

© 2006 Four J’s Development Tools, Inc. www.4js.com

User Guide
Version 2.00

Copyright © 2006 by Four J’s Development Tools, Inc. All rights reserved. All information, content,
design, and code used in this documentation may not be reproduced or distributed by any printed,
electronic, or other means without prior written consent of Four J’s Development Tools, Inc.

Genero® is a registered trademark of Four J’s Development Tools, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks.

• IBM, AIX, DB2, DYNIX, Informix, Informix-4GL and Sequent are registered trademark of
IBM Corporation.

• Digital is a registered trademark of Compaq Corporation.

• HP and HP-UX are registered trademarks of Hewlett Packard Corporation.

• Intel is a registered trademark of Intel Corporation.

• Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

• Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in the
United States, other countries, or both.

• Oracle, 8i and 9i are registered trademarks of Oracle Corporation.

• Red Hat is a registered trademark of Red Hat, Inc.

• Sybase is a registered trademark of Sybase Inc.

• Sun, Sun Microsystems, Java, JavaScript™, and Solaris are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries.

• All SPARC trademarks are trademarks or registered trademarks of SPARC International,
Inc. in the United States and other countries.

• UNIX is a registered trademark of The Open Group.

All other trademarks referenced herein are the property of their respective owners.

Note: This documentation is for Genero 2.00. See the corresponding on-line documentation at the
Web site http://www.4js.com/online_documentation for the latest updates. Please contact your
nearest support center if you encounter problems or errors in the on-line documentation.

iii

 Genero Web Client
Table Of Contents

GWC Overview & Architecture

GENERO WEB CLIENT OVERVIEW .. 1
What is the Genero Web Client?... 1
Key Players ... 2
Documentation Overview.. 2

GWC FEATURES .. 5
Genero Features Compatibility Status.. 5
Unsupported Features .. 7

ARCHITECTURE .. 9
Architecture Overview .. 9
Connection Types.. 12
URI Syntax .. 13

HOW THE GENERO WEB CLIENT USES WEB TECHNOLOGIES ... 16
Template.. 17
Generated HTML.. 19
Cascading Style Sheet ... 20
JavaScript ... 21
Template Language... 23
Layout mechanism .. 24

FAQ ... 26
Startup questions... 26
Customization questions ... 27
Common errors ... 28

INSTALLATION AND CONFIGURATION

QUICK START ... 29
Quick Install.. 29
Launch Demos .. 30
Run Application .. 31

INSTALLATION.. 34
System Requirements .. 34
Determining the Installation Type .. 36
Running the installation program ... 37
Directories and Files .. 38
Validate your installation ... 39

CONFIGURATION AND DEPLOYMENT.. 41
Configuring Genero Web Client ... 41
Deploying Applications... 45
The Genero Web Client and License Usage ... 49

GENERO WEB CLIENT APPLICATION DIRECTORY STRUCTURE... 50
Recommended Directory Structure for Development ... 50
Where to Place Files for Production .. 51

Genero Web Client

iv

CONFIGURING THE APPLICATION SERVER FOR GWC ... 54
Applications .. 54
Application group ... 55
Application definition.. 55

TROUBLESHOOTING INSTALLATION ISSUES.. 57
Startup questions... 57
Common errors ... 58
Using the Debugger .. 59

INTERNATIONALIZATION .. 62
Encoding Architecture .. 62
Charsets Configuration... 63
Supported Charsets... 65

CUSTOMIZATION OF THE APPLICATION INTERFACE

CUSTOMIZING WEB APPLICATIONS .. 69
Preparing for Customization .. 70
Customize with CSS .. 72
Customize with Templates... 76
Customize with JavaScript .. 77

CUSTOMIZATION FAQ.. 78
How do I use a custom template ? .. 78
How do I use a custom cascading style sheet ?... 78

 MIGRATION

MIGRATING GENERO APPLICATIONS TO GWC... 79
Business Logic and GWC.. 80
Presentation Logic and GWC ... 82

MIGRATING TO GWC 1.33.1H .. 85
RUN behavior ... 85
Log configuration.. 85

MIGRATING TO GWC 1.32.1F... 86
Deprecated template path and new template path .. 86
New CSS class... 86

MIGRATING TO GWC 1.30.1J ... 88
New top-level template.. 88
Changes to customized templates ... 88

MIGRATING TO GWC 1.30.1D .. 90
MIGRATING TO GWC 1.30.1C .. 91

Changes in CSS... 91
Changes in JavaScript .. 91
Changes in HTML... 92
Changes in referencing a template ... 92
Changes in Template Expressions .. 93
Changes in as.xcf .. 93

TECHNICAL REFERENCE

TEMPLATE CSS REFERENCE... 94
CSS Syntax .. 94

Table Of Contents

v

Template CSS.. 95

CSS REFERENCE SAMPLES ... 108
Input Array / Display Array Sample ... 108
Menu Sample... 111
TopMenu Sample .. 113

TEMPLATE LANGUAGE REFERENCE.. 116
Genero Web Client namespace ... 116
Template instructions.. 117
Template resources ... 123
Template expressions .. 124

TEMPLATE PATHS ... 129
Application Server Paths .. 129
Web Server Paths.. 130
Genero Application Paths... 130
Items.. 137
Other Paths ... 140

TEMPLATE JAVASCRIPT API REFERENCE... 142
Javascript API Overview .. 142
Event Handler ... 143
Events.. 143

RENDERED HTML.. 148
Containers... 148
Items type .. 159
Others ... 174

SELF-PACED TUTORIALS

TEMPLATE TUTORIAL... 181
Tutorial overview.. 181
Step 0: Using the built-in rendering.. 182
Step 1: Customize the rendering ... 184
Step 2: Use basic template paths .. 188
Step 3: Displaying application messages and errors.. 192
Step 4: Use advanced Genero Web Client instructions .. 193
Step 5: Use Genero Web Client JavaScript API ... 196

GWC Overview-Architecture

1

Genero Web Client Overview

This section introduces you to the Genero Web Client (GWC).

Topics

What is the Genero Web Client?

The GWC is the Four J's product for creating Web applications with the
BDL language.

Key Players

The key players involved in the development and deployment of a Web
application using GWC include the BDL application development team,
the Design team, the Advanced Production and Ergonomics team, and the
Deployment and Infrastructure team.

Documentation Overview

This section provides you with a roadmap to the GWC documentation.
Depending on your objectives, you can navigate to the section that
interests you.

What is the Genero Web Client?
The Genero Web Client (GWC) is the Four J's product to create Web application with
BDL language. It provides an application interface understandable by any browser using
well-known web technologies like HTML, CSS and JavaScript.

It is flexible enough to let you build from a simple web application to a corporate web
application. It brings to BDL applications the Internet world and the ability to be
integrated in a Web site. GWC has its own application server to handle requests, uses a
"template language" to create dynamic web pages and provides a default rendering that
developers can customize.

Having some knowledge of Web technologies like HTML, XML, style sheets and
JavaScript ease GWC understanding. You can find Web standards at http://www.w3.org.
Take a look at http://www.w3schools.com tutorials to get a quick start.

Genero Web Client

2

Key Players
The design, development, and roll-out of your GWC applications should involve persons
with responsibilities in the following areas:

Area Player Responsibility
BDL Application Development Responsible for the development of the Genero

application, concentrating on the business logic.
Application Design Responsible for the rendering aspects of the

application within GWC by adding and
modifying templates and CSS to influence the
look-and-feel of the application.

Advanced Production and Ergonomics Responsible for the additional functionality and
navigation added to an application through the
use of the template language to link BDL form
objects and JavaScript to define the behavior.

Deployment and Infrastructure Responsible for the complete GWC solution from
a component perspective: the installation and
configuration of the application server and Web
server; the communication between the user
agent, Web server, application server, DVM, and
database server.

It is rare that a single person fulfills the requirements demanded in each of these areas.
Identifying a person or persons to be responsible for each area can alleviate issues when
it comes time to test and deploy the application.

Documentation Overview
This document is organized into the following sections:

GWC Overview & Architecture

• The GWC Overview section provides an overview of the
GWC product, a list of key players for the development and
roll-out of GWC applications, and an overview of the GWC
techincal documentation.

• The GWC Features section lists those Genero features
supported by the GWC, as well as the Genero features
NOT supported by the GWC.

GWC Overview-Architecture

3

• The Architecture section provides an overview of the
architecture of the complete GWC solution, inclusive of
required and optional third-party applications.

• The How the GWC Uses Web Technologies section
discusses how GWC uses the Web technologies of HTML,
CSS, XML, JavaScript, and the Four J's template language.

• The General Index section provides a quick-glance index
for the documentation, sorted by keyword.

Installation and Configuration

• The Quick Start section provides a step-by-step overview
for quick installation and surfacing of your Web
application.

• The Installation section provides a detailed look at the
installation of the GWC.

• The Configuration and Deployment section outlines the
steps required for configuring the GWC and surfacing
applications.

• The GWC Application Directory Structure section provides
guidance on managing the files and directories required for
customizing and surfacing applications in the GWC
environment.

• The Configuring the Application Server for GWC section
provides guidance for modifying the settings in the
application configuration file (default as.xcf).

• The Troubleshooting Installation Issues section lists those
issues that can cause problems during the installation
process and offers solutions to work around those issues. It
is assumed that you have already viewed the sections
regarding Installation and Configuration and Deployment.

• The Internationalization section guides you in localizing
applications to take advantage of non-ASCII character sets.

Customization of the Application Interface

• The Customization section identifies the methods available
for you to customize your application.

• The Customization FAQ section answers those frequently-
asked questions regarding customization of your GWC
application.

Migration

This collection of topics provides information about adapting your Genero
applications for the GWC and upgrading to the latest version of GWC.

Genero Web Client

4

• The Migrating Genero Applications to GWC section guides
you in modifying your Genero applications to run in the
GWC environment.

• The Migrating to GWC 1.32.1f, Migrating to GWC 1.30.1j,
Migrating to GWC 1.30.1d, and Migrating to GWC 1.30.1c
sections guide you in upgrading applications developed and
tested with previous versions of GWC to the specified
version.

Technical Reference

This collection of topics provides in-depth technical information regarding
the components that work together to render an application using the
GWC.

• The CSS Reference section list most of the available
selectors for use in CSS when customizing the appearance
of an application.

• The CSS Reference Sample section provides a graphical
representation of the rendering of the selectors of input and
display arrays, menus, and top menus.

• The Template Language Reference section provides detail
about using the Four J's template language.

• The Template JavaScript API Reference section provides
detail about using the GWC JavaScript API to put
JavaScript functionality into a template.

• The Rendered HTML section details the relationship
between 4GL code and the resulting rendered HTML.

Self-Paced Tutorials

• The Self-Paced Tutorials section is a series of self-paced
tutorials walk you through the process of modifying an
application through the use of templates, CSS, and
JavaScript.

GWC Overview-Architecture

5

GWC Features

When working with the GWC, you are working within an html environment and are
limited by html constraints. As a result, not all features supported by Genero are available
with the GWC.

Topics

Genero Features Compatibility Status

This section identifies whether a Genero feature is supported by GWC.
The features not currently supported that may possibly be supported in a
future release are identified.

Unsupported Features

This section provides a concise list of those Genero features not supported
by the GWC.

Genero Features Compatibility Status
The following table summarizes the status of Genero features for Genero Web Client.
Refer to the Status Key for an explanation of the status.

Form Specifications
Components Features Status Comments

TOPMENU OK

Accelerator keys are on hold.
For more information on
recognized accelerator keys,
refer to the topic " Business
Logic and GWC >> Accelerator
Keys" (in the section Migrating
Genero Applications to the
GWC)

TOOLBAR OK

Accelerator keys are on hold.
For more information on
recognized accelerator keys,
refer to the topic " Business
Logic and GWC >> Accelerator

Genero Web Client

6

Keys" (in the section Migrating
Genero Applications to the
GWC)

LAYOUT OK Attribute on hold: SPACING
Containers
Components Features Status Comments
HBOX OK
VBOX OK
GROUP OK
FOLDER OK
PAGE OK
GRID OK
SCROLLGRID OK

TABLE OK

Attributes on hold:
UNHIDABLECOLUMNS,
UNMOVABLECOLUMNS,
UNSIZABLECOLUMNS,
UNSORTABLECOLUMNS,
WANTFIXEDPAGESIZE

 transposition Not Planned
 resize columns On Hold
Form Items
Components Features Status Comments
EDIT OK Attribute on hold: PROGRAM
BUTTON OK
BUTTONEDIT OK

CANVAS On Hold A solution is currently being
examined based on svg.

COMBOBOX OK
CHECKBOX OK Three states
DATEEDIT OK

IMAGE OK Attributes on hold:
AUTOSCALE, STRETCH

LABEL OK Attributes on hold: JUSTIFY
PROGRESSBAR On Hold
RADIOGROUP OK
TEXTEDIT OK Attributes on hold: STRETCH

GWC Overview-Architecture

7

RIP WIDGETS On Hold
Some attributes are on hold: ACCELERATOR, ACCELERATOR2,
CENTURY, COLOR, COLOR WHERE, FORMAT, FONTPITCH, PICTURE,
PROGRAM, SIZEPOLICY, SPACING
Functional Features
Components Features Status Comments
Menu OK
Array OK

Construct OK

All widgets are handled. New
features (such as queryEditable)
are available for COMBOBOX
and RADIOGROUP.

MESSAGE OK
ERROR OK

Message files On Hold GWC does not support
accelerator keys.

ON IDLE On Hold
MDI Not Planned
Start Menu On Hold
Statusbar On Hold

Styles On Hold
At this time, presentation styles
specified in a .4st file are not
supported.

Status Key

Status Definition
OK Available and supported.

On Hold Not yet implemented, but may
be at a later time.

Not Planned Will not be implemented.

Unsupported Features
Following is a concise list of unsupported features:

• Accelerator keys

Genero Web Client

8

• StartMenus
• MDI
• ProgressBar
• On idle
• Front Calls
• StatusBar
• Genero Styles (.4st)

For some unsupported features, alternate solutions have been identified. These alternate
solutions are detailed in the topic "Business Logic and GWC" (in the section Migrating
Genero Applications to GWC). You may also create your own interpretations.

GWC Overview-Architecture

9

Architecture

Users can connect to a Web application by connecting directly to the Genero Web Client,
or they can access the application server via a Web server. The URI used to access the
Web application determines which method is used.

Topics

Architecture overview

This section identifies the components required by the Genero Web Client
solution, and describes how a request from a browser is served by the
Genero Web Client engine. It identifies which components of the solution
are provided by the installation of the Genero Web Client, and which
components must be obtained and installed separately. It lists which files
are needed by each component.

Connect directly to the Genero Application Server

This section discusses direct connections. With a direct connection, the
browser connects directly to the Application Server without going through
a Web Server. The connection is fully managed by the Application Server.

Connect to the Genero Application Server through a Web
Server

This section discusses a Web server connection. With this type of
connection, the browser connects to the Application Server through a Web
Server. This type of connection is recommended for production
environments.

Specifying the URI

This section lists the rules for specifying the URI are listed along with
some examples.

Architecture Overview
This section looks at the following topics:

Genero Web Client

10

• Components involved in the Genero Web Client solution, detailing how a request
gets from the browser to an application.

• Third-party software requirements.
• Component relationships, or the relationship between the user agent, the Genero

Web Client, the Dynamic Virtual Machine (DVM), and the files required by each.

Components involved in the Genero Web Client solution

The Genero Web Client works with a user agent, a Web server, the Genero Web Client
daemon (gasd), a Dynamic Virtual Machine (DVM), and a database server to provide
Web applications to the user.

The components involved in the Genero Web Client solution are shown in the diagram
above.

• A user agent (1) initiates a request through a Web server (2).
• The Web server spans and communicates with the client CGI Connector, an

executable named either fglccgi or fglcisapi. The Connector configuration is
specified in the file connector.xcf.

• The Connector handles communication with the Application Server, also called
the Genero Web Client daemon (3). The Genero Web Client daemon is a process
named gasd. The gasd configuration is set in the file as.xcf (default) or a user-
specified configuration file. The gasd must be started and listening for requests
from the Connector.

GWC Overview-Architecture

11

• Upon receiving a request, the gasd selects the next available port (as defined in
the gasd configuration file) and starts a DVM (4).

• The DVM runs the BDL program, which in turn interacts with the specified
database (5).

Communication is bi-directional, with information flowing back to the user agent.

In development, it is typical to have the user agent (browser) connect directly to the
application server, bypassing the Web server and Connector. For production, it is
recommended that you include the Web server in your Genero Web Client solution.

Third-party software requirements

The Genero Web Client provides its own version of the Genero Application Server and
includes the Genero Web Client Engine.

The user agent, Web server, Genero BDL, and database server are not included. For
information about supported third-party software, refer to System Requirements (in the
section Installation).

Component Relationships

The diagram above provides another look at connections between a user agent, the
Genero Web Client, and a DVM. It also identifies which files are needed by each engine.

Genero Web Client

12

Connection Types
When running an application, there are two methods of connecting to the application
server:

• Connect directly to the application server
• Connect to the application server through a Web server.

Connect directly to the application server

Direct connection allows User Agents (different web browsers) to connect directly to the
Application Server, without using a Web Server. Direct connection is provided to
simplify the architecture of development environments; it is not recommended for
production environments.

Notes:

• Connecting directly to the application server is the typical connection method
used in development environments.

• A direct connection is always much faster than connecting through a Web server,
as it removes the routing of the request through the Web server and Connector.

Connect to the application server through a Web server

When you connect through a Web Server, a Connector routes requests from the Web
server to an application server. Connectors are available in two forms:

• As a Common Gateway Interface (CGI) executable, usable on any CGI 1.1 Web
servers.

GWC Overview-Architecture

13

• As an Internet Information Server (IIS) plug-in, usable on any IIS web server
(version 5.x or greater).

URI Syntax
The syntax of a URI follows the standards described in the RFC 2616. A list of example
URIs is provided below.

http[s]://
 {
 web-server[:web-server-port]
 [
 /directory [...]
 /script-directory
 /directory [...]
 /connector-name
]
 |
 app-server[:app-server-port]
 }
 /scope
 /action
 /
 {
 web-application-id
 }
 [
 ?
 parameter=parameter-value
 [
 &
 parameter=parameter-value
]
 [...]
]

Note: https is slower than http due to encryption.

Explanation of syntax options

Option Data
Type Explanation Valid Values

web-server STRING Name or IP address of the Web
Server.

web-server-
port INTEGER Port on which the Web Server

listens.

directory STRING Any directory or virtual directory

Genero Web Client

14

on the Web Server.

script-directory STRING The script directory.

connector STRING The name of the connector. fglccgi, fglccgi.exe,
fglcisapi.dll

app-server STRING Name or IP address of the
Application Server.

app-server-port INTEGER Port on which the Application
Server listens.

scope STRING Scope we are working on. wa

action STRING Action requested of the
Application Server. r

web-
application-id STRING Web Application identifier.

parameter STRING Parameter to communicate to the
Application Server. Arg, UserAgent

parameter-
value STRING Parameter value.

URI Examples

Example 1

Calls the "myApp" application through the "myWebServer" Web Server, using the CGI
connector:

http://myWebServer/cgi-bin/fglccgi/wa/r/myApp

Example 2

Calls the "myApp" application through the "myWindowsWebServer" Web Server,
running IIS, using the ISAPI connector:

http://myWindowsWebServer/scripts/fglcisapi.dll/wa/r/myApp

Example 3

Calls the "myApp" application on the "myApplicationServer" Application Server,
listening to port 6394:

http://myApplicationServer:6394/wa/r/myApp

GWC Overview-Architecture

15

Example 4

Calls the "myApp" application with arguments, through the "myWebServer" Web Server:

http://myWebServer/cgi-bin/fglccgi/wa/r/myApp?Arg=Val1&Arg=Val2

Note: On Windows platforms, when connecting via a Web server, you must include the
extension when calling fglccgi.exe, as shown in the following URL:

http://<web_server>/cgi-bin/fglccgi.exe/demos.html

Genero Web Client

16

How the Genero Web Client Uses Web
Technologies

Genero Web Client allows developers to create HTML-based applications. Genero Web
Client transforms (renders) a BDL application into a Web application.

BDL and HTML do not have the same widgets. For example, there are no native folder
pages or calendars in HTML. Constraints in terms of communication are also not the
same. The browser native mode is to submit information page by page, whereas Genero
checks information field by field.

This section presents the main concepts that drive a Genero Web Client project. Genero
Web Client uses a template for rendering. There are four main parts to Genero Web
Client rendering: generated HTML (core), CSS (look), JavaScript (widgets shaping and
behavior), and template language.

Topics

Template

A template is a HTML file that displays your application in
a browser, using a Genero front end. The template defines
how and where your application is displayed inside a
HTML page.

Generated HTML

Genero Web Client converts BDL into pure HTML pages,
following the current standards. The generated pages create
working applications that do not need any CSS or
JavaScript, however their appearance may be rough.

Cascading Style Sheets (CSS)

CSS are used to format HTML pages. Genero Web Client
uses CSS to place and shape widgets as described in the
Generated HTML description.

Javascript

The JavaScript code provided with Genero Web Client has
two main goals: (1) to wrap widgets and handle

GWC Overview-Architecture

17

communication with the Genero Web Client and (2) to
apply advanced styles to the rendered HTML

Template Language

The template language has been introduced to integrate
web-designed pages and extend generated HTML
capabilities. This language is used inside an HTML page
and interpreted by the Genero Web Client engine, which
generates new HTML code. You can perform instructions
ranging from simple condition tests to loops on table lines.

Layout mechanism

The GWC renders the content of forms using a layout
mechanism relying on JavaScript and CSS styles.

Template
A template is a HTML file that displays your application through a browser, using a
Genero front end. A template defines how and where your application is displayed inside
a HTML page. Genero Web Client has a default template showing the current application
window.

Excerpt from generodefault.html in $FGLASDIR/tpl:

01 <html>
02 <head>
03 $(res.meta-tags)
04 <meta http-equiv="Content-Type" content="text/html; charset=UTF-
8">
05 <title gwc:content="string:${window/text} - ${application/text}
- Four J's Genero Web Client ${server/version}">Title of the
page</title>
06 <script language=javascript
src="$(connector.uri)/fjs/uaapi/webBrowser.js"></script>
07 ...
08 </head>
09
10 <body>
11 <form id="gDialogForm" method=post gwc:attributes="action
document/URL">
12 ...
13 <table width="100%" height="100%" border="0" cellpadding="0"
cellspacing="0">
14 ...
15 <tr height="100%">

Genero Web Client

18

16 <td width="100%" style="vertical-align:top;">
17 <table gwc:condition="form" id="gFormTable"><tr><td>
18 <div id="gForm-div" gwc:content="form" />
19 </td></tr></table>
20 </td>
21 <td valign="top" id="gPanel">
22 <div gwc:condition="menu" gwc:replace="menu" />
23 <div gwc:condition="dialog" gwc:replace="dialog" />
24 </td>
25 </tr>
26 ...
27 </table>
28 </form>
29
30 <script defer language=javascript
gwc:contentprotocol="string"><!--
31 var gLayoutData = ${document/layoutData};
32 gInitFieldMode(gIdToElement('gDialogForm'),
gSMART_FIELD_MODE, gINCREMENTAL_MODE, ${configuration/timeout/useragent
- 3}); /// [gFIELD_MODE | gSMART_FIELD_MODE], [gINCREMENTAL_MODE |
gFULL_MODE], [keep-alive interval]
33 //--></script>
34 </body>
35 </html>

The application elements are rendered within cells of a HTML table in the page. For
example, <div id="gForm-div" gwc:content="form" /> displays the current form of
the application. As a result of this code, Genero Web Client generates HTML code
corresponding to the active form of the application. Similarly, <div
gwc:condition="menu" gwc:replace="menu" /> and <div
gwc:condition="dialog" gwc:replace="dialog" /> are instructions telling the
Genero Web Client where to render the action panel.

Example (Edit application)

GWC Overview-Architecture

19

The screenshot shown above assumes you are using the default rendering of the Genero
Web Client. Elsewhere in this manual, you can examine creating your own templates and
using the template language to integrate or develop Web-designed pages.

Now that you see the container, the inside of this window is pure HTML.

Generated HTML
Genero Web Client converts BDL into pure HTML pages, following the current
standards specified by the W3C. Generated pages provide working applications that do
not require any CSS or JavaScript, however their appearance may be rough, as shown in
the following screenshot:

Example of a generated menu (classical input HTML widgets):

01 <DIV class=gMenu>

Genero Web Client

20

02 Edit
03
04 <LI class="gMenuAction gHidden">
05 <INPUT class=gAction type=submit value=Close name=close>
06 <LI class=gMenuAction>
07 <INPUT class="gAction gCurrentAction" type=submit
value=Display name=display>
08 <LI class=gMenuAction>
09 <INPUT class=gAction type=submit value=Input name=input>
10 <LI class=gMenuAction>
11 <INPUT class=gAction type=submit value=Construct
name=construct>
12 <LI class=gMenuAction>
13 <INPUT class=gAction type=submit value=Exit name=exit>
14 <LI class="gMenuAction gHidden">
15 <INPUT class=gAction type=submit value=Help name=help>
16
17 </DIV>

The generated HTML structure is flexible enough to be easily customized.

Most HTML representations of a Genero widget have a container that can move to any
place on the HTML page. In the default template, the menu is generated using the GWC
instruction gwc:replace="menu" and placed in a table cell (see Edit screenshot in the
Template paragraph). The menu can be moved anywhere simply by changing the location
of the GWC instruction in the template. We can say that Genero Web Client provides
placement capability.

Most generated HTML objects have an identifier (name or id) and classes. Genero Web
Client provides default CSS and JavaScript that handle and reshape pages. With our Edit
example, the default rendering turns the menu buttons into flat ones and highlights the
current action. Genero Web Client offers shape and behavior design.

Developers can use this default rendering, or they can create appropriate CSS and
JavaScript to control the look and behavior of widgets.

Cascading Style Sheet
CSS are used to format HTML pages. If you are not familiar with this technology, please
refer to the W3C web site at www.w3.org.

Genero Web Client uses CSS to place and shape widgets as described in the Generated
HTML paragraph. The menu buttons are displayed flat, thanks to a CSS style:

Excerpt from genero.css:

01 .gMenu INPUT {

GWC Overview-Architecture

21

02 ...
03 border: 0 none;
04 ...
05 }

Any INPUT inside an element of the class menu has no border.

The widget shaping includes widget states. The following screenshot illustrates noEntry
and other states for input fields:

Generated HTML examples

<INPUT class="gEdit gNoEntry gDisabled" readOnly id=r3>

In this example, the NOENTRY state is represented by a class value
gNoEntry

<INPUT class="gEdit gNotNull gUpshift" id=r2 value=here>

In this example, the NOT NULL and UPSHIFT states are represented by class
values set to gNotNull and gUpshift

Developers can define their own styles for each widget state. Some complex renderings
are set with JavaScript help.

JavaScript
The JavaScript code provided with Genero Web Client has two main goals:

JavaScript, as provided with the Genero Web Client, can accomplish two goals.

• Provide wrappers for Genero widgets and handle communication between a field
and the Genero Web Client.

• Apply advanced styles to the rendered HTML.

Genero Web Client

22

A wrapper initializes with a call to the gInitFieldMode function. This function takes two
parameters: the first parameter specifies the communication mode from the Genero Web
Client to the User Agent, while the second parameter specifies the communication mode
from the User Agent to the Genero Web Client:

• Full Mode: The full page is sent each time
• Incremental Mode: Only changes are sent
• Page Mode: All the page is sent at once. (Thus interactive triggers are forbidden)
• Field Mode: Current field information is sent on all changes
• Smart Field Mode: Information concerning the changes of the fields values or

states will be sent only if the client is not able to handle the current action. For
example, this happens when a trigger is encountered or when the whole page has
to be reloaded.

The following step listing describes how the JavaScript wrappers operate in Field Mode.

1. The wrapper detects a change in the field (receiving focus, mouse click, and so
on), and tells the framework.

2. The framework asks the wrapper for information (value of the field, and so on)
and sends the data to the Genero Web Client using the XMLHttpRequest object.

3. The Genero Web Client returns the response from the DVM to the framework
using the XMLHttpRequest object.

4. The framework tells the wrappers about the changes they must perform.
5. The wrappers update the fields based on the new information.

A JavaScript API is provided to make the scripting of the Genero Web Client JavaScript
functionalities easier. This API provides easy access to application events like changing a
table offset, changing the value of a form field, or emulating a key press. In a future
version of Genero Web Client, this API is expected to be enhanced to help the user create
custom widgets. For additional information on the Genero Web Client and JavaScript
API, see the Template JavaScript API Reference section of this manual.

GWC Overview-Architecture

23

Template Language
The template language has been introduced to integrate web-designed pages and extend
generated HTML capabilities. The selection criteria are:

• web design tools friendly (does not disturb a web page layout)
• powerful enough

This language is used inside an HTML page, interpreted by the Genero Web Client
engine which generates new HTML code. You can perform instructions ranging from
simple condition tests to loop on table lines.

There are three types of items: template instructions, template expressions, and template
paths.

Template instruction

A template instruction is a predefined attribute added to a HTML tag. It defines how the
HTML tag is interpreted.

Syntax

<tag gwc:instruction="expression" ... > ... </tag>

Example

01 <div gwc:replace="window"></div>

The template instruction is gwc:replace. This is an instruction to replace the <div> tag
with the HTML code for the current window.

Template expression

A template expression is the template instruction value. It can be a string, an operation,
or a conversion protocol.

Example

01 <title gwc:content="string:${window/text} -
${application/text}">Title of the page</title>

The conversion protocol is a string. Genero Web Client engine returns a string containing
the window name and the application name.

Genero Web Client

24

Template path

The template path is used to access an element of the current application. The element
can range from the entire application window to a field value in a table.

Example

01 <title gwc:content="string:${window/text} -
${application/text}">Title of the page</title>

The template path is window/text, returning the title of the window.

For more information

• For more information on the template language, refer to the Reference > Template
Language section.

Layout mechanism
With version 1.32, GWC introduces a new layout mechanism that is significantly more
compatible with the GDC layout.

The principles are as follow:

• At a minimum, a widget has the size needed for its content.
• Containers are resized according to their content.
• Widgets keep the left and right alignment as defined in the form specification file

(.per file).
• The layout is no longer "proportional" to the window’s width.
• The space between widgets is minimized.

To achieve this new layout policy, the generated HTML has changed with regards to
previous GWC versions. High-level containers (such as HBOX, VBOX, and other
containers) become HTML tables, and the layout of the grids is finalized with some
JavaScript managing the width of the widgets. The GWC uses a template path,
document/layoutData, to generate the layout information needed by the JavaScript
function. A GWC application can live without this layout information, but the layout will
result in having all the form fields packed on the left side of the window and misaligned.

The benefits of this new layout policy are numerous:

• Alignment problems disappear.
• Data and/or labels are no longer clipped.
• The consequences of the "fixed" minimum sized layout are removed:

GWC Overview-Architecture

25

o Small fields are no longer too small.
o Large fields are not longer too wide.
o Space usage is globally optimized.

Genero Web Client

26

FAQ
Summary:

• Startup questions
o Do I need to be superuser to install GWC ?
o What does "address already in use" mean ?
o Why do I receive a 404/400 error when I use fglccgi.exe or fglcisapi.dll ?
o Why are some widgets partially rendered ?

• Customization questions
o How do I use a custom template ?
o How do I use a custom cascading style sheet ?

• Common errors
o Bypassed triggers
o Runtime error
o Unsafe object

Startup questions

Do I need to be superuser to install GWC ?

No ...

But, some parts of GWC need to be installed with special rights.
For example, the web server part assumes that you have the rights to install the product in
the web server directories.
You may also install GWC in the DVM directory. This is not recommended. If you
intend to install GWC in $FGLDIR, then also check the rights for this directory.

What does "address already in use" mean ?

A gasd has already been started on the same port. Check in your AS configuration file
($FGLASDIR/as.xcf) the port where gasd started. Search for the section:
<INTERFACE_TO_CONNECTOR>
<TCP_BASE_PORT>6300</TCP_BASE_PORT>
<TCP_PORT_OFFSET>94</TCP_PORT_OFFSET>
By default gasd is started on port 6394. Set the values to a port which is not used by
another application.

GWC Overview-Architecture

27

Why do I receive a 404/400 error when I use fglccgi.exe or fglcisapi.dll ?

By default, from IIS 6.x, running cgi or isapi is disabled. To use fglccgi.exe or fglcgisapi
you need to enable their execution.
In the IIS manager console, go to the "Web Service Extension", select "CGI Extensions"
and click on "Allow". Do the same thing with "ISAPI Extensions".

Why are some widgets partially rendered ?

The default theme (default rendering) is done by CSS and javascript. If you lack one of
the two features, the rendering may be incorrect.

• Check that your browser meets the requirements and that it supports javascript.
• Check your installed files, especially the directory "web/fjs" on the application

server (AS) side.
• Check that CSS and javascript files are reachable on the AS side.

o With direct connection, type the URL in your browser -
http://<server>:6394/fjs/defaultTheme/genero.css

o With connection through a web server, apache for example, use
http://<server>/cgi-bin/fglccgi/fjs/default/genero.css

• Check that your templates have $(connector.uri) in front of each reference to a
file on the application server. For example, genero.css is on the application server,
the reference to this file in the default template is:
<link rel="stylesheet" href="$(connector.uri)/fjs/defaultTheme/genero.css"
type="text/css"/>

Customization questions

How do I use a custom template ?

You need to configure your application to use the custom template. This template is a
type of style that you apply to an application window.

See Declare a template and Apply a template in the Customize chapter for more details.

How do I use a custom cascading style sheet ?

This CSS has to be referenced in the application html template.

Genero Web Client

28

For more information see Preparing Customization and Customize with CSS in the
Customize chapter.

Common errors

Bypassed triggers

In page mode if you have triggers in your input, you may encounter this error:

An error has occurred...
Error:

GWC: Edit - There is at least one bypassed trigger.
 Bypassed trigger owner field : r1(115)
 Trigger type: On Change

In page mode, triggers in input are not allowed, as there is no communication to the
DVM when going from field to field.

Runtime error

This error appears when the application cannot start or cannot continue. This may due to
a configuration error or an application error. Check in the AS log file.

An error has occurred...
Error:

Runtime error

Unsafe object

The object you tried to access does not belong to the AUI tree.

An error has occurred...
Error:
Access to an unsafe object (operator *)

Installation and Configuration

29

Quick Start

When working with new software, one of the first goals of many administrators is to
quickly install the application and verify the installation was successful. The Quick Start
documentation identifies the process to follow to perform a rapid installation and the
validation of that installation. After completing and validating the installation of Genero
Web Client, additional configuration instructions are provided to assist you in delivering
your applications via the Genero Web Client.

Topics

Quick Install

This section gives instructions for quickly installing the Genero Web
Client application.

Launch Demos

This section describes the demo applications installed with the Genero
Web Client and how to launch a specific demo applications from within a
browser.

Run Application

This section describes how to configure and run a Genero Web Client
application.

Quick Install
The Genero Web Client package installs two parts: the Application Server and the Web
Server. The Application Server part installs, among other things, the Genero Web Client
engine (gasd) and the demo programs. The Web Server installs the connectors (cgi or
isapi).

Tip: you do not need to download and install the Genero Application Server package
(GAS), as the Genero Web Client already include its own specific GAS.

For development, install the Application Server part. For production/deployment, you
will need a Web Server.

Genero Web Client

30

Genero Web Client needs a Genero DVM. Verify that a DVM has already been installed.

To install the Genero Web Client:

• On Unix, issue the command: /bin/sh fjs-gwc-1.32.xx-xxx.sh -i
• On Windows, run the installer.

Next, follow the installation instructions. The installation directory is set to
$FGLASDIR.

When the installation is done:

• Set Genero Web Client environment with "envas" script (located in $FGLASDIR
directory)

• Launch the Genero Web Client engine with the command: gasd.

If you encounter any problems, check the sections on Installation or Troubleshooting
Installation Issues.

Launch Demos
Genero Web Client is delivered with demo programs. The page demos.html lists the
predefined applications. Use the following URL to display the list:

http://<app_server>:6394/demos.html

(Connecting directly to the application server.)

http://<web_server>/cgi-bin/fglccgi/demos.html (Connecting via
a Web server.)

Note: On Windows platforms, when connecting via a Web server, you must include the
extension when calling fglccgi.exe, as shown in the following URL:

http://<web_server>/cgi-bin/fglccgi.exe/demos.html

The lunch application is a program to order your meals. It uses a database and some
templates. You can refer to the readme in $FGLASDIR/demo/lunch.

Within demos.html:

The "Genero Web Client Widgets Demonstration" section lists some of the regular demo
programs of the DVM. For example:

Installation and Configuration

31

• The "DateEdit" demo shows you how a calendar is rendered.
• The "TopMenu" demo displays a drop-down menu that is handled entirely by

CSS and JavaScript.
• The "Lists" demo displays a table that you can sort.

The "Genero Web Client template Demonstration" section lists applications illustrating
the template language usage. For example:

• The "Repeat" demo displays a table with odd and even rows in different colors.

Run Application
This section describes how to configure a Genero Web Client application and run it.

An application is added either inside the as.xcf (located in $FGLASDIR/etc) or
configured in an external file. If the application is defined within as.xcf, the application
server dameon (gasd) needs to be restarted after any changes to the application definition.
By default, application configuration files are located in $FGLASDIR/app.

Based on inheritance concepts, an application is configured with a few lines.

Example

<APPLICATION Id="myapp" Parent="defaultgwc">
 <EXECUTION>
 <PATH>/home/myapp/bin</PATH>
 <MODULE>app.42r</MODULE>
 </EXECUTION>
</APPLICATION>

If you use the predefined Genero Web Client environment, the parent of the application is
set to "defaultgwc". Then you only need to specify the path to your application.

The application name is set with "Id". In this example, the application is named "myapp".
You need to specify where to find the compiled modules; set the path in
<EXECUTION><PATH> section. If the "Id" of the application does not have the same
name as your main module then add a <MODULE> tag. Here, the application name is
"myapp" and the main module is app.42r.

To run the application, use, for example, the URL http://<app_server>:6394/wa/r/myapp.

Genero Web Client

32

Application using database

For applications using a database, you need to set the environment variables to access the
database. Environment variables are defined in the <EXECUTION> section of an
application.

Example (using Informix)

<EXECUTION>
 <ENVIRONMENT_VARIABLE
Id="INFORMIXDIR">ifx_path</ENVIRONMENT_VARIABLE>
 <ENVIRONMENT_VARIABLE
Id="INFORMIXSERVER">ifx_server</ENVIRONMENT_VARIABLE>
 <ENVIRONMENT_VARIABLE
Id="LD_LIBRARY_PATH">library_path</ENVIRONMENT_VARIABLE>
 ...
</EXECUTION>

Applications with images

The default images are in $FGLASDIR/pic. To define your own directory of pictures,
you need to declare an alias in the as.xcf and a reference to this alias from application
configuration.

Alias example

<INTERFACE_TO_CONNECTOR>
 ...
 <DOCUMENT_ROOT>$(res.path.docroot)</DOCUMENT_ROOT>
 <ALIAS Id="/images">/home/app/images</ALIAS>
 ...
<INTERFACE_TO_CONNECTOR>

An alias is like any Web Server alias. This maps a URL path to the server directory. In
this example, the alias /images is mapped to the directory /home/app/images. Then, for
example, you can access an image with the URL
http://<app_server>:6394/images/img.png, assuming img.png is in directory
/home/app/images.
After that, you need to reference this alias in the application configuration.

Picture example

<APPLICATION ...>
 <EXECUTION> ... <EXECUTION>
 <PICTURE>
 <PATH>$(connector.uri)/images</PATH>
 </PICTURE>
</APPLICATION>

Installation and Configuration

33

With the <PICTURE> tag, you can specify a path, which is the alias. $(connector.uri) is
added to make the pictures stored on the application server available from the Web
server.

For more details on configuration you can refer to the Configuration and Deployment
section.

Application with arguments

To send arguments to your Main function the keyword Arg is used in the URL.

Example

http://server/cgi-bin/fglccgi/wa/r/myapp?Arg=value1&Arg=value2

value1 is the value of the first argument and value2 is the value of the second argument.
Each argument is separated by an ampersand.

Genero Web Client

34

Installation

The installation process involves validating that your system meets the base system
requirements for the Genero Web Client, selecting the type of installation you wish to
perform.

Topics

System requirements

This section lists the software supported by the Genero Web Client
solution.

Determining the installation type

This section provides information regarding the three installation types
offered by the Genero Web Client during installation, allowing you to
select the correct type of installation for your environment.

Installation procedures

This section documents the installation procedure.

Directories and files

This section lists those directories and files created by the installation
process.

Validate your installation

This section provides instructions for testing your installation, allowing
you to verify that your installation was successful.

System Requirements
This section lists the software and software versions for operating systems, DVMs, Web
servers and user agents supported by the Genero Web Client solution.

Installation and Configuration

35

Operating Systems

The following table identifies the supported operating systems.

Identifier OS Name Platform OS Version
aix0510 IBM AIX 5.1 64 bits RS/6000 5.1
aix0510 IBM AIX 5.2 64 bits RS/6000 5.2
aix0510 IBM AIX 5.3 64 bits RS/6000 5.3

h64i112 Hewlett Packard Itanium HP-UX 11.23 64
bits Itanium 2 11.23

hpx1100 Hewlett Packard HP-UX 11 32 bits PA RISC 11

l64il23 Ligne RedHat Enterprise Edition 3 Update
4 (64bits for Itanium 2 (glibc2.3) Itanium 2 Linux distribution

with glibc 2.3

l64pl23
Ligne RedHat Enterprise Edition 4 Update
1 for processor IBM power5 64bits
(glibc2.3)

ppc64 Linux distribution
with glibc 2.3

l64xl23
Ligne RedHat Enterprise Edition 3.0
Update 5 for processor x86 64bits
(glibc2.3)

x86_64 Linux distribution
with glibc 2.3

lnxlc23 Linux Red Hat Entreprise Edition 3.0
Update 1 (glibc 2.3) Intel Linux distribution

with glibc 2.3
osf0510 Compaq Tru64 UNIX 5.1B Alpha 5.1B
s640800 SUN Microsystems Solaris 8 64 bits Sparc SPARC
s640800 SUN Microsystems Solaris 9 64 bits Sparc SPARC

sco0505 SCO Open Server 5.0.5 and 5.0.7 Intel Linux distribution
with glibc 2.3

windows Microsoft Windows Intel NT4/SP6,
2000/SP4

Dynamic Virtual Machine (DVM)

At a minimum, DVM 2.00+ is required. While the Genero Web Client may appear to
work with previous versions of the DVM, it is unsupported.

Web Server

Any web server compliant with CGI (Common Gateway Interface) version 1.1 is
supported. For development platforms, we recommend Apache httpd. For more
information, refer to http://httpd.apache.org.

Genero Web Client

36

User Agent

The following table identifies the supported user agents.

User Agent Version(s) Supported

Microsoft

• Internet Explorer (IE) 5.5 (Note: IE 5.5 is no longer supported by
Microsoft.)

• Internet Explorer (IE) 6.x

Mozilla-
based
Browsers

The browsers that derive from the Mozilla 1.7 trunk:

• Mozilla 1.7+ (Mozilla 1.6 is ok but has a few layout problems on
some Genero Web Client pages)

• FireFox 0.9+
• Netscape 7.2+
• Camino 0.8+

Note: Mozilla 1.7 is available on the latest Mandrake and Red Hat
Enterprise Linux; other Linux still come with Mozilla 1.6 (which is OK
apart from little layout problems). New versions are announced with
Mozilla 1.7+ and FireFox 0.9+.

Note: You will likely notice a difference in performance between applications delivered
through Internet Explorer and those delivered through FireFox, as FireFox has faster
JavaScript and CSS engines. Future releases of Genero Web Client will include
optimizations for Internet Explorer, especially for folder containers.

Determining the Installation Type
Since Genero Web Client includes its own specific Genero Application Server (GAS),
you are presented with a list of three types of installations. These types are:

• Installation Type 1: Install the Genero Web Client Components

Choose this type to install the Genero Application Server required by the
Genero Web Client. Installation Type 1 is all that is needed for
development purposes.

• Installation Type 2: Install the CGI Connector

Choose this type to install the CGI Connector on the machine that hosts
your Web server.

Installation and Configuration

37

• Installation Type 3: Install both the Genero Web Client Components and the
Connector

Choose this type if your application server and web server sit on the same
host (machine).

Running the installation program
You may have experienced Genero Application Server (GAS) with other products like
Genero Desktop Client ActiveX, Genero Java Client, or Genero Web Services Extension.
However, Genero Web Client is delivered with its specific Genero Application Server,
and includes its own rendering engine. As a result, the use of Genero Desktop Client
ActiveX, Genero Java Client, or Genero Web Services Extension is not possible when
using the Genero Application Server installed with the Genero Web Client. If you want to
use any of these products and the Genero Web Client simultaneously, you must install the
Genero Application Server package as well as the Genero Web Client package, and you
must ensure the two installation do not overlap (by using different directories, different
port configurations, and so on).

The Genero Web Client uses the same executable name as the Genero Application Server
for its daemon (gasd on Unix systems, gasd.exe on Windows systems) and the same file
name for its default configuration file (as.xcf). In addition, the installation directory for
the Genero Web Client is also stored in the FGLASDIR environment variable, the same
environment variable that stores the installation directory for the Genero Application
Server (FGLASDIR).

The installation procedure differs between UNIX and Windows platforms:

• Installing on UNIX
• Installing on Windows

Installing on UNIX platforms

Warning: Four J's prohibits the installation of the Genero Web Client by user "root".
You should create a specific user to own the files installed by the Genero Web Client and
to start the Genero Application Server. Once you have created the user, log in as that user
and run the installation program.

The installation program provides options that allow you to specify configuration options
from the command line . You can display the installation program options using the -h
option:

$ /bin/sh fjs-gwc-1.32.xx-lnxlc22.sh -h

Genero Web Client

38

To start the installation, run the auto-extractible shell script with the -i option:

$ /bin/sh fjs-gwc-1.32.xx-lnxlc22.sh -i

The installation program identifies the operating system and checks that all the system
requirements are met. If all system requirements are met, the installation program
prompts you to select an installation type, as described in Determining the Installation
Type:

1 --- Application Server (Application server - gasd))
2 --- Web Server (CGI Connector)
3 --- Full installation (Application server and CGI Connector)

After you select an installation type, the installation program copies the product files to
the relevant directories on disk.

Once the files are copied to disk, follow the instructions displayed.

Installing on Microsoft Windows platforms

For the Microsoft Windows platform, Genero Web Client is provided as a standard
Windows setup program. Distribution files and the installation program are provided in
the same file.

fjs-gwc-1.32.xx-windows.exe

As in Genero Web Client UNIX packages, you must select your installation type as
described in the section Determining the Installation Type.

Note: With Microsoft Internet Information Services (IIS), the installed files may not have
the right permissions. You need to update these file permissions to match IIS
permissions.

Directories and Files
The following table lists those directories and files created by or touched during the
installation process.

Directory File Description

<webserver> Web Server installation
directory.

<webserver>/<script>/ fglccgi Connector to Genero Web
Client.

Installation and Configuration

39

 fglcgienv Tool to check Web Server
environment.

 connector.xcf Connector configuration file.

$FGLASDIR Genero Web Client installation
directory.

$FGLASDIR/bin gasd Genero Web Client daemon.

$FGLASDIR/etc as.xcf Genero Web Client
configuration file.

$FGLASDIR/tpl/ generodefault.html Genero Web Client default
template.

$FGLASDIR/web/fjs/ demos.html Demonstrations listing.

$FGLASDIR/web/fjs/asapi application.js
JavaScript handling
communication with Genero
Web Client.

 wrappers.js JavaScript handling widgets
behavior.

$FGLASDIR/web/fjs/uaapi webBrowser.js JavaScript handling user agents
specifics.

$FGLASDIR/web/fjs/defaultTheme genero.css Default cascading style sheet.

 genero.js JavaScript handling the
application design.

<script> is the script directory of your web server (example "cgi-bin" for Apache and
"scripts" for Internet Information Services).

For more information on the directories and files required to support the deployment of a
Genero Web application, refer to the section Genero Web Client Application Directory
Structure.

Validate your installation

Application Server

1. Genero Web Client requires its daemon to be started. Set the Genero Web Client
environment using the script $FGLASDIR/envas and start the Genero Web Client
daemon with the gasd command.

2. Check the connection to the application server using a URI providing a direct
connection. A variety of demonstration applications are provided with the
installation of Genero Web Client:

Genero Web Client

40

 http://<myApplicationServer>:6394/wa/r/Edit
 http://<myApplicationServer>:6394/demos.html

The latter URI displays a list of the available demonstration programs.

Web Server

1. Check the installation of your application server (as stated in the previous
paragraph).

2. Ensure that your web server is correctly configured by accessing a static page
(such as index.html)

3. Launch a demonstration program using a URI inclusive of the Web server
connector.

 http://<myWebServer>/cgi-bin/fglccgi/wa/r/myApp

4. Note: On Windows platforms, when connecting via a Web server, you must
include the extension when calling fglccgi.exe, as shown in the following URL:

 http://<web_server>/cgi-bin/fglccgi.exe/demos.html

Installation and Configuration

41

Configuration and Deployment

Topics

Configuring Genero Web Client

This section discusses how a Genero Web Client administrator configures
the Genero Web Client application server and the Genero Web Client
connector.

Deploying Applications

This section explains how to deploy a Genero Web application as either an
internal application or an external application.

License Usage

This section explains how licenses are consumed when applications are
started by the Genero Web Client.

Configuring Genero Web Client
To access a Web application, a user specifies either a direct connection or a connection
through a Web server.

Direct Connection

A direct connection is when an application is accessed by connecting directly to the
application server installed with the Genero Web Client. A direct connection, when
permitted, can be requested from any user agent (Web browser); it is not browser
dependent. A direct connection is fully managed by the application server.

Genero Web Client

42

A direct connection is typically used in most development environments. Although this
method of connecting to an application is possible in a production environment, it is not
recommended.

Connection through a Web Server

The common connection method in a production environment is to connect to the
application server through a Web server. Under this configuration, the Web server
manages the connection between the User Agent and the application server.

Notes

• To use the HTTPS protocol, you must connect through a Web Server. Native
support of HTTPS by the application server is not supported at this time

• Two types of Connectors are available:
o Common Gateway Interface (CGI) executables, which are usable on any

CGI 1.1 web servers. The CGI connector executables are named fglccgi
under Unix systems and fglccgi.exe under Windows systems.

For example, if you installed the connector in the cgi-bin directory of your
web server, you'll access your application using the URL:

http://server:port/cgi-bin/fglccgi/wa/r/application

or for Windows systems:

http://server:port/cgi-bin/fglccgi.exe/wa/r/application

o Internet Information Server (IIS) plug-in, usable on any IIS web server
since version 5.

The IIS connector is named fglcisapi.dll. To access to your
application through this connector, you use the syntax:

http://server:port/scripts/fglcisapi.dll/wa/r/application

Installation and Configuration

43

Configuring the Genero Web Client

To achieve a desired level of performance, it is possible to host multiple application
servers and multiple Web servers.

For each Genero Web Client application server added to the solution, an administrator
must create an application server configuration file specifically to support that application
server. An application server configuration file specifies the resources (variables),
timeout parameters, environment variables, port settings, and application-specific details
for an application server. A full explanation of the application server configuration file is
available in the Reference >> AS and Connector configuration section of this manual.

The Genero Web Client installs with a default configuration file, as.xcf. To start an
application server using this default configuration file, run:

• gasd (to start as a daemon in the background)
• gasd -d (to start the process in the foreground)

To specify a different application server configuration file, use the "-f" option:

• gasd -f custom_as.xcf -d

where custom_as.xcf is the application configuration file.

To create an application server configuration file, create a copy of the default application
server configuration file as.xcf , rename the file, and modify the file as needed.

Configuring multiple application servers

When configuring multiple application servers, take care to assign mutually exclusive
ports between the application servers. In the application server configuration file, you
specify two types of port settings: INTERFACE_TO_CONNECTOR and INTERFACE_TO_DVM.

The INTERFACE_TO_CONNECTOR section specifies the port number where the application
server listens for requests. If you plan to have multiple application servers (gasd) on the
same host, ensure the application servers (gasd) daemons are listening on different ports.
To accomplish this, change the port offset for each application server you plan to run. For
example, one daemon can be configured to listen on port 6394 (base port of 6300 + port
offset of 94), while another can be configured to start on port 6395 (base port of 6300 +
port offset of 95).

If you do not specify unique ports for each application server, you will receive an error
when starting the second or subsequent application server, stating that the application
server could not start or that the specified port is already in use.

Genero Web Client

44

Warning!: Any change in the port set in the INTERFACE_TO_CONNECTOR section
of the application server configuration file requires a similar change in the Connector
configuration file.

The INTERFACE_TO_DVM section specifies the range of port numbers on which the
application server can start a DVM to service an application request. When setting the
range, you specify three things:

• The DVM base port
• The range interval
• The list of excluded ports

The combination of these settings determine the range of port values available for the
application server to start DVMs to service requests for applications. For example, if you
set the DVM base port as 6420, the port range interval to 10000, and list 10 excluded
ports, the range becomes 6420 through (6420 + 10000 + 10), or 6420 through 16430.

When several application servers run on the same host, each application server should
specify a mutually exclusive range of ports. As an administrator, ensure that there is no
overlapping of ports in the ranges specified for the various application servers.
Continuing with our previous example, when adding a second application server, the
DVM base port would be set to 16431.

If the ranges do overlap, the application servers continue to function, looking for the next
available DVM within its port range to service new requests. Failure to prevent
overlapping port ranges simply result in an application server being able to only run a
subset of the expected number of applications, as DVMs will not be able to start once all
ports within the specified range are in use.

Configuring a Connector (for a Web server)

For each Web server you introduce into your solution, you must install and configure a
Genero Web Client Connector. An explanation of the Connector configuration file can be
found in the Reference section of this manual, under the heading Configuring the
Application Server for GWC.

When configuring a Connector, you should ensure that each server reference reaches the
correct application server. In other words, verify that each base port and port offset set in
the connector.xcf file match a base port and port offset set in an application server
configuration file.

Installation and Configuration

45

Deploying Applications
To deploy an application, it must be defined. A Genero Web Client application can be
defined as an internal application or as an external application.

• Creating an application deployment strategy
• Defining an internal application
• Defining an abstract application
• Define an external application or application group

Creating an application deployment strategy

When an application is requested, the application server starts a DVM to handle the
request. Having all applications served by a single application server may not perform as
desired. To provide scalability, the Genero Web Client can direct specific applications to
specific application servers and/or spread the requests for one application across several
application servers.

When a user enters the URL for an application that goes through a Web server , the
Connector references its configuration file in order to identify the application server to
receive the request. For information on modifying the Connector configuration file
(connector.xcf), refer to the section Configuring the Applicaiton Server for GWC.

Once the application server has been identified, the request is passed to the application
server. The application server identifies which application to display by matching the
application asked for in the URI against the Id listed in either the application server
configuration file (as.xcf) or, if not present, by matching the application name against the
file names used for external application configuration files.

Applications defined as an external application have the benefits of enabling organization
by groups (allowing for a taxonomy of applications to be constructed), for
adding/removing applications without having to restart the application server, and
reducing risk of overwriting application configuration settings during upgrades of the
Genero Web Client.

Defining an internal application

An internal application is defined within the application server configuration file. By
default, the application configuration is defined in the as.xcf file, although an alternate
application server configuration file can be specified when starting the application server.

Genero Web Client

46

Example in as.xcf with 'gwc-demo' application

01 <?xml version="1.0" encoding="ISO-8859-6"?>
02 <?fjsApplicationServerConfiguration Version="1.30"?>
03 <CONFIGURATION>
...
181 <APPLICATION_LIST>
...
222 <!--Sample application for GWC-->
223 <APPLICATION Id="gwc-demo" Parent="defaultgwc">
224 <EXECUTION>
225 <PATH>$(res.path.fgldir.demo)</PATH>
226 <MODULE>demo.42r</MODULE>
227 </EXECUTION>
228 </APPLICATION>
228
228 <APPLICATION_LIST>
...
235 <CONFIGURATION>

Notes

The above example shows the minimum information required to define an application in
the application server configuration file.

1. The application is defined within the APPLICATION tags. The attributes shown in
the example are only a few of the attributes allowed within the APPLICATION tags.
For a more complete list of application tags, refer to the section Configuring the
Application Server for GWC.

2. The Id tag specifies the name of the application. It is this name that is referenced
in the URI.

3. The Parent tag identifies the parent application. This may be an executable or
abstract application. This application inherits the attribute values set for the parent
application. For those attributes that are assigned a value both in the parent
application definition and within this application's definition, the value set for the
application overrides the value set for the parent.

4. The EXECUTION section contains additional tags providing information needed to
execute the correct application.

5. The PATH attribute defines the directory containing the module to be executed. It
is typical to list a resource that maps to the directory than the actual directory.

6. The MODULE attribute identifies the module to execute. Note that the extension is
used.

Warning: After making changes to the internal application configuration
file, the application server (gasd) must be restarted for the changes to take
effect.

Installation and Configuration

47

Defining an abstract application

An abstract application is used to define a configuration set shared by multiple
applications. Internal and external applications will inherit an abstract application's
configuration via the Parent attribute of their APPLICATION tag.

An abstract application is defined exactly the same way an internal or external
application is, except it has an extra attribute set in its APPLICATION tag:
Abstract="TRUE"

Defining an external application or application group

Putting all the application in the as.xcf file is not scalable. Therefore, Genero Web Client
supports external applications. An external applications has its configuration defined in
an application-specific XML file with the extension .xcf.

Example

The following XML defines the Edit application in an external application
configuration file Edit.xcf.

01 <?xml version="1.0" encoding="UTF-8"?>
02 <APPLICATION Parent="defaultgwc">
03 <EXECUTION>
04 <PATH>$(res.path.fgldir.demo)/Widgets</PATH>
05 </EXECUTION>
06 </APPLICATION>

Notes

1. The name of the application is the name of the .xcf file. The Id attribute of
<APPLICATION> tag is omitted for external applications; even if included, its value
is not read. Instead, the Genero Web Client uses the name of the configuration file
to match to the value of the Id attribute.
In the example above, the Id of the application is Edit.

2. The external application configuration file is re-read at each application launch.
There is no need to restart Genero Web Client after modifying an external
configuration file.

3. The directory where Genero Web Client searches for the external application
configuration file is defined in as.xcf by the tag <GROUP
Id="_default">/some/where/</GROUP>. The default after installation is
$FGLASDIR/app.

Genero Web Client

48

Limitations

1. An external application cannot be an Abstract application.
2. An external application can only inherit from an internal application.

Application Group

Putting all the external application configuration files in just one directory is not scalable.
Therefore, Genero Web Client allows you to define groups.

Example

The following XML, from the as.xcf file, specifies the tpl-demo group.

01 <?xml version="1.0" encoding="UTf-8"?>
02 <?fjsApplicationServerConfiguration Version="1.30"?>
03 <CONFIGURATION>
...
181 <APPLICATION_LIST>
...
206 <!-- template demos group -->
207 <GROUP Id="tpl-demo">$(res.path.as.demo)/template/app</GROUP>
...
228 <APPLICATION_LIST>
...
235 <CONFIGURATION>

In this above XML, a group named tpl-demo is defined. A directory is specified for the
group. When a request is made on the URL:

http://host:6394/wa/r/tpl-demo/tpl-replace

a file named tpl-replace.xcf is sought in the $(res.path.as.demo)/template/app
directory. If this file is found, then Genero Web Client loads it, and launches the
corresponding application.

Notes

1. Group applications Id are name-of-group/name-of-application. The Id
attribute of <APPLICATION> tag is not used. In the example above, the Id of the
application is tpl-demo/tpl-replace.

2. When there is no defining <MODULE> tag in the application configuration, the
module taken by default is just name-of-application.

Related Topics

Installation and Configuration

49

• Configuring the Application Server for GWC
• Step 0: Using the Built-In Rendering

The Genero Web Client and License Usage
When a user requests an application, the gasd starts a DVM to handle the request. It is the
DVM that consumes a license. For example, one license is used when an application is
started from a browser. If within this application, a RUN or a RUN WITHOUT
WAITING is executed, the same license is used, even if the first browser opens new
browsers. If, however, an application is started in another browser (without RUN or RUN
WITHOUT WAITING), a new license is used.

When the license is freed depends on how the application is exited. A license is freed
when the applications closes, or to be more exact, when the DVM is shut down.

If the user exits the application by clicking on the cancel or exit button, the DVM is shut
down and the license is immediately freed.

If the user does not exit the application but instead closes the browser, the DVM
continues to run until the application times out (the number of seconds set for the
USER_AGENT timeout passes). At that time, the gasd closes the connection to the
DVM, the DVM shuts down, and the license is freed.

To determine the number of licenses used, run "fglWrt -u" followed by "fglWrt -a
info users".

Genero Web Client

50

Genero Web Client Application Directory
Structure

When developing applications for the Genero Web Client, it is typical to do all
development on the application server and to move specific files to the Web server during
deployment for your production environment.

Recommended Directory Structure for Development

This section discusses the recommended directory structure for the
application development phase.

Where to Place Files for Production

This section discusses the available options for the location of key files in
a production environment.

For a listing of those files created by the installation of Genero Web Client, refer to the
section "Directories and Files" (located within the Installation topic).

Recommended Directory Structure for Development
For any Genero application, you have to manage .4gl, .per, and other files associated with
the DVM (.4ad, .4st, and so on). In addition to these files, Genero Web Client introduces
html templates, CSS and javascript. For these Genero Web Client-related files, it is
suggested that you organize the directory to represent a small local web site.

Example

• myApp: root directory of your application
o src: 4GL programs, per files, and so on
o web: root directory of your web site

 img: web site pictures
 inc: javascript and CSS files
 html: html pages (templates)

This is a simple directory structure for organizing files relating to a single application.
The directory structure and organization can get more complex when you are managing
several modules or applications and/or a larger web site.

Installation and Configuration

51

For development purposes, the local web site helps you visualize the templates in the
almost final environment. To reference your local site in the configuration file as.xcf, set
an alias.

Example

<INTERFACE_TO_CONNECTOR>
 ...
 <DOCUMENT_ROOT>$(res.path.docroot)</DOCUMENT_ROOT>
 <ALIAS Id="/mysite">/myApp/web</ALIAS>
 ...
</INTERFACE_TO_CONNECTOR>

In this example, the alias "/mysite" enables access to the files stored in the directory
"/myApp/web/". Using the alias, you can connect to the local web site using the URI
http://<app_server>:6394/mysite/page.html, where page.html is in the
myApp/web directory.

For deployment, you can copy the entire web site to your Web server, or set a special
directory to gather the modified templates. This makes the template configuration in the
as.xcf easier.

To avoid breaking links, build the web site with absolute paths. For example, specify
"/mysite/img/pic.png" not "../img/pic.png".

Where to Place Files for Production
Development and testing of your Web applications will likely occur using a direct
connection to the application server. When it is time to deploy your application and
connect via a Web server, you may want to move some of the files sitting on your
application server to the Web server. In general, Four J's recommends you keep all files
on the application server and move them to the Web server only if performance issues
arise and you have no choice but to move files to the Web server.

Topics

• Which files can exist on the application server, Web server, or both?
• Keeping files on the application server.
• Moving files to the Web server.
• Maintaining files on both the application server and Web server.

Genero Web Client

52

Files involved

For production, you must decide where to place the following files:

• CSS
• JavaScript
• Images
• Documents (html, MS Word, PDF, and so on)

Note: The template files (html) must be located on the application server.

Leaving the Files on the Application Server

If you plan to leave the files on the application server only, you should not have to do any
alterations to the existing files with the possible exception of the template files. In order
for a Web server to access files stored on the application server, $(connector.uri) must
be referenced. Remember, $(connector.uri) is replaced by:

• Nothing when you access the application by connecting directly to the application
server.

• /cgi-bin/fglccgi/<session> when you access via a Web server. Therefore,
when going through a Web server, $(connector.uri) is required to retrieve
documents sitting on the application server.

Moving Files onto the Web Server

When moving files from the application server to the Web server, you must:

• Ensure you have defined the same aliases on the Web server as you have declared
in the application server configuration file (as.xcf). Refer to the <ALIAS> section
in your application configuration file.

• Move the CSS, JavaScript, and documents to the right place on the Web server (in
the directories specified by the aliases) .

• Move template images. Template images are those used by the html page, not by
your application (background images, logos, and so on).

• Whether you move application images depends on whether the image extension is
referenced in your application.

o If you haven't specified the image extension in your application, gasd will
automatically make the extension resolution for you (by searching for
.png, .gif, and so on). Such images need to remain on the application
server. Otherwise, the html page will search for an image without
extension on your Web server and won't find it.

o If you have specified the extension in your program, you can move the
image to the Web server.

o Remove $(connector.uri) from your <PICTURE> path in as.xcf.

Installation and Configuration

53

o In the template file, remove reference to $(connector.uri) where the
path references files now stored on the Web server.

Locating Files on both the Application Server and the Web Server

If you wish to allow access from both the Web server or the application server
simultaneously, you should:

• Put the files on both the application server and the Web server.
• Remove references to $(connector.uri).

By removing the $(connector.uri), as long as the files exist on both the application
server and the Web server, you can access the files regardless of the connection type
used.

Tips:

• If you do not have the necessary files on the Web server and you remove
$(connector.uri), the Web server will not be able to access files that sit on the
application server files.

• You may decide to leave a subset of the files on the application server and not
place them on the Web server. For example, you may decide to leave genero.css
on the application server, and only copy your custom CSS files to the Web server.
In this situation, you would leave $(connector.uri) in the path to genero.css in
your template.

Genero Web Client

54

Configuring the Application Server for GWC

GWC configuration is handled by two files: the Genero Application Server configuration
file (default as.xcf) to configure the application server and the GAS Connector
configuration file (connector.xcf) to configure the GAS Connector.

In this section, concepts for completing the configuration of the Genero Application
Server configuration file for use with the GWC is presented. This section is not intended
to be a complete reference for the configuration of this file; it is intended to discuss those
features you must understand to configure this file for the GWC.

Topics

This section covers the configuration of the application server for those
areas specific to the Genero Web Client. For other configuration guidance,
refer to the "Genero Application Server Manual", Section "Configuration
Reference", Chapter "Application Server".

• Applications
• Application Groups
• Application Definitions

Complete configuration reference documentation

• The reference documentation for the Genero Application Server configuration file
(as.xcf) can be found in "Genero Application Server Manual", Section
"Configuration Reference", Chapter "Application Server".

• The reference documentation for the GWC Connector configuration file
(connector.xcf) can be found in "Genero Application Server Manual", Section
"Configuration Reference", Chapter "Connector".

Applications
The last section of the as.xcf file is the applications list. It can contain application groups,
abstract applications, and application definition.

• Application group
• Application definition

<APPLICATION_LIST>
 [group | application] [...]
</APPLICATION_LIST>

Installation and Configuration

55

Application group
Application groups are used to give a hierarchy to your applications. It actually defines
an alias used in the application URL which points to the physical directory holding the
external applications configuration files.

 <GROUP Id="groupId" > path </GROUP>

Notes

1. groupId is the alias
2. path is the physical path to the directory

Example

01 <GROUP Id="_default">$(res.path.app)</GROUP>

The id _default is a key word that defines the default group.
For example to access the Edit application the URL is:
http://server/cgi-bin/fglccgi/wa/r/Edit

02 <GROUP Id="tut-demo">$(res.path.as.demo)/tutorial/app</GROUP>

This group gather applications related to the tutorial.
For example, to access to the tutorial first step use the URL:
http://server/cgi-bin/fglccgi/wa/r/tut-demo/tutorialStep1

Application definition
The APPLICATION tag defines an application environment. In this tag, you can define
local resources, change the execution environment, the timeout settings and the picture
and output settings. You can refer to previously defined components by using the tag
attribute Using

An abstract application is used to share common configuration between multiple child
applications. An abstract application can't be instantiated.

Genero Web Client

56

<APPLICATION Id="appId" [Abstract="{ TRUE | FALSE }"] [
Parent="pAppId"] >
 [resource] [...]
 [<EXECUTION [Using=" exCompId "] > execution </EXECUTION>]
 [<TIMEOUT [Using=" timeCompId "] > timeout </TIMEOUT>]
 [<PICTURE [Using=" picCompId "] > picture </PICTURE>]
 [<OUTPUT Rule="UseGWC">
 <MAP Id="DUA_GWC" Allowed=" { TRUE | FALSE } " >
 [<THEME [Using=" themeCompId "] > theme </THEME>]
 </MAP>
 </OUTPUT>]
</APPLICATION>

Notes

1. appId is the application identifier
2. pAppId is the parent application identifier.
3. resource is a local RESOURCE definition
4. exCompId, timeCompId, picCompId and themeCompId are components identifiers
5. the content of execution, timeout, picture and theme is the same as the content of

their respective components

Example (excerpt from tutorialStep5.xcf)

01 <APPLICATION Parent="demo-tut-abstract">
02 <RESOURCE Id="res.template.tutorial.addcard"
Source="FILE">$(res.path.demo.dem-
tut)/web/tutorial/tutorialStep3.html</RESOURCE>
03 <EXECUTION>
04 <PATH>$(res.path.demo.dem-tut)/src</PATH>
05 <MODULE>card.42r</MODULE>
06 </EXECUTION>
07 <OUTPUT>
08 <MAP Id="DUA_GWC">
09 <THEME>
10 <TEMPLATE
Id="addcard">$(res.template.tutorial.addcard)</TEMPLATE>
11 </THEME>
12 </MAP>
13 </OUTPUT>
14 </APPLICATION>

Parent="demo-tut-abstract" defines that the application inherit demo-tut-abstract
application definition.
The execution section is redefined to use a new path to the program and a new main
module.
According to the output section, if an application window has "addcard" style, the
template for the window rendering is $(res.template.tutorial.addcard) .

Installation and Configuration

57

Troubleshooting Installation Issues

In this section, troubleshooting issues are presented as Frequently Asked Questions.

• Startup questions
o Do I need to be superuser to install Genero Web Client?
o What does "address already in use" mean?
o Why do I receive a 404/400 error when I use fglccgi.exe or fglcisapi.dll?
o Why are some widgets partially rendered?

• Common errors
o Bypassed triggers
o Runtime error
o Unsafe object

• How do I use the debugger with a Genero Web Client application?

Startup questions

Do I need to be superuser to install Genero Web Client ?

You do not need to be superuser to install Genero Web Client, however some parts of
Genero Web Client need to be installed with special rights. For example, installation of
the connector assumes that you have the rights to install the product in the web server
directories.

Also, although this is NOT recommended, you may want to install Genero Web Client in
the DVM directory. Again, this is not recommended. If, however, you intend to install
Genero Web Client in $FGLDIR, then check the rights for this directory.

What does "address already in use" mean ?

The message "address already in use" means that an appliction server (gasd) has already
been started on the same port. Check in the AS configuration file (default
$FGLASDIR/as.xcf) to identify the port where the application server (gasd) started. The
port number is identified in the following section:

<INTERFACE_TO_CONNECTOR>
 <TCP_BASE_PORT>6300</TCP_BASE_PORT>
 <TCP_PORT_OFFSET>94</TCP_PORT_OFFSET>
 ...
</INTERFACE_TO_CONNECTOR>

Genero Web Client

58

The default port specified is 6394 - derived by adding the base port (6300) to the port
offset (94). Set the values to a port which is not used by another application.

Why do I receive a 404/400 error when I use fglccgi.exe or fglcisapi.dll ?

With IIS 6.x, running cgi or isapi is disabled by default. To use fglccgi.exe or fglcgisapi,
you need to enable their execution.

1. In the IIS manager console, go to the "Web Service Extension".
2. Select "CGI Extensions".
3. Click on "Allow".
4. Repeat this process with "ISAPI Extensions".

Why are some widgets partially rendered ?

The default rendering is accomplished with CSS and javascript. If you lack one of the
two features, the rendering may be incorrect.

• Check that your browser meets the browser requirements and that it supports
javascript.

• Check your installed files, especially the directory "web/fjs" on the application
server (AS) side.

• Check that CSS and javascript files are reachable on the AS side.
o With direct connection, type the URL in your browser -

http://<server>:6394/fjs/defaultTheme/genero.css
o With connection through a web server, apache for example, use

http://<server>/cgi-bin/fglccgi/fjs/default/genero.css
• Check that your templates have $(connector.uri) in front of each reference to a

file on the application server. For example, genero.css is on the application server,
the reference to this file in the default template is:
<link rel="stylesheet"
href="$(connector.uri)/fjs/defaultTheme/genero.css"
type="text/css"/>

Common errors

Bypassed triggers

In page mode if you have triggers in your input, you may encounter this error:

Installation and Configuration

59

An error has occurred...
Error:

GWC: Edit - There is at least one bypassed trigger.
 Bypassed trigger owner field : r1(115)
 Trigger type: On Change

In page mode, triggers in input are not allowed, as there is no communication to the
DVM when going from field to field.

Runtime error

This error appears when the application cannot start or cannot continue. This may due to
a configuration error or an application error. Check in the AS log file.

An error has occurred...
Error:

Runtime error

Unsafe object

The object you tried to access does not belong to the AUI tree.

An error has occurred...
Error:
Access to an unsafe object (operator *)

Using the Debugger
This section provides instructions for using the debugger with Genero Web Client.

• Using the debugger on Windows
• Using the debugger on Unix

How to set up the debugger for Genero Web Client on the Windows
platform:

To run the FGL debugger, you have to tell gasd not to run "fglrun" directly; instead, gasd
must open a DOS command or a xterm window and run "fglrun -d".

Genero Web Client

60

1. In %FGLASDIR%/etc/as.xcf, change:
 <RESOURCE Id="res.dvm.wa"
Source="INTERNAL">$(res.fgldir)\bin\fglrun.exe</RESOURCE>
to:
 <RESOURCE Id="res.dvm.wa" Source="INTERNAL">cmd /K start
cmd</RESOURCE> (Windows)
 <RESOURCE Id="res.dvm.wa"
Source="INTERNAL">/home/test/xterm.sh</RESOURCE> (Unix)

2. In the application configuration file (default as.xcf), change the DVM availability
timeout value to allow you time to type your debug commands.
For example, change:
 <DVM_AVAILABLE>10</DVM_AVAILABLE>
to:
 <DVM_AVAILABLE>60</DVM_AVAILABLE> This change allows you 60 seconds in
which to type your debug commands.

3. Restart the gasd. (The gasd must be restarted whenever you modify the
application server configuration file (default as.xcf) in order for the changes to
take effect.)

4. Enter the application URL in your browser. This opens a shell window.
5. Type the commands to run the application:

 fglrun -d test.42r <<< Sets the debugger on program test.42r.
 b test:20 <<< Sets a break point.
 run <<< Runs the application.
This refreshes the browser like FGL debugger does with GDC.

Tip: You can also run gasd from the command line and override some the settings for
res.dvm.wa:

• gasd -E res.dvm.wa="cmd /K start cmd" (Windows)
• gasd -E res.dvm.wa="/home/test/xterm.sh" (Unix)

Caution: Using gasd as a service

If you are using gasd as a service, you need to allow the service to interact with the
desktop.

• Select the service.
• Open the properties
• In the "Log On" folder tab, check "Allow service to interact with desktop".
• Apply the change.
• Restart the service.

How to Set Up the Debugger for Genero Web Client on Unix

The following instructions assume that you are operating within a graphical environment.
If you are not operating within a graphical environment, simply enter the commands you
want to process in the script.

Installation and Configuration

61

To run the gasd, enter the following:

 gasd -E res.dvm.wa="/home/test/xterm.sh"

In the xterm.sh shell, you have: /usr/X11R6/bin/xterm (the complete path to xterm).

This removes all of the options given by gasd along with all error messages. A new xterm
is opened. At this point, proceed as you would if you were running your applications
from a Windows platform.

Genero Web Client

62

Internationalization

This section explains how the Genero Web Client handles international applications.

Topics

Encoding Architecture

This section describes the GWC encoding architecture.

Charsets Configuration

This section identifies the four places where character sets (charsets) can
be defined.

Supported Charsets

This section lists all character sets (charsets) known by the GWC.

Encoding Architecture
International applications are applications using one or more non-ASCII character sets to
support one or more languages. The diagram below summarizes the GWC encoding
architecture:

Installation and Configuration

63

Charsets Configuration
Charsets can be defined in four places :

1. With environment locales when launching a DVM.
2. In HTML charset in template.
3. Inside XML files used by GWC.
4. With environment locales when launching GWC.

DVM Locale

If application files (i.e. .4gl, .per, .4st files) contain characters in a specific encoding, the
DVM has to run in this encoding.

Setting a DVM in a specific encoding is described in "BDL Reference Manual", section
"Programming Applications", chapter "Localization". Locales can be set in the GWC
executing environment, or with the <ENVIRONMENT_VARIABLE> tag inside the as.xcf file.

Example in as.xcf with KOI8-R (Russian) charset:

01 <?xml version="1.0" encoding="UTF-8"?>
02 <?fjsApplicationServerConfiguration Version="1.30"?>
...
130 <COMPONENT_LIST>
131 <EXECUTION_COMPONENT Id="cpn.wa.execution.local">
132 <ENVIRONMENT_VARIABLE
Id="FGLDIR">$(res.fgldir)</ENVIRONMENT_VARIABLE>
133 <ENVIRONMENT_VARIABLE
Id="FGLGUI">$(res.fglgui)</ENVIRONMENT_VARIABLE>
134 <ENVIRONMENT_VARIABLE
Id="PATH">$(res.path)</ENVIRONMENT_VARIABLE>
...
139 <ENVIRONMENT_VARIABLE Id="LC_ALL">ru_RU.KIO8-
R</ENVIRONMENT_VARIABLE>
140 <DVM>$(res.dvm.wa)</DVM>
141 </EXECUTION_COMPONENT>
...
158 </COMPONENT_LIST>

HTML charset

In order to correctly handle application data in the User Agent, the HTML page charset
needs to be set. Because GWC generates HTML pages from templates, charset needs to
be defined in templates. Information about setting a charset in an HTML page can be
found in HTML Specification - The Document Character Set.

Genero Web Client

64

Example in generodefault.html with BIG5 (Chinese) charset:

01 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
02 <html>
03 <head>
04 $(res.meta-tags)
05 <meta http-equiv="Content-Type" content="text/html; charset=BIG5">
06 <title>Title of the page</title>
07
08 <script language=javascript
src="$(connector.uri)/fjs/uaapi/webBrowser.js"></script>
09 <script language=javascript
src="$(connector.uri)/fjs/asapi/application.js"></script>
...
19 </head>
...

XML Encoding

GWC uses XML files like as.xcf or external application configuration files, and these
files may include international characters. How to define an encoding in an XML file is
described in Extensible Markup Language - Character Encoding.

Example in as.xcf with ISO-8858-6 (Arabic) charset:

01 <?xml version="1.0" encoding="ISO-8859-6"?>
02 <?fjsApplicationServerConfiguration Version="1.30"?>
03 <CONFIGURATION>
...

GWC System Encoding

GWC interacts with Operating Systems in many ways:

• Writes log files
• Opens files defined in as.xcf
• Reads arguments on command line
• etc

In these cases GWC needs to know which encoding is used by the Operating System. The
Operating System encoding is defined via environment variables as described in The
Single Unix - Specification Version 2 - Locale.

Example in command line with th_TH.tis620 (Thai) locale:

01 LC_ALL=th_TH.tis620 gasd -d
Then Gwc starts with 'TIS-620' system encoding

Installation and Configuration

65

Locales supported by an Operating System can be displayed with command locale -a.
If the Operating System doesn't support the desired encoding, or if a specific encoding is
needed, the system encoding can be defined with the FGLAS_SYSENCODING environment
variable which overrides system locales.

Example in command line with UTF-8 :

01 LC_ALL=th_TH.tis620 FGLAS_SYSENCODING=UTF-8 gasd -d
Then Gwc starts with 'UTF-8' system encoding

Note: Encodings have different names across Operating Systems. To unify them, GWC
manages an encoding name conversion. For each UNIX platform, a charset.alias file
is provided for mapping the Operating System encoding name to a canonical encoding
name.

Default Encoding

By default GWC uses UTF-8 encoding for handling all Unicode characters.

Supported Charsets
The following list contains all character sets known by the GWC. One coded character
set can be listed with several different names. Depending on your Operating System,
DVM may support these character sets. Read "BDL Reference Manual", section
"Programming Applications", chapter "Localization" for more information.

ANSI_X3.4-1968 ANSI_X3.4-1986 ASCII CP367 IBM367 ISO-IR-6 ISO646-US
ISO_646.IRV:1991 US US-ASCII CSASCII
UTF-8
ISO-10646-UCS-2 UCS-2 CSUNICODE
UCS-2BE UNICODE-1-1 UNICODEBIG CSUNICODE11
UCS-2LE UNICODELITTLE
ISO-10646-UCS-4 UCS-4 CSUCS4
UCS-4BE
UCS-4LE
UTF-16
UTF-16BE
UTF-16LE
UTF-32
UTF-32BE
UTF-32LE
UNICODE-1-1-UTF-7 UTF-7 CSUNICODE11UTF7
UCS-2-INTERNAL
UCS-2-SWAPPED
UCS-4-INTERNAL
UCS-4-SWAPPED
C99
JAVA

Genero Web Client

66

CP819 IBM819 ISO-8859-1 ISO-IR-100 ISO8859-1 ISO_8859-1 ISO_8859-1:1987
L1 LATIN1 CSISOLATIN1
ISO-8859-2 ISO-IR-101 ISO8859-2 ISO_8859-2 ISO_8859-2:1987 L2 LATIN2
CSISOLATIN2
ISO-8859-3 ISO-IR-109 ISO8859-3 ISO_8859-3 ISO_8859-3:1988 L3 LATIN3
CSISOLATIN3
ISO-8859-4 ISO-IR-110 ISO8859-4 ISO_8859-4 ISO_8859-4:1988 L4 LATIN4
CSISOLATIN4
CYRILLIC ISO-8859-5 ISO-IR-144 ISO8859-5 ISO_8859-5 ISO_8859-5:1988
CSISOLATINCYRILLIC
ARABIC ASMO-708 ECMA-114 ISO-8859-6 ISO-IR-127 ISO8859-6 ISO_8859-6
ISO_8859-6:1987 CSISOLATINARABIC
ECMA-118 ELOT_928 GREEK GREEK8 ISO-8859-7 ISO-IR-126 ISO8859-7
ISO_8859-7 ISO_8859-7:1987 CSISOLATINGREEK
HEBREW ISO-8859-8 ISO-IR-138 ISO8859-8 ISO_8859-8 ISO_8859-8:1988
CSISOLATINHEBREW
ISO-8859-9 ISO-IR-148 ISO8859-9 ISO_8859-9 ISO_8859-9:1989 L5 LATIN5
CSISOLATIN5
ISO-8859-10 ISO-IR-157 ISO8859-10 ISO_8859-10 ISO_8859-10:1992 L6
LATIN6 CSISOLATIN6
ISO-8859-13 ISO-IR-179 ISO8859-13 ISO_8859-13 L7 LATIN7
ISO-8859-14 ISO-CELTIC ISO-IR-199 ISO8859-14 ISO_8859-14 ISO_8859-
14:1998 L8 LATIN8
ISO-8859-15 ISO-IR-203 ISO8859-15 ISO_8859-15 ISO_8859-15:1998 LATIN-9
ISO-8859-16 ISO-IR-226 ISO8859-16 ISO_8859-16 ISO_8859-16:2001 L10
LATIN10
KOI8-R CSKOI8R
KOI8-U
KOI8-RU
CP1250 MS-EE WINDOWS-1250
CP1251 MS-CYRL WINDOWS-1251
CP1252 MS-ANSI WINDOWS-1252
CP1253 MS-GREEK WINDOWS-1253
CP1254 MS-TURK WINDOWS-1254
CP1255 MS-HEBR WINDOWS-1255
CP1256 MS-ARAB WINDOWS-1256
CP1257 WINBALTRIM WINDOWS-1257
CP1258 WINDOWS-1258
850 CP850 IBM850 CSPC850MULTILINGUAL
862 CP862 IBM862 CSPC862LATINHEBREW
866 CP866 IBM866 CSIBM866
MAC MACINTOSH MACROMAN CSMACINTOSH
MACCENTRALEUROPE
MACICELAND
MACCROATIAN
MACROMANIA
MACCYRILLIC
MACUKRAINE
MACGREEK
MACTURKISH
MACHEBREW
MACARABIC
MACTHAI
HP-ROMAN8 R8 ROMAN8 CSHPROMAN8
NEXTSTEP
ARMSCII-8
GEORGIAN-ACADEMY

Installation and Configuration

67

GEORGIAN-PS
KOI8-T
MULELAO-1
CP1133 IBM-CP1133
ISO-IR-166 TIS-620 TIS620 TIS620-0 TIS620.2529-1 TIS620.2533-0
TIS620.2533-1
CP874 WINDOWS-874
VISCII VISCII1.1-1 CSVISCII
TCVN TCVN-5712 TCVN5712-1 TCVN5712-1:1993
ISO-IR-14 ISO646-JP JIS_C6220-1969-RO JP CSISO14JISC6220RO
JISX0201-1976 JIS_X0201 X0201 CSHALFWIDTHKATAKANA
ISO-IR-87 JIS0208 JIS_C6226-1983 JIS_X0208 JIS_X0208-1983 JIS_X0208-
1990 X0208 CSISO87JISX0208
ISO-IR-159 JIS_X0212 JIS_X0212-1990 JIS_X0212.1990-0 X0212
CSISO159JISX02121990
CN GB_1988-80 ISO-IR-57 ISO646-CN CSISO57GB1988
CHINESE GB_2312-80 ISO-IR-58 CSISO58GB231280
CN-GB-ISOIR165 ISO-IR-165
ISO-IR-149 KOREAN KSC_5601 KS_C_5601-1987 KS_C_5601-1989 CSKSC56011987
EUC-JP EUCJP EXTENDED_UNIX_CODE_PACKED_FORMAT_FOR_JAPANESE
CSEUCPKDFMTJAPANESE
MS_KANJI SHIFT-JIS SHIFT_JIS SJIS CSSHIFTJIS
CP932
ISO-2022-JP CSISO2022JP
ISO-2022-JP-1
ISO-2022-JP-2 CSISO2022JP2
CN-GB EUC-CN EUCCN GB2312 CSGB2312
CP936 GBK MS936 WINDOWS-936
GB18030
ISO-2022-CN CSISO2022CN
ISO-2022-CN-EXT
HZ HZ-GB-2312
EUC-TW EUCTW CSEUCTW
BIG-5 BIG-FIVE BIG5 BIGFIVE CN-BIG5 CSBIG5
CP950
BIG5-HKSCS BIG5HKSCS
EUC-KR EUCKR CSEUCKR
CP949 UHC
CP1361 JOHAB
ISO-2022-KR CSISO2022KR

Customization of the Application Interface

69

Customizing Web Applications

We assume that you have read the section How the GWC Uses Web Technologies and
understand the principles. This section describes how you modify the default GWC
rendering to customize your Web application. Understanding this chapter requires
knowledge of CSS and JavaScript. Refer to the tutorials at http://www.w3schools.com to
get an overview of these technologies.

The default GWC rendering is used for all applications, however individual applications
can be customized. There are three main ways to customize this rendering: CSS,
JavaScript and Template Language. Each application can configure its own templates and
reference specific CSS and JavaScript.

Topics

Preparing for Customization

This section covers organizing your directory structure for application
customization, creating a template, declaring one or more templates for
your application, and applying a template.

Customize with CSS

This section covers customizing an application's look-and-feel using CSS,
declaring a style, overriding existing styles, and adding user styles to
specific widgets.

Customize with Templates Language

This section discusses the use of template language to merge the business
logic seamlessly into the HTML pages that display the application.

Customize with JavaScript

This section discusses the use of JavaScript to ease the interaction with
users and to refine the application's design.

Genero Web Client

70

Preparing for Customization
To customize your application, create your own CSS, JavaScript, and template files. We
advise you to leave the CSS, JavaScript and templates delivered by the installation of
GWC unchanged.

Steps

• Organize your directory structure for the files that enable customization of the
application.

• Create a template for the application to use.
• Declare the template as available for use by the application.
• Apply the template to a window or form.

Organize Your Files

Files required for the deployment of a GWC application should be organized as outlined
in the section GWC Application Directory Structure.

Create a Template

To create a custom template, either create an HTML template from scratch or create a
copy of $FGLSADIR/tpl/generodefault.html and rename the copy. The custom template
should be created in the appropriate directory (as specified in the section GWC
Application Directory Structure).

In the custom template, add or replace the links to your own CSS and JavaScript files.
The links are typically found in the <HEAD> section of the HTML document, although the
<SCRIPT> tag for JavaScript files may also be found in the <BODY> section.

Example for CSS:

01 <link rel="stylesheet" href="$(connector.uri)/mysite/inc/myapp.css"
type="text/css"/>

(assuming your CSS file is named myapp.css and stored in /myApp/web/inc directory,
and assuming that an alias "/mysite" has been created to reference "/myApp/web", as
shown in the example in the section GWC Application Directory Structure.)

$(connector.uri) is added for the deployment with a Web server.

Customization of the Application Interface

71

Example for JavaScript:

01 <script language=javascript
src="$(connector.uri)/mysite/inc/myapp.js"></script>

(assuming your JavaScript file is named myapp.js and stored in /myapp/web/inc
directory, and assuming that an alias "/mysite" has been created to reference
"/myApp/web", as shown in the example in the section GWC Application Directory
Structure.)

Declare a Template

Once you have created a template, you must declare the template for your application.
You can have several templates for one application. Each template defines a style for the
application window, so a template is related to a window style.

Example:

01 <APPLICATION Id="demotpl" Parent="defaultgwc">
02 <RESOURCE Id="res.template.mytpl"
Source="FILE">/myapp/web/html/tpl.html</RESOURCE>
03 <RESOURCE Id="res.template.mytpl2"
Source="FILE">/myapp/web/html/tpl2.html</RESOURCE>
04 <OUTPUT>
05 <MAP Id="DUA_GWC">
06 <THEME>
07 <TEMPLATE Id="style1">$(res.template.mytpl)</TEMPLATE>
08 <TEMPLATE Id="style2">$(res.template.mytpl2)</TEMPLATE>
09 </THEME>
10 </MAP>
11 </OUTPUT>
12 </APPLICATION>

where res.template.mytpl is a file resource, as in line 02:

<RESOURCE Id="res.template.mytpl"
Source="FILE">/myapp/web/html/tpl.html</RESOURCE>

Apply a Template

A template can be applied to a window or a form. There are two ways to use a template.

Template applied in .per file

01 LAYOUT(TEXT="Example", STYLE="style1")

Genero Web Client

72

The STYLE attribute of the LAYOUT section specifies the template to use for this window.
Remember that "style1" references the tpl.html template.

Template applied in .4gl file

01 OPEN WINDOW win WITH FORM "aform" ATTRIBUTES(STYLE="style1")

The STYLE attribute for WINDOW specifies the template to use.

Customize with CSS
CSS is the fastest and the simplest way to change your application's look. We use CSS 2
standards described on the W3C site. Most generated HTML elements have classes and
containers (<DIV>) so you can change the widget's look and place the elements where you
want.

Topics

• The default Genero CSS.
• Declaring styles.
• Overriding existing styles.
• Adding user-defined styles.

The Default Genero CSS

The file genero.css lists the default rendering styles. This file is located in
$FGLASDIR/web/fjs/defaultTheme directory. In the CSS reference section, you have
the available styles for each widget. GWC styles are prefixed by the letter "g". Note that
not all styles listed in the CSS Reference section have a default defined in the default
genero.css file.

Example using CSS

The following screenshot is the Edit demonstration program using the default template
generodefault.html, which specifies the genero.css style sheet.

Customization of the Application Interface

73

Example without using CSS

The following screenshot is the same program (the Edit demonstration program) without
a CSS applied. Although the application is fully functional, the appearance is not as nice
as the program displayed using the default CSS.

Declaring styles

When you define a new style or redefine an existing style, you can either use LINK tags to
include styles declarations defined in an external file or you can declare the style directly
in your HTML template using STYLE tags. When style information is read by the browser,
if a style is defined multiple times and/or in multiple locations, the one with the highest
weight is used. For information regarding the weight between various styles, refer to the
documentation provided on the W3C site.

Genero Web Client

74

Adding a New Style Sheet

After creating a new style sheet in an external file, use LINK tags to include the style
declarations defined in the external file. The LINK tag is added to the template. In the
code snippet below, styles defined in mystyles.css override styles defined in genero.css
in accordance with the priorities described in CSS standards.

01 <script language=javascript
src="/fjs/uaapi/webBrowser.js"></script>
02 <script language=javascript
src="/fjs/asapi/application.js"></script>
03 <script language=javascript
src="/fjs/defaultTheme/genero.js"></script>
04 <link rel="stylesheet" href="/fjs/defaultTheme/genero.css"
type="text/css"/>
 ...
05 <link rel="stylesheet" href="/css/mystyle.css" type="text/css"/>

Using the STYLE tag

Use STYLE tags to declare a new style directly in the template file. This style will only
be available to applications that use this template file.

01 <script language=javascript
src="/fjs/uaapi/webBrowser.js"></script>
02 <script language=javascript
src="/fjs/asapi/application.js"></script>
03 <script language=javascript
src="/fjs/defaultTheme/genero.js"></script>
04 <link rel="stylesheet" href="/fjs/defaultTheme/genero.css"
type="text/css"/>
 ...
05 <style type="text/css">
06 .mystyle {
07 width: 100%;
08 background-color: beige;
09 }
10 </style>

Overriding existing styles

To override defined styles, you have to give the same selector and add new styles or
redefine existing styles.

For example, here is the style declaration from the default Genero CSS (genero.css) for
the selector .gDialog LI. This selector is for a list item of the action panel (i.e., an
action) as described in the rendered HTML section of the manual.

Customization of the Application Interface

75

01 .gDialog LI {
02 cursor: pointer;
03 white-space: nowrap;
04 text-align: left;
05 border-bottom: 1px solid;
06 border-color: burlywood;
07 }

To add a new style for this selector -- for example, a background color -- simply add the
CSS style background-color for this selector in either a custom CSS file or in a STYLE
tag in your template file:

01 .gDialog LI {
02 background-color: red;
03 }

As this is a new style, it will be added to the style information read from the genero.css
file for this selector.

If a style already has been defined for the selector, you redefine the style. For example, to
change the border appearance for the actions in the action panel, simply redefine the
border-bottom style. To redefine the style, proceed as above and add the style
information in your style declaration:

01 .gDialog LI {
02 background-color: red;
03 border-bottom: 3px dashed;
04 }

As the style border-bottom is defined twice (initially in the genero.css file and again in
your style declaration), the one with the higher weight will be used.

Adding user styles

You can add your own styles for any widget by adding the STYLE attribute to your widget
in the .per file. The STYLE attribute value is transmitted to the HTML class attribute.

01 EDIT f001=FORMONLY.field1, STYLE="style1 style2";

Generated HTML

01 <input class="edit currentField typeString style1 style2" id=field1
type=text value="">

Genero Web Client

76

Corresponding CSS

01 .style1 {
02 width: 100%;
03 }

04 .style2 {
05 border: 1px solid gold;
06 background-color: beige;
07 }

Customize with Templates
While applications can be run with the default rendering, you may want to customize
your application further. The provision of a template language makes this possible. An
HTML page becomes a template when you introduce template language into the page.

In the typical web application development process, web designers take care of the
HTML pages and developers work on business logic. When it is time to merge design
and business logic, it can prove difficult and one often feels as if the work is being done
twice.

The templates approach allows smoother passage of this step. Developers can add GWC
template instructions to HTML pages; these pages can be modified later by designers
without syntax errors.

In the Concepts chapter, the default template displays the entire application window.
Using template language, you can choose the granularity of the default rendering, ranging
from the entire application window to the value of a table cell.

Here is an example of how you can proceed:

1. Create your HTML page.
2. Locate the values or elements you want GWC to handle.
3. Add the corresponding template instructions.

For more information

• Refer to the Tutorial for a step-by-step example of a application being customized
by changes to the template.

Customization of the Application Interface

77

Customize with JavaScript
JavaScript has been added to ease the interaction with users and to refine the application's
design. An application without JavaScript is fully functional but will not integrate new
features like incremental mode, or the look and feel that makes GWC more user-friendly.
Modifying default JavaScript files is not supported.

We recommend leaving the default JavaScript files unchanged. To add your own
JavaScript, make a template and reference it as described at the beginning of this chapter.

Genero Web Client

78

Customization FAQ

This section presents Frequently Asked Questions regarding customization.

• How do I use a custom template ?
• How do I use a custom cascading style sheet ?

How do I use a custom template ?
You need to configure your application to use the custom template. This template is a
type of style that you apply to an application window.

See Declare a template and Apply a template in the Customize chapter for more details.

How do I use a custom cascading style sheet ?
This CSS has to be referenced in the application HTML template.

For more information see Preparing Customization and Customize with CSS in the
Customize chapter.

Migration

79

Migrating Genero Applications to GWC

An application is a program designed to complete a specific task. A Web application is an
application designed for the Web. When discussing Web applications, a natural tendency
is to think in terms of Web sites. There are two types of web sites: sites that provide static
content and sites that provide functionality and data storage. The latter represents Web
applications, and GWC belongs to this second category.

Web applications are gaining in popularity due to the ease of deployment to the end-user:
a Web application is surfaced in a browser on the client machine; no additional software
needs to be installed on the client. This does not mean, however, that all applications will
work as Web applications. While Web applications can take advantage of an HTML
environment and browser technology, they are also limited by the restrictions that are
inherent with these technologies. This chapter explains precautions to take before writing
a GWC application.

Topics

Business Logic and GWC

Certain Genero features are not supported by the GWC. In this section,
these unsupported features are explained and, where possible, alternate
solutions are specified.

• Accelerator
Keys

• StartMenus
• MDI
• ProgressBars

• On Idle
• Front Calls
• Triggers
• RUN and

RUN
WITHOUT
WAITING

Presentation Logic and GWC

The presentation of a GWC application is dependant on a variety of
factors, including how the key elements of a Web application are
presented, the size of the user agent, the fonts used for presentation, and so
on.

Genero Web Client

80

Business Logic and GWC
A Genero application separates the business logic from the presentation logic, and these
principles remain true for GWC applications. We advise you to become familiar with
Genero guidelines first.

Accelerator keys

GWC does not support all accelerator keys. Browsers have their own accelerator keys
(also known as shortcuts); application-defined accelerator keys may interfere with them.
For example, if your application uses accelerator keys [F1] or [F5], they conflict with the
Internet Explorer shortcuts for "Help" and "Reload".

The following table identifies the default accelerator keys supported by GWC, along with
the action they are mapped to:

 Supported
Accelerator
Key

 Mapped Action

 Return /
Enter accept

 Tab nextfield
 Shift + Tab prevfield
 Home firstrow
 End lastrow
 Next / Page
Up nextpage

 Previous /
Prior / Page
Down

 prevpage

For example, if you press the [Enter] or [Return] key, an accept action is sent to the
DVM, regardless of the accelerator defined by the .4ad file.

If your application uses accelerator keys, you must modify your application to use
explicit actions, buttons, or commands.

StartMenus

StartMenus are not supported.

Migration

81

One possible implementation could be to create an application launcher. This program
would execute RUN ... IN FORM MODE WITHOUT WAITING to run the
StartMenuCommand.

MDI

Every application is in SDI.

ProgressBars

In a Genero application, a ProgressBar is updated without user interaction using a server-
push technique. This is not implemented in the current version of GWC.

On Idle

On idle is not handled by the GWC.

Executing Client Programs using Front Calls

Front Calls executing client programs are not yet available. In an HTML environment,
access to the client machine is limited and secured. As a result, a browser needs customer
authorization to access a client resource. This would require GWC to implement a
secured module using activeX or an applet.

Note that browsers have built-in features to open PDF, Microsoft Word, and Microsoft
Excel files. For such operations, you simply need to set the URL where the files can be
downloaded.

Triggers

Dialogs using many triggers require frequent communication between the browser and
the DVM. Time lags experienced by this back-and-forth communication are a factor of
the size and speed of your network. To minimize the impact of triggers, the GWC default
communication modes reduce data exchange and update relevant parts of the page only
(instead of refreshing the entire HTML page). This is transparent to the end-user.

From an application development perspective, realize that some complex instructions
cannot be done by JavaScript unless the entire page is updated.

RUN and RUN WITHOUT WAITING

To use the statements RUN and RUN WITHOUT WAITING, you must also specify IN FORM
MODE. This allows the newly-forked application to run in interactive mode.

A new browser is opened where the new application is executed.

Genero Web Client

82

• Using RUN ... IN FORM MODE, the first application is frozen and displays a
pending page with this type of message: "Your request is currently being
processed by the Application Server. Please wait... ". If you close the first
application before the second one, you may encounter problems, as the first
application is waiting for the second application to terminate.

• Using RUN ... IN FORM MODE WITHOUT WAITING, each application runs
independently.

Example

 RUN "fglrun run.42r" IN FORM MODE WITHOUT WAITING

Presentation Logic and GWC
The representation of an application can vary between different front ends. While GWC
provides default rendering of the application, some representations are more suitable for a
desktop client and others for HTML clients. Also, as JavaScript can handle a widget's
look and behavior, the page processing time can vary. The more complex a page is, the
more time it takes to be completely rendered.

Topics

Tips

This section provides tips that can assist you in successfully launching a
Web application.

Styles

This section discusses how key elements are presented by the GWC.

Tips

• To prepare for customization, assign names to widgets you plan to customize.

In generated HTML, if a form component name cannot be converted to HTML
encoding, its entity equivalent is used. Genero transforms the character in HTML
identity (&#xxx); for example, "佚-span". This can result in having an id
attribute set to a value that corrupts the style definition for the tag:

#佚-span {
 width:25%;
}

Migration

83

Therefore, applications designed for the GWC should follow the standards set by
the W3C; the value for id and name attributes should begin with a letter ([A-Za-
z]) and may be followed by any number of letters, digits ([0-9]), hyphens ("-"),
underscores ("_"), colons (":"), and periods (".").

• Resizable tables do not exist; adjust the table lines in the .per file.

• Use light pages (avoid tables in folder pages due to JavaScript process).

Styles

Forms are rendered as defined in the .per files. Genero styles (.4st) are not supported. To
define the look of an application, you must use CSS to replace Genero styles. In other
words, you must translate the styles defined in .4st into CSS styles.

Locate the key elements of your interface:

• Window
• Toolbar
• Menu
• Actions panel
• StatusBar
• StartMenu

The default rendering is an example; you can build your own renderer using CSS and
JavaScript. The following explanations are made in the default rendering context.

Window

For GWC, the window is a part of the HTML page; it may also be the entire HTML page.
Some window styles cannot be applied or do not make sense in the HTML environment.

GWC default behavior is to display one window at a time, except RUN, which forks a
new browser. There is no default mechanism for multiple windows (such as creating a
pop-up window).

ToolBar

GWC default behavior displays a toolbar at the top of the page, under the topmenu (if it
exists). In Genero style we can say the default rendering sets startMenuPosition to "top".

Menu

GWC default behavior displays a ring menu on the right (ringMenuPosition set to right).
Other styles are not handled, but rendering can be customized using CSS and Javascript.

Genero Web Client

84

Styles like dialog or popup do not open a new window. The default rendering does not
handle these styles. However, the style attribute is transmitted, and you can make your
own renderer to open a pop-up window.

Action panel

GWC default behavior displays an action panel on the right (actionPanelPosition set to
right). This could be customized by CSS and JavaScript.

StatusBar

The StatusBar contains simple messages, error messages, and overwrite status. In GWC,
the StatusBar is not represented as a single line. With CSS and JavaScript an error
message can be an alert (pop-up dialog in modal mode), and a simple message sent to the
browser status bar.

StartMenu

StartMenus are not yet supported. See Business Logic for GWC - StartMenus for an
alternate solution.

For More Information

• For more information on customizing your applications read the chapter on
Customization.

• For more information on supported and unsupported features, refer to GWC
Features.

• For more information on the suggested directory structure for files supporting a
GWC application, refer to GWC Application Directory Structure.

Migration

85

Migrating to GWC 1.33.1h

This section identifies changes that have occurred with the release of GWC 1.33.1h. In
order to have the application rendered correctly by GWC 1.33.1h, you must make
modifications to all applications developed with and tested against earlier versions of
GWC.

Specifically, changes must be made in the following areas:

• RUN behavior
• Log configuration

RUN behavior
By default, the RUN command opens a new window. For technical reasons, to prevent
undesired delay at the start up of a new application, the RUN command now refreshes the
parent window.

The difference between the old and new behavior is the method in which the parent
window is updated. A page can evolve with JavaScript, however the state the page has
reached is lost the next time the page is refreshed. The new behavior reloads the entire
page, resulting in a loss of possible modifications made with JavaScript on the page. The
old behavior updated the page incrementally with JavaScript, and as a result maintained
any JavaScript modifications to that page. To have your application keep the old
behavior, you must modify the template. Immediately before the call to the JavaScript
gInitFieldMode function, add the following instruction:

 gConfiguration.refreshPageMethodAfterNewApplication =
gINCREMENTAL_MODE;

Log configuration
The log can be configured to display additional information, such as tasks or processes
handled by the Genero Application Server daemon (gasd). The output can be specified as
either plain text or XML. XML output allows further analysis using XLST. For more
information on configuring logging for the GWC, see the section on Logging in the
Genero Application Server Manual.

Genero Web Client

86

Migrating to GWC 1.32.1f

This section identifies changes that have occurred with the release of GWC 1.32.1f. In
order to have the application rendered correctly by GWC 1.32.1f, you must make
modifications to all applications developed with and tested against earlier versions of
GWC. If you migrating applications based on GWC 1.30.1j or earlier, you must also
implement the changes identified in the section Migrating to GWC 1.30.1j.

Specifically, changes must be made in the following areas:

• Deprecated template path and new template path
• New CSS class

Deprecated template path and new template path
Because of the new layout engine, the template path document/styles is no longer used
and is deprecated. It has been replaced by the template path document/layoutData that
contains layout information used by a Javascript method to have the widgets in the form
properly aligned.

The former path was used to fill in the content of a HTML style tag:

<style type="text/css" gwc:content="document/styles"></style>

The new template path must be used as initialization data for the Javascript variable
gLayoutData. This initialization must be done prior to the call to the gInitFieldMode
function:

<script defer language=javascript gwc:contentprotocol="string"><!--
 var gLayoutData = ${document/layoutData};
 gInitFieldMode(gIdToElement('gDialogForm'), gSMART_FIELD_MODE,
gINCREMENTAL_MODE, ${configuration/timeout/useragent - 3});
//--></script>

The gLayoutData variable is not required in order to have a GWC application to work.
However, omitting it would result in having all the form fields misaligned and packed on
the left side of the window.

New CSS class
With previous version of the GWC, the width style of form elements like the Edit widget,
Labels, etc was set to 100% so the widgets could fit in their containing box and the size

Migration

87

of the containing box was set using the document/styles template path. With the new
layout engine the form content is no longer proportional to the browser's window size and
form elements tend to keep their natural size.

The Javascript function used to have the elements in the form properly aligned uses the
elements size to calculate what their containing box's width should be. The width style of
100% have to be avoided to ensure correct calculations are done by the function.
However, after the calculation process is done, a widget can be too small with regards to
its containing box's size. That's why the new CSS class gFill has been added. This class
is set on the Grid elements of the form after the layout function has finished is job and
sets the width of the widgets to 100%. For example:

.gFill .gEdit,

.gFill .gTextEdit,

.gFill .gDateEdit,

.gFill .gButtonEdit {

 width: 100%;
}

So if you use custom styles with your GWC appllications, be sure to update the styles for
the widgets and add the styles associated to the gFill selector.

Genero Web Client

88

Migrating to GWC 1.30.1j

This section identifies changes that have occurred with the release of GWC 1.30.1j. In
order to have the application rendered correctly by GWC 1.30.1j, you must make
modifications to all applications developed with and tested against earlier versions of
GWC. If you migrating applications based on GWC 1.30.1d or earlier, you must also
implement the changes identified in the section Migrating to GWC 1.30.1d.

Specifically, changes must be made in the following areas:

• Top-level template
• Customized templates

New top-level template
The default template page no longer uses the window template language path. Instead, it
uses a table to lay out the application elements like the toolbar, the form, the action panel,
and so on. Using a table allows for easier placement of the application elements.

Changes to customized templates
If you have customized templates, you need to make the following changes:

• If you have a form in your template, you must add a line after your <form> start:

 <div gwc:replace="application/intermediatetrigger" />

• Change the gInitFieldMode JavaScript line of initialization to match the
following, where ratio is an arbitrary value between 0 and 1 (such as "0.8"):

 <script language="javascript" gwc:contentprotocol="string">
 gInitFieldMode(gIdToElement('gDialogForm'), gSMART_FIELD_MODE,
gINCREMENTAL_MOD, ${configuration/timeout/useragent * ratio}); /// [
gFIELD_MODE | gSMART_FIELD_MODE], [gINCREMENTAL_MODE | gFULL_MODE],
[keep-alive interval]
 </script>

Making this modification sets up the keep-alive feature.
configuration/timeout/useragent is the timeout value GWC waits before
considering the connection with the user agent lost. So you must give the
gInitFieldMode function a lower value than this value in order to have the
keep-alive feature work.

Migration

89

Note that while your application will work without making these changes, not applying
the changes can lead to future problems.

Genero Web Client

90

Migrating to GWC 1.30.1d

This section identifies changes that have occurred with the release of GWC 1.30.1d. In
order to have the application rendered correctly by GWC 1.30.1d, you must make
modifications to those applications developed with and tested against earlier versions of
GWC. If you migrating applications based on GWC 1.30.1b or earlier, you must also
implement the changes identified in the section Migrating to GWC 1.30.1c.

Specifically, changes must be made in the following areas:

• Application configuration file extension

Changing the application configuration file extension

For external applications, the extension of application configuration files has been
changed from .xml to .xcf. For example, the sample application configuration file
located in $FGLASDIR/app/ and named Edit.xml has been renamed Edit.xcf.

Migration

91

Migrating to GWC 1.30.1c

This section identifies changes that have occurred with the release of GWC 1.30.1c. In
order to have the application rendered correctly by GWC 1.30.1c, you must modify the
templates for all applications developed with and tested against earlier versions of GWC.

Specifically, changes must be made in the following areas:

• CSS
• Javascript
• HTML
• Referencing
• Template expressions
• as.xcf changes

Changes in CSS
CSS classes are now prefixed with "g". For example, the "menu" class is now named
"gMenu". This change was implemented to prevent confusion with non-GWC classes.

As a result, if you have customized the CSS, please prefix the GWC classes with a "g". If
this change is not implemented, the layout will not render correctly.

Changes in JavaScript
Public JavaScript API are now prefixed with "g". For example, in the default template
generodefault.html:

 InitFieldMode(IdToElement('dialogForm'), SMART_FIELD_MODE,
INCREMENTAL_MODE);

is replaced by

 gInitFieldMode(gIdToElement('gDialogForm'), gSMART_FIELD_MODE,
gINCREMENTAL_MODE);

If GWC JavaScript functions do not include the "g" prefix, the functions are reserved for
internal usage. We recommend that you do not change these internal functions.

You have been provided with public APIs to use, such as "gGWCEvent".

Genero Web Client

92

Changes in HTML
Most generated HTML elements have an id attribute. The id values are also prefixed by
"g".
For example:
dialogForm which references the <form> element is now named gDialogForm, and
"workspace" becomes gWorkspace.

GWC JavaScript handles all elements defined in gDialogForm. Your HTML form must
be defined as in the following example:

 <form action="page.html" id="gDialogForm" method=post
gwc:attributes="action document/URL">
 <input disabled=disabled id=gDBDate name=gDBDate type=hidden
value="MDY4/">
 ...
 </form>

The id and action attributes are required. The action attribute is then replaced by the
application URL dynamically. gDbDate is used to handle date input for the calendar. So,
if you have an application with the dateEdit widget, add the gDbDate line.

If you have written your own templates, ensure that you made these changes.

Changes in referencing a template
Template declaration has been simplified. You no longer need a .4st file. The template is
referenced inside the application configuration using the style name.

Example

 <APPLICATION ...>
 <RESOURCE Id="mytemplate"
Source="FILE">/home/app/tpl.html</RESOURCE>
 ...
 <EXECUTION> ... </EXECUTION>
 <OUTPUT>
 <MAP Id="DUA_GWC">
 <THEME>
 <TEMPLATE Id="mystyle">$(mytemplate)</TEMPLATE>
 <TEMPLATE Id="style2">$(tpl2)</TEMPLATE>
 </THEME>
 </MAP>
 </OUTPUT>
 </APPLICATION>

In this example, the template identified as "mystyle" uses the resource "mytemplate". The
resource "mytemplate" is an external file resource using the file "/home/app/tpl.html".
This template is applied when a window is opened with the style "mystyle".

Migration

93

Changes in Template Expressions
A change has been made in the template expressions syntax when using conversion
protocol. It now uses a parentheses format. See the conversion protocol chapter for more
details.

Changes in as.xcf
The DTD of as.xcf has changed.

• Prior to version 1.30.1c, the <THEME_COMPONENT> tag was written as:

 <THEME_COMPONENT Id="cpn.theme.default.gwc">
 <TEMPLATE>$(res.theme.default.gwc.template)</TEMPLATE>
 <END>$(res.theme.default.html.end)</END>
 <ERROR>$(res.theme.default.html.error)</ERROR>
 <TIMEOUT>$(res.theme.default.html.timeout)</TIMEOUT>

<TRANSACTION_PENDING>$(res.theme.default.html.transaction)</TRANSACTION
_PENDING>
 </THEME_COMPONENT>

 As of version 1.30.1c, the <THEME_COMPONENT> tag is to be written as
follows:

 <THEME_COMPONENT Id="cpn.theme.default.gwc">
 <TEMPLATE
Id="_default">$(res.theme.default.gwc.template)</TEMPLATE>
 <TEMPLATE Id="_end">$(res.theme.default.html.end)</TEMPLATE>
 <TEMPLATE Id="_error">$(res.theme.default.html.error)</TEMPLATE>
 <TEMPLATE
Id="_timeout">$(res.theme.default.html.timeout)</TEMPLATE>
 <TEMPLATE
Id="_transaction">$(res.theme.default.html.transaction)</TEMPLATE>
 <TEMPLATE
Id="_launch">$(res.theme.default.html.launch)</TEMPLATE>
 </THEME_COMPONENT>

• The tag <USER_AGENT_2> has been removed

• On Windows, '/' can now be used as the directory separator. As a result of this
change, all platform-dependent resources have been updated using '/'.

Technical Reference

94

Template CSS Reference

With Cascading Style Sheets (CSS), you can customize the look and feel of your
application. The default theme provides an example of customization. Used in
conjunction with the rendered HTML reference page, this section helps you interpret a
CSS file.

Topics

CSS Syntax

CSS uses a specific syntax to define the style of HTML elements. This
section presents the various syntax options.

Template CSS

This section lists available selectors by category (Containers, FormFields,
Dialogs, and Others).

CSS Syntax
CSS uses a specific syntax to define the style of HTML elements.

Syntax

selector {
 style [...]
}

Notes

1. selector is a path defining on which HTML tags the styles have to be applied
2. style is a CSS style property as defined in the W3C site

Here is an excerpt of the selector syntax used with the Genero Web Client default theme:

 Selector Description

Technical Reference

95

 BODY This selector applies to any BODY tag.
 #gWorkspace This selector applies to any tag having gWorkspace for id.
 .gGrid This selector applies to any tag having gGrid for class.

 .gMenu SPAN This selector applies to any SPAN tag which is a descendant
of a tag having gMenu for class.

 INPUT.queryZone This selector applies to any INPUT tag having queryZone for
class.

 .gToolBar .hover *
This selector applies to any tag which is a descendant of a tag
having hover for class and which is a descendant of a tag
having gToolBar for class.

You can merge common styles configurations by grouping selectors in a comma
separated list:

selector1 , selector2 , selector3 {
 styles [...]
}

For a complete reference for selector syntax, refer to the W3C site.

Template CSS
This section provides a list of selectors recognized by the Genero Web Client. It is
divided into the following sections:

• Containers CSS: GRID, TABLE, SCROLLGRID, GROUP, FOLDER, PAGE,
HBOX, VBOX

• FormFields CSS: FormField Box, EDIT, TEXTEDIT, BUTTON,
BUTTONEDIT, DATEEDIT, CHECKBOX, COMBOBOX, RADIOGROUP,
LABEL, Construct

• Dialog CSS: MENU, DIALOG, TOPMENU, TOOLBAR, MESSAGE, ERROR
• Other CSS

Note

The sections TABLE, MENU, and TOPMENU are followed by a link named "Samples".
Follow this link to view a graphical explanation of each selector and what it controls.

Genero Web Client

96

Containers CSS

• GRID
• TABLE
• SCROLLGRID
• GROUP
• FOLDER
• PAGE
• HBOX
• VBOX

GRID

 Selector Description
 .gGrid The SPAN tag containing the grid
 .gGridLine A line of the grid

TABLE

 Selector Description
 .gTableBox The SPAN tag containing the table
 .gTable The TABLE tag
 .gTable col.gHidden A hidden table column
 .gTable TH
 .gTable THEAD TR TH A table header cell

 .gTable TR A table row
 .gTable TD A table cell
 .gTable TD * Any table cell descendant
 .gTable TD
.gCurrentField The field having the focus in the table

 .gTable
INPUT.gTableHeader A column input header; used to sort the table

 .gTable
.disabledTableHeader A disabled table column header

 .gTable .disabled A disabled field of the table
 .gTable .gSortAsc An ascending sorted table column

Technical Reference

97

 .gTable .gSortDesc A descending sorted table column
 .gTable
.gCurrentRow * Any descendant of the currently selected row

 .gTable
.gButtonEdit A ButtonEdit widget in the table

 .gTable .gAction An action item (ex: the button of a ButtonEdit widget) in the
table

 .gTable
.activeButtonEdit
.gAction

The action item of the currently active ButtonEdit widget in
the table

 .gTable
.activeButtonEdit
.gButtonEdit

The input part of the currently active ButtonEdit widget in
the table

 .gFill .gTable A Grid Table once the JavaScript layout function has
finished its processing

SCROLLGRID

 Selector Description
 .gScrollGridBox The SPAN tag containing the scrollgrid
 .gScrollGrid The scrollgrid itself
 .gHLineBox HR A horizontal line in the scrollgrid

GROUP

 Selector Description
 .gGroupBox The SPAN tag containing the group
 .gGroup
 .gGroupBox .gGroup The container box of a group

 .gGroupTitle
 .gGroupBox
.gGroupTitle

The title of a group

Genero Web Client

98

FOLDER

 Selector Description
 .gFolder The DIV tag containing the folder pages

PAGE

 Selector Description
 .gFolder
.gPageHeader A page header

 .gFolder .gPage A folder header
 .gFolder
.selectedPageHeader The currently selected page header

 .gFolder
.selectedPage The currently selected page

HBOX

 Selector Description
 .gHBox A HBOX container
 .gHBox TD A HBOX column

VBOX

 Selector Description
 .gVBox A VBOX container
 .gVBoxLine
 .gVBox TD A VBOX line

Technical Reference

99

FormFields CSS

• FormField Box
• EDIT
• TEXTEDIT
• BUTTON
• BUTTONEDIT
• DATEEDIT
• CHECKBOX
• COMBOBOX
• RADIOGROUP
• LABEL
• Construct

FormField Box

 Selector Description
 .gFormFieldBox The SPAN tag containing the formfield
 .gCurrentField The FormField having the input
 .gJustifyCenter A FormField having the JUSTIFY attribute set to center
 .gJustifyLeft A FormField having the JUSTIFY attribute set to left
 .gJustifyRight A FormField having the JUSTIFY attribute set to right
 .gShiftDown A FormField having the DOWNSHIFT attribute set
 .gShiftUp A FormField having the UPSHIFT attribute set
 .gNoEntry A FormField having the NOENTRY attribute set
 .gNotNull A FormField having the NOT NULL attribute set
 .gRequired A FormField having the REQUIRED attribute set
 .gTypeByte A FormField having the BYTE target type
 .gTypeChar A FormField having the CHAR target type
 .gTypeDate A FormField having the DATE target type
 .gTypeDatetime A FormField having the DATETIME target type
 .gTypeDecimal A FormField having the DECIMAL target type
 .gTypeFloat A FormField having the FLOAT target type
 .gTypeInteger A FormField having the INTEGER target type

Genero Web Client

100

 .gTypeInterval A FormField having the NTERVAL target type
 .gTypeMoney A FormField having the MONEY target type
 .gTypeSmallfloat A FormField having the SMALLFLOAT target type
 .gTypeSmallint A FormField having the SMALLINT target type
 .gTypeString A FormField having the STRING target type
 .gTypeText A FormField having the TEXT target type
 .gTypeVarchar A FormField having the VARCHAR target type
 .gVerify A FormField having the VERIFY attribute set

EDIT

 Selector Description
 .gEdit An Edit widget

 .gFill .gEdit An Edit widget once the Javascript layout function has
finished its processing

TEXTEDIT

 Selector Description
 .gTextEdit A TextEdit widget

 .gScrollbarHorizontal A TextEdit widget having the SCROLLBARS attribute set to
horizontal

 .gScrollbarVertical A TextEdit widget having the SCROLLBARS attribute set to
vertical

 .gFill .gTextEdit An TextEdit widget once the Javascript layout function has
finished its processing

BUTTON

Technical Reference

101

 Selector Description
 .gButtonBox The SPAN tag containing the button
 .gButtonBox
.gAction The image or text for this button

 .pressedButtonBox A pressed button

 .gFill .gButtonBox A Button once the Javascript layout function has finished its
processing

 .gFill .gHBoxTag
.gButtonBox

A Button in a Grid HBox tag once the Javascript layout
function has finished its processing

BUTTONEDIT

 Selector Description
 .gButtonEdit A ButtonEdit widget

 .gFill .gButtonEdit An ButtonEdit widget once the JavaScript layout function
has finished its processing

DATEEDIT

 Selector Description
 .gDateEdit A DateEdit widget

 .gFill .gDateEdit A DateEdit widget once the JavaScript layout function has
finished its processing

 .calendar The calendar widget
 .calendar THEAD
.nav The calendar widget's navigation bar

 .calendar TD A calendar widget cell
 .calendar THEAD
.nav .info The calendar widget's date

 .calendar THEAD
.days TD The calendar widget's days bar

 .calendar THEAD
.days .we Weekend days in the calendar widget's days bar

Genero Web Client

102

 .calendar TBODY TD A calendar widget's day number cell
 .calendar TBODY
.hover

A calendar widget's day number cell having the mouse over
it

 .calendar TBODY
.today Today's cell in the calendar widget

 .calendarIcon The DateEdit widget's calendar icon

CHECKBOX

 Selector Description
 .gCheckBox
 .gFormFieldBox
.gCheckBox

A CheckBox widget

 .gTable TD
.gCheckBox A CheckBox widget in a table

 .nullState A CheckBox widget having no state
 .checkedState A checked CheckBox widget
 .uncheckedState An unchecked CheckBox widget

COMBOBOX

 Selector Description
 .gComboBox A ComboBox widget
 .comboboxEdit The ComboBox input field
 .comboboxButton The ComboBox button
 .comboboxList The ComboBox list of values
 .comboboxList DIV A ComboBox list item
 .comboboxList
DIV.over The ComboBox list item having the focus

 .comboboxList
DIV.selected The currently selected ComboBox list item

 .gCurrentField
.comboboxEdit The ComboBox having the input

Technical Reference

103

 .disabled
.comboboxEdit A disabled ComboBox input field

 .disabled
.comboboxButton A disabled ComboBox button

 .gQuery
.comboboxEdit A ComboBox input in construct mode

 .gFill
.comboboxEdit

A ComboBox input once the JavaScript layout function has
finished its processing

 .gFill .gHBoxTag
.comboboxEdit

A ComboBox input in a Grid HBox tag once the JavaScript
layout function has finished its processing

RADIOGROUP

 Selector Description
 .gRadioGroup A RadioGroup widget
 .gOrientationHorizontal
DIV

An option of a RadioGroup widget having its
ORIENTATION attribute set to horizontal

LABEL

 Selector Description
 .gLabel A form label
 .gFill .gLabelBox
LABEL

A static Label once the JavaScript layout function has
finished its processing

 .gFill .gHBoxTag
.gLabelBox LABEL

A static Label in a Grid HBox tag once the JavaScript layout
function has finished its processing

Construct

 Selector Description
 INPUT.queryZone A formfield in construct mode
 INPUT.currentQueryZone The formfield in construct mode having the focus

Genero Web Client

104

Dialog CSS

• MENU
• DIALOG
• TOPMENU
• TOOLBAR
• MESSAGE
• ERROR

MENU

 Selector Description
 .gMenu The DIV tag containing the menu
 .gMenu SPAN The menu title
 .gMenu UL The menu actions container
 .gMenu LI A menu action
 .gMenu LI.hover A menu action having the mouse cursor over it
 .gMenu INPUT The image or text associated to the menu action
 .gMenu
LI.gCurrentAction
INPUT

The image or text for the current menu action

 .gMenu LI.gHidden A hidden menu action

 .gStyleDialog IMG The image associated to a menu having the STYLE attribute
set to Dialog

DIALOG

 Selector Description
 .gDialog The DIV tag containing the action panel
 .gDialog UL The action panel container
 .gDialog LI An action
 .gDialog LI.hover An action having the mouse cursor over it
 .gDialog LI.gHidden A hidden action

Technical Reference

105

 .gDialog INPUT The text associated to the action

TOPMENU

 Selector Description
 .gTopMenu The DIV tag containing the TopMenu
 .gTopMenu UL The container for the TopMenu list of top groups
 .gTopMenu LI A TopMenu top group
 .gTopMenu UL UL A TopMenu group's items lis
 .gTopMenu LI LI A TopMenu group item
 .gTopMenu UL UL UL A sub-group's items list
 .gTopMenu label The TopMenu text
 .gTopMenu .gAction The image or text for a TopMenu command
 .gTopMenu .hover The TopMenu item having the mouse cursor over it
 .gTopMenu HR A TopMenu separator
 .gTopMenu
LI.gHidden A hidden TopMenu item

TOOLBAR

 Selector Description
 .gToolBar The DIV tag containing the ToolBar
 .gToolBar UL The container for the ToolBar items
 .gToolBar LI A ToolBar item
 .gToolBar HR A ToolBar separator
 .gToolBar INPUT The image or text for a ToolBar item
 .gToolBar .hover The ToolBar item having the mouse cursor over it

 .gToolBar .hover * The image or text for a ToolBar item having the mouse
cursor over it

 .gToolBar .pressed A pressed ToolBar item

Genero Web Client

106

 .gToolBar
LI.gHidden A hidden ToolBar item

MESSAGE

 Selector Description
 #gMessage The P tag containing the message

ERROR

 Selector Description
 #gError The P tag containing the error message

Other CSS

 Selector Description
 #gDialogForm The HTML form containing the workspace
 #gForm The container of the application's current form
 #gForm .gHidden Any hidden elements in the form
 #gFormTable The TABLE tag containing the form
 #gForm-div The DIV tag containing the form
 #gPanel The TD tag containing the action panel
 BODY The BODY tag of the page
 .defaultButton An image for which the resource has not been found
 .disabled
 .disabled OPTION A disabled element of the application

 .gCurrentCell
.disabled A disabled element of a screen array

Technical Reference

107

 SELECT.gCurrentField The ComboBox widget having the focus
 .gStretchX An Image widget having the STRETCH attribute set to X
 .gStretchY An Image widget having the STRETCH attribute set to Y
 .gAutoScale An Image widget having the AUTOSCALE attribute set\
 .gHLineBox HR A horizontal line

 .gFill .gHLineBox HR A horizontal line once the JavaScript layout function has
finished its processing

 .gFill .gHBoxTag
.gHLineBox HR

A horizontal line in a Grid HBox tag once the JavaScript
layout function has finished its processing

Genero Web Client

108

CSS Reference Samples

In this section, graphical examples involving selectors for Input Array/Display Array,
Menu, and TopMenu are provided.

For a complete list of selectors, refer to the section CSS Reference.

Input Array / Display Array Sample
This sample shows the relationship between the CSS selectors for Table widgets and the
elements defining the Table in the .PER file. Note that the third column of the table has
its NOENTRY attribute set.

This sample shows the table in two states: INPUT mode and DISPLAY mode

This sample was made by adding a border style and a background color style to the listed
CSS selectors, e.g. .gTableBox { border: 2px dashed blue; background-color:
#CCCCFF; }. The rendered HTML code listed is a 'light' version of the HTML generated
by the GWC.

Technical Reference

109

Genero Web Client

110

Technical Reference

111

Menu Sample
This sample shows the relationship between the CSS selectors for Menus and the
elements defining the Menu in the .4GL file. The Close and Help menu actions are
automatically added by the DVM and hidden by the GWC if they aren't found in the
menu actions list. The third menu command has the mouse focus in the running
application.

This sample was made by adding a border style and a background color style to the listed
CSS selectors, e.g. .gMenu { border: 2px dashed blue; background-color:
#CCCCFF; }. The rendered HTML code listed is a 'light' version of the HTML generated
by the GWC.

Genero Web Client

112

Technical Reference

113

TopMenu Sample
This sample shows the relationship between the CSS selectors for TopMenus and the
elements defining the TopMenu in the .PER file. The command SubCommand1 has the
mouse focus in the running application.

This sample was made by adding a border style and a background color style to the listed
CSS selectors, e.g. .gTopMenu { border: 2px dashed blue; background-color:
#CCCCFF; }. The rendered HTML code listed is a 'light' version of the HTML generated
by the GWC.

Genero Web Client

114

Technical Reference

115

Genero Web Client

116

Template Language Reference

Genero Web Client provides a template language to create dynamic templates.

Topics

Genero Web Client namespace

A Genero Web Client template instruction is prefixed by "gwc". Genero
Web Client processes the template instruction and generates new HTML
code. This section presents the syntax for the Genero Web Client
namespace.

Template instructions

Genero Web Client instruction specify the kind of operations you can
perform. This section lists valid template instructions and valid syntax,
and identifies the weight (processing priority) of each template instruction.

Template resources

Template expressions

Genero Web Client template expressions are elements Genero Web Client
template instructions can manipulate.

Template paths

Genero Web Client template paths provide access to Genero Web Client
objects, such as the application server, Web server, and Genero
application elements.

Genero Web Client namespace
A Genero Web Client template instruction is prefixed by "gwc". The Genero Web Client
processes the template instruction and generates new HTML code.

Technical Reference

117

Syntax

<tag gwc:instruction="expression" ... >
...
</tag>

Notes

1. tag is an HTML tag
2. instruction is any template instruction
3. expression is a template expression

Template instructions

 GWC Template
Instruction Description

 gwc:define Define a variable to be used in the current tag or the
children tags.

 gwc:condition Test the condition.
 gwc:repeat Repeat the children tags.
 gwc:replace Replace the entire tag.

 gwc:attributes Dynamically change an attribute of the current HTML tag.

 gwc:content Replace the text between the tags.
 gwc:contentprotocol Specify the way an expression is processed.

 gwc:omit-tag Suppress the surrounding tag after instructions in the
children tags have been processed.

With Genero Web Client instructions, as with XML, you can write attributes in any
order. The processing of instructions, however, is interpreted in the order listed above,
from the highest priority to the lowest. For example, once gwc:replace has been
executed, there is no material to achieve the gwc:content processing.

define instruction

The define instruction declares a local variable to be used in the HTML tag or the
elements it contains. This variable is undefined outside of these tags.

Genero Web Client

118

Syntax

<tag gwc:define="var expression [; ...]" ...>
...
</tag>

Notes

1. var is the variable name
2. expression is a template expression

Example

<div gwc:define="i menu">

i is set to the current item of a menu.

condition instruction

If the condition is verified, the following Genero Web Client instruction is processed;
otherwise the tag and its children are removed.

Syntax

<tag gwc:condition="expression" ...>
...
</tag>

Notes

1. expression is a template expression
2. When using expressions in a gwc:condition instruction, verification is done on

the value of the expression. The condition is true if the following test is true:

 Expression Value
Type Test

Boolean Expression value is true.
Numeric Expression value is not 0. (zero)
String String is not empty or "0". (zero)
Template path with
identified node

The identified element exists (i.e.
formfield[edt1]).

Technical Reference

119

Template path with
value

The value is not empty if it is a string, or 0 if it is a
numeric or boolean value (i.e.
formfield[edt1]/id).

repeat instruction

Repeat the current line for each element in the repeat condition.

Syntax

<tag gwc:repeat="elt eltList">
 stats
</tag>

Notes

1. eltList is the list of elements to loop on
2. elt is an element of eltList
3. stats are statements repeated if there are still elements in eltList
4. See repeat template paths for special template paths used with a gwc:repeat

instruction

Example

<div gwc:repeat="item menu/actions">
 <a href="..." gwc:condition="item/text"
 gwc:define="text item/text"
 gwc:attributes="href string:${document/URL}?${item/id}"
 gwc:content="text">Input
</div>

Displays the text of each action of a menu as an HTML link.

replace instruction

Replace the tag and its children with the value of a template expression.

Syntax

Genero Web Client

120

<tag gwc:replace="expression" ...>
...
</tag>

Notes

1. expression can be any template expression

Example

<div gwc:replace="window"></div>

The div tags is replaced by the application window.

attributes instruction

This instruction dynamically sets a value to an attribute of the current tag. If the attribute
does not exist, it will be created. If it exists, its value will be changed.

Syntax

<tag gwc:attributes="setAtt [; ...] " ...>
...
</tag>

Where setAttr is:

att expression

Notes

1. att is the attribute name
2. expression is the attribute value. Notice there is no equal sign (=) between the

attribute name and its value.

Example

<form action="..." method="post" gwc:attributes="action document/URL ;
method string:get">

The action attribute is set to the document URL and the method attribute to get.

Technical Reference

121

content instruction

Replace the element between the HTML tags

Syntax

<tag gwc:content="expression" ...>
...
</tag>

Notes

1. expression can be any template expression

Example

<div id="gForm-div" gwc:content="form" />

The content of the div tag is set to the generated code of the current form.

contentprotocol instruction

This instruction tells Genero Web Client that the content of the tag has to be processed by
a specified parser.

Syntax

<tag gwc:contentprotocol="protocol">
expression
</tag>

Notes

1. expression is any valid expression
2. The protocol defined in the gwc:contentprotocol instruction is not the same as

the one used for the conversion protocol in template expressions, except for the
string protocol. In fact, only the string protocol has a special behavior within a
gwc:contentprotocol instruction.
Thus, having a tag like

<DIV gwc:contentprotocol="bool" > expression </DIV>

Genero Web Client

122

3. behaves the same as the tag

<DIV gwc:content="expression" ></DIV>

4. This means no conversion is done. On the other hand, the tag

<DIV gwc:contentprotocol="string" > expression </DIV>

5. will produce the same result as the tag

<DIV gwc:content="string:expression" ></DIV>

6. This can be useful in SCRIPT tags, to have 'well-formatted' scripts which use
Genero Web Client template paths:

<SCRIPT language="javascript" gwc:contentprotocol="string" >
function displayFormfieldValue()
{
 alert("Formfield edt1 value: ${formfield[edt1]/value}");
}
</SCRIPT>

Example

<div gwc:contentprotocol="string">action[accept]/text</div>

This displays action[accept]/text as a string (it leaves the text as it is) and does not have a
Genero Web Client widget.

omit-tag instruction

Remove the surrounding tag after all children tags instructions have been processed

Syntax

<tag gwc:omit-tag="expression"...>
...
</tag>

Notes

1. expression is any valid expression

Technical Reference

123

Example

<div gwc:content="formfield[edt1]/value" gwc:omit-tag="true"></div>

This displays the value of the form field "edt1" and removes the <DIV> tag.

Template resources
Template resources defined in a configuration file can be accessed using the following
syntax.

Syntax

$(resource_identifier)

Note

1. resource_identifier is the value of the id attribute of the resource
2. template resources can be used anywhere in the parsed HTML document
3. template resources are merged into the document before the evaluation of the

template instructions
4. some resources are defined and added to the configuration at run-time

 Resource Identifier Description
 application.id
 application.name

Value of the id attribute of the application
tag.

 application.start.uri Launching URL of the application.
 connector.uri Connector part of the URL.

 server.version Version of the running Genero Web
Client.

Example

<RESOURCE Id="res.meta-tags" Source="INTERNAL"><![CDATA[
 <meta http-equiv="Pragma" content="no-cache">
 <meta http-equiv="Cache-Control" content="no-cache">
]]></RESOURCE>

<RESOURCE Id="res.restart" Source="INTERNAL"><![CDATA[
 Try again ...
]]></RESOURCE>

Genero Web Client

124

<RESOURCE Id="res.theme.default.html.end" Source="INTERNAL"><![CDATA[
 <html>
 <head>
 $(res.meta-tags)
 <title>GWC - Version $(server.version) - Running
$(application.name)</title>
 </head>
 <body>
 Thank you. Please visit us again.
 <hr>
 $(res.restart)
 </body>
 </html>
]]></RESOURCE>

Template expressions
In this section, template expressions are discussed.

• expressions syntax
• conversion protocols
• string: protocol
• raw: protocol
• path: protocol

expressions syntax

Template expressions respect a defined syntax.

Syntax

expression is:

{ expression op expression | unary_op expression | (expression) |
conversion_protocol(expression) | string: string_expression | raw:
expression | path: template_path | template_path | numeric | boolean |
string_value | expression_as_string in expression_as_string }

where boolean is:

{ TRUE | FALSE }

where string_value is:

Technical Reference

125

' string '

where op is:

{ arithmetic_op | boolean_op | comparison_op }

where arithmetic_op is:

{ + | - | * | / | % }

where boolean_op is:

{ && | || }

where comparison_op is:

{ == | != | < | <= | > | >= }

where unary_op is:

{ + | - | ! }

where conversion_protocol is:

{ bool | expr | url | html | js }

where string_expression is:

{ [string] | [${ template_path }] } [...]

Notes

1. string is a string value
2. numeric is a numeric value
3. expression_as_string is any template expression resulting in a string value
4. template_path is any valid template path
5. The + operator can be used with string values to concatenate two strings. Other

operators will not work unless string values evaluate to numeric expressions:

'This expression ' + 'works'
'12' - '34' # works
'12' - 'ab' # doesn't work

6. The boolean operators && and || behave like their JavaScript equivalent. The
following table gives the result of the expression:

expr_A op expr_B

Genero Web Client

126

 Operator expr_A is TRUE* expr_B is FALSE*
 && expr_B false
 || expr_A expr_B

8. *Evaluation is done like the test made by the gwc:condition instruction

1 > 0 && 'expr_A is true' # produces expr_A is true
1 < 0 && 'expr_A is false' # produces 0
1 < 0 || 'expr_A is false' # produces expr_A is false

9. As the && operator's priority is greater than the || operator's priority, you can
combine these operators to have an if … then … else … statement :

condition_expr && expr_if_true || expr_if_false

true && 'bill' || 'bob' # produces bill
false && 'bill' || 'bob' # produces bob

11. The in operator is used to look for a string value in a string value list. Elements of
the list are separated by a space character

'bill' in 'bob bill john' # produces true

conversion protocols

A conversion protocol converts the expression inside parentheses using the appropriate
protocol:

bool(1+1) != false

The bool conversion protocol converts the value of its expression the same way the
gwc:condition instruction tests its expression.

Examples

expr(1) # produces 1
expr('1234') # produces 1234
expr('abcd') # produces 0

bool(0) # produces 0
bool(1234) # produces 1
bool('abcd') # produces 1

Technical Reference

127

Conversion tables

bool and expr conversion protocols behave according to the following table:

Expression value

Protocol
0

other
numeric

value

empty
string not empty string

bool 0 1 0 1

expr 0 numeric
value 0

0 unless the string is the
representation of a

numeric value.

url and html conversion protocols proceed character by character. Note that implicit
HTML conversion is done in a gwc:content instruction and in a gwc:replace
instruction if the resulting expression is a string. To avoid this conversion, or if you want
to convert only a part of the expression, use the html operator in association with a raw
operator.

Character value Protocol
< > & " other ASCII non ASCII

html < > & " no changes

url see URL ASCII conversion table URL
encoding*

* non ASCII characters are encoded using the %hh syntax, hh being the hexadecimal value of the
character. Encoding depends on the HTML page encoding.

URL ASCII conversion table:

Character value
A to Z a to z 0 to 9 space - _ . ! ~ * ' () other values

url encoding no changes + no changes standard
encoding*

* special ASCII characters are encoded using the %hh syntax, hh being the hexadecimal value of the
character. Encoding depends on the HTML page encoding.

With an ISO-8859-1 encoding for the HTML page:

url('été') # produces %e9t%e9

Genero Web Client

128

With an UTF-8 encoding for the HTML page:

url('été') # produces %c3%a9t%c3%a9

js conversion protocol escapes special characters by backslashing them:

Character value
quote double quote backslash new line

New character
value \' \" \\ \n

string: protocol

With the string: instruction, everything behind the colon sign is considered a string.
Server paths are accessed by putting them inside the ${ and } tags.

Special characters like the quote (') character, the curly brace (}) character, etc., can be
escaped inside a string using the backslash (\) character.

The following two examples result in the same values.

Example

string:Formfield edt1 value: ${formfield[edt1]/value}
'Formfield edt1 value: ' + formfield[edt1]/value

raw: protocol

The raw: instruction tells Genero Web Client to not use implicit HTML conversion once
the expression after the colon sign has been processed. Implicit HTML conversion is
done only in a gwc:content instruction or in a gwc:replace instruction and if the
resulting expression is a string. This operator has to be used only as the first instruction of
the expression to be effective.

Example

 # produces
html

Technical Reference

129

 # produces
html

path: protocol

The path: instruction acts like the string: instruction. The expression after the colon
sign is considered as a template path. The expressions path:template_path and
template_path are equivalent.

Template paths
With template paths, you can access most elements in your application, as well as
information about the Application Server.

• Application Server Paths
• Web Server Paths
• Genero Application Paths
• Other Paths

Application Server Paths

Server

 Template Path Description
 server/paths List of available paths.
 server/version Version of the server.

Genero Web Client

130

Web Server Paths

Document

 Template Path Description

 document/url URL of the next document to get. Used to set the action
attribute of a form HTML tag.

 document/layoutData Generated layout data which determine the alignment of
Genero elements.

 document/errors List of errors in the document.

Tip: You can use document/errors path when working with templates. This displays a
message when an error occurs in a template instruction or expression. In development,
you set this in the default template $FGLASDIR/tpl/generodefault.html.

Genero Application Paths

• Application path
• Window path
• Dialog path
• Menu path
• Action path
• Forms
• Containers
• Items
• TopMenu path
• ToolBar path

Application path

 Template Path Description
 application Access path to the application.
 application/text Application title (text attribute of the UserInterface node)

 application/actions Get the list of the application actions. Used in a repeat
instruction to loop on each action of the application.

Technical Reference

131

Window path

 Template Path Description
 window
 application/window Access path to the entire application window.

 window/text

Title of the window. For example:

• in the .per file: LAYOUT (TEXT="mytitle")
• In the .4gl file: OPEN WINDOW ... ATTRIBUTES

(TEXT="mystyle")

Dialog path

 Template Path Description
 dialog
 window/dialog Access path to the current dialog.

 dialog/active True if the dialog is active.
 dialog/action[act] Action widget that is named act.

 dialog/actions Get the list of dialog actions. Used in a repeat instruction to
loop on each action of the dialog.

Notes

1. window is any window access path
2. dialog can be any dialog access path
3. act is the action identifier
4. for any action path see action path section

Menu path

 Template Path Description
 menu Access path to the current menu.

Genero Web Client

132

 window/menu
 menu/active True if the menu is active.
 menu/text Text of the menu.
 menu/style Style of the menu. Can be 'default', 'dialog' or 'popup'.
 menu/action[act] Action widget that is named is act.

 menu/actions Get the list of menu actions. Used in a repeat instruction to
loop on each action of the menu.

Notes

1. window is any window access path
2. menu can be any menu access path
3. act is the action identifier
4. for any action path see action path section

Action path

 Template Path Description
 action[act]
 application/action[act]
 dialog/action[act]
 menu/action[act]

Access paths to default action elements, defined in 4ad
file.

 actions Get the list of the application actions. Used in a repeat
instruction to loop on each action of the application.

 action/active True if the action is active.
 action/id Action identifier, usually its name.
 action/name Action name.
 action/text Action displayed text.
 action/comment Comment for this action.
 action/hidden True if this action is hidden.

Notes

1. act is the action identifier
2. dialog is any dialog access path
3. menu is any menu access path
4. action is any action access path

Technical Reference

133

Form path

 Template Path Description
 form
 window/form Access path to a visible form.

 form/width Get the width in characters of the form.

Notes

1. window is any window access path
2. form is any form access path

Container path

 Template Path Description
 container[cname]
 window/container[cname] Access path to a container.

 container/name Get the name of the container.

Notes

• window is any window access path
• container is any container access path
• cname is the container identifier

Within the context of containers, you can examine:

• Table path
• Scrollgrid path
• Folder path

Genero Web Client

134

Table path

 Template Path Description
 table[tname]
 window/table[tname] Access path to the table.

 table/id Get the idref of a table.
 table/active True if the table is active.
 table/size RowCount, total number of rows in the table.
 table/offset Get the current row index in the table.

 table/pagesize
Get the number of rows to be displayed. Usually
corresponds to the number of the rows defined in .per
file.

 table/pages Get the list of table pages. Used in a repeat instruction
to loop on each page of the table.

 table/page[pidx]

Get the table page. Value for pidx can only be next,
previous or current. This path will NOT render the
previous or the next table page. It always renders the
current page. The next and previous pidx should only
be used for test purposes, i.e. in a gwc:condition
instruction.

 table/page[pidx]/id Get the id of the page. This corresponds to the offset of
the first row displayed on this page.

 table/columns Get the list of header columns.
 table/column[cname] Get the table header column.
 table/column[cname]/id Get the identifier of header column.
 table/column[cname]/name
 Get the name of header column.

 table/column[cname]/text Get the title of header column.

 table/rows Get the list of table rows to be displayed. Used in a
repeat instruction to loop on each row of the table.

 rowElt/cells
Get the list of cells on row rowElt given by a previous
table/rows instruction. Used in a repeat instruction to
loop on each cells of the row..

 rowElt/cell[cname] Get cname cell of the rows rowElt.
 rowElt/cell[cname]/id Get the id of cell in column cname and row rowElt.
 rowElt/cell[cname]/value Get the value of cell in column cname and row rowElt.

Notes

1. window is any window access path

Technical Reference

135

2. table is any table access path
3. tname is the name of the table
4. pidx is the page index. The row offset begins from 0
5. cname is the column name
6. rowElt is an element of table/rows

Scrollgrid path

 Template Path Description
 scrollgrid[sname]
 window/scrollgrid[sname] Access path to the scrollgrid.

 scrollgrid/id Get the idref of a scrollgrid.
 scrollgrid/active True if the scrollgrid is active.

 scrollgrid/size RowCount, total number of rows in the
scrollgrid.

 scrollgrid/offset Get the current row index in the scrollgrid.

 scrollgrid/pagesize
Get the number of rows to be displayed.
Usually corresponds to the number of the rows
defined in the .per file.

 scrollgrid/pages
Get the list of scrollgrid pages. Used in a repeat
instruction to loop on each page of the
scrollgrid.

 scrollgrid/page[pidx] Get the scrollgrid page. Value for pidx can
only be next, previous or current.

 scrollgrid/page[pidx]/id Get the id of the page. This corresponds to the
offset of the first row displayed on this page.

 scrollgrid/rows
Get the list of scrollgrid rows to be displayed.
Used in a repeat instruction to loop on each
row of the scrollgrid. Works only with matrix
scrollgrid.

 rowElt/cells
Get the list of cells on row rowElt given by a
previous scrollgrid/rows instruction. Used
in a repeat instruction to loop on each cells of
the row. Works only with matrix scrollgrid.

 rowElt/cell[cname] Get cname cell of the rows rowElt. Works only
with matrix scrollgrid.

 rowElt/cell[cname]/id Get the id of cell in column cname and row
rowElt. Works only with matrix scrollgrid.

Genero Web Client

136

 rowElt/cell[cname]/value Get the value of cell in column cname and row
rowElt. Works only with matrix scrollgrid.

 scrollgrid/cells
Get the list of formfield cells of the scrollgrid.
Used in a repeat instruction to loop on each cell
of the scrollgrid. Doesn't work with matrix
scrollgrid.

 scrollgrid/cell[cellname] Get formfield cell cellname of the scrollgrid.
Doesn't work with matrix scrollgrid.

 scrollgrid/cell[cellname]/id Get the id of formfield cell cellname. Doesn't
work with matrix scrollgrid.

 scrollgrid/cell[cellname]/value Get the value of formfield cell cellname.
Doesn't work with matrix scrollgrid.

Notes

1. window is any window access path
2. scrollgrid is any scrollgrid access path
3. sname is the name of the scrollgrid
4. pidx is the page index. The row offset begins from 0
5. cname is the column name
6. rowElt is an element of scrollgrid/rows

Folder path

 Template Path Description
 folder[fname]
 window/folder[fname] Access path to the folder.

 folder/pages Get the list of folder pages. Used in a repeat instruction
to loop on each page of the folder.

 folder/page[pname] Get the folder page.
 folder/page[pname]/text Get the text of the page.

Notes

1. window is any window access path
2. folder is any folder access path
3. fname is the name of the folder
4. pname is the page name

Technical Reference

137

Items

Within the context of items, you can examine:

• Formfield path
• Label path
• Button path
• Image path
• Error path
• Message path

FormField path

 Template Path Description
 formfield[fname]
 window/formfield[fname] Access path to formfield elements.

 formfield/id Get the id of the formfield.
 formfield/active True if the formfield is active.
 formfield/hidden True if the formfield is hidden.
 formfield/tabindex Get the tabindex of the formfield.
 formfield/value Get the value of the formfield.

 formfield/selectedtext Get the displayed text of the currently selected item of a
combobox or a radiogroup.

Notes

1. window is any window access path
2. formfield is any formfield access path
3. fname is the formfield name

Label path

 Template Path Description

Genero Web Client

138

 label[lname]
 window/label[lname] Access path to static labels.

 label/text Get the label text.

Notes

1. window is any window access path
2. label is any label access path
3. lname is the label name

Button path

 Template Path Description
 button[bname]
 window/button[bname] Access path to button.

 button/id Get the button identifier.
 button/image Get the button image path.
 button/text Get the button text.

Notes

1. window is any window access path
2. button is any button access path
3. bname is the button name

Image path

 Template Path Description
 image[iname]
 window/image[iname] Access path to static images.

 image/id Get the image identifier.
 image/height Get the image height.
 image/width Get the image width.
 image/path Get the image path.

Technical Reference

139

 image/stretch Get the image stretch attribute.

Notes

1. window is any window access path
2. image is any image access path
3. iname is the image name

Error path

 Template Path Description
 error
 application/error Access path to error message text .

Message path

 Template Path Description
 message
 window/message Access path to message text.

Notes

1. window is any window access path

TopMenu path

 Template Path Description
 topmenu
 window/topmenu Access path to the current form topmenu.

 application/topmenu Access path to the application level topmenu.

Genero Web Client

140

Notes

1. window is any window access path

ToolBar path

 Template Path Description
 toolbar
 window/toolbar Access path to the current form toolbar.

 application/toolbar Access path to the application level toolbar.

Notes

1. window is any window access path

Other Paths
• Attribute path
• Repeat path

Attribute path

 Template Path Description
 attribute[aname] Access to the value of the attribute aname of the current tag.

Notes

1. If aname is not a valid HTML tag attribute name or if the attribute is not defined,
the returned value is an empty string.

Technical Reference

141

Repeat path

 Template Path Description
 repeat/elt/length Get the length of the repeat sequence.
 repeat/elt/index Get the index of the current repeat element.

 repeat/elt/first Test if the current repeat element is the first element of the
sequence.

 repeat/elt/last Test if the current repeat element is the last element of the
sequence.

 repeat/elt/even Test if the current repeat element is an even element of the
sequence.

 repeat/elt/odd Test if the current repeat element is an odd element of the
sequence

Notes

1. elt is a repeat instruction element.

Genero Web Client

142

Template JavaScript API Reference

GWC provides a JavaScript API for you to use when scripting GWC JavaScript
functionality in your HTML application / page. This API provides easy access to
application events like changing a table offset, changing the value of a form field, or
emulating a key press.

Overview

This section provides an overview of the JavaScript API provided by the
GWC as well as notes about incremental and smart field mode.

Event Handler

This section discusses the event handler. The event handler is defined with
the object gGWCEvent.

Events

This section covers those objects that handle Action, Key, Field, Table,
ScrollGrid and Matrix events.

Javascript API Overview
GWC provides a JavaScript API to ease the use of the GWC JavaScript functionalities.
This API provides easy access to application events like changing a table offset, changing
the value of a form field, or emulating a key press.

Notes

1. Incremental mode depends on the call of gInitFieldMode(gFIELD_MODE |
gSMART_FIELD_MODE)

2. While Smart Field mode works, it is not managed by the JavaScript API.

Technical Reference

143

Event Handler
The event handler is defined with the object gGWCEvent. It provides two methods: a
method to add events and a method to send them to the Genero Web Client.

Syntax

gGWCEvent().method

 Method Description
 Append(event1,
event2,..., eventN) Adds one or more events to the events list

 Send() Sends all the events in the events list to the GWC

Examples

<input type=button onclick="gGWCEvent().Append(event).Send()">
<input type=button onclick="gGWCEvent().Append(event1, event2).Send()">
<input type=button
onclick="gGWCEvent().Append(event1).Append(event2).Send()">
<input type=button
onclick="gGWCEvent().Append(event1).Send().Append(event2).Send()">

Events
The GWC JavaScript API provides several objects to handle Action, Key, Field, Table,
ScrollGrid and Matrix events.

• Action Events
• Key Events
• Field Events
• Table Events
• ScrollGrid Events
• Matrix Events

Action Events

Action events are managed by the gAction object. It has no method, the action name is
simply provided when creating the event.

Genero Web Client

144

Syntax

gAction(actionName)

Notes

1. actionName must be an allowed action when sending this event to the GWC

Example

<input type=button
onclick="gGWCEvent().Append(gAction('accept')).Send()">

Key Events

Key events emulates key presses and are handled by the gKey object. It has no method,
the accelerator key name is simply provided when creating the event.

Syntax

gKey(keyName [, shiftKey [, ctrlKey [, altKey]]])

Notes

1. keyName is the accelerator key name
2. shiftKey, ctrlKey and altKey are boolean values indicating if the Shift, Control or

Alt keys were pressed

Example

<input type=button onclick="gGWCEvent().Append(gKey('Tab',
true)).Send()">

Field Events

The gField object handles the form fields events. Two events are defined, one to give
the focus to the field and one to set its value.

Technical Reference

145

Syntax

gField(fieldId).event

 Event Description
 Focus() Gives the focus to the field
 Value(value) Sets the current value of the field

Notes

1. fieldId is the field identifier given by the template path
formfield[fieldName]/id

Example

<input type="button" gwc:attributes="onclick
string:gGWCEvent().Append(gField(${FormField[ordernumber]/id}).Value).S
end()">

Table Events

Table events are handled by the gTable object which provides several events.

Syntax

gTable(tableId).event

 Event Description
 Select(localIndex) Selects the row at localIndex of the current page
 Offset(offset) Sets the offset of the table
 PageSize(pageSize) Sets the pagesize of the table
 Sort(columnName) Sorts the table by the given column

Notes

1. tableId is the table identifier given by the template path table[tableName]/id

Example

<input type=button
onclick="gGWCEvent().Append(gTable('ordertable').Offset('56')).Send()">

Genero Web Client

146

ScrollGrid Events

The only event handled by the gScrollGrid object is the offset event.

Syntax

gScrollGrid(scrollGridId).event

 Event Description
 Offset(offset) Sets the current offset of the scrollgrid

Notes

1. scrollGridId is the table identifier given by the template path
scrollgrid[scrollgridName]/id

Example

<input type=button
onclick="gGWCEvent().Append(gScrollGrid('ordergrid').Offset('89')).Send
()">

Matrix Events

The gMatrix object handles only one event.

Syntax

gMatrix(matrixId).event

 Event Description
 Select(localIndex) Selects the row at localIndex of the current page

Notes

1. matrixId is the matrix identifier given by the template path
scrollgrid[scrollgridName]/id

Technical Reference

147

Example

<input type=button
onclick="gGWEvent().Append(gMatrix('ordergrid').Select('4')).Send()">

Genero Web Client

148

Rendered HTML

This section describes the relationship between a 4GL statement and the generated
HTML. While details about rendered HTML is subject to changes as features evolve, this
section is provided to help you understand the default rendering and how it may be
customized. The default rendering includes JavaScript that may change the generated
HTML.

The elements are organized by category:

• Containers: HBOX, VBOX, GROUP, FOLDER, PAGE, GRID, SCROLLGRID,
TABLE

• Items type : Formfield, TextEdit, Edit, Button, ButtonEdit, ComboBox,
CheckBox, DateEdit, Image, Label, RadioGroup

• Others : Menu, Dialog, TopMenu, ToolBar, Message, Error

For each element, you are shown:

• The generated HTML, describing the HTML code built by the Genero Web Client
engine (no changes).

• The default rendering, with the default CSS and JavaScript applied. CSS modifies
the element look. JavaScript can change the HTML structure and the look of an
element.

• The list of available CSS styles.
• The class attributes used by JavaScript to set the behaviors and states of widgets.

Containers
• HBOX
• VBOX
• GROUP
• FOLDER
• PAGE
• GRID
• SCROLLGRID
• TABLE

Technical Reference

149

HBOX Container

In per file

01 HBOX ahbox
02 ...
03 END

Generated HTML

Syntax

<table class="gHBox" id="name">
 <tr>
 <td>...</td> [...]
 </tr>
</table>

Notes

1. name is the HBOX name in the per file.

Example

01 <table class="gHBox" id="ahbox">
02 <tr>
03 <td>
04 <div class="gGrid" id="agrid">
05 ...
06 </div>
07 </td>
08 ...
09 </tr>
10 </table>

Classes

• gHbox: main hbox class
• gHidden: when attribute HIDDEN=USER
• user style: set by attribute STYLE

Genero Web Client

150

VBOX Container

In per file

01 VBOX avbox
02 acontainer [...]
03 END

where acontainer can be any container (grid, hbox, ...).

Generated HTML

Syntax

<table class="gVBox" id="name">
 <tr><td class="gVBoxLine">...</td></tr> [...]
</table>

Notes

1. name is the VBOX name in the per file.

Example

01 <table class="gVBox" id="avbox">
02 <tr>
03 <td class="gVBoxLine">
04 <div class="gGrid" id="agrid">
05 ...
06 </div>
07 </td>
08 </tr>
09 ...
10 </table>

Classes

• for vbox
o gVbox: main vbox class
o gHidden: when attribute HIDDEN=USER

• for vbox content
o gVboxLine: one line of vbox content (a grid container for example)
o user style: set by attribute STYLE

Technical Reference

151

GROUP Container

In per file

01 GROUP gp1 (TEXT="Group1")
02 GRID g1
03 {
04 ...
05 }
06 END
07 END

Generated HTML

Syntax

 <fieldset class="gGroup" id="group_name">
 <legend class="gGroupTitle" id="group_name-
title">group_title</legend>
 ...
 </fieldset>

Notes

1. group_name is the GROUP name in the per file.
2. group_title is the text value of the GROUP

Example

01
02 <fieldset class="gGroup" id="gp1">
03 <legend class="gGroupTitle" id="gp1-title">
04 Group1
05 </legend>
06 <div class="grid" id="g1">
07 ...
08 </div>
09 </fieldset>
10

Classes

• for group container
o gGroupDiv: main group container class
o gHidden: when attribute HIDDEN=USER

• for group content
o gGroup: main group content class

Genero Web Client

152

o user style: set by attribute STYLE
• for group title

o gGroupTitle: main group title class

FOLDER Container

In per file

01 FOLDER f1
02 ...
03 END

Generated HTML

Syntax

<div class="gFolder" id="name">
 ...
</div>

Notes

1. name is the FOLDER name in the per file.

Example

01 <div class="gFolder" id="f1">
01 ...
03 </div>

Classes

• gFolder: main folder class
• gHidden: when attribute HIDDEN=USER
• user style: set by attribute STYLE

Technical Reference

153

PAGE Container

In per file

01 PAGE p1 (TEXT="Page1")
02 ...
03 END

Generated HTML

Syntax

 <input class="gAction" type="submit" value="page_title">

<div class="gPage" id="page_name">
 ...
</div>

Notes

1. page_name is the PAGE name in the per file.
2. page_title is the text value of the PAGE
3. additional classes can be: selectedPageHeader,

Example

01
02 <input class="gAction" type="submit" value="Page1">
03
04 <div class="gPage" id="p1">
05 ...
06 </div>

Default rendering

HTML Without Rendering Default Rendering

none

with JavaScript rendering:

01 <SPAN class="gPageHeader gSelectedPageHeader" id=p1-header
_actionName="undefined">

Genero Web Client

154

02 <LABEL>page 1</LABEL>
03 <INPUT class=gAction type=submit value="page 1">
04
05 <DIV class="gPage gSelectedPage" id=p1>
06 ...
07 </DIV>

The default rendering adds a label and hides the input button. The effect is to see a
clickable text for selecting a folder page. On some user agents, a disabled input button
cannot receive the focus. You cannot click on a button to go into a folder page.

For more details see the FolderWrapper in $FGLASDIR/fjs/defaultTheme/genero.js

Classes

• for page header
o gPageHeader: main page header class
o gHidden: when attribute HIDDEN=USER

• for page
o gPage: main page class
o user style: set by attribute STYLE

GRID Container

In per file

01 GRID g1
02 {
03 [f001]
04 ...
05 }
06 END

Generated HTML

Syntax

 aline

where aline is, generated for each line in the grid:

Technical Reference

155

<div class="gGridLine">
 ...
</div>

Notes

1. grid_name is the GRID name in the per file.

Example

01
02 <div class="gGridLine">
03
04 <input class="gEdit" id="field1" type="text">
05
06 </div>
07

Classes

• for the grid
o gGrid: main grid container class
o gHidden: when attribute HIDDEN=USER

• for each grid line
o gGridLine

SCROLLGRID Container

In per file

01 SCROLLGRID s1
02 {
03 ...
04 }
05 END

Generated HTML

Syntax

 ...
 <hr id="gline"> [...]

Genero Web Client

156

 <input type=hidden name=gOffset value="offset">
 <input type=hidden name=gPageSize value="pageSize">
 <input type=hidden name=gSize value="asize">

Notes

1. sgname is the scrollgrid identifier
2. gline is a separator of the record pattern
3. offset is the record position in the array
4. pSize is the number of lines in the per line
5. asize is the array size

Example

01
02
03 ...
04
05

Classes

• for scrollgrid container
o gScrollGridBox: main scrollgrid container class
o gHidden: when attribute HIDDEN=USER
o user style: set by attribute STYLE

• for scrollgrid content
o gScrollGrid: main scrollgrid class
o gEnabledScroll: if scrolling is available

• for scrollgrid separator
o gHLineBox: separator container class

TABLE Container

In per file

01 <T t0 >
02 D1 D2 D3
03 [s1 |s2 |s3]

Technical Reference

157

Generated HTML

Syntax

<table class="gTable" id="tname">
 tableSelect [...]
 <thead>
 <tr>
 tableTitle [...]
 </tr>
 </thead>
 <tr>
 tableColumn [...]
 </tr>
</table>
<input type=hidden name=gOffset value="offset">
<input type=hidden name=gPageSize value="pageSize">
<input type=hidden name=gSize value="asize">

where tableSelect is:

<col class="gColSelect" id="cname-col">

and tableTitle is:

<th>
<input class="gTableHeader" id="cname" name="idref" type="submit"
value="ctitle">
</th>

and tableColumn is:

<td>
 afield
</td>

Notes

1. rowstate can be currentRow if this row is the current one in a display array
2. cname is the formfield identifier
3. idref is the node id in the AUI tree
4. ctitle is the column title
5. afield is any field representation
6. offset is the record position in the array
7. pSize is the number of lines in the per line
8. asize is the array size
9. A column is added to handle row selection :

in tableSelect:

Genero Web Client

158

<col class="gColSelect" id="cname-col-select">

in tableColumn:

<TD><INPUT class="gTableSelect" type="radio" value="row"
name="tableid"></TD>

Example

01
02 <table class="gTable" id="t0">
03 ...
04 <col id="s1-col">
05 ...
06 <thead>
07 <tr>
08 <th>
09 <input class="gTableHeader" id="s1" name="90"
type="submit" value="D1">
10 </th>
11 ...
12 </tr>
13 </thead>
14 <tbody>
15 <tr>
16 ...
17 <td>
18 <input class="edit" name="112" size="10" type="text"
value="">
19 </td>
20 ...
21 </tr>
22 ...
23 </tbody>
24 </table>
25

Classes

• for table container
o gTableBox: main table container class
o gHidden: when attribute HIDDEN=USER

• for table
o gTable: main table class
o gEnabledScroll: when scrollbar is available
o gCurrentTable: if is the current table
o user style: set by attribute STYLE

• for table column
o gTableHeader: default style for a table header
o gSortAsc: if the column is in ascendant sort
o gSortDesc: if the column is in descendant sort

Technical Reference

159

o gHidden: when HIDDEN=USER (set on <col> element)
• for table row

o gCurrentRow: if the row is the current one (set on <tr> element)
• for scrollbar

o gOffset
o gSize
o gPageSize

Items type
• Formfield
• TextEdit
• Edit
• Button
• ButtonEdit
• ComboBox
• CheckBox
• DateEdit
• Image
• Label
• RadioGroup

FormField

Generated HTML

Syntax

 afield

Notes

1. fname is the formfield identifier
2. afield is the formfield representation

This element is used to set the field position. It becomes useless when this field is in a
TABLE. Its position is determined by the table cell <td>.

Genero Web Client

160

Classes

• gFormField: field container main class

TEXTEDIT

TextEdit, the multi-line edit field, is represented as a textarea.

In per file

01 TEXTEDIT f01 = formonly.text;

Generated HTML

Syntax

<textarea class="gTextEdit" id="txtName">text</textarea>

Notes

1. txtName is the name of the formfield TextEdit in the per file
2. text is the value of the formfield TextEdit

Example

01 <textarea class="gTextEdit" id="text">Here is a text</textarea>

Classes

• gTextEdit: textEdit main class
• user style: set by attribute STYLE
• gNotNull: set by attribute NOT NULL
• gRequired: set by attribute REQUIRED
• gVerify: set by attribute VERIFY
• gQuery: in construct
• gNoEntry: set by attribute NOENTRY
• g<field_trigger>: set by input triggers (gOnChange, ...)
• gAutoNext: set by attribute AUTONEXT
• gShiftUp: set by attribute UPSHIFT
• gShiftDown: set by attribute DOWNSHIFT
• gScrollbarHorizontal: set by attribute SCROLLBARS=HORIZONTAL

Technical Reference

161

• gScrollbarVertical: set by attribute SCROLLBARS=VERTICAL
• gStretchX: set by attribute STRETCH=X
• gStretchY: set by attribute STRETCH=Y
• gWantTabs: set by attribute WANTTABS
• gWantReturns: set if attribute WANTNORETURNS not set

EDIT Item Type

In per file

01 EDIT f01 = formonly.state;

Generated HTML

Syntax

<input class="gEdit" id="ename" type="text" value="text">

Notes

1. ename is the formfield identifier
2. text is the formfield value

Example

01 <input class="gEdit" id="state" type="text" value="Description">

Classes

• gEdit: edit main class
• user style: set by attribute STYLE
• gNotNull: set by attribute NOT NULL
• gRequired: set by attribute REQUIRED
• gVerify: set by attribute VERIFY
• gInclude: set by attribute INCLUDE
• gQuery: in construct
• gNoEntry: set by attribute NOENTRY
• gJustifyLeft: set by attribute JUSTIFY=LEFT
• gJustifyRight: set by attribute JUSTIFY=RIGHT
• gJustifyCenter: set by attribute JUSTIFY=CENTER
• g<field_trigger>: set by input triggers (gOnChange, ...)
• gAutoNext: set by attribute AUTONEXT

Genero Web Client

162

• gShiftUp: set by attribute UPSHIFT
• gShiftDown: set by attribute DOWNSHIFT

BUTTON Item Type

In per file

01 BUTTON f01 : print, TEXT="Print Report", IMAGE="printer";

Generated HTML

Syntax

[
<input class="gAction" name="bname" src="img" title="btitle"
type="image">
]
<input class="gAction" name="bname" title="btitle" type="submit"
value="btext">

Notes

1. idref is the node id in the AUI tree
2. bname is the formfield identifier
3. img is the path to the buttonedit image
4. btitle is the button comment
5. btext is the value of the TEXT attribute in per file
6. button does not necessarily have an image

Example

01
02 <input alt="print" class="gAction" name="print"
src="/pic/printer.png" title="Print" type="image">
03 <input class="gAction" name="print" title="Print" type="submit"
value="Print Report">
04

Classes

• for button container
o gButtonBox: button container main class

Technical Reference

163

o gHidden: when attribute HIDDEN=USER
• for button and image

o gAction: main class

BUTTONEDIT Item Type

In per file

01 BUTTONEDIT f01 = FORMONLY.f01, IMAGE="smiley";

Generated HTML

Syntax

<input class="gButtonEdit" id="fname" name="idref" type="text">
<input class="gAction" src="img" type="image">

Notes

1. fname is the formfield identifier
2. idref is the node id in the AUI tree
3. img is the path to the buttonedit image

Example

01
02 <input class="gButtonEdit" id="f01" name="88" size="18"
type="text">
03 <input class="gAction" src="/pic/smiley.png" type="image">
04

Classes

• gButtonEdit: buttonedit main class
• user style: set by attribute STYLE
• gNotNull: set by attribute NOT NULL
• gRequired: set by attribute REQUIRED
• gVerify: set by attribute VERIFY
• gInclude: set by attribute INCLUDE
• gQuery: in construct
• gNoEntry: set by attribute NOENTRY
• gJustifyLeft: set by attribute JUSTIFY=LEFT
• gJustifyRight: set by attribute JUSTIFY=RIGHT

Genero Web Client

164

• gJustifyCenter: set by attribute JUSTIFY=CENTER
• g<field_trigger>: set by input triggers (gOnChange, ...)
• gAutoNext: set by attribute AUTONEXT
• gShiftUp: set by attribute UPSHIFT
• gShiftDown: set by attribute DOWNSHIFT
• gAction: image main class

COMBOBOX Item Type

In per file

01 COMBOBOX f01 = formonly.city,
ITEMS=((1,"Paris"),(2,"Madrid"),(3,"London")), DEFAULT=2;

Generated HTML

Syntax

<select class="gComboBox" id="fname" name="idref">
 opt [...]
</select>

where opt is:

<option value="item_val">
 item_text
</option>

Notes

1. fname is the formfield identifier
2. idref is the node id in the AUI tree
3. item_val is the real value of a combobox item
4. item_text is the displayed text of a combobox item

Example

01
02 <select class="gComboBox gCurrentField gTypeString" id="city"
name="89">
03 <option value="">
04 </option>
05 <option value="1">
06 Paris

Technical Reference

165

07 </option>
08 <option selected="selected" value="2">
09 Madrid
10 </option>
11 <option value="3">
12 London
13 </option>
14 </select>
15

Default rendering

In a Construct dialog, with the attribute QUERYEDITABLE, the user can enter a value in
the combobox.

GDC Without Rendering Default Rendering

in per file:

01 combobox f03 = formonly.comp, QUERYEDITABLE,
02 items=(("Century Pro Shop","Century"),("Bay
Sports","Sports"),("Kids Korner","Kids"));

with default rendering:

01 <SELECT class="gComboBox gQuery " id=comp tabIndex=3 multiple size=1
name=91>
02 <OPTION value=""></OPTION>
03 <OPTION value="Century Pro Shop">Century</OPTION>
04 <OPTION value="Bay Sports">Sports</OPTION>
05 <OPTION value="Kids Korner" selected>Kids</OPTION>
06 </SELECT>
07
08 <INPUT class=" " style="POSITION: relative" value="Kids
Korner|Century">
09

An HTML combobox is not editable. To simulate QUERYEDITABLE, an input field
beside the combobox is added by JavaScript. The user can then enter any value in this
input field.

An HTML combobox allows multi selection, so you can select several values for the
combobox with the shift or control key.

Genero Web Client

166

Classes

• gComboBox: combobox main class
• user style: set by attribute STYLE
• gNotNull: set by attribute NOT NULL
• gRequired: set by attribute REQUIRED
• gQuery: in construct
• gNoEntry: set by attribute NOENTRY
• g<field_trigger>: set by input triggers (gOnChange, ...)

CHECKBOX Item Type

In per file

01 CHECKBOX f01 = formonly.check, TEXT="Active", VALUECHECKED="Y",
VALUEUNCHECKED="N", DEFAULT="Y";

Generated HTML

Syntax

<select class="gCheckBox" id="cname" name="idref">
 opt [...]
</select>
<label for="cname">
ctext
</label>

where option is:

<option value="item_val">
item_val
</option>

Notes

1. cname is the formfield identifier
2. idref is the node id in the AUI tree
3. ctext is the TEXT attribute of the checkbox
4. item_val is the checked or unchecked value for the checkbox. A null value is

added if the current selected value is null

Technical Reference

167

Example

01 <select class="gCheckBox gCurrentField gTypeChar" id="check"
name="91">
02 <option value="">
03 </option>
04 <option selected="selected" value="Y">
05 Y
06 </option>
07 <option value="N">
08 N
09 </option>
10 </select>
11 <label for="check">
12 Active
13 </label>

Default Rendering

There is no checkbox with 3 states (null, checked, unchecked) in HTML. The adopted
solution is to use a combobox reshaped in checkbox.

HTML Without Rendering Default Rendering

Example

01 <INPUT class="checkBox currentField typeChar checkedState" id=91>

The combobox is replaced by an input . It contains a background image that simulates the
checkbox states: cross (null), v (checked) or nothing (unchecked). Events handlers like
click and double-click are added to this input to allow the states changes.

For more details see the CheckboxWrapper function in
$FGLASDIR/web/defaultTheme/genero.js file.

Classes

• gCheckBox: checkbox main class
• user style: set by attribute STYLE
• gNotNull: set by attribute NOT NULL
• gRequired: set by attribute REQUIRED

Genero Web Client

168

• gQuery: in construct
• gNoEntry: set by attribute NOENTRY
• g<field_trigger>: set by input triggers (gOnChange, ...)
• gNullState: if the checkbox has a NULL value
• gCheckedState: if the checkbox is checked
• gUncheckedState: if the checkbox is unchecked

.

DATEEDIT Item Type

In per file

01 DATEEDIT f01 = formonly.dte;

Generated HTML

Syntax

<input class="gDateEdit" id="dname" name="idref" type="text"
value="val">
</input>

Notes

1. dname is the formfield identifier
2. idref is the node id in the AUI tree
3. val is the date time value

Example

01
02 <input class="gDateEdit gCurrentField" id="dte" name="92"
type="text">
03

Default rendering

The DATEEDIT widget is a date picker.

Technical Reference

169

HTML Without Rendering Default Rendering

none

With default rendering, a calendar image is added to each dateedit in input state. Clicking
this image creates a calendar table if it does not already exist. The calendar interaction is
handled by the JavaScript function "Calendar" in genero.js. The look is set by "calendar"
classes in genero.css.

For more details see the DateeditWrapper function in
$FGLASDIR/web/defaultTheme/genero.js file.

Classes

• gDateEdit: dateedit main class
• user style: set by attribute STYLE
• gRequired: set by attribute REQUIRED
• gInclude: set by attribute INCLUDE
• gQuery: in construct
• gNoEntry: set by attribute NOENTRY
• gJustifyLeft: set by attribute JUSTIFY=LEFT
• gJustifyRight: set by attribute JUSTIFY=RIGHT
• gJustifyCenter: set by attribute JUSTIFY=CENTER
• g<field_trigger>: set by input triggers (gOnChange, ...)

IMAGE Item Type

In per file

01 IMAGE f01 = formonly.f01, PIXELHEIGHT=300, PIXELWIDTH=400,
STRETCH=BOTH;
02 IMAGE img : logo, IMAGE="smiley";

Generated HTML

Genero Web Client

170

Syntax

Notes

1. iname is the image identifier
2. idref is the node id in the AUI tree
3. img is the path to the image
4. tclass illustrates the images type, a formfield or a static image

Example

01
02
03
04 ...
05
06
07

Classes

• for static image container
o gImageBox: image container main class
o gHidden: when attribute HIDDEN=USER

• for image
o gImage: main image class
o gStretchX: set by attribute PIXELWIDTH
o gStretchY: set by attribute PIXELHEIGHT
o gAutoscale: set by attribute AUTOSCALE
o user style: set by attribute STYLE

LABEL Item Type

In per file

01 LABEL f01 = formonly.desc;
02 LABEL lab : label1, TEXT="Hello";

Technical Reference

171

Generated HTML

Syntax

<label class="gLabel" id="lname">
 text
</label>

Notes

1. lname is the label identifier
2. text is the TEXT attribute of a static label or the value of the formfield

Example

01
02 <label class="gLabel" id="desc">
03 Description
04 </label>
05
06 ...
07
08 <label id="label1">
09 Hello
10 </label>
11

Classes

• for static label
o gLabelBox: label container main class
o gHidden: when attribute HIDDEN=USER

• for formfield label
o gLabel: main formfield label class

• for label
o user style: set by attribute STYLE
o gHidden: when attribute HIDDEN=USER
o gJustifyLeft: when attribute JUSTIFY=LEFT
o gJustifyRight: when attribute JUSTIFY=RIGHT
o gJustifyCenter: when attribute JUSTIFY=CENTER

Genero Web Client

172

RADIOGROUP Item Type

In per file

01 RADIOGROUP f01 = formonly.f01,
ITEMS=((1,"Beginner"),(2,"Normal"),(3,"Expert")),DEFAULT="3";

Generated HTML

Syntax

<select class="gRadioGroup" id="rname" name="idref">
 opt [...]
</select>

where opt is:

<option value="item_val">
 item_text
</option>

Notes

1. rname is the radiogroup identifier
2. item_val is the real value of the radiogroup
3. item_text is the displayed text of the radiogroup

Example

01
02 <select class="gRadioGroup" id="f01" name="95">
03 <option value="">
04 </option>
05 <option value="1">
06 Beginner
07 </option>
08 <option value="2">
09 Normal
10 </option>
11 <option selected="selected" value="3">
12 Expert
13 </option>
14 </select>
15

Default rendering

HTML Without Rendering Default Rendering

Technical Reference

173

01
02 <DIV><INPUT tabIndex=-1 type=radio value=1>Beginner</DIV>
03 <DIV><INPUT tabIndex=-1 type=radio value=2>Normal</DIV>
04 <DIV><INPUT tabIndex=-1 type=radio CHECKED value=3>Expert</DIV>
05

The combobox is reshaped to radio group buttons.

In a construct dialog, radiogroup has multiple choices.

GDC Without Rendering Default Rendering

In per file

01 radiogroup f06 = formonly.stat, items=(("CA","CA"),("AZ","AZ")) ;

With default rendering

01 <INPUT tabIndex=-1 type=radio CHECKED value=CA>CA
02 <INPUT tabIndex=-1 type=radio CHECKED value=AZ>AZ
03
04 <INPUT class=" current" style="POSITION: relative">
05

The generated combobox is reshaped to radio buttons. Beside the radio buttons an input
field is added. The user can enter a request which is not limited to radio button choices.

Classes

• gRadioGroup: radiogroup main classs
• user style: set by attribute STYLE
• gNotNull: set by attribute NOT NULL
• gRequired: set by attribute REQUIRED
• gInclude: set by attribute INCLUDE
• gQuery: in construct
• gNoEntry: set by attribute NOENTRY
• g<field_trigger>: set by input triggers (gOnChange, ...)

Genero Web Client

174

• gOrientationHorizontal: set by attribute ORIENTATION=HORIZONTAL
• gOrientationVertical: set by attribute ORIENTATION=VERTICAL

Others
• Menu
• Dialog
• TopMenu
• ToolBar
• Message
• Error

Menu

In 4gl file

01 MENU "Main"
02 ATTRIBUTE (image="smiley")
03 ON ACTION act
04 ...
05 END MENU

where in default.4ad, you have:

01 <ActionDefault name="act" text="The menu action" image="smiley"/>

Generated HTML

Syntax

<DIV class="gMenu">

 mTitle

 act [...]

</DIV>

where act is:

Technical Reference

175

<LI class="gMenuAction">
 [<INPUT class=gAction type=image src="img" name=actName>]
 <INPUT class=gAction type=submit value="actText" name=actName>

Notes

1. mTitle is the menu title
2. mImg is the menu image
3. img is image value
4. actName is the action name
5. actText is the action text

Example

01 <DIV class="gMenu" title="Menu comment">
02
03 Main
04
05 <LI class="gMenuAction"><INPUT class=gAction type=image
src="/pic/smiley" name=act>
06 <INPUT class=gAction type=submit value="The menu action"
name=act>
07 ...
08
09 </DIV>

Classes

• menu container
o gMenu: menu container main class
o gStyle<user style>: set by attribute STYLE
o gStyleDefault: set by attribute STYLE="default"
o gStyleDialog: set by attribute STYLE="dialog"
o gStylePopup: set by attribute STYLE="popup"

• menu title
o gMenuTitle: menu title main class

• menu action
o gAction: action and command main class
o gHidden: when attribute HIDDEN=USER
o gCurrentAction: if the action is the current one

Genero Web Client

176

Dialog

Generated HTML

Syntax

<DIV class=gDialog>

 <LI class=gDialogAction><INPUT class=gAction type=submit
value=actText name=actName> [...]

</DIV>

Notes

1. actText is the action text
2. actName is the action name

Example

01 <DIV class=gDialog>
02
03 <LI class=gDialogAction><INPUT class=gAction type=submit
value=OK name=accept>
04 <LI class=gDialogAction><INPUT class=gAction type=submit
value=Cancel name=cancel>
05
06 </DIV>

Classes

• for dialog container
o gDialog: dialog container main class

• for action container
o gDialogAction: action container class
o gHidden: when attribute HIDDEN=USER

• for action
o gAction: action main class

Technical Reference

177

TopMenu

In .per file

01 TOPMENU
02 GROUP (TEXT="Form")
03 COMMAND help (TEXT="Help", IMAGE="quest")
04 SEPARATOR (TAG="tm_separator")
05 COMMAND quit (TEXT="Quit")
06 END
07 END

Generated HTML

Syntax

<DIV class=gTopMenu>
 tGroup [...]
</DIV>

where tGroup is:

 <LABEL>gTitle</LABEL>

 tCommand | tGroup | tSeparator [...]

where tCommand is:

 <INPUT class=gAction type=image src=cImg name=cName>
 <INPUT class=gAction type=submit value=cTitle name=cName>

where tSeparator is:

<HR>

Notes

1. cImg is the command image
2. cName is the command identifier
3. cTitle is the command text

Genero Web Client

178

Example

01 <DIV class=gTopMenu>
02
03 <LABEL>Form</LABEL>
04
05 <INPUT class=gAction type=image alt=help
src="/pic/quest" name=help>
06 <INPUT class=gAction type=submit value=Help name=help>
07 <HR>
08 <INPUT class=gAction type=submit value=Quit name=quit>
09
10
11 </DIV>

Classes

• gTopMenu: topmenu container main class
• gAction: topmenu command main class

ToolBar

In .per file

01 TOOLBAR
02 ITEM action1 (TEXT="Action1", IMAGE="accept")
03 SEPARATOR
04 ITEM quit (TEXT="Exit", image="quit")
05 END

Generated HTML

Syntax

<DIV class=gToolBar>

 tItem | tSeparator [...]

</DIV>

where tItem is:

Technical Reference

179

 <INPUT class=gAction type=image src=actImg name=actName>
 <INPUT class=gAction type=submit value=actTitle name=actName>

where tSeparator is:

<HR>

Notes

1. actImg is the action image
2. actTitle is the action title
3. actName is the action identifier

Example

01 <DIV class=gToolBar>
02
03 <INPUT class=gAction type=image src="/pic/accept"
name=action1>
04 <INPUT class=gAction type=submit value=Action1 name=action1>
05 <HR>
06 <INPUT class=gAction type=image src="/pic/quit" name=quit>
07 <INPUT class=gAction value=Exit name=quit>
08
09 </DIV>

Classes

• gToolBar: toolbar container main class
• gAction: toolbar action main class

Message

In 4gl file

01 MESSAGE "This is a message"

Generated HTML

Syntax

<P class=gMessage id=gMessage>text</P>

Genero Web Client

180

Notes

1. text is the message value

Example

01 <P class=gMessage id=gMessage>This is a message</P>

Classes

• gMessage: main message class

Error

In 4gl file

01 ERROR "This is an error"

Generated HTML

Syntax

<P class=gError id=gError>text</P>

Notes

1. text is the error value

Example

01 <P class=gError id=gError>This is an error</P>

Classes

• gError: main error class

Self-Paced Tutorials

181

Template Tutorial

This tutorial explains how to customize the rendering of an application by using CSS and
Genero Web Client instructions and template paths.

• Tutorial overview
• Step 0: Using the built-in rendering
• Step 1: Customize the rendering
• Step 2: Use basic template paths
• Step 3: Displaying application messages and errors
• Step 4: Use advanced Genero Web Client instructions
• Step 5: Use Genero Web Client JavaScript API

Tutorial overview
4GL and Web applications do not have the same widgets, however Genero Web Client
takes advantage of the best of both of these worlds. You can choose how to represent a
4GL widget in a Web application and how a Web widget reacts. You control the design
and behavior of a widget. For example, an array can be displayed the same as would
using the Genero Desktop Client, or it can be presented in a more web-like fashion with
links.

This tutorial is based on a simple application that manages identity cards. Using this
application, a user can add a new card, list existing cards, enter search criteria and search
for one or more cards, or delete a card. The demo application does not use a database; the
card data is saved in a XML file.

The files supporting this tutorial:

• The tutorial application source files are located in the
$FGLASDIR/demo/tutorial/src directory

• The configuration files are located in the $FGLASDIR/demo/tutorial/app
directory.

• The HTML files and image files are located in the
$FGLASDIR/demo/tutorial/web directory.

To view the application for a specific tutorial step, go to the demos page and click on the
link for the tutorial step that interests you. For information on accessing the demos page,
refer to the section Quick Start >> Launch Demos.

Genero Web Client

182

Reference for the Application Server configuration and to the Genero Web Client
template Language can be found in the Reference section of this manual.
Reference for the Application Deployment can be found in the Miscellaneous section of
this manual.

Tutorial Topic Summary

The following topics are covered in this tutorial:

• How to configure an application
o Where to find configuration files
o How to access a database
o How to use images
o How to use arguments
o How to configure a connector

• How to customize an application
o Using CSS
o Using templates
o Using Javascript API

Step 0: Using the built-in rendering
Built-in rendering is done when an application is started without using a custom template.
When a custom template is not provided, the Genero Web Client uses the default HTML
template generodefault.html.

In order to start an application, it must be defined for the Genero Web Client. Information
for accessing the application can be specified in the application server configuration file
(default as.xcf) or in a separate, XML-based, application-specific configuration file.

Note: All application configuration files used in this tutorial are found in the
demo/tutorial/app directory of the Genero Web Client.

The following XML provides the information needed to access the identity card
management application.

01 <?xml version="1.0" encoding="UTF-8"?>
02 <APPLICATION Id="tutorial" Parent="demo-tut-abstract">
03 <EXECUTION>
04 <PATH>$(res.path.demo.dem-tut)/src</PATH>
05 <MODULE>card.42r</MODULE>
06 </EXECUTION>
07 </APPLICATION>

Self-Paced Tutorials

183

Notes

1. Line 2: The APPLICATION tag specifies the Id of the application and tells Genero
Web Client that this application inherits the configuration settings of the parent
application demo-tut-abstract.

2. Line 4: In the EXECUTION tag, the PATH tag defines the application's module
directory.

3. Line 5: In the EXECUTION tag, the MODULE tag specifies the main module of the
application.

In this example, the parent application is an abstract application, defined in the as.xcf
file:

01 <APPLICATION Id="demo-tut-abstract" Parent="defaultgwc"
Abstract="TRUE">
02 <RESOURCE Id="res.path.demo.dem-tut"
Source="INTERNAL">$(res.path.as.demo)/tutorial</RESOURCE>
03 <PICTURE>
04 <PATH>$(connector.uri)/tutorial/img</PATH>
05 </PICTURE>
06 </APPLICATION>

Notes

1. Line 1: This abstract application inherits the configuration of the default Genero
Web Client application.

2. Line 2: This abstract application defines a internal RESOURCE pointing to the
tutorial directory.

3. Line 3-5: The PICTURE path tells the web server where to look for images.

Some aliases are added to the INTERFACE_TO_CONNECTOR tag:

01 <ALIAS
Id="/tutorial/img">$(res.path.as.demo)/tutorial/web/tutorial/img</ALIAS
>
02 <ALIAS
Id="/tutorial/inc">$(res.path.as.demo)/tutorial/web/tutorial/inc</ALIAS
>

Finally, a GROUP is defined, identifying the directory that contains the XML-based,
application-specific configuration file:

01 <GROUP Id="tut-demo">$(res.path.as.demo)/tutorial/app</GROUP>

Genero Web Client

184

With this information entered into the configuration file, the application is ready to be
launched. The application can be accessed using the following syntax:

http://server:port/wa/r/group/application

If you are logged on to the same machine on which the Genero Web Client is installed,
the URL will be:

http://localhost:6394/wa/r/tut-demo/tutorial

Step 1: Customize the rendering
In this step, the rendering of the application is customized by adding a custom CSS file
and modifying the default template.

To modify the default template, start by making a copy of the generodefault.html file
(located in the Genero Web Client template directory) and rename the copy.

Next, open the new file and make any changes that are necessary.

Example tutorialStep1.html in the directory demo/tutorial/web/tutorial:

01 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
02 <html>
03 <head>
04 $(res.meta-tags)
05 <meta http-equiv="Content-Type" content="text/html; charset=UTF-
8">
06 <title gwc:content="string:${window/text}">Template page</title>
07 <script language=javascript
src="$(connector.uri)/fjs/uaapi/webBrowser.js"></script>
08 <script language=javascript
src="$(connector.uri)/fjs/asapi/application.js"></script>
09 <script language=javascript
src="$(connector.uri)/fjs/asapi/wrappers.js"></script>
10 <link rel="stylesheet"
href="$(connector.uri)/fjs/defaultTheme/genero.css" type="text/css" />
11 <script language=javascript
src="$(connector.uri)/fjs/defaultTheme/genero.js"></script>
12 <link rel="stylesheet"
href="$(connector.uri)/tutorial/inc/tutorialStep1.css" type="text/css"
/>
13 <style type="text/css" >
14 #gForm { margin-right: 20px; height:auto; width:auto; }

Self-Paced Tutorials

185

15 #gFormTable { width: 100%; table-layout: fixed; }
16 </style>
17 </head>
18 <body>
19 <form action="..." id="gDialogForm" method=post
gwc:attributes="action document/URL">
20 <div gwc:replace="application/intermediatetrigger" />
21 <div gwc:replace="application/dbdate" />
22 <table width="100%" height="100%" border="0" cellpadding="0"
cellspacing="0">
23 <tr>
24 <td colspan=2>
25 <div gwc:condition="application/topmenu"
gwc:replace="application/topmenu" /><div gwc:condition="topmenu"
gwc:replace="topmenu" />
26 <div gwc:condition="application/toolbar"
gwc:replace="application/toolbar" /><div gwc:condition="toolbar"
gwc:replace="toolbar" />
27 </td>
28 </tr>
29 <tr height="100%">
30 <td width="100%" style="vertical-align:top;"><table
gwc:condition="form" id="gFormTable"><tr><td><div id="gForm-div"
gwc:content="form" /></td></tr></table></td>
31 <td valign="top" id="gPanel"><div gwc:condition="menu"
gwc:replace="menu" /><div gwc:condition="dialog" gwc:replace="dialog"
/></td>
32 </tr>
33 <tr>
34 <td colspan=2 id="gInfo"><div gwc:condition="message"
gwc:content="message" /><div gwc:condition="error" gwc:content="error"
/></td>
35 </tr>
36 </table>
37 </form>
38 ©2004 Four J's Development
Tools
39 <script defer language=javascript><!--
40 var gLayoutData = ${document/layoutData};
41 gInitFieldMode(gIdToElement('gDialogForm'),
gSMART_FIELD_MODE, gINCREMENTAL_MODE); // [gFIELD_MODE |
gSMART_FIELD_MODE], [gINCREMENTAL_MODE | gFULL_MODE]
42 //--></script>
43 </body>
44 </html>

Notes

1. Line 12: A link is added to the custom style sheet tutorialStep1.css. This CSS file
overrides some of the genero.css styles and defines a new style for the footer of
the page.

2. Line 19-37: These lines render the entire application window. The FORM tag is
used to submit data to the Genero Web Client. This form must have the id
gDialogForm. Use the gwc:attributes instruction to replace the value of the

Genero Web Client

186

action attribute of the tag with the correct URL using the document/url template
path.

3. Line 21: A gDBDate INPUT is defined, since the form contains a calendar widget.
4. Line 26: The template path application/toolbar is used to render the

application level toolbar.
5. Line 38: A footer is added to the page with corporate information.

The contents of the CSS file:

01 .gToolBar {
02 background: #BBBBEE;
03 border-bottom-color: gold;
04 }
05 .gToolBar LI {
06 border-color: white;
07 }
08 .gToolBar .hover {
09 background-color: gold;
10 }
11 .gToolBar .hover * {
12 color: blue;
13 }
14 .gToolBar .pressed {
15 background-color: gold;
16 }
17 .footer {
18 font-size: x-small;
19 position: absolute;
20 bottom: 0px;
21 }
22 BODY {
23 background-color: #EEEEFF;
24 }
25 .gMenu,
26 .disabled,
27 .gButtonBox {
28 background-color:#BBBBEE;
29 }
30 .gDialog UL,
31 .gDialog LI {
32 border-color: #BBBBEE;
33 }

The next step is to change our application's XML-based configuration file and specify
that the Genero Web Client use the new template file:

01 <?xml version="1.0" encoding="UTF-8"?>
02 <APPLICATION Id="tutorial_step1" Parent="demo-tut-abstract">
03 <RESOURCE Id="res.template.tutorial"
Source="FILE">$(res.path.demo.dem-
tut)/web/tutorial/tutorialStep1.html</RESOURCE>
04 <EXECUTION>

Self-Paced Tutorials

187

05 <PATH>$(res.path.demo.dem-tut)/src</PATH>
06 <MODULE>card.42r</MODULE>
07 </EXECUTION>
08 <OUTPUT>
09 <MAP Id="DUA_GWC">
10 <THEME>
11 <TEMPLATE Id="_default">$(res.template.tutorial)</TEMPLATE>
12 </THEME>
13 </MAP>
14 </OUTPUT>
15 </APPLICATION>

Notes

1. Line 2: This file is a copy of the tutorial.xml file. This is done for the purpose of
this demo; the application Id is changed to ensure the application displayed is for
the current step of the tutorial.

2. Line 3: This line defines a RESOURCE for the new template page
3. Line 08-14: This line overrides the default OUTPUT template by instructing Genero

Web Client to use the resource defined in line 3 when rendering a window that
uses no style or an unreferenced style.

Fig 1. Built-in rendering

Genero Web Client

188

Fig 2. Customized rendering

Step 2: Use basic template paths
In this step, a new template is defined. This new template is to be used when adding a
new card.

To declare the new template, we must modify the application XML file.

01 <?xml version="1.0" encoding="UTF-8"?>
02 <APPLICATION Id="tutorial_step2" Parent="demo-tut-abstract">
03 <RESOURCE Id="res.template.tutorial"
Source="FILE">$(res.path.demo.dem-
tut)/web/tutorial/tutorialStep1.html</RESOURCE>
04 <RESOURCE Id="res.template.tutorial.addcard"
Source="FILE">$(res.path.demo.dem-
tut)/web/tutorial/tutorialStep2.html</RESOURCE>
05 ...
06 <OUTPUT>
07 <MAP Id="DUA_GWC">
08 <THEME>
09 <TEMPLATE Id="_default">$(res.template.tutorial)</TEMPLATE>
10 <TEMPLATE
Id="addcard">$(res.template.tutorial.addcard)</TEMPLATE>
11 </THEME>

Self-Paced Tutorials

189

12 </MAP>
13 </OUTPUT>
14 </APPLICATION>

Notes

1. Line 4: This line defines the resource to the template file.
2. Line 10: This line adds a new association between the window style addcard and

the template file.

The new template file is the same as the file tutorialStep1.html except for the BODY tag
content. The built-in rendering is changed with template-oriented rendering:

01 <form action="..." id="gDialogForm" method=post
gwc:attributes="action document/URL">
02 <div gwc:replace="application/intermediatetrigger" />
03 <div gwc:replace="application/dbdate" />
04 <div gwc:replace="application/toolbar" />
05 <div id="gForm" width="100%">
06 <table>
07 <tr>
08 <td width="55%">
09 <fieldset><legend>Identity</legend>
10 <table width="100%">
11 <tr>
12 <td rowspan="2" valign="top" width="25%" style="white-
space:nowrap;">
13 <I>Title</I>
14 </td>
15 <td width="15%"><I>Surname</I></td>
16 <td width="60%"><span
gwc:replace="formfield[surname]"/></td>
17 </tr>
18 <tr>
19 <td width="15%"><I>Forename</I></td>
20 <td width="60%"><span
gwc:replace="formfield[forename]"/></td>
21 </tr>
22 </table>
23 </fieldset>
24 </td>
25 <td rowspan="2" valign="top" width="45%">
26 <fieldset><legend>Address</legend>
27 <I>Address</I>

28 <I>Country</I>
29 </fieldset>
30 </td>
31 </tr>
32 <tr>
33 <td>
34 <fieldset>
35 <table>
36 <tr>

Genero Web Client

190

37 <td><I>Date of Birth</I></td><td><span
gwc:replace="formfield[dbirth]"/></td>
38 </tr>
39 <tr>
40 <td><I>Marital Status</I></td><td><span
gwc:replace="formfield[marital]"/></td>
41 </tr>
42 </table>
43 </fieldset>
44 </td>
45 </tr>
46 </table>
47 <div align="right">
48
49
50 </div>
51 </div>
52 </form>

Notes

1. Line 4: There is no topmenu defined in the application, so just the toolbar path is
left.

2. Line 5: The gForm DIV tag will contain all widgets and will be used by the
JavaScript scripts.

3. Line 6-46: This table holds the formfields used to input data in the application.
4. Line 13: A gwc:replace instruction is used with a formfield template path to

tell Genero Web Client to render the formfield title of the application here.
5. Line 48-49: The gwc:content instructions are used with action template paths

to render the accept and cancel actions.
6. As the layout is entirely custom-generated, the layout data information is not

necessary anymore. The line declaring the gLayoutData variable is removed.

The following pictures show the application page when the 'New' action is clicked. This
page uses both built-in rendering and template rendering. At this point, when using the
template rendering, no error message is displayed if you leave required fields empty.
Displaying of the error message will be done in the next tutorial step.

Self-Paced Tutorials

191

Fig 1. Built-in rendering

Fig 2. Customized Form rendering

Genero Web Client

192

Step 3: Displaying application messages and errors
At the end of the last section of the tutorial, the application is configured such that if you
leave a required field empty, no error message displays. To display an error message and
provide guidance to the user, template instructions are added that display the application's
messages and error messages. These template instructions are added to the customized
template file.

01 <div gwc:condition="application/error"
gwc:replace="application/error" />
02 <div gwc:condition="message" gwc:content="message" />

Notes

1. Line 1-2: The gwc:condition instruction tells Genero Web Client to display the
messages only if they are defined. In this case, we display them using the
application/error and message template paths.

We also modify the tutorialStep1.css file to prevent a message from overlapping the
footer of the page:

01 #gError {
02 bottom: 20px;
03 }
04 #gMessage {
05 bottom: 20px;
06 }

After making these additions, an error message displays when a required field is left
empty.

Self-Paced Tutorials

193

Fig 1. Error rendering

Step 4: Use advanced Genero Web Client instructions
For this next step in the tutorial, the tutorialStep1.html template file is changed to have a
template-oriented rendering. For the purpose of the demo, use the file
tutorialStep4.html.

As in Step 3, replace the built-in rendering lines in the file with:

01 <div gwc:define="searchActive formfield[search] &&
formfield[search]/active;
02 tableActive table[t1] && table[t1]/active;
03 cardList searchActive || tableActive"
04 gwc:omit-tag="true">
05 <div gwc:condition="cardList" gwc:omit-tag="true">
06 <form action="..." id="gDialogForm" method=post
gwc:attributes="action document/URL">
06 <div gwc:replace="application/intermediatetrigger" />
07 <div gwc:replace="application/toolbar" />
08 <div id="gForm">
09 <div gwc:replace="container[g1]" />
10 <div gwc:condition="table[t1]/size == 0">No result
found.</div>
11 <div class=gTableBox gwc:define="t table[t1]"
gwc:condition="t/size" style="width:100%;">

Genero Web Client

194

12 <table width="100%" gwc:attributes="id t/id; class
'gTable' + (!searchActive && ' gEnabledScroll' || '')">
13 <colgroup>
14 <col id="t1-col-select" />
15 <col gwc:repeat="col t/columns" gwc:attributes="id
col/name + '-col'"></col>
16 </colgroup>
17 <thead>
18 <tr>
19 <th style="display:none;"><!-- Empty header for table
select --></th>
20 <th gwc:repeat="col t/columns"
gwc:attributes="style repeat/col/first && 'display:none;'" >
21 <input class=gTableHeader type=submit
gwc:attributes="id col/name; value col/text; name col/id; disabled
searchActive">
22 </th>
23 </tr>
24 </thead>
25 <tbody>
26 <tr gwc:repeat="row t/rows">
27 <td style="display:none;"><input class=gTableSelect
type=radio gwc:attributes="value repeat/row/index; name t/id; checked
repeat/row/first; disabled searchActive"></td>
28 <td gwc:repeat="cell row/cells" gwc:attributes="style
repeat/cell/first && 'display:none;'" ><span gwc:replace="cell/value"
/></td>
29 </tr>
30 </tbody>
31 </table>
32 <input disabled type=hidden name=gOffset
gwc:attributes="value t/offset" >
33 <input disabled type=hidden name=gSize
gwc:attributes="value t/size" >
34 <input disabled type=hidden name=gPageSize
gwc:attributes="value t/PageSize" >
35 </div>
36 <div align="right">
37 <span class="gButtonBox"
gwc:condition="dialog/action[cancel]" gwc:content="action[cancel]" />
38 <span class="gButtonBox"
gwc:condition="dialog/action[cardupdate]"
gwc:content="action[cardupdate]" />
39 <span class="gButtonBox"
gwc:condition="dialog/action[carddelete]"
gwc:content="action[carddelete]" />
40 </div>
41 </div>
42 </form>
43 </div>
44 <div gwc:condition="!cardList" gwc:omit-tag="true">
45 <form action="..." id="gDialogForm" method=post
gwc:attributes="action document/URL">
46 <div gwc:replace="application/intermediatetrigger" />
47 <div gwc:replace="application/dbdate" />
48 <table border="0" cellpadding="0" cellspacing="0">
49 <tr>

Self-Paced Tutorials

195

50 <td colspan=2>
51 <div gwc:condition="application/topmenu"
gwc:replace="application/topmenu" /><div gwc:condition="topmenu"
gwc:replace="topmenu" />
52 <div gwc:condition="application/toolbar"
gwc:replace="application/toolbar" /><div gwc:condition="toolbar"
gwc:replace="toolbar" />
53 </td>
54 </tr>
55 <tr>
56 <td width="100%"><div gwc:condition="form"
gwc:replace="form" /></td>
57 <td valign="top" id="gPanel"><div gwc:condition="menu"
gwc:replace="menu" /><div gwc:condition="dialog" gwc:replace="dialog"
/></td>
58 </tr>
59 <tr>
60 <td colspan=2 id="gInfo"><div gwc:condition="message"
gwc:content="message" /><div gwc:condition="error" gwc:content="error"
/></td>
61 </tr>
62 </table>
63 </form>
64 </div>
65 </div>

Notes

1. Line 1-4: Some variables are defined using the gwc:define instruction.
searchActive will be true if the formfield search exists and is active; the same for
tableActive and the table t1. cardList will be true if either of the previous two
variables is true. The gwc:omit-tag instruction tells Genero Web Client not to
render this tag.

2. Line 5: The content of this tag is rendered when the application is looking for a
card or displaying the table.

3. Line 9: The container template path is used to render the grid g1 containing the
search form in the application PER file.

4. Line 11: A variable t representing the table t1 is defined. This variable will be
used later in the inner tags. The table is only displayed if it is not empty.

5. Line 12: An id attribute is added to the tag with the id of the table. It's used by the
JavaScript wrappers, which also need the class gTable. Add gEnableScroll to the
tag class if not in search mode. This disables the table scrollbar.

6. Line 20-22: A gwc:repeat instruction is used to set up the table headers. Once
again, the proper attributes of an input tag are set in order to have a wrapped
header (i.e. for sorting the table). The input is disabled if in search mode. Notice
the use of a gwc:attributes instruction to omit displaying the first column.

7. Line 26-29: Another gwc:repeat instruction is used to display the table rows.
The first cell of each row is used by the table wrapper to handle row selection.
The row selection is disabled if in search mode. Here too a condition is added that
will not render the first column of the table.

8. Line 32-34: These inputs are used by the table wrapper to handle row selection.

Genero Web Client

196

9. Line 37-39: These lines display the form actions (if they exist).
10. Line 44-64: When only displaying the application top window, the built-in

rendering is used.

The listing page of employee cards now uses a customized template:

Fig 1. Table rendering using gwc:repeat instruction

Step 5: Use Genero Web Client JavaScript API
The Genero Web Client JavaScript API provides easy access to actions used to interact
with Genero Web Client.

In this step, the way the cardupdate and carddelete actions are rendered and handled will
be changed. To change these actions, the template file must be modified:

01 ...
02 <tr gwc:repeat="row t/rows">
03 <td style="display:none;"><input class=gTableSelect type=radio
gwc:attributes="value repeat/row/index; name t/id; checked
repeat/row/first; disabled searchActive"></td>
04 <td gwc:repeat="cell row/cells" gwc:attributes="style
repeat/cell/first && 'display:none;'" ><span gwc:replace="cell/value"
/></td>
05 <td width="60px" gwc:condition="row/cell[id]/value">
06 <input type="image" src="$(connector.uri)/tutorial/img/circle"

Self-Paced Tutorials

197

07 gwc:attributes="onclick
'javascript:gGWCEvent().Append(gTable(\'${t/id}\').Select(${repeat/row/
index}), gAction(\'cardupdate\')).Send();';
08 disabled !dialog/action[cardupdate]">
09 <input type="image" src="$(connector.uri)/tutorial/img/delete"
10 gwc:attributes="onclick
'javascript:gGWCEvent().Append(gTable(\'${t/id}\').Select(${repeat/row/
index}), gAction(\'carddelete\')).Send();';
11 disabled !dialog/action[carddelete]">
12 </td>
13 </tr>
14 ...
15 <div align="right">
16 <span class="gButtonBox" gwc:condition="dialog/action[cancel]"
gwc:content="action[cancel]" />
17 </div>

Notes

1. Line 5-12: Add a cell to each row. The cell contains two images. Define the
onclick event of these images as being JavaScript code. Use the Genero Web
Client JavaScript API to prepare two events before sending them to the Genero
Web Client.

o The first event is the current row selection using the Select method of the
gTable object.

o The second event is the action cardupdate or carddelete
2. Line 16: Remove the cardupdate and carddelete action buttons.

The listing page now has the 'Update' and 'Delete' actions integrated in the table.

Fig 1. Actions using Genero Web Client JavaScript API

Genero Web Client

198

	Table of Contents
	GWC Overview & Architecture
	Genero Web Client Overview
	GWC Features
	Architecture
	How GWC Uses Web Technologies

	FAQ
	Installation and Configuration
	Quick Start
	Installation
	Configuration and Deployment
	GWC Application Directory Structure
	Configuring the Application Server for GWC
	Troubleshooting Installation Issues
	Internationalization

	Customizing the Application Interface
	Customizing Web Applications
	Customization FAQ

	Migration
	Migrating Genero Applications to GWC
	Migrating to GWC 1.33.1h
	Migrating to GWC 1.32.1f
	Migrating to GWC 1.30.1j
	Migrating to GWC 1.30.1d
	Migrating to GWC 1.30.1c

	Technical Reference
	Template CSS Reference
	CSS Reference Samples
	Template Language Reference
	Template JavaScript API Reference
	Rendered HTML

	Self-paced Tutorials
	Template Tutorial

