

©2008 Four J’s Development Tools, Inc. www.4js.com

\

User Guide
Version 2.11

Copyright © 2008 by Four J’s Development Tools, Inc. All rights reserved. All information, content,
design, and code used in this documentation may not be reproduced or distributed by any printed,
electronic, or other means without prior written consent of Four J’s Development Tools, Inc.

Genero® is a registered trademark of Four J’s Development Tools, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks.

• IBM, AIX, DB2, DYNIX, Informix, Informix-4GL and Sequent are registered trademark of
IBM Corporation.

• Digital is a registered trademark of Compaq Corporation.

• HP and HP-UX are registered trademarks of Hewlett Packard Corporation.

• Intel is a registered trademark of Intel Corporation.

• Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

• Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in the
United States, other countries, or both.

• Oracle, 8i and 9i are registered trademarks of Oracle Corporation.

• Red Hat is a registered trademark of Red Hat, Inc.

• Sybase is a registered trademark of Sybase Inc.

• Sun, Sun Microsystems, Java, JavaScript™, and Solaris are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries.

• All SPARC trademarks are trademarks or registered trademarks of SPARC International,
Inc. in the United States and other countries.

• UNIX is a registered trademark of The Open Group.

All other trademarks referenced herein are the property of their respective owners.

Note: This documentation is for Genero 2.11. See the corresponding on-line documentation at the
Web site http://www.4js.com/online_documentation for the latest updates. Please contact your
nearest support center if you encounter problems or errors in the on-line documentation.

iii

Table Of Contents
General

Overview ...1
Installation...3
Starting and Configuring the GDC ..12
Frequently Asked Questions...19

Applications

Shortcut System..31
Shortcut Wizard ..33
Connections Panel..44
Terminals Panel ..46
Debug Panel and Logging System ...50

Features

Stored Settings ...53
Command Line..56
Screenshots ..60
Local Actions...62
Localization ...64

Active X

Active X Overview...67
Active X and Application Server..70

Security

Security Level ...75
GDC and SSH...77
GDC and SSH: Simple Setup ...80
Port Forwarding and Firewalls ..81
Implementing a Secure Server with Genero Desktop Client.....................................92
Possible Configuration Problems..108
GDC and Windows XP Service Pack 2...111
GDC and Windows Vista ..115
Front End Extensions..125

Front End Extensions

Windows DDE Support ...131
Windows COM Support ..138
Windows Mail extension ...144

1

Overview
The Genero Desktop Client (GDC) is a graphical Front End for the Genero Runtime
System. The Genero Desktop Client is multi-platform and can run under:

• Windows systems
• Mac OS X (10.2)
• Linux (X11 systems)

The Genero Desktop Client can also be embedded in an HTML page using Active X.
This solution works on Windows systems using the Internet Explorer browser.

The following screen shots show the same application running on each of the three
supported platforms.

Windows version:

Genero Desktop Client

2

Linux version (using dedicated KDE 3.3 version):

Mac OS X version:

General

3

Installation
The installation process installs the Front End on the Workstation.

Topics

• System Requirements
• Prerequisites
• Windows Systems
• Mac OS X
• X11 Systems

System Requirements

The client system must meet the following requirements:

Windows systems:

• Windows 98, Windows ME, Windows NT4, Windows 2000, Windows XP
• Windows TCP/IP system installed

Linux systems:

• TCP/IP system installed
• kde's kmfclient tool if you want standard function call "shellexec" to work.
• KDE 3.3 (or higher) for the KDE specific version.

Mac systems:

• Mac OS X 10.2
• TCP/IP system installed

Prerequisites

Genero Desktop Client will work only with a Genero Runtime System, and is not
compatible with Four J's BDL Runtime System.

Windows Systems

To install:

Genero Desktop Client

4

1. Close all running applications and execute the installation program.

2. Press 'Next' to start the installation.

General

5

3. If you accept the agreement, check 'I accept the terms in the License
Agreement' and click 'Next'' to continue.

4. Depending on your system, the installation system will ask you if you want to
install GDC for all users or for the current user only.

Genero Desktop Client

6

5. Now select the folder in which you want to install GDC.

6. Select the StartMenu folder in which GDC shortcuts will be set.
7. All files will be copied ; the installation is now complete:

You can now run GDC.

General

7

Mac OS X

To install:

1. Close all applications:

2. Double-click on the drive image file (.dmg). The image file will be mounted by
Mac Os X.
Once the volume is mounted, double-click on the package file (pkg):

Genero Desktop Client

8

3. Press 'Continue' to start the installation:

4. Select the drive, and then the Destination Folder (by default 'Applications'), in
which you want to install the GDC.
Press 'Continue' to continue the installation:

General

9

5. Press 'Install' to proceed to the installation:

6. Enter the root password. Administrator rights are needed for RLOGIN and to
install GDC in the Application directory.

Genero Desktop Client

10

7. Now GDC is installed on your Mac OS X. Press 'Close' to finish the installation.
You can now unmount the mounted volume (drop the mounted icon in the Trash)

8. To start GDC, double-click the gdc icon in the Destination Folder (by default
'Applications').

General

11

X11 Systems

To install:

1. Close all applications.
2. Execute the installation shell using the following command:

 sh installation-script.sh -i
3. Follow the directions that appear.

Warning! By default, the script un-compresses data into $DBTEMP ; please make
sure you've the correct rights in this directory.
If not, either unset $DBTEMP (/tmp will be used), or use -w <tempdir> option to
specify the temp directory you want.

Genero Desktop Client

12

Starting and Configuring the GDC
Topics

• Starting GDC
• Configuring GDC

o Preferences
o Advanced options
o Security options
o Report to Printer options

Starting GDC

Under Windows systems, you can use the shortcut on the Start Menu.
Under X11 systems, performing envgdc shell will add the Genero Desktop Client binary
directory to your path; you will be able to start with the following command : gdc.
Under OS X systems, the installer will create an entry in the "Application" directory.

By default, GDC will listen for Runtime System connections on port 6400. You can
specify the port by starting GDC with the parameter -p.

If the port is not available, GDC will try the next port, continuing until it finds the first
available one.

See Command Line for a list of all command line options.

General

13

Configuring GDC

Click the Options icon to display the configuration options panel. The configuration
options are organized across four tabs: Preferences, Advanced, Security, and Report to
Printer.

Genero Desktop Client

14

Preferences

The following options can be configured in the preferences panel:

Path to local images: Specifies the path for gdc to search when an image is needed.
GDC will first check if the name provided corresponds to an absolute file name; then it
will look in the path you have specified here, then in the /pics directory. If it has still not
found the image, it will draw a "..." picture.

If you enter the wrong path, the label turns red to warn you:

Default Icon: Specifies the default icon for GDC. This is the default icon used for the
taskbar, the systray icon (under Windows systems), the shortcuts, the Terminals and
applications.

General

15

Default Font: Specifies the default font for GDC. This font will be used everywhere in
your applications.

Fixed Font: Specifies the default fixed font for GDC. This font will be used when the
fixed font attribute is defined.

Warning! Changes will not be applied until the "Apply" button is clicked.

Advanced options

The following options can be configured in the Advanced panel:

Communications (Ping Timeout: To check whether the connection with the runtime
system or the application server is still alive, GDC sends a "ping" signal over the
network. The signal is sent by default every two minutes; this interval can be changed
here.

Stored settings: Stored Settings can be temporarily disabled by checking "Disable". To
clear them, click on "Clear" button.

Genero Desktop Client

16

Buttons look: The look of the monitor and dialogs (shortcuts wizard, login, about box,
debug console) buttons can be customized to match the look'n'feel of a regular 4gl
application. The following screenshots illustrate raised buttons and raised buttons
without icons:

General

17

Security options

The following options can be configured in the Security panel:

Security Level: The security level can be changed here. See the "security level" section
for more details.

Clear Password: Clears the passwords that are stored by GDC.

Genero Desktop Client

18

Report to Printer options

This panel provides some options for the font and printer used with REPORT TO
PRINTER behavior:

ask once: GDC will ask for the parameter once and then keep the choice in memory
until it's closed.

ask on every report: GDC will ask every time a report is printed.

Use default: Use the system default printer or GDC's default font.

Use: Use a specified printer or font.

General

19

Frequently Asked Questions

Topics

1. General Questions
 1.1 What does GDC mean ?
 1.2 What is the Debug Console ?
 1.3 I did control-right-click on a form, and a strange window appeared! What's this ?
 1.4 How can I print the current window ?
 1.5 How can I change the default icon ?
 1.6 What does GDC do when it has to display an image ?
 1.7 What are these files in the etc directory ?
 1.8 I plan to install Windows XP Service Pack 2. Is there any known problem with
 GDC ?
 1.9 I plan to install Windows Vista. Is there any known problem with GDC ?
 1.10 Since version 2.0, when I close GDC monitor, GDC is still running. Is this
 expected ?
 1.11 I changed some preferences, but I can't see any effect. Why ?

2. Shortcut Problems
 2.1 I can't see any shortcut even if I create new shortcuts; is this normal ?
 2.2 When starting a direct shortcut, I got "Error #1, Host not found". What does it
 mean ?
 2.3 I'm under Windows, I've started a direct Shortcut, and nothing happens. What's
 wrong ?
 2.4 I'm under Windows connecting to the Runtime System using SSH; the terminal
 closes automatically, is this normal ?
 2.5 When starting an http shortcut, I got "Error GET: xxx" or "Error POST: xxx"; what
 does it mean ?
 2.6 I've unchecked "This connection needs a password", but GDC still asks me for a
 password; why ?
 2.7 I have a lot of Terminals that stay in the background even though no application is
 running. Where is the problem ?
 2.8 There is no button in the shortcut panel; what should I do to modify my shortcuts ?
 2.9 What does the "Unexpected protocol version sent by the runtime system" message
 mean ?
 2.10 RLogin is not working, any ideas ?

3. Network Problems
 3.1 Can I change the listening port ?
 3.2 I've started GDC on port 6400 and it seems it is listening on port 6401. Why ?
 3.3 As I use SSH, my connection is completely secured, right ?

4. Logging System
 4.1 Why a logging system ?
 4.2 I have moved some columns on a table during a demo, but the replay does not
 change the order; is this normal ?

Genero Desktop Client

20

5. Concerning ActiveX
 5.1 I've un-installed the Active X, but there are some files left on my computer. What's
 wrong ?
 5.2 What is the difference between ja/r and wa/r for HTTP connections ?

6. GDC's behavior
 6.1 GDC is blocked when a system dialog is open: is this normal ?
 6.2 When I start lots of applications, GDC may be unstable and displays really weird
 things. What is happening ?

1. General Questions

1.1 What does GDC mean ?

GDC stands for Genero Desktop Client.

1.2 What is the Debug Console ?

The Debug Console shows you the communication between the Front End and the
Runtime System. See Debug Console doc. for more details. You can open this window
by clicking on "Console" button on the Connections Panel.

1.3 I did control-right-click on a form, and a strange window appeared !
What's this ?

You have opened the 'Debug Tree'. This window shows all the Abstract User Interface
Tree and the nodes attributes. This window can only appear when the GDC is started in
debug mode.

 If you are an end-user, you do not care about this window. If you are a programmer,
please refer to Genero's documentation for more information about the AUI Tree.

1.4 How can I print the current window ?

GDC allows you to print the current window to any available printer.

You can refer to the Screenshots section to see how to use this feature.

1.5 How can I change the default icon ?

GDC allows you to change the default icon used in:

the task bar

the systray (Windows systems only)

General

21

the shortcuts system (default icon)

the terminal system (default icon, Windows systems only)

each application (default icon)

You can refer to the Configuring GDC section to see how to specify this icon.

1.6 What does GDC do when it has to display an image ?

GDC uses the following algorithm to search for an image:

Step Test done Action Example

1.
filename
starts with
"http://"

uses
the
HTTP
protocol
to get
the
image
from a
web
server

http://www.4js.com/fourjs/site/img/template/logo.jpg

2.a.
filename
corresponds
to a file

"c:/mypictures/logo.jpg"
"../../app/pics/img2.bmp"

2.b

filename +
extension
correspond
to a file

"c:/mypictures/logo.jpg" --> c:/mypictures/logo.jpg
"../../app/pics/img2" --> ../../app/pics/img2.bmp

3.a.

look into
<userdir> if
filename
exists

userdir = "c:\mypictures"
"logo.jpg" -->>c:\mypictures\logo.jpg

3.b

look into
<userdir> if
filename +
extension
exists

userdir = "c:\mypictures"
"logo" --> c:\mypictures\logo.jpg

4.a.

look into
<gdcdir>/pics
if filename
exists

"smiley.jpg" --> <gdcdir>/pics/smiley.jpg

4.b
look into
<gdcdir>/pics
if filename +

uses
the
given
file

"smiley" --> <gdcdir>/pics/smiley.jpg

Genero Desktop Client

22

extension
exists

GDC supports the following extensions : bmp, gif, png, ico, jpg.

1.7 What are these files in the etc directory ?

Some of the files in the <GDCDIR>/etc/ directory are installed when installing GDC;
other are created when needed.

FileName Description Installed

gdc_de.qm Contains the translation strings used by GDC when
started in a German environment X

gdc_fr.qm Contains the translation strings used by GDC when
started in a French environment X

WinCOM.cst Constants for WinCOM. X
.rhosts Contains the list of authorized hosts for the RCP server.

config.xml The main configuration files ; contains GDC parameters,
and non "local" shortcuts.

hosts.xml Contains the list of authorized hosts using Security Level
1

wincom.cst Windows only: list of constants for WinCOM extension
(GDC 2.00.1e and later)

1.8 I plan to install Windows XP Service Pack 2. Is there any known
problem with GDC ?

Changes related to Windows XP SP2 are described in the GDC and Windows XP
Service Pack 2 section.

1.9 I plan to install Windows Vista. Is there any known problem with GDC ?

Changes related to Windows Vista are described in the GDC and Windows Vista
section.

1.10 Since version 2.0, when I close the monitor window, GDC is
still running. Is this expected ?

Yes. GDC is now running like a daemon, and the monitor window acts as a
"configuration" tool. To close GDC, you'll have to click on the "Exit" button on the main
page, or use the systray.

General

23

1.11 I changed some preferences, but I can't see any effect. Why ?

You have to click on the 'apply' button. Changes won't be applied until this button has
been clicked.

2. Shortcut Problems

2.1 I can't see any shortcuts even if I create new shortcuts; is this normal ?

No, it should not happen, but it may be that the file where the shortcuts are saved is
corrupted. This file can be found in <GDCDIR>/etc/config.xml. The best solution is to
remove it and re-create your shortcuts. You can also edit it, but this operation is
reserved for experienced users.

WARNING! This file is automatically created by GDC and should not be changed
directly. Changes may introduce uncontrollable problems.

2.2 When starting a direct shortcut, I got "Error #1, Host not found". What
does it mean ?

It means that the host you have specified when creating the shortcut with the Shortcut
Wizard can't be reached from your computer. Try to ping the host using the ping
command. If this command fails, check your network configuration or contact your
system administrator. Also check the computer host in your shortcut configuration.

2.3 I'm under Windows, I've started a direct Shortcut, and nothing happens.
What's wrong ?

First, wait a few seconds. The Naming Resolution System can take a couple of seconds
and throw an error (see 2.2). If nothing happens after you've waited, go to the Terminals
Panel and see if there is any terminal corresponding to your shortcut. If yes, click on the
Show / Hide button to make it appear. There you will be able to see the terminal window,
and then see where the problem is. Most of the time, this is due to a problem in your
command line.

2.4 I'm under Windows connecting to the Runtime System using SSH. The
terminal closes automatically; is this normal ?

Yes. fgltty uses the SSH protocol to send the command line. Your problem is due to the
SSH protocol itself; if all the programs are closed, ssh will close the connection. That's
why the terminal window is also closed. To avoid this, you can start a shell at the end of
your command (add "bash;" for instance). Then, as the shell will be running, the
connection will not be closed.

Genero Desktop Client

24

2.5 When starting an http shortcut, I got "Error GET : xxx" or "Error POST:
xxx"; what does it mean ?

It means that there is a network problem between GDC and Genero Application Server.
The message you are likely to see is "Error GET: Connection Refused", which means
that either the computer hosting the Application Server is not reachable, or that the
connection was rejected. Please check your shortcut configuration and the Genero
Application Server configuration.

2.6 I've unchecked "This connection needs a password", but GDC still asks
me for a password, why ?

First of all, you have to see which program is asking you for a password.

GDC asking for a password:

fgltty asking for a password:

General

25

When you uncheck "This connection needs a password", GDC will not ask you for a
password and therefore will not transmit a password to fgltty. But, if your authentication
system is not correct, the host will still ask for a password. This is why fgltty asks you for
the password.

To correct this, check your authentication system or contact your system administrator.

2.7 I have a lot of Terminals that stay in the background even though no
application is running. Where is the problem ?

There is no way for GDC to know if the terminal that has been started is related to any
application.

You may start shortcut A, then B, and application B starts before application A.

You may start a shortcut called A that starts an application called B.

You may start a shortcut A that starts applications A, B.

So, GDC can't be sure that, if an application is closed, it should close the terminal.

To close the terminal, check the Terminals Panel: there are all your login sessions that
can be Terminated by clicking on the corresponding button.

You should either:

1. Add "; exit" to the end of your command string (eg.: @FGL ; cd $FGLDIR/demo ;
fglrun ia.42r ; exit) or

2. Use exec to replace process (eg. @FGL ; cd $FGLDIR/demo ; exec fglrun
ia.42r)

2.8 There is no button in the shortcut panel, what should I do to modify my
shortcuts ?

You are running GDC in "user" mode. To change your configuration options and your
shortcuts, you have to start GDC in admin mode, using the correct command line option.

2.9 What does the "Unexpected protocol version sent by the runtime
system" message mean ?

The protocol used by the Runtime System and the GDC to communicate may change
depending on new features added to Genero. The message "Unexpected protocol
version sent by the runtime system" is displayed when the Runtime System and the
Front End use protocols that are too different to work perfectly. You can press
"Continue", but this is likely to cause problems that may lead to GDC's crash.

We recommend that you always use GDC and a Runtime System version that are
designed to work together.

Genero Desktop Client

26

2.10 RLogin is not working, any ideas ?

Under Linux / Mac OS systems, fgltty must have root privileges to be able to start rlogin
connections. Please refer to the Rlogin Problem section for more information.

3. Network Problems

3.1 Can I change the listening port ?

Yes. -p (or --port) parameters allows you to change the port: GDC -p 3200 will make
GDC listen on port 3200. In every case, if the specified port is not available, GDC will try
the next port and listen on the first free one.

3.2 I've started GDC on port 6400 and it seems it is listening on port 6401...
Why ?

If the port you specify is not chosen by GDC, it means that it was not free. This may be
due to:

• another instance of GDC that already listens on this port
• an instance of another Four J's Front End that also listens on this port.

You can use -p command line option to force GDC to stop if the port is unreachable.

3.3 As I use SSH, my connection is completely secured, right ?

It depends on the way you've created your shortcut. If you've entered a "forwarded port",
SSH tunneling will be set and then your connection is secured. If this value is not
entered, SSH is only used to secure the connection when GDC needs to start an
application on a distant host, and not the complete communication.

4. Logging System

4.1 Why a logging system ?

The logging system has two main utilities, debugging and demo making.

Debugging: if you notice any problem in the GDC (especially an unexpected crash), you
can record the scenario that caused the problem and send it back to us. This will allow
us to solve the problem.

Demo Making: you may want to make a demonstration for your application, but you
don't want to export the installation of the Database and the Runtime System. Recording

General

27

a demo will allow you to create a scenario of your application and move it anywhere. The
only requirement is GDC.

Warning! Not everything is logged by GDC. See (4.2) for more details.

4.2 I have moved some columns on a table during a demo, but the replay
does not change the order; is this normal ?

Unfortunately, yes. The logging system only logs the communication between the GDC
and the Runtime System. Everything that is completely handled locally (like moving
columns) will not be recorded.

5. Concerning ActiveX

5.1 I've un-installed the Active X, but there are some files left on my
computer. What's wrong ?

Please be sure you have closed all of your browser windows before un-installing GDC's
Active X. If not, an instance of the GDC may still be running, and you will not be able to
un-install the application successfully. Therefore, some files may be left on your
computer.

5.2 What is the difference between ja/r and wa/r for HTTP connections ?

GDC can be used with the Genero Application Server in two modes:

• as a module integrated into the Genero Application Server (as an ActiveX)
• totally independently

When you run as a module, it works as follows:

In your Internet Explorer browser, you enter an URL like
http://server:port/path/wa/r/applicationName where:

• server is the server name
• port is the port of the server
• path is a specific path, depending on your configuration (could by empty, could

be "cgi-bin/fglccgi")
• applicationName is the name of the application you want to start

Then the Genero Application Server will send back an HTML page embedding GDC as
an ActiveX, and it will start the application.

When you run independently, it works as follows:

Genero Desktop Client

28

In the shortcut system, you can specify either server, port and applicationName, or a
complete URL. When you specify each piece of information, it is equivalent to the
following URL: http://server:port/ja/r/applicationName ; then an internal
protocol is send to the front end.

What
happens:

The Application Server will send an HTML page with GDC Ax
embedded and start an application. wa/r

When to
use it:

This should be used in your web browser to start the GDC Ax
and an application from the Application Server.

What
happens:

The Application Server will send an internal protocol
understood by the GDC. ja/r

When to
use it:

This should be used in the shortcut system to specify a
shortcut using the HTTP connection.

6. GDC's behavior

6.1 GDC is blocked when a system dialog is open: is this normal ?

System dialogs depend on the Operating System. When the dialog is open, GDC waits
for an answer from the Operating System. Everything that is sent by the Runtime
System is stored and processed once the dialog is closed by the user. So, this is normal
if, for instance, you have the "printer" dialog open (after a START REPORT with EXPORT
DBPRINT=FLGSERVER); GDC seems to be blocked and does not start or carry on any
other application. Close the dialog and it will carry on working as expected.

 6.2 When I start lots of applications, GDC may be unstable and displays
really weird things. What is happening ?

This happens only under Windows systems. Windows applications are limited in the
number of USER and GDI objects. When this number reaches 10,000 for the whole
system, it is no longer possible to create widgets or any system objects (font...). This
results in a corrupted screen and unstable system.

You can monitor GDI and USER objects in the Windows Task Manager, "Processes"
page (you may need to add GDI objects and USER objects columns using the View /
Select columns menu).

This limit can be modified for your system by changing the registry. See
http://msdn2.microsoft.com/en-us/library/ms725486(VS.85).aspx and
http://msdn2.microsoft.com/en-us/library/ms724291(VS.85).aspx for more details.

General

29

Please keep in mind that this limit has been set by Microsoft and modifying the registry is
a risky operation.

A better approach would be to reorganize your applications to have less windows open
or to use smaller windows; even hidden and non visible items (like in a folder) consume
user / gdi objects.

31

Shortcut System
Topics

• Shortcut System Overview
• Administration mode
• Shortcut Management
• Starting Shortcut
• Local Shortcuts

Shortcut System Overview

Genero Desktop Client (GDC) is able to store the information needed to start an
application. The information is stored as a shortcut. You add a shortcut for each
application. Shortcuts are stored the same way internally on each platform.

Genero Desktop Client

32

Administration Mode

By default, the Genero Desktop Client starts in user mode, where shortcuts and options
cannot be modified. To create shortcuts or modify options, the Genero Desktop Client
must be started in admin mode by using the "--admin" or "-a" command line option.

Shortcut Management

Genero Desktop Client can interact with the Runtime System in different ways:

• The Runtime System is on a distant host and GDC will start it via telnet, rlogin or
SSH (Direct Connection),

• The Runtime System is on the same host and GDC will start it as a local
application (Local Connection),

• The Runtime System is on a distant host, and GDC will be connect to it via
Genero Application Server (Connection via AS).

The Shortcut Management System allows you to add a new shortcut, to edit, duplicate or
remove an existing one.

Editing or adding a shortcut displays a Wizard to help you to create (or edit) your
shortcut.

Starting a Shortcut (Application)

You can start a shortcut (start an application) by double-clicking the shortcut icon or by
selecting the shortcut and pressing the "Start it" button.

Local Shortcuts

By default, your shortcuts are saved into the <GDCDIR>/etc/config.xml file. You can also
create local shortcuts that will be stored locally for each user. This feature can be useful
if you share GDC on a network drive and don't want the user to modify the common
shortcuts.

When config.xml file is read-only, any modification to a non-local shortcut will display a
warning and create a local copy of the shortcut.

Applications

33

Shortcut Wizard
Topics

• Wizard Start
• Direct Connection Shortcuts
• SSH Tunneling
• Local Connection Shortcuts
• Connections via Application Server
• Shortcuts and Environment Variables

Wizard Start

When you start the Wizard, you will be asked for the name of the shortcut, and for an
optional file name that will be used to display an icon associated with this shortcut.

You then must choose the Connection Type for your shortcut:

Genero Desktop Client

34

• Directly to the DVM - The Runtime System is on a different host, and GDC will
start it via telnet, rlogin, or SSH (Direct Connection)

• By HTTP - The Runtime System is on a different host, and GDC will connect to it
via the Genero Application Server (Connection via AS)

• Executing VM on local computer - The Runtime System is on the same host,
and GDC will start it as a local application (Local Connection).

Direct Connection Shortcuts

In this mode, the Runtime System is directly connected to the GDC using TCP/IP
network. To start your program on the Runtime System host, GDC will connect to the
host using either rlogin, telnet, SSH or SSH2. You can specify an alternative port, if your
configuration needs it. Using SSH, tunneling can be established to secure your
connection.

Note: This connection mode is only used when GDC connects to the host to start the
application. Currently, the communication between the Runtime System and GDC does
not use rlogin, telnet, SSH, or SSH2.

.

Applications

35

If Show Terminal Utility is checked, the window of FGLTTY, our Emulation
Terminal Utility, will be visible. (Please refer to the Terminals Section). This
could help you check whether your command line is valid..

Warning! fgltty must have a root sticky bit on Linux / Mac Os systems to be able to start
rlogin. Please refer to the rlogin problem section.

Click the Connections Strings button to display a window where you can specify
connection strings:

This table is used to tell GDC what to do when the Runtime System host displays a
given string on the terminal. GDC can perform the following actions:

• Ask the user for a value, and send it back
• Display a message to the user
• Ask for a password
• Send the shortcut password
• Send the shortcut command
• Execute a local command and send the result
• Return a defined string
• Ignore the Runtime System string
• Send the login
• Get a free port number for Port Forwarding
• Show or hide the terminal
• Close the terminal

"Order" specifies in which order GDC tries to recognize the different strings. You can
specify whether each string should be recognized only once or every time.

Genero Desktop Client

36

RLOGIN or TELNET systems have by default two connection strings: Password query
string and User logged in .

Examples:

Recognized
string: Description: Action performed by GDC

password: This is the string used by the telnet
daemon to ask for the password.

Sends the password

last login: This is the string used by the telnet
daemon to tell the user he has
logged in successfully.

Sends the command

login: This is the string displayed by the
telnet daemon when the login has
failed

Displays a message
"Authentication has
failed"

Please contact your System administrator if the default values are not appropriate.

The next screen allows you to enter options for SSH:

Applications

37

• SSH private key file: If you use an SSH connection, you can also specify an ssh
key file that contains the login information. The file format must use the PuTTY
format and can be generated using PuTTY tools.

• Use Kerberos authentication: On Windows platforms (all versions after
Windows 2000) you can also use Kerberos authentication if your user and
computer are registered on an ActiveDirectory that provides a Kerberos interface.

• Allow Ticket Forwarding: Ticket forwarding allows the SSH server to forward
the Kerberos ticket that identifies the user to other processes.

• Server realm: The server realm identifies the Kerberos "domain". This field can
be mandatory, depending on the ActiveDirectory / Kerberos server configuration.
Ask your System administrator for further details.

Next, you should enter login information.

If you use Kerberos authentication, you will see the following screen:

Since Kerberos uses the login information of the current user, on this screen you can
only enter the hostname and the command line to be executed.

Genero Desktop Client

38

If you don't use Kerberos, you will see a different screen:

In this case, you have to provide the following information:

• the hostname where the Runtime System is hosted. This can be omitted if you
use the -host command line.

• the username you are using to connect to the host. This can be omitted if you
use the -user command line.

• the command line that will be executed to start the application on the Runtime
System side.

If This connection needs a password is checked, GDC will ask you for a
password. If your configuration allows you to connect without a password (for
instance using rlogin combined with a .rhost file), uncheck this option. If a
password is still requested, review your configuration.
WARNING! GDC will not modify your configuration to allow you to connect
without a password. It is up to you or your administrator to manage this.

If Keep my password is checked, GDC keeps in memory the password you
enter the first time you start a shortcut, and reuses it when you restart. The

Applications

39

password is kept in memory, and is lost if you stop GDC.
WARNING! GDC never stores your password in a file or elsewhere unless
Allow persistent save is checked. The password is kept in memory while GDC
is launched, and is forgotten once GDC is stopped.

If and don't ask it again is checked, GDC will only ask for the password the
first time a shortcut is launched. After that, the password will be silently sent,
without bothering the user.

If Allow persistent save is checked, GDC will store the password in settings
once it is accepted. The password is also kept in memory, but it will not be lost
if you stop GDC.
WARNING! GDC stores your password on disk in an encrypted form which is
very difficult to read but not impossible. Someone with strong knowledge in
cryptology can eventually break the password protection.

Within the command line, you can use the following tags:

Tag Replaced by
@FGL FGLSERVER=<IP Address>:<serv num>
You can use one of the @FGL variants depending on your system:
@FGLNT set FGLSERVER=<IP Address>:<serv num>&&set FGLGUI=1

@FGLCSH setenv FGLSERVER "<IP Address>:<serv num>";setenv FGLGUI
1

@FGLKSH FGLSERVER="<IP Address>:<serv num>";export
FGLSERVER;FGLGUI=1;export FGLGUI

@SRVNUM <GDC listening port - 6400 (The second part of
FGLSERVER)>

@PORT <GDC listening port>
@USR <Client current user name>
@USER <User name on the remote system>
@IP <IP address of the client computer>
@COMPUTER <Machine host name>
@E_SRV export FGLSERVER
@4GLSRVVER <GDC version>

These tags will automatically be replaced when the command is sent to the Runtime
System host.

Genero Desktop Client

40

SSH Tunneling

Please refer to the GDC and SSH section for more information about SSH tunneling.

Local Connection Shortcuts

In this mode, the Runtime System is on the same computer as GDC. To start your
program on the Runtime System, GDC will simply start an executable (giving it some
parameters). This executable will typically be:

• fglrun started in the application directory, or
• a batch file that will perform all applications

You will have to provide the following information:

• the command line to select the executable
• the working directory
• the parameters needed by the executable

Applications

41

You can have, for example:

Command Line Working
Directory Parameters Remarks

fglrun /home/fgl/demo/ stores.42m fglrun should
be in the PATH

c:\fourjs\fgl\bin\fglrun.exe c:\genero\demo stores.42m

c:\demos\stores.bat

stores.bat is a
batch file that
sets the
environment
and starts the
program.

C:\WINNT\system32\CMD.EXE
/C "d:\fjs\fgl\envcomp.bat
&& fglrun D:\app\gift.42r"

D:\app

This will start
envcomp.bat in
FGLDIR to set
the
environment,
then start the
gift application.
The Working
directory is the
directory where
fglrun can find
the required
files.

WARNING !: If you have the configuration shown below, you must be sure that all the
environment variables are set before starting the application. The variables can be set in
the "Environment Variables" system dialog.

Command Line Working Directory Parameters Remarks
c:\fourjs\fgl\bin\fglrun.exe c:\genero\demo stores.42m

Connections via Genero Application Server

In this mode, the GDC will be connected to the Runtime System via the Genero
Application Server, using the HTTP protocol.

Genero Desktop Client

42

The URL looks like: http://myserver:6393/cgi-bin/fglccgi/ja/r/uidemo

You can also specify the Kerberos Realm on Microsoft Windows platforms if the web
server requires a Kerberos authentication. This field is not mandatory for a Kerberos
authentication, but it can be useful when many Kerberos servers are on the same
network. Keep in mind that Kerberos authentication is designed to work in a local area
network, and the results are unpredictable across a wide internet connection.

If the URL begins with https (secure), you can specify a client certificate to authenticate
the client to the HTTPs server. For the moment, except for Microsoft Windows systems
where you can use a system certificate, only PKCS12 certificate are supported.. Since
PKCS12 certificate are password protected, you will be prompted for a password when
the certificate is installed. Please note that the password may be requested again,
depending of the state of the three checkboxes "Keep my password", "and do not ask
again", and "Allow persistent save".

On Microsoft Windows, there are four methods of selecting a system certificate:

• SUBJECT: use the first certificate in which the subject field contains the given
string.

• ISSUER: use the first certificate in which the issuer field contains the given string.

Applications

43

• HASH: use a hexadecimal hash that identifies a certificate. (eg: A5 C8 3F 34 21
C5 FF 8B 0A 0B 24 57 DD B2 C8 9F 1C 7A 45 76)

• ANY: select the first one

If your connection uses a proxy, you can configure it also. See the FAQ about URLs and
the Genero Application Server documentation for more information on configuring
applications.

Shortcuts and environment variables

In some fields, GDC will replace any $xxx (X11 / Mac OsX) or %xxx% (Windows) by the
corresponding environment variables. The fields concerned are:

Connection
Type Fields

direct host, username, commandline
http url
local command line, working directory, parameters

If you want GDC to simply send the text instead of replacing the environment variable,
use the "\" character to escape the variable (e.g. \$HOSTNAME or \%HOSTNAME\%).

Genero Desktop Client

44

Connections Panel
Summary:

• Overview
• Switch to / Terminate Buttons

Overview

The "Connections" Panel lists applications that can be handled by GDC. For each
application, it displays the following information:

• Name - The name of the application. This refers to the text attribute of the
UserInterface Node.

• Id - An internal identifier.
• Type - This refers to the way the application is connected: directly connected to

the Runtime System (direct) or using HTTP protocol via Genero Application
Server (http).

• Date - An indication when the application was started.

Applications

45

Switch to / Terminate Buttons

If you click on the "Switch to" button, the selected application will be raised to the top,
and the focus will be set on the current window. This will allow you to find your
application easily if a lot of programs are launched.

If you want to stop any application, you can select it and click on the "Terminate" button.
This will send the information to the Runtime System and the application will be stopped
by GDC.

Genero Desktop Client

46

Terminals Panel
Topics

• Overview
• Rlogin
• Show/Hide
• Terminate

Overview

Shortcuts use a terminal emulation utility (called fgltty) to connect to the system hosting
the Runtime System. Each line of the list in the Terminals panel refers to an active
instance of the utility.

Terminals are automatically started by the Shortcut System.

The terminal utility provided is called fgltty.

Applications

47

Windows version:

X11 version:

Genero Desktop Client

48

OS X version:

RLogin Problem

The rlogin protocol specifies that each connection from an rlogin client to an rlogin server
must originate on a privileged port, that is, a port in the range of 512 to 1023 inclusive.
On a UNIX system, the client must have root privileges to gain access to these ports.

The system rlogin command is owned by root, and has a sticky bit that allows normal
users to start rlogin as root:

>ll /usr/bin/rlogin
-rwsr-xr-x 1 root root 15376 Jun 24 2002 /usr/bin/rlogin

If you need to use rlogin with GDC Linux or Mac Os systems, you must enter the
Administrator password during installation.

Show / Hide

This button allows you to show or hide the selected Terminal. When you create a
shortcut using the Shortcut Wizard, you can specify whether the Terminal Utility is
shown. With this button you can show a hidden terminal, or hide a visible one.

Typically, this is used to check why your application has not started. Showing the
Terminal Utility will display what has happened.

Applications

49

Terminate

This button allows you to terminate the selected Terminal Utility.

Genero Desktop Client

50

Debug Panel and Logging System
Topics

• Overview
• Logging system

o Record a demo
o Replay a demo

• Debug Console

Overview

The "Debug" Panel shows the GDC debug facilities: the logging system and the debug
console.

The Debug Panel is only available when GDS is started in debug mode.

Applications

51

Logging

When GDC is started in debug mode, the logging system is available. This system will
help you to:

• debug your applications
• create a demo

What is logged? The complete communication between the front end and Runtime
System, so the Runtime System is not needed when you replay your demo.

Warning! As only the communication is recorded, the "local-only" actions such as
moving columns are not saved and replayed. Only the sent value of a field is saved; all
user interactions (copy / paste, cursor...) are not saved.

Recording Demo

To record a demo, first select a log file to store the scenario. Then, click on the record
button to start recording.

Warning! Only applications you launched AFTER starting recording are stored.

Replay Demo

To replay a demo, first select the log file where the scenario is stored. Then, click on the
play button to start playing the demo. You can pause the replay by clicking on the pause
button. The progress bar will indicate the progress of the demo.

Warning! No user interaction is possible when replaying a demo, so you may have to
stop recording the demo before the end of the application. Then, if you want to kill this
application, you must use the Connections panel.

Debug Console

If you click on the "Console" button, a Window called Debug Console will appear.

Warning! The debug console is only available in debug mode.

Genero Desktop Client

52

 In this window some debug information will be displayed:

• in blue - what is sent by GDC to the Runtime System
• in red - what is received by GDC from the Runtime System
• in green - some comments or other information

This debug console could help you to see the communication between the GDC and the
Runtime System.

53

Stored Settings
Topics

• Overview
• List:

o Window Settings
o Toolbar Settings
o Table Settings
o TextEdit Settings

Overview

If you change some graphical aspects of your application, GDC will store them and
reload them when the same application is stored again.

Under Windows Systems : Settings are stored under
\HKEY_CURRENT_USER\Software\Four J's Development Tools\GDC. key in the
registry.
Under Linux and MacOS an internal system is used to store data.

This page lists all the parameters that are stored.

Stored settings can be disabled or cleared in the Options panel.

List

Window Settings

Global
Settings

These settings are stored under
.\Application\<applicationName>\Windows\<windowName>
<applicationName> is taken from the "text"-Attribute of the UserInterface
Node

 The initial position of the Window is stored with the "posX" and "posY" Key; the
initial state (maximized or normal) under the "state" key.

 posX - x position of the upper left corner of the top-level window
 posY - y position of the upper left corner of the top-level window
 state - "normal" or "maximized"

Remarks: The window position and initial state of the settings are only taken into account
if the "position" style attribute of the window is "default" (not "center" and not

Genero Desktop Client

54

"field").
If an application is popping up for the first time and no settings are available, the
window is positioned automatically by the Window-Manager/GDC.

Start
Menu
settings

The width of the StartMenu (when the style is "tree").

Toolbar Settings

Global
Settings

These settings are stored under
.\Application\<applicationName>\Windows\<windowName>
 \toolbars\<toolbarId>
<toolbarId> is the toolbar id for the window; the id starts at 0 and is increased
when you add another window.

 area - the area where the toolbar is docked (left, right, top, bottom)
 areaSettings - coordinates of the toolbar
 floating - the toolbar can be floating ('1') or docked ('0')
 orientation - "vertical" or "horizontal"
 styleAttribute - styleAttribute "toolbarPosition" of the toolbar.
 usesTextLabel - specifies whether the toolbar shows the text.

Table Settings

The first time the table is sent, the GDC stores the initial settings prefixed by
DVM_ : DVM_numColumns, DVM_pageSize, DVM_sortColumn,
DVM_sortType.
Each time the table is sent again, GDC compares the initial settings with the
stored settings. If something has changed, then the 4GL program has been
changed, and the user-stored settings for this table are reset.

Global
Settings

These settings are stored under .\Forms\Table Columns\
<FormName>.<ArrayName>\
<FormName> is the "name" attribute of the "Form"-Node in the UI-Tree
<ArrayName> is the "tabName" attribute of the "Table"-Node.
This allows the settings to be re-used in multiple applications.

numColumns - the number of columns the table had when this setting was
written; if a table with a different number of columns is created under the same
settings identifier, these settings will be ignored.

 pageSize - the number of rows the Table had when the Table was closed; used
to restore exactly this number of rows if the table is shown again.

pageSizeInitial - the number of rows the Table had when the Table was
created; if a table with the same identifier is created with a different number of
rows the "pageSize" settings key is ignored.

 pixelWidth - the pixelWidth the table had when it was closed the last time; will
be restored the next time it is shown.

sortColumn - the sort column the table had when it was closed; will be restored
if the table is shown again. A Reset of this saved column (to -1) is only possible
by clicking on the Right Mouse Click-Context Menu at the Table header and

Features

55

choosing "Reset To Defaults".

 sortType - the sort Type "asc" or "desc" the table had when it was closed and a
sortColumn was saved; will be restored if the table is shown again.

Column
Settings

Individual column settings are stored under .\Forms\Table
Columns\<FormName>.<ArrayName>\<columnNumber>

 pixelWidth - the pixelWidth this column had when the table was closed; will be
restored the next time the table is shown.

realColumn - the actual visible number (order) of the column; if the user had
moved columns by drag and drop, this number is different from
<columnNumber> and will be restored the next time the table is shown.

 text - "text" attribute of the "TableColumn" Node, used for debugging.

visible - if a user used the context menu of the table header to switch off/on a
column, the result of this operation is saved under this key and will be restored
the next time the table is shown.

TextEdit Settings

Global
Settings

These settings are stored under .\Forms\TextEdits\<FormName>.<TextEdit>\
<FormName> is the "name" attribute of the "Form"-Node in the UI-Tree
<TextEditName> is the "colName" attribute of the "Textedit"-Node.
This allows the settings to be re-used in multiple applications.

Global height - the height this textedit had when the form was closed, will be restored
the next time the form is shown.

Global width - the width this texedit had when the form was closed, will be restored the
next time the form is shown.

Genero Desktop Client

56

Command Line
Topics

• Command List
• Warnings
• Examples

Command List

GDC handles the following options :

Information

-h Makes GDC display the About
Box.

Network, System
-p

--port
new_port GDC will listen on the

new_port port (if available).
-n

--new
 Starts a new instance of GDC.

-q

If the expected port (either
6400, or port specified by --
port) is not available, GDC
will stop (exit with -1).

-D
Starts GDC in debug Mode
(debug Tree and debug
Console are active)

-A

--Authentication
security level

Sets GDC's security level
regarding the Runtime
System's connection.

-R

-RCPd

Automatically starts the built-in
RCP deamon. (Windows
System only)

Start Application
-S

--Start
shortcut_name

If GDC has not been launched,
GDC will start minimized; then,
the shortcut named
shortcut_name will be started.

-s

--startDirect

If GDC has not been launched,
GDC will start minimized,
using the information given by
-U, -H, -T, -P and -C to

Features

57

connect to a DVM.
-U

--User
user name used

The specified user name will
be used when a Direct
Connection starts.
This option can be used if you
share GDC; then each user
can create a link to the bin and
differentiate the shortcut that
will be launched.

-H

--Host
host name

The specified host name will
be used when a Direct
Connection starts with a
defined shortcut (with -S), or
starts directly (with -s).

-P

--Password
password

The specified password will be
used when a Direct
Connection starts with a
defined shortcut (with -S), or
starts directly (with -s).

-K

--KeepPassword

The password specified with -
P option will be kept in
memory and no longer
requested.

-C

--Cmd
command_line

The specified command_line
will be used when a Direct
Connection starts with a
defined shortcut (with -S) or
starts directly (with -s).

-T

--Type
connexion_type

Defines which protocol should
be used when an application
starts with -s. Values can be:
TELNET, RLOGIN, SSH, SSH2.
Default is SSH.

-w

--ShowTerminal

Defines whether the terminal
window is visible (when --
startDirect option is used).
The terminal is hidden by
default.

-f

--ShowFirstLogin

If a password is provided with
--Password, GDC won't
display a login box when
starting a shortcut. If you
explicitly want the login box to
be shown, with password and
user pre-entered, use the -f

Genero Desktop Client

58

option.
Start GDC

-a
--admin

 Starts GDC in admin mode.

-M
--Minimized

 Starts GDC minimized.

-X

--close

Closes GDC if there is no
longer an application or
terminal running.

Note for Mac OS X users: command line can be used in either of the following ways:

• Starting the terminal application (Applications, Utilities), and then
./Applications/gdc.app/Contents/MacOS/gdc <command line>. OSX
expects the path to be absolute and not relative.

• Using the following Apple Script : do shell script
"./Applications/gdc.app/Contents/MacOS/gdc <command line>"

Warnings

• The -S and -s options must be used separately; -S is used to start an existing
shortcut, and -s to start an application using the command line.

• When using -s, you must specify at least the host and the command line. The
username and password will be prompted if needed.

• Even if you're using the -q option, GDC will first check whether another instance
is already running. If you really want your GDC instance to stop if the port is not
available, use -n and -q together. Using -q alone will stop GDC if the port is not
free and not being used by another GDC.

Examples

• gdc -p 6350

Starts GDC on port 6350.

• gdc -S demo

Features

59

Starts GDC, and the shortcut named "demo"

• gdc -S demo -U smith

Starts GDC, and the shortcut named "demo" using "smith" as the user
name.

• gdc -s -T SSH2 -U smith -H server -P whatisthematrix -C "cd demo
; fglrun demo" -X

Starts GDC, then connects to "server" as the user "smith" with the
password "whatisthematrix". Once connected, performs the specified
command line "cd demo ; fglrun demo" and closes the GDC when all the
applications or terminals are over.

Genero Desktop Client

60

Screenshots
Topics

• Overview
• Screen Shots

Overview

GDC provides a feature to send the current window to any installed printer. This will
allow you to print a screenshot directly, without any other tool.

Screen Shots

 To call this feature, you can:

• press Control-Alt-P
• press Alt-Print_Screen (under Linux systems only, under Windows this

combination will be used by the system to put the current screenshot into the
clipboard)

• "Hardcopy" option in the System Menu (Windows systems only !)

Features

61

This will open the classic "Print dialog" which will allow you to select your printer:

There you will be able to select the right printer, configure it, and then print the current
window.

Genero Desktop Client

62

Local Actions
Topics

• Overview
• List
• Interrupt Local Action

Overview

Some features of the GDC are defined as "local", including "completely local" features
like copy, cut or paste. Some others depend on the DVM but concern local behavior,
like the navigation in a table.

To allow you to customize these features with accelerator, images, comment, etc., the
features are integrated as local actions. They follow the same rules as Runtime System
actions, but they are created by the Front End instead of the Runtime System.

You will be able to create actionViews for these actions, as you can for any other action.

Example:

01 BUTTON btn1 = nextfield;

When this button is pressed the focus will go to the next field.

Example:

01 <ActionDefault name="nextfield" accelerator="return">

The "return" key will be the accelerator to go to the next field.

List of Local Actions

Edition Shortcut
Hotkeys

editcopy copies the selected text into the clipboard CTRL-C
editcut cuts the selected text into the clipboard CTRL-X

editpaste pastes the content of the clipboard into the
current field

CTRL-V

Features

63

Navigation in
fields Shortcut

Hotkeys
nextfield goes to the next field TAB
prevfield goes to the previous field SHIFT-TAB
Navigation in
Tables Shortcut

Hotkeys
firstrow goes to the first row HOME

prevpage goes back one page (with TABLE, it follows
Internet Explorer behavior)

PRIOR

prevrow goes to the previous row KEY-UP
nextrow goes to the next row KEY-DOWN

nextpage goes forward one page (with TABLE, it follows
Internet Explorer behavior)

NEXT

lastrow goes to the last row. END

Interrupt Shortcut
Hotkeys

interrupt sends interrupt to the Runtime System

Interrupt Local Action

The Interrupt action is enabled when the Runtime System is running without sending
information to the front end. It allows the front end to send an interruption request, using
a special communication system, named Out Of Band (OOB). When the Runtime
System receives OOB, it sets INT_FLAG to 1 (Please refer to 'The Dynamic User
Interface' section in the Genero Business Development Language documentation).

Genero Desktop Client

64

Localization
Localization Support: list of encodings supported by GDC

Encoding List Description
Latin1
Big5 Chinese
Big5-HKSCS Chinese
eucJP Japanese
eucKR Korean
GB2312 Chinese
GBK Chinese
GB18030 Chinese
JIS7 Japanese
Shift-JIS Japanese
TSCII Tamil
utf8 Unicode, 8-bit
utf16 Unicode
KOI8-R Russian
KOI8-U Ukrainian
ISO8859-1 Western
ISO8859-2 Central European
ISO8859-3 Central European
ISO8859-4 Baltic
ISO8859-5 Cyrillic
ISO8859-6 Arabic
ISO8859-7 Greek
ISO8859-8 Hebrew, visually ordered
ISO8859-8-i Hebrew, logically ordered
ISO8859-9 Turkish
ISO8859-10
ISO8859-13
ISO8859-14
ISO8859-15 Western
IBM 850
IBM 866
CP874
CP1250 Central European

Features

65

CP1251 Cyrillic
CP1252 Western
CP1253 Greek
CP1254 Turkish
CP1255 Hebrew
CP1256 Arabic
CP1257 Baltic
CP1258
Apple Roman
TIS-620 Thai

67

Active X Overview
Topics

• Overview
• Installation
• Uninstallation

See also : Active X and GAS

Overview

Genero Desktop Client is also an ActiveX. Packed into its .cab file, it can be put into a
web site and then used directly with Internet Explorer.

Once a browser connects to the given URL, Genero Desktop Client will be displayed
within a web page and can also be used exactly in the same way as the "classic"
version.

Genero Desktop Client

68

The first time you access the Client in Active X mode, it installs itself and creates a
shortcut in Windows Start Menu. Then Genero Desktop Client can be executed from the
web page or directly with the shortcut.

Installation

Note: if you are running Windows XP Service Pack 2, the installation is described in the
topic GDC and Windows XP Service Pack 2.

To install the GDC, connect to the Application Server where GDC-AX is installed.

Next, you get a certificate prompt. To install the GDC press "Yes".

After a few minutes GDC will be installed on your computer in the "program files\Four J's
Development Tools\Genero Desktop\" directory.

You will be able to launch the GDC through the Windows start menu (classic GDC) or
via Genero Application Server (GDC ActiveX)
However it is launched, it can be used in the same way as the normal version.

Active X

69

If you get a new version of the Active X, this new version will automatically update your
old version.

Uninstallation

It is possible to uninstall the GDC, just as you would uninstall any Windows application,
using the control panel.

Genero Desktop Client

70

Active X and Application Server
Topics

• Overview
• Installation
• After installation
• Installation Problems
• Template

See also : GDC Active X.

Overview

GDC can be associated with Genero Application Server. With this system, you will be
able to start a 4GL application simply with an Internet Explorer Browser and an URL.

Installation

Warning! The Genero Application Server must be installed first. GDC will be installed
into Genero Application Server.

Windows Systems

To start the GAS installation:

1. Close all applications.
2. Execute the installation program.
3. Follow the directions that appear.

X11 Systems

To start the GAS installation:

1. Close all applications.
2. Execute the installation shell using the following command:

 sh installation-script.sh -i
3. Follow the directions that appear.

When prompted, select the directory where GAS is installed.

Active X

71

After installation

See the Genero Application Server documentation for instructions on configuring GAS
and creating applications for GDC.

A demo application is available at the following URLs:

Mode: direct
URL: http://<server>:<port>/wa/r/gdc-demo
Where: <server> is the IP of the server
 <port> the port used by the gas

Example: http://myServer:6394/wa/r/gdc-demo

Mode: cgi
URL: http://<server>[:<port>][<path>]cgi-bin/fglccgi/wa/r/gdc-demo
Where: <server> is the IP of the server
 <port> the port of the web server (default 80)
 <path> is the path where the cgi is installed

Example: http://myServer/cgi-bin/fglccgi/wa/r/gdc-demo

Warning! You must use an URL with /wa/r. In the Shortcut System, you must use an
URL with ja/r. Please refer to the FAQ for more information.

Installation Problems

If the message: "[Object not available! Did you forget to build and
register the server?]" displays when you start an application, the installation was
not completely successful; the new binary has been installed, but it was not correctly
registered in the Windows Registry. Versions 1.21.1d and greater implement a system to
avoid this problem.

To solve this problem, use the Control Panel / Add/Remove Programs utility to
uninstall the Active X, and start an application again.

If the problem still occurs, the only solution is to remove the Active X entries in the
registry, by hand:

• HKEY_CLASSES_ROOT\CLSID\{2311DF65-9D1A-4DDA-94AA-90568D989633}
• HKEY_CLASSES_ROOT\Interface\{A31C5317-4015-4080-BB1B-

A6E948E99673}

Genero Desktop Client

72

• HKEY_CLASSES_ROOT\Interface\{A90A2B09-D05D-426C-A471-
D9FCA74FADA5}

• HKEY_CLASSES_ROOT\TypeLib\{0F2D0DFC-EB4B-421A-93BF-DD20351DB07B}
• HKEY_CLASSES_ROOT\AppID\{96503F06-661C-4A33-B543-C03F43B89587}
• HKEY_CLASSES_ROOT\gdc.MonitorView
• HKEY_CLASSES_ROOT\gdc.MonitorView1

Template

When you install GDC Ax, a basic template is installed. This template can be modified to
fit your needs; see the Genero Application Server documentation for information.

This section discusses parameters specific to GDC Active X:

The OBJECT tag

The OBJECT tag loads the GDC.

<OBJECT
 Id="DesktopClient"
 Name="gdc"
 CLASSID="clsid:2311DF65-9D1A-4dda-94AA-90568D989633"
 CODEBASE="gdc.cab#version=1,21,1,7"
 height=440
 width=395>
[Object not available! Did you forget to build and register the
server?]
</OBJECT>

Notes:

1. CLASSID is related to the identifiers of GDC Active X; clisid is a unique
identifier.

2. CODEBASE indicates where gdc.cab is; #version is used to define which
version is used.

Warnings:

1. The Four J's versioning system uses a letter as the last version number (e.g.
1.21.1g), but Active X systems can only use numbers. The letter is then
transformed into a number (g -> 7).

2. Microsoft has released an update for Internet Explorer that modifies the way
Active X is handled. The template must be changed accordingly.
See IE ActiveX update (KB9 12945), Ms Technet about KB 912945, and MSDN
about Active X activation

Active X

73

The object functions

Function name Definition Description

setSrvUrl:
The url used to start the html
page ; usually :
"location.href".

Indicates to GDC Ax the URL
used. This is needed to
correctly initialize the
communication between the
GDC and the Genero
Application Server (GAS).

setPictureUrl:
Default remote path for
pictures ; usually
""$(pictures.uri)""

Indicates to GDC Ax where to
search for images stored on
the server side.

Warning! This requires GDC
Version 1.21.1g or greater and
GAS Version 1.21.1a or greater

setAppName:
Application name as defined in
the GAS configuration file ;
usually ""$(application.id)""

Indicates to GDC Ax that it has
to start the given application.

Warning! Without this
parameter, the application will
never start.

Example

HTML template:

<HTML>
 <HEAD>
 <TITLE>
 $(application.id) - Four J's Genero Desktop Client - Active X
 </TITLE>
 <META http-equiv="expires" content="1">
 <META http-equiv="pragma" content="no-cache">
 </HEAD>
 <BODY BGCOLOR="#FFFFFF" onload="startIt();"
onbeforeunload="preventClose();">
 <H2> Application: $(application.id) </H2>
 <CENTER>
 <DIV id="divgdc"/>
 </CENTER>
 </BODY>
 <SCRIPT src="$(connector.uri)/fjs/activex/fglgdcdefault.js"></SCRIPT>
 <SCRIPT language="javascript">

function startIt()
{
 // first activate ActiveX.
 var gdc=loadGDC("divgdc", "GeneroDesktopClient", "2,0,1,1");

 // this is to ensure that any popup window will appear in front of

Genero Desktop Client

74

the browser
 gdc.setFocus();

 // the serverUrl must be set BEFORE starting the application
 if ("$(connector.uri)" != ""){
 gdc.setSrvUrl(location.protocol + "//" + location.host +
"$(connector.uri)/wa/r/$(application.id)?$(application.querystring)");
 } else {
 gdc.setSrvUrl(location.href);
 }
 gdc.setPictureUrl("$(pictures.uri)");
 gdc.setAppName("$(application.id)");
 return false;
}

function preventClose()
{
 event.returnValue = "Genero Desktop Client";
}

 </SCRIPT>
</HTML>

fglgdcdefault.js file:

function loadGDC(gdcdiv, id, minversion)
{
var d=document.getElementById(gdcdiv);
d.innerHTML='<OBJECT NAME=gdc Id=' + id + '
CLASSID=clsid:2311DF65-9D1A-4dda-94AA-90568D989633
height=440 width=395 CODEBASE=gdc.cab#version=' +
minversion + '>'
+ '[Object not available! Did you forget to build and
register the server?]</OBJECT>';
return document.getElementById("GeneroDesktopClient");
}

The function preventClose will be called when Internet Explorer is about to close, and
will display a short message. If the user presses 'cancel', the page won't be closed.

75

Security
Topics

• Overview
• Security Level 1
• Security Level 2 and 3

Overview

In previous versions, the Genero Desktop Client accepted all connections that arrived on
the listening port, without any verification.
In Genero 2.0, the security level has been raised to "level 2".
You may change the security level with the command line "-A" option, or through the
Security Option panel.

Security Level 1

Command Line : gdc -A 1

When the runtime system starts a connection, the Genero Desktop Client user is warned
by a message in a pop-up (or dialog) window.

• Select 'Yes' and the Genero Desktop Client accepts this connection and only this
connection. Any other connection causes the pop-up window to display the
warning message again.

• Select 'Always' and the Genero Desktop Client accepts this connection and any
other connection from the same host. This setting is saved when the Genero
Desktop Client closes and reapplied when the Genero Desktop Client is
restarted.

• Select 'No' and the Genero Desktop Client rejects this connection. As a result, the
application will not run on the front end.

Genero Desktop Client

76

"Always" authorized hosts are saved into $GDCDIR/etc/hosts.xml. You can modify this
file if needed, or remove this file if you want to reset the authorized list.

Security Level 2 and 3

Command Line : gdc -A 2 or gdc -A 3

Warning! This only works when using a direct shortcut to start an application.

Security level 2 and 3 use the following mechanism:

1. When started, the Genero Desktop Client generates a random key.
2. When you start a shortcut, @FGL (and @FGLxxx) sets this key into the

_FGLFEID environment variable.
3. When fglrun starts, it reads the environment variable and sends the key back to

the Genero Desktop Client.
4. The Genero Desktop Client compares the internal key and the key sent back by

the runtime system. It only accepts a connection with the identical key. When a
wrong key connection is encountered, if security level 2 has been set, a popup
displays and asks whether to allow the wrong key connection to connect. If
security level 3 has been set, the wrong key connection is simply rejected.

Warning! If the runtime system you are using does not handle this feature, you
won't be able to run an application at this security level.

Security

77

GDC and SSH
Topics

• Overview
• Prerequisites
• Simple setup
• Port forwarding
• Firewalls

o Client Side
o Server Side

• Implementing a Secure Server solution
• Possible configuration problems

Overview

SSH stands for "Secure SHell". It was designed to replace the 'r' commands like rlogin
and rsh, because they offer no real security. SSH encrypts all data end-to-end, offers
data compression, and prevents snooping and connection hijacking. One additional
feature it offers is port forwarding.

Port forwarding allows an application on one computer to connect to a local port and
have its data tunnelled through an SSH session to the other computer. This does not
require you to open any ports on your firewall router, other than the port you already
have open for SSH - a distinct advantage. If you have firewalls, this is an advantage
because Genero needs to establish a connection from the client to the server to start the
user application, and another connection originating from the user application to the
client to display the graphical user interface. When Genero establishes a connection
from the server to the client, it can use the existing connection to tunnel the graphical
connection.

Warning! Any environment that uses firewalls or connections over the Internet
should use SSH or SSH2 for those connections. You should never send unencrypted
data such as account numbers, social security numbers, and passwords through the
Internet. Some companies might even consider using secure shell connections for

Genero Desktop Client

78

internal use when handling sensitive data such as accounting and payroll information. At
any point along the way, someone could be monitoring the data - for network diagnostics
or possibly with malicious intent. Whatever the reason, encryption is simple and offers
peace of mind.

SSH is comprised of two main components, the server component "sshd" and the client
component "ssh". Genero provides its own client component (built-in).

Prerequisites

Things you should know about your system:

 In order to determine how to proceed, you will need the following information about your
environment:

• Is there a server-side firewall between the server and the client?
• Is there a client-side firewall between the server and the client?
• Is encryption needed for all your data?
• Are you using a VPN (Virtual Private Network) or NAT (Network Address

Translation)?
• Will you need protection from inactive sessions timing out?
• Do you have more than one server to access from outside the firewall?
• Do you have more than one client accessing servers outside the firewall?

We recommend reading about SSH and how to configure it. We will not cover this topic
in this document.

How do I make sure data is encrypted?

To ensure that your data is encrypted, select SSH or SSH2 Both offer data compression
and port forwarding; the difference is SSH2 has different implementation code and a
more advanced encryption algorithm than SSH.

If you are using the shortcut buttons in the Genero Desktop Client, two connections are
established between the client and the server. The first connection is established from
the client to the server, in order to log in and start the application. The second
connection is made from the server's application to the client, in order to display the
graphical data. Use the chart below to determine which settings you will need.

Security

79

What connection method should I use?

Knowledge of your configuration will be necessary to make Genero work properly. Refer
to the "Things you should know about your system" section to find out what information
will help. Use the matrix below to determine which connection methods will support what
you are trying to do. Currently the SSH or SSH2 with Port Forwarding provides the most
flexible connectivity.

1 - Requires configuring the server side firewall router to open or forward the port used
by sshd.
2 - Requires configuring the client side firewall router to open or forward the port(s) used
by the GDC.
3 - May require changes to firewall connection timers if firewalls are involved.
- Indicates full functionality with no changes.

Genero Desktop Client

80

GDC and SSH: Simple Setup
The simple setup assumes that you are on a corporate LAN with no firewalls. All
methods of connections are possible here (telnet, rlogin, ssh, ssh2, with/without port
forwarding) without any special set up. Using SSH or SSH2 will work fine and will offer
encryption. The GUI connection will be made on the default port 6400. FGLSERVER will
be set to '<client IP> :0' and it will expect to be able to access that IP and port directly.

If you don't want any encryption or compression, select rlogin or telnet as your method of
connection.

What if you want to connect to a port other than 6400 for the GUI? Specify the option "-p
<port> " on the command line for GDC, and GDC will listen on that port for the GUI
connections. The FGLSERVER will have its information adjusted accordingly. For
example, execute "gdc -p 7400". When you look at the value of FGLSERVER, it will
contain "<client IP> :1000". It would contain "<client IP> :0" if the default of port 6400
was used (the number displayed after the colon is the port number that you specified
minus 6400, the default number.)

If you do port forwarding while using "-p 7400" on the GDC command line, the offset
number after the colon will still be your Port Forward value minus 6400. This is because
fglrun doesn't care what port you are listening on the client side, only what port needs to
be connected on the server side. The tunnel takes care of connecting to the correct port
on the client side. Using @FGL keeps everything automatic. If you have a need for
multiple GDC's running at the same time, see Port Forwarding and Firewalls.

Security

81

Port Forwarding and Firewalls
Topics

• Port Forwarding
• Client-side Firewalls
• Server-side Firewalls

Port Forwarding

Port Forwarding is used in situations where you want all data encrypted, no session
timeouts, or simple firewall setup.

 Figure 1

Genero Desktop Client

82

 Figure 2

Figure 1 shows a simple configuration that does not involve a firewall. Sshd, the portion
running on the server, will accept a connection from the GDC (client) and start your
application. It will also set up a listener for a port that the application will connect to for
the GUI. This port is then tunnelled through the existing connection to the client, where
the client will display the application. Note that both sides still use ports to accomplish
this.

You must have ssh installed and set up on the server. If you are expecting to access
your Genero application from somewhere on the Internet, you will most likely have a
firewall router and must open a port on your router to allow connections to the sshd. See
figure 2 for an illustration of this.

Sshd is by default listening on port 22. You can set a port on the firewall to forward to
sshd. Whatever port number you use must be set in the GDC using the "Specific Port"
field:

Security

83

 Figure 3

In figure 2 we have set our firewall router to forward port 2222 to our server sshd. There
is no reason you couldn't just use port 22 and pass it straight through to your server. If
you have more than one server you need to access from outside your firewall, you must
use different port numbers and map each server with a different port number. Most
routers will allow the destination port to be different from the origination port. For
example, a rule could be entered into your firewall router to forward port 2222 to a server
on port 22; set another rule to direct 2223 to a different server on port 22, and so on.
More details on this are in the Firewall Server Side section.

In figure 3 we have also set Port Forwarding to 29000. This will cause the sshd running
on the server to listen to port 29000 for connections from the application. The
FGLSERVER environmental variable will be set to 'localhost:22600'. It is localhost
because it will be tunnelled and sshd is running on the same machine. The 22600 is an
offset for the port. To clarify, Genero GDC listens on 6400 by default and any number
after the colon in FGLSERVER is added to this number. So 22600+6400 works out to be
the port we specified on the client side configuration, 29000.

To use Automatic Port Forwarding, you can specify a command line that will execute on
the server and return a free port number. As this application is really depending on the
system where the Runtime System is installed, we can't provide a version for each
system. This program must be used in combination with the GDC connection strings
system.

Genero Desktop Client

84

Another way to achieve automatic port forwarding is to have a service running on an
HTTP server. This can be a CGI. The program must return lines containing information
for the coming SSH connection. One line is always like the following:
<attribute name>=<attribute value>
For the moment, the attributes managed are "host" and "port", which can indicate the
host IP to connect to and the port the sshd will listen to on the server side. By default,
the host IP is the same as the HTTP server machine.

Click "Next" for the configuration.

The IP address is that of the server machine unless the firewall on the server side is
doing NAT (Network Address Translation). If it is doing NAT, the IP address should be
set to the address of the firewall router. Put @FGL on the line labeled "Command Line",
so Genero can set the FGLSERVER variable for you when it logs into the server.
FGLSERVER will have the port number corresponding to the "Port Forwarding" value
you put in the previous screen. Several commands can be placed on the command line
and executed in succession. In Unix you use a semi-colon (;) and in Windows you use
two ampersands (&&) to separate the commands.

 Figure 4

Security

85

Firewalls: Client Side

This section details how to configure the client side.

 Figure 5.1

If you have a client side firewall, you cannot connect directly to your clients from outside
the firewall. There are two solutions to this problem:

• First, you can set up port forwarding while using SSH or SSH2 (Fig. 5.1). This is
by far the easiest and most secure method to connect without the help of a VPN.

• The second method requires adding rules to the router to allow connections (Fig
5.2). The set up of the router will be covered here; port forwarding is covered in a
separate section.

Genero Desktop Client

86

 Figure 5.2

The router will need rules added to take a connection coming in on a specific port and
direct it to one of your clients. The way Genero is normally configured, all clients would
use port 6400. If you only have one client, you can add a rule to the router to forward
6400 to the client on port 6400. If you have more than one client, you will need to
allocate other ports on the router to forward to the other clients.

Note: In the examples shown the internal addresses are not public IP addresses. If you
have public IP addresses on each client, you can open port 6400 for each of the clients.

Example rule:

Incoming 6400 -> 192.168.1.10:6400

If you have more than one client, you can map them as follows:

Incoming 6401 -> 192.168.1.10:6400
Incoming 6402 -> 192.168.1.11:6400
Incoming 6403 -> 192.168.1.12:6400

Another option if your firewall won't allow you to change the destination port number:

Incoming 6401 -> 192.168.1.10:6401
Incoming 6402 -> 192.168.1.11:6402
Incoming 6403 -> 192.168.1.12:6403

Security

87

This last example requires that you start the GDC with the -p option, causing it to listen
on a different port from the default port.

>gdc -p 6401
>gdc -p 6402

If you are setting up multiple clients in this manner, you may want to avoid starting the
first client on 6400; any mis-configured new clients will pop up on that user's console
unexpectedly.

On the command line of the GDC shortcut setup, assign FGLSERVER to be the IP of
the firewall router with the corresponding port of the router. This must be hard-coded,
since there is no way for the client computer or Genero to know how the connection is
established.

For example, if the client firewall router's IP address to the Internet is 213.39.41.73, and
port 10000 is mapped to the client 192.168.0.53 port 6400, then the entry in the router
would be:

Incoming 213.39.41.73:10000 -> 192.168.0.53:6400

The command line in the GDC would look like this:

 Figure 5.3

Genero Desktop Client

88

The FGLSERVER variable is normally set using @FGL, but that would set FGLSERVER
to the IP of the local client machine and the port specified when the GDC was started
with -p. If the IP addresses used behind the firewall are public, this would be OK. If the
addresses are not public, however, we must use the IP address of the router, and let the
router translate and forward it. If the router is translating the port, then we must use the
port that the router is expecting.

In our example the port that the router is looking for is 10000. The FGLSERVER port
value must be set to 10000 minus 6400, resulting in 3600. This is because
FGLSERVER=<ip> :0 tells Genero to connect on port 6400. The number after the colon
is added to 6400.

Firewalls: Server Side

Having a server side firewall is the typical configuration on many systems. There is only
one method for doing this, whether you use telnet or ssh: map a port to be forwarded to
the server in the firewall router. It is not advised that you use rlogin from the Internet for
security reasons; that is usually why you have a firewall.

Decide which method of connectivity will be allowed, and determine what port you will
use to forward to this service. If there is only one server involved, you can use port 22 for
ssh or 23 for telnet and forward them straight through to the server. But if there are
several servers involved and they do not have public IP addresses, you will need to pick
different ports on the firewall router and let the router forward those ports to the different
internal servers.

See Figure 6.1 for an example of how to do this for a telnet connection. Notice that the
returning GUI path doesn't require any special handling unless there is a client side
firewall. For details on this see the Client Firewall section.

Security

89

 Figure 6.1

See Figure 6.2 for an example of how to do this using ssh with port forwarding.

 Figure 6.2

Genero Desktop Client

90

The client GDC would connect to the server firewall router on port 3000 to access server
1, and port 3001 for server 2. We chose these ports arbitrarily; almost any port could be
used. Numbers below 1024 are reserved for well-known services, so choose numbers
above 1024.

Using port forwarding will work without modification because the GUI interface is
tunnelled through the initial connection, and the port it tells the server application to use
is a local port to the server. Of course, the same methods as above must be used if
there is more than one server. Using telnet or non-port forwarded ssh will work also,
because connections for the GUI originating from behind the server firewall will be
allowed out without special mapping. If there is a client side firewall as well, see client
side firewall configuration.

Example:

We have two servers that will be accessed via clients somewhere on the Internet. They
will use ssh2 with port forwarding to simplify client set up and keep things secure. The
firewall on the server side has an IP address of 192.168.50.2 (only valid for this
example). We have mapped the two servers:

213.39.41.73:3000 -> 10.1.50.23:22
213.39.41.73:3001 -> 10.1.50.14:22

The GDC client will need to be configured as well:

 Figure 6.3 Showing configuration for access to Server 1

Security

91

 Figure 6.4 Showing configuration for access to Server 2

Figures 6.3 and 6.4 show how to access each server by specifying the appropriate port
for each, one with 3000, the other 3001. This will allow the firewall router on the server
side to direct each to the appropriate server. The IP address used would be the IP of the
router.

Keep in mind that if you have two users accessing the same server, you must manually
select a different port forward number to keep them unique. See Possible Configuration
Problems.

Genero Desktop Client

92

Implementing a Secure Server with Genero
Desktop Client
In an enterprise deployment, it is typical for the Genero Desktop Client to be configured
to launch in the default user mode with all application shortcuts pre-defined.

When the "-a" or "--admin" option is specified, however, the Genero Desktop Client
launches in admin mode, and the user is able to modify existing shortcuts or create new
shortcuts of their own. Therefore, when in admin mode, a Genero Desktop Client user
with sufficient knowledge can modify the string passed to the server (Unix or Linux) and
effectively execute any command. While this is expected behavior -- if they can log in to
the server, they can enter commands -- this ability can present a problem in some
environments.

The following paragraphs explain how to implement a secure server preventing Genero
Desktop Client users from executing arbitrary commands, by preventing client access to
the (Unix or Linux) command line or shell while still allowing Genero applications to be
started. This is accomplished by not giving them access to the shell, yet allowing the
Genero Desktop Client to pass values to the system to indicate which application to
start.

Warning! This is intended to be the framework for a larger implementation and should
be reviewed by your system administrator for any security concerns.

Topics

• Prerequisites
• Solution Overview
• The Shell Script
• Setup SSH Login
• Setup Telnet/rlogin
• Managing password changes
• AUTOPORTFIND c-source example
• LOGIN script example

Prerequisites

To implement a secure server, the following prerequisites must be met:

• Genero Desktop Client, version 1.32.1f or greater
• Unix or Linux platform
• SSH configured on the server
• Familiarity with Bourne or Korn shell programming
• Access to root for implementation

Security

93

Solution Overview

When a user logs in, the system determines which shell to give them, based on a value
in the /etc/passwd file. We will replace this shell with a shell script that will parse the
values passed to it and set the environment accordingly. The application that is started
will be from a list of valid applications; no other options will be accepted (thus controlling
what a user can do).

Passing Values to the Script

The Genero Desktop Client must pass specific information to the script:

• The application name must be passed if more than one application exists. You
can add additional logic to the script to control which users have access to
specific applications.

• The port accepting connections for the Genero Desktop Client is important so
that the application can connect back to the Genero Desktop Client to display
information.

• The two security values prevent anyone from spoofing the connection. The DVM
must make a socket connection to the Genero Desktop Client for the application
screens and user interaction. The @FEID and @FEID2 contain a value that must
match on both the client and server. The Genero Desktop Client compares the
@FEID value it has internally and the one it received from the DVM attempting to
connect. If they do not match, it assumes an application it did not start is trying to
connect and rejects the connection. Likewise, @FEID2 contains a value that the
DVM must receive from the Genero Desktop Client in order to validate that the
Genero Desktop Client is the one that started it. These security values are
enabled by specifying ‘-A 3’ as a command-line argument when starting the
Genero Desktop Client.

Auto Port Forwarding

With version 1.30, the automatic assignment of the port to use for port forwarding was
added to the feature set of the Genero Desktop Client. Port Forwarding is the term used
for tunnelling with ssh. It allows applications to connect back to the client via a port that
is open on the server, tunnelled through the ssh secure client connection, then connects
to the Genero Desktop Client on the client. The port is specified by the client, but it is
usually not known whether this port is in use on the server prior to initiating the
connection. In an enterprise this could be a problem, because every forwarded port must
be unique between users.

The solution is to ask the server system for a port number to use. Because there is no
way to reserve the port, we must get the number and open it quickly. Once we have the
port opened for our session, we will have it until we log off and the connection is closed.
We use a small “C” program that uses network system calls to allow the server to assign
a port number. This port number is produced by the operating system by incrementing
some internal OS counter and issuing numbers from a pool. If the port it would assign is

Genero Desktop Client

94

in use, it will automatically increment the value until it finds an unused port. The next
number it assigns to us, or to any other network request, will be managed the same way.
This process insures to a large degree that the number we get will not be reassigned or
used for some time, certainly long enough for our purposes.

Process Summary

• Log in.
• Get a port number from the system.
• Close the connection.
• Establish another connection and provide that port number for the tunnel.
• Log in (again).
• Start the application.

In normal situations the terminal activity of this process is hidden. The user simply sees
their application appear.

The Shell Script

The shell script accepts the information on the command line and parses it, assigning
values as needed to start the application. The application name is matched in a case
statement, preventing direct execution of what the user sends.

The script provided later in this section is intended to be an example, and we expect you
to tailor it according to your needs. Save it in a location where it can be executed but not
changed by your users. Edit the /etc/passwd file to make a user call the script instead of
a shell. Here is an example of the user “user1” running the script named "gdcstart".

 user1:x:569:569::/home/user1:/home/user1/gdcstart

The script LOGIN_SCRIPT is designed to recognize the difference between being
started from sshd or from telnetd. You could modify it to handle either condition
differently. For example, you may want it to start an application in text mode when
accessed via telnet, or in GUI mode when accessed via ssh.

Setup SSH Login

An advantage of using ssh and port forwarding is that the GUI information is encrypted
during transmission. However, the unused port must be assigned on the server for the
tunnel -- a difficult task if you are the system administrator. To solve this, we ask the

Security

95

server to tell us what port to use. This section shows how to implement this solution
while maintaining system security.

As stated previously, we use a shell script to start the requested application instead of
giving the user a shell; the login script is used for that purpose. In order for the script to
work properly, the information in the Command Line field of the Genero Desktop Client
shortcut must be altered accordingly to launch the application. The automatic
assignment of the port forward number must also be set up.

This is the Genero Desktop Client shortcut entry for using ssh. In the Automatic field, we
have specified AUTOPORT. This corresponds to an option near the end in the login
script.

When the login script receives “AUTOPORT”, it executes a program called
“autoportfind". The –e option will make it output a string like
“FJSPORTFORWARD=nnnn” where nnnn is the port number provided by the operating
system. The string matching rule we use looks for FJSPORTFORWARD= and retains
the number following the ‘=’. This session is then closed and a new session is started
using that number as the port to forward. It should not matter where in the sequence this
rule is added.

You will also need to make an addition in “Manage Connection Strings”:

Genero Desktop Client

96

Normally, the Command Line is passed to the shell that is started when a user logs in.
Since we are are using our shell script, the Command Line is where we specify the
application to run, and pass the port number and the security fields. In our example we
want to run the demo application. The command “DEMO” can be changed to your own
application name, and an entry in the login script can then be added to start your
application.

Security

97

When the shortcut is run it will log in using AUTOPORT first. This will match a case
statement in the script, and return a string “FJSPORTFORWARD=nnnn” where nnnn is a
port number. Genero Desktop Client will then close the connection, and log in again
using that port for the port to forward (tunnel) and pass it on the command line of the
server @SRVNUM. This is what the login script uses to set the environment for the
execution of the command DEMO. When using Port Forwarding, the server (127.0.0.1)
is always the target for FGLSERVER, (and therefore only the port number is needed).

Setup Telnet/Rlogin

Telnet and rlogin don’t offer port forwarding, so the setup is a bit simpler. But they also
don’t give the flexibility needed when going through firewalls, and offer no encryption or
privacy like ssh.

You simply need to pass the required arguments via the command line, and the login
script sets the environment and launch the application.

Genero Desktop Client

98

Security

99

With ssh and tunnelling, the IP address is not needed because the tunnel is listening on
the same server that will run the application. But with Telnet and rlogin, we must pass
the client machine’s IP and port using @IP and @SRVNUM. The security values are
passed as well, so the environment is complete. For the Genero Desktop Client to make
use of the security values, you must start it with the option “–A 3” on the command line
of the Genero Desktop Client. Put your application name in place of DEMO, and make
an entry in the login script accordingly.

Checking for Expired Password and Changing Password

Handling Expired Passwords

To handle expired passwords, edit the shortcut and add a filter under "Manage
Connection Strings". The entry should look like the following:

This rule looks for “Your password has expired” and open a text dialog window.
Internally, the terminal window prompts for a new password from the server, as the
existing password has expired. “Show the terminal” causes the Genero Desktop Client to
display the server window, allowing the user to see the message and type in the correct
passwords to complete the process. The window then closes and the user can click the
shortcut once more and use the new password to start the application.

Warning! The string entered in the Received String field must match the string displayed
by the system. It is case-sensitive, where "Password has expired" does not match
"password has expired". The string for an expired password may be different than the
example shown above, based on your system. You should verify the string for an
expired password that is returned by your system prior to implementing this solution.

Genero Desktop Client

100

Changing Passwords

Users may want to change their passwords prior to expiration. To allow for this
functionality, provide a shortcut in the Genero Desktop Client that issues the password
command. The sample login script uses a case statement that checks for PASSWD. The
specifics of the shortcut are as follows:

AUTOPORTFIND Source Code Example

This is the source code used to produce the port number for tunnelling with ssh. It
should compile with little or no modification and does not need to be run as root.

Autoportfind.c/*
 Copyright(C) 2004, Four-J's Development Tools, all rights
reserved.
 Written by John A. Hobach, Dallas Texas, May 5th, 2004 The
purpose of the application is to return a port number that
 will not be used for awhile. This port number can then be used
 by the Genero client for port forwarding.
 The operating system assigns ports in a round

Security

101

 robin fashion so the port assigned is unlikely to be used again
 very soon. This will give the GDC time to start ssh and use
 that port. The OS will automatically skip ports in use.
 Revised 08/25/2004 Ver 2.1 to use bind() to get a port number
 assigned. It is assigned a port automatically from the
 operating system and we immediatly get it and return it.
Revised 10/25/2005 Ver 2.2 to support returning a port number
 within a given range. This is accomplished by requesting ports
 from the OS until it is within the range specified.

*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <fcntl.h>

#define USE_SOCKETS
#include "util.h"

char *progname;
static char *ver="autoportfind - Version 2.2, 2005-10-20, Four-J's
Development Tools, Inc";
static char *help=
"autoportfind [OPTION]\n"
"\n"
"Generate a port number for use with port forwarding.\n"
"\n"
" -e, --env\n"
" Send FJSPORTFORWARD=<port> to stdout.\n"
"\n"
" -r Cycle through port assignments to determine which ports\n"
" the OS assigns to ports when originating connections.\n"
" -u n Upper limit. Request port numbers until one is returned\n"
" below 'n'.\n"
" -l n Lower limit. Request port numbers until one is returned\n"
" above 'n'.\n"
" -h Display this help message.\n"
" -v Display the version number.\n"
;

main(int argc, char **argv) {
 int sockfd, connected_socket, retval;
 int size, x, outofrange;
 int range_flag=0, env_flag=0;
 unsigned int port, startport, highest,
 lowest, cycle, direction,
 llimit=0, ulimit=~0;
 int reuse_addr=1;
 char **arg;
 struct sockaddr_in serv_addr;

 progname=argv[0];
 arg=argv;
 while (--argc) {

Genero Desktop Client

102

 ++arg;
 if (!strcmp(*arg,"-r") || !strcmp(*arg,"--range")) {
 range_flag=1;
 } else if (!strcmp(*arg,"-e") || !strcmp(*arg,"--env")) {
 env_flag=1;
 } else if (!strcmp(*arg,"-u")) {
 ++arg;
 if (argc == 1 || *arg[0] == '-') {
 fprintf(stderr,"%s: Value missing for -
u\n",progname);
 exit(1);
 }
 --argc;
 ulimit=atol(*arg);
 } else if (!strcmp(*arg,"-l")) {
 ++arg;
 if (argc == 1 || *arg[0] == '-') {
 fprintf(stderr,"%s: Value missing for -
l\n",progname);
 exit(1);
 }
 --argc;
 llimit=atol(*arg);\
 } else if (!strcmp(*arg,"-v")) {
 printf("%s\n",ver);
 exit(0);
 } else if (!strcmp(*arg,"-h") || !strcmp(*arg,"--help")) {
 printf("%s",help);
 exit(0);
 } else {
 fprintf(stderr,"%s:Unknown argument '%s'\n",
 progname, *arg);
 exit(1);
 }
 }

 lowest=~0;
 highest=0;
 startport=0;
 cycle=0;
 direction=1;

 do {
 outofrange=0;
 memset((char*) &serv_addr,0,sizeof(serv_addr));
 serv_addr.sin_family=AF_INET;
 serv_addr.sin_port=0; /* allow system to assign */
 serv_addr.sin_addr.s_addr=htonl(INADDR_ANY);

 sockfd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
 if (sockfd < 0) {
 perror("socket");
 close(sockfd);
 exit(1);
 }

Security

103

 if (bind(sockfd, (struct sockaddr *) &serv_addr,
 sizeof(serv_addr)) < 0) {
 perror("bind");
 close(sockfd);
 exit(1);
 }

 size=sizeof(serv_addr);
 if (getsockname(sockfd, (struct sockaddr *) &serv_addr,
 &size) == -1) {
 perror("getsockname");
 exit(errno);
 }

 if (range_flag) {
 port=ntohs(serv_addr.sin_port);

 if (!startport) startport=port;
 if (port > highest) highest=port;
 if (port < lowest) lowest=port;

 if (direction==0 && port <= startport) {
 cycle++;
 direction=1;
 } else if (direction==1 && port >= startport) {
 cycle++;
 direction=0;
 }

 } else {
 port=ntohs(serv_addr.sin_port);

 if (port > llimit && port < ulimit) {
 if (env_flag) printf("FJSPORTFORWARD=");
 printf("%d\n",ntohs(serv_addr.sin_port));
 } else
 outofrange=1;
 }

 close(sockfd);

 } while ((range_flag && cycle < 3) || outofrange);

 if (range_flag)
 printf("Lowest port: %lu\nHighest port:
%lu\n",lowest,highest);

 exit(0);
}

Util.h
#ifndef UTIL_H
#define UTIL_H

#ifndef MAX
define MAX(a,b) a>b?a:b

Genero Desktop Client

104

#endif

#ifdef USE_SOCKETS
ifdef _WIN32
include <winsock.h>
else
include <sys/types.h>
include <sys/socket.h>
include <netinet/in.h> /* struct sockaddr_in, ... */
include <netinet/tcp.h> /* TCP_NODELAY, ... */
include <arpa/inet.h> /* inet_addr, inet_ntoa, inet_aton */
include <netdb.h> /* gethostbyname */
endif
#endif

#ifdef _WIN32
define SOCKLEN_T int
#endif

#ifdef __osf__
define SOCKLEN_T int
#endif

#ifdef _AIX
ifdef USE_SOCKETS
include <sys/ioctl.h>
include <sys/time.h>
include <sys/select.h>
endif
define SOCKLEN_T socklen_t
#endif

#if defined (M_I386)
/* SCO */
ifdef USE_SOCKETS
include <sys/ioctl.h>
include <sys/time.h>
include <sys/select.h>
endif
define SOCKLEN_T int
#endif

#ifdef linux
define SOCKLEN_T socklen_t
#endif

#ifdef sun
if defined USE_SOCKETS
undef USE_SYS_SOCKIO
define USE_SYS_SOCKIO
endif
define SOCKLEN_T int
#endif

#ifdef __hpux
define SOCKLEN_T int

Security

105

#endif

#ifndef SOCKLEN_T
define SOCKLEN_T size_t
#endif

#ifndef MSG_DONTWAIT
define MSG_DONTWAIT 0
#endif

#endif

Login Script

This is an example of the login script that is executed when users log in. It is intended to
be an example, and we expect you to tailor it according to your needs. The login script is
invoked via the /etc/passwd file.

#! /bin/sh
Invoked directly by login mechanism such as telnetd, rlogind, or
sshd.
This file is specified in the /etc/passwd file as being the shell.
This
gives us the control we need for users that should never be allowed a
shell prompt.

Arguments passed are <COMMAND> <PORT> <FEID> <FEID2>

<COMMAND> string must match the case statements below.

br

br
br
set your env vars here
export FGLDIR=/fjs/f4gl/genero-training
export FGLRUN=fglrun
export FGLGUI=1
export LD_LIBRARY_PATH=/fjs/f4gl/genero-
1.20.1d/bin:/db/ifx/csdk270/lib:/db/ifx/csdk270/lib/c++:/db/ifx/csdk270
/lib/cli:/db/ifx/csdk270/lib/client:/db/ifx/csdk270/lib/dmi:/db/ifx/csd
k270/lib/esql::/db/ifx/ids921/lib
export PATH=${PATH}:$FGLDIR/bin
br
br
The command line arguments passed from the GDC will be here. If there
aren't any then we abort.

br

Genero Desktop Client

106

br

br

br

br
br
br

br

br

br

br

br

br
br
br
br
br
if [["$SSH_TTY" == "" && "$SSH_CONNECTION" == ""]]

then
 # coming in from telnet or rlogin

br
br
 echo -n "$ " # fake shell prompt for GDC
 read APPLICATION FGLSERVER _FGLFEID _FGLFEID2

br
br
br
 if [["$APPLICATION" == ""]]
 then
 echo "exiting due to bad arguments"
 sleep 5 # give time to view error because window will close
 exit 0
 fi

 export FGLSERVER
 export _FGLFEID
 export _FGLFEID2

 else

 # coming in from ssh and sshd

 if [["$1" == "" || "$1" != "-c"]]
 then

Security

107

 echo "exiting due to bad arguments"
 sleep 5 # give time to view error because window will close
 exit 0
 fi
 let pos=0
 for arg in $@
 do
 if [$pos -eq 1]; then APPLICATION=$arg; fi
 if [$pos -eq 2]; then export FGLSERVER="127.0.0.1:${arg}"; fi
 if [$pos -eq 3]; then export _FGLFEID=$arg; fi
 if [$pos -eq 4]; then export _FGLFEID2=$arg; fi

 #echo "$pos:'$arg'"
 let pos=pos+1
 done
fi

#echo "FGLSERVER=$FGLSERVER"

Add case statements according to 1st value passed from the GDC
command line.
Never execute the value passed directly as this would be a security
hole
allowing the client to dictate what gets run.

case "$APPLICATION" in

 DEMO) cd $FGLDIR/demo
 $FGLDIR/bin/$FGLRUN demo
 ;;

SHELL) /bin/sh # don't leave this in for production
;;

 AUTOPORT) /home/fjspf/autoportfind -e
 exit 0
 ;;

 PASSWD) /usr/bin/passwd
 exit 0
 ;;

 *) echo "Unknown application '$APPLICATION'"
 sleep 5 # allow time to read message
 ;;

esac

Genero Desktop Client

108

Possible Configuration Problems
Topics

• Duplicate port forward number
• Wireless Systems
• Need to change the port that GDC listens on
• Sessions Expiring

Duplicate port forward number

If you have more than one client using the same Port Forward port number, the
application display could go to the wrong client. This is an expected result, so
precautions need to be taken to prevent this. Make sure that each client using port
forwarding to a particular server uses a different port forward port number.

The sshd sets up a tunnel and listens on the port that is specified in the port forward
field. This allows the Genero application (or DVM) to connect to that port and have the
GUI data sent to the client. Only one listener can be listening on any port at a time. Each
client needs to use a unique port number to avoid any problems.

Note: An automatic configuration solution is being worked on but has not been released
at the time of this writing.

Security

109

Wireless Systems

The latest technology to use 802.11(a,b or g). This is great at avoiding the wire mess,
but there is a new risk. Under Windows, if you are using a plugged in or built in wireless
card, the interface goes offline if the signal is lost for even a second.. When this
happens, it is treated similar to unplugging your network cable. The Windows drivers
report to the network stack that the interface is now offline, and everything associated
with that interface is removed. If an application has an open channel, it is signaled that it
has closed. As a result, you lose all your connections and must wait for your signal to
return in order to log in again.

A possible workaround is to use an external wireless device that doesn't take the
connection down when the signal is lost. This works because it doesn't look like the
cable was unplugged when it loses signal, so Windows doesn't know there is a problem.
When the signal returns, everything works just at before.

Need to change the port that GDC listens on

Why would you want to change the port that GDC listens on?

You may need to run several versions of the GDC on the same machine. Since each
one must have its own listening port, Genero allows you to specify the port. If you run
more than one and don't specify the port, Genero opens the next available port. For
example, the first instance would open 6400, the next instance would open 6401.

>gdc <- The port assigned would be 6400
>gdc -n <- The port assigned would be 6401
>gdc -n -p 7400 <- The port assigned would be 7400
>gdc -n -p 7400 <- The port assigned would be 7401

Another reason to change ports might be that you can't use the ssh functionality. What if
you haven't installed the SSH package yet, but you have more than one client behind the
same firewall router? You can add rules to the router to send 6400 to the first client,
6410 to the second client, and so on. Each client would be started with the
corresponding -p <port>, and the router would make sure each client gets the
connections intended for it.

Sessions Expiring

If you have sessions expire or applications that disappear, check for routers that expire
sessions. Most likely, there is a firewall router in the path. If you are using a firewall

Genero Desktop Client

110

router, check for session expiration timers for the ports used to get through the firewall.
The expiration duration (aka KeepAlive) should be set greater than the interval set in
your operating system. This is set to 2 hours as a default on most computers. The
operating systems can be tuned to have shorter values, but it is usually easier to adjust
the router; use a value of 2 hours and 10 minutes.

Security

111

GDC and Windows XP Service Pack 2
Topics

• Firewall configuration
• Active X

Firewall configuration

Microsoft has added several security systems in Windows XP Service Pack 2 (SP2). The
firewall included in Windows XP has been improved and is now enabled by default.
From the network point of view, GDC is a server: it listens on a defined port (6400 by
default) for Runtime System connections.

When GDC starts, the firewall detects it listens on port 6400 and warns the user:

Press "Unblock" to allow the GDC running correcly.

Warning! pressing "Keep Blocking" or "Ask Me Later" will keep GDC from working.
Connections from the Runtime System will be blocked by the firewall.

If "Keep Blocking" has been pressed by mistake, this parameter can be changed in the
Firewall settings (Control Panel. In the "Exceptions" tab, Genero Desktop Client must be
present and checked:

Genero Desktop Client

112

Security

113

Active X

Depending on your configuration, the installation of the Active X may be blocked by
Windows Security:

To install the ActiveX, you have to click on the "Information Bar" and choose "Install
ActiveX Control.."

Genero Desktop Client

114

The page will be reloaded and then you will be prompted for installing GDC Active X

Then press "Install". The ActiveX will be installed and started. As ActiveX is also
listening on port 6400 in the same way as the non activeX version, the warning
described in the firewall configuration will show up.

Security

115

GDC and Windows Vista
Topics

• User Account Control
• Installation
• Running GDC

o Configuration
o File Transfer

• Active X
o Installation
o Running ActiveX

User Account Control

One of the new features of Window Vista is the User Account Control (UAC). UAC
prevents any software from silently hurting your system by prompting the user before
any administrative actions such as:

• installing a new program
• modification of the registry

It requires a user with Standard User rights (users not in the Administrator group) to
provide an Administrator login and password when running a program that performs
system-level tasks. Administrator Users will only have to confirm their actions. More
details can be found at the Microsoft Web site.

The User Account Control feature affects the Genero Desktop Client installation, as well
as how GDC is run.

Installation

When the installation program starts, you'll be prompted to validate the installation.

Genero Desktop Client

116

Standard User prompt:

Administrator User prompt:

The installation then continues as in Windows XP.

Security

117

Running GDC

Once GDC is installed, the Windows Firewall will prompt the user to unblock the
program, as in Windows XP SP2.

Although most of the features of Genero Desktop Client will work out of the box on
Windows Vista, some features will only work if you start GDC "as administrator":

Genero Desktop Client

118

Even an Adminstrator User has to run the program "as administrator". However,
Administrator users can create a shortcut and specify in the Compatibility tab that this
program is always run as an administrator:

Note: Using the -a GDC command line option to run GDC in "admin mode", a mode
where you can manage GDC shortcuts, is not the same as asking Windows Vista to start
GDC "as administrator", a special mode where the program can perform system-level
tasks.

Some of the GDC features that are affected by the UAC are:

Configuration

The folder %Program Files% is now protected with Windows Vista. So when starting
GDC in normal mode, GDC will react as if the config file is read-only, and will only allows
changes via the registry (local shortcuts). This may change in future versions of GDC.

Security

119

File Transfer

• The ProgramFiles folder

As the folder %Program Files% is protected, Vista has introduced the
concept of Virtual Store: instead of using the %Program Files% folder,
programs will access a special directory. This means that if you use
FGL_PUTFILE without a destination, the file will not be transferred to
%Program Files%\Fourjs\GDC\ but to %VirtualStore%\Program
Files\Fourjs\GDC.

Example:

 CALL FGL_PUTFILE("myFile.txt","myFile.txt")

• Uploading files

Vista will prevent the upload of some files, such as executables or DLLs.

Genero Desktop Client

120

Example:

MAIN

 DISPLAY "upload text file..."
 CALL FGL_PUTFILE("myFile.txt","myFile.txt")
 DISPLAY "... done"
 DISPLAY "upload DLL..."
 CALL FGL_PUTFILE("myFile.dll","myFile.dll")
 DISPLAY "... done"

END MAIN

$fglrun ft
upload text file...
... done
upload DLL...
Program stopped at 'ft.4gl', line number 7.
FORMS statement error number -8066.
Could not write destination file for file transfer.

Running GDC as administrator will allow GDC to upload such files to the
system.

Active X

Installation

A lot of protection has been added to Vista to prevent spyware or other malicious
programs from being installed without the agreement of the end user. Therefore,
installing an Active X needs, by default, strong user agreement.

Active X are run by Internet Add-on Installer, a special tool used by Internet Explorer 7 to
install Active X. Running this tool requires the agreement of the end-user and UAC
Administrator User rights:

Security

121

The first time you start GDC Active X, two steps are performed:

• Deploying files (simple copy) in %Program Files%
• Registering the Active X (which is done by gdc.exe /regserver), to tell Internet

Explorer how to execute the ActiveX.

The first step is done by Internet Explorer Add-on Installer, but the second requires IE to
be started as Administrator:

Genero Desktop Client

122

If not, GDC will not be registered and Internet Explorer will not be able to load GDC
Active X:

Note: This message has been introduced in the template in GDC 2.00.1e or greater.

Running Active X

It is not necessary to run IE as Administrator in order to use GDC Active X, only to install
it. Once the Active X has been installed, the user will be prompted to allow Internet
Explorer to start Genero Desktop Client Active X:

Security

123

Depending on your Security Settings, Internet Explorer may not be able to start ActiveX ;
the default security settings have been changed to allow less freedom to Active X for
Vista. You may have to change these settings to allow Genero Desktop Client Active X
to be used on your computer.

Genero Desktop Client

124

Note: The gdc.exe file has been signed in version 2.00.1e or greater.

125

Front End Extensions
Topics

• Overview
• How does it work ?
• Initialize and Finalize
• Front End Extension function
• Front End Interface
• Environment Variables
• Example: basic extension

Overview

The Front End allows you to call external functions. Theses functions are dynamically
loaded by the front end when needed; they are within a DLL (Dynamic Linked Library
under Windows systems), so (Shared Object under Linux), or dyLib (Dynamic Library
under Mac Os X).

This allows you to create your own extensions and use them from your 4GL code. The
parameters are sent to the front end, and a stack is used to transmit in and out
parameters to the extension.

How does it work ?

This small tutorial, "how-to create your own extension", explains the mechanism of Front
End Extensions.

STEP 1: the 4GL code.

Front end extensions can be called using the ui.Interface.frontCall() built-in
function. See the Runtime System documentation for more information about this
function.

call ui.Interface.frontCall(module, function, <in-list>, <out-
list>)

For example, if the extension is called 'myExt', the function used is makeSum, and the
function takes 2 parameters in and returns an integer and a string:

DEFINE a,b INTEGER -- the two IN parameters
DEFINE c INTEGER -- the integer returned

Genero Desktop Client

126

DEFINE res STRING -- the string returned

call ui.Interface.frontCall("myExt", "makeSum", [a,b], [c,res])

STEP 2: Internal GDC mechanism - the stack.

To transmit parameters to the extension, GDC uses a stack ; a and b will then be
pushed on that stack.

STEP 3: Call the external function.

All the information needed by the front end is transmitted to the extension using a front
end interface structure. This structure contains a list of function pointers to :

• manage the stack (push or pop for each handled data type)
• get information on the function (number of IN or OUT parameters)
• get information about the front end

For this reason the prototype of each function should be the same.

STEP 4: the extension function is running.

The classic process is:

1. Check that the number of parameters is correct
2. Retrieve the parameters using the stack functions
3. Do what the function has to do
4. Use the stack functions to stack the return values
5. Return 0 in case of success

STEP 5: Internal GDC mechanism - the stack.

The GDC uses the stack to un-stack the returned values and transmit them to the
Runtime System, which dispatches the values into the right variable

Initialize and Finalize

The Front End will automatically perform two functions when using a Dynamic Library:

void initialize(); which is called the first time the library has been loaded, and
void finalize();, which is called when the front end stops. These two functions allow
you to have better control of your extension.

Front End Extensions

127

Front End Extension Function

A Front End Extension Function must have the following prototype:

int <name> (const struct frontEndInterface &<fx>);

Notes:

1. <name> is the name of your function.
2. <fx> is the structure for the frontEndInterface
3. This function return 0 if it is successful, -1 if not.

Parameters are transmitted via a stack. This stack can be managed using the functions
provided by the frontEndInterface structure. getParamCount();and
getReturnCount(); can be used to check if the number of parameters is correct.

Front End Interface structure

The Front End will dynamically load the library and call the given function. IN and OUT
parameters are managed using a stack. All the operations concerning this stack are
managed by functions within the Front End. Pointers to these functions are gathered into
a front end interface structure:

struct frontEndInterface
{
 short (* getParamCount) ();
 short (* getReturnCount) ();
 void (* popInteger) (long & , short &);
 void (* pushInteger) (const long , short);
 void (* popString) (char *, short &, short &);
 void (* pushString) (const char *,short , short);
 void (* getFrontEndEnv) (const char * , char *, short &);
 /*new in 2.00*/
 void (* popWString) (wchar_t *, short &, short &);
 void (* pushWString) (const wchar_t*,short , short);
};

Function Description
short getParamCount(); This function returns the number of parameters

given to the function called.

Genero Desktop Client

128

short getReturnCount(); This function returns the number of returning
values of the function called.

void popInteger(long &
value, short & isNull);

This function is used to get an integer from the
stack. value is the reference to where the popped
integer will be set; isNull indicates whether the
parameter is null.

void pushInteger(const
long value, short isNull
);

This function is used to push an integer on the
stack; value is the value of the integer, isNull
indicates whether the value is null.

void popString(char *
value, short & length,
short & isNull);

This function is used to get a string from the stack;
value is the pointer where the popped string will
be set, length is the length of the string, isNull
indicates whether the parameter is null.

void pushString(const
char * value, short
length, short isNull);

This function is used to push a string on the stack;
value is the value of the string, length the length
of the string, isNull indicates whether the
parameter is null. A length of -1 indicates that the
length is detected based on the content of the
string.

void (* getFrontEndEnv
)(const char * , char *,
short &);

This function is used to get information from the
front end. The table in Environment Variables
indicates which "front end environment variable" is
set.

void (* popWString)
(wchar_t *value, short
&length, short &isNull);

This function is used to get a unicode string from the
stack; value is the pointer where the popped string
will be set, length is the length of the string, isNull
indicates whether the parameter is null.

void (* pushWString)
(wchar_t *value, short
length, short isNull);

This function is used to push a unicode string on
the stack;. value is the value of the string, length
the length of the string, isNull indicates whether
the parameter is null. A length of -1 indicates that
the length is detected based on the content of the
string.

Environment Variables

<> Name Meaning
frontEndPath The path where the front end is installed

Front End Extensions

129

Example: basic extension

This very basic extension illustrates how to create a DLL. It has been created using
Visual C++ 6.

This DLL has only one function, called makeSum. Two Integers are given in parameters,
and the function returns a String and an Integer. The Integer contains the sum, the
String a small text.

Header file : myDLL.h

/*the interface structure*/
struct frontEndInterface {
short (* getParamCount) ();
short (* getReturnCount) ();
void (* popInteger) (long & , short &);
void (* pushInteger) (const long , short);
void (* popString) (char *, short &, short &);
void (* pushString) (const char *,short , short);
void (* getFrontEndEnv(const char *, char *, short&);
void (* popWString) (wchar_t *, short &, short &);
void (* pushWString) (const wchar_t*,short , short);
};

// a small macro used to declare the "exportable" functions
#ifdef WIN32
/*dllexport is only valid (and mandatory) under windows*/
#define EXPORT extern "C" __declspec(dllexport)
#else
#define EXPORT extern "C"
#endif

// the functions we want to be available from the front end
EXPORT void initialize();
EXPORT void finalize();
EXPORT int makeSum(const frontEndInterface &fx);

Source file : myDLL.cpp

// some includes
#include "myDLL.h"
#include <stdio.h>

// this function will be called by the Front End the first time
the DLL is loaded
void initialize() {
}

// this function will be called by the Front End when the Front
End stops
void finalize() {
}

Genero Desktop Client

130

// our makeSum function.
// --> in parameters the front End Interface Structure
int makeSum(const struct frontEndInterface &fx) {
 // initialize the status
 short status = -1;

 // check if the in and out parameters are correct
 if (fx.getParamCount() == 2 && fx.getReturnCount() == 2) {
 long param1, param2;
 short isNull1, isNull2;

 // get from the stack each parameter
 fx.popInteger(param2, isNull2);
 fx.popInteger(param1, isNull1);

 // check if they are not null
 if (!isNull1 && !isNull2) {

 // create the answer
 long sum = param1 + param2;
 char msg[255];
 sprintf(msg, "%d + %d = %d", param1, param2, sum);

 // push the answer on the stack
 fx.pushInteger(sum, 0);
 fx.pushString(msg, strlen(msg), 0);

 // successful -> status = 0
 status = 0;
 }
 }
 return status;
}

Running the program gives the following ouput:

$fglrun testDLL
1 + 3 = 4
4

Front End Extensions

131

Windows DDE Support
Topics

• What is DDE?
• Using DDE API
• The DDE API
• Example

What is DDE?

DDE is a form of inter-process communication implemented by Microsoft for Windows
platforms. DDE uses shared memory to exchange data between applications.
Applications can use DDE for one-time data transfers and for ongoing exchanges in
applications that send updates to one another as new data becomes available.

Please refer to your Microsoft documentation for DDE compatibility between existing
versions. As an example, DDE commands were changed between Office 97 and Office
98.

We provide a DDE interface as a Front-End Extension: WinDDE.DLL

Using DDE API

With DDE Support, you can invoke a Windows application and send or receive data
to/from it. To use this functionality, the program must use the Windows Front End.
Before using the DDE functions, the TCP communication channel between the
application and the front end must be established with OPEN WINDOW, MENU, or
DISPLAY TO.

Genero Desktop Client

132

The DDE API is used in a four-part procedure, as described in the following steps:

1. The application sends to the Front End the DDE order using the TCP/IP channel.
2. The Front End executes the DDE order and sends the data to the Windows

application through the DDE API.
3. The Windows application executes the command and sends the result, which

can be data or an error code, to the Front End.
4. The Windows Front End sends back the result to the application using the

TCP/IP channel.

A DDE connection is uniquely identified by two values: The name of the DDE Application
and the document. Most DDE functions require these two values to identify the DDE
source or target.

The DDE API

The DDE API is based on the front call technique as described in Front End Functions.
All DDE functions are grouped in the WINDDE front end function module.

Function name Description
DDEConnect This function opens a DDE connection
DDEExecute This function executes a command in the specified program
DDEFinish This function closes a DDE connection
DDEFinishAll This function closes all DDE connections, as well as the

DDE server program
DDEError This function returns DDE error information about the last

DDE operation
DDEPeek This function retrieves data from the specified program and

document using the DDE channel
DDEPoke This function sends data to the specified program and

document using the DDE channel

DDEConnect

Purpose:

This function opens a DDE connection.

Front End Extensions

133

Syntax:

CALL ui.Interface.frontCall("WINDDE","DDEConnect",
 [program, document], [result])

Notes:

1. program is the name of the DDE application.
2. document is the document that is to be opened.
3. result is an integer variable receiving the status.
4. result is TRUE if the function succeeded, FALSE otherwise.
5. If the function failed, use DDEError to get the description of the error.

Warnings:

1. If the function failed with "DMLERR_NO_CONV_ESTABLISHED", then the DDE
application was probably not running. Use the execute or shellexec front call to
start the DDE application.

DDEExecute

Purpose:

This function executes a DDE command.

Syntax:

CALL ui.Interface.frontCall("WINDDE","DDEExecute",
 [program, document, command], [result])

Notes:

1. program is the name of the DDE application.
2. document is the document that is to be used.
3. command is the command that needs to be executed.
4. Refer to the program documentation to know the syntax of command.
5. result is an integer variable receiving the status.
6. result is TRUE if the function succeeded, FALSE otherwise.
7. If the function failed, use DDEError to get the description of the error.

Warnings:

1. The DDE connection must be opened see DDEConnect.

Genero Desktop Client

134

DDEFinish

Purpose:

This function closes a DDE connection.

Syntax:

CALL ui.Interface.frontCall("WINDDE","DDEFinish",
 [program, document], [result])

Notes:

1. program is the name of the DDE application.
2. document is the document that is to be closed.
3. result is an integer variable receiving the status.
4. result is TRUE if the function succeeded, FALSE otherwise.
5. If the function failed, use DDEError to get the description of the error.

Warnings:

1. The DDE connection must be opened, see DDEConnect.

DDEFinishAll

Purpose:

This function closes all DDE connections, as well as the DDE server program.

Syntax

CALL ui.Interface.frontCall("WINDDE","DDEFinishAll", [], [result])

Notes:

1. Closes all DDE connections.
2. result is an integer variable receiving the status.
3. result is TRUE if the function succeeded, FALSE otherwise.

Front End Extensions

135

DDEError

Purpose:

This function returns the error information about the last DDE operation.

Syntax:

CALL ui.Interface.frontCall("WINDDE","DDEError", [], [errmsg])

Notes:

1. errmsg is the error message. It is set to NULL if no error occurred.

DDEPeek

Purpose:

This function retrieves data from the specified program and document using the DDE
channel.

Syntax:

CALL ui.Interface.frontCall("WINDDE","DDEPeek",
 [program, container, cells], [result, value])

Notes:

1. program is the name of the DDE application.
2. container is the document or sub-document that is to be used.

A sub-document can, for example, be a sheet in Microsoft Excel.
3. cells represents the working items; see the program documentation to know the

format of cells.
4. value represents the data to be retrieved; see the program documentation to

know the format of values.
5. result is an integer variable receiving the status.
6. result is TRUE if the function succeeded, FALSE otherwise.
7. If the function failed, use DDEError to get the description of the error.
8. value is a variable receiving the cells values.

Warnings:

1. The DDE connection must be opened; see DDEConnect.
2. DDEError can only be called once to check if an error occurred.

Genero Desktop Client

136

DDEPoke

Purpose:

This function sends data to the specified program and document using the DDE channel.

Syntax:

CALL ui.Interface.frontCall("WINDDE","DDEPoke",
 [program, container, cells, values], [result])

Notes:

1. program is the name of the DDE application.
2. container is the document or sub-document that is to be used.

A sub-document can, for example, be a sheet in Microsoft Excel.
3. cells represents the working items; see the program documentation to know the

format of cells.
4. values represents the data to be sent; see the program documentation to know

the format of values.
5. result is an integer variable receiving the status.
6. result is TRUE if the function succeeded, FALSE otherwise.
7. If the function failed, use DDEError to get the description of the error.

Warnings:

1. The DDE connection must be opened; see DDEConnect.
2. An error may occur if you try to set many (thousands of) cells in a single

operation.

Example

dde_example.per

01 DATABASE formonly
02 SCREEN
03 {
04 Value to be given to top-left corner :
05 [f00]
06 Value found on top-left corner :
07 [f01]
08 }
09 ATTRIBUTES

Front End Extensions

137

10 f00 = formonly.val;
11 f01 = formonly.rval, NOENTRY;

dde_example.4gl

01 MAIN
02 -- Excel must be open with "File1.xls"
03 CONSTANT file = "File1.xls"
04 CONSTANT prog = "EXCEL"
05 DEFINE val, rval STRING
06 DEFINE res INTEGER
07 OPEN WINDOW w1 AT 1,1 WITH FORM "dde_example.per"
08 INPUT BY NAME val
09 CALL ui.Interface.frontCall("WINDDE","DDEConnect", [prog,file],
[res])
10 CALL checkError(res)
11 CALL ui.Interface.frontCall("WINDDE","DDEPoke",
[prog,file,"R1C1",val], [res]);
12 CALL checkError(res)
13 CALL ui.Interface.frontCall("WINDDE","DDEPeek",
[prog,file,"R1C1"], [res,rval]);
14 CALL checkError(res)
15 DISPLAY BY NAME rval
16 INPUT BY NAME val WITHOUT DEFAULTS
17 CALL ui.Interface.frontCall("WINDDE","DDEExecute",
[prog,file,"[save]"], [res]);
18 CALL checkError(res)
19 CALL ui.Interface.frontCall("WINDDE","DDEFinish", [prog,file],
[res]);
20 CALL checkError(res)
21 CALL ui.Interface.frontCall("WINDDE","DDEFinishAll", [], [res]);
22 CALL checkError(res)
23 CLOSE WINDOW w1
24 END MAIN
25
26 FUNCTION checkError(res)
27 DEFINE res INTEGER
28 DEFINE mess STRING
29 IF res THEN RETURN END IF
30 DISPLAY "DDE Error:"
31 CALL ui.Interface.frontCall("WINDDE","DDEError",[],[mess]);
32 DISPLAY mess
33 CALL ui.Interface.frontCall("WINDDE","DDEFinishAll", [], [res]);
34 DISPLAY "Exit with DDE Error."
35 EXIT PROGRAM (-1)
36 END FUNCTION

Genero Desktop Client

138

Windows COM Support
Topics

• What is COM?
• Using COM API
• The COM API
• Example

What is COM?

COM stands for Component Object Model. It allows anyone to directly access Windows
Applications Objects. You can create instances of those objects, call methods on them,
and get or set their properties.

Using the COM API

With COM Support, you can invoke a Windows application and send or receive data to
or from it. To use this functionality, the program must use the Windows Front End.

The COM API

The COM API is based on the front call technique as described in Front End Functions.
All COM functions are grouped in the WinCOM front end function module.

Function name Description
CreateInstance This function creates an instance of a registered COM

object
CallMethod This function calls a method on a specified object
GetProperty This function gets a property of an object
SetProperty This function sets a property of an object
GetError This function gets a description of the last error which

occurred
ReleaseInstance This function releases an Instance (also frees memory)

Front End Extensions

139

Supported syntax

COM language syntaxe is very flexible and allows lots of notation. Genero WinCOM API
is slightly more strict:

• := notation is only allowed in version 2.00.1e (or later) ; for instance:
myFunction(SourceType:=3)

• "no parenthesis" notation is not allowed ; for instance: myFunction 3 must be
written myFunction(3)

• numeric constants are only allowed in version 2.00.1e (or later).
The constant list depends on the application used via WinCOM ; therefore, the
list is configurable: a file named etc/WinCOM.cst gathers all the constants
provided today by Microsoft for Office XP. It can be modified to add user-defined
constants.

CreateInstance

Purpose:

This function creates an instance of a registered COM object.

Syntax:

CALL ui.Interface.frontCall("WinCOM","CreateInstance",
 [classname], [handle])

Notes:

1. program is the classname of the registered COM object.
2. handle is an integer variable receiving the status.
3. handle is -1 if there as an error, otherwise an integer value that can be used for a

later call to the API.
4. If the function failed, use GetError to get the description of the error.

CallMethod

Purpose:

This function calls a method on a specified object.

Genero Desktop Client

140

Syntax:

CALL ui.Interface.frontCall("WINCOM","CallMethod",
 [handle, method, arg1, ...], [result])

Notes:

1. handle is the handle returned by another frontcall (CreateInstance, CallMethod,
GetProperty).

2. method is the member name to call.
3. arg1 (and ...) are the arguments to pass to the method call.
4. result is either a handle or a value of a predefined type.
5. result is -1 in case of error (use GetError to get the description of the error).

GetProperty

Purpose:

This function gets a property of an object.

Syntax:

CALL ui.Interface.frontCall("WINCOM","GetProperty",
 [handle, member], [result])

Notes:

1. handle is the handle returned by another frontcall (CreateInstance, CallMethod,
GetProperty).

2. member is the member property name to get.
3. result is either a handle or a value of a predefined type.
4. result is -1 in case of error (use GetError to get the description of the error).

SetProperty

Purpose:

This function sets a property of an object.

Front End Extensions

141

Syntax

CALL ui.Interface.frontCall("WINCOM","SetProperty", [handle, member,
value], [result])

Notes:

1. handle is the handle returned by another frontcall (CreateInstance, CallMethod,
GetProperty).

2. member is the member property name to set.
3. value is the value to which the property will be set.
4. result is -1 in case of error (use GetError to get the description of the error),

otherwise it is 0.

GetError

Purpose:

This function gets a description of the last error which occurred.

Syntax

CALL ui.Interface.frontCall("WINCOM","GetError", [], [result])

Notes:

1. result is the description of the last error.
2. the returned value is NULL if there was no error.

ReleaseInstance

Purpose:

This function releases an Instance of a COM object.

Syntax:

Genero Desktop Client

142

CALL ui.Interface.frontCall("WINCOM","ReleaseInstance", [handle],
[result])

Notes:

1. handle is the handle returned by another frontcall (CreateInstance, CallMethod,
GetProperty).

2. result is -1 in case of error (use GetError to get the description of the error),
otherwise it is 0.

Example

The following example puts "foo" in the first row of the 1st column of an Excel Sheet.

com_example.4gl

01 DEFINE xlapp INTEGER
02 DEFINE xlwb INTEGER
03
04 MAIN
05 DEFINE result INTEGER
06 DEFINE str STRING
07
08 --initialization of global variables
09 LET xlapp = -1
10 LET xlwb = -1
11
12 --first, we must create an Instance of an Excel Application
13 CALL ui.Interface.frontCall("WinCOM", "CreateInstance",
["Excel.Application"], [xlapp])
14 CALL CheckError(xlapp, __LINE__)
15 --then adding a Workbook to the current document
16 CALL ui.interface.frontCall("WinCOM", "CallMethod", [xlapp,
"WorkBooks.Add"], [xlwb])
17 CALL CheckError(xlwb, __LINE__)
18 --then, setting it to be visible
19 CALL ui.interface.frontCall("WinCOM", "SetProperty", [xlapp,
"Visible", true], [result])
20 CALL CheckError(result, __LINE__)
21 --then CALL SetProperty to set the value of the cell
22 CALL ui.Interface.frontCall("WinCOM", "SetProperty", [xlwb,
"activesheet.Range(A1).Value", "foo"],[result])
23 CALL CheckError(result, __LINE__)
24 --then CALL GetProperty to check the value again
25 CALL ui.Interface.frontCall("WinCOM", "GetProperty", [xlwb,
"activesheet.Range(A1).Value"], [str])
26 CALL CheckError(str, __LINE__)
27 DISPLAY "content of the cell is: " || str
28

Front End Extensions

143

29 --then Free the memory on the client side
30 CALL freeMemory()
31 END MAIN
32
33 FUNCTION freeMemory()
34 DEFINE res INTEGER
35 IF xlwb != -1 THEN
36 CALL ui.Interface.frontCall("WinCOM","ReleaseInstance", [xlwb],
[res])
37 END IF
38 IF xlapp != -1 THEN
39 CALL ui.Interface.frontCall("WinCOM","ReleaseInstance", [xlapp],
[res])
40 END IF
41 END FUNCTION
42
43 FUNCTION checkError(res, lin)
44 DEFINE res INTEGER
45 DEFINE lin INTEGER
46 DEFINE mess STRING
47
48 IF res = -1 THEN
49 DISPLAY "COM Error for call at line:", lin
50 CALL ui.Interface.frontCall("WinCOM","GetError",[],[mess])
51 DISPLAY mess
52 --let's release the memory on the GDC side
53 CALL freeMemory()
54 DISPLAY "Exit with COM Error."
55 EXIT PROGRAM (-1)
56 END IF
57 END FUNCTION

Genero Desktop Client

144

Windows Mail extension
Topics

• Send mail using MAPI
• Send mail using a SMTP server
• The WinMail API
• Example

Send mail using MAPI

MAPI is an acronym for Messaging Application Programming Interface. The MAPI
extension will create a new mail in the default mailer software, which needs to be "MAPI"
compatible, and ask the user to send the mail. The mail sent using MAPI will be stored
by the default mailer software in the same way as any other mail created by the user.

Send mail using a SMTP server

Another method of sending mail is to connect directly to an SMTP server (Simple Mail
Transfer Protocol is the de facto standard for email transmission across the Internet).
The extension will connect to a given SMTP server and send the mail through this
server. The mail is not kept on the client side.

The WinMail API

The WinMail API is based on the front call technique as described in Front End
Functions. All WinMail functions are grouped in the WinMail front end function module.

Function name Description
Init This function prepares a message
Close This function closes the message
SetBody This function sets the body of the mail
SetSubject This function sets the subject of the mail
AddTo This function adds a "To" addressee
AddCC This function adds a "CC" addressee

Front End Extensions

145

AddBCC This function adds a "BCC" addressee
AddAttachment This function adds an attachment
SendMail This function sends the mail
GetError This function retrieves the last error message

The following functions are needed when you use SMTP server connections:

Function name Description
setSmtp This function sets the SMTP server to use
setFrom This function sets the sender address

Init

Purpose:

This function initializes the module. It returns the identifier for the message, which will be
used in other functions.

Syntax:

CALL ui.Interface.frontCall("WinMail","Init", [], [id])

Notes:

1. ret is the identifier of the message initialized.
2. For each Init function, a Close must be called.

Close

Purpose:

This function clears all information corresponding to a message, and frees the memory
occupied by the message.

Syntax:

CALL ui.Interface.frontCall("WinMail","Close", [id], [result])

Genero Desktop Client

146

Notes:

1. id is the message identifier
2. result is the status of the function.

 SetBody

Purpose:

This function sets the body of the mail.

Syntax:

CALL ui.Interface.frontCall("WinMail","SetBody", [id, body], [result
])

Notes:

1. id is the message identifier
2. body is the string text containing the body of the mail.
3. result is the status of the function.

SetSubject

Purpose:

This function sets the subject of the mail.

Syntax:

CALL ui.Interface.frontCall("WinMail","SetSubject", [id, subject], [
result])

Notes:

1. id is the message identifier
2. subject is the string text containing the subject of the mail.
3. result is the status of the function.

Front End Extensions

147

AddTo, AddCC, AddBCC

Purpose:

These functions add a "To" Addressee to the mail. The addressee can be in one of the
following categories:

• "To" (to)
• "CC" (carbon copy)
• "BCC" (blind carbon copy)

The Addressee has a name and a mail address.

Syntax

CALL ui.Interface.frontCall("WinMail","AddTo", [id, name, address], [
result])

CALL ui.Interface.frontCall("WinMail","AddCC", [id, name, address], [
result])

CALL ui.Interface.frontCall("WinMail","AddBCC", [id, name, address],
[result])

Notes:

1. id is the message identifier
2. name is the name to be displayed in the mail.
3. address is the mail address to be used for this addressee.
4. result is the status of the function.

AddAttachment

Purpose:

This function adds a file as an attachment to the mail. The file must be located on the
front-end.

Syntax

CALL ui.Interface.frontCall("WinMail","AddAttachment", [id, fileName],
[result])

Notes:

Genero Desktop Client

148

1. id is the message identifier
2. fileName is the path of the attachment; the path can be relative to the directory

from which GDC is run, or absolute.
3. result is the status of the function.

SendMail

Purpose:

This function sends the mail. Using SMTP, the SMTP server is directly used. Using
MAPI, the default mailer software is called to create the mail. The user must press the
"send" button to send the mail.

Syntax with SMTP:

CALL ui.Interface.frontCall("WinMail","SendMailSMTP", [id], [result]
)

Syntax with MAPI:

CALL ui.Interface.frontCall("WinMail","SendMailMAPI", [id], [result]
)

Notes:

1. id is the message identifier
2. result is TRUE in case of success; use GetError to get the description of the error

when needed.

Warnings:

• MAPI needs to log-in to the mailer software. The first log-in could take time,
depending on the mailer software. Your Genero application will be blocked until
MAPI returns.

• MAPI depends on the mailer software for error management. For instance,
Mozilla Thunderbird returns "success" when the mail is created, but Outlook
2002 only returns "success" when the mail is sent.

GetError

Purpose:

Front End Extensions

149

This function gets a description of the last error that occurred.

Syntax

CALL ui.Interface.frontCall("WinMail","GetError", [id], [result])

Notes:

1. id is the message identifier
2. result is the description of the last error.
3. the returned value is NULL if there was no error.

SetSmtp

Purpose:

This function sets the SMTP server to be used.

Syntax:

CALL ui.Interface.frontCall("WinMail","SetSmtp", [id, smtp], [result
])

Notes:

1. id is the message identifier
2. smtp is the string text containing the SMTP server to be used.
3. result is the status of the function.

SetFrom

Purpose:

This function sets sender information. (This is needed for SMTP connections).

Syntax:

CALL ui.Interface.frontCall("WinMail","SetFrom", [id, name, address],
[result])

Genero Desktop Client

150

Notes:

1. id is the message identifier
2. name is the name to be displayed in the mail.
3. address is the mail address to be used for this addressee.
4. result is the status of the function.

Examples

Mail using MAPI

The following example sends a mail using MAPI.

01 MAIN
02 DEFINE result, id INTEGER
03 DEFINE str STRING
04
05 -- first, we initialize the module
06 CALL ui.Interface.frontCall("WinMail", "Init", [], [id])
07
08 -- Set the body of the mail
09 CALL ui.interface.frontCall("WinMail", "SetBody", [id, "This is a
text mail using WinMail API - MAPI"], [result])
10
11 -- Set the subject of the mail
12 CALL ui.interface.frontCall("WinMail", "SetSubject", [id, "test mail
- ignore it"], [result])
13
14 -- Add an Addressee as "TO"
15 CALL ui.Interface.frontCall("WinMail", "AddTo", [id, "myBoss",
"boss@mycompany.com"], [result])
16 -- Add another Addresse as "BCC"
17 CALL ui.Interface.frontCall("WinMail", "AddBCC", [id, "my friend",
"friend@mycompany.com"], [result])
18
19 -- Add Two attachments
20 CALL ui.Interface.frontCall("WinMail", "AddAttachment", [id,
"c:\\mydocs\report.doc"], [result])
21 CALL ui.Interface.frontCall("WinMail", "AddAttachment", [id,
"c:\\mydocs\demo.png"], [result])
22
23 -- Send the mail via the default mailer
24 CALL ui.Interface.frontCall("WinMail", "SendMailMAPI", [id],
[result])
25 IF result == TRUE THEN
26 DISPLAY "Message sent succesfuly"
27 ELSE
28 CALL ui.Interface.frontCall("WinMail", "GetError", [id], [str])

Front End Extensions

151

29 DISPLAY str
30 END IF
31 CALL ui.Interface.frontCall("WinMail", "Close", [id], [result])
32 END MAIN

Mail using SMTP server

The following example sends a mail using an SMTP server:

01 MAIN
02 DEFINE result, id INTEGER
03 DEFINE str STRING
04
05 -- first, we initialize the module
06 CALL ui.Interface.frontCall("WinMail", "Init", [], [id])
07
08 -- Set the body of the mail
09 CALL ui.interface.frontCall("WinMail", "SetBody", [id, "This is a
text mail using WinMail API - MAPI"], [result])
10
11 -- Set the subject of the mail
12 CALL ui.interface.frontCall("WinMail", "SetSubject", [id, "test mail
- ignore it"], [result])
13
14
15 -- Set the mail sender
16 CALL ui.Interface.frontCall("WinMail", "SetFrom", [id, "mySelf",
"me@mycompany.com"], [result])
17
18 -- Set the SMTP server
19 CALL ui.Interface.frontCall("WinMail", "SetSmtp", [id,
"smtp.mycompany.com"], [result])
20
21 -- Add an Addressee as "TO"
22 CALL ui.Interface.frontCall("WinMail", "AddTo", [id, "myBoss",
"boss@mycompany.com"], [result])
23
24 -- Add another Addressee as "BCC"
25 CALL ui.Interface.frontCall("WinMail", "AddBCC", [id, "my friend",
"friend@mycompany.com"], [result])
26
27 -- Add Two attachments
28 CALL ui.Interface.frontCall("WinMail", "AddAttachment", [id,
"c:\\mydocs\report.doc"], [result])
29 CALL ui.Interface.frontCall("WinMail", "AddAttachment", [id,
"c:\\mydocs\demo.png"], [result])
30
31 -- Send the mail via smtp
32 CALL ui.Interface.frontCall("WinMail", "SendMailSMTP", [id],
[result])
33 IF result == TRUE THEN
34 DISPLAY "Message sent succesfuly"
35 ELSE
36 CALL ui.Interface.frontCall("WinMail", "GetError", [id], [str])
37 DISPLAY str

Genero Desktop Client

152

38 END IF
39 CALL ui.Interface.frontCall("WinMail", "Close", [id], [result])
40 END MAIN

	Genero Desktop Client
	Table of Contents
	General
	Overview
	Installation
	Starting and Configuring the GDC
	Frequently Asked Questions

	Applications
	Shortcut System
	Shortcut Wizard
	Connections Panel
	Terminals Panel
	Debug Panel and Logging System

	Features
	Stored Settings
	Command Line
	Screenshots
	Local Actions
	Localization

	Active X
	Active X Overview
	Active X and Application Server

	Security
	Security Level
	GDC and SSH
	GDC and SSH: Simple Setup
	Port Forwarding and Firewalls
	Implementing a Secure Server with Genero Desktop Client
	Possible Configuration Problems
	GDC and Windows XP Service Pack 2
	GDC and Windows Vista

	Front End Extensions
	Front End Extensions
	Windows DDE Support
	Windows COM Support
	Windows Mail extension

