environment parameters (i.e. DBDATE, GL_DATETIME). As in
INFORMIX, MySQL can convert quoted strings to datetime data according the ISO
datetime format (YYYY-MM-DD hh:mm:ss').

Date arithmetic:

• INFORMIX supports date arithmetic on DATE and DATETIME values. The result
of an arithmetic expression involving dates/times is a number of days when only
DATEs are used and an INTERVAL value if a DATETIME is used in the
expression.

• In MySQL, the result of an arithmetic expression involving DATE values is an
INTEGER representing a number of days.

• INFORMIX automatically converts an integer to a date when the integer is used
to set a value of a date column. MySQL does not support this automatic
conversion.

• Complex DATETIME expressions (involving INTERVAL values for example) are
INFORMIX specific and have no equivalent in MySQL.

Solution:

MySQL has the same DATE data type as INFORMIX (year, month, day). So you can
use MySQL DATE data type for Informix DATE columns.

MySQL TIME data type can be used to store INFORMIX DATETIME HOUR TO
SECOND values. The database interface makes the conversion automatically.

INFORMIX DATETIME values with any precision from YEAR to SECOND can be stored
in MySQL DATETIME columns. The database interface makes the conversion
automatically. Missing date or time parts default to 1900-01-01 00:00:00. For example,

Genero Business Development Language

1502

when using a DATETIME HOUR TO MINUTE with the value of "11:45", the MySQL
DATETIME value will be "1900-01-01 11:45:00".

Warning: SQL Statements using expressions with TODAY / CURRENT / EXTEND
must be reviewed and adapted to the native syntax.

Warning: Literal DATETIME and INTERVAL expressions (i.e. DATETIME (1999-10-12)
YEAR TO DAY) are not converted.

ODIMYS003 - Reserved words
SQL object names like table and column names cannot be SQL reserved words in
MySQL.

Solution:

Table or column names which are MySQL reserved words must be renamed.

ODIMYS004 - ROWIDs
MySQL does not have an equivalent for the Informix ROWID pseudo-column.

Solution:

Warning: ROWIDs are not supported. You must review the code using ROWIDs and
use primary key columns instead.

ODIMYS005 - SERIAL data type
INFORMIX SERIAL data type and automatic number production:

• The table column must be of type SERIAL.
• To generate a new serial, no value or zero value is given to the INSERT

statement :
 INSERT INTO tab1 (c) VALUES ('aa')
 INSERT INTO tab1 (k, c) VALUES (0, 'aa')

• After INSERT, the new SERIAL value is provided in SQLCA.SQLERRD[2].
• INFORMIX allows you to insert rows with a value different from zero for a serial

column. Using an explicit value will automatically increment the internal serial
counter, to avoid conflicts with future INSERT statements that are using a zero
value:
 CREATE TABLE tab (k SERIAL); --> internal counter =

ODI Adaptation Guides

1503

0
 INSERT INTO tab VALUES (0); --> internal counter =
1
 INSERT INTO tab VALUES (10); --> internal counter =
10
 INSERT INTO tab VALUES (0); --> internal counter =
11
 DELETE FROM tab; --> internal counter =
11
 INSERT INTO tab VALUES (0); --> internal counter =
12

MySQL AUTO_INCREMENT column definition option:

• In CREATE TABLE, you specify a auto-incremented column with the
AUTO_INCREMENT attribute

• Auto-incremented columns have the same behavior as INFORMIX SERIAL
columns

• You define a start value with ALTER TABLE tabname AUTO_INCREMENT =
value

• The column must be the primary key.
• When using the InnoDB engine, AUTO_INCREMENTED columns might re-use

unused sequences after a server restart.
Actually, when the server restarts, it issues a SELECT
MAX(auto_increment_column) on each table with such as column to identify the
next sequence to be generated. If you insert rows that generate the numbers
101, 102 and 103, then you delete rows 102 and 103; When the server is
restarted next generated number will be 101 + 1 = 102.

Solution:

The INFORMIX SERIAL data type is emulated with MySQL AUTO_INCREMENT option.
After an insert, sqlca.sqlerrd[2] holds the last generated serial value.

Warning: AUTO_INCREMENT columns must be primary keys. This is handled
automatically when you create a table in a BDL program.

ODIMYS006 - Outer joins
In INFORMIX SQL, outer tables are defined in the FROM clause with the OUTER
keyword:

SELECT ... FROM a, OUTER(b)
 WHERE a.key = b.akey
SELECT ... FROM a, OUTER(b,OUTER(c))
 WHERE a.key = b.akey
 AND b.key1 = c.bkey1
 AND b.key2 = c.bkey2

Genero Business Development Language

1504

MySQL 3.23 supports the ANSI outer join syntax:

SELECT ... FROM cust LEFT OUTER JOIN order
 ON cust.key = order.custno
SELECT ...
 FROM cust LEFT OUTER JOIN order
 LEFT OUTER JOIN item
 ON order.key = item.ordno
 ON cust.key = order.custno
 WHERE order.cdate > current date

See the MySQL reference for a complete description of the syntax.

Solution:

The MySQL interface can convert most INFORMIX OUTER specifications to ANSI outer
joins.

Prerequisites:

1. In the FROM clause, the main table must be the first item and the outer tables
must figure from left to right in the order of outer levels.
 Example which does not work : "FROM OUTER(tab2), tab1".

2. The outer join in the WHERE part must use the table name as prefix.
 Example : "WHERE tab1.col1 = tab2.col2".

Restrictions:

1. Additional conditions on outer table columns cannot be detected and therefore
are not supported :
 Example : "... FROM tab1, OUTER(tab2) WHERE tab1.col1 = tab2.col2 AND
tab2.colx > 10".

2. Statements composed by 2 or more SELECT instructions using OUTERs are not
supported.
 Example : "SELECT ... UNION SELECT" or "SELECT ... WHERE col IN
(SELECT...)"

Notes:

1. Table aliases are detected in OUTER expressions.
 OUTER example with table alias : "OUTER(tab1 alias1)".

2. In the outer join, <outer table>.<col> can be placed on both right or left side of
the equal sign.
 OUTER join example with table on the left : "WHERE outertab.col1 =
maintab.col2 ".

3. Table names detection is not case-sensitive.
 Example : "SELECT ... FROM tab1, TAB2 WHERE tab1.col1 = tab2.col2".

4. Temporary tables are supported in OUTER specifications.

ODI Adaptation Guides

1505

ODIMYS007a - Database concepts
Most BDL applications use only one database entity (in the meaning of INFORMIX). But
the same BDL application can connect to different occurrences of the same database
schema, allowing several users to connect to those different databases.

Like INFORMIX servers, MySQL can handle multiple database entities. Tables created
by a user can be accessed without the owner prefix by other users as long as they have
access privileges to these tables.

Solution:

Create a MySQL database for each INFORMIX database.

ODIMYS008a - Data consistency and concurrency
management
Data consistency involves readers which want to access data currently modified by
writers and concurrency data access involves several writers accessing the same data
for modification. Locking granularity defines the amount of data concerned when a lock
is set (row, page, table, ...).

INFORMIX

INFORMIX uses a locking mechanism to handle data consistency and concurrency.
When a process changes database information with UPDATE, INSERT or DELETE, an
exclusive lock is set on the touched rows. The lock remains active until the end of the
transaction. Statements performed outside a transaction are treated as a transaction
containing a single operation and therefore release the locks immediately after
execution. SELECT statements can set shared locks according to the isolation level.
In case of locking conflicts (for example, when two processes want to acquire an
exclusive lock on the same row for modification or when a writer is trying to modify data
protected by a shared lock), the behavior of a process can be changed by setting the
lock wait mode.

Control:

• Lock wait mode : SET LOCK MODE TO ...
• Isolation level : SET ISOLATION TO ...
• Locking granularity : CREATE TABLE ... LOCK MODE {PAGE|ROW}
• Explicit exclusive lock : SELECT ... FOR UPDATE

Defaults:

• The default isolation level is read committed.
• The default lock wait mode is "not wait".

Genero Business Development Language

1506

• The default locking granularity is per page.

MySQL

When data is modified, exclusive locks are set and held until the end of the transaction.
For data consistency, MySQL uses a locking mechanism. Readers must wait for
writers as in INFORMIX.

Control:

• No lock wait mode control is provided.
• Isolation level : SET TRANSACTION ISOLATION LEVEL ...
• Explicit exclusive lock : SELECT ... FOR UPDATE

Defaults:

• The default isolation level is Read Committed.
• The default locking granularity is per table (pre page when using BDB tables).

Solution:

For portability, it is recommended that you work with INFORMIX in the read committed
isolation level, make processes wait for each other (lock mode wait), and create tables
with the "lock mode row" option.

See INFORMIX and MySQL documentation for more details about data consistency,
concurrency and locking mechanisms.

ODIMYS008b - SELECT FOR UPDATE
A lot of BDL programs use pessimistic locking in order to avoid several users editing the
same rows at the same time.

 DECLARE cc CURSOR FOR
 SELECT ... FROM tab WHERE ... FOR UPDATE
 OPEN cc
 FETCH cc <-- lock is acquired
 ...
 CLOSE cc <-- lock is released

Warning: MySQL locking mechanism depends upon the transaction manager. The
default locking granularity is per table when you use the default non-transactional
configuration.

Solution:

Review the program logic.

ODI Adaptation Guides

1507

ODIMYS009 - Transactions handling
INFORMIX and MySQL handle transactions in a similar manner.

INFORMIX native mode (non ANSI):

• Transactions are started with "BEGIN WORK".
• Transactions are validated with "COMMIT WORK".
• Transactions are canceled with "ROLLBACK WORK".
• Statements executed outside of a transaction are automatically committed.
• DDL statements can be executed (and canceled) in transactions.

MySQL :

• Transactions are started with "START TRANSACTION".
• Transactions are validated with "COMMIT".
• Transactions are canceled with "ROLLBACK".
• Statements executed outside of a transaction are automatically committed.
• DDL statements can be executed (and canceled) in transactions.

Solution:

INFORMIX transaction handling commands are automatically converted to MySQL
instructions to start, validate or cancel transactions.

Warning: MySQL does not support transactions by default. You must set the server
system parameter table_type=InnoDB.

Regarding the transaction control instructions, the BDL applications do not have to be
modified in order to work with MySQL, as long as you have a transaction manager
installed with MySQL.

ODIMYS010 - Handling SQL errors when preparing
statements
The MySQL connector is implemented with the MySQL libmysqlclient API. This library
does not provide a way to send SQL statements to the database server during the BDL
PREPARE instruction, like the INFORMIX interface. The statement is sent to the server
only when opening the cursors or when executing the statement.

Therefore, when preparing a SQL statement with the BDL PREPARE instruction, no
SQL errors can be returned if the statement has syntax errors or if a column or a table
name does not exist in the database.

Genero Business Development Language

1508

However, a SQL error will occur after the OPEN or EXECUTE instructions.

Solution:

Check that your BDL programs do not test STATUS or SQLCA.SQLCODE variable just
after PREPARE instructions.

Change the program logic in order to handle the SQL errors when opening the cursors
(OPEN) or when executing SQL statements (EXECUTE).

ODIMYS011 - CHARACTER data types
As INFORMIX, MySQL provides the CHAR and VARCHAR data types to store character
data.

INFORMIX CHAR type can store up to 32767 characters and the VARCHAR data type is
limited to 255 characters.

MySQL CHAR and VARCHAR both have a limit of 255 characters. You can define
CHAR and VARCHAR columns with a length greater than 255, but the native data type
will automatically be changed to TEXT.

Warning: MySQL automatically creates a TEXT data type when using a size that
exceeds 255 characters.

Solution:

The database interface supports character string variables in SQL statements for input
(BDL USING) and output (BDL INTO).

ODIMYS012 - Constraints

Constraint naming syntax:

Both INFORMIX and MySQL support primary key, unique, foreign key and default, but
the constraint naming syntax is different : MySQL expects the "CONSTRAINT" keyword
before the constraint specification and INFORMIX expects it after.

UNIQUE constraint example:

INFORMIX MySQL
CREATE TABLE scott.emp (
...

CREATE TABLE scott.emp (
...

ODI Adaptation Guides

1509

empcode CHAR(10) UNIQUE
 [CONSTRAINT pk_emp],
...

empcode CHAR(10)
 [CONSTRAINT pk_emp]
UNIQUE,
...

Primary keys:

Like INFORMIX, MySQL creates an index to enforce PRIMARY KEY constraints (some
RDBMS do not create indexes for constraints). Using "CREATE UNIQUE INDEX" to
define unique constraints is obsolete (use primary keys or a secondary key instead).

Warning: In MySQL, the name of a PRIMARY KEY is PRIMARY.

Unique constraints:

Like INFORMIX, MySQL creates an index to enforce UNIQUE constraints (some
RDBMS do not create indexes for constraints).

Warning: When using a unique constraint, INFORMIX allows only one row with a NULL
value, while MySQL allows several rows with NULL! Using CREATE UNIQUE INDEX is
obsolete.

Foreign keys:

Both INFORMIX and MySQL support the ON DELETE CASCADE option. In MySQL,
foreign key constraints are checked immediately, so NO ACTION and RESTRICT are
the same.

Check constraints:

Warning: Check constraints are not yet supported in MySQL.

Solution:

Constraint naming syntax:

The database interface does not convert constraint naming expressions when creating
tables from BDL programs. Review the database creation scripts to adapt the constraint
naming clauses for MySQL.

ODIMYS016 - Defining database users
INFORMIX users are defined at the operating system level, they must be members of
the 'informix' group, and the database administrator must grant CONNECT, RESOURCE
or DBA privileges to those users.

Genero Business Development Language

1510

MySQL users must be registered in the database. They are created with the GRANT
SQL instruction:

 $ mysql -u root -pmanager --host orion test

 mysql> GRANT ALL PRIVILEGES ON * TO mike IDENTIFIED BY 'pswd';

Solution:

According to the application logic (is it a multi-user application ?), you have to create one
or several MySQL users.

ODIMYS017 - Temporary tables

INFORMIX temporary tables are created through the CREATE TEMP TABLE DDL
instruction or through a SELECT ... INTO TEMP statement. Temporary tables are
automatically dropped when the SQL session ends, but they can be dropped with the
DROP TABLE command. There is no name conflict when several users create
temporary tables with the same name.

INFORMIX allows you to create indexes on temporary tables. No name conflict occurs
when several users create an index on a temporary table by using the same index
identifier.

MySQL support temporary tables with the following syntax:

 CREATE TEMPORARY TABLE tablename (coldefs)
 CREATE TEMPORARY TABLE tablename LIKE other-table

Solution:

In BDL, INFORMIX temporary tables instructions are converted to generate native SQL
Server temporary tables.

ODIMYS018 - Substrings in SQL
INFORMIX SQL statements can use subscripts on columns defined with the character
data type:

 SELECT ... FROM tab1 WHERE col1[2,3] = 'RO'
 SELECT ... FROM tab1 WHERE col1[10] = 'R' -- Same as
col1[10,10]
 UPDATE tab1 SET col1[2,3] = 'RO' WHERE ...
 SELECT ... FROM tab1 ORDER BY col1[1,3]

ODI Adaptation Guides

1511

.. while MySQL provides the SUBSTR() function, to extract a substring from a string
expression :

 SELECT FROM tab1 WHERE SUBSTRING(col1,2,3) = 'RO'
 SELECT SUBSTRING('Some text',6,3) ... -- Gives 'tex'

Solution:

You must replace all Informix col[x,y] expressions by SUBSTRING(col,x,y-x+1).

Warning: In UPDATE instructions, setting column values through subscripts will
produce an error with MySQL :
 UPDATE tab1 SET col1[2,3] = 'RO' WHERE ...
is converted to:
 UPDATE tab1 SET SUBSTRING(col1,2,(3-2+1)) = 'RO' WHERE ...

Warning: Column subscripts in ORDER BY expressions are also converted and
produce an error with MySQL :
 SELECT ... FROM tab1 ORDER BY col1[1,3]
is converted to:
 SELECT ... FROM tab1 ORDER BY SUBSTRING(col1,1,(3-1+1))

ODIMYS019 - Name resolution of SQL objects
INFORMIX uses the following form to identify a SQL object:

 [database[@dbservername]:][{owner|"owner"}.]identifier

With MySQL, an object name takes the following form:

 [database.]identifier

Solution:

Check for single or double quoted table or column names in your source and remove
them.

ODIMYS020 - Database object name delimiters
INFORMIX identifies database object names with double quotes, while MySQL does not
use the double quotes as database object identifiers.

Solution:

Genero Business Development Language

1512

Check your programs for database object names having double quotes:

 WHERE "tabname"."colname" = "a string value"

should be written as follows:

 WHERE tabname.colname = 'a string value'

ODIMYS021 - NUMERIC data types
INFORMIX supports several data types to store numbers:

INFORMIX Data Type Description
SMALLINT 16 bit integer (-2^15 to 2^15)
INT/INTEGER 32 bit integer (-2^31 to 2^31)
DEC/DECIMAL(p) Floating-point decimal number
DEC/DECIMAL(p,s) Fixed-point decimal number
MONEY Equivalent to DECIMAL(16,2)
MONEY(p) Equivalent to DECIMAL(p,2)
MONEY(p,s) Equivalent to DECIMAL(p,s)
REAL/SMALLFLOAT approx floating point (C float)
DOUBLE PREC./FLOAT approx floating point (C double)

Solution:

MySQL supports the following data types to store numbers:

MySQL data type Description

DECIMAL(p,s) Decimals (with a maximum range like
DOUBLE)

SMALLFLOAT 4 bytes variable precision
FLOAT 8 bytes variable precision
SMALLINT 4 bytes integer
INTEGER 8 bytes integer

Warning: MySQL DECIMALs have a maximum range like DOUBLEs.

ODI Adaptation Guides

1513

ODIMYS024 - MATCHES and LIKE in SQL conditions
INFORMIX supports MATCHES and LIKE in SQL statements. MySQL supports the LIKE
statement as in INFORMIX, plus the ~ operators that are similar but different from the
INFORMIX MATCHES operator.

MATCHES allows brackets to specify a set of matching characters at a given position:
 (col MATCHES '[Pp]aris')
 (col MATCHES '[0-9][a-z]*')
In this case, the LIKE statement has no equivalent feature.

The following substitutions must be done to convert a MATCHES condition to a LIKE
condition:

• MATCHES keyword must be replaced by LIKE.
• All '*' characters must be replaced by '%'.
• All '?' characters must be replaced by '_'.
• Remove all brackets expressions.

Solution:

Warning: SQL statements using MATCHES expressions must be reviewed in order to
use LIKE expressions.

See also: MATCHES operator in SQL Programming.

ODIMYS025 - INFORMIX specific SQL statements in BDL
The BDL compiler supports several INFORMIX specific SQL statements that have no
meaning when using MySQL:

(removed a sentence as unnecessary)

• CREATE DATABASE
• DROP DATABASE
• START DATABASE (SE only)
• ROLLFORWARD DATABASE
• SET [BUFFERED] LOG
• CREATE TABLE with special options (storage, lock mode, etc.)

Solution:

Review your BDL source and remove all static SQL statements which are INFORMIX
specific.

Genero Business Development Language

1514

ODIMYS028 - INSERT cursors
INFORMIX supports insert cursors. An "insert cursor" is a special BDL cursor declared
with an INSERT statement instead of a SELECT statement. When this kind of cursor is
open, you can use the PUT instruction to add rows and the FLUSH instruction to insert
the records into the database.

For INFORMIX database with transactions, OPEN, PUT and FLUSH instructions must
be executed within a transaction.

MySQL does not support insert cursors.

Solution:

Insert cursors are emulated by the MySQL database interface.

ODIMYS031 - Cursors WITH HOLD
INFORMIX closes opened cursors automatically when a transaction ends unless the
WITH HOLD option is used in the DECLARE instruction. In MySQL, opened cursors
using SELECT statements without a FOR UPDATE clause are not closed when a
transaction ends. Actually, all MySQL cursors are 'WITH HOLD' cursors unless the FOR
UPDATE clause is used in the SELECT statement.

Warning: Cursors declared FOR UPDATE and using the WITH HOLD option cannot be
supported with MySQL because FOR UPDATE cursors are automatically closed by
MySQL when the transaction ends.

Solution:

BDL cursors that are not declared "WITH HOLD" are automatically closed by the
database interface when a COMMIT WORK or ROLLBACK WORK is performed.

Warning: Since MySQL automatically closes FOR UPDATE cursors when the
transaction ends, opening cursors declared FOR UPDATE and WITH HOLD option
results in an SQL error that does not normally appear with INFORMIX, in the same
conditions. Review the program logic in order to find another way to set locks.

ODI Adaptation Guides

1515

ODIMYS032 - UPDATE/DELETE WHERE CURRENT OF
<cursor>
INFORMIX allows positioned UPDATEs and DELETEs with the "WHERE CURRENT OF
<cursor>" clause, if the cursor has been DECLARED with a SELECT ... FOR UPDATE
statement.

Solution:

Warning: WHERE CURRENT OF is not supported by MySQL.

ODIMYS034 - Syntax of UPDATE statements
INFORMIX allows a specific syntax for UPDATE statements:

 UPDATE table SET (<col-list>) = (<val-list>)

or

 UPDATE table SET table.* = myrecord.*
 UPDATE table SET * = myrecord.*

Solution:

Static UPDATE statements using the above syntax are converted by the compiler to
the standard form:

 UPDATE table SET column=value [,...]

ODIMYS036 - INTERVAL data type
INFORMIX INTERVAL data type stores a value that represents a span of time.
INTERVAL types are divided into two classes : year-month intervals and day-time
intervals.

MySQL provides an INTERVAL data type, but it is totally different from the INFORMIX
INTERVAL type. For example, you specify an INTERVAL literal as follows :

 25 years 2 months 23 days

Solution:

Genero Business Development Language

1516

Warning: The INTERVAL data type is not well supported because the database server
has no equivalent native data type. However, you can store into and retrieve from CHAR
columns BDL INTERVAL values.

ODIMYS039 - Data storage concepts
An attempt should be made to preserve as much of the storage information as possible
when converting from INFORMIX to MySQL. Most important storage decisions made for
INFORMIX database objects (like initial sizes and physical placement) can be reused for
the MySQL database.

Storage concepts are quite similar in INFORMIX and in MySQL, but the names are
different.

ODIMYS046 - The LOAD and UNLOAD instructions
INFORMIX provides two SQL instructions to export / import data from / into a database
table: The UNLOAD instruction copies rows from a database table into a text file and the
LOAD instructions insert rows from a text file into a database table.

MySQL does not provide LOAD and UNLOAD instructions, but provides external tools
like SQL*Plus and SQL*Loader.

Solution:

LOAD and UNLOAD instructions are supported.

Warning: There is a difference when using MySQL DATE columns; DATE columns
created in the MySQL database are similar to INFORMIX DATETIME YEAR TO
SECOND columns. In LOAD and UNLOAD, all MySQL DATE columns are treated as
INFORMIX DATETIME YEAR TO SECOND columns and thus will be unloaded with the
"YYYY-MM-DD hh:mm:ss" format.
The same problem appears for INFORMIX INTEGER and SMALLINT values which are
stored in an MySQL database as NUMBER(?) columns. Those values will be unloaded
as INFORMIX DECIMAL(10) and DECIMAL(5) values, that is, with a trailing dot-zero
".0".

Warning: When using an INFORMIX database, simple dates are unloaded with the
DBDATE format (ex: "23/12/1998"). Therefore, unloading from an INFORMIX database
for loading into a MySQL database is not supported.

Warning: UNLOAD instructions based on SELECT statements using date expressions
such as "WHERE ?-datecol>?" are not supported because of database server
limitations. A syntax error would be raised in this case.

ODI Adaptation Guides

1517

ODIMYS047 - SQL Interruption
With Informix, it is possible to interrupt a long running query if the SQL INTERRUPT ON
option is set by the Genero program. The database server returns SQLCODE -213,
which can be trapped to detect a user interruption.

 MAIN
 DEFINE n INTEGER
 DEFER INTERRUPT
 OPTIONS SQL INTERRUPT ON
 DATABASE test1
 WHENEVER ERROR CONTINUE
 -- Start long query (self join takes time)
 -- From now on, user can hit CTRL-C in TUI mode to stop the query
 SELECT COUNT(*) INTO n FROM customers a, customers b
 WHERE a.cust_id <> b.cust_id
 IF SQLCA.SQLCODE == -213 THEN
 DISPLAY "Statement was interrupted by user..."
 EXIT PROGRAM 1
 END IF
 WHENEVER ERROR STOP
 ...
 END MAIN

Solution:

Warning: SQL Interruption is not supported with MySQL.

ODIMYS100 - Data type conversion table

INFORMIX Data Types MySQL Data Types

CHAR(n) CHAR(n) (n>255c=>
TEXT(n))

VARCHAR(n) VARCHAR(n) (n>255c=>
TEXT(n))

INTEGER INTEGER
SMALLINT SHORT
FLOAT[(n)] FLOAT
SMALLFLOAT SMALLFLOAT

DECIMAL(p,s) DECIMAL(p,s) (max range
like double!)

MONEY(p,s) DECIMAL(p,s) (max range
like double!)

Genero Business Development Language

1518

DATE DATE
DATETIME HOUR TO SECOND TIME

DATETIME q1 TO q2 DATETIME (YYY-MM-DD
hh:mm:ss)

INTERVAL q1 TO q2 N/A

ODI Adaptation Guides

1519

ODI Adaptation Guide For Sybase ASA 8.x
Runtime configuration

Install Sybase and create a database
Prepare the runtime environment

Database concepts

Database concepts
Data storage concepts
Data consistency and concurrency management
Transactions handling
Defining database users
Setting privileges

Data dictionary

CHARACTER data types
NUMERIC data types
DATE and DATETIME data types
INTERVAL data type
SERIAL data type
ROWIDs
Case sensitivity
Very large data types
National character data types
The ALTER TABLE instruction
Constraints
Triggers
Stored procedures
Name resolution of SQL objects
Setup database statistics
Data type conversion table

Data manipulation

Reserved words
Outer joins

Genero Business Development Language

1520

Transactions handling
Temporary tables
Substrings in SQL
Name resolution of SQL objects
String delimiters
Getting one row with SELECT
MATCHES and LIKE conditions
Querying system catalog tables
Syntax of UPDATE statements

BDL programming

SERIAL data type
INFORMIX specific SQL statements in BDL
INSERT cursors
Cursors WITH HOLD
SELECT FOR UPDATE
The LOAD and UNLOAD instructions
SQL Interruption

Runtime configuration

Install Sybase ASA and create a database

1. Install Sybase ASA software on your computer.
2. Create a Sybase database entity with dbinit tool.

Go to a directory where the database files must be
created and run the dbinit tool.
Warning: Create the database with case-sensitivity
and blank padding for string comparisons:

 $ cd datadirectory
 $ dbinit -c -b databasename

3. Make sure that the database option
ALLOW_NULLS_BY_DEFAULT option is set to
ON.
Warning: If this option is set to OFF, columns
created without NULL or NOT NULL are NOT
NULL by default.

4. Try to connect to the new created database with
the dbisql tool. The default database user is
DBA/SQL.

ODI Adaptation Guides

1521

Warning: User logins and passwords are case
sensitive!

5. Declare a database user dedicated to your
application: the application administrator.

 grant connect to appadmin
identified by password
 grant resource to appadmin

See documentation for more details about
database users and privileges. You must create
groups to make tables visible to all users.

6. If you plan to use SERIAL emulation based on
triggers using a registration table, create the
SERIALREG table. Create the triggers for each
table using a SERIAL. See issue ODIASA005 for
more details.

7. Create the application tables. Do not forget to
convert Informix data types to Sybase ASA data
types. See issue ODIASA100 for more details.
Warning: In order to make application tables
visible to all users, make sure that all users are
members of the group of the owner of the
application tables. For more details, see ASA
documentation ("Database object names and
prefixes").

Prepare the runtime environment

1. Warning: No ODBC client environment is
required. The Sybase ASA driver is designed to
be linked with ESQL/C libs
(libdblib8+libdbtools8).

2. If you want to connect to a remote database server,
you must have the Sybase ASA Client Software
installed on the computer running 4gl applications.

3. Test the Sybase ASA Client Software: Make sure
Sybase ASA is started on the database server and
try to connect to a database by using the
Interactive SQL tool.

4. Set up the fglprofile entries for database
connections.

5. Define the connection timeout with the following
fglprofile entry:

dbi.database.dbname.asa.logintime =
integer

This entry defines the number of seconds to wait

Genero Business Development Language

1522

for a connection.
Default is 5 seconds.

6. In order to connect to Sybase ASA, you must have
a database driver "dbmasa*" installed.

ODIASA001 - DATE and DATETIME data types
INFORMIX provides two data types to store dates and time information:

• DATE = for year, month and day storage.
• DATETIME = for year to fraction(1-5) storage.

Sybase ASA provides two data type to store dates :

• DATE = for year, month, day storage.
• TIME = for hour, minutes, seconds, fraction(3) storage.
• TIMESTAMP = for year, month, day, hour, minutes, seconds, fraction(3) storage.

String representing date time information :

INFORMIX is able to convert quoted strings to DATE / DATETIME data if the string
contents matches environment parameters (i.e. DBDATE, GL_DATETIME). As in
INFORMIX, Sybase ASA can convert quoted strings representing datetime data in the
ANSI format. The CONVERT() SQL function allows you to convert strings to dates.

Date time arithmetic:

• INFORMIX supports date arithmetic on DATE and DATETIME values. The result
of an arithmetic expression involving dates/times is a number of days when only
DATEs are used and an INTERVAL value if a DATETIME is used in the
expression.

• INFORMIX automatically converts an integer to a date when the integer is used
to set a value of a date column. Sybase ASA does not support this automatic
conversion.

• Complex DATETIME expressions (involving INTERVAL values for example) are
INFORMIX specific and have no equivalent in Sybase ASA.

• Sybase ASA allows the following arithmetic on dates:
 - Date + integer => add n days to the date.
 - Date - integer => subtract n days from the date.
 - Timestamp + integer => add n days to the timestamp.
 - Timestamp - integer => subtract n days from the timestamp.
 - Date - Date => compute number of days between 2 dates.
 - Timestamp - Timestamp => compute number of days between 2 timestamps.
 - Date + Time => Create a Timestamp combining given date & time.

• INFORMIX converts automatically an integer to a date when the integer is used
to set a value of a date column. Sybase ASA does not support this automatic
conversion.

ODI Adaptation Guides

1523

Solution:

Sybase ASA has the same DATE data type as INFORMIX (year, month, day). So you
can use Sybase ASA DATE data type for Informix DATE columns.

Sybase ASA TIME data type can be used to store INFORMIX DATETIME HOUR TO
FRAC(3) values. The database interface makes the conversion automatically.

INFORMIX DATETIME values with any precision from YEAR to FRACTION(5) can be
stored in Sybase ASA TIMESTAMP columns. The database interface makes the
conversion automatically. Missing date or time parts default to 1900-01-01 00:00:00.0.
For example, when using a DATETIME HOUR TO MINUTE with the value of "11:45",
the ASA TIMESTAMP value will be "1900-01-01 11:45:00.0".

Warning: Literal DATETIME and INTERVAL expressions (i.e. DATETIME (1999-10-12)
YEAR TO DAY) are not converted.

Warning: Using integers as a number of days in an expression with dates is not
supported by Sybase ASA. Check your code to detect where you are using integers with
DATE columns.

Warning: It is strongly recommended to use BDL variables in dynamic SQL statements
instead of quoted strings representing DATEs. For example :
 LET stmt = "SELECT ... FROM customer WHERE creat_date >'",
adate,"'"
is not portable; use a question mark place holder instead and OPEN the cursor USING
adate :
 LET stmt = "SELECT ... FROM customer WHERE creat_date > ?"

ODIASA003 - Reserved words
Even if ASA allows SQL reserved keywords as SQL object names if enclosed in double
quotes ("create table "table" (col1 int)"), you should take care of your
existing database schema and check that you do not use Sybase ASA SQL words.

Solution:

Database objects having a name which is a Sybase ASA SQL reserved word must be
renamed.

All BDL application sources must be verified. To check if a given keyword is used in a
source, you can use UNIX 'grep' or 'awk' tools. Most modifications can be automatically
done with UNIX tools like 'sed' or 'awk'.

Genero Business Development Language

1524

ODIASA004 - ROWIDs
When creating a table, INFORMIX automatically adds a "ROWID" column of type integer
(applies to non-fragmented tables only). The ROWID column is auto-filled with a unique
number and can be used like a primary key to access a given row.

Sybase ASA tables have no ROWIDs.

Solution:

If the BDL application uses ROWIDs, the program logic should be reviewed in order to
use the real primary keys (usually, serials which can be supported).

All references to SQLCA.SQLERRD[6] must be removed because this variable will not
hold the ROWID of the last INSERTed or UPDATEd row when using the Sybase ASA
interface.

ODIASA005 - SERIAL data type
INFORMIX SERIAL data type and automatic number production :

• The table column must be of type SERIAL.
• To generate a new serial, no value or a zero value is given to the INSERT

statement :
 INSERT INTO tab1 (c) VALUES ('aa')
 INSERT INTO tab1 (k, c) VALUES (0, 'aa')

• After INSERT, the new SERIAL value is provided in SQLCA.SQLERRD[2].

INFORMIX allows you to insert rows with a value different from zero for a serial column.
Using an explicit value will automatically increment the internal serial counter, to avoid
conflicts with future INSERTs that are using a zero value :
 CREATE TABLE tab (k SERIAL); --> internal counter = 0
 INSERT INTO tab VALUES (0); --> internal counter = 1
 INSERT INTO tab VALUES (10); --> internal counter = 10
 INSERT INTO tab VALUES (0); --> internal counter = 11
 DELETE FROM tab; --> internal counter = 11
 INSERT INTO tab VALUES (0); --> internal counter = 12

Sybase ASA IDENTITY columns :

• When creating a table, the IDENTITY keyword must be specified after the
column data type:
 CREATE TABLE tab1 (k integer identity, c char(10))

• You cannot specify a start value
• A new number is automatically created when inserting a new row :

 INSERT INTO tab1 (c) VALUES ('aaa')

ODI Adaptation Guides

1525

• To get the last generated number, Sybase ASA provides a global variable :
 SELECT @@IDENTITY

• When IDENTITY_INSERT is ON, you can set a specific value into a IDENTITY
column, but zero does not generate a new serial:
 INSERT INTO tab1 (k, c) VALUES (100, 'aaa')

INFORMIX SERIALs and MS Sybase ASA IDENTITY columns are quite similar; the
main difference is that MS Sybase ASA does not generate a new serial when you
specify a zero value for the identity column.

Solution :

You are free to use IDENTITY columns (1) or insert triggers based on the
SERIALREG table (2). The first solution is faster, but does not allow explicit serial value
specification in insert statements; the second solution is slower but allows explicit serial
value specification. You can initially use the second solution to have unmodified 4gl
programs working on Sybase ASA, but you should update your code to use native
IDENTITY columns for performance.

With the following fglprofile entry, you define the technique to be used for SERIAL
emulation :

 dbi.database.<dbname>.ifxemul.datatype.serial.emulation =
{"native"|"regtable"}

The 'native' value defines the IDENTITY column technique and the 'regtable' defines
the trigger technique.

This entry must be used with :

 dbi.database.<dbname>.ifxemul.datatype.serial = {true|false}

If this entry is set to false, the emulation method specification entry is ignored.

Warning : When no entry is specified, the default is SERIAL emulation enabled with
'native' method (IDENTITY-based).

1. Using IDENTITY columns

In database creation scripts, all SERIAL data types must be converted by hand to
INTEGER IDENTITY data types.

Warning : Start values SERIAL(n) cannot be converted, there is no INTEGER
IDENTITY(n) in Sybase ASA.

Tables created from the BDL programs can use the SERIAL data type : When a BDL
program executes a CREATE [TEMP] TABLE with a SERIAL column, the database
interface automatically converts the "SERIAL[(n)]" data type to "INTEGER
IDENTITY[(n,1)]".

Genero Business Development Language

1526

In BDL, the new generated SERIAL value is available from the SQLCA.SQLERRD[2]
variable. This is supported by the database interface which performs a "SELECT
@@IDENTITY".

Warning : When you insert a row with zero as serial value, the serial column gets the
value zero. You must review all INSERT statements using zero for the serial column.
For example, the following statement:
 INSERT INTO tab (col1,col2) VALUES (0, p_value)
must be converted to :
 INSERT INTO tab (col2) VALUES (p_value)

Warning : SELECT * FROM table INTO TEMP with original table having an IDENTITY
column is not supported: The database driver must convert the Informix SELECT INTO
TEMP statement into a SELECT INTO #tab + INSERT (see temporary tables) because
ODBC does not allow SQL parameters in DDL statements. As MS Sybase ASA does not
allow you to insert a row by giving the identity column, the INSERT statement fails.

2. Using triggers with the SERIALREG table

First, you must prepare the database and create the SERIALREG table as follows:

CREATE TABLE SERIALREG (
 TABLENAME VARCHAR(50) NOT NULL,
 LASTSERIAL INTEGER NOT NULL,
 PRIMARY KEY (TABLENAME)
)

In database creation scripts, all SERIAL[(n)] data types must be converted to INTEGER
data types and you must create one trigger for each table. To know how to write those
triggers, you can create a small Genero program that creates a table with a SERIAL
column. Set the FGLSQLDEBUG environment variable and run the program. The debug
output will show you the native trigger creation command.

Tables created from the BDL programs can use the SERIAL data type. When a BDL
program executes a CREATE [TEMP] TABLE with a SERIAL column, the database
interface automatically converts the "SERIAL[(n)]" data type to "INTEGER" and creates
the insert triggers.

Warning : Sybase ASA does not allow you to create triggers on temporary tables.
Therefore, you cannot create temp tables with a SERIAL column when using this
solution.

Warning : SELECT ... INTO TEMP statements using a table created with a SERIAL
column do not automatically create the SERIAL triggers in the temporary table. The type
of the column in the new table is INTEGER.

Warning : Sybase ASA triggers are not automatically dropped when the corresponding
table is dropped. Database administrators must be aware of this behavior when
managing schemas.

ODI Adaptation Guides

1527

Warning : INSERT statements using NULL for the SERIAL column will produce a new
serial value, instead of a NULL like INFORMIX does:
 INSERT INTO tab (col1,col2) VALUES (NULL,'data')
This behavior is mandatory in order to support INSERT statements which do not use the
serial column :
 INSERT INTO tab (col2) VALUES ('data')
Check if your application uses tables with a SERIAL column that can contain a NULL
value.

Warning : The serial production is based on the SERIALREG table which registers the
last generated number for each table. If you delete rows of this table, sequences will
restart at 1 and you will get unexpected data.

ODIASA006 - Outer joins
The syntax of OUTER joins is quite different in INFORMIX and Sybase ASA :

In INFORMIX SQL, outer tables are defined in the FROM clause with the OUTER
keyword :

SELECT ... FROM cust, OUTER(order)
 WHERE cust.key = order.custno
SELECT ... FROM cust, OUTER(order,OUTER(item))
 WHERE cust.key = order.custno
 AND order.key = item.ordno
 AND order.accepted = 1

Sybase ASA Version 7 supports the ANSI outer join syntax :

SELECT ... FROM cust LEFT OUTER JOIN order
 ON cust.key = order.custno
SELECT ...
 FROM cust LEFT OUTER JOIN order
 LEFT OUTER JOIN item
 ON order.key = item.ordno
 ON cust.key = order.custno
 WHERE order.accepted = 1

The old way to define outer joins in Sybase ASA looks like the following :

SELECT ... FROM a, b WHERE a.key *= b.key

See the Sybase ASA reference manual for a complete description of the syntax.

Solution:

The Sybase ASA interface can convert simple INFORMIX OUTER specifications to
Sybase ASA ANSI outer joins.

Genero Business Development Language

1528

Prerequisites :

1. The outer join in the WHERE part must use the table name as prefix.
 Example : "WHERE tab1.col1 = tab2.col2 ".

2. Additional conditions on outer table columns cannot be detected and therefore
are not supported :
 Example : "... FROM tab1, OUTER(tab2) WHERE tab1.col1 = tab2.col2
AND tab2.colx > 10".

3. Statements composed of 2 or more SELECT instructions using OUTERs are not
supported.
 Example : "SELECT ... UNION SELECT" or "SELECT ... WHERE col IN
(SELECT...)"

Notes :

1. Table aliases are detected in OUTER expressions.
 OUTER example with table alias : "OUTER(tab1 alias1)".

2. In the outer join, <outer table>.<col> can be placed on both right or left sides of
the equal sign.
 OUTER join example with table on the left : "WHERE outertab.col1 =
maintab.col2 ".

3. Table names detection is not case-sensitive.
 Example : "SELECT ... FROM tab1, TAB2 WHERE tab1.col1 =
tab2.col2".

4. Temporary tables are supported in OUTER specifications.

ODIASA007a - Database concepts
As in INFORMIX, an Sybase ASA engine can manage multiple database entities. When
creating a database object such as a table, Sybase ASA allows you to use the same
object name in different databases.

ODIASA008a - Data consistency and concurrency
management
Data consistency involves readers which want to access data currently modified by
writers and concurrency data access involves several writers accessing the same data
for modification. Locking granularity defines the amount of data concerned when a lock
is set (row, page, table, ...).

INFORMIX

INFORMIX uses a locking mechanism to manage data consistency and concurrency.
When a process modifies data with UPDATE, INSERT or DELETE, an exclusive lock is

ODI Adaptation Guides

1529

set on the affected rows. The lock is held until the end of the transaction. Statements
performed outside a transaction are treated as a transaction containing a single
operation and therefore release the locks immediately after execution. SELECT
statements can set shared locks according to the isolation level. In case of locking
conflicts (for example, when two processes want to acquire an exclusive lock on the
same row for modification or when a writer is trying to modify data protected by a shared
lock), the behavior of a process can be changed by setting the lock wait mode.

Control :

• Isolation level : SET ISOLATION TO ...
• Lock wait mode : SET LOCK MODE TO ...
• Locking granularity : CREATE TABLE ... LOCK MODE {PAGE|ROW}
• Explicit locking : SELECT ... FOR UPDATE

Defaults :

• The default isolation level is read committed.
• The default lock wait mode is "not wait".
• The default locking granularity is per page.

Sybase ASA

As in INFORMIX, Sybase ASA uses locks to manage data consistency and concurrency.
The database manager sets exclusive locks on the modified rows and shared locks
when data is read, according to the isolation level. The locks are held until the end of
the transaction. When multiple processes want to access the same data, the latest
processes must wait until the first finishes its transaction or the lock timeout occurred.
The lock granularity is at the row or table level. For more details, see Sybase ASA's
Documentation, "Accessing and Changing Data", "Locking".

Control :

• Lock wait mode : Can only be set to on or off, and a timeout can be specified,
with:
 SET TEMPORARY OPTION BLOCKING = { ON | OFF }
 SET TEMPORARY OPTION BLOCKING_TIMEOUT = n

• Isolation level : Can be set with:
 SET TEMPORARY OPTION ISOLATION LEVEL = {1|2|3|4}

• Locking granularity : Row level.
• Explicit locking : SELECT ... FOR UPDATE

Defaults :

• The default isolation level is Read Committed (readers cannot see uncommitted
data; no shared lock is set when reading data).

Solution:

Genero Business Development Language

1530

For portability, it is recommended that you work with INFORMIX in the read committed
isolation level, to make processes wait for each other (lock mode wait) and to create
tables with the "lock mode row" option.

See INFORMIX and Sybase ASA documentation for more details about data
consistency, concurrency and locking mechanisms.

When using SET LOCK MODE and SET ISOLATION LEVEL instructions, the database
interface sets automatically the native database session options.

ODIASA008b - SELECT FOR UPDATE
A lot of BDL programs use pessimistic locking in order to avoid several users editing the
same rows at the same time.

 DECLARE cc CURSOR FOR
 SELECT ... FOR UPDATE
 OPEN cc
 FETCH cc <-- lock is acquired
 CLOSE cc <-- lock is released

• A transaction must be started before opening cursors declared for update.
• The row must be fetched in order to set the lock.
• The lock is released when the transaction ends (if the cursor is not declared

"WITH HOLD") or when the cursor is closed.

Sybase ASA allows individual and exclusive row locking by using the FOR UPDATE
clause, as Informix.

• Individual locks are acquired when fetching the rows.
• When the cursor (WITH HOLD) is opened outside a transaction, locks are

released when the cursor is closed.
• When the cursor is opened inside a transaction, locks are released when the

transaction ends.

Sybase ASA's locking granularity is at the row level, page level or table level (the level is
automatically selected by the engine for optimization).

To control the behavior of the program when locking rows, INFORMIX provides a
specific instruction to set the wait mode:

 SET LOCK MODE TO { WAIT | NOT WAIT | WAIT seconds }

The default mode is WAIT. This as an INFORMIX specific SQL statement.

Solution:

ODI Adaptation Guides

1531

SELECT FOR UPDATE statements are well supported.

Warning : Sybase ASA locks the rows when you open the cursor. You will have to test
SQLCA.SQLCODE after doing an OPEN.

Warning : The database interface is based on an emulation of an Informix engine using
transaction logging. Therefore, opening a SELECT ... FOR UPDATE cursor declared
outside a transaction will raise an SQL error -255 (not in transaction).

Warning : The SELECT FOR UPDATE statement cannot contain an ORDER BY clause
if you want to perform positioned updates/deletes with WHERE CURRENT OF.

You must review the program logic if you use pessimistic locking; it is based on the NOT
WAIT mode, which is not supported by Sybase ASA.

ODIASA009 - Transactions handling
INFORMIX and Sybase ASA handle transactions in a similar manner.

INFORMIX native mode (non ANSI) :

• Transactions are started with "BEGIN WORK".
• Transactions are validated with "COMMIT WORK".
• Transactions are canceled with "ROLLBACK WORK".
• Statements executed outside of a transaction are automatically committed.
• DDL statements can be executed (and canceled) in transactions.

Sybase ASA :

• Transactions are started with "BEGIN TRANSACTION [name]".
• Transactions are validated with "COMMIT TRANSACTION [name]".
• Transactions are canceled with "ROLLBACK TRANSACTION [name]".
• Transactions save points can be placed with "SAVEPOINT [name]".
• Sybase ASA supports named and nested transactions.
• By default transactions are started implicitly as in the ANSI specification.

This behavior can be changed with:
 SET TEMPORARY OPTION CHAINED = OFF

• DDL statements are not supported in transactions blocks.

Transactions in stored procedures : avoid using transactions in stored procedures to
allow the client applications to handle transactions, according to the transaction model.

Solution:

INFORMIX transaction handling commands are automatically converted to Sybase ASA
instructions to start, validate or cancel transactions.

Genero Business Development Language

1532

The database driver sets the "CHAINED" option to OFF when connecting to the server.

Regarding the transaction control instructions, the BDL applications do not have to be
modified in order to work with Sybase ASA.

ODIASA011 - CHARACTER data types
As in INFORMIX, Sybase ASA provides the CHAR and VARCHAR data types to store
character data.

INFORMIX CHAR type can store up to 32767 characters and the VARCHAR data type is
limited to 255 characters.

Sybase ASA CHAR and VARCHAR both have a limit of 32767 characters.

Sybase ASA provides the LONG VARCHAR data type to store large character strings.
Only the LIKE operator can be used for searches. LONG VARCHAR columns cannot be
used in classic comparison expressions (as col = 'value').

Solution:

The database interface supports character string variables in SQL statements for input
(BDL USING) and output (BDL INTO) for CHAR and VARCHAR data types.

Warning : Check that your database schema does not use CHAR or VARCHAR types
with a length exceeding the Sybase ASA limit.

Warning: TEXT values cannot be used as input or output parameters in SQL
statements and therefore are not supported.

ODIASA012 - Constraints

Constraint naming syntax :

Both INFORMIX and Sybase ASA support primary key, unique, foreign key, default and
check constraints. But Sybase ASA does not support constraint naming syntax:

UNIQUE constraint example :

INFORMIX Sybase ASA
CREATE TABLE scott.emp (
...

CREATE TABLE scott.emp (
...

ODI Adaptation Guides

1533

empcode CHAR(10) UNIQUE
 [CONSTRAINT pk_emp],
...

empcode CHAR(10)UNIQUE,
...

Solution:

Constraint naming syntax :

The database interface does not convert constraint naming expressions when creating
tables from BDL programs. Review the database creation scripts to adapt the constraint
naming clauses for Sybase ASA.

ODIASA013 - Triggers
INFORMIX and Sybase ASA provide triggers with similar features, but the programming
languages are totally different.

Warning : Sybase ASA does not support triggers on temporary tables.

Solution:

INFORMIX triggers must be converted to Sybase ASA triggers "by hand".

ODIASA014 - Stored procedures
Both INFORMIX and Sybase ASA support stored procedures, but the programming
languages are totally different :

• INFORMIX stored procedures must be written in SPL.
• Sybase ASA stored procedures must be written in Sybase ASA SQL.

Solution:

INFORMIX stored procedures must be converted to Sybase ASA "by hand".

ODIASA016a - Defining database users
INFORMIX users are defined at the operating system level, they must be members of
the 'informix' group, and the database administrator must grant CONNECT, RESOURCE
or DBA privileges to those users.

Genero Business Development Language

1534

Before a user can access an Sybase ASA database, the system administrator (DBA)
must declare the application users in the database with the GRANT statement. You may
also need to define groups in order to make tables visible to other users.

Solution:

See Sybase ASA documentation for more details on database logins and users.

ODIASA016b - Setting privileges
INFORMIX and Sybase ASA user privileges management are quite similar.

Sybase ASA provides user groups to grant or revoke permissions to more than one
user at the same time.

ODIASA017 - Temporary tables

INFORMIX temporary tables are created through the CREATE TEMP TABLE DDL
instruction or through a SELECT ... INTO TEMP statement. Temporary tables are
automatically dropped when the SQL session ends, but they can also be dropped with
the DROP TABLE command. There is no name conflict when several users create
temporary tables with the same name.

Warning : The CREATE TEMP TABLE and SELECT INTO TEMP statements are not
supported in Sybase ASA.

Sybase ASA supports temporary tables by using the DECLARE LOCAL TEMPORARY
TABLE statement.

Solution:

The CREATE TEMP TABLE statements are converted by the database interface to
DECLARE LOCAL TEMPORARY TABLE statements.

Warning : SELECT INTO TEMP statements cannot be converted, because Sybase ASA
does not provide a way to create a temporary table from a result set, such as CREATE
TABLE xx AS (SELECT ...).

ODI Adaptation Guides

1535

ODIASA018 - Substrings in SQL
INFORMIX SQL statements can use subscripts on columns defined with the character
data type :
 SELECT ... FROM tab1 WHERE col1[2,3] = 'RO'
 SELECT ... FROM tab1 WHERE col1[10] = 'R' -- Same as
col1[10,10]
 UPDATE tab1 SET col1[2,3] = 'RO' WHERE ...
 SELECT ... FROM tab1 ORDER BY col1[1,3]

.. while Sybase ASA provides the SUBSTR() function, to extract a substring from a
string expression :
 SELECT FROM tab1 WHERE SUBSTRING(col1,2,2) = 'RO'
 SELECT SUBSTRING('Some text',6,3) FROM DUAL -- Gives
'tex'

Solution:

You must replace all Informix col[x,y] expressions by SUBSTRING(col,x,y-x+1).

Warning: In UPDATE instructions, setting column values through subscripts will
produce an error with Sybase ASA :
 UPDATE tab1 SET col1[2,3] = 'RO' WHERE ...
is converted to :
 UPDATE tab1 SET SUBSTRING(col1,2,3-2+1) = 'RO' WHERE ...

Warning: Column subscripts in ORDER BY expressions are also converted and
produce an error with Sybase ASA :
 SELECT ... FROM tab1 ORDER BY col1[1,3]
is converted to :
 SELECT ... FROM tab1 ORDER BY SUBSTRING(col1,1,3-1+1)

ODIASA019 - Name resolution of SQL objects
INFORMIX uses the following form to identify an SQL object :
 [database[@dbservername]:][{owner|"owner"}.]identifier

With Sybase ASA, an object name takes the following form :
 [{owner|"owner"}.]{identifier|"identifier"}

Identifiers have a maximum length of 128 bytes and are composed of alphabetic
characters (_, @, #, $ are considered as alphabetic characters) or digits. The first
character must be alphabetic.

INFORMIX database object names are not case sensitive in non-ANSI databases.
Sybase ASA database objects names are case sensitive by default, but this is related

Genero Business Development Language

1536

to the -c option of the dbinit command. Databases must be created as case-sensitive,
otherwise a string comparison such as "abc"="ABC" would evaluate to TRUE.

ODIASA020 - String delimiters
The ANSI string delimiter character is the single quote ('string'). Double quotes are
used to delimit database object names ("object-name").

Example : WHERE "tabname"."colname" = 'a string value'

As INFORMIX, Sql Server Anywhere allows to use double quotes as string delimiters, if
the QUOTED_IDENTIFIER session option is OFF, the default is ON:

 SET TEMPORARY OPTION QUOTED_IDENTIFIER = OFF

Remark : This problem concerns only double quotes within SQL statements. Double
quotes used in BDL string expressions are not subject of SQL compatibility problems.

Solution:

When the ifxemul.dblquotes option is set, the Sybase ASA database interface converts
all double quotes to single quotes in SQL statements. The database driver does not set
the QUOTED_IDENTIFIER option implicitly.

ODIASA021 - NUMERIC data types
Sybase ASA offers numeric data types which are quite similar to INFORMIX numeric
data types. The table below shows general conversion rules for numeric data types :

INFORMIX Sybase ASA
SMALLINT SMALLINT
INTEGER (synonym: INT) INTEGER (synonym: INT)
DECIMAL[(p[,s)] (synonyms: DEC,
NUMERIC)
DECIMAL(p,s) defines a fixed point
decimal where p is the total number
of significant digits and s the number
of digits that fall on the right of the
decimal point.
DECIMAL(p) defines a floating point
decimal where p is the total number
of significant digits.

DECIMAL[(p[,s)] (synonyms: DEC,
NUMERIC)
DECIMAL[(p[,s])] defines a fixed point
decimal where p is the total number
of significant digits and s the number
of digits that fall on the right of the
decimal point.
Without any decimal storage
specification, the precision defaults to
30 and the scale defaults to 6 :

ODI Adaptation Guides

1537

The precision p can be from 1 to 32.
DECIMAL is treated as
DECIMAL(16).

- DECIMAL in Sybase ASA =
DECIMAL(30,0) in INFORMIX
- DECIMAL(p) in Sybase ASA =
DECIMAL(p,6) in INFORMIX

MONEY[(p[,s])

Sybase ASA provides the MONEY
and SMALLMONEY data types, but
the currency symbol handling is quite
different. Therefore, Informix MONEY
columns should be implemented as
DECIMAL columns in Sybase ASA.

SMALLFLOAT (synonyms: REAL) REAL
FLOAT[(n)] (synonyms: DOUBLE
PRECISION)
The precision (n) is ignored.

FLOAT(n) (synonyms: DOUBLE
PRECISION)
Where n must be from 1 to 15.

Solution:

In BDL programs :

When creating tables from BDL programs, the database interface automatically converts
INFORMIX data types to corresponding Sybase ASA data types.

Database creation scripts :

• SMALLINT and INTEGER columns do not have to use another data type in
Sybase ASA.

• For DECIMALs, check the precision limit. Always use a precision and a scale.
• Convert MONEY columns to DECIMAL(p,s) columns. Always use a precision and

a scale.
• Convert SMALLFLOAT columns to REAL columns.
• Since FLOAT precision is ignored in INFORMIX, convert this data type to

FLOAT(15).

ODIASA022 - Getting one row with SELECT
With INFORMIX, you must use the system table with a condition on the table id :

 SELECT user FROM systables WHERE tabid=1

With Sybase ASA, you can omit the FROM clause to generate one row only:

 SELECT user

Solution:

Genero Business Development Language

1538

Check the BDL sources for "FROM systables WHERE tabid=1" and use dynamic SQL to
resolve this problem.

ODIASA024 - MATCHES and LIKE in SQL conditions
INFORMIX supports MATCHES and LIKE in SQL statements, while Sybase ASA
supports the LIKE statement only.

The MATCHES operator of INFORMIX uses the star, question mark and square braces
wildcard characters.
The LIKE operator of Sybase ASA offers the percent, underscore and square braces
wildcard characters.

The following substitutions must be made to convert a MATCHES condition to a LIKE
condition :

• MATCHES keyword must be replaced by LIKE.
• All '*' characters must be replaced by '%'.
• All '?' characters must be replaced by '_'.

Solution:

Warning: SQL statements using MATCHES expressions must be reviewed in order to
use LIKE expressions.

See also: MATCHES operator in SQL Programming.

ODIASA025 - INFORMIX specific SQL statements in BDL
The BDL compiler supports several INFORMIX specific SQL statements that have no
meaning when using Sybase ASA.

Examples :

• CREATE DATABASE dbname IN dbspace WITH BUFFERED LOG
• START DATABASE (SE only)
• ROLLFORWARD DATABASE
• CREATE TABLE ... IN dbspace WITH LOCK MODE ROW

Solution:

Review your BDL source and remove all static SQL statements which are INFORMIX
specific.

ODI Adaptation Guides

1539

ODIASA028 - INSERT cursors
INFORMIX supports insert cursors. An "insert cursor" is a special BDL cursor declared
with an INSERT statement instead of a SELECT statement. When this kind of cursor is
open, you can use the PUT instruction to add rows and the FLUSH instruction to insert
the records into the database.

For INFORMIX database with transactions, OPEN, PUT and FLUSH instructions must
be executed within a transaction.

Sybase ASA does not support insert cursors.

Solution:

Insert cursors are emulated by the Sybase ASA database interface.

ODIASA030 - Very large data types
Both INFORMIX and Sybase ASA provide special data types to store very large texts or
images.

Sybase ASA recommends the following conversion rules :

INFORMIX Data Type Sybase ASA Data Type
TEXT TEXT / LONG VARCHAR

BYTE BINARY / LONG BINARY / IMAGE /
VARBINARY

Solution:

Very large character data types are not supported yet by the Sybase ASA database
interface.

ODIASA031 - Cursors WITH HOLD
INFORMIX automatically closes opened cursors when a transaction ends unless the
WITH HOLD option is used in the DECLARE instruction.

Sybase ASA does not close cursors when a transaction ends, as long as the global
parameter close_on_endtrans is off.

Genero Business Development Language

1540

Solution:

BDL cursors that are not declared "WITH HOLD" are automatically closed by the
database interface when a COMMIT WORK or ROLLBACK WORK is performed by the
BDL program.

ODIASA033 - Querying system catalog tables
As in INFORMIX, Sybase ASA provides system catalog tables
(sysobjects,syscolumns,etc) in each database, but the table names and their structure
are quite different.

Solution:

Warning: No automatic conversion of INFORMIX system tables is provided by the
database interface.

ODIASA034 - Syntax of UPDATE statements
INFORMIX allows a specific syntax for UPDATE statements :

 UPDATE table SET (<col-list>) = (<val-list>)

or

 UPDATE table SET table.* = myrecord.*
 UPDATE table SET * = myrecord.*

Solution:

Static UPDATE statements using the above syntax are converted by the compiler to the
standard form :

 UPDATE table SET column=value [,...]

ODIASA036 - INTERVAL data type
INFORMIX's INTERVAL data type stores a value that represents a span of time.
INTERVAL types are divided into two classes : year-month intervals and day-time
intervals.

ODI Adaptation Guides

1541

Sybase ASA does not provide a data type corresponding to the INFORMIX INTERVAL
data type.

Solution:

Warning: The INTERVAL data type is not well supported because the database server
has no equivalent native data type. However, you can store into and retrieve from CHAR
columns BDL INTERVAL values.

ODIASA039 - Data storage concepts
An attempt should be made to preserve as much of the storage information as possible
when converting from INFORMIX to Sybase ASA. Most important storage decisions
made for INFORMIX database objects (like initial sizes and physical placement) can be
reused in an Sybase ASA database.

Storage concepts are quite similar in INFORMIX and in Sybase ASA, but the names are
different.

The following table compares INFORMIX storage concepts to Sybase ASA storage
concepts :

INFORMIX Sybase ASA
Physical units of storage
The largest unit of physical disk space
is a "chunk", which can be allocated
either as a cooked file (I/O is controlled
by the OS) or as raw device (=UNIX
partition, I/O is controlled by the
database engine). A "dbspace" uses at
least one "chunk" for storage.
You must add "chunks" to "dbspaces"
in order to increase the size of the
logical unit of storage.

A database is composed of
tablespace. Each tablespace is
composed of a '.db' file. In a database,
there is one tablespace at the creation,
but can hold more than one tablespace.
The size of a tablespace is increased
automatically.

A "page" is the smallest physical unit of
disk storage that the engine uses to
read from and write to databases.
A "chunk" contains a certain number of
"pages".
The size of a "page" must be equal to
the operating system's block size.

At the finest level of granularity, Sql
Server Anywhere stores data in "page"
which size can be defined at the
creation time.

An "extent" consists of a collection of
continuous "pages" that the engine
uses to allocate both initial and
subsequent storage space for database

Database files are extended by 32
pages at a time when the space is
needed.

Genero Business Development Language

1542

tables.
When creating a table, you can specify
the first extent size and the size of
future extents with the EXTENT SIZE
and NEXT EXTENT options.
For a single table, "extents" can be
located in different "chunks" of the
same "dbspace".
Logical units of storage
A "table" is a logical unit of storage that
contains rows of data values.

Same concept as INFORMIX.

A "database" is a logical unit of storage
that contains table and index data.
Each database also contains a system
catalog that tracks information about
database elements like tables, indexes,
stored procedures, integrity constraints
and user privileges.

Same concept as INFORMIX.

Database tables are created in a
specific "dbspace", which defines a
logical place to store data.
If no dbspace is given when creating
the table, INFORMIX defaults to the
current database dbspace.

?

The total disk space allocated for a
table is the "tblspace", which includes
"pages" allocated for data, indexes,
blobs, tracking page usage within table
extents.

?

Other concepts
When initializing an INFORMIX engine,
a "root dbspace" is created to store
information about all databases,
including storage information (chunks
used, other dbspaces, etc.).

?

The "physical log" is a set of
continuous disk pages where the
engine stores "before-images" of data
that has been modified during
processing.

The "logical log" is a set of "logical-log
files" used to record logical operations
during on-line processing. All transaction
information is stored in the logical log
files if a database has been created with

Sybase ASA uses "database log files"
to record SQL transactions.

ODI Adaptation Guides

1543

transaction log.

INFORMIX combines "physical log" and
"logical log" information when doing fast
recovery. Saved "logical logs" can be
used to restore a database from tape.

ODIASA040 - National characters data types
INFORMIX offers the NCHAR and NVARCHAR data types to store strings in a localized
character set.

Solution:

Warning : National character data types are not supported yet.

ODIASA046 - The LOAD and UNLOAD instructions
INFORMIX provides two SQL instructions to export / import data from / into a database
table: The UNLOAD instruction copies rows from a database table into an text file and
the LOAD instruction inserts rows from an text file into a database table.

Warning : Sybase ASA has LOAD and UNLOAD instructions, but those commands are
related to database backup and recovery. Do not confuse with INFORMIX commands.

Solution:

LOAD and UNLOAD instructions are supported.

Warning : The LOAD instruction does not work with tables using emulated SERIAL
columns because the generated INSERT statement holds the "SERIAL" column which is
actually a IDENTITY column in Sybase ASA. See the limitations of INSERT statements
when using SERIALs.

Warning : In Sybase ASA, INFORMIX DATE data is stored in DATETIME columns, but
DATETIME columns are similar to INFORMIX DATETIME YEAR TO FRACTION(3)
columns. Therefore, when using LOAD and UNLOAD, those columns are converted to
text data with the format "YYYY-MM-DD hh:mm:ss.fff".

Warning : In Sybase ASA, INFORMIX DATETIME data is stored in DATETIME
columns, but DATETIME columns are similar to INFORMIX DATETIME YEAR TO
FRACTION(3) columns. Therefore, when using LOAD and UNLOAD, those columns are
converted to text data with the format "YYYY-MM-DD hh:mm:ss.fff".

Genero Business Development Language

1544

Warning : When using an INFORMIX database, simple dates are unloaded with the
DBDATE format (ex: "23/12/1998"). Therefore, unloading from an INFORMIX database
for loading into a Sybase ASA database is not supported.

ODIASA047 - Case sensitivity
In INFORMIX, database object names like table and column names are not case
sensitive :

CREATE TABLE Customer (Custno INTEGER, ...)
SELECT CustNo FROM cuSTomer ...

In Sybase ASA, database object names and character data are case-insensitive by
default :

CREATE TABLE Customer (Custno INTEGER, CustName
CHAR(20))
INSERT INTO CUSTOMER VALUES (1, 'TECHNOSOFT')
SELECT CustNo FROM cuSTomer WHERE custname =
'techNOSoft'

Solution:

When you create a Sybase ASA database with dbinit, you can use the -c option to
make the database case-sensitive.

ODIASA051 - Setup database statistics
INFORMIX provides a special instruction to compute database statistics in order to help
the optimizer find the right query execution plan :

UPDATE STATISTICS ...

Sybase ASA offers a similar instruction, but it uses different clauses :

UPDATE STATISTICS ...

See Sybase ASA documentation for more details.

Solution:

Centralize the optimization instruction in a function.

ODI Adaptation Guides

1545

ODIASA053 - The ALTER TABLE instruction
INFORMIX and MS Sybase ASA use different implementations of the ALTER TABLE
instruction. For example, INFORMIX allows you to use multiple ADD clauses separated
by comma. This is not supported by Sybase ASA :

INFORMIX :
 ALTER TABLE customer ADD(col1 INTEGER), ADD(col2 CHAR(20))

Sybase ASA :
 ALTER TABLE customer ADD col1 INTEGER, col2 CHAR(20)

Solution:

Warning: No automatic conversion is done by the database interface. There is even no
real standard for this instruction (that is, no common syntax for all database servers).
Read the SQL documentation and review the SQL scripts or the BDL programs in order
to use the database server specific syntax for ALTER TABLE.

ODIASA054 - SQL Interruption
With Informix, it is possible to interrupt a long running query if the SQL INTERRUPT ON
option is set by the Genero program. The database server returns SQLCODE -213,
which can be trapped to detect a user interruption.

 MAIN
 DEFINE n INTEGER
 DEFER INTERRUPT
 OPTIONS SQL INTERRUPT ON
 DATABASE test1
 WHENEVER ERROR CONTINUE
 -- Start long query (self join takes time)
 -- From now on, user can hit CTRL-C in TUI mode to stop the query
 SELECT COUNT(*) INTO n FROM customers a, customers b
 WHERE a.cust_id <> b.cust_id
 IF SQLCA.SQLCODE == -213 THEN
 DISPLAY "Statement was interrupted by user..."
 EXIT PROGRAM 1
 END IF
 WHENEVER ERROR STOP
 ...
 END MAIN

Solution:

Warning: SQL Interruption is not supported with Sybase ASA.

Genero Business Development Language

1546

ODIASA100 - Data type conversion table

INFORMIX Data Types Sybase ASA Data Types
CHAR(n) CHAR(n) (limit = 32767c!)

VARCHAR(n) VARCHAR(n) (limit =
32767c!)

INTEGER INTEGER
SMALLINT SMALLINT
FLOAT[(n)] FLOAT(n)
SMALLFLOAT REAL

DECIMAL(p,s) DECIMAL(p,s)! upper limit
= 128 digits

MONEY(p,s) DECIMAL(p,s)! upper limit
= 128 digits

DATE DATE (yyyy-mm-dd)
DATETIME HOUR TO
FRACTION TIME (hh:mm:ss.fff)

DATETIME q1 TO q2
(q2>FRACTION)

TIMESTAMP (yyyy-mm-dd
hh:mm:ss.fff)

INTERVAL q1 TO q2 CHAR(n)

1547

File Management Class
Summary:

• Basics
• Syntax
• Methods
• Examples

o Example 1: Extracting the parts of a file name
o Example 2: Browsing directories

See also: Built-in Functions

Basics
The Path class provides functions to manipulate files and directories on the machine
where the BDL program executes.

This API is provided as a Dynamic C Extension library; it is part of the standard package.

To use this extension, you must import the os package in your program:

IMPORT os

Warning: In order to manipulate files, this API give you access to low-level system
functions. Pay attention to operating system specific conventions like path
separators. Some functions are OS specific, like rwx() which works only on UNIX
systems.

Syntax
The Path class provides an interface to manipulate files and directories.

Syntax:

os.Path

Notes:

1. This class does not have to be instantiated; it provides class methods for the
current program.

Genero Business Development Language

1548

Methods:

Class Methods
Name Description
separator Returns the character used to separate path segments.
pathseparator Returns the character used in environment variables to

separate path elements.
basename Returns the last element of a path.
dirname Returns all components of a path excluding the last one.
rootname Returns the file path without the file extension of the last

element of the file path.
join Joins two path segments adding the platform-dependent

separator.
pathtype Checks whether a path is a relative path or an absolute

path.
exists Checks if a file exists.
extension Returns the file extension.
readable Checks if a file is readable.
writable Checks if a file is writable.
executable Checks if a file is executable.
isfile Checks if a file is a regular file.
isdirectory Checks if a file is a directory.
ishidden Checks if a file is hidden.
islink Checks if a file is a UNIX symbolic link.
isroot Checks if a file is a root path.
type Returns the file type as a string.
size Returns the file size.
atime Returns the time of the last file access.
chown Changes the UNIX owner and group of a file.
uid Returns the UNIX user id of the file.
gid Returns the UNIX group id of the file.
rwx Returns the UNIX permissions on the file.
chrwx Changes the UNIX permissions of a file.
mtime Returns the time of the last file modification.
homedir Returns the path to the HOME directory of the current

user.
rootdir Returns the root directory of the current path.
dirfmask Defines the filter mask for a diropen call
dirsort Defines the sort criteria and sort order for a diropen call
diropen Opens a directory and returns an integer handle to this

directory.

Standard Extensions

1549

dirclose Closes the directory referenced by the directory handle.
dirnext Reads the next entry of the directory referenced by the

directory handle.
pwd Returns the current working directory.
chdir Changes the current working directory
volumes Returns the list of available volumes.
chvolume Changes the current working volume.
mkdir Creates a new directory.
delete Deletes a file or a directory.
rename Renames a file or a directory.
copy Copies a regular file.

os.Path.separator

Purpose:

Returns the character used to separate path segments.

Syntax:

CALL os.Path.separator() RETURNING separator STRING

Notes:

1. separator contains the separator.
2. On Unix, the separator is '/'
3. On Windows, the separator is '\'

os.Path.pathseparator

Purpose:

Returns the character used in environment variables to separate path elements.

Syntax:

CALL os.Path.pathseparator() RETURNING separator STRING

Notes:

1. separator contains the path separator.
2. On Unix, the separator is ':'

Genero Business Development Language

1550

3. On Windows, the separator is ';'

Usage:

You typically use this method to build a path from two components.

os.Path.basename

Purpose:

This method returns the last element of a path.

Syntax:

CALL os.Path.basename(filename STRING) RETURNING basename STRING

Notes:

1. filename is the name of the file.
2. basename is the last element of the path.

Usage:

This method extracts the last component of a path. For example, if you pass
"/root/dir1/file.ext" as the parameter, it will return "file.ext".

See Example 1 for more examples.

os.Path.dirname

Purpose:

Returns all components of a path excluding the last one.

Syntax:

CALL os.Path.dirname(filename STRING) RETURNING dirname STRING

Notes:

1. filename is the name of the file.
2. dirname contains all the elements of the path excluding the last one.

Standard Extensions

1551

Usage:

This method removes the last component of a path. For example, if you pass
"/root/dir1/file.ext" as the parameter, it will return "/root/dir1".

See Example 1 for more examples.

os.Path.rootname

Purpose:

Returns the file path without the file extension of the last element of the file path.

Syntax:

CALL os.Path.rootname(filename STRING) RETURNING rootname STRING

Notes:

1. filename is the file path.
2. rootname contains the file path without the file extension of the last element.

Usage:

This method removes the file extension from the path. For example, if you pass
"/root/dir1/file.ext" as the parameter it will return "/root/dir1/file".

See Example 1 for more examples.

os.Path.join

Purpose:

Joins two path segments adding the platform-dependent separator.

Syntax:

CALL os.Path.join(begin STRING, end STRING) RETURNING newpath STRING

Notes:

1. begin is the beginning path segment.
2. end is the ending path segment.
3. newpath contains the joined path segments.

Genero Business Development Language

1552

Usage:

You typically use this method to construct a path with no system-specific code to use the
correct path separator:

01 LET path = os.Path.join(os.Path.homedir(), name)

This method returns the ending path segment if it is an absolute path.

os.Path.pathtype

Purpose:

Checks if a path is a relative path or an absolute path.

Syntax:

CALL os.Path.pathtype(path STRING) RETURNING pathtype STRING

Notes:

1. path is the path to check.
2. pathtype can be "absolute" if the path is an absolute path, or "relative" if the path

is a relative path.

os.Path.exists

Purpose:

Checks if a file exists.

Syntax:

CALL os.Path.exists(fname STRING) RETURNING result INTEGER

Notes:

1. fname is the file name.
2. result is TRUE if the file exists, FALSE otherwise.

Standard Extensions

1553

os.Path.extension

Purpose:

Returns the file extension.

Syntax:

CALL os.Path.extension(fname STRING) RETURNING extension STRING

Notes:

1. fname is the file name.
2. extension is the string following the last dot found in fname.
3. If fname does not have an extension, the function returns an empty string.

os.Path.readable

Purpose:

Checks if a file is readable.

Syntax:

CALL os.Path.readable(fname STRING) RETURNING result INTEGER

Notes:

1. fname is the file name.
2. result is TRUE if the file is readable, FALSE otherwise.

os.Path.writable

Purpose:

Checks if a file is writable.

Syntax:

CALL os.Path.writable(fname STRING) RETURNING result INTEGER

Notes:

1. fname is the file name.

Genero Business Development Language

1554

2. result is TRUE if the file is writable, FALSE otherwise.

os.Path.executable

Purpose:

Checks if a file is executable.

Syntax:

CALL os.Path.executable(fname STRING) RETURNING result INTEGER

Notes:

1. fname is the file name.
2. result is TRUE if the file is executable, FALSE otherwise.

os.Path.isfile

Purpose:

Checks if a file is a regular file.

Syntax:

CALL os.Path.isfile(fname STRING) RETURNING result INTEGER

Notes:

1. fname is the file name.
2. result is TRUE if the file is a regular file, FALSE otherwise.

os.Path.isdirectory

Purpose:

Checks if a file is a directory.

Syntax:

CALL os.Path.isdirectory(fname STRING) RETURNING result INTEGER

Standard Extensions

1555

Notes:

1. fname is the file name.
2. result is TRUE if the file is a directory, FALSE otherwise.

os.Path.ishidden

Purpose:

Checks if a file is hidden.

Syntax:

CALL os.Path.ishidden(fname STRING) RETURNING result INTEGER

Notes:

1. fname is the file name.
2. result is TRUE if the file is hidden, FALSE otherwise.

os.Path.islink

Purpose:

Checks if a file is UNIX symbolic link.

Syntax:

CALL os.Path.islink(fname STRING) RETURNING result INTEGER

Notes:

1. fname is the file name.
2. result is TRUE if the file is a symbolic link, FALSE otherwise.

Warning: This method can only be used on UNIX!

os.Path.isroot

Purpose:

Checks if a file path is a root path.

Genero Business Development Language

1556

Syntax:

CALL os.Path.isroot(path STRING) RETURNING result STRING

Notes:

1. path is the path to check.
2. result is TRUE if the path is a root path, FALSE otherwise.
3. On Unix the root path is '/'
4. On Windows the root path matches "[a-zA-Z]:\"

os.Path.type

Purpose:

Returns the file type as a string

Syntax:

CALL os.Path.type(fname STRING) RETURNING ftype STRING

Notes:

1. fname is the file name.
2. ftype can be one of:

1. file : the file is a regular file
2. directory : the file is a directory
3. socket : the file is a socket
4. fifo : the file is a fifo
5. block : the file is a block device
6. char : the file is a character device

Warning: On UNIX, this method follows symbolic links. You must use the islink()
method to identify symbolic links.

os.Path.size

Purpose:

Returns the size of a file.

Syntax:

CALL os.Path.size(fname STRING) RETURNING size INTEGER

Standard Extensions

1557

Notes:

1. fname is the file name.
2. size is the file size

os.Path.atime

Purpose:

Returns the time of the last file access.

Syntax:

CALL os.Path.atime(fname STRING) RETURNING atime STRING

Notes:

1. fname is the name of the file.
2. atime is a string containing the last access time for the specified file in the

standard format 'YYYY-MM-DD HH:MM:SS'.
3. If the function failed, it returns NULL.

os.Path.mtime

Purpose:

Returns the time of the last file modification.

Syntax:

CALL os.Path.mtime(fname STRING) RETURNING mtime STRING

Notes:

1. fname is the name of the file.
2. mtime is a string containing the last modification time for the specified file in the

standard format 'YYYY-MM-DD HH:MM:SS'.
3. If the function failed, it returns NULL.

Genero Business Development Language

1558

os.Path.rwx

Purpose:

Returns the UNIX file permissions of a file.

Syntax:

CALL os.Path.rwx(fname STRING) RETURNING mode INTEGER

Notes:

1. fname is the name of the file.
2. mode is the combination of permissions for user, group and other.
3. Function returns -1 if it fails to get the permissions.

Warning: This method can only be used on UNIX!

Usage:

The mode is returned as a decimal value which is the combination of read, write and
execution bits for the user, group and other part of the UNIX file permission. For
example, if a file has the -rwxr-xr-x permissions, you get ((4+2+1) * 64 + (4+1) * 8) +
(4+1)) = 493 from this method.

os.Path.chrwx

Purpose:

Changes the UNIX permissions of a file.

Syntax:

CALL os.Path.chrwx(fname STRING, mode INTEGER) RETURNING res INTEGER

Notes:

1. fname is the name of the file.
2. mode is the UNIX permission combination in decimal (not octal!).
3. Function returns TRUE on success, FALSE otherwise.

Warning: This method can only be used on UNIX!

Standard Extensions

1559

Usage:

The mode must be a decimal value which is the combination of read, write and
execution bits for the user, group and other part of the UNIX file permission. Make sure
to pass the mode as the decimal version of permissions, not as octal (the chrwx UNIX
command takes an octal value as parameter). For example, to set -rw-r--r--
permissions, you must pass (((4+2) * 64) + (4 * 8) + 4) = 420 to this method.

os.Path.chown

Purpose:

Changes the UNIX owner and group of a file.

Syntax:

CALL os.Path.chown(fname STRING, uid INT, gui INT) RETURNING res
INTEGER

Notes:

1. fname is the name of the file.
2. uid is the user id.
3. gui is the group id.
4. Function returns TRUE on success, FALSE otherwise.

Warning: This method can only be used on UNIX!

os.Path.uid

Purpose:

Returns the UNIX user id of a file.

Syntax:

CALL os.Path.uid(fname STRING) RETURNING id INTEGER

Notes:

1. fname is the name of the file.
2. id is the user id.
3. Function returns -1 if it fails to get the user id.

Genero Business Development Language

1560

Warning: This method can only be used on UNIX!

os.Path.gid

Purpose:

Returns the UNIX group id of a file.

Syntax:

CALL os.Path.gid(fname STRING) RETURNING id INTEGER

Notes:

1. fname is the name of the file.
2. id is the group id.
3. Function returns -1 if it fails to get the user id.

Warning: This method can only be used on UNIX!

os.Path.homedir

Purpose:

Returns the path to the HOME directory of the current user.

Syntax:

CALL os.Path.homedir() RETURNING homedir STRING

Notes:

1. homedir Path to the HOME directory of the user.

os.Path.rootdir

Purpose:

Returns the root directory of the current working path.

Standard Extensions

1561

Syntax:

CALL os.Path.rootdir() RETURNING rootdir STRING

Notes:

1. rootdir is the root directory of the current working path.
2. On Unix, it always returns '/'
3. On Windows it returns the current working drive as "[a-zA-Z]:\"

os.Path.dirfmask

Purpose:

Defines a filter mask for diropen.

Syntax:

CALL os.Path.dirfmask(mask INTEGER)

Notes:

1. mask defines the filter mask (see below for possible values).

Usage:

When you call this function, you define the filter mask for any subsequent diropen call.

By default, all kinds of directory entries are selected by the diropen function. You can
restrict the number of entries by using a filter mask.

The parameter of the dirfmask function must be a combination of the following bits:

• 0x01 = Exclude hidden files (.*)
• 0x02 = Exclude directories
• 0x04 = Exclude symbolic links
• 0x08 = Exclude regular files

For example, to retrieve only regular files, you must call:

01 CALL os.Path.dirfmask(1 + 2 + 4)

Genero Business Development Language

1562

os.Path.dirsort

Purpose:

Defines the sort criteria and sort order for diropen.

Syntax:

CALL os.Path.dirsort(criteria STRING, order INTEGER)

Notes:

1. criterie is the sort criteria (see below for possible values).
2. order defines ascending (1) or descending (-1) order.

Usage:

When you call this function, you define the sort criteria and sort order for any subsequent
diropen call.

The criteria parameter must be one of the following strings:

• "undefined" = No sort. This is the default. Entries are read as returned by the
OS functions.

• "name" = Sort by file name.
• "size" = Sort by file size.
• "type" = Sort by file type (directory, link, regular file).
• "atime" = Sort by access time.
• "ctime" = Sort by modification time.
• "extension" = Sort by file extension.

When sorting by name, directory entries will be ordered according to the current locale.

When sorting by any criteria other than the file name, entries having the same value for
the given criteria are ordered by name in ascending order.

os.Path.diropen

Purpose:

Opens a directory and returns an integer handle to this directory.

Syntax:

CALL os.Path.diropen(dname STRING) RETURNING dirhandle INTEGER

Standard Extensions

1563

Notes:

1. dname is the name of the directory.
2. dirhandle is the directory handle. A dirhandle value of 0 indicates a failure when

opening the directory.

Usage:

This function creates a list of directory

See also: dirfmask, dirsort

os.Path.dirclose

Purpose:

Closes the directory referenced by the directory handle dirhandle.

Syntax:

CALL os.Path.dirclose(dirhandle INTEGER)

Notes:

1. dirhandle is the directory handle of the directory to close.

os.Path.dirnext

Purpose:

Reads the next entry in the directory.

Syntax:

CALL os.Path.dirnext(dirhandle INTEGER) RETURNING direntry STRING

Notes:

1. dirhandle is the directory handle of the directory to read.
2. direntry is the name of the entry read or NULL if all entries have been read.

Genero Business Development Language

1564

os.Path.pwd

Purpose:

Returns the current working directory.

Syntax:

CALL os.Path.pwd() RETURNING cwd STRING

Notes:

1. cwd is the current working directory.

os.Path.chdir

Purpose:

Changes the current working directory.

Syntax:

CALL os.Path.chdir(newdir STRING) RETURNING result INTEGER

Notes:

1. newdir is the directory to select.
2. result is TRUE if the current directory could be successfully selected.

os.Path.volumes

Purpose:

Returns the available volumes.

Syntax:

CALL os.Path.volumes() RETURNING volumes STRING

Notes:

1. volumes contains the list of all available volumes separated by "|".

Standard Extensions

1565

os.Path.chvolume

Purpose:

Changes the current working volume.

Syntax:

CALL os.Path.chvolume(newvolume STRING) RETURNING result INTEGER

Notes:

1. newvolume is the volume to select as the new current working volume.
2. result is TRUE if the current working volume could be successfully changed.
3. Sample : CALL os.Path.chvolume("C:\\") RETURNING result

os.Path.mkdir

Purpose:

Creates a new directory.

Syntax:

CALL os.Path.mkdir(dname STRING) RETURNING result INTEGER

Notes:

1. dname is the name of the directory to create
2. result is TRUE if the directory has been successfully created, FALSE otherwise.

os.Path.delete

Purpose:

Deletes a file or a directory.

Syntax:

CALL os.Path.delete(dname STRING) RETURNING result INTEGER

Notes:

1. fname is the name of the file or directory to delete

Genero Business Development Language

1566

2. result is TRUE if the file or directory has been successfully deleted, FALSE
otherwise.

3. A directory can only be deleted if it is empty.

os.Path.rename

Purpose:

Renames a file or a directory.

Syntax:

CALL os.Path.rename(oldname STRING, newname STRING) RETURNING result
INTEGER

Notes:

1. oldname is the current name of the file or directory to be renamed.
2. newname is the new name to assign to the file or directory.
3. result is TRUE if the file or directory has been successfully renamed, FALSE

otherwise.

os.Path.copy

Purpose:

Copies a regular file or.

Syntax:

CALL os.Path.copy(source STRING, dest STRING) RETURNING result INTEGER

Notes:

1. source is the name of the file to copy.
2. dest is the destination name of the copied file.
3. result is TRUE if the file has been successfully copied, FALSE otherwise.

Examples:

Standard Extensions

1567

Example 1: Extracting the parts of a file name

This program uses the file functions to extract the directory name, the base name, the
root name, and the file extension:

01 IMPORT os
02 MAIN
03 DISPLAY "Dir name = ", os.Path.dirname(arg_val(1))
04 DISPLAY "Base name = ", os.Path.basename(arg_val(1))
05 DISPLAY "Root name = ", os.Path.rootname(arg_val(1))
06 DISPLAY "Extension = ", os.Path.extension(arg_val(1))
07 END MAIN

Example results:

Path os.Path.dirname os.Path.basename os.Path.rootname os.Path.extension
. . . NULL
.. NULL
/ / / / NULL
/usr/lib /usr lib /usr/lib NULL
/usr/ / usr /usr/ NULL
usr . usr usr NULL
file.xx . file.xx file xx
/tmp.yy/file.xx /tmp.yy file.xx /tmp.yy/file xx
/tmp.yy/file.xx.yy /tmp.yy file.xx.yy /tmp.yy/file.xx yy
/tmp.yy/ / tmp.yy /tmp.yy/ NULL
/tmp.yy/. /tmp.yy . /tmp.yy/ NULL

Warning: The above examples use Unix file names. On Windows the result would
be different, as the file name separator is '\'.

Example 2: Browsing directories.

This program takes a directory path as an argument and scans the content recursively:

01 IMPORT os
02 MAIN
03 CALL showDir(arg_val(1))
04 END MAIN
05 FUNCTION showDir(path)
06 DEFINE path STRING
07 DEFINE child STRING
08 DEFINE h INTEGER
09 IF NOT os.Path.exists(path) THEN
10 RETURN
11 END IF
12 IF NOT os.Path.isdirectory(path) THEN
13 DISPLAY " ", os.Path.basename(path)

Genero Business Development Language

1568

14 RETURN
15 END IF
16 DISPLAY "[", path, "]"
17 CALL os.Path.dirsort("name", 1)
18 LET h = os.Path.diropen(path)
19 WHILE h > 0
20 LET child = os.Path.dirnext(h)
21 IF child IS NULL THEN EXIT WHILE END IF
22 IF child == "." OR child == ".." THEN CONTINUE WHILE END IF
23 CALL showDir(os.Path.join(path, child))
24 END WHILE
25 CALL os.Path.dirclose(h)
26 END FUNCTION

Standard Extensions

1569

Mathematical functions Class
Summary:

• Basics
• Syntax
• Methods

See also: Built-in Functions

Basics

The Math class provides mathematical functions.

This API is provided as a Dynamic C Extension library; it is part of the standard package.

To use this extension, you must import the util package in your program:

IMPORT util

Syntax

The Math class is a provides an interface for mathematical functions.

Syntax:

util.Math

Notes:

1. This class does not have to be instantiated; it provides class methods for the
current program.

Methods:

Class Methods
Name Description
sqrt This function computes the square root of its argument.
pow This function computes the value of x raised to the

power y.

Genero Business Development Language

1570

exp This function computes the base- e exponential of x.
srand This function intializes the pseudo-random number

generator.
rand This function returns a pseudo-random number.
sin This function computes the sine of their argument x,

measured in radians.
cos This function computes the cosine of their argument x,

measured in radians.
tan This function computes the tangent of their argument x,

measured in radians.
asin This function computes the arc sine of their argument x,

measured in radians.
acos This function computes the arc cosine of their argument

x, measured in radians.
atan This function computes the arc tangent of their argument

x, measured in radians.
log This function computes the natural logarithm of the

argument x.
toDegrees Converts an angle measured in radians to an equivalent

angle measured in degrees.
toRadians Converts an angle measured in degrees to an equivalent

angle measured in radians.
pi This function returns the FLOAT value of PI.

util.Math.sqrt

Purpose:

Returns the square root of the argument provided.

Syntax:

CALL util.Math.sqrt(FLOAT f) RETURNING rv FLOAT

Notes:

1. Returns NULL if the argument provided is invalid.

Standard Extensions

1571

util.Math.pow

Purpose:

This function computes the value of x raised to the power y.

Syntax:

CALL util.Math.pow(FLOAT x, FLOAT y) RETURNING rv FLOAT

Notes:

1. Returns NULL if one of the argument provided is invalid.
2. If x is negative, the caller should ensure that y is an integer value.

util.Math.exp

Purpose:

This function computes the base- e exponential of x.

Syntax:

CALL util.Math.exp(FLOAT x) RETURNING rv FLOAT

Notes:

1. Returns NULL if the argument provided on error.

util.Math.srand

Purpose:

This function initializes the pseudo-random numbers generator.

Syntax:

CALL util.Math.srand()

Genero Business Development Language

1572

util.Math.rand

Purpose:

This function returns a pseudo-random number between 0 and x

Syntax:

CALL util.Math.rand(x INTEGER) RETURNING rv INTEGER

util.Math.sin

Purpose:

This function computes the sine of the argument x, measured in radians.

Syntax:

CALL util.Math.sin(FLOAT f) RETURNING rv FLOAT

Notes:

1. Returns NULL if the argument provided is invalid.

util.Math.cos

Purpose:

This function computes the cosine of the argument x, measured in radians.

Syntax:

CALL util.Math.cos(FLOAT f) RETURNING rv FLOAT

Notes:

1. Returns NULL if the argument provided is invalid.

Standard Extensions

1573

util.Math.tan

Purpose:

This function computes the tangent of the argument x, measured in radians.

Syntax:

CALL util.Math.tan(FLOAT f) RETURNING rv FLOAT

Notes:

1. Returns NULL if the argument provided is invalid.

util.Math.asin

Purpose:

This function computes the arc sine of the argument x, measured in radians.

Syntax:

CALL util.Math.asin(FLOAT f) RETURNING rv FLOAT

Notes:

1. Returns NULL if the argument provided is invalid.

util.Math.acos

Purpose:

This function computes the arc cosine of the argument x, measured in radians.

Syntax:

CALL util.Math.acos(FLOAT f) RETURNING rv FLOAT

Notes:

1. Returns NULL if the argument provided is invalid.

Genero Business Development Language

1574

util.Math.atan

Purpose:

This function computes the arc tangent of the argument x, measured in radians.

Syntax:

CALL util.Math.atan(FLOAT f) RETURNING rv FLOAT

Notes:

1. Returns NULL if the argument provided is invalid.

util.Math.log

Purpose:

This function computes the natural logarithm of the argument x.

Syntax:

CALL util.Math.log(FLOAT f) RETURNING rv FLOAT

Notes:

1. Returns NULL if the argument provided is invalid.

util.Math.toDegrees

Purpose:

Converts an angle measured in radians to an approximately equivalent angle measured
in degrees.

Syntax:

CALL util.Math.toDegrees(FLOAT f) RETURNING rv FLOAT

Standard Extensions

1575

util.Math.toRadians

Purpose:

Converts an angle measured in degrees to an approximately equivalent angle measured
in radians.

Syntax:

CALL util.Math.toRadians(FLOAT f) RETURNING rv FLOAT

util.Math.pi

Purpose:

This function returns the FLOAT value of PI.

Syntax:

CALL util.Math.pi() RETURNING rv FLOAT

1577

Implementing C-Extensions
Summary:

• Basics
• Creating C-Extensions

o Creating ESQL/C extensions
 ESQL/C Extensions with non-Informix databases
 ESQL/C Extensions with Informix

• C interface file
• Linking programs using C-Extensions
• Loading C-Extensions

o Using the IMPORT instruction
o Using the default extension name
o Using the -e fglrun option

• Stack Functions
• C Data Types and Structures
• Available Macros

o VARCHAR Macros
o DECIMAL Macros
o DATETIME/INTERVAL Macros
o DATETIME/INTERVAL Constants

• Calling C functions from BDL
• Calling BDL functions from C
• Sharing global variables
• Example
• C API Functions
• Formatting directives

See also: Programs, Installation and Setup.

Basics
With C-Extensions, you can integrate your own C libraries in the runtime system, to call
C function from the BDL code. This feature allows you to extend the language with
custom libraries, or existing standard libraries, just by writing some 'wrapper functions' to
interface with BDL.

Warning: Using C functions in your applications can cause problems when you
port the application to another platform. For example, you can expect problems
when porting an application from UNIX to Windows and vice versa. Portability
problems can also occur when using incompatible C data types or when using
platform-specific system calls.

C-Extensions are implemented with shared libraries. Using shared libraries avoids the
need to re-link the fglrun program and simplifies deployment.

Genero Business Development Language

1578

Function parameters and returned values are passed/returned on the legal BDL stack,
using pop/push functions. Be sure to pop and push the exact number of
parameters/returns expected by the caller; otherwise, a fatal stack error will be raised at
runtime.

Warning: In earlier versions of Genero, static C extensions could define global
variables sharing between the runtime system and the extension; This was done
by using the "userData" structure in the extension interface file. With Dynamic C
extensions, global variables cannot be shared any longer. You must use functions
to pass global variable values. For an example, see Sharing global variables.

Creating C-Extensions
Custom C Extensions must be provided to the runtime system as Shared Objects (.so)
on UNIX, and as Dynamically Loadable Libraries (.DLL) on Windows.

In order to create a C-Extension, you must:

1. Define the list of user functions in the C interface file.
2. Compile the C interface file and the C modules with the position-independent

code option, by including the fglExt.h header file.
3. Create the shared library with the compiled C interface file and C modules by

linking with the libfgl library.

In your C source files, you must include the fglExt.h header file in the following way:

01 #include <f2c/fglExt.h>

Warning: When migrating from Informix 4GL, it is possible that existing C
extension sources include Informix specific headers like sqlhdr.h or decimal.h.
You must include Informix specific header files before the fglExt.h header file, in
order to let fglExt.h detect that typedefs such as dec_t or dtime_t are already
defined by Informix headers. If you include Informix headers after fglExt.h, you
will get a compilation error. As fglExt.h defines all Informix-like typedef structures,
you can remove the inclusion of Informix specific header files.

Your C functions must be known by the runtime system. To do so, each C extension
library must publish its functions in a UsrFunction array, which is read by the runtime
system when the module is loaded. The UsrFunction array describes the user functions
by specifying the name of the function, the C function pointer, the number of parameters
and the number of returned values. You typically define the UsrFunction array the in the
C interface file.

After compiling the C sources, you must link them together with the libfgl runtime
system library. See below for examples.

User Extensions

1579

Warning: Carefully read the man page of the ld dynamic loader, and any
documentation of your operating system related to shared libraries. Some
platforms require specific configuration and command line options when linking a
shared library, or when linking a program using a shared library (+s option on HP
for example).

Linux command-line example:

gcc -c -I $FGLDIR/include -fPIC myext.c
gcc -c -I $FGLDIR/include -fPIC cinterf.c
gcc -shared -o myext.so myext.o cinterf.o -L$FGLDIR/lib -lfgl

Windows command-line example using Visual C 7.1:

cl /DBUILDDLL /I%FGLDIR%/include /c myext.c
cl /DBUILDDLL /I%FGLDIR%/include /c cintref.c
link /dll /out:myext.dll myext.obj cinterf.obj %FGLDIR%\lib\libfgl.lib

Windows command-line example using Visual C 8.0 (you must create a manifest file for
the DLL!):

cl /DBUILDDLL /I%FGLDIR%/include /c myext.c
cl /DBUILDDLL /I%FGLDIR%/include /c cintref.c
link /dll /manifest /out:myext.dll myext.obj cinterf.obj
%FGLDIR%\lib\libfgl.lib
mt -manifest myext.dll.manifest -outputresource:myext.dll

Creating ESQL/C Extensions

You can create user extension libraries from ESQL/C sources, as long as you have an
ESQL/C compiler which is compatible with your Genero runtime system. In order to
create these user extensions, you must first compile the .ec sources to object files by
including the fglExt.h header file. Then you must create the shared library by linking with
additional SQL libraries to resolve the functions used in the .ec source to execute SQL
statements.

ESQL/C extensions with non-Informix databases

If you need to use ESQL/C extensions with database clients such as Oracle, SQL Server
or Genero DB, you must use the fesqlc compiler, and link the objects with the FESQLC
libraries in order to use the same SQL API as the FGL runtime system database
interface.

For more details about Genero's ESQL/C compiler and .ec extension creation, see
FESQLC page.

ESQL/C extensions with Informix

You can compile .ec extensions with the native Informix esql compiler, or with the fesqlc
compiler provided by Genero. This section describes how to use the Informix esql

Genero Business Development Language

1580

compiler. For more details about creating an .ec extension library with Genero's ESQL/C
compiler, see FESQLC page.

The following example shows how to compile and link an extension library with Informix
esql compiler:

Linux command-line example:

esql -c -I$FGLDIR/include myext.ec
gcc -c -I$FGLDIR/include -fPIC cinterf.c
gcc -shared -o myext.so myext.o cinterf.o -L$FGLDIR/lib -lfgl \
 -L$INFORMIXDIR/lib -L$INFORMIXDIR/lib/esql `esql -libs`

Windows command-line example (using VC 7.1):

esql -c myext.ec -I%FGLDIR%/include
cl /DBUILDDLL /I%FGLDIR%/include /c cintref.c
esql -target:dll -o myext.dll myext.obj cinterf.obj
%FGLDIR%\lib\libfgl.lib

When using Informix esql, you link the extension library with Informix client libraries.
These libraries will be shared by the extension module and the Informix database driver
loaded by the runtime system. Since both the extension functions and the runtime
database driver use the same functions to execute SQL queries, you can share the
current SQL connection opened in the Genero program to execute SQL queries in the
extension functions.

C Interface File
To make your C functions visible to the runtime system, you must define all the functions
in the C Interface File. This is a C source file that defines the usrFunctions array. This
array defines C functions that can be called from BDL. The last record of each array
must be a line with all the elements set to 0, to define the end of the list.

The first member of a usrFunctions element is the BDL name of the function, provided
as a character string. The second member is the C function symbol. Therefore, you
typically do a forward declaration of the C functions before the usrFunctions array
initializer. The third member is the number of BDL parameters passed thru the stack to
the function. The last member is the number of values returned by the function; you can
use -1 to specify a variable number of arguments.

Example:

01 #include <f2c/fglExt.h>
02
03 int c_log(int);
04 int c_cos(int);
05 int c_sin(int);

User Extensions

1581

06
07 UsrFunction usrFunctions[]={
08 {"log",c_log,1,1},
09 {"cos",c_cos,1,1},
10 {"sin",c_sin,1,1},
11 {0,0,0,0}
12 };

Linking programs using C-Extensions
When creating a 42r program or 42x library, the FGL linker needs to resolve all function
names, including C extension functions. Thus, if extension modules are not specified
explicitly in the source files with the IMPORT directive, you must give the extension
modules with the -e option in the command line:

fgllink -e myext1,myext2,myext3 myprog.42r moduleA.42m moduleB.42m ...

The -e option is not needed when using the default userextension module.

Loading C-Extensions
The runtime system can load several C-Extensions libraries, allowing you to properly
split your libraries by defining each group of functions in separate C interface files.

Directories are searched for the C-Extensions libraries according to the FGLLDPATH
environment variable rules: If the module cannot be found in the directory where the .42r
program resides, FGLLDPATH is scanned. If the module could not be found with
FGLLDPATH, then $FGLDIR/lib is searched. If the module is still not found, the current
directory is searched.

There are three ways to bind a C Extension with the runtime system:

1. Using the IMPORT instruction in sources.
2. Using the default C Extension name.
3. Using the -e option of fglrun.

Using the IMPORT instruction

The IMPORT instruction allows you to declare an external module in a .4gl source file. It
must appear at the beginning of the source file.

The compiler and the runtime system automatically know which C extensions must be
loaded, based on the IMPORT instruction:

01 IMPORT mylib1

Genero Business Development Language

1582

02 MAIN
03 CALL myfunc1("Hello World") -- defined in mylib1
04 END MAIN

When the IMPORT instruction is used, no other action has to be taken at runtime: The
module name is stored in the 42m pcode and is automatically loaded when needed.

For more details, see Importing modules.

Using the default C Extension name

Normally, all FGL modules using a function from a C extension should now use the
IMPORT instruction. This could be a major change in your sources.

To simplify migration of existing C extensions, the runtime system loads by default a
module with the name userextension. Create this shared library with your existing C
extensions, and the runtime system will load it automatically if it is in the directories
specified by FGLLDPATH.

Using the -e fglrun option

In some cases you need several C extension libraries, which are used by different group
of programs, so you can't use the default userextension solution. However, you don't
want to review all your sources in order to use the IMPORT instruction.

You can specify the C Extensions to be loaded by using the -e option of fglrun. The -e
option takes a comma-separated list of module names, and can be specified multiple
times in the command line. The next example loads five extension modules:

fglrun -e myext1,myext2,myext3 -e myext4,myext5 myprog.42r

By using the -e option, the runtime system loads the modules specified in the command
line instead of loading the default userextension module.

Stack Functions
To pass values between a C function and a program, the C function and the runtime
system use the BDL stack. The int parameter of the C function defines the number of
input parameters passed on the stack, and the function must return an int value defining
the number of values returned on the stack. The parameters passed to the C function
must be popped from the stack at the beginning of the C function, and the return values
expected by the 4gl call must be pushed on the stack before leaving the C function. If
you don't pop / push the specified number of parameters / return values, you corrupt the
stack and get a fatal error.

User Extensions

1583

The runtime system library includes a set of functions to retrieve the values passed as
parameters on the stack. The following table shows the library functions provided to pop
values from the stack into C buffers:

Function BDL Type Notes

void popdate(int4 *dst); DATE 4-byte integer value corresponding to
days since 12/31/1899.

void popint(mint *dst); INTEGER System dependent integer value
void popshort(int2 *dst); SMALLINT 2-byte integer value
void poplong(int4 *dst); INTEGER 4-byte integer value
void popflo(float *dst); SMALLFLOAT 4-byte floating point value
void popdub(double *dst); FLOAT 8-byte floating point value

void popdec(dec_t *dst); DECIMAL See structure definition in
$FGLDIR/include/f2c headers

void popquote(char *dst,
int len); CHAR(n) len = strlen(val)+1 (for the '/0')

void popvchar(char *dst,
int len); VARCHAR(n) len = strlen(val)+1 (for the '/0')

void popdtime(dtime_t
*dst, int size); DATETIME See structure definition in

$FGLDIR/include/f2c headers
void popinv(intrvl_t* dst,
int size); INTERVAL See structure definition in

$FGLDIR/include/f2c headers

void poplocator(loc_t
**dst); BYTE, TEXT

See structure definition in
$FGLDIR/include/f2c headers
Warning: this function pops the pointer
of a loc_t object!

When using a pop function, the value is copied from the stack to the local C variable and
the value is removed from the stack.

In BDL, Strings (CHAR, VARCHAR) are not terminated by '\0'. Therefore, the C variable
must have one additional character to store the '\0'. For example, the equivalent of a
VARCHAR(100) in BDL is a char [101] in C.

To return a value from the C function, you must use one of the following functions
provided in the runtime system library:

Function BDL Type Notes

void pushdate(const int4 val); DATE 4-byte integer value corresponding
to days since 12/31/1899.

void pushdec(const dec_t*
val, const unsigned decp); DECIMAL See structure definition in

$FGLDIR/include/f2c headers
void pushint(const mint val); INTEGER System dependent integer value
void pushlong(const int4 val); INTEGER 4-byte integer value

Genero Business Development Language

1584

void pushshort(const int2
val); SMALLINT 2-byte integer value

void pushflo(const float* val); SMALLFLOAT 4-byte floating point value.
Warning: function takes a pointer!

void pushdub(const double*
val); FLOAT 8-byte floating point value.

Warning: function takes a pointer!
void pushquote(const char
*val, int l); CHAR(n) len = strlen(val) (without '\0')

void pushvchar(const char
*val, int l); VARCHAR(n) len = strlen(val) (without '\0')

void pushdtime(const dtime_t
*val); DATETIME See structure definition in

$FGLDIR/include/f2c headers
void pushinv(const intrvl_t
*val); INTERVAL See structure definition in

$FGLDIR/include/f2c headers

When using a push function, the value of the C variable is copied at the top of the stack.

C Data Types and Structures
The fglExt.h header file defines the following C types:

Type name Description
int4 signed integer with a size of 4 bytes
uint4 unsigned integer with a size of 4 bytes
int2 signed integer with a size of 2 bytes
uint2 unsigned integer with a size of 2 bytes
int1 signed integer with a size of 1 byte
uint1 unsigned integer with a size of 1 byte
mint signed machine-dependent C int
muint unsigned machine-dependent C int
mlong signed machine-dependent C long
mulong unsigned machine-dependent C long
dec_t DECIMAL data type structure
dtime_t DATETIME data type structure
intrvl_t INTERVAL data type structure
loc_t TEXT / BYTE Locator structure

Basic data types

Basic data types such as int4 and int2 are provided for Informix compatibility.

You can use these types to define variables that must hold SMALLINT (int2), INTEGER
(int4) and DATE (int4) values.

User Extensions

1585

DATE

No specific typedef exists for DATEs; you can use the int4 type to store a DATE value.

DECIMAL/MONEY

The dec_t structure is provided to hold DECIMAL and MONEY values.

The internals of dec_t structure can be ignored during C extension programming,
because decimal API functions are provided to manipulate any aspects of a decimal.

DATETIME

The dtime_t structure holds a DATETIME value.

Before manipulating a dtime_t, you must initialize its qualifier qt_qual, by using the
TU_DTENCODE macro, as in the following example:

01 dtime_t dt;
02 dt.dt_qual = TU_DTENCODE(TU_YEAR, TU_SECOND);
03 dtcvasc("2004-02-12 12:34:56", &dt);

INTERVAL

The intrvl_t structure holds an INTERVAL value.

Before manipulating a intrvl_t, you must initialize its qualifier in_qual, by using the
TU_IENCODE macro, as in the following example:

01 intrvl_t in;
02 in.in_qual = TU_IENCODE(5, TU_YEAR, TU_MONTH);
03 incvasc("65234-02", &in);

TEXT/BYTE Locator

The loc_t structure is used to declare host variables for a TEXT/BYTE values (simple
large objects). Because the potential size of the data can be quite large, this is a locator
structure that contains information about the size and location of the TEXT/BYTE data,
rather than containing the actual data.

The fields of the loc_t structure are:

Field name Data
Type Description

loc_indicator int4 Null indicator; a value of -1 indicates a null
TEXT/BYTE value. Your program can set the field to
indicate the insertion of a null value. FESQLC or
ESQL/C libraries set the value for selects and fetches.

Genero Business Development Language

1586

loc_type int4 Data type - SQLTEXT (for TEXT values) or
SQLBYTES (for BYTE values).

loc_size int4 Size of the TEXT/BYTE value in bytes; your program
sets the size of the large object for insertions.
FESQLC or ESQL/C libraries set the size for selects
and fetches.

loc_loctype int2 Location - LOCMEMORY (in memory) or
LOCFNAME (in a named file). Set loc_loctype after
you declare the locator variable and before this
declared variable receives the large object value.

loc_buffer char * If loc_loctype is LOCMEMORY, this is the location of
the TEXT/BYTE value; your program must allocate
space for the buffer and store its address here.

loc_bufsize int4 IF loc_loctype is LOCMEMORY, this is the size of the
buffer loc_buffer; If you set loc_bufsize to -1, FESQLC
or ESQL/C libraries will allocate the memory buffer for
selects and fetches. Otherwise, it is assumed that your
program will handle memory allocation and de-
allocation.

loc_fname char * IF loc_loc_type is LOCFNAME, tthis is the address of
the pathname string that contains the file.

Example:

01 loc_t *pb1
02 double ratio;
03 char *source = NULL, *psource = NULL;
04 int size;
05
06 if (pb1->loc_loctype == LOCMEMORY) {
07 psource = pb1->loc_buffer;
08 size = pb1->loc_size;
09 } else if (pb1->loc_loctype == LOCFNAME) {
10 int fd;
11 struct stat st;
12 fd = open(pb1->loc_fname, O_RDONLY);
13 fstat(fd, &st);
14 size = st.st_size;
15 psource = source = (char *) malloc(size);
16 read(fd, source, size);
17 close(fd);
18 }

User Extensions

1587

Available Macros

Varchar type related macros

The following macros allow you to obtain the size information stored by the database
server for a VARCHAR column:

Macro Description

MAXVCLEN (255) Returns maximum number of characters allowed in a
VARCHAR column

VCMIN(size) Returns minimum number of characters that you can
store in a VARCHAR column

VCLENGTH(len) Returns length of the host variable

VCMAX(size) Returns maximum number of characters that you can
store in a VARCHAR column

VCSIZ(max, min) Returns encoded size for the VARCHAR column

Decimal type related macros

Decimals are defined by an encoded length - the total number of significant digits
(precision), and the significant digits to the right of the decimal (scale). The following
macros handle decimal length:

Macro Description

DECLEN(m,n) Calculates the minimum number of bytes necessary
to hold a decimal (m = precision, n = scale)

DECLENGTH(length) Calculates the minimum number of bytes necessary
to hold a decimal, given the encoded length

DECPREC(size) Calculates a default precision, given the size (the
number of bytes used to store a number)

PRECTOT(length) Returns the precision from an encoded length
PRECDEC(length) Returns the scale from an encoded length

PRECMAKE(p,s) Returns the encoded decimal length from a precision
and scale

Datetime/Interval related macros

Datetime and Interval need qualifiers (ex: YEAR TO MONTH) to complete the type
definition. The following macros can be used to manage those qualifiers and set the
qt_qual or in_qual members of dtime_t and intrvl_t structures.

Macro Description
TU_YEAR Defines the YEAR qualifier
TU_MONTH Defines the MONTH qualifier
TU_DAY Defines the DAY qualifier
TU_HOUR Defines the HOUR qualifier
TU_MINUTE Defines the MINUTE qualifier

Genero Business Development Language

1588

TU_SECOND Defines the SECOND qualifier
TU_FRAC Defines default FRACTION(3) qualifier
TU_F1 Defines the FRACTION(1) qualifier
TU_F2 Defines the FRACTION(2) qualifier
TU_F3 Defines the FRACTION(3) qualifier
TU_F4 Defines the FRACTION(4) qualifier
TU_F5 Defines the FRACTION(5) qualifier
TU_END(q) Returns the end qualifier of a composed qualifier
TU_START(q) Returns the start qualifier of a composed qualifier
TU_LEN(q) Returns the length in digits of a datetime qualifier
TU_DTENCODE(q1,q2) Build a datetime qualifier as DATETIME q1 TO q2

TU_IENCODE(len,q1,q2)Build an interval qualifier as INTERVAL q1(len) TO
q2

TU_CURRQUAL Default qualifier used by current

Data type identification macros

The following macros are used by functions like rsetnull() and risnull():

Macro name Description
SQLCHAR SQL CHAR data type
SQLSMINT SQL SMALLINT data type
SQLINT SQL INTEGER data type
SQLFLOAT SQL FLOAT data type
SQLSMFLOAT SQL SMALLFLOAT data type
SQLDECIMAL SQL DECIMAL data type
SQLSERIAL SQL SERIAL data type
SQLDATE SQL DATE data type
SQLMONEY SQL MONEY data type
SQLDTIME SQL DATETIME data type
SQLBYTES SQL BYTE data type
SQLTEXT SQL TEXT data type
SQLVCHAR SQL VARCHAR data type
SQLINTERVAL SQL INTERVAL data type
SQLNCHAR SQL NCHAR data type
SQLNVCHAR SQL NVARCHAR data type
SQLINT8 SQL INT8 data type
SQLSERIAL8 SQL SERIAL8 data type
CCHARTYPE C char data type
CSHORTTYPE C short int data type
CINTTYPE C int4 data type
CLONGTYPE C long data type
CFLOATTYPE C float data type
CDOUBLETYPE C double data type
CDECIMALTYPE C dec_t data type
CFIXCHARTYPE C fixchar data type
CSTRINGTYPE C string data type
CDATETYPE C int4/date data type

User Extensions

1589

CMONEYTYPE C dec_t data type
CDTIMETYPE C dtime_t data type
CLOCATORTYPE C loc_t data type
CVCHARTYPE C varchar data type
CINVTYPE C intrvl_t data type

Calling C functions from BDL
With C-Extensions you can call C functions from the program in the same way that you
call normal functions.

The C functions that can be called from BDL must use the following signature:

int function-name(int)

Warning: function-name must be written in lowercase letters. The fglcomp
compiler converts all BDL functions names to lowercase.

The C function must be declared in the usrFunctions array in the C Interface File, as
described below.

Calling BDL functions from C
It is possible to call an BDL function from a C function, by using the fgl_call macro in
your C function, as follows:

fgl_call (function-name, nbparams);

function-name is the name of the BDL function to call, and nbparams is the number of
parameters pushed on the stack for the BDL function.

Warning: function-name must be written in lowercase letters (The fglcomp
compiler converts all BDL functions names to lowercase)

The fgl_call macro is converted to a function that returns the number of values returned
on the stack. The BDL function parameters must be pushed on the stack before the call,
and the return values must be popped from the stack after returning. See Calling C
functions from BDL for more details about push and pop library functions.

Example:

01 #include <stdio.h>
02 #include <f2c/fglExt.h>
03 int c_fct(int n)
04 {

Genero Business Development Language

1590

05 int rc, r1, r2;
06 pushint(123456);
07 rc = fgl_call(fgl_fct, 1);
08 if (rc != 2) ... error ...
09 popint(&r1);
10 popint(&r2);
11 return 0;
12 }

Sharing global variables
Prior to version 2.02, it was not possible to share global variables with C Extensions.

In order to share the global variables declared in your BDL program, you must do the
following:

1. Generate the .c and .h interface files by using fglcomp -G with the BDL module
defining the global variables:

01 GLOBALS
02 DEFINE g_name CHAR(100)
03 END GLOBALS
fglcomp -G myglobals.4gl

This will produce two files named myglobals.h and myglobals.c.

2. In the C module, include the generated header file and use the global variables
directly:

01 #include <string.h>
02 #include <f2c/fglExt.h>
03 #include "myglobals.h"
04
05 int myfunc1(int c)
06 {
07 strcpy(g_name, "new name");
08 return 0;
09 }

3. When creating the C Extension library, compile and link with the myglobals.c
generated file.

Tip: It is not recommended to use global variables, because it makes your code much
more difficult to maintain. If you need persistent variables, use BDL module variables
and write set/get functions that you can interface with.

User Extensions

1591

Example
Warning: This example shows how to create a C extension library on Linux using
gcc. The command line options to compile and link shared libraries can change
depending on the operating system and compiler/linker used.

Create the "split.c" file:

01 #include <string.h>
02 #include <f2c/fglExt.h>
03
04 int fgl_split(int in_num);
05 int fgl_split(int in_num)
06 {
07 char c1[101];
08 char c2[101];
09 char z[201];
10 char *ptr_in;
11 char *ptr_out;
12 popvchar(z, 200); /* Getting input
parameter */
13 strcpy(c1, "");
14 strcpy(c2, "");
15 ptr_out = c1;
16 ptr_in = z;
17 while (*ptr_in != ' ' && *ptr_in != '\0')
18 {
19 *ptr_out =
*ptr_in;
20 ptr_out++;
21 ptr_in++;
22 }
23 *ptr_out=0;
24 ptr_in++;
25 ptr_out = c2;
26 while (*ptr_in != '\0')
27 {
28 *ptr_out =
*ptr_in;
29 ptr_out++;
30 ptr_in++;
31 }
32 *ptr_out=0;
33 pushvchar(c1, 100); /* Returning the
first output parameter */
34 pushvchar(c2, 100); /* Returning the
second output parameter */
35 return 2; /* Returning the number of
output parameters (MANDATORY) */
36 }

Create the "splitext.c" C interface file:

01 #include <f2c/fglExt.h>

Genero Business Development Language

1592

02

03 int fgl_split(int);
04

05 UsrFunction usrFunctions[]={
06 { "fgl_split", fgl_split, 1, 2 },
07 { 0,0,0,0 }
08 };

Compile the C Module and the interface file:

gcc -c -I $FGLDIR/include -fPIC split.c
gcc -c -I $FGLDIR/include -fPIC splitext.c

Create the shared library:

gcc -shared -o libsplit.so split.o splitext.o -L$FGLDIR/lib -lfgl

Create the BDL program "split.4gl":

01 IMPORT libsplit
02 MAIN
03 DEFINE str1, str2 VARCHAR(100)
04 CALL fgl_split("Hello World") RETURNING str1, str2
05 DISPLAY "1: ", str1
06 DISPLAY "2: ", str2
07 END MAIN

Compile the 4gl module:

fglcomp split.4gl

Run the program without the -e option:

fglrun split

C API Functions

Function Description
bycmpr() Compares two groups of contiguous bytes

byleng() Returns the number of bytes as significant characters in the
specified string

bycopy() Copies a specified number of bytes to another location in

User Extensions

1593

memory
byfill() Fills a specified number of bytes in memory
risnull() Checks whether a given value is NULL
rsetnull() Sets a variable to NULL for a given data type
rgetmsg() Returns a message text
rgetlmsg() Returns a message text

rtypalign() Returns the position to align a variable at the proper boundary
for its data type

rtypmsize() Returns the size in bytes required for a specified data type
rtypname() Returns the name of a specified data type

rtypwidth() Returns the minimum number of characters required to convert
a specified data type to a character data type

rdatestr() Converts a date to a string
rdayofweek() Returns the week day of a date
rdefmtdate() Converts a string to a date by using a specific format

ifx_defmtdate() Converts a string to a date by using a specific format, with
century option

rfmtdate() Converts a date to a string by using a specific format
rjulmdy() Extracts month, day and year from a date
rleapyear() Checks whether a year is a leap year
rmdyjul() Builds a date from month, day, year
rstrdate() Converts a string to a date

ifx_strdate() Converts a date to a string by using a specific format, with the
century option

rtoday() Returns the current date

ldchar() Copies a fixed-length string into a null-terminated string without
trailing spaces

rdownshift() Converts a string to lowercase characters
rfmtdouble() Formats a double value in a specified format
rfmtint4() Formats a 4-byte int value in a specified format
rstod() Converts a string to a double

rstoi() Converts a string to a 2-byte integer (but it takes an int pointer
as parameter!)

rstol() Converts a string to a 4-byte integer (but it takes an long pointer
as parameter!)

rupshift() Converts a string to uppercase characters
stcat() Concatenates a null-terminated string to another
stchar() Concatenates a null-terminated string to a fixed char
stcmpr() Compares two strings
stcopy() Copies a string into another
stleng() Returns the number of bytes of significant characters, including

Genero Business Development Language

1594

trailing spaces
decadd() Adds two decimals
deccmp() Compares two decimals
deccopy() Copies one decimal into another
deccvasc() Converts a string to a decimal
deccvdbl() Converts a double to a decimal
deccvflt() Converts a float to a decimal

deccvint() Converts a 4-byte integer to a decimal (parameter is a machine-
dependent int pointer)

deccvlong() Converts a 4-byte integer to a decimal
decdiv() Divides a decimal by another decimal

dececvt() To convert a decimal value to a string value, specifying the
length of the string (the total number of digits)

decfcvt() To convert a decimal value to a string value, specifying the
number of digits to the right of the decimal point

decmul() Multiplies a decimal by another
decround() Rounds a decimal to the specified number of digits
decsub() Subtracts two decimals
dectoasc() Formats a decimal
dectodbl() Converts a decimal to a double
dectoflt() Converts a decimal to a float

dectoint() Converts a decimal to a 2-byte integer (parameter is machine-
dependent int pointer)

dectolong() Converts a decimal to a 4-byte integer
dectrunc() Truncates a decimal to a given number of digits
rfmtdec() Formats a decimal
dtaddinv() Adds an interval to a datetime
dtcurrent() Returns the current datetime
dtcvasc() Converts a string in ISO format to a datetime

ifx_dtcvasc() Converts a string in ISO format to a datetime, with century
option

dtcvfmtasc() Converts a string to a datetime by using a specific format

ifx_dtcvfmtasc() Converts a string to a datetime by using a specific format, with
the century option

dtextend() Extends a datetime
dtsub() Subtracts a datetime from another datetime
dtsubinv() Subtracts an interval from a datetime
dttoasc() Formats a datetime in ISO format
dttofmtasc() Formats a datetime in a specified format
ifx_dttofmtasc() Formats a datetime in a specified format, with the century option
incvasc() Converts a string in ISO format to an interval

User Extensions

1595

incvfmtasc() Converts a string to an interval by using a specific format
intoasc() Formats an interval in ISO format
intofmtasc() Formats an interval in a specified format
invdivdbl() Divides an interval by using a double
invdivinv() Divides an interval by using another interval
invextend() Extends an interval
invmuldbl() Multiplies an interval by a double

decadd()

Purpose:

To add two decimal values

Syntax:

mint decadd(dec_t *n1, struct decimal *n2, struct decimal *n3);

Notes:

1. n1 is a pointer to the decimal structure of the first operand.
2. n2 is a pointer to the decimal structure of the second operand.
3. n3 is a pointer to the decimal structure that contains the sum (n1 + n2).

Returns:

Code Description
0 The operation was successful.
-1200 The operation resulted in overflow.
-1201 The operation resulted in underflow.

decsub()

Purpose:

To subtract two decimal values

Syntax:

mint decsub(dec_t *n1, struct decimal *n2, struct decimal *n3);

Genero Business Development Language

1596

Notes:

1. n1 is a pointer to the decimal structure of the first operand.
2. n2 is a pointer to the decimal structure of the number to be subtracted.
3. n3 is a pointer to the decimal structure that contains the result of (n1 minus n2).

Returns:

Code Description
0 The operation was successful.
-1200 The operation resulted in overflow.
-1201 The operation resulted in underflow.

decmul()

Purpose:

To multiply two decimal values

Syntax:

int decmul(dec_t *n1, struct decimal *n2, struct decimal *n3);

Notes:

1. n1 is a pointer to the decimal structure of the first operand.
2. n2 is a pointer to the decimal structure of the second operand.
3. n3 is a pointer to the decimal structure that contains the product of (n1 times n2).

Returns:

Code Description
0 The operation was successful.
-1200 The operation resulted in overflow.
-1201 The operation resulted in underflow.

decdiv()

Purpose:

To divide one decimal value by another(n1 divided by n2)

User Extensions

1597

Syntax:

mint decdiv(dec_t *n1, struct decimal *n2, struct decimal *n3);

Notes:

1. n1 is a pointer to the decimal structure of the number to be divided.
2. n2 is a pointer to the decimal structure of the number that is the divisor.
3. n3 is a pointer to the decimal structure that contains the quotient of (n1 divided

by n2).

Returns:

Code Description
0 The operation was successful.
-1200 The operation resulted in overflow.
-1201 The operation resulted in underflow.

-1202 The operation attempted to divide
by zero.

deccmp()

Purpose:

To compare two decimal values

Syntax:

mint deccmp(dec_t *n1, struct decimal *n2);

Notes:

1. n1 is a pointer to the decimal structure of the first number to compare.
2. n2 is a pointer to the decimal structure of the second number to compare.

Returns:

Code Description
0 The two values are identical.

1 The first value is greater than the
second value.

-1 The first value is less than the
second value.

-2 Either value is null.

Genero Business Development Language

1598

deccopy()

Purpose:

To copy one decimal value to another

Syntax:

void deccopy(dec_t *n1, struct decimal *n2);

Notes:

1. n1 is a pointer to the value held in the source decimal structure.
2. n2 is a pointer to the target decimal structure.

deccvasc()

Purpose:

To convert a string value to a decimal

Syntax:

mint deccvasc(char *cp, mint len, dec_t *np);

Notes:

1. cp is a pointer to a string to be converted to a decimal value.
2. len is the length of the string.
3. np is a pointer to the decimal structure which contains the result of the

conversion.

Returns:

Code Description
0 The conversion was successful.

-1200 The number is too large to fit into a
decimal type structure.

deccvdbl()

Purpose:

To convert a double value to a decimal

User Extensions

1599

Syntax:

mint deccvdbl(double dbl, dec_t *np);

Notes:

1. dbl is the double value to convert to a decimal type value.
2. np is a pointer to a decimal structure containing the result of the conversion.

Returns:

Code Description
0 The conversion was successful.
<0 The conversion failed.

deccvint()

Purpose:

To convert a 4-byte integer value to a decimal

Syntax:

mint deccvint(mint in, dec_t *np);

Notes:

1. in is the mint value to convert to a decimal type value.
2. np is a pointer to a decimal structure to contain the result of the conversion.

Returns:

Code Description
0 The conversion was successful.
<0 The conversion failed.

deccvlong()

Purpose:

To convert a 4-byte integer value to a decimal

Genero Business Development Language

1600

Syntax:

mint deccvlong(int4 lng, dec_t *np);

Notes:

1. lng is the int4 value to convert to a decimal type value.
np is a pointer to a decimal structure to contain the result of the conversion.

Returns:

Code Description
0 The conversion was successful.
<0 The conversion failed.

Warning: Even if the function name is "deccvlong", it takes a 4-byte int as
argument.

dececvt()

Purpose:

To convert a decimal value to a string value, specifying the length of the string (the total
number of digits)

Syntax:

char *dececvt(dec_t *np, mint ndigit, mint *decpt, mint *sign);

Notes:

1. np is a pointer to a decimal structure that contains the decimal value you want to
convert.

2. ndigit is the length of the ASCII string.
3. decpt is a pointer to an integer that is the position of the decimal point relative to

the start of the string. A negative or zero value for
decpt means to the left of the returned digits.

4. sign is a pointer to the sign of the result. If the sign of the result is negative, sign
is nonzero; otherwise, sign is zero.

Returns:

This function returns a pointer to the result string. This string is temporary and has to be
copied into your own string buffer.

User Extensions

1601

decfcvt()

Purpose:

To convert a decimal value to a string value, specifying the number of digits to the right
of the decimal point

Syntax:

char *decfcvt(dec_t *np, mint ndigit, mint *decpt, mint *sign);

Notes:

1. np is a pointer to a decimal structure that contains the decimal value you want to
convert.

2. ndigit is the number of digits to the right of the decimal point.
3. decpt is a pointer to an integer that is the position of the decimal point relative to

the start of the string. A negative or zero value for
decpt means to the left of the returned digits.

4. sign is a pointer to the sign of the result. If the sign of the result is negative, sign
is nonzero; otherwise, sign is zero.

Returns:

This function returns a pointer to the result string. This string is temporary and has to be
copied into your own string buffer.

decround()

Purpose:

To round a decimal value, specifying the number of digits to the right of the decimal point

Syntax:

void decround(dec_t *np, mint dec_round);

Notes:

1. np is a pointer to a decimal structure whose value is to be rounded. Use a
positive number for the np argument.

2. dec_round is the number of fractional digits to which the value is rounded.

Genero Business Development Language

1602

dectoasc()

Purpose:

To convert a decimal value to an ASCII string, specifying the length of the string and the
number of digits to the right of the decimal point

Syntax:

mint dectoasc(dec_t *np, char *cp, mint len, mint right);

Notes:

1. np is a pointer to the decimal structure to convert to a text string.
2. cp is a pointer to the first byte of the character buffer to hold the text string.
3. len is the size of strng_val, in bytes, minus 1 for the null terminator.
4. right is an integer that indicates the number of decimal places to the right of the

decimal point.
5. Because the character string that dectoasc() returns is not null terminated, your

program must add a null character to the string before you print it.

Returns:

Code Description
0 The conversion was successful.
<0 The conversion failed.

dectodbl()

Purpose:

To convert a decimal value to a double value

Syntax:

mint dectodbl(dec_t *np, double *dblp);

Notes:

1. np is a pointer to the decimal structure to convert to a double type value.
2. dblp is a pointer to a double type where dectodbl() places the result of the

conversion.

Returns:

Code Description

User Extensions

1603

0 The conversion was successful.
<0 The conversion failed.

dectoint()

Purpose:

To convert a decimal value to a SMALLINT equivalent (2-byte integer)

Syntax:

mint dectoint2(dec_t *np, mint *ip);

Notes:

1. np is a pointer to the decimal structure to convert to a mint type value.
2. ip is a pointer to a mint value where dectoint() places the result of the conversion.

Returns:

Code Description
0 The conversion was successful.
<0 The conversion failed.

-1200 The magnitude of the decimal type
number is greater than 32767.

Warning: This functions takes a machine-dependent int pointer as argument
(usually 4 bytes), but converts the decimal to a SMALLINT equivalent, with
possible overflow errors.

dectolong()

Purpose:

To convert a decimal value to a long integer

Syntax:

mint dectolong(dec_t *np, int4 *lngp);

Notes:

1. np is a pointer to the decimal structure to convert to an int4 integer.

Genero Business Development Language

1604

2. lngp is a pointer to an int4 integer where dectolong() places the result of the
conversion.

Returns:

Code Description
0 The conversion was successful.
<0 The conversion failed.

-1200
The magnitude of the decimal type
number is greater than
2,147,483,647.

Warning: Even if the function name is "dectolong", it takes a 4-byte int pointer as
argument, and converts the decimal to an INTEGER equivalent.

dectrunc()

Purpose:

To truncate a decimal value, specifying the number of digits to the right of the decimal
point

Syntax:

void dectrunc(dec_t *np, mint trunc);

Notes:

1. np is a pointer to the decimal structure for a rounded number to truncate.
2. trunc is the number of fractional digits to which dectrunc() truncates the number.

Use a positive number or zero for this argument.

deccvflt()

Purpose:

To convert a float to a decimal value

Syntax:

mint deccvflt(float source, dec_t *destination);

User Extensions

1605

Notes:

1. source is the float value to be converted.
2. destination is a pointer to the structure where the decimal value is placed.

Returns:

Code Description
0 The conversion was successful.
<0 The conversion failed.

dectoflt()

Purpose:

To convert a decimal value to a float

Syntax:

mint dectoflt(dec_t *source, float *destination);

Notes:

1. source is a pointer to the decimal value to convert.
2. destination is a pointer to the resulting float value.

Returns:

Code Description
0 The conversion was successful.
<0 The conversion failed.

rfmtdec()

Purpose:

To convert a decimal value to a string having a specified format

Syntax:

int rfmtdec(dec_t *dec, char *format, char *outbuf);

Genero Business Development Language

1606

Notes:

1. dec is a pointer to the decimal value to format.
2. format is a pointer to a character buffer that contains the formatting mask to use.
3. outbuf is a pointer to a character buffer that receives the resulting formatted

string.

Returns:

Code Description
0 The conversion was successful.
<0 The conversion failed.

-1211 The program ran out of memory
(memory-allocation error).

-1217 The format string is too large.

bycmpr()

Purpose:

To compare two groups of contiguous bytes, for a specified length, byte-by-byte.

Syntax:

mint bycmpr(char *st1, char *st2, mint count);

Notes:

1. st1 is a pointer to the location where the first group of bytes starts.
2. st2 is a pointer to the location where the second group of bytes starts.
3. count is the number of bytes to compare.

Returns:

Code Description

0 The two groups of bytes are
identical.

1 The st1 group of bytes is less than
the st2 group.

-1 The st1 group of bytes is greater
than the st2 group.

User Extensions

1607

bycopy()

Purpose:

To copy a specified number of bytes to another location in memory

Syntax:

void bycopy(char *s1, char *s2, mint n);

Notes:

1. s1 is a pointer to the first byte of the group of bytes that you want to copy.
2. s2 is a pointer to the first byte of the destination group of bytes.

If the location pointed to by s2 overlaps the location pointed to by s1, the function
will not preserve the value of s1.

3. n is the number of bytes to be copied.

Warning: Do not overwrite the memory areas adjacent to the destination area.

byfill()

Purpose:

To fill a specified number of bytes with a specified character

Syntax:

void byfill(char *s1, mint n, char c);

Notes:

1. s1 is a pointer to the first byte of the memory area that you want to fill.
n is the number of times that you want to repeat the character within the area.
c is the character that you want to use to fill the area.

Warning: Do not overwrite the memory areas adjacent to the destination area.

risnull()

Purpose:

To check whether a variable is null

Genero Business Development Language

1608

Syntax:

int risnull(int vtype, char *pcvar);

Notes:

1. vtype is an integer corresponding to the data type of the variable.
This parameter must be one of the Date Type Constants defined in fglExt.h.

2. pcvar is a pointer to the C variable.

Returns:

Code Description

1 The variable does contain a null
value.

0 The variable does not contain a null
value.

rsetnull()

Purpose:

To set a variable to NULL

Syntax:

mint rsetnull(mint vtype, char *pcvar);

Notes:

1. type is an integer corresponding to the data type of the variable.
This parameter must be one of the Date Type Constants defined in fglExt.h.

2. pcvar is a pointer to the variable.

Returns:

Code Description
0 The operation was successful.
<0 The operation failed.

User Extensions

1609

rgetmsg()

Purpose:

Returns the error message for a specified error number, restricted to two-byte integers.

Syntax:

mint rgetmsg(int msgnum, char *s, mint maxsize);

Notes:

1. msgnum is the error number, restricted to error numbers between -32768 and
+32767.

2. s is a pointer to the buffer that receives the message string (the output buffer).
3. maxsize is the size of the output buffer. This value should be set to the size of

the largest message that you expect to retrieve.
4. The Informix message text files are used to retrieve the message.

Returns:

Code Description
0 The operation was successful.
-1227 Message file not found.

-1228 Message number not found in
message file.

-1231 Cannot seek within message file.
-1232 Message buffer is too small.

Warning: This function returns Informix specific messages; it will not work
properly if the Informix client software is not installed.

rgetlmsg()

Purpose:

Returns the error message for a specified error number, which can be a 4-byte integer.

Syntax:

int4 rgetlmsg(int msgnum, char *s, mint maxsize, mint *msg_length);

Notes:

1. msgnum is the error number. The four-byte parameter provides for the full range
of Informix-specific error numbers.

Genero Business Development Language

1610

2. s is a pointer to the buffer that receives the message string (the output buffer).
3. maxsize is the size of the msgstr output buffer. Make this value the size of the

largest message that you expect to retrieve.
4. msg_length is a pointer to the mint that contains the actual length of the message

that rgetlmsg() returns.

Returns:

Code Description
0 The operation was successful.
-1227 Message file not found.

-1228 Message number not found in
message file.

-1231 Cannot seek within message file.
-1232 Message buffer is too small.

Warning: This function returns Informix specific messages; it will not work
properly if the Informix client software is not installed.

rtypalign()

Purpose:

Returns the position to align a variable at the proper boundary for its data type

Syntax:

mlong rtypalign(mlong pos, mint datatype)

Notes:

1. pos is the current position in the buffer.
2. datatype is an integer code defining the data type.

This parameter must be one of the Date Type Constants defined in fglExt.h.

Returns:

Code Description

>0
The return value is the offset of the
next proper boundary for a variable
of type data type.

User Extensions

1611

rtypmsize()

Purpose:

Returns the size in bytes required for a specified data type

Syntax:

mint rtypmsize(mint datatype, mint length)

Notes:

1. datatype is an integer code defining the data type.
This parameter must be one of the Date Type Constants defined in fglExt.h.

2. length is the number of bytes in the data file for the specified type.

Returns:

Code Description

0 The datatype is not a valid SQL
type.

>0 The return value is the number of
bytes that the data type requires.

rtypname()

Purpose:

Returns a pointer to a null-terminated string containing the name of the data type

Syntax:

char *rtypname(mint datatype)

Notes:

1. datatype is an integer code defining the data type.
This parameter must be one of the Date Type Constants defined in fglExt.h.

Returns:

The rtypname function returns a pointer to a string that contains the name of the data
type specified datatype.

If datatype is an invalid value, rtypname() returns a null string (" ").

Genero Business Development Language

1612

rtypwidth()

Purpose:

Returns the minimum number of characters required to convert a specified data type to a
character data type

Syntax:

mint rtypwidth(mint datatype, mint length)

Notes:

1. datatype is an integer code defining the data type.
This parameter must be one of the Date Type Constants defined in fglExt.h.

2. length is the number of bytes in the data file for the specified data type.

Returns:

Code Description

0 The sqltype is not a valid SQL data
type.

>0 Minimum number of characters that
the sqltype data type requires.

rdatestr()

Purpose:

To convert a date that is in the native database date format to a string

Syntax:

mint rdatestr(int4 jdate, char *str);

Notes:

1. jdate is the internal representation of the date to format.
2. str is a pointer to the buffer that receives the string for the date value.

Returns:

Code Description
0 The conversion was successful.

User Extensions

1613

<0 The conversion failed.

-1210
The internal date could not be
converted to the character string
format.

-1212
Data conversion format must
contain a month, day, or year
component.

Usage:

The DBDATE environment variable specifies the data conversion format.

rdayofweek()

Purpose:

Returns the day of the week of a date that is in the native database format

Syntax:

mint rdayofweek(int4 jdate);

Notes:

1. jdate is the internal representation of the date.

Returns:

Code Description
<0 Invalid date value
0 Sunday
1 Monday
2 Tuesday
3 Wednesday
4 Thursday
5 Friday
6 Saturday

rdefmtdate()

Purpose:

To convert a string in a specified format to the native database date format

Genero Business Development Language

1614

Syntax:

mint rdefmtdate(int4 *pdate, char *fmt, char *input);

Notes:

1. pdate is a pointer to an int4 integer value that receives the internal DATE value
for the input string.

2. fmt is a pointer to the buffer that contains the formatting mask for the string.
3. input is a pointer to the buffer that contains the string to convert.

Returns:

Code Description
0 The operation was successful.

-1204 The input parameter specifies an
invalid year.

-1205 The input parameter specifies an
invalid month.

-1206 The input parameter specifies an
invalid day.

-1209

Because input does not contain
delimiters between the
year,month,and day, the length of
input must be exactly six or eight
bytes.

-1212 fmt does not specify a year, a
month, and a day.

rfmtdate()

Purpose:

To convert a date that is in the native database date format to a string having a specified
format

Syntax:

mint rfmtdate(int4 jdate, char *fmt, char *result);

Notes:

1. jdate is the internal representation of a date to convert.
2. fmt is a pointer to the buffer containing the formatting mask.
3. result is a pointer to the buffer that receives the formatted string.

User Extensions

1615

Returns:

Code Description
0 The operation was successful.

-1210
The internal date cannot be
converted to month-day-year
format.

-1211 The program ran out of memory
(memory-allocation error).

-1212 Format string is NULL or invalid.

rjulmdy()

Purpose:

To create an array of short integer values representing year, month, and day from a date
that is in the native database date format

Syntax:

mint rjulmdy(int4 jdate, int2 mdy[3]);

Notes:

1. jdate is the internal representation of a date.
2. mdy is an array of short integers, where mdy[0] is the month (1 to 12), mdy[1] is

the day (1 to 31), and mdy[2] is the year (1 to 9999).

Returns:

0 The operation was successful.
< 0 The operation failed.
-1210 The internal date could not be converted to the character string format.

rleapyear()

Purpose:

To determine whether the value passed as a parameter is a leap year; returns 1 when
TRUE.

Syntax:

mint rleapyear(mint year);

Genero Business Development Language

1616

Notes:

1. year is an integer, representing the year component of a date, in the full form
yyyy (ie, 2004).

Returns:

Code Description
1 The year is a leap year.
0 The year is not a leap year.

rmdyjul()

Purpose:

To create a value in the native database date format from an array of short integer
values representing month, day, and year

Syntax:

mint rmdyjul(int2 mdy[3], int4 *jdate);

Notes:

1. mdy is an array of short integer values, where mdy[0] is the month (1 to12),
mdy[1] is the day (1 to 31), and mdy[2] is the year (1 to 9999).

2. jdate is a pointer to a long integer that receives the internal DATE value for the
mdy array.

Returns:

Code Description
0 The operation was successful.

-1204 The mdy[2] variable contains an
invalid year.

-1205 The mdy[0] variable contains an
invalid month.

-1206 The mdy[1] variable contains an
invalid day.

User Extensions

1617

rstrdate()

Purpose:

To convert a character string to the native database date format.

Syntax:

mint rstrdate(char *str, int4 *jdate);

Notes:

1. str is a pointer to a char string containing the date to convert.
2. jdate is a pointer to an int4 integer that receives the converted date value.

Returns:

Code Description
0 The conversion was successful.
<0 The conversion failed.

-1204 The str parameter specifies an
invalid year.

-1205 The str parameter specifies an
invalid month.

-1206 The str parameter specifies an
invalid day.

-1212

Data conversion format must
contain a month, day, or year
component. DBDATE specifies the
data conversion format.

-1218
The date specified by the str
argument does not properly
represent a date.

Usage:

The DBDATE environment variable specifies the data conversion format.

rtoday()

Purpose:

Returns the system date in the internal database date format

Genero Business Development Language

1618

Syntax:

void rtoday(int4 *today);

Notes:

1. today is a pointer to an int4 value that receives the internal date.

ifx_defmtdate()

Purpose:

To convert a string in a specified format to the native database date format; allows you
to specify the century setting for two-digit dates.

Syntax:

mint ifx_defmtdate(int4 *pdate, char *fmt, char *input, char c);

Notes:

1. pdate is a pointer to an int4 integer value that receives the internal DATE value
for the input string.

2. fmt is a pointer to the buffer that contains the formatting mask to use for the input
string.

3. input is a pointer to the buffer that contains the date string to convert.
4. c is one of CENTURY characters, which determines which century to apply to the

year portion of the date.

Returns:

Code Description
0 The conversion was successful.
<0 The conversion failed.

-1204 The str parameter specifies an
invalid year.

-1205 The str parameter specifies an
invalid month.

-1206 The str parameter specifies an
invalid day.

-1212

Data conversion format must
contain a month, day, or year
component. DBDATE specifies the
data conversion format.

-1209
Because *input does not contain
delimiters between the year, month,
and day, the length of *input must

User Extensions

1619

be exactly six or eight bytes.

ifx_strdate()

Purpose:

To convert a character string to the native database date format; allows you to specify
the century setting for two-digit dates.

Syntax:

mint ifx_strdate(char *str, int4 *jdate, char c);

Notes:

1. str is a pointer to the string that contains the date to convert.
2. jdate is a pointer to a int4 integer that receives the internal DATE value for the str

string.
3. c is one of CENTURY characters, which determines which century to apply to the

year portion of the date.

Returns:

Code Description
0 The conversion was successful.
<0 The conversion failed.

-1204 The str parameter specifies an
invalid year.

-1205 The str parameter specifies an
invalid month.

-1206 The str parameter specifies an
invalid day.

-1212

Data conversion format must
contain a month, day, or year
component. DBDATE specifies the
data conversion format.

-1218
The date specified by the str
argument does not properly
represent a date.

Usage:

The DBDATE environment variable specifies the data conversion format.

Genero Business Development Language

1620

byleng()

Purpose:

Returns the number bytes as significant characters in the specified string; omitting
trailing blanks

Syntax:

mint byleng(char *s1, mint count);

Notes:

1. s1 is a pointer to a fixed-length string, not null-terminated.
2. count is the number of bytes in the fixed-length string.

Returns:

Number of bytes.

ldchar()

Purpose:

To copy a fixed-length string into a null-terminated string without trailing blanks

Syntax:

void ldchar(char *from, mint count, char *to);

Notes:

1. from is a pointer to a fixed-length source string.
2. count is the number of bytes in the source string.
3. to is a pointer to the first byte of a null-terminated destination string. If the to

argument points to the same location as the from argument, or to a location that
overlaps the from argument, ldchar() does not preserve the original value.

rdownshift()

Purpose:

To convert all the characters in a null-terminated string to lowercase.

User Extensions

1621

Syntax:

void rdownshift(char *s);

Notes:

1. s is a pointer to a null-terminated string.

rupshift()

Purpose:

To convert all the characters in a null-terminated string to uppercase.

Syntax:

void rupshift(char *s);

Notes:

1. s is a pointer to a null-terminated string.

stcat()

Purpose:

To concatenate one null-terminated string to another (src is added to the end of dst).

Syntax:

void stcat(char *src, char *dst);

Notes:

1. src is a pointer to the start of the string that is put at the end of the destination
string.

2. dst is a pointer to the start of the null-terminated destination string.
3. The resulting string is dstsrc.

Genero Business Development Language

1622

stcopy()

Purpose:

To copy a string to another location

Syntax:

void stcopy(char *src, char *dst);

Notes:

1. src is a pointer to the string that you want to copy.
2. dst is a pointer to a location in memory where the string is copied.

stleng()

Purpose:

Returns the number of bytes of significant characters, including trailing blanks

Syntax:

mint stleng(char *src);

Notes:

1. src is a pointer to a null-terminated string.
2. The length does not include the null terminator.

Returns:

Number of bytes.

stcmpr()

Purpose:

To compare two strings

Syntax:

mint stcmpr(char *s1, char *s2);

User Extensions

1623

Notes:

1. s1 is a pointer to the first null-terminated string.
2. s2 is a pointer to the second null-terminated string.
3. s1 is greater than s2 when s1 appears after s2 in the ASCII collation sequence.

Returns:

Code Description
0 The two strings are identical.

<0 The first string is less than the
second string.

>0 The first string is greater than the
second string.

stchar()

Purpose:

To copy a null-terminated string into a fixed-length string

Syntax:

void stchar(char *from, char *to, mint count);

Notes:

1. from is a pointer to the first byte of a null-terminated source string.
2. to is a pointer to a fixed-length destination string. If this argument points to a

location that overlaps the location to which the from argument points, the from
value is discarded.

3. count is the number of bytes in the fixed-length destination string.

rstod()

Purpose:

To convert a string to a double.

Syntax:

mint rstod(char *str, double *val);

Genero Business Development Language

1624

Notes:

1. str is a pointer to a null-terminated string.
2. val is a pointer to a double value that holds the converted value.

Returns:

Code Description
0 The conversion was successful.
<0 The conversion failed.

rstoi()

Purpose:

To convert a string to a 2-byte integer.

Syntax:

mint rstoi(char *str, mint *val);

Notes:

1. str is a pointer to a null-terminated string.
2. val is a pointer to a mint value that holds the converted value.

Warning: The function takes a machine-dependent int pointer (usually 4 bytes),
but the function converts to a 2 byte interger (overflow error may occur if string
does not represent a valid 2-byte integer).

Returns:

Code Description
0 The conversion was successful.
<0 The conversion failed.

rstol()

Purpose:

To convert a string to a 4-byte integer (machine dependent)

User Extensions

1625

Syntax:

mint rstol(char *str, mlong *val);

Notes:

1. str is a pointer to a null-terminated string.
2. val is a pointer to an mlong value that holds the converted value.

Warning: The function takes a machine-dependent long pointer (4 bytes on 32b
and 8 bytes on 64b architectures), but the function converts to a 4-byte integer
(overflow error may occur if string does not represent a valid 2 byte integer).

Returns:

Code Description
0 The conversion was successful.
<0 The conversion failed.

rfmtdouble()

Purpose:

To convert a double value to a character string having a specified format.

Syntax:

mint rfmtdouble(double dvalue, char *format, char *outbuf);

Notes:

1. dvalue is the double value to format.
2. format is a pointer to a char buffer that contains the formatting mask.
3. outbuf is a pointer to a char buffer that receives the formatted string.

Returns:

Code Description
0 The conversion was successful.
<0 The conversion failed.

-1211 The program ran out of memory
(memory-allocation error).

-1217 The format string is too large.

Genero Business Development Language

1626

rfmtint4()

Purpose:

To convert a 4-byte integer to a character string having a specified format

Syntax:

mint rfmtint4(int4 lvalue, char *format, char *outbuf);

Notes:

1. lvalue is the int4 integer to convert.
2. format is a pointer to the char buffer that contains the formatting mask.
3. outbuf is a pointer to a char buffer that receives the formatted string for the

integer value.

Returns:

Code Description
0 The conversion was successful.
<0 The conversion failed.

-1211 The program ran out of memory
(memory-allocation error).

-1217 The format string is too large.

dtaddinv()

Purpose:

To add an interval value to a datetime value

Syntax:

mint dtaddinv(dtime_t *d, intrvl_t *i, dtime_t *r);

Notes:

1. d is a pointer to the initialized datetime host variable. The variable must include
all the fields present in the interval value.

2. i is a pointer to the initialized interval host variable. The interval value must be in
the year to month or the day to fraction(5) range.

3. r is a pointer to the result. The result inherits the qualifier of d.
4. Failure to initialize the host variables can produce unpredictable results.

User Extensions

1627

Returns:

Code Description
0 The addition was successful.
<0 The addition failed.

dtcurrent()

Purpose:

Returns the current date and time

Syntax:

void dtcurrent(dtime_t *d);

Notes:

1. d is a pointer to the initialized datetime host variable.
2. The function extends the current date and time to agree with the qualifier of the

host variable.

dtcvasc()

Purpose:

To convert an ASCII-standard character string to a datetime value

Syntax:

mint dtcvasc(char *str, dtime_t *d);

Notes:

1. str is a pointer to the buffer that contains the ASCII-standard datetime string.
2. d is a pointer to a datetime variable, initialized with the qualifier that you want the

datetime value to have.

Returns:

Code Description
0 The conversion was successful.
<0 The conversion failed.
-1260 It is not possible to convert between

Genero Business Development Language

1628

the specified types.

-1261 Too many digits in the first field of
datetime or interval.

-1262 Non-numeric character in datetime
or interval.

-1263 A field in a datetime or interval
value is out of range or incorrect.

-1264 Extra characters exist at the end of
a datetime or interval.

-1265 Overflow occurred on a datetime or
interval operation.

-1266 A datetime or interval value is
incompatible with the operation.

-1267 The result of a datetime
computation is out of range.

-1268 A parameter contains an invalid
datetime qualifier.

ifx_dtcvasc()

Purpose:

To convert a character string to a datetime value; allows you to specify the century
setting for 2-digit years

Syntax:

mint ifx_dtcvasc(char *str, dtime_t *d, char c);

Notes:

1. str is a pointer to a buffer that contains an ANSI-standard datetime string.
2. d is a pointer to a datetime variable, initialized with the desired qualifier.
3. c is one of CENTURY characters, which determines which century to apply to the

year portion of the date.

Returns:

Code Description
0 The conversion was successful.
<0 The conversion failed.

-1260 It is not possible to convert between
the specified types.

-1261 Too many digits in the first field of
datetime or interval.

-1262 Non-numeric character in datetime

User Extensions

1629

or interval.

-1263 A field in a datetime or interval
value is out of range or incorrect.

-1264 Extra characters exist at the end of
a datetime or interval.

-1265 Overflow occurred on a datetime or
interval operation.

-1266 A datetime or interval value is
incompatible with the operation.

-1267 The result of a datetime
computation is out of range.

-1268 A parameter contains an invalid
datetime qualifier.

dtcvfmtasc()

Purpose:

To convert a character string to a datetime value, specifying the format of the string

Syntax:

mint dtcvfmtasc(char *input, char *fmt, dtime_t *d);

Notes:

1. input is a pointer to a buffer that contains the string to convert.
2. fmt is a pointer to a buffer containing the formatting mask.

The default date format conforms to the standard ANSI SQL format: %Y-%m-%d
%H:%M:%S

3. d is a pointer to the datetime variable, which must be initialized with the desired
qualifier.

Returns:

Code Description
0 The conversion was successful.
<0 The conversion failed.

ifx_dtcvfmtasc()

Purpose:

To convert a character string to a datetime value, specifying the format of the string

Genero Business Development Language

1630

Syntax:

mint ifx_dtcvfmtasc(char *input, char *fmt, dtime_t *d, char c);

Notes:

1. input is a pointer to a buffer that contains the string to convert.
2. fmt is a pointer to a buffer containing the formatting mask.

The default date format conforms to the standard ANSI SQL format: %Y-%m-%d
%H:%M:%S

3. d is a pointer to the datetime variable, which must be initialized with the desired
qualifier.

4. c is one of CENTURY characters, which determines which century to apply to the
year portion of the date.

Returns:

Code Description
0 The conversion was successful.
<0 The conversion failed.

dtextend()

Purpose:

To copy a datetime value id to the datetime value od, adding or dropping fields based on
the qualifier of od

Syntax:

mint dtextend(dtime_t *id, dtime_t *od);

Notes:

1. id is a pointer to the datetime variable to extend.
2. od is a pointer to the datetime variable containing a valid qualifier to use for the

extension.

Returns:

Code Description
0 The operation was successful.
<0 The operation failed.

-1268 A parameter contains an invalid
datetime qualifier

User Extensions

1631

dtsub()

Purpose:

To subtract one datetime value from another

Syntax:

mint dtsub(dtime_t *d1, dtime_t *d2, intrvl_t *i);

Notes:

1. d1 is a pointer to an initialized datetime host variable.
2. d2 is a pointer to an initialized datetime host variable.
3. i is a pointer to the interval host variable that contains the result.

Returns:

Code Description
0 The subtraction was successful.
<0 The subtraction failed.

dtsubinv()

Purpose:

To subtract an interval value from a datetime value

Syntax:

mint dtsubinv(dtime_t *d, intrvl_t *i, dtime_t *r);

Notes:

1. d is a pointer to an initialized datetime host variable. This must include all the
fields present in the interval value i.

2. i is a pointer to an initialized interval host variable.
3. r is a pointer to the datetime host variable that contains the result.

Returns:

Code Description
0 The subtraction was successful.
<0 The subtraction failed.

Genero Business Development Language

1632

dttoasc()

Purpose:

To convert a datetime value to an ANSI-standard character string

Syntax:

mint dttoasc(dtime_t *d, char *str);

Notes:

1. d is a pointer to the initialized datetime variable to convert.
2. str is a pointer to the buffer that receives the ANSI-standard DATETIME string for

the value in d.

Returns:

Code Description
0 The conversion was successful.
<0 The conversion failed.

Usage:

The str parameter includes one character for each delimiter, plus the fields, which are of
the following sizes:

Field Field Size
year four digits

fraction of
datetime

 as specified by
precision

all other fields two digits

For example, datetime year to fraction(5):

YYYY-MM-DD HH:MM:SS.FFFFF

dttofmtasc()

Purpose:

To convert a datetime value to a character string, specifying the format

Syntax:

mint dttofmtasc(dtime_t *d, char *output, mint len, char *fmt);

User Extensions

1633

Notes:

1. d is a pointer to the initialized datetime variable to convert.
2. output is a pointer to the buffer that receives the string for the value in d.
3. len is the length of the output buffer.
4. fmt is a pointer to a buffer containing the formatting mask.

The default date format conforms to the standard ANSI SQL format: %Y-%m-%d
%H:%M:%S

Returns:

Code Description
0 The conversion was successful.
<0 The conversion failed.

ifx_dttofmtasc()

Purpose:

To convert a datetime value to a character string, specifying the format

Syntax:

mint ifx_dttofmtasc(dtime_t *d, char *output, mint len, char *fmt, char
c);

Notes:

1. d is a pointer to the initialized datetime variable to convert.
2. output is a pointer to the buffer that receives the string for the value in d.
3. len is the length of the output buffer.
4. fmt is a pointer to a buffer containing the formatting mask.

The default date format conforms to the standard ANSI SQL format: %Y-%m-%d
%H:%M:%S

5. c is one of CENTURY characters, which determines which century to apply to the
year portion of the date.

Returns:

Code Description
0 The conversion was successful.
<0 The conversion failed.

Genero Business Development Language

1634

incvasc()

Purpose:

To convert an ANSI-standard character string to an interval value

Syntax:

mint incvasc(char *str, intrvl_t *i);

Notes:

1. str a pointer to a buffer containing an ANSI-standard INTERVAL string.
2. i is a pointer to an initialized interval variable.

Returns:

Code Description
0 The conversion was successful.
<0 The conversion failed.

-1260 It is not possible to convert between
the specified types.

-1261 Too many digits in the first field of
datetime or interval.

incvfmtasc()

Purpose:

To convert a character string having the specified format to an interval value

Syntax:

mint incvfmtasc(char *input, char *fmt, intrvl_t *intvl);

Notes:

1. input is a pointer to the string to convert.
2. fmt is a pointer to the buffer containing the formatting mask to use for the input

string.
It must be either in year to month, or in day to fraction ranges.

3. intvl is a pointer to the initialized interval variable.

Returns:

Code Description

User Extensions

1635

0 The conversion was successful.
<0 The conversion failed.

intoasc()

Purpose:

To convert an interval value to an ANSI-standard character string

Syntax:

mint intoasc(intrvl_t *i, char *str);

Notes:

1. i is a pointer to the initialized interval variable.
2. str is a pointer to the buffer containing the ANSI-standard interval string.

Returns:

Code Description
0 The conversion was successful.
<0 The conversion failed.

intofmtasc()

Purpose:

To convert an interval value to a character string, specifying the format

Syntax:

mint intofmtasc(intrvl_t *i, char *output, mint len, char *fmt);

Notes:

1. i is a pointer to an initialized interval variable to convert.
2. output is a pointer to the buffer that receives the string for the value in i.
3. strlen is the length of the outbuf buffer.
4. fmt is a pointer to the buffer containing the formatting mask.

It must be either in year to month, or in day to fraction ranges.

Genero Business Development Language

1636

Returns:

Code Description
0 The conversion was successful.
<0 The conversion failed.

invdivdbl()

Purpose:

To divide an interval value by a numeric value

Syntax:

mint invdivdbl(intrvl_t *iv, double dbl, intrvl_t *ov);

Notes:

1. iv is a pointer to an initialized interval variable to be divided.
2. dbl is a numeric divisor value, which can be a positive or negative number.
3. ov is a pointer to an interval variable with a valid qualifier in the year to month

class or the day to fraction(5) class.
4. Both the iv and ov qualifiers must belong to the same qualifier class

Returns:

Code Description
0 The division was successful.
<0 The division failed.

-1200 A numeric value is too large (in
magnitude).

-1201 A numeric value is too small (in
magnitude).

-1202 The dbl parameter is zero (0).

invdivinv()

Purpose:

To divide one interval value by another

Syntax:

mint invdivinv(intrvl_t *i1, intrvl_t *i2, double *res);

User Extensions

1637

Notes:

1. i1 is a pointer to an initialized interval variable that is the dividend.
2. i2 is a pointer to an initialized interval variable that is the divisor.
3. res is a pointer to the double value that is the quotient.
4. The qualifiers for i1 and i2 must belong to the same interval class, either year to

month or day to fraction(5).

Returns:

Code Description
0 The division was successful.
<0 The division failed.

-1200 A numeric value is too large (in
magnitude).

-1201 A numeric value is too small (in
magnitude).

-1266 An interval value is incompatible
with the operation.

-1268 A parameter contains an invalid
interval qualifier.

invextend()

Purpose:

To copy an interval value i to the interval value o, adding or dropping fields based on the
qualifier of o

Syntax:

mint invextend(intrvl_t *i, intrvl_t *o);

Notes:

1. i a pointer to the initialized interval variable to extend.
2. o is a pointer to the interval variable with a valid qualifier to use for the extension.

Returns:

Code Description
0 The conversion was successful.
<0 The conversion failed.

-1266 An interval value is incompatible
with the operation.

-1268 A parameter contains an invalid

Genero Business Development Language

1638

interval qualifier.

invmuldbl()

Purpose:

To multiply an interval value by a numeric value

Syntax:

mint invmuldbl(intrvl_t *iv, double dbl, intrvl_t *ov);

Notes:

1. iv is a pointer to the interval variable to multiply.
2. dbl is the numeric double value, which can be a positive or negative number.
3. ov is a pointer to the resulting interval variable containing a valid qualifier.
4. Both iv and ov must belong to the same interval class, either year to month or

day to fraction(5).

Returns:

Code Description
0 The multiplication was successful.
<0 The multiplication failed.

-1200 A numeric value is too large (in
magnitude).

-1201 A numeric value is too small (in
magnitude).

-1266 An interval value is incompatible
with the operation.

-1268 A parameter contains an invalid
interval qualifier.

Formatting Directives

Numeric Formatting Mask

A numeric-formatting mask specifies a format to apply to some numeric value.

This mask is a combination of the following formatting directives:

Character Description
* This character fills with asterisks any

User Extensions

1639

positions in the display field that would
otherwise be blank.

& This character fills with zeros any
positions in the display field that would
otherwise be blank.

This character changes leading zeros to
blanks. Use this character to specify the
maximum leftward extent of a field.

< This character left-justifies the numbers in
the display field. It changes leading zeros
to a null string.

,

This character indicates the symbol that
separates groups of three digits (counting
leftward from the units position) in the
whole-number part of the value. By
default, this symbol is a comma. You can
set the symbol with the DBMONEY
environment variable. In a formatted
number, this symbol appears only if the
whole-number part of the value has four
or more digits.

.

This character indicates the symbol that
separates the whole-number part of a
money value from the fractional part. By
default, this symbol is a period. You can
set the symbol with the DBMONEY
environment variable. You can have only
one period in a format string.

-

This character is a literal. It appears as a
minus sign when the expression is less
than zero. When you group several minus
signs in a row, a single minus sign floats
to the rightmost position that it can
occupy; it does not interfere with the
number and its currency symbol.

+

This character is a literal. It appears as a
plus sign when the expression is greater
than or equal to zero and as a minus sign
when expr1 is less than zero. When you
group several plus signs in a row, a
single plus or minus sign floats to the
rightmost position that it can occupy; it
does not interfere with the number and its
currency symbol.

(

This character is a literal. It appears as a
left parenthesis to the left of a negative
number. It is one of the pair of accounting

Genero Business Development Language

1640

parentheses that replace a minus sign for
a negative number. When you group
several in a row, a single left parenthesis
floats to the rightmost position that it can
occupy; it does not interfere with the
number and its currency symbol.

) This is one of the pair of accounting
parentheses that replace a minus sign for
a negative value.

$

This character displays the currency
symbol that appears at the front of the
numeric value. By default, the currency
symbol is the dollar sign ($). You can set
the currency symbol with the DBMONEY
environment variable. When you group
several dollar signs in a row, a single
currency symbol floats to the rightmost
position that it can occupy; it does not
interfere with the number.

Any other characters in the formatting mask are reproduced literally in the result.

Examples:

Mask Numeric
value

 Formatted
String

-
##,###.##

 -
12345.67

12345.67

113.11

-12,234.67
b12,345.67

bbbb113.11

##,###.##

 -
12345.67

12345.67

12,345.67
12,345.67

--,---.&& -445.67 bb-445.67
$$,$$$.&&

2345.67

445.67
$2,345.67
bb$445.67

Date Formatting Mask

A date-formatting mask specifies a format to apply to some date value.

This mask is a combination of the following formatting directives:

Character Description

User Extensions

1641

dd Day of the month as a two-digit
number (01 through 31)

ddd Day of the week as a three-letter
abbreviation (Sun through Sat)

mm Month as a two-digit number (01
through 12)

mmm Month as a three-letter abbreviation
(Jan through Dec)

yy Year as a two-digit number (00
through 99)

yyyy Year as a four-digit number (0001
through 9999)

ww Day of the week as a two-digit
number (00 for Sunday, 01 for
Monday, 02 for Tuesday … 06 for
Saturday)

Any other characters in the formatting mask are reproduced literally in the result.

Datetime Formatting Mask

A datetime-formatting mask specifies a format to apply to some datetime value.

This mask is a combination of the following formatting directives:

Character Description
Date related directives

%a Identifies abbreviated weekday name as
defined in locale.

%A Identifies full weekday name as defined in
locale.

%b Identifies abbreviated month name as defined
in locale.

%B Identifies full month name as defined in locale.

%C Identifies century number (year divided by 100
and truncated to an integer)

%d Identifies the day of the month (01 to 31).
Single digit is preceded by zero.

%D Identifies commonly used date format
(%m/%d/%y).

%e Identifies the day of the month as a number (1
to 31). Single digit is preceded by space.

%h Same as %b.

%iy Identifies the year as a 2-digit number (00 to
99).

%iY Identifies the year as a 4-digit number (0000 to

Genero Business Development Language

1642

9999).

%m Identifies the month as a number (01 to 12).
Single digit is preceded by zero.

%w Identifies the weekday as a number (0 to 6),
where 0 is the locale equivalent of Sunday.

%x Identifies a special date representation that the
locale defines.

%y Identifies the year as a 2-digit number (00 to
99).

%Y Identifies the year as a 4-digit number (0000 to
9999).

Time related directives

%c Identifies special date/time representation that
locale defines.

%Fn
Identifies value of the fraction of a second, with
precision specified by integer n. Range of n is
0 to 5.

%H Identifies the hour as 24-hour clock integer
(00-23).

%I Identifies the hour as 12-hour clock integer
(00-12).

%M Identifies the minute as an integer (00-59).

%p Identifies A.M. or P.M. equivalent as defined in
locale.

%r Identifies commonly used time representation
for a 12-hour clock.

%R Identifies commonly used time representation
for a 24-hour clock (%H:%M).

%S Identifies the second as an integer (00-61).
Second can be up to 61 instead of 59 to allow
for the occasional leap second and double
leap second.

%T Identifies commonly used time format
(%H:%M:%S).

%X Identifies commonly used time representation
as defined in the locale.

Specials
%% Identifies the % character.
%n Identifies a new-line character.
%t Identifies a TAB character.

Any other characters in the formatting mask are reproduced literally in the result.

Interval Formatting Mask

An interval-formatting mask specifies a format to apply to some interval value.

User Extensions

1643

This mask must be combination of Class 1 interval or Class 2 interval formatting
directives:

Character Description
Class 1 formatting directives (YEAR to MONTH)

%C Identifies century number (year divided by 100
and truncated to an integer)

%iy Identifies the year as a 2-digit number (00 to
99).

%iY Identifies the year as a 4-digit number (0000 to
9999).

%m Identifies the month as a number (01 to 12).
Single digit is preceded by zero.

%y Identifies the year as a 2-digit number (00 to
99).

%Y Identifies the year as a 4-digit number (0000 to
9999).

Class 2 formatting directives (DAY to FRACTION)

%a Identifies abbreviated weekday name as
defined in locale.

%A Identifies full weekday name as defined in
locale.

%d Identifies the day of the month (01 to 31).
Single digit is preceded by zero.

%e Identifies the day of the month as a number (1
to 31). Single digit is preceded by space.

%Fn
Identifies value of the fraction of a second, with
precision specified by integer n. Range of n is
0 to 5.

%H Identifies the hour as 24-hour clock integer
(00-23).

%I Identifies the hour as 12-hour clock integer
(00-12).

%M Identifies the minute as an integer (00-59).
%S Identifies the second as an integer (00-61).

Second can be up to 61 instead of 59 to allow
for the occasional leap second and double
leap second.

%w Identifies the weekday as a number (0 to 6),
where 0 is the locale equivalent of Sunday.

Specials
%% Identifies the % character.
%n Identifies a new-line character.
%t Identifies a TAB character.

Genero Business Development Language

1644

Genero FESQLC
• Overview
• Prerequisites
• Embedding SQL Statements
• Using Host Variables

o Character variables
o Decimal variables
o Interval and datetime variables

• Using Data structures
o Arrays
o Structures (struct)
o Type definitions (typedef)
o Function parameters
o Pointers

• Using Indicator Variables
• Using Database Cursors
• Using Dynamic SQL

o Preparing and Executing SQL Statements
o Using Input parameters in Dynamic SQL
o Using database cursors with Prepared statements
o Freeing Prepared statements
o Optimizing Prepared statements

• Supported Data Types
• Compiling with fesqlc
• Using Preprocessor Directives

o Including files - include
o Creating FESQLC macros - define, undefine
o Compiling conditionally - ifdef, ifndef, endif, else, elif

• Handling Exceptions
o Using SQLSTATE
o Using SQLCODE
o Using WHENEVER
o Using GET DIAGNOSTICS
o Example program

• Migration Notes

See also: Implementing C Extensions

Overview
Genero FESQLC allows you to embed SQL statements in your C-language programs in
order to communicate with a relational database. The keywords "EXEC SQL" (preferred
ANSI standard) or the $ symbol precede SQL statements and FESQLC pre-processor
directives.

User Extensions

1645

Host variables can substitute for literal values in your programs. The host variable stores
the values retrieved from a database table or serves as a parameter for SQL statements.

You can create dynamic SQL statements that are constructed at runtime, based on
some program conditions or the user's interaction.

FESQLC supports the common SQL data types, but some, such as DECIMAL, do not
have corresponding C data types. FESQLC provides additional data types that you can
use in your programs.

The fesqlc tool compiles and links C programs that contain FESQLC source code files,
creating an executable C program.

Exception handling in FESQLC allows you to obtain information about the execution of
an SQL statement and to handle program errors.

The FESQLC preprocessor directives allow you to:

• include additional files in your FESQLC program
• create compile-time definitions
• specify conditional compilation

Prerequisites
Before you begin using Genero FESQLC, make sure the following has been done:

• FESQLC and a C compiler are installed on your system.
• The database client software is installed.
• The environment variables required by the database client software are set.
• The PATH environment variable includes $FGLDIR/bin, the bin directory of the

software installation directory.

Embedding SQL statements
SQL statements that communicate with a relational database can be embedded in your
program.

Statements must be preceded with the keywords "EXEC SQL" (preferred ANSI
standard) or the $ symbol:

EXEC SQL CONNECT TO "testdb";

EXEC SQL CREATE TABLE t1 (
 k2 integer NOT NULL PRIMARY KEY,
 t1 date DEFAULT TODAY NOT NULL,

Genero Business Development Language

1646

 c char(10)
);
EXEC SQL DELETE FROM customer WHERE store_num = '101';

Case sensitivity

The following components of an embedded SQL statement are case-sensitive:

• Names of host variables. The variable ordernum is not the same as
Ordernum. FESQLC considers these to be two different variables.

• Data types. If you use the data type INT in a variable declaration it would not be
recognized - int is the correct name. See Supported data types for the names of
the FESQLC data types.

• Cursor names and statement names

Usually, the values in variables are case-sensitive. All other components are not case-
sensitive.

Escape characters and quotation marks

Both C and FESQLC use the backslash character \ as the escape character, to specify
that the following character is to be considered literal and not interpreted. FESQLC
allows you to enclose strings in either single or double quotes. Special care must be
taken when the WHERE clause of your embedded SQL statement contains a backslash
or quotation mark.

• To search for a backslash character, escape the special significance of the
backslash with the \ escape character: For example, to search for the company
name The \\ Store:

EXEC SQL DECLARE c1 CURSOR FOR SELECT * FROM customer WHERE
store_name = 'The \\\\ Store';

The first backslash causes the second backslash to be interpreted
literally, and the third backslash causes the fourth backslash to be
interpreted literally, resulting in the desired "The \\ Store".

• ANSI standards do not allow you to use the same quotation character in an
expression as the string delimiter and as a literal. Therefore, to search for a value
containing an embedded single quote, enclose the value with double quotes, and
use the \ escape character to cause the single quote to be interpreted literally.
For example, to search for the company name The ' Store:

EXEC SQL DECLARE c1 CURSOR FOR SELECT * FROM customer WHERE
store_name = "The \' Store";

Comments

You can use the standard C comment indicator in your FESQLC statements:

User Extensions

1647

EXEC SQL DELETE FROM customer; /* deletes all rows */

Using Host Variables
Host variables are C variables that you can use in SQL statements as if they were literal
values. Host variables can store:

• Parameter values for SQL statements
• Result set values fetched from the database
• Cursor or statement identifiers

Variable name

As in C, the host variable name can consist of letters, digits, and underscores, consistent
with the requirements of your C compiler. Begin the name with a letter rather than an
underscore, to avoid potential conflicts with internal FESQLC names.

int x;
char str1[11];

A variable name is case-sensitive; firstname is not the same as FirstName.

Variable declaration

Choose a data type for the host variable compatible with the SQL data type of the
database column, if the variable is used to transfer data between the program and the
database.

See Supported Data Types for a list of the SQL data types and the compatible FESQLC
or C data types.

You can also use data structures such as arrays, struct, and pointers as host variables in
your program.

Declare the host variable in your program, using the same syntax that you use to declare
a C variable. Put the statements in an FESQLC declare section preceded with the
keywords EXEC SQL BEGIN DECLARE SECTION, and terminate it with EXEC SQL
END DECLARE SECTION (preferred ANSI standard):

EXEC SQL BEGIN DECLARE SECTION;
 int x;
 char str1[11];
 char str4[11];
EXEC SQL END DECLARE SECTION;

For backward compatibility with Informix ESQL/C, the FESQLC compiler also supports
host variable declaration with the $ symbol:

Genero Business Development Language

1648

$int x;
$char str1[11];

The variable can be declared only once within a C block.

Data conversion

We recommend that you use the FESQLC data type that corresponds to the SQL data
type of the database column being referenced in your statements.

When necessary, FESQLC will try to convert the data type of a value if a discrepancy
exists in your program.

Scope

The scope of an FESQLC host variable is the same as that of a C variable, which is
dependent on the placement of the declaration within the file:

• Host variables declared within a program block or declared by a function are
local, accessible only within that block or function.

• Host variables declared outside a function are modular, accessible from all
program blocks that occur after that point, until the end of the file.

• If a local host variable has the same identifier as an external variable, the local
variable takes precedence inside the program block in which it is declared.

Initialization

FESQLC allows you to use normal C initializer expressions with host variables:

EXEC SQL BEGIN DECLARE SECTION;
 int var1 = 128;
 string var2[21] = "A test string";
EXEC SQL END DECLARE SECTION;

Local datetime or interval variables are automatically initialized to set the datetime or
interval qualifier; local variables of any other data type have an undefined value and
must always be initialized before use.

EXEC SQL BEGIN DECLARE SECTION;
 datetime year to second dt;
 interval hour to second t1_iv1;
EXEC SQL END DECLARE SECTION;

The FESQLC preprocessor does not check the validity of initialization statements; the C
compiler handles this.

User Extensions

1649

Host variables in use

Precede the variable with an indicator (:) whenever it is used in an embedded SQL
statement:

EXEC SQL BEGIN DECLARE SECTION;
 varchar firstname[31];
 int stateid;
 varchar statename[51];
EXEC SQL END DECLARE SECTION;
EXEC SQL select fname into :firstname from custtab;
EXEC SQL insert into statetab values (:stateid,
:statename);

Character variables
Although you can use char/varchar/string/fixchar data types for host variables in your
program, we recommend that you match the data type of the host variable to the data
type of the corresponding database column.

Genero C Extensions provide character and string functions to manipulate character
data.

Declaring Size

The char/varchar/string host variables include the string terminator; you must allow for
the terminator when declaring one of these variables. For example, to correspond to a
database CHAR data type, declare the size of the char host variable as (dblength+1).

 EXEC SQL BEGIN DECLARE SECTION;
 char p_state_code[3] /* length of the column state.state_code is 2
*/

Although char, varchar, and string host variables contain null terminators, FESQLC
never inserts these characters into a database column.

Using char/varchar Pointers

It is strongly recommended that you use fixed-size char and varchar variables instead
of pointers. The problem with char/varchar pointers is that the database interface
cannot determine the size of the char/varchar input parameter or fetch buffer, which is
required for binding host variables to SQL statements.

Host variables defined as char or varchar pointers cannot be used to fetch data. If you
must use a char/varchar pointer to insert data, use an sqlda structure and specify the
exact size of the corresponding CHAR/VARCHAR SQL type in sqlvar->sqllen.

Genero Business Development Language

1650

Fetching and inserting CHAR data

When a value from a CHAR database column is fetched into a char host variable,
FESQLC pads the value with trailing blanks up to the size of the host variable, leaving
one space for the null terminator. If the column data being fetched does not fit into the
character host variable, FESQLC truncates the data, setting the SQLSTATE variable to
01004, and setting the value of any indicator variable to the size of the character data in
the column.

When inserting a value into a CHAR database column, FESQLC pads or truncates the
value to the size of that column, if necessary.

Fetching and inserting VARCHAR data

When a value from a VARCHAR database column is fetched into a char host variable,
FESQLC truncates and null terminates the value if the source is longer, and sets any
indicator variable; if the destination is longer, FESQLC pads the value with trailing
spaces and null terminates it.

When a character value is inserted into a VARCHAR database column, any trailing
spaces are not counted.

Using the fixchar data type

The fixchar data type is a character string data type that does not have a null
terminator. When a value from a CHAR or VARCHAR column is fetched into a fixchar,
FESQLC pads the value with trailing blanks.

Do not use fixchar to insert data into a VARCHAR column. Even if the length of the data
is shorter than the fixchar, trailing blanks will be stored by the database server.

Do not copy a null-terminated C string into a fixchar variable. When the variable value is
inserted into the database column, the null character at the end of the string will also be
inserted, complicating subsequent searches for the data value.

Using the string data type

The FESQLC string data type holds character data terminated by a null character, and
does not have trailing blanks.

When values from a CHAR/VARCHAR column are fetched into a string host variable,
the value is usually stripped of trailing blanks and null-terminated. However, if the value
is a string of blanks (" "), a single blank and the null-terminator are stored in the string
host variable, to distinguish an empty string from a null string.

User Extensions

1651

Decimal Variables
FESQLC supports the dec_t and decimal data types to handle DECIMALs. Although
you can use the dec_t data type to fetch decimal data, it cannot be used to insert data
as there is no precision or scale; we recommend the use of the FESQLC decimal data
type, which supports the DECIMAL and MONEY SQL data types, for inserting and
fetching data.

A decimal host variable must be defined with a precision and scale:

EXEC SQL BEGIN DECLARE SECTION;
 decimal(6,2) dec4;

Genero C Extensions provide decimal functions to manipulate decimal values. Use only
decimal functions on decimal data types; otherwise, you may get unpredictable results.

Interval and Datetime Variables
The interval FESQLC data type encodes a span of time. The datetime FESQLC data
type encodes a specific point in time. The accuracy of the data types is specified by a
qualifier (year to second, etc.) Declare host variables for INTERVAL or DATETIME
database columns using these FESQLC data types:

EXEC SQL BEGIN DECLARE SECTION;
 datetime year to second dtm2;
 interval hour(5) to second inv2;
EXEC SQL END DECLARE SECTION;

A datetime or interval data type is stored as a decimal number with a scale of zero and
a precision dependent on the qualifier used when defining the data type.

Datetime and interval host variables must have the qualifier initialized. This is done by
using datetime or interval data types as shown in the above example. If you use
dtime_t or intrvl_t data types, use macros to initialize their qualifiers:

EXEC SQL BEGIN DECLARE SECTION;
 dtime _t dtml;
 intrvl_t inv1;
EXEC SQL END DECLARE SECTION;

dtml.dt_qual = TU_DTENCODE(TU_YEAR, TU_SECOND);
invl.in_qual = TU_TENCODE(5, TU_HOUR, TU_SECOND);

Genero C Extensions provide macros for the qualifiers, and functions to manipulate
these data types.

Genero Business Development Language

1652

Using data structures

Arrays

You can declare an array of host variables in your program; provide the number of
elements in the array:

EXEC SQL BEGIN DECLARE SECTION;
 int ordid[20];
 EXEC SQL END DECLARE SECTION;

An array can be one-dimensional or two-dimensional.

Your program can reference an element of the array as follows:

EXEC SQL DELETE FROM ordertab WHERE order_num = :ordid[1];

Structures (struct)

You can declare a C language structure struct in your program, specifying the members
of the structure:

EXEC SQL BEGIN DECLARE SECTION;
 struct {
 int ordid;
 date orddate;
 char ordname[26];
 } order_rec;
EXEC SQL END DECLARE SECTION;

Here struct order_rec defines a host variable with three members: ordid, orddate, and
ordname.

The individual members of the structure are referenced in your program as
structname.membername:

EXEC SQL insert into ordertab (order_num, order_date)
 values (:order_rec.ordid :order_rec.orddate);

If an SQL statement allows a list of host variables, you can specify the structure name
and FESQLC will expand it:

EXEC SQL insert into ordertab values (:order_rec);

The values list in this SQL statement will expand to order_rec.ordid, order_rec.orddate,
order_rec.ordname.

User Extensions

1653

Type definitions (typedef)

FESQLC supports C typedef statements and allows the use of typedef names in the
declaration of the types of host variables:

EXEC SQL BEGIN DECLARE SECTION;
typedef struct {
 int key;
 varchar name[21];
 datetime year to fraction(5) tstamp;
} mytype;
mytype myrecord;
EXEC SQL END DECLARE SECTION;

You cannot use a typedef statement that names a multidimensional array, a union, or a
function pointer as the type of a host variable.

Function parameters

You can declare host variables as function parameters; precede the variable name with
the PARAMETER keyword.

func1(ord_id, ord_date)
EXEC SQL BEGIN DECLARE SECTION;
 PARAMETER int ord_id;
 PARAMETER date ord_date;
EXEC SQL END DECLARE SECTION;
{
 ...
 EXEC SQL INSERT INTO oldorders VALUES (:ord_id,
:ord_date);
 ...
}

Notes:

• Parameters declared for host variables must be part of a function header only.
• You can have other function parameters that are not used as host variables

inside the EXEC SQL declare section.

Pointers

Host variables can be declared as pointers to SQL identifiers, prepared statements for
example:

EXEC SQL BEGIN DECLARE SECTION;
 char *stmt;
 int ord_num;
EXEC SQL END DECLARE SECTION;
...
stmt = "SELECT order_num FROM orders";

Genero Business Development Language

1654

EXEC SQL PREPARE curs1 FROM :stmt;
EXEC SQL OPEN curs1;
EXEC SQL FETCH curs1 INTO :ord_num;

Host variables declared as pointers can also be used as input parameters in SQL insert
statements. However, we strongly recommend that you use fixed-size char and varchar
host variables instead of char/varchar pointers to hold SQL CHAR/VARCHAR data.

EXEC SQL BEGIN DECLARE SECTION;
 int *v_id;
 char v_name[26];
EXEC SQL END DECLARE SECTION;
...
INSERT INTO vendors values (:v_id, :v_name);

Using Indicator variables
You can specify an indicator variable in your SQL statement to obtain information about
a value returned by the statement.

• Declare the indicator variable using the normal FESQLC syntax, and specify an
appropriate data type; integer data types are used for indicators that detect null
values or truncated values.

EXEC SQL BEGIN DECLARE SECTION;
 char p_state_code[3];
 int i_state_code;
EXEC SQL END DECLARE SECTION;

• Use the indicator variable in the SELECT statement. Specify the indicator
variable to be associated with the host variable, preceding the indicator variable
with the word INDICATOR:

:p_state_code INDICATOR :i_state_code

Or, separate the variables with a symbol (: or $). There can be one or
more whitespaces between the host variable name and the indicator
name:

:p_state_code :i_state_code
p_state_codei_state_code
$p_state_code:i_state_code

Example:

EXEC SQL SELECT state_code INTO :p_state_code INDICATOR
:i_state_code
 FROM state WHERE state_name = 'Illinois';

User Extensions

1655

When FESQLC returns the value into the host variable, it will also set the corresponding
indicator variable. Your program can check the values of any indicator variables before
continuing.

To detect null values

If a database table column permits nulls, you may have a null value returned to the
corresponding host variable specified in your SQL SELECT statement. If one of the
values in a database column referenced for an aggregate function is null, you may also
have a null value returned. Null (unknown) values can cause problems for your program.
Use indicator variables to determine whether any values returned to the host variables
are null:

• FESQLC will set the value of an indicator variable to zero if the value returned for
the associated host variable is not null.

• If the value returned is null, FESQLC will set the indicator variable to -1.

Checking whether the variable is null before printing it:

 printf("%s\n", i_state_code == 0 ? p_state_code : "<no code>");

Tip: The NULL keyword of an INSERT statement allows you to insert a null value into a
table row. As an alternative, you can use a negative indicator variable with the host
variable. Set the value of the indicator variable to -1 when it is declared.

To detect truncated values

If the host variable referenced by an SQL SELECT statement is a character array, the
value returned from the database may be truncated (the value returned is too large to fit
into the array). Use indicator variables to determine whether any values returned are
truncated.

• FESQLC will set the value of an indicator variable to zero if the value returned for
the associated host variable is not truncated.

• If the value returned was truncated, FESQLC will set the value of the indicator
variable to the original size in bytes of the host variable.

Example program using indicator variables:

01 #include <stdio.h>
02
03 int main()
04 {
05 EXEC SQL BEGIN DECLARE SECTION;
06 char p_state_code[3];
07 int i_state_code;
08 EXEC SQL END DECLARE SECTION;
09
10 EXEC SQL CONNECT TO "custdemo";

Genero Business Development Language

1656

11 EXEC SQL SELECT state_code INTO :p_state_code INDICATOR
:i_state_code
12 FROM state
13 WHERE state_name = 'Illinois';
14
15 printf("%-20s\n ",
16 i_state_code == 0 ? p_state_code : "<no name>"
17);
18 EXEC SQL DISCONNECT ALL;
19 }

Using database cursor statements
You can use sequential, scroll, hold, update, or insert cursors in FESQLC programs. For
example, if a SELECT statement will retrieve more than one row:

• Declare the cursor for the select statement. This allocates storage to hold the
cursor.

• Open the cursor. The active set associated with the cursor is identified, and the
cursor is positioned before the first row of the set.

• Fetch the data into the host variable(s), until the last desired row is fetched.
• Close the cursor when the fetch is complete. This releases the active result set

associated with the cursor. A closed cursor can be re-opened.
• Free the cursor when it is no longer needed by the program. A freed cursor must

be declared again before it can be re-opened and used.

The cursor program statements must appear physically within the module in the order
listed.

Example program using a database cursor:

01 #include <stdio.h>
02
03 EXEC SQL define NAME_LEN 20; /* customer.store_name is a CHAR(20)
*/
04 EXEC SQL define ADDR_LEN 20; /* customer.addr is a CHAR(20)
*/
05 EXEC SQL define STATE_LEN 2; /* customer.state_code is a CHAR(2)
*/
06
07 int main()
08 {
09
10 EXEC SQL BEGIN DECLARE SECTION;
11 int p_num;
12 varchar p_name[NAME_LEN + 1];
13 int2 i_name;
14 varchar p_addr[ADDR_LEN + 1];
15 int2 i_addr;
16 varchar p_addr2[ADDR_LEN + 1];
17 int2 i_addr2;

User Extensions

1657

18 char p_state_code[STATE_LEN + 1];
19 EXEC SQL END DECLARE SECTION;
20
21 printf("Connecting...\n\n");
22 EXEC SQL CONNECT TO 'custdemo';
23
24 EXEC SQL DECLARE c1 CURSOR FOR /* Declaring the cursor */
25 SELECT store_num, store_name, addr, addr2
26 FROM customer
27 WHERE state = :p_state;
28
29 strcpy(p_state, "IL");
30 EXEC SQL OPEN c1; /* Opening the cursor */
31
32 for (;;) /* loop to fetch the rows */
33 {
34 EXEC SQL FETCH c1 INTO :p_num,
35 :p_name INDICATOR :i_name,
36 :p_addr INDICATOR :i_addr,
37 :p_addr2 INDICATOR :i_addr2;
38
39 if (strncmp(SQLSTATE, "02", 2) == 0) {
40 /* No more rows */
41 break;
42 }
43
44 printf("%6d %-20s\n %s %s\n",
45 p_num,
46 i_name == 0 ? p_name : "<no name>",
47 i_addr == 0 ? p_addr : "<no address>",
48 i_addr2 == 0 ? p_addr2 : ""
49);
50 }
51
52 EXEC SQL CLOSE c1; /* close the cursor */
53 EXEC SQL FREE c1 /* free the cursor */
54
55 printf("\nDisconnecting...\n\n");
56 EXEC SQL DISCONNECT CURRENT;
57
58 return 0;
59 }

The code in lines 39-41 checks the SQLSTATE global variable to determine whether
there are any more rows to retrieve. See Handling Exceptions

See Dynamic SQL for additional examples using cursors and the PREPARE statement.

Note: The FETCH ... INTO ... syntax is supported by all databases. Declaring a cursor
for SELECT ... INTO ... is Informix-specific syntax, and not recommended for portability.

Genero Business Development Language

1658

Using Dynamic SQL
Dynamic SQL statements allow you to construct an SQL statement at runtime, based on
some program conditions or the user's interaction.

1. Your program assembles the SQL statement in a character string, and assigns it
to a character string host variable.

The SQL statement string cannot contain the names of any host
variables. Input parameters (indicated by question mark placeholders in
the statement string) can be used in the statement string, for example in a
WHERE clause, to indicate that the value needed will be provided at a
given position in the SQL statement.

2. Your program uses the prepare statement to assign a statement id and send the
SQL statement string contained in the host variable to the database server for
parsing. You can check the global variables SQLSTATE or SQLCODE to find out
whether errors occurred in the parsing.

3. Your program executes the prepared statement one or more times.

• If input parameters are used, the USING clause of
the EXECUTE or OPEN instruction provides the
values.

• If the SQL statement produces a result set (like
SELECT), or inserts multiple rows with an INSERT
CURSOR, you must declare a cursor with the
prepared statement handle in order to execute it.

4. When the prepared statement is no longer needed, your program frees the
statement to release the allocated resources.

You can use Dynamic SQL for any SQL statement except SQL management instructions
(such as PREPARE, DECLARE, OPEN, EXECUTE, FETCH, CLOSE, FREE), SQL
connection instructions (such as CONNECT, DATABASE, DISCONNECT) and
transaction control instructions (BEGIN WORK, COMMIT WORK, ROLLBACK WORK,
SET ISOLATION, SET LOCK MODE).

Preparing and Executing SQL statements

Preparing statements

In order to prepare an SQL statement, you must do the following:

1. Declare a char host variable to hold the entire SQL string:

User Extensions

1659

EXEC SQL BEGIN DECLARE SECTION;
 char sqlstring[128]; /* SQL statement */
EXEC SQL END DECLARE SECTION;

2. Assign the SQL string to the host variable:

strcpy(sqlstring, "DELETE FROM orders WHERE store_num IS
NULL");

3. Use the PREPARE statement to create a valid SQL statement from the string
contained in the host variable:

EXEC SQL PREPARE stid FROM :sqlstring;

Once an SQL statement is prepared, use EXECUTE to execute the statement; the
statement can be executed often as needed.

Executing prepared statements that do not return values
(INSERT, UPDATE, DELETE)

Follow the steps described at the beginning of this section to prepare the statement.
Then, use the EXECUTE instruction to perform the execution of the statement:

strcpy(sqlstring, "DELETE FROM orders WHERE store_num IS
NULL");
EXEC SQL PREPARE stid FROM :sqlstring;
EXEC SQL EXECUTE stid;

Executing prepared statement that return values (SELECT)

If the prepared SQL statement returns a single row, you can use the INTO clause with
EXECUTE to specify the host variables to receive the database column values:

sprintf(sqlstring, "SELECT COUNT(*) FROM orders");
EXEC SQL PREPARE stid FROM :sqlstring;
EXEC SQL EXECUTE stid INTO :p_order_count;

You can use indicator variables with the EXECUTE statement, to determine if a value
returned from the database is null:

EXEC SQL EXECUTE stid INTO :p_custname INDICATOR
:i_custname;

If the prepared statement returns more than one row, you must declare a database
cursor and use cursor management statements instead of the EXECUTE statement. See
Using cursors with prepared statements.

Genero Business Development Language

1660

Executing dynamic SQL statements without parameters

If there are no input parameters, and the statement will not be executed multiple times,
you can reduce the number of statements to be executed by using the EXECUTE
IMMEDIATE statement to prepare and execute the statement string at once:

sprintf(sqlstring, "DELETE FROM orders WHERE store_num IS NULL");
EXEC SQL EXECUTE IMMEDIATE :sqlstring;

Example program using EXECUTE IMMEDIATE and also returning a single row:

01 #include <stdio.h>
02
03 int main()
04
05 {
06 EXEC SQL BEGIN DECLARE SECTION;
07 char sqlstring[128]; /* string to hold sql statement */
08 int p_store_num; /* values for store_num column */
09 char p_store_name[21]; /* values for store_name, column length 20
*/
10 int2 i_store_name; /* indicator variable for p_store_name */
11 EXEC SQL END DECLARE SECTION;
12
13 char whereinput[64]; /* variable for string containing where
clause */
14 strcpy(whereinput, "store_num > 200"); /* setting value of
whereinput */
15
16 EXEC SQL CONNECT TO 'custdemo';
17
18 /* Using EXECUTE IMMEDIATE */
19 sprintf(sqlstring, "DELETE FROM orders WHERE %s", whereinput);
20 EXEC SQL EXECUTE IMMEDIATE :sqlstring;
21
22 /* Returning a single row - USING PREPARE and EXECUTE */
23 strcpy(whereinput, "store_num = 101"); /* setting value of
whereinput */
24 sprintf(sqlstring, "SELECT store_name FROM customer WHERE %s",
whereinput);
25 EXEC SQL PREPARE stid FROM :sqlstring;
26 EXEC SQL EXECUTE stid INTO :p_store_name INDICATOR :i_store_name;
27 /* Displaying store name */
28 printf("%-20s\n", i_store_name == 0 ? p_store_name : "<no name>");
29
30 EXEC SQL DISCONNECT CURRENT;
31
32 return 0;
33 }

User Extensions

1661

Using Input Parameters in dynamic SQL
Input parameters are placeholders in an SQL statement string for host variables that
contain the values for expressions. The actual values are provided at runtime.
Placeholders are used since the database server cannot parse a dynamic SQL
statement that contains host variable names.

Placeholders can be used anywhere within the SQL statement where an expression is
valid. You cannot use an input parameter to represent an identifier such as a database
name, a table name, or a column name.

Steps to use input parameters

1. Declare a host variable for each input parameter. The data type of the host
variable must be compatible with the data type of the database column
referenced in the SQL statement string.

2. Assemble the SQL statement string using ? as a placeholder for each input
parameter.

3. PREPARE the statement string to create a valid SQL statement.
4. Provide the host variables corresponding to the input parameters with the USING

clause of the EXECUTE instruction. The order in which the variables are listed
must match the order in which the variables appear in the prepared statement.

Example using input parameters with a prepared DELETE statement:

EXEC SQL PREPARE stid FROM "DELETE FROM orders WHERE
store_num = ? AND order_num < ?";
EXEC SQL EXECUTE stid USING :p_store_num, :p_order_num;

Example using input parameters with a prepared SELECT statement that returns a
single row:

EXEC SQL PREPARE stid FROM "SELECT COUNT(*) FROM orders
WHERE order_num < ?";
EXEC SQL EXECUTE stid USING :p_order_num INTO :p_count;

If the SELECT statement returns more than one row, a database cursor must be used.

Example program using input parameters:

01 #include <stdio.h>
02
03 int main()
04 {
05 EXEC SQL BEGIN DECLARE SECTION;
06 char sqlstring[128];
07 char p_state_code[3]; /* column length is 2 */
08 char p_state_name[16]; /* column length is 15 */
09 EXEC SQL END DECLARE SECTION;
10
11 EXEC SQL CONNECT TO 'custdemo';

Genero Business Development Language

1662

12
13 /* Using placeholders for values to be inserted */
14 strcpy(sqlstring, "INSERT INTO state VALUES (?, ?)");
15 EXEC SQL PREPARE stid2 FROM :sqlstring;
16 printf(" SQLSTATE = [%s]\n\n", SQLSTATE); /* checking SQL success
*/
17
18 strcpy(p_state_code, "AZ");
19 strcpy(p_state_name, "Arizona");
20
21 /* Executing the prepared statement */
22 EXEC SQL EXECUTE stid2 USING :p_state_code, :p_state_name;
23 printf(" SQLSTATE = [%s]\n\n", SQLSTATE);
24
25 EXEC SQL DISCONNECT CURRENT;
26
27 return 0;
28 }

Using a Database Cursor with Prepared statements
If an SQL SELECT statement generates a set of rows, you must handle the result set
with a Database Cursor.

First, the cursor is declared for the prepared statement:

EXEC SQL PREPARE stid FROM "SELECT order_num FROM orders WHERE
store_num = ?";
EXEC SQL DECLARE c1 CURSOR FOR stid;

If input parameters are used in the WHERE clause, the USING clause of the OPEN
cursor instruction provides the host variables containing the values needed:

EXEC SQL OPEN c1 USING :p_store_num;

The FETCH statement uses the INTO clause to retrieve the database values into host
variables. This statement can be executed multiple times until there are no more values
to be retrieved:

EXEC SQL FETCH c1 INTO :p_order_num;

The order in which the host variables are listed must match the order of the select list.

CLOSE the cursor when the fetch is complete. A closed cursor can be re-opened.

EXEC SQL CLOSE c1;

When the cursor is no longer needed, it is FREEd, releasing the memory associated with
it. Once freed, a cursor must be re-declared before it can be used again.

User Extensions

1663

EXEC SQL FREE c1;

Example program using a database cursor and prepared statement:

01 #include <stdio.h>
02
03 /* To check for SQL errors */
04 void errlog(void)
05 {
06 fprintf(stderr, "Error occurred:\n");
07 fprintf(stderr, " SQLSTATE = [%s] SQLCODE = %d\n\n",
08 SQLSTATE, SQLCODE);
09 EXEC SQL DISCONNECT ALL;
10 exit(1);
11 }
12
13 int main()
14 {
15 EXEC SQL BEGIN DECLARE SECTION;
16 int p_store_num; /* store_num column */
17 int p_order_num; /* order_num column */
18 int2 i_order_num; /* indicator for p_order_num */
19 EXEC SQL END DECLARE SECTION;
20
21 EXEC SQL WHENEVER ERROR CALL errlog; /* Set the error-handling */
22
23 EXEC SQL CONNECT TO 'custdemo';
24
25 EXEC SQL PREPARE stid FROM "SELECT order_num FROM orders WHERE
store_num = ?";
26 EXEC SQL DECLARE c1 cursor for stid;
27 p_store_num = 12; /* Assign a value to store number */
28 EXEC SQL OPEN c1 USING :p_store_num;
29
30 for (;;)
31 {
32 EXEC SQL FETCH c1 INTO :p_order_num INDICATOR :i_order_num;
33 if (strncmp(SQLSTATE, "02", 2) == 0) break;
34 printf("%6d \n",
35 i_order_num == 0 ? p_order_num : "<no order number>"
36);
37 }
38
39 EXEC SQL CLOSE c1;
40 EXEC SQL FREE c1;
41
42 EXEC SQL DISCONNECT CURRENT;
43
44 return 0;
45 }

Inserting multiple rows

Use an insert cursor to perform buffered row insertion in database tables. The insert
cursor simply inserts rows of data; it cannot be used to fetch data.

Genero Business Development Language

1664

A cursor is declared for the prepared statement, using input parameters for the values to
be inserted:

EXEC SQL PREPARE s1 FROM "INSERT INTO manufact VALUES (?,?)"
EXEC SQL DECLARE c1 CURSOR FOR s1;

The insert cursor is opened:

EXEC SQL OPEN c1;

The PUT cursor instruction uses the USING clause to insert values from the host
variables into the database columns. This statement is executed multiple times until
there are no more values to be inserted.

EXEC SQL PUT c1 FROM :faccode, :facname;

Flush data rows, if required:

EXEC SQL FLUSH c1;

Close the cursor:

EXEC SQL CLOSE c1;

Free the statement handle and the cursor:

EXEC SQL FREE s1;
EXEC SQL FREE c1;

Freeing Prepared Statements
When the prepared statement is no longer needed, your program can free the statement
to release the resources allocated:

EXEC SQL PREPARE stid FROM "SELECT order_num FROM orders
WHERE store_num = ?";
...
EXEC SQL FREE stid;

If a database cursor is used for the prepared statement, both the cursor and the
statement can be freed:

EXEC SQL FREE c1;
EXEC SQL FREE stid;

User Extensions

1665

Optimizing Prepared Statements
If an SQL statement is to be executed multiple times, you can reduce thetraffic between
the client application and the database server if the statement is not also parsed and
optimized each time. Use the PREPARE statement to parse the statement outside of the
program loop, so the parsing only occurs once:

EXEC SQL PREPARE stid FROM "DELETE FROM orders WHERE
store_num = ?"

Then, use the EXECUTE ... USING statement inside the program loop.

EXEC SQL EXECUTE stid USING :p_store_num;

Supported Data Types
When your program accesses a database column you must declare a host variable of
the appropriate FESQLC or C data type to hold the data.

Recommended Data Types for Host Variables

The table below lists the relationship between supported SQL data types, and the
recommended FESQLC host variable data types that correspond to the SQL types. Also
included are the corresponding data type constants, required by some FESQLC
functions:

SQL Data
Type C Data Type Description Type Constant

char(n),
character(n)

char(n+1)

string(n+1)

character data, padded
with blanks; null-
terminated, specify
database column length
plus 1

character data, no trailing
blanks; null-terminated,
specify database column
length plus 1

CCHARTYPE

CSTRINGTYPE

date date 4-byte integer
representing the date

CDATETYPE

datetime datetime
(qualifiers)

calendar date and time
of day; must specify
accuracy as a qualifier
such as year to day

CDTIMETYPE

decimal, dec, decimal(p,s) fixed point number; p CDECIMALTYPE

Genero Business Development Language

1666

numeric (precision) and s (scale)
must be defined

money decimal(p,s) fixed point number; p
(precision) and s (scale)
must be defined

CMONEYTYPE

float, double
precision

double double-precision value
with up to 17 significant
digits

CDOUBLETYPE

integer, int int, long 4-byte integer CINTTYPE
interval interval(qualifiers) a span of time; must

specify accuracy as a
qualifier such as day to
second

CINVTYPE

serial int, long 4-byte integer CINTTYPE
smallfloat,
real

float single-precision value
with up to 9 significant
digits

CFLOATTYPE

smallint short 2-byte integer CSHORTTYPE
varchar(m,x) varchar(m+1)

string(n+1)

variable length
character data; null-
terminated, specify
maximum length plus 1

character data, no trailing
blanks; null-terminated,
specify database column
length plus 1

CVARCHARTYPE

CSTRINGTYPE

See Using Host Variables for additional information about the use of these data types.

Additional FESQLC data types

These data types are not recommended for use in database operations, but may be
used in FESQLC functions.

FESQLC
Data
Type

Description Data Type
Constant

fixchar(n) character data, padded with blanks,
no null terminator CFIXCHARTYPE

dec_t decimal value; cannot have precision
or scale CDECIMALTYPE

dtime_t datetime value; cannot have
qualifiers CDTIMETYPE

intrvl_t interval value; cannot have qualifiers CINVTYPE

User Extensions

1667

Specific-Length Data Types

The following data types automatically map correctly for 32-bit and 64-bit platforms.
Some FESQLC functions use these data types instead of int, short, and long.

FESQLC
Data Type Description

int1 one-byte integer
int2 two-byte integer
int4 four-byte integer
mint native integer data type for machine
mlong native long integer data type for the machine
MSHORT native short integer data type for the machine
MCHAR native char data type for the machine

SQL Data Types not supported

SQL
Data
Type

Description

blob binary large object; binary data in an
undifferentiated byte stream

boolean data type with values limited to TRUE, FALSE,
and NULL

byte binary data in an undifferentiated byte stream
clob character large object; text data
int8 8-byte integer
lvarchar character data of varying length, no larger than 2

kilobytes
list a collection of elements that can be duplicate

values and have ordered positions
multiset a collection of elements that can be duplicate

values and have no ordered positions
opaque user-defined data type
row complex data type with one or more members

called fields
serial8 8-byte serial data type
set a collection of elements that are unique values and

have no ordered positions
text any kind of text data

Genero Business Development Language

1668

Compiling with fesqlc
The fesqlc tool compiles and links C programs that contain Genero FESQLC source
code files, creating an executable C program. An FESQLC source file must be
preprocessed before a C compiler can compile it. By default, your FESQLC source files
are passed to the FESQLC preprocessor, and then to the C compiler. You can choose
to preprocess only.

Syntax:

fesqlc [options] source.ec [othersrc.ec ...]
 [othersrc.c ...] [otherobj.o ...] [otherlib.a ...]

Notes:

1. options are described below.
2. The FESQLC source code files must have the extension .ec.
3. othersrc.c are C source files to be linked.
4. otherobj.o are C object files to be linked.
5. otherlib.a are C static libraries to be linked.

Options:

Option Description
-V Display version information
-h Display this help

-v Verbose mode (display
information messages)

-e Preprocess only

-G No line numbers (for
debugging purposes)

-c Compile to object file
-o name Output file specification

-ED name Define a preprocessor macro
for FESQLC macros

-EU name Un-define a preprocessor
macro for FESQLC macros

-D name Define a preprocessor macro
for C macros

-U name Un-define a preprocessor
macro for C macros

-I path Specify a path for C and
FESQLC includes

-W option Warnings: option can be one

User Extensions

1669

of:
all: enable all warnings

-cpf "flag
.." C compiler flags
-lkf "flag
.." Linker flags
-usl "flag
.." Utility and system libraries

Usage:

Options can be used for preprocessing only, or for
preprocessing/compiling/linking.Options are global and affect all files.

The -V (display version information) and -h (display help) options do not require source
file names:

fesqlc -V
fesqlc -h

The -e option suppresses compiling and linking of the source file. The file will be
preprocessed by FESQLC and output as a C source code file (filename.c).

fesqlc -e mysource.ec

The -c option preprocesses the source file, and then compiles it to object code
(filename.o). By default the 'cc'compiler is used on Unix. You can modify the C compiler
by setting the FGLCC environment variable. On Windows, the default is 'cl.exe'.

fesqlc -c mysource.ec

Use the -o option to specify the output file name for the executable file that is the result
of preprocessing, compiling and linking.

fesqlc -o myprog file1.ec

Use the option -ED name to define a global FESQLC macro. This has the same effect
as an FESQLC define preprocessor directive at the top of your program.

fesqlc -ED CHECKED file2.ec

Use the option -EU name to un-define an FESQLC macro, removing it globally from the
entire program.

fesqlc -EU CHECKED file2.ec

Use the -D and -U options only to define and un-define C macros for your program.

Genero Business Development Language

1670

Example:

fesqlc -o prog1 -ED DEBUG -I ./include -d ora920 \
 file1.ec file2.ec file3.ec

In this example the executable output file will be named prog1, a global macro named
DEBUG is defined, the include path is specified as ./include, and the database type is
Oracle 9.20. Files to be processed include file1.ec, file2.ec and file3.ec.

Creating a C Extensions written in ESQL/C

In Genero V 2, runtime system C extensions must be created as shared libraries. For
more details, see C Extensions.

Steps:

1. Include the fglExt.h file to the .ec files implementing C functions called from
Genero BDL.
 #include <f2c/fglExt.h>

2. Create the extension interface as described in C Extensions: C interface file.
3. Compile the extension interface to object files with you C compiler.
4. Compile all the .ec sources to object files with fesqlc, by using the -c option.
5. Create the shared library (OS specific command) from all the object files.

Warning: You must link with the libfesqlc and libfgl libraries provided in
FGLDIR/lib.

6. Declare the extension module in the 4gl source code by using the IMPORT
instruction:
 IMPORT extension
 MAIN
 ...

Example:

This example uses three sources:

• The ESQL/C module doing some SQL.
• The extension interface file defining the list of C extension functions.
• The Genero program connecting to the database and calling the C Extension

function of the ESQL/C module.

-- The module.ec source ------------------------------------
#include <f2c/fglExt.h>
exec sql include sqlca;

int insert_row(int c)
{
 exec sql insert into dbit2 values (1, 'aaaa', 'bbbbb');
 return 0;
}

User Extensions

1671

-- The myext.c source --------------------------------------

#include "f2c/fglExt.h"

int insert_row(int);

UsrFunction usrFunctions[]={
 { "insert_row", insert_row, 0, 0 },
 { 0, 0, 0, 0 }
};

-- The prog.4gl source -------------------------------------

IMPORT myext
MAIN
 DATABASE stores
 CALL insert_row()
END MAIN

First, we link the extension module. This creates the object file (module.o):

fesqlc -c module.ec

Then, create the shared library from the compiled object file, by using the libfesqlc
library:

Linux example:

gcc -static-libgcc -Xlinker --no-undefined -shared \
 -o myext.so \
 module.o \
 -L$FGLDIR/lib -lfesqlc -lfgl

MS Visual C 7.1 example (you must create a manifest file starting from VC 8.0):

link /DLL /O:myext.dll \
 %FGLDIR%\lib\libfesqlc.lib %FGLDIR%\lib\libfgl.lib

You could also create the shared library directly from fesqlc, by using the -l option:

fesqlc -o myext.so \
 -l "gcc -static-libgcc -Xlinker --no-undefined -shared" \
 source1.ec source2.ec source3.ec source4.ec \
 extinterface.c

Preprocessor Directives
The fesqlc compiler supports FESQLC preprocessor directives. This allows you to
include other FESQLC files, define macros that can be used later in the code and use

Genero Business Development Language

1672

ifdef conditional directives to compile only some part of the code, as you can do with the
C preprocessor (cpp):

EXEC SQL include "myheader.h";
EXEC SQL define LEN 15;
EXEC SQL ifdef DEBUG;
 ...
EXEC SQL endif;

Warning: FESQLC macros must end with a semi-colon, like all FESQLC
statements.

Standard C preprocessing

Standard C preprocessing takes effect after FESQLC preprocessing, during the C
compilation step. In order to include system header files such as stdio.h, you must use
the standard C #include directive. If C macros are defined, you must use standard C
#ifdef directives. FESQLC will ignore any C macro definitions during the FESQLC
preprocessing step.

Including files - the include directive

The include directive allows you to include other files into your FESQLC programs. You
must use the FESQLC include directive if the file contains embedded SQL statements or
other FESQLC statements.

The file will be read into the program at the location of the include directive. Use the
keywords EXEC SQL (preferred ANSI standard) or the $ symbol to precede the
directive. Specify the exact name, including any extension, of the file:

EXEC SQL include "def_constants.h";
EXEC SQL include "/prog/def_constants.h";

If the filename includes the path, you must enclose the filename in quotationmarks.
Otherwise, you may omit the quotation marks, but FESQLC will convert the filename to
lowercase. If you omit the path, FESQLC will search the preprocessor path for the file.

To avoid the need for recompilation if a file location changes, omit the path from the
filename and use the -I FESQLC compiler option to specify the path:

fesqlc -I ./myincludes prog1.ec

Note: Genero FESQLC automatically includes any header files that it requires in order to
preprocess your program. Use the standard C #include directive to include C header
files. The #include of C includes a file after FESQLC preprocessing.

Warning:

For migration purposes, include statements for Informix ESQL/C header
files are permitted, although they are not required and the FESQLC

User Extensions

1673

compiler will ignore them. However, if your program has such statements,
you must use the EXEC SQL syntax. The following C syntax is not
supported:

#include "sqlca.h"

FESQLC will consider this a normal C header file to be included. The
statement must be replaced by:

EXEC SQL include sqlca;

Creating FESQLC macros - the define, undef directives

The FESQLC define directive allows you to create simple macros that are available only
to the FESQLC preprocessor. The FESQLC preprocessor, rather than the C
preprocessor, processes this directive.

Use the keywords EXEC SQL (preferred ANSI standard) or the $ symbol to precede the
directive:

EXEC SQL define CHECKED; -- macro without a value
EXEC SQL define LEN 15; -- macro with an integer
value of 15
EXEC SQL define NAME "scott"; -- macro with a string value

The scope of the macro is from the location of the define directive until the end of the
file, or until the macro is removed. The FESQLC undef directive allows you to remove
the macro:

EXEC SQL undef LEN;

You can use the FESQLC compiler options -ED and -EU to override these FESQLC
macro definitions.

Note: C macros are defined and undefined using the #define and #undef C
preprocessor directives in your source code, or the -D and -U FESQLC preprocessor
options.

Macros can be used in conjunction with other FESQLC preprocessor directives to
control conditional processing of a file.

Compiling conditionally - the ifdef,ifndef, endif, else, elif
directives

FESQLC provides directives to conditionally compile a program. The directives test
whether a macro has been created with an FESQLC define directive or the -ED
FESQLC compiler option, and then process the file accordingly.

Genero Business Development Language

1674

• ifdef - instructs FESQLC to compile the statements that follow, if the specified
macro is defined.

• ifndef - instructs FESQLC to compile the statements that follow, if the specified
macro is not defined.

• endif - indicates the close of an ifdef or ifndef condition.
• else - provides alternative processing instructions for an ifdef or ifndef condition.
• elif - is the same as "else if define", used to provide alternative processing

instructions; instructs FESQLC to compile the statements that follow, if the
specified macro has been defined.

Use the keywords EXEC SQL (preferred ANSI standard) or the $ symbol to precede the
directive:

EXEC SQL ifdef CHECKED;
EXEC SQL DELETE FROM cust_temp; /* executed when CHECKED
is defined */
EXEC SQL endif;
EXEC SQL ifdef CHECKED;
EXEC SQL DELETE FROM cust_temp;
EXEC SQL else; /* if CHECKED is not defined */
printf("no delete, CHECKED is not defined");
EXEC SQL endif;
EXEC SQL ifdef CHECKED;
EXEC SQL DELETE FROM cust_temp;
EXEC SQL elif PROBLEMS; /* if CHECKED not defined and
PROBLEMS defined */
printf("no delete, PROBLEMS is defined");
EXEC SQL endif;

Note: There is no equivalent to the "if" C directive in FESQLC; the preprocessor
supports only the ifdef and ifndef statements that test for the existence of a macro.

Example:

If your program uses both FESQLC macros and C macros, you can combine the -D and
-ED preprocessor options in the same command line. The following lines in the FESQLC
program prog.ec has two blocks of preprocessing directives. The first block uses
FESQLC syntax and the second block uses the standard C syntax:

EXEC SQL ifdef CHECKED;
printf("CHECKED is defined");
EXEC SQL else;
printf("CHECKED is not defined");
EXEC SQL endif;

#ifdef MAXLEN
printf("MAXLEN is defined");
#else
printf("MAXLEN is not defined");
#endif

If you combine FESQLC -ED and -D command line options like this:

User Extensions

1675

fesqlc -ED CHECKED -D MAXLEN prog.ec

FESQLC will create the FESQLC macro CHECKED, and will create the C macro
MAXLEN.

When the program is run, the following lines would be executed:

printf("CHECKED is defined");
printf("MAXLEN is defined");

Handling Exceptions
Unless you explicitly include exception-handling code in your FESQLC application, the
program continues when an SQL error occurs. Uncontrolled SQL errors may cause your
program to have unexpected behavior.

Suggested exception-handling strategies are:

• Check after each SQL statement by testing the value of SQLSTATE (or
SQLCODE).

• Use the WHENEVER statement to specify the action to be taken when an SQL
statement is not successful.

• Use GET DIAGNOSTICS to obtain additional information about any exceptions.

Using SQLSTATE

Warning: Using SQLSTATE is the preferred ANSI method of checking for
exceptions. However, not all database servers do support SQLSTATE. You must
check the database server documentation to verify if SQLSTATE is supported.

This global variable defined by FESQLC returns the status of the SQL statement most
recently executed. The status can be:

• Success
• Success, but no rows found
• Success, but warnings generated
• Failure, runtime error generated

FESQLC automatically copies the status information from the diagnostics area into the
SQLSTATE global variable; you do not have to define the variable, and it is accessible
anywhere in your program.

SQLSTATE can contain only digits and capital letters. The first two characters of the
five-character SQLSTATE string indicate the class of the execution code; the remaining
characters provide additional information. Check the first two characters to determine
whether the most recently executed SQL statement was successful:

Genero Business Development Language

1676

Class (first 2
chars) Description

00 SQL statement was successful

01 SQL statement was successful, with
warnings

02 SELECT or FETCH statement
resulted in NOT FOUND condition

>02 SQL statement resulted in a runtime
error

The following code checks SQLSTATE for the NOT FOUND case:

if (strncmp(SQLSTATE, "02", 2) == 0) {
 break;
}

If an SQL error occurred, you can get specific information from the other three
characters of SQLSTATE. The characters 0 to 4 and A to H are used for the SQLSTATE
class codes in ANSI and X/OPEN standard implementations:

First two
characters

Remaining
characters Description

00 000 SQL statement was
successful

01 000 SQL statement was
successful, with warnings:

01 002 Warning: Disconnect error,
transaction rolled back

01 003 Warning: Null value
eliminated in set function

01 004 Warning: String data right
truncated

01 005 Insufficient item descriptor
areas

01 006 Privilege not revoked

02 000
SELECT or FETCH
statement resulted in NOT
FOUND condition

>02 SQL statement resulted in
a runtime error

0A 000 Feature not supported.

0A 001 Multiple database server
transactions

21 000 Cardinality violation
22 000 Data exception
22 001 String data, right truncation

User Extensions

1677

22 002 Null value, no indicator
parameter

22 003 Numeric value out of range
22 012 Division by zero
22 024 Un-terminated string

23 000 Integrity-constraint
violation

24 000 Invalid cursor state

2B 000 Dependent privilege
descriptors still exist

2D 000 Invalid transaction
termination

2E 000 Invalid connection name

33 000 Invalid SQL descriptor
name

34 000 Invalid cursor name
3C 000 Duplicate cursor name
40 000 Transaction rollback

40 003 Statement completion
unknown

42 000 Syntax error or access
violation

Check your database server documentation for additional server-specific
implementations of SQLSTATE codes.

Using SQLCODE

SQLCODE is a global variable defined by FESQLC to determine the success of the most
recently executed SQL statement.

SQLCODE holds the Informix SQL error code. Using SQLSTATE is the preferred
method; SQLCODE is provided for backwards compatibility.

The database server returns information about the execution of an SQL statement to the
SQL Communications Area (sqlca) C structure. FESQLC copies the value of the
sqlca.sqlcode field to the SQLCODE global variable. Your program can check the value
in the SQLCODE variable for the following information:

 Value Description
0 SQL statement was successful

100 SELECT or FETCH statement resulted in
NOT FOUND condition

<0
SQL statement resulted in a runtime error.
The number specifies the particular
Informix error number.

Genero Business Development Language

1678

Native SQL error codes

If an SQL error occurs, the database server specific error code is available in
sqlca.sqlerrd[1].

Warnings

If a warning was generated by the SQL statement, sqlca.sqlwarn.sqlwarn0 is set to "W".
To test for warnings, check the first warning field. If this indicates the database server
has generated a warning, you can check the values of the other fields in sqlca.sqlwarn
to identify the specific condition.

See your database server documentation for additional information about specific errors
reported in SQLCODE, and the sqlca structure.

Using WHENEVER

Your program can use the WHENEVER statement to trap exceptions that occur during
the execution of SQL statements, and to specify the action to be taken when a specific
class of error occurs:

WHENEVER <exception class> <exception action>

Exception classes:

• SQLERROR - exception occurs when an SQL statement has failed.
• SQLWARNING - exception occurs when an SQL statement has generated a

warning.
• NOT FOUND - exception occurs when the NOTFOUND condition is returned by

an SQL statement.

Using WHENEVER SQLERROR statements allows your program to react to errors and
warnings, in the same way as checking the SQLSTATE or SQLCODE variables.

Actions to be taken:

• CONTINUE - the program ignores the exception and continues with the next
instruction in the program. This is the default.

• STOP - the program stops executing immediately when an exception occurs.
• CALL <function name>- the specified function in the program is called if an

exception occurs.
• GOTO <label> - control is transferred to the program code identified by the

specified label. The program code specified by GOTO <label> must be included
in every program block that contains SQL statements, or another WHENEVER
statement in that program block must re-set the condition.

Examples:

WHENEVER SQLERROR STOP;

User Extensions

1679

EXEC SQL CONNECT TO mydb;
...
WHENEVER SQLERROR GOTO error_handling_code;
EXEC SQL DELETE FROM orderstab WHERE cust_num = "101";
...

The default action is CONTINUE if no WHENEVER condition is set. The actions for the
exception classes can be set independently.

The GET DIAGNOSTICS statement

The diagnostics area is an internal structure that the database server updates after the
execution of each SQL statement. The GET DIAGNOSTICS statement can provide
additional information about the most recently executed SQL statement.

Statement fields return overall information about the most recently executed SQL
statement. For example, you can determine the number of exceptions generated by an
SQL statement, indicating whether you need to seek additional information.

Syntax:

EXEC SQL GET DIAGNOSTICS :host-variable = field-name [,...]
;

The keywords for the statement fields of the diagnostic area, and the data types of the
returned information, are:

Field name Data
type

Information
 type

 Description

NUMBER mint Statement Number of exceptions
generated. Even a
successful execution
will generate one
exception.

MORE char[2] Statement Contains Y or N plus a
null terminator; Y
indicates that the
diagnostics area
contains all the
exceptions information.
N indicates that there
is more information
than the database
server can store in the
diagnostics area.

ROWCOUNT mint Statement Number of rows that a
successful SELECT,
UPDATE, or DELETE

Genero Business Development Language

1680

statement has affected.
ROWCOUNT for a
SELECT statement is
undefined.

GET DIAGNOSTICS can return multiple exceptions; each exception that is generated
has a number. Exception number 1 is the exception generated by the last SQL
statement executed in your program. No set order exists for any additional exceptions
that are generated. To get information about a particular exception, use the following
syntax:

EXEC SQL GET DIAGNOSTICS EXCEPTION exception-number
 :host-variable = field-name [,...] ;

Some of the keywords for the exception fields associated with a specific exception, and
the data types of the information, are:

Field name Data type Information
 type

Description

RETURNED_SQLSTATE char[6] Exception Status of the
exception.
FESQLC
automatically
copies the
information from
this field for
exception 1 to the
SQLSTATE global
variable.

INFORMIX_SQLCODE int4 Exception Contents of
sqlca.sqlcode;
FESQLC
automatically
copies the
information from
this field to the
SQLCODE global
variable.

MESSAGE_TEXT char[8191]Exception Variable length
character string
that describes the
exception.

MESSAGE_LENGTH mint Exception Number of
characters that are
in the message
stored in

User Extensions

1681

MESSAGE_TEXT.
SERVER_NAME char[255] Exception Variable length

character string
holding the name
of the database
server used in the
most recent
connection
statement; will be
blank if there is no
server connected.

CONNECTION_NAME char[255] Exception

Variable length
character string
holding the name
of the connection
associated with
the most recent
connection
statement; will be
blank if there is no
current
connection.

See the SQL documentation for your database server for additional information about
exception fields in the diagnostics area.

To return information about your SQL statement and any exceptions to your program:

First, declare a host variable in your program to contain the name of the field in the
diagnostics area that you want to access:

EXEC SQL BEGIN DECLARE SECTION;
 mint numrows;
 mint numerr;
 char messagetext[8191];
 mint messagelength;
EXEC SQL END DECLARE SECTION;

To get statement information after the SQL statement has executed, specify the
diagnostics area field name. For example, to get the number of rows updated, inserted,
or deleted by the SQL statement, and the number of exceptions generated:

EXEC SQL DELETE FROM orders WHERE store_num = 111;
EXEC SQL GET DIAGNOSTICS :numrows = ROWCOUNT, :numerr = NUMBER;

Use the exception clause to get information about a specific exception generated by
your SQL statement. Exception 1 is the exception associated with the last SQL
statement executed.

Genero Business Development Language

1682

EXEC SQL GET DIAGNOSTICS EXCEPTION 1 :messagetext =
MESSAGE_TEXT;

You do not have to use GET DIAGNOSTICS to check the RETURNED_SQLSTATE and
INFORMIX_SQLCODE fields for exception 1, since FESQLC copies the values from
those fields to the SQLSTATE and SQLCODE global variables.

Note: The GET DIAGNOSTICS statement does not change the contents of the
diagnostics area.

Migration Notes
• Including Informix ESQL/C header files
• Using C-style macros for ESQL/C host variables
• Using char and varchar pointers
• Database and database object names
• Decimal host variables
• Literal constants in USING clause
• Comment indicator
• Features not supported

Including Informix ESQL/C header files

For migration purposes, include statements for Informix ESQL/C header files are
permitted, although they are not required and the FESQLC compiler will ignore them.
However, if your program has such statements, you must use the EXEC SQL syntax.
The following C syntax is not supported:

#include "sqlca.h"

FESQLC will consider this a normal C header file to be included. The statement must be
replaced by:

EXEC SQL include sqlca;

Using C-style macros for ESQL/C host variables

Old Informix ESQL/C compilers allowed you to use C-style macros in the declaration of
host variables:

#define MAXLEN 15

$char myvar[MAXLEN];

This is not standard ESQL/C programming. Recent Informix ESQL/C compilers raise a
warning in such a case:

User Extensions

1683

Warning -33208: Runtime error is possible because size of 'myvar' is
unknown.

FESQLC does not support the usage of C-style macros in SQL host variables
declarations. You must use ESQL/C macros instead:

EXEC SQL define MAXLEN 15;

$char myvar[MAXLEN];

Existing code using C-style macros may use the C macro in normal C variable
declarations. Is such a case you can define the macro twice: Once for the C variables
and once for the ESQL/C host variables:

#define MAXLEN 15
EXEC SQL define MAXLEN 15;

char myvar1[MAXLEN];
$char myvar2[MAXLEN];

This solution is valid ESQL/C programming. It works with both Informix ESQL/C and
Genero FESQLC compilers.

Using char and varchar pointers

Normally you use char/varchar arrays to hold SQL CHAR or VARCHAR data:

$char cn[101];
$SELECT cust_name INTO $cn FROM customer ... ;

Informix ESQL/C also supports char/varchar pointers, but the length of the C variable is
unknown.

$char *cn;
$SELECT cust_name INTO $cn FROM customer ... ;

The char/varchar pointers are typically used for function parameters:

int func(p1, p2)
EXEC SQL BEGIN DECLARE SECTION;
int p1;
char *p2;
EXEC SQL BEGIN DECLARE SECTION;
{
EXEC SQL INSERT INTO tab VALUES (:p1, :p2);
}

or as constants:

$const char *blank = " ";
$const char *undef = "Undefined value";

Genero Business Development Language

1684

Database APIs must know the size of the SQL char/varchar type corresponding to the
host variable, to check for overflow. (For example, you cannot insert a CHAR(100) value
into a CHAR(9) in Oracle).

Char and varchar pointers can be used as input parameters in SQL statements, but the
FESQLC API computes the size with an strlen() of the current value pointed by sqlvar-
>sqldata.

It is strongly recommended that you use a fixed size of char and varchars. If you MUST
use a char/varchar pointer, use an sqlda structure and specify the exact size of the
corresponding CHAR/VARCHAR SQL type in sqlvar->sqllen.

Host variables defined as char or varchar pointers cannot be used to fetch data:

$char *c;
$varchar *v;
$select c1, c2 into :c, :v from t;

Database and database object names

EXEC SQL DATABASE supports only a simple database name; for portability the
Informix database specification dbname@server is not supported.

The database prefix in a table name specification (dbname:tabname) is not supported,
for portability.

Using SQL keywords as database object names is not supported.

Decimal host variables

Decimal host variables must be declared with precision and scale if you want to use a
database other than Informix:

$decimal(6,2) mydec;

In an sqlda structure, sqlvar elements defining a DECIMAL value must have the sqllen
member initialized with the decimal dimension (i.e., PRECMAKE(precision,scale). This is
different from Informix ESQL/C, where sqllen has the size of the dec_t structure for
input parameters.

Literal constants in USING clause

Literal constants are not allowed in a USING clause:

OPEN cursor USING 123, "abc"

You must always use host variables.

User Extensions

1685

Comment Indicator

The double hyphen (--) comment identifier is permitted within an SQL statement only.

$SELECT * -- all columns compiles successfully
 FROM tab;
$SELECT * FROM tab;
 -- all columns will not compile

Features Not Supported

• DESCRIBE INTO sqlda is not yet supported.
• System descriptors (ALLOCATE DESCRIPTOR, etc) are not yet supported.
• INT8 and SERIAL8 data types are not yet supported.
• CLOB/BLOB data types are not yet supported.
• Multi-byte character sets are not yet supported.
• Opaque and LVARCHAR data types will not be supported.
• Server communication functions (sqlbreak sqlexit) are not supported.
• GLS library functions will not be supported.
• Collections will not be supported.

Example program
01 #include <stdio.h>
02
03 EXEC SQL define NAME_LEN 20; /* customer.store_name is a CHAR(20)
*/
04 EXEC SQL define ADDR_LEN 20; /* customer.addr is a CHAR(20)
*/
05
06 void errlog(void)
07 {
08 fprintf(stderr, "Error occurred:\n");
09 fprintf(stderr, " SQLSTATE = [%s] SQLCODE = %d\n\n",
10 SQLSTATE, SQLCODE);
11 EXEC SQL DISCONNECT ALL;
12 exit(1);
13 }
14
15 int main()
16 {
17 EXEC SQL BEGIN DECLARE SECTION;
18 int p_num;
19 varchar p_name[NAME_LEN + 1];
20 int2 i_name;
21 varchar p_addr[ADDR_LEN + 1];
22 int2 i_addr;
23 varchar p_addr2[ADDR_LEN + 1];
24 int2 i_addr2;
25 char p_state[3];

Genero Business Development Language

1686

26 EXEC SQL END DECLARE SECTION;
27
28 EXEC SQL WHENEVER ERROR CALL errlog; /* set error handling */
29
30 printf("Connecting...\n\n");
31 EXEC SQL CONNECT TO 'custdemo';
32
33 EXEC SQL DECLARE c1 CURSOR FOR
34 SELECT store_num, store_name, addr, addr2
35 FROM customer
36 WHERE state = :p_state;
37
38 strcpy(p_state, "IL");
39 EXEC SQL OPEN c1;
40
41 for (;;)
42 {
43
44 EXEC SQL FETCH c1 INTO :p_num,
45 :p_name INDICATOR :i_name,
46 :p_addr INDICATOR :i_addr,
47 :p_addr2 INDICATOR :i_addr2;
48
49 if (strncmp(SQLSTATE, "02", 2) == 0) {
50 /* No more rows */
51 break;
52 }
53
54 printf("%6d %-20s\n %s %s\n",
55 p_num,
56 i_name == 0 ? p_name : "<no name>",
57 i_addr == 0 ? p_addr : "<no address>",
58 i_addr2 == 0 ? p_addr2 : ""
59);
60 }
61
62 EXEC SQL CLOSE c1;
63 EXEC SQL FREE c1;
64
65 printf("\nDisconnecting...\n\n");
66 EXEC SQL DISCONNECT CURRENT;
67
68 return 0;
69 }

	Genero BDL User Guide
	Table of Contents
	General
	Introduction: BDL Concepts
	Documentation Conventions
	Language Features
	The Dynamic User Interface
	Installation and Setup
	Tools and Components
	Frequently Asked Questions
	New Features of the Language
	1.3x Migration Issues
	2.0x Migration Issues
	2.1x Migration Issues

	Language Basics
	Data Types
	Literals
	Operators
	Expressions
	Exceptions
	Variables
	Constants
	Records
	Arrays
	User Types
	Data Conversions
	Built-in Classes

	Applications
	Compiling Programs
	Programs
	Database Schema Files
	Globals
	Flow Control
	Functions
	Reports
	Localization
	Localized Strings

	Library
	Built-in Functions
	Utility Functions
	Windows DDE Support
	XML Utilities

	SQL Management
	Database Connections
	Database Transactions
	Static SQL Statements
	Dynamic SQL Management
	Database Result Set Processing (Cursor)
	SQL Positioned Updates
	SQL Insert Cursors
	I/O SQL Instructions
	SQL Programming

	User Interface
	The Interaction Model
	Using Windows and Forms
	Action Defaults
	Presentation Styles
	Form Specification Files
	Form Specification File Attributes
	Form Rendering
	Menus
	Displaying Data to Forms
	Record Input
	Array Display
	Array Input
	Query By Example
	Multiple Dialogs
	Prompt for Values
	Displaying Messages
	Toolbars
	Topmenus
	StartMenus
	Canvas
	Message Files
	MDI Windows
	Front End Functions
	Front End Protocol

	Built-in Classes
	The Application class
	The Channel class
	The StringBuffer class
	The StringTokenizer class
	The TypeInfo class
	The Interface class
	The Window class
	The Form class
	The Dialog class
	The ComboBox class
	The DomDocument class
	The DomNode class
	The NodeList class
	The SaxAttributes class
	The SaxDocumentHandler class
	The XmlReader class
	The XmlWriter class

	Miscellaneous
	Environment Variables
	The FGLPROFILE configuration file
	The Debugger
	The Profiler
	Optimization
	The Preprocessor
	File Extensions
	Error Messages
	General Terms used in this documentation

	BDL Tutorial
	Genero BDL Tutorial Summary
	Tutorial Chapters
	Tutorial Chapter 1: Overview
	Tutorial Chapter 2: Using BDL
	Tutorial Chapter 3: Displaying Data (Windows/Forms)
	Tutorial Chapter 4: Query by Example
	Tutorial Chapter 5: Enhancing the Form
	Tutorial Chapter 6: Add/Update/Delete
	Tutorial Chapter 7: Array Display
	Tutorial Chapter 8: Array Input
	Tutorial Chapter 9: Reports
	Tutorial Chapter 10: Localization
	Tutorial Chapter 11: Master/Detail
	Tutorial Chapter 12: Changing the User Interface Dynamically

	ODI Adaptation Guides
	ODI Adaptation Guide For Genero db 3.6x, 3.8x
	ODI Adaptation Guide For DB2 UDB 7.x, 8.x, 9x
	ODI Adaptation Guide For Oracle 8.x, 9.x, 10.x, 11.x
	ODI Adaptation Guide For SQL Server 2000, 2005, 2008
	ODI Adaptation Guide For PostgreSQL 8.0.2, 8.1.x, 8.2.x, 8.3.x
	ODI Adaptation Guide For MySQL 4.1.x, 5.0.x, 5.1.x
	ODI Adaptation Guide For Sybase ASA 8.x

	Standard Extensions
	File Management Class
	Mathematical functions Class

	User Extensions
	Implementing C-Extensions
	Genero FESQLC

