

©2008 Four J’s Development Tools, Inc. www.4js.com

\

User Guide
Version 2.11

Copyright © 2008 by Four J’s Development Tools, Inc. All rights reserved. All information, content,
design, and code used in this documentation may not be reproduced or distributed by any printed,
electronic, or other means without prior written consent of Four J’s Development Tools, Inc.

Genero® is a registered trademark of Four J’s Development Tools, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks.

• IBM, AIX, DB2, DYNIX, Informix, Informix-4GL and Sequent are registered trademark of
IBM Corporation.

• Digital is a registered trademark of Compaq Corporation.

• HP and HP-UX are registered trademarks of Hewlett Packard Corporation.

• Intel is a registered trademark of Intel Corporation.

• Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

• Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in the
United States, other countries, or both.

• Oracle, 8i and 9i are registered trademarks of Oracle Corporation.

• Red Hat is a registered trademark of Red Hat, Inc.

• Sybase is a registered trademark of Sybase Inc.

• Sun, Sun Microsystems, Java, JavaScript™, and Solaris are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries.

• All SPARC trademarks are trademarks or registered trademarks of SPARC International,
Inc. in the United States and other countries.

• UNIX is a registered trademark of The Open Group.

All other trademarks referenced herein are the property of their respective owners.

Note: This documentation is for Genero 2.11. See the corresponding on-line documentation at the
Web site http://www.4js.com/online_documentation for the latest updates. Please contact your
nearest support center if you encounter problems or errors in the on-line documentation.

iii

Genero Web Services Extension
Table Of Contents

General...1

Introduction to Web Services ... 1
New Features .. 7
FGLGWS 2.11.04... 7
Version 2.11.. 8
Version 2.10.. 9
Version 2.00.. 11
Installation .. 14
Migration Notes .. 16
Debugging .. 20
Examples .. 21

Client..23

 Using Logical Names for Service Locations ... 23
Tutorial: Writing a Client Application .. 25

Server...29

Writing a Web Services Function... 29
Choosing a Web Services Style.. 32
Tutorial: Writing a GWS Server application... 34
Deployment .. 45

Security Concepts..47

Encryption and Authentication... 47
Certificates in Practice.. 53
Accessing Secured Services ... 57

Security and Web Services..59

FGLPROFILE password encryption .. 59
FGLPROFILE Configuration ... 62
Tutorial: Configuring a Client to access an HTTPS Server 70
Tutorial: Configuring a Client to connect via a Proxy ... 73
Tutorial: Configuring a client for HTTP and Proxy Authentication 74
Deploying a Client and a Server for HTTPS.. 76

Genero Web Services

iv

How To's...83

How to Call Java APIs from Genero .. 83
How to Call .NET APIs from Genero .. 90

Reference...101

Attributes to Customize XML Serialization ... 101
The fglwsdl tool (WSDL and XSD) ... 133
Error Messages ... 143
Server API Functions - version 1.3 only .. 147
Configuration API Functions - version 1.3 only .. 155
Genero Web Services COM Extension Library ... 159
The Web Service class.. 161
The Web Operation class.. 163
The Web Service Engine class ... 167
The HTTP Service Request class ... 173
The HTTP Request class .. 176
The HTTP Response class .. 185
The TCP Request class ... 188
The TCP Response class... 191
The COM Library Error Codes... 193

COM Library...195

The Genero Web Services XML Extension Library .. 195
The Document Object Modeling (DOM) classes ... 195
The Streaming API for XML (StAX) classes... 195
The XML serialization class... 196
Library error codes ... 196

XML Library..197

The DomDocument class.. 197
The DomNode class.. 217
The DomNodeList class ... 229
The Stax Writer class.. 230
The StaxReader class.. 238
The Serializer class ... 249
The XML Library Error Codes... 252
OM to XML Migration... 254

1

Introduction to Web Services
This page provides an introduction to Web Services with the Genero Web Services
Extension (GWS). It is intended to help those using GWS for the first time to understand
basic Web Services concepts, and to quickly start their development with the Genero
tools.

Summary:

• Concepts
• Web Services and Service Oriented Architecture (SOA)
• Migrating to SOA and Web Services
• Planning a Web Service
• Web Services Standards

o XML
o XML Schema
o SOAP
o WSDL
o HTTP

• Web Service Styles

Concepts

In general, Web services are a standard way of communicating between applications over
an intranet or the Internet. They define how to communicate between two entities:

• A server that exposes services
• A client that consumes the services

For example, a server could expose a "StockQuotation" service that responds to an
operation "getQuote". For the "getQuote" operation, the input message is a stock symbol
as a string, and the output message is a stock value as a decimal number.

The "getQuote" operation could be a function written in Genero BDL and published on
the server. This function retrieves the stock value for the stock symbol passed in, and
returns this stock value.

On the client side, the Web service client application calls the function as if it were a
local function, passing the stock symbol and storing the returned value in a variable. For
example, if the Web Service operation is named
WebService_StockQuotation_getQuote and the local variable is svalue, you would call
the Web Service as follows:

01 LET svalue = WebService_StockQuotation_getQuote("MyStockSymbol")

Genero Web Services

2

For more information on the steps for creating a Web Service server or client, refer to the
Tutorial: Writing a GWS Server application and Tutorial: Writing a Client application
respectively.

Web Services and SOA

Service Oriented Architecture (SOA) is a philosophy of how to connect systems and
exchange data to solve business problems. Rather than concentrating on a specific task or
transaction, SOA addresses how to use data from various sources, reduce human work,
and mitigate the effects of change in a business process and its supporting systems.

The SOA defines the services to be provided, and Web Services are the means of
implementing those services. Web Services provide a platform-neutral technology to
connect multiple systems in a flexible manner, where the platform-neutrality helps
insulate a SOA from changes to the underlying systems.

Web Services work by answering requests for information and returning well defined,
structured XML documents. Because XML is simple text and Web Services can be
invoked via the hypertext transfer protocol (HTTP), it does not matter what platform runs
the Web Service, or what platform receives the XML document.

An SOA’s resilience to change is accomplished by adhering to good Web Services design
practices:

• Build a Web Service that performs a specific task
• Have a rigid structure for the data

Web Services tell exactly how to ask for the information in an XML document written
using the Web Services Descriptive Language (WSDL). This self-describing document
describes the service the Web Service will perform and how to form the request for its
data. Each Web Service must have an associated WSDL document, so that developers
and applications know what to expect from the Web Service, and how to invoke it.

Migrating to SOA and Web Services

Developing an SOA and moving to Web Services is an iterative and evolutionary
process, and requires work and diligent design. When switching to Web Services from
another integration method, it is recommended to initially focus on shorter term business
benefits, targeting an SOA and Web Services project that has tangible goals with
measurable benefits.

3

Once an SOA starts to contain useful services, these services can be arranged together in
a workflow that automates a business process. Web Services can be reused to answer new
questions, implemented as new business services in an SOA. A well-defined Web Service
does not contain business logic or business process information. Because each Web
Service in an SOA can be called individually to perform a specific task, they can be
arranged (orchestrated) together to perform many different business functions. As a
result, companies with a mature SOA in place can change business processes through
configuring of the orchestration software as opposed to programming individual links
between systems.

Planning a Web Service

When creating a Web Service, you not only have to think of the immediate task at hand,
but you should also consider growth. You likely want the Web Service to be flexible; to
be able to handle different types of input. Prepare the Web Service for what is probable.
Developers should think bigger than the needs of a single application. You should think
of reusing existing services, and imagine how your services can be reused by colleagues.
Security will likely play a larger role than it did previously with existing in-house
application infrastructures with programmed links between systems; you will need to
become versed in security issues.

Keep the goals of SOA in mind when designing and coding Web Services: flexibility,
reusability, and interoperability.

Web Services Standards

Web services are platform-independent and programming language-independent. The
World Wide Web consortium defines the Web services standards. For more information
about these standards, refer to the "Web services" section of their web site at
http://www.w3.org. The Four J's Web Services Extension supports the WSDL 1.1
specification of March 15, 2002 and some previous specifications.

The standards involved in what is commonly called "Web services" are:

XML

XML (Extensible Markup Language) defines a machine-independent way of exchanging
data. For example, an XML representation of the following BDL data structure:

01 DEFINE Person
02 RECORD Attribute (XMLName="Person")
03 FirstName VARCHAR(32) Attribute (XMLName="FirstName"),
04 LastName VARCHAR(32) Attribute (XMLName="LastName"),

Genero Web Services

4

05 Age INTEGER Attribute (XMLName="Age")
06 END RECORD

could be:

<Person>
 <FirstName>John</FirstName>
 <LastName>Smith</LastName>
 <Age>35</Age>
</Person>

The record definition uses a Genero version 2.0 feature that allows you to specify XML
attributes for data types.

XML Schema

XML Schema defines the elements, entities, and content model of an XML document.
For example, for the above document, the schema could say that the XML document
contains an element "Person", and that each "Person" contains one and only one element
"FirstName", "LastName", and "Age". The XML Schema has additional capabilities,
such as data type control and content restrictions.

An XML Schema allows an XML document to be validated for correctness.

SOAP

SOAP (Simple Object Access Protocol) is a high-level communication protocol between
the server and the client. It defines the XML data flow between the server and the client.
The "StockQuote" service mentioned in the Concepts section will exchange messages
using the following syntax:

Request

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <getQuote>
 <stockSymbol>MyCompany</stockSymbol>
 </getQuote>
 </soap:Body>
</soap:Envelope>

Response

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <getQuoteResponse>
 <stockValue>999.99</stockValue>
 </getQuoteResponse>
 </soap:Body>
</soap:Envelope>

5

SOAP relies on a lower-level protocol for the transport layer.

Genero Web Services use SOAP over HTTP, and can also perform low-level XML and
TEXT over HTTP communications on the client side. This allows communication
between applications using the core Web technology, taking advantage of the large
installed base of tools that can process XML delivered plainly over HTTP as well as
SOAP over HTTP.

WSDL

The WSDL (Web Services Description Language) file describes the services offered by a
server. It contains:

• The description of the operations offered by the server, with their input and output
messages.

• The location of the SOAP server.
• Internal connection and protocol details (transport layer, encoding, namespaces,

and so on).

A WSDL description is sufficient to get all the information required to communicate with
the SOAP server.

Genero Web Services Extension provides a tool, fglwsdl, that enables Genero client
applications to obtain the WSDL description of a Web Service.

HTTP

HTTP (Hypertext Transfer Protocol) is the set of rules for exchanging files (text, graphic
images, sound, video, and other multimedia files) on the World Wide Web.

Web Service Styles

The following Styles provided by GWS for a Web Service are WS-I compliant (Web
Services Interoperability organization):

• RPC Style Service (RPC/Literal) is generally used to execute a function, such as
a service that returns a stock option

• Document Style Service (Doc/Literal) is generally used for more sophisticated
operations that exchange complex data structures, such as a service that sends an
invoice to an application, or exchanges a Word document.

In addition, the RPC Style Service (RPC/Encoded) is provided for backwards
compatibility.

Genero Web Services

6

7

New Features
• Product line 2.1x

o FGLGWS 2.11.04
o Version 2.11
o Version 2.10

• Product line 2.0x
o Version 2.00

FGLGWS 2.11.04

• One-Way RPC and Document style services
• New options in fglwsdl tool
• Support of WSDL with circular references

One-Way RPC and Document style services

The Genero Web Services library provides two new methods in the WebOperation class
to create One-Way operations in services. A One-Way operation means that the server
accepts an incoming request, but doesn't return any response back to the client. There is
one method called CreateOneWayRPCStyle to create an RPC Style operation, and
another one called CreateOneWayDOCStyle to create a Document Style operation. A
One-Way operation can be used as a logger service for instance, where a client sends a
message to the server, but doesn't care about what the server is doing with it.

See WebOperation for information about these two methods.

New options in fglwsdl tool

The fglwsdl tool was enhanced with the following new options :

• -b : Generate code from a WSDL using the binding section instead
of the service section

• -autoNsPrefix : Determine the prefix for variables and types according to the
XML namespace they belong to

• -nsPrefix : Set the prefix for a variable or a type belonging to the given
XML namespace

The following options have been changed as described below :

• -o : If there are several services in one WSDL, they will be generated in the
same file with the given base name instead of returning an error

Genero Web Services

8

• -disk : Retrieves and displays all dependencies to the current directory but there
are no sub directories any longer.

• -prefix : Accepts patterns %s, %f and %p

See fglwsdl for more information.

Support of WSDL with circular references

The Genero Web Services library has been enhanced to support WSDL with circular
references. Actually, the 4GL language doesn't provide a way to define variables or types
that refer to themselves. However, to provide better interoperability and a way to handle
such circular data, the fglwsdl tool now generates variables or types of
xml.DomDocument type when circular references are detected during the processing of
WSDL files. This gives the user the ability to manipulate the circular data by hand, using
the XML DOM API.

See Genero Web Services XML Extension Library for information about the various
classes and methods for handling XML documents.

Version 2.11

• Server low-level XML and TEXT over HTTP communication (com)
• XML facet constraints attributes
• Enhancement of the fglwsdl tool with three new options

Server low-level XML and TEXT over HTTP communication (com)

The Genero Web Services com library provides one more class, HTTPServiceRequest, to
perform low-level XML and TEXT over HTTP communication on the server side. This
allows communication at a very low-level layer, to write your own type of web services.

See HTTPServiceRequest for information about how to write an HTTP server.

XML facet constraints attributes

The Genero Web Services xml library provides 12 new XML attributes to map to simple
4GL variables. These attributes restrict the acceptable value-space for each variable in
different ways such as:

• a minimum or a maximum number of XML characters or bytes.
• a strict number of XML characters or bytes.
• a minimum inclusive or exclusive value depending on the datatype.
• a maximum inclusive or exclusive value depending on the datatype,
• a enumeration of authorized values.
• a number of digits and fraction digits.
• how whitespaces have to be handled.

9

• a regular expression to match. (see Section F of XML Schema Part 2)

See Constraints between simple 4GL and XML datatypes for more details.

Enhancement of the fglwsdl tool with three new options

The fglwsdl tool was enhanced with the following three new options :

• -disk : to retrieve locally a WSDL or an XSD with all its dependencies from
an URL on the disk

• -noFacets : to avoid the generation of the new facet constrain attributes (for
compatibility)

• -regex : to validate a value against a regular expression as described in the
XML Schema specification

See fglwsdl for more information.

Version 2.10

• Genero XML Extension library (xml)
• Low-level XML and TEXT over HTTP and TCP Client communication (com)
• Low-level and asynchronous Client stub generation from WSDL
• Generation of data types from XML schemas (XSD)

Genero XML Extension library (xml)

This library provides classes and methods to perform:

• XML manipulation with a W3C Document Object Model (DOM) API
• XML manipulation with a Streaming API for XML (StAX)
• Validation of DOM documents against XML Schemas
• Serialization of 4GL variables in XML
• Creation of XML Schemas corresponding to 4GL variables

See Genero Web Services XML Extension Library for information about the various
classes and methods included in the xml library.

Low-level XML and TEXT over HTTP and TCP Client communication
(com)

The Genero Web Services com library provides two classes, HTTPRequest and
HTTPResponse, to perform low-level XML and TEXT over HTTP communications on
the client side. Two more classes, TCPRequest and TCPResponse, are also provided to
perform low-level XML and TEXT over TCP communications on the client side. This

Genero Web Services

10

allows communication between applications using the core Web technology, taking
advantage of the large installed base of tools that can process XML delivered plainly over
HTTP or TCP, as well as SOAP over HTTP.

Specific streaming methods are also available to improve the communication by sending
XML to the network even if the serialization process is not yet finished, as well as for the
deserialization process.

It is also possible to prevent asynchronous requests from being blocked when waiting for
a response, and to perform specific HTTP form encoded requests as specified in HTML 4
or XForms 1.0.

See HTTPRequest and HTTPResponse for information about HTTP classes included in
the com library.
See TCPRequest and TCPResponse for information about TCP classes included in the
com library.

Generating low-level and asynchronous Client stubs from WSDL

The fglwsdl tool generates all client stubs with the low-level HTTPRequest and
HTTPResponse classes of the com library to perform HTTP communications. The low-
level generated stub also takes advantage of the streaming methods, if Document Style or
RPC-Literal web services are performed. Streaming is not possible with RPC-Encoded
web services, as nodes can have references to other nodes in the XML document,
requiring the entire document in memory to perform serialization or deserialization.

The fglwsdl tool also generates two new 4GL functions for each operation of a Web
service. These two functions enable you to perform asynchronous web service operation
calls by first sending the request, and retrieving the corresponding response later in the
application. This allows you to prevent a 4GL application from being blocked if the
response of a web service operation takes a certain amount of time.

See HTTPRequest and HTTPResponse for information about classes included in the com
library, and the fglwsdl tool for additional information about generated code and
asynchronous calls.

Generation of data types from XML schemas (XSD)

Genero Web Services Extension provides an enhanced fglwsdl tool that is able to
generate 4GL data types from a XML schema. The data types can then be used in your
application to be serialized or deserialized in XML. The resulting XML is a valid
instance of that XML schema, and validation with a XML validator will succeed.

See the fglwsdl tool for additional information about XSD.

11

Version 2.00

• Web Services Styles
• Generation of Server and Client from WSDL
• Genero Web Services Extension library (com)
• SOAP Header Management
• HTTPS support on the Client side
• Connection via Proxies on the Client side
• Multiple Web Services in a single DVM
• Service Location Repository
• Serialization of Genero Data Types
• WSHelper.42m Library file

Web Services Styles

You can now choose to use Document Style Service (Doc/Literal) or RPC Literal
Style Service (RPC/Literal) with Genero Web Services Extension (GWS), for .NET
compatibility and WS-I compatibility (standards defined by the Web Services
Interoperability organization).

• Document Style Service allows you to exchange complex data structures, such as
database tables or word processing documents (MS.Net default)

• RPC Literal Style Service is usually used to execute a function, such as a service
that returns a stock option

Note: RPC/Encoded Style Service (Traditional SOAP section 5) is available for
backwards compatibility.

See Web Services Styles and the GWS Web Server Tutorial for additional information.

Generation of Server and Client from WSDL

Genero Web Services Extension provides a tool, fglwsdl, to allow a Genero application
that is accessing a Web Service to obtain the WSDL information for the desired service.
It does not matter what language the Web Service is written in. The fglwsdl tool is
installed in Genero as part of the Genero Web Services Extension package.

See The fglwsdl Tool for additional information about WSDL.

Genero Web Services Extension Library (com)

You no longer need to create a runner that includes the Genero Web Services Extension
package. Instead, your applications import the Genero Web Services Extension library
named com. This library provides classes and methods that allow you to perform tasks
associated with creating GWS Servers and Clients, and managing the Web Services.

Genero Web Services

12

See Genero Web Services COM Extension Library for information about the various
classes and methods included in the com library.

SOAP Header Management

GWS supports SOAP header management through the CreateHeader method in the Web
Service class that is part of the Web Services Extension library (com).

See Web Service Class for additional information.

HTTPS support on the client side

GWS supports secure communications through the use of encryption and standard X.509
certificates. Based on the OpenSSL engine, new security features allow a Web Services
client to communicate with any secured server over HTTP or HTTPS.

A new tool is provided, fglpass, allowing you to encrypt a password from a standard
X.509 certificate, and to de-crypt a password you previously encrypted with a certificate.

Entries in the FGLPROFILE file are used to define the configuration for client security.

See FGLPROFILE Password Encryption and FGLPROFILE Configuration, as well as
the other pages listed in the Security section, for additional information.

Connections via proxies on the Client Side

You can configure a GWS Client to connect via an HTTP proxy by adding an entry in the
FGLPROFILE file.

See the SSL Proxy Tutorial for additional information.

Multiple Web Services in a Single DVM

You can define multiple Web Services in a single Genero DVM. When you start the Web
Services engine, all registered Web Services are started.

See the Web Services Engine class that is part of the Web Services Extensions library
(com).

Service Location Repository

You can remap the location of Genero Web Services using entries in the FGLPROFILE
file, depending on the network configuration and the access rights management of the
deployment site.

See Using Logical Names for Service Locations for additional information.

13

Serializing Genero Data Types

You can add optional attributes to the definition of data types. You can use these
attributes to map the BDL data types in a Genero Web Services Client or Server
application to their corresponding XML data types.

See XML Attributes for additional information, including a complete list of attributes that
can be used.

WSHelper.42m library file

This file contains internal 4GL functions to handle SOAP requests and errors.

The file is provided in the $FGLDIR/lib directory of the Genero Web Services
Extension package, and should be linked into every Genero Web Services Server or
Client program.

Genero Web Services

14

Installation
Summary:

• Package Installation
• Platform-specific Notes

Package Installation

Starting with version 2.11.04, Genero Web Services (GWS) are provided as a bundle
including GWS and BDL. The new package is named FGLGWS. After installation, the
target directory reflects the same organization as a GWS installation on top of a BDL
installation.

Prior to version 2.11.04, Genero Web Services are packaged as an add-on to the Genero
Business Development Language. For versions prior to 2.11.04, you must install BDL
first and then GWS:

• The version of the Genero Business Development Language package must
match (that is, the version number must be the same, to two decimal places:
2.00, 2.01, etc.).

• The Genero BDL package must be installed before installing the Genero
Web Services Extension. If the appropriate version of the Genero Business
Development Language is not installed on your system, you MUST install it
before installing the Genero Web Services Extension.

The Genero Application Server package is required to manage your Web Services in a
deployment environment. Unless you are interested in testing deployment issues, it is not
required for Web Services development.

Important: Starting with version 2.0, you no longer need to create a runner that includes
the Genero Web Services Extension package. Now, your applications should include the
following line at the top of each module to import the Genero Web Services Extension
library named com:

 import com

15

Platform-Specific Notes

IBM AIX

• The "IBM C++ Runtime Environment Components for AIX" must be installed in
order to use "Genero Web Services Extension 2.0". See the IBM support center
for more information about downloading the component.

Note: If not installed, you will get the following error message:
Could not load C extension library 'com'.
Reason: A file or directory in the path name does not exist.

• Due to an IBM issue on 64Bits platforms, the openssl library is unable to open the
system /dev/urandom device to generate a PRNG number.
Therefore you must install the Entropy Gathering Daemon (a.k.a EGD) if you
need security in your GWS application, and especially if you access a server in
HTTPS.

Genero Web Services

16

Migration Notes
Summary:

• Migrating GWS Server Applications
o Migrating GWS Server runners only
o Migrating GWS Server runners and using new APIs

• Enhance the GWS Server Applcation to be WS-I compliant (recommended)
• Migrating GWS Client applications

o Migration from version 1.3x to 2.10
o Migration from version 2.0x to 2.10

• com.WebServiceEngine options

Migrating GWS Server applications

Migrating GWS Server runners only

There is no need to create a special runner for Genero Web Services Extension 2.x.
Instead, the GWS 2.x library is imported into your applications. If you want to migrate an
existing GWS Server application to 2.x to avoid the need for a special runner, as well as
to take advantage of any bug fixes, take the following steps:

1. Add the following statement at the top of any .4gl module where you have used
GWS 1.3x functions:

 import com

2. Then, compile and re-link your GWS Server application (.42r).

This imports the new GWS com library, and ensures that any GWS 1.3x functions that
you have used will be compatible. Your existing Genero 1.3x Client applications, as well
as third-party Client applications, will continue to work.

Migrating GWS Server runners and using new APIs

If you want to take advantage of the new features and simplify future migrations, you can
migrate your GWS Server runner and also use the new GWS 2.x APIs. All the1.3x
publishing functions for all the operations in your application must be replaced with 2.x
publishing functions. Since this does not change the interface, all existing Genero 1.3x
Client applications, as well as third-party Client applications, will continue to work.

Since 1.3x only supports RPC-Encoded style services, you must use the RPC style
functions of the new 2.x APIs as the replacement functions, with setInputEncoded and

17

setOutputEncoded set to true. And, you cannot add XML attributes to the records used
as Web Service function parameters.

To replace the fgl_ws_server_publishfunction() statement in an existing GWS Server
application; for example:

 CALL fgl_ws_server_publishfunction(
 "EchoInteger",
 "http://tempuri.org/webservices/types/in", "echoInteger_in",
 "http://tempuri.org/webservices/types/out",
"echoInteger_out",
 "echoInteger")

1. Add the following statement at the top of each module:

 import com

2. Define variables for the WebService and WebOperation objects:

DEFINE serv com.WebService
DEFINE op com.WebOperation -- Operation of a WebService

3. Create the GWS Server object:

LET serv = com.WebService.CreateWebService("EchoInteger",
 "http://tempuri.org/webservices")

4. Use the 2.x publishing functions for each operation:

LET op = com.WebOperation.CreateRPCStyle("echoInteger",
 "EchoInteger",echoInteger_in,echoInteger_out)
CALL op.setInputEncoded(true)
CALL op.setOutputEncoded(true)
CALL serv.publishOperation(op,NULL)

5. Compile and re-link your GWS Server application (.42r)

GWS 2.x also allows your Server application (.42r) to contain multiple services. If you
would like 2.x and 1.3x GWS to co-exist in the same .42r executable, replace the
existing publishing 1.3x functions as outlined above.

Enhance the GWS Server application to be WS-I compliant
(recommended)

Warning: You must be able to change all the Client applications that access your
migrated GWS Server.

Genero Web Services

18

If you use the Literal styles now available in GWS 2.x for your Web Service, your
application will be WS-I compliant. However, the migration techniques shown above
still use the RPC/Encoded style (Only RPC/Encoded was supported in GWS 1.3x.). If
you can change all the client applications that access your migrated GWS Server, we
recommend that you enhance the GWS Server application to be WS-I compliant.

1. Replace the publishing functions in the GWS Server application, as shown above,
but omit the setInputEncoded and setOutputEncoded lines shown in the
example; the resulting style will be Literal.

2. The enhanced GWS Server will have a new RPC/Literal WSDL that must be used
to regenerate the client stub with the fglwsdl tool:

fglwsdl -o NewClientstub
http://localhost:8090/MyCalculator?WSDL

3. Compile that new client stub, and re-link it with the GWS Client application. This
operation must be repeated for each Client application accessing that service.

4. Third party Client applications must be changed to use the new WSDL also.

Migrating GWS Client applications

Migration from version 1.3x to 2.10

If you use a Genero 2.10 runner for the GWS Client application, you must:

1. Regenerate the GWS Client stubs using the -compability option of the fglwsdl
tool, so the function prototypes will be compatible:

fglwsdl -compatibility -o NewClientstub
http://localhost:8090/MyCalculator?WSDL

2. Compile the GWS Client stubs and re-link the Client application (.42r).

Migration from version 2.0x to 2.10

You must regenerate all client stubs into your application using the fglwsdl tool. This is
mandatoy because the generated code is based on the low-level COM and XML APIs
and is completly different from any previous versions; otherwise, you won't be able to
execute the code.

19

com.WebServiceEngine options

In class com.WebServiceEngine, two options have been renamed and two options moved
to a new class.

Renamed options

http_invoketimeout and tcp_connectiontimeout options have been respectively renamed
into readwritetimeout and connectiontimeout as this is now available for either http or
tcp protocol. The old option names remain for backward compatibility but it is strongly
recommened to use the new option names.

Moved options

xml_ignoretimezone and xml_usetypedefinition options were part of the
com.WebServiceEngine class. They are now moved to a new class xml.Serializer which
gather functions on serialization.

Genero Web Services

20

Debugging
The Genero Web Services Extension gives you the ability to log the data your Web
Service application is receiving from or sending to another application. The data is
written to the standard error stream of the console; if needed, it can be redirected to a file.
To turn on the debugging feature, set the FGLWSDEBUG environment variable before
starting the application. The level of debugging depends on the value set for the
FGLWSDEBUG variable.

You can set the FGLWSDEBUG environment variable using the values defined in the
following table:

Value Definition

0 No data displayed; debug turned off.

1 Display socket errors.

2 Display incoming and outgoing XML requests.

3 Display incoming and outgoing requests.

Debugging from Application Server

To debug a Web Service application managed by the Application Server, you have to
modify the value of the FGLWSDEBUG environment variable in the Application
Server configuration file. For more information, refer to the Genero Application Server
Manual documentation.

21

Examples
Some basic examples are shipped with Genero Web Services Extension. You can find
these examples in the demo/WebServices subdirectory of your installation directory
(FGLDIR).

23

Using Logical Names for Service Locations
GWS release 2.00 provides a repository for Web Service locations using FGLPROFILE.
To achieve maximum flexibility, you can map a logical reference used by your Web
Services Client application to an actual URL. This is subject to the network configuration
and access rights management of the deployment site.

Summary:

• FGLPROFILE entry
• Logical reference in the .4gl Client application
• Logical reference in the URL

FGLPROFILE entry

The following entry in the FGLPROFILE file maps the logical reference "myservice" to
an actual URL:

ws.myservice.url = "http://www.MyServer.com/cgi-
bin/fglccgi.exe/ws/r/MyWebService"

Logical reference in the .4gl Client application

When you generate a Client stub from WSDL information using the tool fglwsdl, a
global variable for the URL of the Web Service is contained in the .inc file. For example:

Location of the SOAP server.
You can reassign this value at run-time.

DEFINE Calculator_CalculatorPortTypeLocation STRING

You can assign a logical name to this global variable in your Web Services Client
application:

LET Calculator_CalculatorPortTypeLocation = "myservice"

When the Client application accesses the Service, the actual location will be supplied by
the entry in FGLPROFILE on the Client machine. This allows you to provide the same
compiled .42r application to different customers. The entries in FGLPROFILE on each
customer's machine would customize the Web Service location for that customer.

Genero Web Services

24

Logical reference in the URL

When you deploy a GWS Web Service with a GAS behind a Web Server, the service can
be accessed by two different URLs. You can use a logical name in the URL, mapping the
actual location of the Web Service in FGLPROFILE, depending on the location of the
client machine. For example:

• For internal Clients: http://zeus:6394/ws/r/myservice
• For Clients using the Web: http://www.myServer.com/...

These two URLS could be mapped in the FGLPROFILE file on the Client machine, each
specifying the location of the Service.

Client

25

Tutorial: Writing a Client Application
The Genero Web Services Extension (GWS) allows a BDL program to access Web
services found on the Internet. GWS supports the WSDL 1.1 specification of March 15,
2002. This example illustrates a client application that accesses the Add operation in the
GWS Web Service MyCalculator. See: Tutorial: Writing a GWS Server Application for
additional information about the Service.

Summary:

• Obtaining the WSDL information
• Calling the Web Service
• Setting a Time Period for a Response
• Handling Server errors
• Compiling the Client application

See also: The fglwsdl Tool

Obtaining the WSDL information

To access a remote Web service, you must get the WSDL information from the service
provider. Sample services can be found through UDDI registries or on other sites such as
XMethods (http://www.xmethods.net).

You can use the fglwsdl tool provided by the Genero Web Services Extension to obtain
the necessary WSDL information. The following example obtains the WSDL information
for the GWS Service MyCalculator created by the Server tutorial:

 fglwsdl -o Example2Client http://localhost:8090/MyCalculator?WSDL

This generates the following files:

• Example2Client.inc - the globals file containing the definitions of the input and
output records, and the prototypes of the operations.

• Example2Client.4gl - a module containing the definitions of the functions that
can be used in your GWS client application to perform the requested Web Service
operation, and the code that manages the Web Service request.

Note: The MyCalculator GWS Service must be running on the specified port in order to
provide the WSDL information.

The following definitions were generated in the globals file, Example2Client.inc:

• Input and Output records

Genero Web Services

26

 DEFINE Add RECORD ATTRIBUTE(XMLName="Add",
 XMLNamespace="http://tempuri.org/webservices")
 a INTEGER ATTRIBUTE(XMLName="a",XMLNamespace=""),
 b INTEGER ATTRIBUTE(XMLName="b",XMLNamespace="")
 END RECORD

 DEFINE AddResponse RECORD ATTRIBUTE(XMLName="AddResponse",
 XMLNamespace="http://tempuri.org/webservices")
 r INTEGER ATTRIBUTE(XMLName="r",XMLNamespace="")
 END RECORD

Since BDL functions cannot have complex structures as parameters, the
data types are defined as global or modular variables.

• Function prototypes for the Operations

This globals file contains the prototype of two functions for the Add
operation.

The Add function uses input and output parameters, and returns the status
and result. This function can only be used if the input and output
parameters are not complex structures such as arrays or records. Using this
function, developers do not access the global records directly.

The Add_g function can be used with the global input and output
records. Before calling this function, you must set the values in the
variables of the global input record.

Operation: Add

FUNCTION: Add_g()
RETURNING: soapStatus
INPUT: GLOBAL Add
OUTPUT: GLOBAL AddResponse

FUNCTION: Add(p_a, p_b)
RETURNING: soapStatus ,p_r

See Working with WSDL information for a more detailed explanation of the fglwsdl tool
and its output, and the generated functions.

Calling the Web Service

Step 1: Import the GWS Extension library

The methods associated with creating and publishing a Web Service are contained in the
classes that make up the Genero Web Services Extension Library (com). If you use any

Client

27

of these methods in your client application, you must import the library. Since this
example application sets the timeout period that the client will wait for the Service to
respond, include the following line at the top of the module:

IMPORT com

Step 2: Specify the globals file

Use a GLOBALS statement to specify the generated globals file.

GLOBALS "Example2Client.inc"

Step 3: Write the MAIN program block

Provide values for the input and output messages of the operation, and call one of the
generated functions. Since the input and output messages are simple integers, we can call
the Add function.

MAIN
 DEFINE op1 INTEGER
 DEFINE op2 INTEGER
 DEFINE result INTEGER
 DEFINE wsstatus INTEGER
 LET op1 = 1
 LET op2 = 2
 CALL Add(op1, op2) RETURNING wsstatus, result
 IF wsstatus = 0 THEN
 DISPLAY "Result: ", result
 ELSE
 -- Use the global wsError record
 DISPLAY "Error: ", wsError.description
 END IF
END MAIN

Alternatively, we can use the global input and output records directly, calling the Add_g
function:

MAIN
 DEFINE wsstatus INTEGER

 LET Add.a = 1
 LET Add.b = 2
 LET wsstatus = Add_g()
 IF wsstatus != 0 THEN
 -- Use the glocal wsError record
 DISPLAY "Error :", wsError.Description
 ELSE
 DISPLAY "Result: ", AddResponse.r
 END IF
END MAIN

Genero Web Services

28

These examples are very basic versions of the code. For complete examples, see the code
samples provided with the package in demo/WebServices.

Setting a Time Period for the Response

To protect against remote server failure or unavailability, you can set a timeout value that
indicates how long you are willing to wait for the server to respond to your request. Use
the SetOption() method of the WebServiceEngine class to set the the
"http_invoketimeout" option.

For example, to wait no more than 10 seconds:

CALL com.WebServiceEngine.SetOption("http_invoketimeout", 10)

A timeout value of -1 means "wait forever". This is the default value.

Handling GWS Server Errors

When a GWS Service operation returns a status that is non-zero, you can get a more
detailed error description from the global record wsError:

wsError.code: Short error message

wsError.codeNS: Namespace of the error code

wsError.description: Long error message

wsError.action: Internal "SOAP action"

Compiling the Client application

The library file WSHelper.42m, included in the $FGLDIR/lib directory of the Genero
Web Services package, should be linked into every client or server program. Assuming
the example client code shown above is in a module named clientmain.4gl, you can
compile and link the client program as follows:

 fglcomp clientmain.4gl Example2Client.4gl
 fgllink -o myclient.42r clientmain.42m Example2Client.42m WSHelper.42m

29

Writing a Web Services Function
Writing Web Services in BDL is very easy with the Genero Web Services Extension
package. You need only to create a classic BDL function, and to publish it as a Web
Function (Web Services operation) using methods from the classes available in the com
library. However, there are restrictions on the BDL function - neither input nor output
parameters are allowed.

• Defining the Input Message
• Defining the Output Message
• Writing your BDL function
• Creating and publishing the Web Services operation

See also Tutorial: Writing a Server

Defining the Input Message

Input parameters in Genero Web Service operations are not allowed, but each Web
Function can have one global variable or module variable that defines the input message
of the function. This message must be a record in which each field represents one of the
input parameters of the Web Function.

The name of each field corresponds to the name used in the SOAP request. These fields
are filled with the contents of the SOAP request by the Web Services engine just before
executing the corresponding BDL function.

Example:

DEFINE add_in RECORD
 a INTEGER,
 b INTEGER
 END RECORD

Note: Genero version 2.0 allows you to add optional attributes to the definition of data
types. You can use attributes to map the BDL data types in a Genero application to their
corresponding XML data types. See Attributes to Customize XML Mapping for
additional information.

Defining the Output Message

Output parameters in Genero Web Functions are not allowed, but each Web Function can
have one global variable or module variable that defines the output message of the

Genero Web Services

30

function. This message must be a record where each field represents one of the output
parameters of the Web Function.

The name of each field corresponds to the name used in the SOAP request. These fields
are retrieved from the Web Services engine immediately after executing the BDL
function, and sent back to the client.

Example:

DEFINE add_out RECORD
 r INTEGER
 END RECORD

Note: GWS 2.0 allows you to add optional attributes to the definition of data types. You
can use attributes to map the BDL data types in a Genero application to their
corresponding XML data types. See Attributes to Customize XML Mapping for
additional information.

Writing your BDL Function

A Web Function is a normal BDL function that uses the input and output records that you
have defined.

Example:

FUNCTION add()
 LET add_out.r = add_in.a + add_in.b
END FUNCTION

Creating and publishing the Web Services operation

Methods are available in the Genero Web Services Extension library (com) to:

• Define the Web Service, by creating a WebService object
• Define the Web Services operation for your function, by creating a WebOperation

object
• Publish the operation - associate it with the Web Service object that you defined.

The com library must be imported into each module of a Web Services Server
application.

The following abbreviated example is from the Web Services Server tutorial:

Server

31

IMPORT com
...
FUNCTION createservice()
 DEFINE serv com.WebService # A WebService
 DEFINE op com.WebOperation # Operation of a WebService
 --#Create WebService object
 LET serv = com.WebService.CreateWebService("MyCalculator",
 "http://tempuri.org/webservices")
 --Create WebOperation object
 LET op = com.WebOperation.CreateRPCStyle("add", "Add", add_in,
add_out)
 --Publish the operation, associating it with the WebService object
 CALL serv.publishOperation(op,NULL)
...
END FUNCTION

See the Web Services Server tutorial and Choosing a Web Service Style for complete
examples and explanations.

Genero Web Services

32

Choosing a Web Services Style
Genero Web Services Extension 2.0 allows you to create Web Services operations in the
following styles:

• RPC Style Service (RPC/Literal) is generally used to execute a function, such as
a service that returns a stock option.

• Document Style Service (Doc/Literal) is generally used for more sophisticated
operations that exchange complex data structures, such as a service that sends an
invoice to an application, or exchanges a Word document; this is the MS.Net
default.

Both RPC/Literal and Doc/Literal Styles are WS-I compliant (Web
Services Interoperability organization).

• RPC Style Service (RPC/Encoded) is provided only for backwards
compatibility with older versions of web services already published. Warning:
This style is deprecated by the WS-I organization, and is not recommended, as
most Web Service implementations won't support it in the future. See migration
notes if you want your service to be WS-I compliant.

The style of service to be created is specified in the Genero application for the Web
Service, using the following methods of the WebOperation class from from the Web
Services Extension COM Library (com). The parameters are the same for both methods:

1. the name of the 4GL function that is executed to process the Web Service
operation

2. the name you wish to assign to the Web Service operation
3. the input record defining the input parameters of the operation (or NULL if there

is none)
4. the output record defining the output parameters of the operation (or NULL if

there is none)

LET op = com.WebOperation.CreateRPCStyle("add","Add",add_in,add_out)
LET op =
com.WebOperation.CreateDOCStyle("checkInvoice","CheckInvoice",invoice_i
n,invoice_out)

Calling the appropriate function for the desired style is the only difference in your Genero
code that creates the service. The remainder of the code that describes the service is the
same, regardless of whether you want to create an RPC or Document style of service.

Note: Warning: Do not use the setInputEncoded() and setOutputEncoded()
methods of the WebService class from the Web Services Extension COM
Library (com), as they apply only to RPC/Encoded Style, which is not
recommended.

Server

33

 If you add headers to your RPC Style service, choose the Literal
serialization mechanism by setting the encoded parameter of the
createHeader() method to FALSE. Example:

CALL serv.createHeader(var,FALSE)

 GWS release 2.0 allows you to create RPC Style and Document Style
operations in the same Web Service. However, we do not recommend
this, as it is not WS-I compliant.

Genero Web Services

34

Tutorial: Writing a GWS Server application
This tutorial guides you through the steps to create a Server application for a Genero Web
Service that can be accessed over the web by Client applications. A complete example is
in the demo/WebServices subdirectory of the Genero installation directory.

You can write your Server application based on input/output records that you have
defined. Or, you can use the tool fglwsdl to include third-party WSDL information in
your Server application.

 Summary:

• Including the Genero Web Services Extension library
• Example 1. Writing a GWS Server Application

o Step 1: Define input and output records
o Step 2: Write a BDL function for each Service operation
o Step 3: Create the Service and Operations
o Step 4: Register the Service
o Step 5: Start the GWS Server and process requests

• Example 2: Writing a GWS Server using third-party WSDL (fglwsdl)
o Step 1: Get the WSDL description and generate files
o Step 2: Write a BDL function for your Service operation
o Step 3: Create Service/Start Server and process requests as above

• Compiling GWS Server applications
• Testing the GWS Service in stand-alone mode
• Configuring the Genero Application Server for the GWS Application
• Making the GWS Service available

See also: Choosing a Web Services Style, The fglwsdl Tool, Deployment

Including the Genero Web Services Extension library

The methods associated with creating and publishing a Web Service are contained in the
classes that make up the Genero Web Services Extension Library (com). Include the
following line at the top of each module of your GWS Server application to import the
library:

IMPORT com

Server

35

Example 1: Writing the entire Server Application

You can define a Web Service in your application and write definitions for the input and
output records that will be used by the Service. This example illustrates a Service that has
one operation, Add, to provide the sum of two numbers.

Step 1: Define Input and Output Records

Based on the desired functionality of the operations that you plan for the Service, define
the input and output records for each operation. BDL functions that are written to
implement a Web Service operation cannot have input parameters or return values.
Instead, each function's input and output message must be defined as a global or module
RECORD.

The Input message

The fields of the global or module record represent each of the input parameters of the
Web Function. The name of each field in the record corresponds to the name used in the
SOAP request. These fields are filled with the contents of the SOAP request by the Web
Services engine just before executing the corresponding BDL function.

The Output message

The fields of the global or module record represent each of the output parameters of the
Web Function. The name of each field in the record corresponds to the name used in the
SOAP request. These fields are retrieved from the Web Services engine immediately
after executing the BDL function, and sent back to the client.

Your GWS service has one planned operation that adds two integers and returns the
result. The input and output records are defined as follows:

GLOBALS
 DEFINE
 add_in RECORD -- input record
 a INTEGER,
 b INTEGER
 END RECORD,
 add_out RECORD -- output record
 r INTEGER
 END RECORD
END GLOBALS

Step 2: Write a BDL function for each Service operation

You will need to write a function to implement each operation, using the input and output
global records.

To implement your Add operation:

Genero Web Services

36

#User Public Functions
FUNCTION add()
 LET add_out.r = add_in.a + add_in.b
END FUNCTION

Step 3: Create the Service and Operations

The Genero Web Services Extension library (com) provides classes and methods that
allow you to use Genero BDL to configure a Web Service and its operations.

• WebService - this is a container for web operations.
• WebOperation - describes the operation.

Define variables for the WebService and WebOperation objects

FUNCTION createservice()
DEFINE serv com.WebService # A WebService
DEFINE op com.WebOperation # Operation of a WebService

Choose a Namespace

XML uses namespaces to group the element and attribute definitions, and to avoid
conflicting names. In practice, a namespace must be a unique identifier (URI: Uniform
Resource Identifier). If you do not know the unique identifier to use, your company's
Web site domain name is guaranteed to be unique (such as "http://www.4js.com"); then,
append any string.

Examples of valid namespaces for the Four J's Development Tools company:

• "http://www.4js.com/MyServices"
• "http://www.4js.com/any_string"

Another option (for testing only) is to use the temporary namespace
"http://tempuri.org/".

Create the WebService object

Call the constructor method of the WebService class. The parameters are:

1. Service name
2. Valid namespace

 This example uses the temporary namespace and creates a Service named
"MyCalculator".

LET serv = com.WebService.CreateWebService("MyCalculator",
 "http://tempuri.org/webservices")

Server

37

Create the WebOperation object

A WebService object can have multiple operations. The operations can be created in RPC
style or Document style by calling the corresponding constructor method of the
WebOperation class. The parameters are:

1. the name of the 4GL function that is executed to process the XML operation
2. the name you wish to assign to the XML operation
3. the input record defining the input parameters of the operation (or NULL if there

is none)
4. the output record defining the output parameters of the operation (or NULL if

there is none)

To create the operation for the previously defined add function in RPC style:

LET op = com.WebOperation.CreateRPCStyle("add", "Add", add_in, add_out)

To create the operation for the previously defined add function in Document style:

LET op = com.WebOperation.CreateDOCStyle("add", "Add", add_in, add_out)

Mixing RPC style and Document style operations in the same service is not
recommended, as it is not WS-I compliant. See Web Services Styles for additional
information about styles.

The rest of the code in your application is the same, regardless of the Web Services style
that you have chosen.

Publish the operation

Once an operation is defined, it must be associated with its corresponding WebService
(the operation must be published). The publishOperation method of the WebService
object has the following parameters:

• the WebOperation to be published
• a string to identify the operation if several operations have the same name; if this

is NULL, the default value is an empty string

For example, to publish the Add operation of the Calculator service, which was defined
as op:

CALL serv.publishOperation(op,NULL)

Genero Web Services

38

Step 4: Register the Service

Once the Service and operations are defined and the operations are published, the
WebService and WebOperation objects have completed their work. Registering a service
puts the Genero DVM in charge of the execution of all the operations of that service -
dispatching the incoming message to the right service, returning the correct output, etc.
The same service may be registered at different locations on the Web.

The WebServiceEngine is a global built-in object that manages the Server part of the
Genero DVM. Use the RegisterService class method of the WebServiceEngine class.
The parameter is:

1. The name of the WebService object

To register the Calculator service example previous created:

CALL com.WebServiceEngine.RegisterService(serv)
END FUNCTION

Note: If you wanted to create a single GWS Server DVM containing multiple Web
Services, you could define additional input and output records and repeat steps 2 through
6 for each Web Service. In Step 5, a GWS Server DVM is started, containing as many
Web Services as you have defined. See Deployment for additional discussion of GWS
Services and GWS Servers.

Step 5: Start the GWS Server and process requests

Once you have registered the Web Service(s), you are ready to start the GWS Server and
process the incoming SOAP requests. The GWS Server is located on the same physical
machine where the application is being executed (where fglrun is executing).

This is the MAIN program block of your application.

• Define a variable for status
• Define a variable to hold the returned status of the request:

MAIN
DEFINE ret INTEGER

Call the function that you created above, which defined and registered the service and its
operations:

CALL createservice()

Start the GWS Server

Use the Start class method of the WebServiceEngine class to start the server.

Server

39

CALL com.WebServiceEngine.Start()

Process the requests

The following example uses the Process Services method of the WebServiceEngine class
to process each incoming request, returning an integer representing the status. The
parameter specifies the timeout period in number of seconds for which the method should
wait to process a service; the value -1 specifies an infinite waiting time.

WHILE TRUE
 # Process each incoming requests (infinite loop)
 LET ret = com.WebServiceEngine.ProcessServices(-1)
 CASE ret
 WHEN 0
 DISPLAY "Request processed."
 WHEN -1
 DISPLAY "Timeout reached."
 WHEN -2
 DISPLAY "Disconnected from application server."
 EXIT PROGRAM
 WHEN -3
 DISPLAY "Client Connection lost."
 WHEN -4
 DISPLAY "Server interrupted with Ctrl-C."
 WHEN -10
 DISPLAY "Internal server error."
 END CASE
 IF int_flag<>0 THEN
 LET int_flag=0
 EXIT WHILE
 END IF
END WHILE
DISPLAY "Server stopped"
END MAIN

Note: The Genero Application Server (GAS) is required to manage your application in
a production environment. For deployment, the GWS Server application must be added to
the GAS configuration; see "Adding Applications" in the GAS manual. For testing
purposes only, the GWS Server can be started in stand-alone mode.

Example 2: Writing a GWS Server using Third-Party WSDL (the fglwsdl
tool)

To write a Web Service that is compatible with the specification of the input and output
records defined by a third-party (for example, a vendor of manufacturing software, or a
WSDL specialist in your company) you can use the fglwsdl tool to obtain the WSDL
information and generate a part of the Server application, using the steps below. See The
fglwsdl Tool for a complete description of the tool and its use.

Genero Web Services

40

Step 1: Get the WSDL description and generate files

This tutorial uses fglwsdl and the Calculator Service defined in Example1 to obtain the
WSDL information and generate two corresponding BDL files:

• the globals file, containing declarations of global variables that can be used as
input or output to functions accessing the Web Service operations.

• a .4gl file containing a function that creates the service described in the WSDL,
publishes the operations of the service, and registers the service.

fglwsdl -s -o example1 http://localhost:8090/MyCalculator?WSDL

Note: the MyCalculator GWS Service created in Example1 must be running in order to
obtain the WSDL information.

The generated globals file

The globals file example1Service.inc provides the definition of the global input and
output records as described in the Step 1 of the Example 1 GWS Server program. The
names of the input and output records have been assigned by fglwsdl, in accordance with
the Style of the Web Service MyCalculator (created as RPCStyle in the Example1
program).Do not modify this file.

Input and output records:

VARIABLE : Add
DEFINE Add RECORD ATTRIBUTE(XMLName="Add",
 XMLNamespace="http://tempuri.org/webservices")
 a INTEGER ATTRIBUTE(XMLName="a",XMLNamespace=""),
 b INTEGER ATTRIBUTE(XMLName="b",XMLNamespace="")
 END RECORD
VARIABLE : AddResponse
DEFINE AddResponse RECORD ATTRIBUTE(XMLName="AddResponse",

XMLNamespace="http://tempuri.org/webservices")
 r INTEGER ATTRIBUTE(XMLName="r",XMLNamespace="")
 END RECORD

The generated .4gl file

The example1Service.4gl file contains a single function that creates the service,
publishes the operation, and registers the Service. The Web Service Style that is created
is determined by the style specified in the WSDL information. The functions in this file
accomplish the same tasks as Step 3 and Step 4 of Example 1. Do not modify this file.

example1Service.4gl - generated file containing the function
Createexample1Service
IMPORT com
GLOBALS "example1Service.inc"

Server

41

FUNCTION Createexample1Service
RETURNING soapstatus
FUNCTION Createexample1Service()
 DEFINE service com.WebService
 DEFINE operation com.WebOperation
 # Set ERROR handler
 WHENEVER ANY ERROR GOTO error
Create Web Service
 LET service =
com.WebService.CreateWebService("MyCalculator","http://tempuri.org/webs
ervices")
 # Operation: Add
 # Publish Operation : Add
 LET operation =
com.WebOperation.CreateRPCStyle("Add","Add",Add,AddResponse)
 CALL service.publishOperation(operation,"")
 # Register Service
 CALL com.WebServiceEngine.RegisterService(service)
 RETURN 0
 # ERROR handler
 LABEL error:
 RETURN STATUS
 # Unset ERROR handler
 WHENEVER ANY ERROR STOP
END FUNCTION

Step 2: Write a BDL function for your Service operation

Using the information from these generated files, the Add operation from Example1 is re-
written to have different functionality but to still be compatible with the WSDL
description of the operation. This step accomplishes the same thing as Step 2 in Example
1. In this version of the add operation, the sum of the two numbers in the input record is
increased by 100.

my_function.4gl -- file containing the function definition
IMPORT com -- import the Web Services Extension library
GLOBALS "example1Service.inc" -- use the generated globals file
#User Public Functions
FUNCTION add() -- new version of the add
function
 LET AddResponse.r = (Add.a + Add.b)+ 100 -- the global input and output
records are used
END FUNCTION

Step 3: Create Service/Start Server and process requests

Create your own Main module that calls the function from the generated .4gl file to create
the service, and then starts the GWS Server and manages requests as in Step 5 of
Example 1.

Genero Web Services

42

#example2main.4gl file -- contains the MAIN program block
IMPORT com
GLOBALS "example1Service.inc"
MAIN
 DEFINE create_status INTEGER

 DEFER INTERRUPT

 CALL Createexample1Service() -- call the function generated in
 -- example1Service.4gl
 RETURNING create_status
 IF create_status <> 0 THEN
 DISPLAY "error"
 ELSE
 # Start the server and manage requests
 CALL ManageService()
 END IF

END MAIN

FUNCTION ManageService()
 DEFINE ret INTEGER
 CALL com.WebServiceEngine.start()
 WHILE TRUE
 # continue as in Step 5 of Example 1
 ...
END FUNCTION

Compiling GWS Server Applications

The library file WSHelper.42m, included in the $FGLDIR/lib directory of the Genero
Web Services package, should be linked into every GWS Server application.

If your application uses the fglwsdl tool to generate information, link the .4gl generated
file into the application.

Examples:

• Compiling the Example1 program

fglcomp example1.4gl
fgllink -o example1.42r example1.42m WSHelper.42m

• Compiling the Example2 program

fglcomp example2main.4gl my_function.4gl
example1Service.4gl
fgllink - o example2.42r example2main.42m my function.42m
 example1Service.42m WSHelper.42m

Server

43

Testing the GWS Service in stand-alone mode

For testing and development purposes only, the GWS Server application can be executed
directly, without using the Genero Application Server (GAS).

1. Use the Genero fglrun command to execute the GWS Server application, which
must reside on the same machine:

fglrun <gws application>

This will start the GWS Server on the port specified by the
FGLAPPSERVER environment variable. If this environment variable is
not set for the user, port number 80 is used. For example, if
FGLAPPSERVER is set to 8090, the server will be started on that port.

Note: The user must not set the FGLAPPSERVER variable in production
environments, since the port number is selected by the Genero Application
Server (GAS).

2. Obtain the WSDL information for your Service and write a test Client
application. If the GWS Server in step 1 was started on your local machine, for
example, the command to get the WSDL information would be:

fglwsdl -o <test-client>
http://localhost:8090/<service-name>?WSDL

Configuring the Genero Application Server for the GWS Application

The final step is to configure the Genero Application Server (GAS) to handle the GWS
application. In a production environment, Genero Web Services becomes a part of a
global application architecture handled by the application server of the GAS package.
See Deployment, as well as Adding Applications in the GAS manual.

Making the GWS Service available

Once you compile and deploy your GWS Server application (see Deployment), it can be
used by others to obtain the WSDL information and write a client application that
accesses your Genero Web Service. See Tutorial: Writing a Client Application.

Genero Web Services

44

Your company can provide the location of the GWS Server to potential users of your
Web Service in various ways; for example:

• Provide the location on a company web site
• Register the Web Service with UDDI (Universal Description, Discovery, and

Integration) - the XML-based registry providing Internet listings for companies
worldwide

• Communicate directly with your potential users

Server

45

Deployment
In a production environment, Genero Web Services becomes a part of a global
application architecture handled by the Genero Application Server (GAS). The GWS
DVMs are managed by the GAS.

This architecture takes care of:

• Security issues
• Scalability

o Load management
o Balancing of the SOAP requests amongst the available virtual machines

• Runtime monitoring

For deployment, the GWS Server application must be added to the GAS configuration.
See Adding Applications in the GAS manual.

You can:

• Create a GWS Server application that contains a single Web Service. This
application could be deployed on various physical machines. A Genero Web
Services DVM is created on each machine where the GWS Server application is
executed, to manage the requests for a service. A single GAS can communication
with multiple GWS DVMs - the GAS daemon (gasd) handles load balancing
among the GWS DVMs. Or each GWS DVM can have its own gasd.

• Create a GWS Server application that contains multiple Web Services. The
GWS DVM would manage the client requests, dispatching the request to the
appropriate service. Once again, there could be one or many GAS daemons
communicating with the GWS DVMs.

Note: A Web Service Server must be stateless; several instances of the same Service can
be created to support load balancing.

Deployment example

The basic deployment strategy can be implemented in varying permutations, depending
on your business needs and the volume of requests.

Genero Web Services

46

• Using the World Wide Web, a Web Service client requests WSDL information
for a particular Web Service from the Web Server.

• The Web Service client uses this information to make a Web Service request from
the Web Server.

• The Web server spawns and communicates with the client CGI Connector,
fglccgi. The Connector configuration is specified in the file connector.xcf.

• The Connector handles communication with the Genero Application Server, gasd.
The gasd configuration is set in the file as.xcf (default) or a user-specified
configuration file. The gasd must be started and listening for requests from the
Connector.

• The gasd communicates with a Web Service DVM to fulfill the Web Service
request.

• Communication is bi-directional, returning the requested information to the Web
Service client.

Example

Accessing a Genero Web Service over the internet:

http://server_host_name/cgi-bin/fglccgi/ws/r/app_id/service_name

47

Encryption and Authentication
Summary:

• Secured communications
• Certificates
• Certificate Authorities
• Certificates and private keys storage

Secured communications

Secured communications are important. If an application wants to send or receive
messages from a financial, business, or personnel application on the web, it must be able
to authenticate the origin of the message, ensure that no malicious application has altered
the original message, and ensure that no third party application can intercept the message.

Suppose that a person named Georges wants to send a message to his bank to
transfer some money on the Internet. In this scenario, he faces the following
concerns:

1. The privacy of the message, since it includes his account number and the transfer
amount.

2. The integrity of the message, since someone might try to modify the original
message or substitute a different message in order to transfer the money to
another account.

3. The authentication of the message, since the bank must ensure that the message
was sent from the right person.

Message privacy

To keep a message private, use a cryptographic algorithm - a technique that transforms a
message into an encrypted form unreadable except by those it is intended for. Once it is
in this form, the message may only be interpreted through the use of a secret key. There
are two kinds of cryptography algorithms: symmetric and asymmetric.

Symmetric means the sender and the receiver of a message have to share the same key
used to encrypt a clear message into an encrypted form, and then to decrypt it back into
the original message. If that key is kept secret, nobody other than the sender and the
receiver can read the message. However, the task of choosing a private key before
communicating can be problematic.

Asymmetric means that there are two different keys working as a key-pair. One key is
used to encrypt a message, and the second one is used to decrypt the encrypted message
back into its original form. This solves the problem of key sharing in the symmetric

Genero Web Services

48

cryptography algorithm, and makes it possible to receive secure messages, simply by
publishing the key used to encrypt messages (the public key), and keeping secret the key
used to decrypt messages (the private key). Anyone can encrypt a message using the
public key, but only the owner of the private key can read it.

The use of an asymmetric key-pair (public and private key), allows Georges to send
private messages to his bank, simply by using the bank's public key to encrypt a
message. Then, only the owner of the corresponding private key (the bank in this
scenario) is able to read it.

Message integrity

To guarantee the integrity of a message, send a concise summary of the original message.
The receiver of the message can create its own summary and compare it to the sender's
summary. If they are similar, the message is considered intact, meaning that no third
party has modified the original message.

Such a summary is called a message digest and is based on hash algorithms that produce
a fixed-length representation of variable-length messages. Notice that message digests are
designed to make it very difficult (if not impossible) to determine the original message
from a summary.

However, the message digest must be sent to the receiver in a secure way to assure the
message integrity. This is achieved with a digital signature authenticating the sender and
containing the sender's message digest. (See Message authentication below.)

The use of message digests allows Georges' bank to verify that no one has modified
the original message he sent.

Message authentication

To authenticate a message, add a digital signature to that message.

A digital signature is another message, created by encrypting the message digest, along
with some other information, with the sender's private key. Anyone with the
corresponding public key can decrypt the digital signature. If an application is able to
decrypt it, it means the owner of the private key was able to encrypt it, proving that the
message comes from this sender and not from someone else.

Once the sender has been authenticated, the receiver can compare the message digest
integrated into the digital signature to the one it created from the message it receives, in
order to check the message integrity.

The use of digital signatures allows Georges' bank to verify that the message really
comes from him.

Security Concepts

49

Certificates

Now that Georges is able to send a secured message to his bank, there is still a
problem. How can Georges be sure that the server he is connected to is really the
bank's server and not a malicious server?

Georges must be sure that the public key he is using to encrypt his message corresponds
to the bank's private key. Similarly, the bank needs to verify that the message signature it
receives corresponds to Georges' signature.

To identify a remote peer, use a certificate - a kind of digital identity card that associates
the public key with a unique digital thumbprint identifying an individual, a server, or any
other entity known as the subject. It also includes the identification and signature of the
Certificate Authority that issued the certificate, and the period of time during which the
certificate is valid. It may have additional information (or extensions) as well as
administrative information for the Certificate Authority's use, such as a serial number.

A standard X.509 certificate contains the following standard fields:

• Certificate version
• Serial number of the certificate
• The distinguished name of the certificate issuer
• The distinguished name of the certificate owner
• The validity period of the certificate
• The public key
• The digital signature of the issuer
• Signature algorithm used
• Zero or more certificate extensions

Notes:

1. An example of a distinguished name is:
CN=Georges,E=georges@4js.com,OU=Sales,O=Four J's development
tools,C=FR,S=France

2. The CN (Common Name) of the distinguished name of the certificate owner
corresponds to the certificate subject, and identifies the owner of that certificate.

Genero Web Services

50

Certificate Authorities

Each time Georges sends a message to his bank, he will present his own certificate to
the bank, and will get the bank's certificate back. But as every one can create a
certificate in the name of Georges, a higher authority that confirms the validity of a
certificate is necessary. The bank must be sure it is Georges' certificate, and that no
one else has taken his identity. Similarly, Georges needs an authority that confirms
that the certificate coming from the server is really the bank's certificate.

The solution to validating a certificate is to sign it with a trusted certificate called
certificate authority. This is a certificate in which an application creates total confidence
concerning the validity of the certificates it has signed. Before signing a certificate, a
certificate authority must proceed with a strict identification of the owner of that
certificate.

Note: The private key associated to a Certificate Authority must be managed with care,
as it is the entity in charge of the validity of all other certificates it has signed.

There are several companies (such as VeriSign, GlobalSign or RSA Security) that have
established themselves as certificate authorities and provide the following services over
the Internet:

• Verifying certificate requests
• Processing certificate requests
• Issuing and managing certificates

Note: It is also possible to create your own Certificate Authority, but it is up to you to
manage it securely.

Root Certificate Authority

A Certificate Authority signed by itself is called a Root Certificate Authority, meaning
that the certificate issuer is the same as the certificate subject. Most of the time, such a
certificate belongs to a company established as a Certificate Authority, and is used to sign
certificate requests coming from different companies that want their own Certificate
Authority. If a client certificate is signed by a Certificate Authority previously signed by
a Root Certificate Authority, the client certificate can be validated by the Root Certificate
Authority even if the Certificate Authority is not present.

For example, if a company wants to buy a Certificate Authority from VeriSign, VeriSign
signs that Certificate Authority with its own Root Certificate Authority. The company
can then create certificates with the Certificate Authority provided by VeriSign and
connect to secure servers without providing them their own Certificate Authority. The
secure server, of course, has to know the VeriSign Root Certificate Authority.

Security Concepts

51

Certificate chains

A certificate authority may issue a certificate for another certificate authority. This means
that when an application wants to examine the certificate of the issuer, it must check all
parent certificates of that issuer until it reaches one it which it has confidence.

The certificate chain corresponds to the number of parent certificate authorities allowed
to validate a certificate.

Certificate Authority List

A Certificate Authority List is a list of all certificate authorities considered as trusted by
one application, classified by order of importance. Each of these certificates allows the
authentication of a certificate presented to that application from a remote peer.

Note: With most applications, the Certificate Authority List is a concatenated file of all
certificate authorities.

Certificates and private keys storage

The entire concept of security is based on the publication of the public key, and the
privacy of the associated private key. For maximum security, it is critical to restrict the
access of the private key to the owner of the certificate and associated private key.

Note: Some companies provide systems to manage certificates and private keys in
complete security.

Unix systems

As the Unix system is already able to restrict the access of a file to only one person,
simply restrict access to the private key to the owner of that key to achieve a good level
of security. This provides enough security to allow a Genero Web Services client to
perform secured communications in the name of the certificate and private key owner,
because access to the private key file is granted only if the correct user has logged in.

Windows systems

The Windows system doesn't provide a reliable and sufficiently strong file access rights
policy to secure a file. However, Windows has an integrated key store system to manage
certificates and private keys. It allows the registration and the storage of X.509 certificate
authorities, as well as personal X.509 certificates and their associated private keys

Genero Web Services

52

accessible only if the correct user has logged in. It is recommended that you store the
certificate and associated private key in the Windows key store instead of in files on the
disk. For information on how to import a certificate and its associated private key file into
the Windows key store, see Importing a certificate and its private key into the Windows
key store.

Security Concepts

53

Certificates in Practice
 Summary:

• OpenSSL tool
• Creating a Root Certificate Authority
• Creating a Certificate Authority
• Creating a Certificate
• Creating a Certificate Authority list
• Importing a certificate and its private key into the Windows key store
• Importing a certificate authority into the Windows key store

OpenSSL tool

The openssl command line tool creates certificates for the configuration of secured
communications. It requires a configuration file with the default parameters such as the
key size or the private key name. OpenSSL is provided with a default configuration file
called openssl.cnf.

Note: openssl looks for the openssl.cnf file in the directory where it is executed; it stops
if the file is not present. To use the openssl tool from any directory, set the
OPENSSL_CONF environment variable to specify the location of the configuration file.

For information on how the openssl tool works, refer to the openssl documentation at
http://www.openssl.org/docs/apps/openssl.html.

Creating a Root Certificate Authority

• Create a CSR (Certificate Signing Request):
$ openssl req -new -out MyRootCA.csr

Note: This creates a privkey.pem file containing the RSA private key of that
certificate and protected by a password.

• Remove the password of the private key (Optional):
$ openssl rsa -in privkey.pem -out MyRootCA.pem

Note: Removing the password of a certificate authority's private key is not
recommended.

• Create a self-signed certificate from the Certificate Signing Request for a validity
period of 365 days:

Genero Web Services

54

$ openssl x509 -trustout -in MyRootCA.csr -out MyRootCA.crt -req
-signkey MyRootCA.pem -days 365

Notes:
If you want an official Root Certificate Authority, you must send the CSR file to
one of the self-established Certificate Authority companies on the Internet
(instead of creating it with openssl).
Creation of a X509 certificate requires a serial number provided in OpenSSL
configuration file; if not set, you must specify it with option -set_serial.

Creating a Certificate Authority

• Create a CSR (Certificate Signing Request):
$ openssl req -new -out MyCA.csr

Note: This creates a privkey.pem file containing to the RSA private key of that
certificate and protected by a password.

• Remove the private key password (Optional):
$ openssl rsa -in privkey.pem -out MyCA.pem

Note: Removing the password of a certificate authority's private key is not
recommended.

• Create a certificate from the Certificate Signing Request and trusted by the Root
Certificate Authority:
$ openssl x509 -in MyCA.csr -out MyCA.crt -req -signkey MyCA.pem
-CA MyRootCA.crt -CAkey MyRootCA.pem

Notes:
If you want an official Certificate Authority, you must send the CSR file to one of
the self-established Certificate Authority companies on the Internet (instead of
creating it with openssl).
Creation of a X509 certificate requires a serial number provided in OpenSSL
configuration file; if not set, you must specify it with the following option: -
set_serial.

Creating a Certificate

• Create a CSR (Certificate Signing Request):
$ openssl req -new -out MyCert.csr

Security Concepts

55

Note: This command creates a privkey.pem file containing the RSA private key
of that certificate and protected by a password.

• Remove the private key password (Optional):
$ openssl rsa -in privkey.pem -out MyCert.pem

• Create a certificate from the Certificate Signing Request and trusted by the
Certificate Authority:
$ openssl x509 -in MyCert.csr -out MyCert.crt -req -signkey
MyCert.pem -CA MyCA.crt -CAkey MyCA.pem

Notes:
If you want an official Certificate, you must send the CSR file to one of the self-
established Certificate Authority companies on the Internet (instead of creating it
with openssl).
Creation of a X509 certificate requires a serial number provided in OpenSSL
configuration file, but if not set, you must specify it with option -set_serial.

Creating a Certificate Authority list

• Concatenate all certificate authorities by order of importance, listing the most
important first:
$ openssl x509 -in MyCA1.crt -text >> CAList.pem
$ openssl x509 -in MyCA2.crt -text >> CAList.pem
$ openssl x509 -in MyCA3.crt -text >> CAList.pem

Importing a certificate and its private key into the Windows key store

• Create a certificate as described above.
• Create a specific PKCS12 file containing the certificate and its private key in one

file:
$ openssl pkcs12 -export -inkey MyCert.pem -in MyCert.crt -out
MyCert.p12

Note: The .p12 generated file is protected by a password and can then be
transported without any risk.

• On a Windows system, open this .p12 file and follow the instructions provided.

Note: If you select strong verification during the importation process, a pop-up
displays each time an application accesses the private key asking the user whether
the application is allowed to use it.

Genero Web Services

56

Importing a certificate authority into the Windows key store

• Create a certificate authority as described above.
• Open the .crt certificate file
• Click Install Certificate and follow the instructions provided.

Note: Windows automatically places the certificate in the certificate authority list
of the key store.

Security Concepts

57

Accessing Secured Services
As security and authentication are more and more important, GWS provides various
communications options for a client to connect to a Web Service:

Communication options

• HTTP : Client connects to a Web Server (or a Web Service) using HTTP as the
communication protocol. (No security, No authentication)

• HTTP with Basic Authentication : Client connects to a Web Server using HTTP
as the communication protocol, but a valid login and password are required from
the Web Server to grant access to the Web Service. (No security, Weak
Authentication). The login and password are sent in clear text on the
communication layer.

• HTTP with Digest Authentication: Client connects to the Web Server using
HTTP as the communication protocol, but a valid login and password are required
from the Web Server to grant access to the Web Service. (No security,
Authentication). The login and password are encoded using a digest algorithm,
requiring additional information from the Web Server. This means that the first
connection will always fail, but it is necessary in order to return Web Server
additional information back to the client.

• HTTPS: Client connects to a Web Server using HTTPS as the communication
protocol. (Security, No authentication). The communication channel is
encrypted by SSL.

• HTTPS with Basic Authentication: Client connects to a Web Server using
HTTPS as the communication protocol, but a valid login and password are
required from the Web Server to grant access to the Web Service. (Security,
Weak Authentication). The login and password are sent in clear text on the
communication layer, but the communication channel is encrypted by SSL.

• HTTPS with Digest Authentication: Client connects to the Web Server using
HTTPS as the communication protocol, but a valid login and password are

Genero Web Services

58

required from the Web Server to grant access to the Web Service. (Security,
Authentication). The login and password are encoded using a digest algorithm,
requiring additional information from the Web Server. This means that the first
connection will always fail, but it is necessary in order to return Web Server
additional information back to the client. The communication channel is
encrypted by SSL.

To improve communication speed with the cache mechanism, or to restrict internet
access to specific clients, GWS allows a client to connect via proxies. The proxy is in
charge of dispatching the client request to the server, and uses the same protocol as that
used by the server. So, when a client connects via a proxy to access a HTTP server, the
configuration of the HTTP proxy is used, and when the client communicates in HTTPS,
the HTTPS proxy configuration is used.

• HTTP proxy: Client connects via a proxy using HTTP as the communication
protocol.

• HTTP proxy with Basic Authentication: Client connects via a proxy using
HTTP as the communication protocol, but a valid login and password are required
from the proxy to dispatch the request to the Web Service. The login and
password are sent in clear text on the communication layer between client and
proxy.

• HTTP proxy with Digest Authentication: Client connects via a proxy using
HTTP as the communication protocol, but a valid login and password are required
from the proxy to dispatch the request to the Web Service. The login and
password are encoded using a digest algorithm, requiring additional information
from the proxy. This means that the first connection will always fail, but it is
necessary in order to return proxy additional information back to the client.

• HTTPS proxy: Client connects via a proxy using HTTPS as the communication
protocol. The communication channel is encrypted by SSL.

• HTTPS proxy with Basic Authentication: Client connects via a proxy using
HTTPS as the communication protocol, but a valid login and password are
required from the proxy to dispatch the request to the Web Service. The login and
password are sent in clear text on the communication layer between client and
proxy, but the communication channel is encrypted by SSL.

• HTTPS proxy with Digest Authentication: Client connects via a proxy using
HTTPS as the communication protocol, but a valid login and password are
required from the proxy to dispatch the request to the Web Service. The login and
password are encoded using a digest algorithm, requiring additional information
from the proxy. This means that the first connection will always fail, but it is
necessary in order to return proxy additional information back to the client. The
communication channel between client and proxy is encrypted by SSL.

59

FGLPROFILE password encryption
For security reasons, it is recommended that you avoid storing clear passwords in a file.
The Genero Web Services Extension enables the password encryption of a HTTP
Authenticate entry in the FGLPROFILE file. The encrypted password is decrypted by the
Genero Web Services engine when required.

Summary:

• FglPass tool
• Encrypting a HTTP Authenticate password
• Encrypting a HTTP Authenticate password using a certificate in the Windows key

store

FglPass tool

The Genero Web Services package provides a command line tool called fglpass. The
fglpass tool can encrypt a password from a X.509 certificate. The encrypted password is
displayed on the console in a Base64 form, composed only of alphanumeric characters,
and therefore easily usable in any text file.

Notes:

1. The fglpass tool can also decrypt a password it previously encrypted with a
certificate; however the private key associated to that certificate must be
accessible.
(Type fglpass -h for more details)

Encrypting a HTTP Authenticate password

• Find the HTTP Authenticate entry with the password you want to encrypt:

authenticate.myentry.login = "fourjs"
authenticate.myentry.password = "mypassword"

• Add the certificate and its private key in the FGLPROFILE file as follows:

security.mykey.certificate = "MyCertificate.crt"
security.mykey.privatekey = "MyPrivateKey.pem"

• Encrypt the password with fglpass:

Genero Web Services

60

$ fglpass -c MyCertificate.crt
Enter password :mypassword

The fglpass output looks like the following:

BASE64 BEGIN
dBy3E5JCVxuoxsR+aOBVfp1j0SwQPt+hdjpMKriWvO2xMd5rFnFEwv+sPPd4w/onW
viG0M5mqubBeS7QUlt/ZK0D1aO9/R5RVa5wylQu
//6vxfyd8NG/SFJmlVH63kuyXfiVfq6bHo5+nlQZpVjSHfF2msET3S9HTpZUt4Nbl
P4=
BASE64 END

Note: The encrypted password corresponds to the big suite of alphanumeric
characters between BASE64 BEGIN and BASE64 END. The long line of text is
wrapped for display purposes only.

• Replace the clear password with the encrypted one, and specify the key used to
encrypt it (mykey in our case):

authenticate.myentry.login = "fourjs"
authenticate.myentry.password.mykey = "dBy3E5JCVxuoxsR+aOBVfp1j0S
wQPt+hdjpMKriWvO2xMd5rFnFEwv+sPPd4w
/onWviG0M5mqubBeS7QUlt/ZK0D1aO9/R5RVa5wylQu//6vxfyd8NG/SFJmlVH63k
uyXfiVfq6bHo5+nlQZpVjSHfF2msET3S9HTpZUt4NblP4="

Note: Do not forget to put quotes around the base64 form; otherwise the '='
character is interpreted during the loading of FGLPROFILE. The long line of text
is wrapped for display purposes only.

Encrypting a HTTP Authenticate password using a certificate in the
Windows key store

• Find the HTTP Authenticate entry with the password you want to encrypt:

authenticate.myentry.login = "fourjs"
authenticate.myentry.password = "mypassword"

• Add the subject of the certificate registered in the Windows key store:
security.mykey.subject = "Georges"

• Encrypt the password with fglpass:

$ fglpass -s Georges
Enter password :mypassword

The fglpass output looks like this:

BASE64 BEGIN
dBy3E5JCVxuoxsR+aOBVfp1j0SwQPt+hdjpMKriWvO2xMd5rFnFEwv+sPPd4w/onW

Security and Web Services

61

viG0M5mqubBeS7QUlt/ZK0D1aO9/R5RVa5wylQu//6vxfyd8NG
/SFJmlVH63kuyXfiVfq6bHo5+nlQZpVjSHfF2msET3S9HTpZUt4NblP4=
BASE64 END

Note: The encrypted password corresponds to the big suite of alphanumeric
characters between BASE64 BEGIN and BASE64 END. The long line of text is
wrapped for display purposes only.

• Replace the clear password with the encrypted one, and specify the key used to
encrypt it (mykey in our case):

authenticate.myentry.login = "fourjs"
authenticate.myentry.password.mykey = "dBy3E5JCVxuoxsR+aOBVfp1j0S
wQPt+hdjpMKriWvO2xMd5rFnFEwv+sPPd4w
/onWviG0M5mqubBeS7QUlt/ZK0D1aO9/R5RVa5wylQu//6vxfyd8NG/SFJmlVH63k
uyXfiVfq6bHo5+nlQZpVjSHfF2msET3S9HTpZUt4NblP4="

Note: Do not forget to put quotes around the base64 form; otherwise the '='
character is interpreted during the loading of FGLPROFILE. The long line of text
is wrapped for display purposes only.

Genero Web Services

62

FGLPROFILE Configuration
The Genero Web Services secured communication is based on the OpenSSL engine, and
allows a 4GL Web Services client, or a 4GL application using the com or xml API, to
communicate with any secured server over HTTP or HTTPS. The configuration is
defined from entries in the FGLPROFILE file. This is useful for deployment purposes, as
no additional code modification is necessary, even if the location of the different servers
changes.

Note: When using 4GL Web Services on server side, it is the Web Server that is in
charge of the 4GL Web Services server security, not the 4GL server application itself.
You must refer to your Web Server manual to secure the server part of the Web Services.

Configuration categories:

• Security Configuration
• HTTP basic or digest authentication
• Proxy
• Server
• Examples

Security Configuration

The following table lists the FGLPROFILE entries specifying the security certificates and
algorithms the Web Services client uses for HTTPS and password encryption. Notice that
the entries specify also the way an application using the low-level com or xml API
performs secured communications.

Entry Description

security.global.script Filename of a script executed
each time a password of a private
key is required by the client. The
security script accepts one
argument corresponding to the
filename of the private key for
which the password is required,
and must return the correct
password or the client stops.
Refer to Windows Password
Script Example or Unix Password
Script Example (below) for script
examples.

Security and Web Services

63

security.global.ca Filename of the Certificate
Authority list, with the
concatenated PEM-encoded third
party X.509 certificates
considered as trusted, and in
order of preference.

security.global.windowsca If set to TRUE, build the
Certificate Authority list from the
Certificate Authorities stored in
the Windows key store.
Note: This entry is valid only on
Windows systems, and if
security.global.ca is not set.

security.global.cipher The list of encryption, digest, and
key exchange algorithms the
client is allowed to use during a
secured communication. If this
entry is omitted, all algorithms are
supported. For more details about
cipher, refer to www.openssl.org.

security.ident.certificate Filename of the PEM-encoded
client X.509 certificate.

security.ident.privatekey Filename of the PEM-encoded
private key associated to the
above X509 certificate.

security.ident.keysubject The subject string of a X.509
certificate and its associated
private key registered in the
Windows key store.
Note: This entry is valid only on
Windows systems.

Notes:

1. The ident key-word must be replaced with your own identifier, and all necessary
entries must be set. See FGLPROFILE setting (below) for an example.

2. If an entry is defined more that once, only the last occurrence is taken into
account.

Genero Web Services

64

HTTP basic or digest Authentication

The following table lists the FGLPROFILE entries that specify the login and password to
use in the case of HTTP authentication to a server or a proxy. Notice that the entries
specify also the login and password to use in an application using the low-level com or
xml API.

Entry Description

authenticate.ident.login The login identifying the client to
a server during HTTP
Authentication.

authenticate.ident.password The password validating the login
of a client to a server during
HTTP Authentication.
Note: As passwords should never
be in clear text, it is
recommended that you encrypt
them with the fglpass tool. For
more information, see
FGLPROFILE password
encryption.

authenticate.ident.realm The string identifying the server to
the client during HTTP
Authentication. If that string
doesn't match the server's string,
authentication fails.
Note: This parameter is optional,
but it is recommended that you
check the server identity,
especially if the server's location
is suspicious.

authenticate.ident.scheme One of the following strings
representing the different HTTP
Authentication mechanisms.

• Anonymous (Default value)
The client doesn't know anything
about the server, and performs a
first request to retrieve the server
authentication mechanism. Then
it uses the login and password to
authenticate to the server using
the Basic or Digest mechanism,

Security and Web Services

65

depending on the server returned
value.

• Basic
The client authenticates itself to
the server at first request, by
sending the login and the
password using the Basic
authentication mechanism.

• Digest
The client performs a first request
without any login and password,
to retrieve the server information
before authenticating itself to the
server in a second request using
the Digest mechanism.

Notes:

1. The ident key-word must be replaced with your own identifier and both entries
must be set. See FGLPROFILE setting (below) for an example.

2. If an entry is defined more that once, only the last occurrence is taken into
account.

Proxy Configuration

The following table lists the FGLPROFILE entries that specify how the Web Services
client communicates with a proxy. Notice that the entries specify also the way an
application using the low-level com or xml API communicates with a proxy.

Entry Description
proxy.http.location Location of the HTTP proxy

defined as host:port or ip:port
Note: if the port is omitted, the
port 80 is used

proxy.http.list The list of beginning host names,
separated with semicolons, for
which the Web Services client
doesn't go via the HTTP proxy.

proxy.http.authenticate The HTTP Authenticate identifier

Genero Web Services

66

the Web Services client uses to
authenticate itself to the HTTP
proxy.

proxy.https.location Location of the HTTPS proxy
defined as host:port or ip:port
Note: if the port is omitted, the
port 443 is used

proxy.https.list The list of beginning host names,
separated with semicolons, for
which the Web Services client
doesn't go via this HTTPS proxy.

proxy.https.authenticate The HTTP Authenticate identifier
the Web Services client uses to
authenticate itself to the HTTPS
proxy.

Notes:

1. If an entry is defined more that once, only the last occurrence is taken into
account.

Server Configuration

The following table lists the FGLPROFILE entries that specify the correct way a Web
Services client connects to an end point (usually a server). Notice that the entries specify
also the way an application using the low-level com or xml API connects to an end point.

Entry Description

ws.ident.url The endpoint URL of the server.

ws.ident.cipher The list of encryption, digest and
key exchange algorithms, the
client is allowed to use during a
secured communication to that
server. It overwrites the global
definition.

ws.ident.verifyserver If set to TRUE, the client performs
a strict server identity validation. If
not fulfilled, it stops the
communication; otherwise no

Security and Web Services

67

server identity verification is
performed. The default value is
TRUE.

ws.ident.security The Security identifier the client
uses to perform an HTTPS
communication to the server.

ws.ident.authenticate The HTTP authenticate identifier
the client uses to authenticate
itself to the server.

Notes:

1. The ident key-word must be replaced with your own identifier. All necessary
entries, depending on the remote server's configuration, must be set. For more
information, see FGLPROFILE sample (below).

2. You can use the unique identifier in the 4GL code instead of the server URL, with
the alias:// prefix as for instance alias://ident.

3. If an entry is defined more that once, only the last occurrence is taken into
account.

Examples

Windows Password Script Example

 @echo off
 REM -- Windows password script

 IF "%1" == "Cert/MyPrivateKeyA.pem" GOTO KeyA
 IF "%1" == "Cert/MyPrivateKeyB.pem" GOTO KeyB
 GOTO end
 :KeyA
 ECHO PasswordA
 GOTO end
 :KeyB
 ECHO PasswordB
 GOTO end
 :end
 GOTO :EOF

Unix Password Script Example

Genero Web Services

68

 # Unix password script

 if ["$1" == "Cert/MyPrivateKeyA.pem"]
 then
 echo PasswordA
 fi
 if ["$1" == "Cert/MyPrivateKeyB.pem"]
 then
 echo PasswordB
 fi

FGLPROFILE sample

The following is an FGLPROFILE sample, configured for a connection to a HTTPS
server via a proxy, and with HTTP and Proxy Authentication.

 ############################
 ## Security configuration ##
 ############################
 security.global.script = "Cert/password.sh"
 security.global.ca = "Cert/CAList.pem"
 security.global.cipher = "HIGH" # Use only HIGH encryption
ciphers
 security.mykey.certificate = "Cert/MyCertificateA.crt"
 security.mykey.privatekey = "Cert/MyPrivateKeyA.pem"

 ###############################
 ## Proxy HTTP Authentication ##
 ###############################
 authenticate.proxyauth.login = "myapplication"
 authenticate.proxyauth.password = "fourjs"
 authenticate.proxyauth.scheme = "Basic"

 ###############################
 ## HTTPS Proxy configuration ##
 ###############################
 proxy.https.location = "10.0.0.170"
 proxy.https.list = "www.4js.com;www.4js1.com"
 proxy.https.authenticate = "proxyauth"

 ################################
 ## Server HTTP Authentication ##
 ################################
 authenticate.serverauth.login = "fourjs"
 authenticate.serverauth.password = "password"

 ##########################
 ## Server configuration ##
 ##########################
 ws.myserver.url = "https://www.MyMachine.com/cgi-
bin/fglccgi.exe/ws/r/MyWebService"
 ws.myserver.authenticate = "serverauth"
 ws.myserver.security = "mykey"

Security and Web Services

69

Genero Web Services

70

Tutorial: Configuring a Client to access an HTTPS
Server

 Configuration steps to access a server in HTTPS

 Step 1: Create the client's X.509 certificate and private key

 Step 2: Create the client's Certificate Authority list

 Step 3: Add the client's security configuration to FGLPROFILE

 Step 4: Set the global certificate authority list in FGLPROFILE

 Step 5: Add configuration entries for the server to FGLPROFILE

Step 1: Create the client's X.509 certificate and private key

• Create the Certificate Signing Request and private key:
 $ openssl req -new -out MyClient.csr
Note: by default, openssl outputs the private key in the privkey.pem file.

• Remove the password from the RSA private key:
 $ openssl rsa -in privkey.pem -out MyClient.pem
Note: the key is also renamed in MyClient.pem.

• Create the self-signed X.509 certificate valid for a period of 1 year:
 $ openssl x509 -in MyClient.csr -out MyClient.crt -req -signkey
MyClient.pem -days 365

Notes:

1. Most servers do not check the identity of the clients. For these servers, the client's
certificate does not necessary need to be trusted; it is only used for data
encryption purpose. If, however, the server performs client identification, you
must trust a Certificate Authority in which it has total confidence concerning the
validity of the client's certificates.

Security and Web Services

71

Step 2: Create the client's certificate authority list

• Retrieve the certificate of the HTTPS server:
Type the server's URL in your Internet browser. When prompted, save the
certificate to disk.

• Create the client's Certificate Authority List from the certificate that you saved to
disk in the previous step:
 $ openssl x509 -in ServerCertificate.crt -text >>
ClientCAList.pem

Step 3: Add the client's security configuration to FGLPROFILE

The client security entry defines the certificate and the associated private key used by the
Genero Web Services client during a HTTPS communication. The security entry must be
defined with an unique identifier (id1 for example).

security.id1.certificate = "MyClient.crt"
security.id1.privatekey = "MyClient.pem"

Step 4: Set the global certificate authority list in FGLPROFILE

The global certificate authority list entry defines the file containing the certificate
authority list used by the Genero Web Services client to validate all certificates coming
from the different servers.

security.global.ca = "ClientCAList.pem"

Step 5: Add configuration entries for the server to FGLPROFILE

The Genero Web Services client needs a set of configuration entries that specify how to
communicate with the server. The following entries must be defined with an unique
identifier (such as myserver):

Genero Web Services

72

ws.myserver.url = "https://www.MyServer.com/cgi-
bin/fglccgi.exe/ws/r/MyWebService"
ws.myserver.security = "id1"

Notes:

1. The unique identifier myserver can be used in the 4GL client code in place of the
actual URL.

2. The security entry value must match the unique identifier defined by the client
security entry created in Step 3.

Security and Web Services

73

Tutorial: Configuring a Client to connect via a Proxy

 Configuration steps to connect via a HTTP proxy

 Step 1: Add the location of the proxy into FGLPROFILE

 Step 2: Define the list of host names the client will not have to connect via a proxy

Step 1 : Add the location of the proxy into FGLPROFILE

To configure a client to connect via a HTTP proxy located at IP 10.0.0.170 and listening
on port number 8080, add the following to the FGLPROFILE file:

 proxy.http.location = "10.0.0.170:8080"

Note:

To configure the client to connect via a HTTPS proxy, replace http with
https.

Step 2 : Define the list of host names the client will not have to connect to
via a proxy

To not connect via a proxy for each host beginning with www.4js.com or www.google.,
do the following:

 proxy.http.list = "www.4js.com;www.google."

Note:

The same operation is available for a HTTPS proxy; replace http with
https.

Genero Web Services

74

Tutorial: Configuring a client for HTTP and Proxy
Authentication

 Configuration steps to authenticate
the client to a server

 Configuration steps to authenticate the
client to a proxy

 Step 1: Add a HTTP Authenticate entry
to FGLPROFILE

 Step 2: Configure the client to
authenticate to a server

 Step 1: Add an HTTP Authenticate entry to
FGLPROFILE

 Step 2: Configure the client to authenticate
to a proxy

Step 1 (HTTP Authentication): Add a HTTP Authenticate entry to
FGLPROFILE

To connect to a server with HTTP Authentication (See RFC 2617 for more details), it is
necessary to define the client login and password as registered on the server side.
The following two entries must be defined with an unique identifier (httpauth for our
example) to define a HTTP Authentication with fourjs as login and passphrase as
password:

authenticate.httpauth.login = "fourjs"
authenticate.httpauth.password = "passphrase"

Step 2 (HTTP Authentication): Configure the client to authenticate to a
server

As a client is able to connect to different servers that do not know the client with the
same login and password, it is necessary to specify the login and password that
correspond to each server.
To authenticate the client known as fourjs and with the password passphrase by the
server myserver, add the following entry:

ws.myserver.authenticate = "httpauth"

Security and Web Services

75

Step 1 (Proxy Authentication): Add a HTTP Authenticate entry to
FGLPROFILE

To connect via a proxy with HTTP Proxy Authentication (See RFC 2617 for more
details), it is necessary to define the client login and password as registered on the HTTP
proxy.
The following two entries must be defined with an unique identifier (proxyauth for our
example) to define a HTTP Proxy Authentication with myapplication as login and
mypassword as password:

authenticate.proxyauth.login = "myapplication"
authenticate.proxyauth.password = "mypassword"

Step 2 (Proxy Authentication): Configure the client to authenticate to a
Proxy

To authenticate a client known as myapplication and with mypassword as password by
the HTTP Proxy, add the following entry to the HTTP proxy configuration:

proxy.http.authenticate = "proxyauth"

Notes:

1. To authenticate the client to a HTTPS proxy, replace http with https.

Genero Web Services

76

Deploying a Client and a Server for HTTPS

 Creation of all X.509
certificates

 Client Configuration

 Server Configuration

 Step 1: Create the Root
Certificate Authority

 Step 2: Create the
server's certificate and
private key

 Step 3: Create the client's
certificate and private key

 Step 4: Create the
server's certificate authority
list

 Step 5: Create the client's
certificate authority list

 Step 6: Define the global
certificate authority list

 Step 7: Define the client
security configuration

 Step 8: Define the HTTP
authentication configuration

 Step 9: Encrypt the
HTTP authentication
password

 Step 10: Configure the
client to access the server

 Step 11: Register the server
as a Web Service in the GAS

 Step 12: Configure apache
for HTTPS

 Step 13: Configure apache
for HTTP basic authentication

Step 1 : Create the Root Certificate Authority

• Create the Root Authority's Certificate Signing Request and private key:
 $ openssl req -new -out MyCompanyCA.csr -keyout MyCompanyCA.pem

• Create the Root Certificate Authority for a period of validity of 2 years:
 $ openssl x509 -trustout -in MyCompanyCA.csr -out MyCompanyCA.crt
-req -signkey MyCompanyCA.pem -days 730

Notes:

1. The private key file (MyCompanyCA.pem) of a Root Certificate Authority must
be handled with care. This file is responsible for the validity of all other
certificates it has signed. As a result, it must not be accessible by other users.

Security and Web Services

77

Step 2 : Create the server's certificate and private key

• Create the server's Certificate Signing Request and private key:
 $ openssl req -new -out MyServer.csr
Note: By default, openssl outputs the private key in the privkey.pem file.

• Remove the password from the private key:
 $ openssl rsa -in privkey.pem -out MyServer.pem
Note: The key is also renamed in MyServer.pem.

• Create the server's Certificate trusted by the Root Certificate Authority:
 $ openssl x509 -in MyServer.csr -out MyServer.crt -req -signkey
MyServer.pem -CA MyCompanyCA.crt -CAkey MyCompanyCA.pem

Notes:

1. The purpose of the server's Certificate is to identify the server to any client that
connects to it. Therefore, the subject of that server's certificate must match the
hostname of the server as it is known on the network; otherwise the client will
be suspicious about the server's identity and stop the communication. For
instance, if the URL of the server is https:///www.MyServer.com/cgi-
bin/fglccgi.exe/ws/r/MyWebService, the subject must be www.MyServer.com.

Step 3 : Create the client's certificate and private key

• Create the client's Certificate Signing Request and private key:
 $ openssl req -new -out MyClient.csr
Note: openssl by default, outputs the private key in the privkey.pem file.

• Remove the password from the private key:
 $ openssl rsa -in privkey.pem -out MyClient.pem
Note: The key is also renamed in MyClient.pem.

• Create the client's Certificate trusted by the Root Certificate Authority:
 $ openssl x509 -in MyClient.csr -out MyClient.crt -req -signkey
MyClient.pem -CA MyCompanyCA.crt -CAkey MyCompanyCA.pem

Notes:

1. The purpose of the client's Certificate is to identify the client to any server;
therefore the subject of the certificate must correspond to the client's identity as it
is known by the servers.

Genero Web Services

78

Step 4 : Create the server's certificate authority list

• Create the server's Certificate Authority List:
 $ openssl x509 -in MyCompanyCA.crt -text >> ServerCAList.pem

Notes:

1. As the server trusts only the Root Certificate Authority, the list contains only that
one certificate authority; all other certificates that were trusted by the Root
Certificate Authority will also be considered as trusted by the server.

Step 5 : Create the client's certificate authority list

• Create the client's Certificate Authority List:
 $ openssl x509 -in MyCompanyCA.crt -text >> ClientCAList.pem

Notes:

1. As the client trusts only the Root Certificate Authority, the list contains only that
one certificate authority; all other certificates that were trusted by the Root
Certificate Authority will also be considered as trusted by the client.

Step 6 : Define the global certificate authority list

The global certificate authority list entry defines the file containing the certificate
authority list that the Genero Web Services client will use to validate all certificates
coming from the different servers it will connect to. The certificate authority list entry
must be defined as follows:

security.global.ca = "ClientCAList.pem"

Security and Web Services

79

Step 7 : Define the client security configuration

The client security entry defines the certificate and the associated private key that the
Genero Web Services client will use during a communication with a HTTPS server. The
security entry must be defined with an unique identifier (id1 in our case).

security.id1.certificate = "MyClient.crt"
security.id1.privatekey = "MyClient.pem"

Notes:

1. If the private key is protected with a password, you must remove it or create a
script that returns the password on demand.

Step 8 : Define the HTTP authentication configuration

As our server supports HTTP authentication (See RFC 2617 for more details) , it is
necessary to define the client login and password with the same value as registered on the
server side. The following two entries must be defined with an unique identifier (id2 in
our case).

authenticate.id2.login = "fourjs"
authenticate.id2.password = "mypassword"

Step 9 : Encrypt the HTTP authentication password

Due to security leaks, it is not recommended that you have a password in clear text. The
Genero Web Services package provides the tool fglpass. This tool encrypts a password
with a certificate that is readable only with the associated private key. To encrypt the
HTTP authentication password, do the following:

• Encrypt the clear text password with fglpass using the client certificate:
 $ fglpass -c MyClient.crt
Enter password :mypassword
Note: fglpass outputs the encrypted password on the console but can be
redirected to a file.

Genero Web Services

80

• Modify the HTTP authentication password entry by specifying the security
configuration to use to decrypt it (id1 in our case)

authenticate.id2.password.id1="HWTFu8QE2t3e5D4joy7js8mB95oOGTzLmcAor9j5
DS+CloiliGCwZvZ9eWpfmIWSON9IwoiJheYxfnu20uaGGmmiUGiHxT6341ePXNSicu32Ntl
Vp9t6RcS0wN/p9a6D4XtiD9iHW7iQvXhqC9uamd3gI9Q3GhHwXOMMlY//c8Y="

Notes:

1. The size of the encrypted password depends on the size of the public key, and can
change according to the certificate used to encrypt it.

Step 10 : Configure the client to access the server

The Genero Web Services client needs a set of configuration entries to specify the
security configuration and the HTTP authentication (id1 and id2, respectively) to use
when accessing our server. The following entries must be defined with a unique identifier
(myserver in our case):

ws.myserver.url = "https://www.MyServer.com/cgi-
bin/fglccgi.exe/ws/r/MyWebService"
ws.myserver.security = "id1"
ws.myserver.authenticate = "id2"

Notes:

1. The unique identifier myserver can be used in the 4GL client code instead of the
real URL.

Step 11 : Register the server as a Web Service in the GAS

As the Web Server is in charge of the complete HTTPS protocol with all the clients, there
is no additional GAS configuration needed to add security. Simply register the 4GL
server to the list of Web Services of the GAS. For more information, refer to the Genero
Application Server Manual documentation.

Security and Web Services

81

Step 12 : Configure apache for HTTPS

You must configure Apache to support HTTPS by adding the required modules. Please
refer to the Apache Web server documentation for more information.

• For the Apache 1.3 manual, go to http://httpd.apache.org/docs/1.3.
• For the Apache 2.0 manual, go to http://httpd.apache.org/docs/2.0/.

Once the Apache Web server supports HTTPS, you must change or add the following
directives to the apache configuration file:

• Set the Apache Web server Certificate Authority List directive created in Step 4:
SSLCACertificateFile D:/Apache-Server/conf/ssl/ServerCAList.pem

• Set the Apache Web server Certificate and associated private key directives
created in Step 2:
SSLCertificateFile D:/Apache-Server/conf/ssl/MyServer.crt
SSLCertificateKeyFile D:/Apache-Server/conf/ssl/MyServer.pem

• Require the Apache Web server to verify the validity of all client certificates:
SSLVerifyClient require

Notes:

1. The Apache Web server must be started on a machine where the host is the same
as the one defined in the subject of the server's certificate (www.MyServer.com in
our case).

Step 13 : Configure apache for HTTP basic authentication

You must configure Apache to support HTTP basic authentication by adding the required
modules.

Please refer to the Apache Web server documentation for more information.

• For the Apache 1.3 manual, go to http://httpd.apache.org/docs/1.3.
• For the Apache 2.0 manual, go to http://httpd.apache.org/docs/2.0/.

Once the Apache Web server supports HTTP basic authentication, you must:

1. Add an user to the Apache Web server basic authentication file with the same
login and password as defined in Step 8.

Genero Web Services

82

Apache provides the tool htpasswd that you can use to create the file and add the
user. To add the user fourjs with the password mypassword to a new file called
myusers:
$ htpasswd -c myusers fourjs mypassword
Note: to add additional users, remove the option '-c'.

2. Add an Apache Web server location directive that enables you to group several
directives for one URL. (In our case, the URL is /cgi-
bin/fglccgi.exe/ws/r/MyWebService).
The following example (based on Apache 2.0) defines the HTTP authentication
type (Basic), with a user file (user-basic) containing the login and password of
those who are allowed to access the service.

 <Location /cgi-bin/fglccgi.exe/ws/r/MyWebService>
 AllowOverride None
 Order allow,deny
 Allow from all
 #
 # Basic HTTP authenticate configuration
 #
 AuthName "Top secret"
 AuthType Basic
 AuthUserFile "D:/Apache-Server/conf/authenticate/myusers"
 Require valid-user # Means any user in the password file
 </Location>

3. For more information about Apache Web server directives, refer to the Apache
Web Server manual.

83

How to Call Java APIs from Genero
• Overview
• Prerequisites
• Using the Barcode Library
• Calling Java from Genero

o Step 1 : Write a new java class
o Step 2 : Transform the Java class in a Web Service
o Step 3 : Start the service
o Step 4 : Generate 4GL stub to access the Java library
o Step 5 : Modify your 4GL application

• Example 4GL Program
• Conclusion

Overview

This tutorial explains how to call a Java library from Genero, using Genero and Java Web
services. This can easily be done using the Java JAX-WS framework and without any
strong linkage between Genero and Java. We will use a Java codebar creation library to
build a picture from a code.

Note: Accessing a .NET library could be done in the same manner.

Prerequisites

• A JRE 1.5 or above
• The Java codebar library is available here; you must add the following JARs to

the java CLASSPATH : barcode.jar and BarcodeReader.jar
o Note: the trial version has some functions partially implemented.

• Download the JAX-WS framework from the Sun metro project here; add the
following JAR to the java CLASSPATH: webservices-tools.jar

o Note: this .jar is only necessary to generate the WSDL at runtime.

Using the barcode library

The barcode library is composed of two libraries - one for building a barcode image
from a numeric code, and one for reading a barcode image to return the numeric code.
This section depends on the library you want to use in Genero.

Genero Web Services

84

In our tutorial, we create two functions called buildImage and readImage; the Java
implementation is below:

• buildImage(type : String, code : String) : byte[]

try {
 Barcode builder=new Barcode();
 builder.setType(GetBarcodeBuilderType(type));
 builder.setData(data);
 builder.setAddCheckSum(true);
 ByteArrayOutputStream out=new ByteArrayOutputStream();
 if (builder.createBarcodeImage(out)) {
 byte[] ret = out.toByteArray();
 return ret;
 } else {
 return null;
 }
} catch(Exception e) {
 return null;
}

• readImage(type : String, img : byte[]) : String

try {
 File f=new File("tmp.jpg");
 FileOutputStream stream=new FileOutputStream(f);
 stream.write(img);
 stream.close();
 String[] datas = BarcodeReader.read(f, GetBarcodeReaderType(type));
 if (datas==null) {
 return null;
 } else {
 String ret = datas[0];
 return ret;
 }
} catch (Exception e) {
 return null;
}

The following two functions convert the type of a code bar to the type expected by the
library:

private int GetBarcodeBuilderType(String str) {
 if (str.equals("CODABAR")) {
 return Barcode.CODABAR;
 } else if (str.equals("CODE11")) {
 return Barcode.CODE11;
 } else if (str.equals("CODE128")) {
 return Barcode.CODE128;
 } else if (str.equals("CODE128A")) {
 return Barcode.CODE128A;
 } else if (str.equals("CODE128B")) {
 return Barcode.CODE128B;
 } else if (str.equals("CODE128C")) {

How To’s

85

 return Barcode.CODE128C;
 } else if (str.equals("CODE2OF5")) {
 return Barcode.CODE2OF5;
 } else if (str.equals("CODE39")) {
 return Barcode.CODE39;
 } else if (str.equals("CODE39EX")) {
 return Barcode.CODE39EX;
 } else if (str.equals("CODE93")) {
 return Barcode.CODE93;
 } else if (str.equals("CODE93EX")) {
 return Barcode.CODE93EX;
 } else if (str.equals("EAN13")) {
 return Barcode.EAN13;
 } else if (str.equals("EAN13_2")) {
 return Barcode.EAN13_2;
 } else if (str.equals("EAN13_5")) {
 return Barcode.EAN13_5;
 } else if (str.equals("EAN8")) {
 return Barcode.EAN8;
 } else if (str.equals("EAN8_2")) {
 return Barcode.EAN8_2;
 } else if (str.equals("EAN8_5")) {
 return Barcode.EAN8_5;
 } else if (str.equals("INTERLEAVED25")) {
 return Barcode.INTERLEAVED25;
 } else if (str.equals("ITF14")) {
 return Barcode.ITF14;
 } else if (str.equals("ONECODE")) {
 return Barcode.ONECODE;
 } else if (str.equals("PLANET")) {
 return Barcode.PLANET;
 } else if (str.equals("POSTNET")) {
 return Barcode.POSTNET;
 } else if (str.equals("RM4SCC")) {
 return Barcode.RM4SCC;
 } else if (str.equals("UPCA")) {
 return Barcode.UPCA;
 } else if (str.equals("UPCE")) {
 return Barcode.UPCE;
 } else {
 return -1;
 }
 }

private int GetBarcodeReaderType(String str) {
 if (str.equals("CODABAR")) {
 return BarcodeReader.CODABAR;
 } else if (str.equals("CODE11")) {
 return BarcodeReader.CODE11;
 } else if (str.equals("CODE128")) {
 return BarcodeReader.CODE128;
 } else if (str.equals("CODE39")) {
 return BarcodeReader.CODE39;
 } else if (str.equals("CODE39EX")) {

Genero Web Services

86

 return BarcodeReader.CODE39EX;
 } else if (str.equals("CODE93")) {
 return BarcodeReader.CODE93;
 } else if (str.equals("DATAMATRIX")) {
 return BarcodeReader.DATAMATRIX;
 } else if (str.equals("EAN13")) {
 return BarcodeReader.EAN13;
 } else if (str.equals("EAN8")) {
 return BarcodeReader.EAN8;
 } else if (str.equals("INTERLEAVED25")) {
 return BarcodeReader.INTERLEAVED25;
 } else if (str.equals("ITF14")) {
 return BarcodeReader.ITF14;
 } else if (str.equals("ONECODE")) {
 return BarcodeReader.ONECODE;
 } else if (str.equals("PLANET")) {
 return BarcodeReader.PLANET;
 } else if (str.equals("POSTNET")) {
 return BarcodeReader.POSTNET;
 } else if (str.equals("QRCODE")) {
 return BarcodeReader.QRCODE;
 } else if (str.equals("RM4SCC")) {
 return BarcodeReader.RM4SCC;
 } else if (str.equals("RSS14")) {
 return BarcodeReader.RSS14;
 } else if (str.equals("RSSLIMITED")) {
 return BarcodeReader.RSSLIMITED;
 } else if (str.equals("UPCA")) {
 return BarcodeReader.UPCA;
 } else if (str.equals("UPCE")) {
 return BarcodeReader.UPCE;
 } else {
 return -1;
 }
 }

Calling Java from Genero

The integration of one or several Java libraries with multiple methods in a Genero
application can be performed as described below:

Step 1: Write a new java class

Instead of writing the functions in 4GL, you simply need to write them in a Java class
with the methods you want to use in 4GL as described below. In our example, the two
functions are buildImage and readImage. And of course, don't forget to import the
necessary Java import instructions.

import com.barcodelib.barcodereader.BarcodeReader;
import com.barcodelib.barcode.Barcode;
import java.io.*;

How To’s

87

import javax.jws.*;
import javax.jws.soap.SOAPBinding;
import javax.xml.ws.Endpoint;

public class BarcodeService {
 public byte[] buildImage(String type,String data)
 {
 /*BUILDIMAGE IMPLEMENTATION CODE DESCRIBED ABOVE*/
 }
 public String readImage(String type,byte[] img)
 {
 /*READIMAGE IMPLEMENTATION CODE DESCRIBED ABOVE*/
 }
}

Notice that if you want the service to run standalone, you must also add following the
main method to tell the system the port number on which the service will run:

public static void main(String[] args)
{
 String endpointUri = "http://localhost:9090/";
 Endpoint.publish(endpointUri, new BarcodeService ());
 System.out.println("BarcodeService started at " + endpointUri);
}

Step 2 : Transform the Java class in a Web Service

To transform the previous java class in a Web Service, simply add a WebService
annotation:

@WebService(targetNamespace = "http://www.4js.com/barcode",
 name="Barcode",
 serviceName="BarcodeService")
public class BarcodeService {
 ...
}

This defines all public and non static methods of the class as operations of the
BarcodeService Web Service.

Step 3 : Start the service

Compile the previously created java class, and run it.

Commands to compile and execute the service in standalone mode:

$ javac BarcodeService.java

Genero Web Services

88

$ java BarcodeService

Once the service is started, it is ready to accept requests and you can also retrieve its
WSDL at following URL:

http://localhost/9090/BarcodeService?WSDL

Note: If you want the service to be started on a web server, you must deploy it first using
Eclipse or the Web Server deployment tools.

Step 4 : Generate 4GL stub to access the Java library

Use the fglwsdl tool to generate the client stub to access the BarcodeService:

$ fglwsdl http://localhost:9090/BarcodeService?WSDL

This will create two 4GL files that must be compiled and linked into your 4GL
application in order to call the Java barcode library functions. These files contain the 4GL
interface to access the Java library where you will find the two functions, readImage and
buildImage, defined in 4GL.

Step 5 : Modify your 4GL application

The last step is to modify the existing application where you want to use the Java library,
by calling the 4GL functions generated in the stub. Then compile your application and
the previously generated stubs, and link everything together.

Your application is now ready to use the different features of your Java library.

Example 4GL program

This program calls the buildImage function of the Barcode Java library.

GLOBALS "BarcodeService_BarcodePort.inc"

MAIN
 DEFINE wsstatus INTEGER

 IF num_args() != 3 THEN
 CALL ExitHelp()

How To’s

89

 END IF

 LET ns1buildImage.arg0 = arg_val(1)
 LET ns1buildImage.arg1 = arg_val(2)
 LOCATE ns1buildImageResponse.return IN MEMORY

 LET wsstatus = buildImage_g()
 IF wsstatus <> 0 THEN
 DISPLAY "Error ("||wsError.code||") : ",wsError.description
 ELSE
 IF ns1buildImageResponse.return IS NULL THEN
 DISPLAY "Encoding failed"
 ELSE
 CALL ns1buildImageResponse.return.writeFile(arg_val(3))
 END IF
 END IF

 FREE ns1buildImageResponse.return

END MAIN

FUNCTION ExitHelp()
 DISPLAY arg_val(0)||" <type> <data> <filename>"
 DISPLAY "type : codebar type such as EAN8 or CODE128"
 DISPLAY "data : data to be encoded with a codebar [0-9A-D]"
 DISPLAY "filename : resulting image filename"
 DISPLAY "exemple : createImage EAN8 12358723A mybarcode.jpg"
 EXIT PROGRAM (-1)
END FUNCTION

Conclusion

You call any Java library from Genero using Web Services, and without a strong
dependency to a JVM. This follows SOA principles - it allows you to reuse the Java
library in another 4GL application without any new development, you can update the
Java part without recompiling any 4GL sources, and integrate any function available
from a SOA platform.

Genero Web Services

90

How to Call .NET APIs from Genero
• Overview
• Prerequisites
• Using the barcode library
• Calling .Net from Genero

o Step 1 : Create an ASP.NET Web Service Application
o Step 2 : Rename the generated files
o Step 3 : Add the barcode library as a reference
o Step 4 : Add the buildImage method
o Step 5 : Publish the service
o Step 6 : Generate 4GL stub to access the .NET library
o Step 7 : Modify your 4GL application

• Example 4GL Application
• Conclusion

Overview

This document explains how to call a .NET library from Genero, using Genero and Web
services, and IIS and Visual Studio .NET without any strong linkage between Genero and
.NET. You can even call a .NET library from a non-Windows Genero platform.

For this tutorial we will use a .NET codebar creation library to build a picture from a
numeric code, and C# as the development language. This will also work with any other
.NET language.

Prerequisites

• IS (Internet Information Services) web server
• Visual Studio Professional Edition C#

o Note: Visual Studio in only needed for development; you can deploy once
the service was built on any IIS web server.

• The .NET codebar library is available at
http://www.barcodelib.com/net_barcode/main.html ,

o Note: The trial version has some functions partially implemented.
o The .NET library is called BarcodeLib.Barcode.dll, and must be added to

the Visual Studio Project.

How To’s

91

Using the barcode library

This section depends on the library you want to use in Genero. In our tutorial, we create
one function called buildImage. The C# implementation is below :

• buildImage(type : String, code : String) : byte[]

Linear barcode = new Linear();
barcode.Data = code;
barcode.Type = GetBarcodeBuilderType(type);
barcode.AddCheckSum = true;
// save barcode image into your system
barcode.ShowText = true;
byte[] ret = barcode.drawBarcodeAsBytes();
if (ret != null) return ret;
else return null;

You will also need to convert the type of a code bar to the right type as expected by the
library. Therefore, you will need the following function:

private BarcodeType GetBarcodeBuilderType(String str)
{
 if (str.Equals("CODABAR")) {
 return BarcodeType.CODABAR;
 } else if (str.Equals("CODE11")) {
 return BarcodeType.CODE11;
 } else if (str.Equals("CODE128")) {
 return BarcodeType.CODE128;
 } else if (str.Equals("CODE128A")) {
 return BarcodeType.CODE128A;
 } else if (str.Equals("CODE128B")) {
 return BarcodeType.CODE128B;
 } else if (str.Equals("CODE128C")) {
 return BarcodeType.CODE128C;
 } else if (str.Equals("CODE2OF5")) {
 return BarcodeType.CODE2OF5;
 } else if (str.Equals("CODE39")) {
 return BarcodeType.CODE39;
 } else if (str.Equals("CODE39EX")) {
 return BarcodeType.CODE39EX;
 } else if (str.Equals("CODE93")) {
 return BarcodeType.CODE93;
 } else if (str.Equals("EAN13")) {
 return BarcodeType.EAN13;
 } else if (str.Equals("EAN13_2")) {
 return BarcodeType.EAN13_2;
 } else if (str.Equals("EAN13_5")) {
 return BarcodeType.EAN13_5;
 } else if (str.Equals("EAN8")) {
 return BarcodeType.EAN8;
 } else if (str.Equals("EAN8_2")) {
 return BarcodeType.EAN8_2;
 } else if (str.Equals("EAN8_5")) {
 return BarcodeType.EAN8_5;

Genero Web Services

92

 } else if (str.Equals("INTERLEAVED25")) {
 return BarcodeType.INTERLEAVED25;
 } else if (str.Equals("ITF14")) {
 return BarcodeType.ITF14;
 } else if (str.Equals("ONECODE")) {
 return BarcodeType.ONECODE;
 } else if (str.Equals("PLANET")) {
 return BarcodeType.PLANET;
 } else if (str.Equals("POSTNET")) {
 return BarcodeType.POSTNET;
 } else if (str.Equals("RM4SCC")) {
 return BarcodeType.RM4SCC;
 } else if (str.Equals("UPCA")) {
 return BarcodeType.UPCA;
 } else if (str.Equals("UPCE")) {
 return BarcodeType.UPCE;
 } else {
 throw new Exception();
 }
}

Calling .Net from Genero

Step 1: Create an ASP.NET Web Service Application

Start Visual Studio, and create a new web project with the name BarCodeService as
shown in the following image:

How To’s

93

Step 2: Rename the generated files

Rename the generated class called Service1 with an appropriate name such as BarCode,
and the file Service1.asmx to BarCodeService.asmxm, for instance. The .asmx file is the
file that is accessible from the IIS web server once the application is deployed. The .asmx
file also contains a reference to the default generated class, Service1, which must also be
renamed to the new name (BarCode in our tutorial), in case Visual Studio didn't make the
change automatically.

The class view after renaming the class:

Genero Web Services

94

The file view after renaming the asmx file:

How To’s

95

Step 3 : Add the barcode library as a reference

Right-click on the solution explorer, select Add Reference and use the Browse panel to
enter the location of the barcode library called BarcodeLib.Barcode.dll:

Note: By default, the barcode library will be copied to the right place when deploying on
the IIS web server.

Step 4: Add the buildImage method

Remove the default generated HelloWorld method, and create the buildImage method, as
shown below.

Add the three using instructions to import the barcode library, and to declare
buildImage as a WebMethod. Use the GetBarcodeBuilderType() method to convert a
string to a code as expected by the barcode library.

Genero Web Services

96

Step 5 : Publish the service

Build the entire application, right-click on the solution, and select the publish operation.
This will copy all necessary files to your IIS web server and make your application
available at an URL, depending on where you deploy it on your IIS web server.

Iin our tutorial, the service will be located at the root of the server. In other words, it will
be available at http://localhost/BarCodeService.asmx and the WSDL at URL
http://localhost/BarCodeService.asmx?WSDL

How To’s

97

Step 6: Generate 4GL stub to access the .NET library

Use the fglwsdl tool to generate the client stub to access the BarcodeService, as follows:

$ fglwsdl http://localhost/BarCodeService.asmx?WSDL

This will create two 4GL files, which must be compiled and linked into your 4GL
application in order to call the .NET barcode library functions. These files contain the
4GL interface to access the .NET library where you will find the function buildImage,
defined in 4GL.

Step 7: Modify your 4GL application

Modify your existing application, where you want to use the .NET library, by calling the
4GL functions generated in the stub. Then compile your application and the previously
generated stubs, and link everything together.

Your application is now ready to use the different features of your .NET library.

Genero Web Services

98

Example 4GL program

This program calls the buildImage function of the Barcode .NET library.

GLOBALS "BarCode_BarCodeSoap.inc"

MAIN
 DEFINE wsstatus INTEGER

 IF num_args() != 3 THEN
 CALL ExitHelp()
 END IF

 LET buildImage.type = arg_val(1)
 LET buildImage.code = arg_val(2)
 LOCATE buildImageResponse.buildImageResult IN MEMORY

 LET wsstatus = buildImage_g()
 IF wsstatus <> 0 THEN
 DISPLAY "Error ("||wsError.code||") : ",wsError.description
 ELSE
 IF buildImageResponse.buildImageResult IS NULL THEN
 DISPLAY "Encoding failed"
 ELSE
 CALL buildImageResponse.buildImageResult.writeFile(arg_val(3))
 END IF
 END IF

 FREE buildImageResponse.buildImageResult

END MAIN

FUNCTION ExitHelp()
 DISPLAY arg_val(0)||" <type> <data> <filename>"
 DISPLAY "type : codebar type such as EAN8 or CODE128"
 DISPLAY "data : data to be encoded with a codebar [0-9A-D]"
 DISPLAY "filename : resulting image filename"
 DISPLAY "exemple : createImage EAN8 12358723A mybarcode.jpg"
 EXIT PROGRAM (-1)
END FUNCTION

Conclusion

It is quite easy to interact with a .NET library from Genero using .NET Visual Studio and
the web services. Of course you also need an IIS web server installed on your Windows
system. This means that you can, in the same 4GL application, interact with .NET and
Java libraries without any strong linkage between Genero and the third party libraries you
want to use. This meets the SOA principles that provide more flexibility to your entire
4GL application.

How To’s

99

You can integrate any new library from another vendor, without the risk of conflicts
between different libraries that could happen if you had to link everything together in C
or Java.

You can upgrade a third party library without recompiling the 4GL application, which
will still work.

You can use all these third party libraries in other 4GL or other applications.

101

Attributes to Customize XML Serialization
• Mapping between simple 4GL and XML datatypes
• Facet constraints between simple 4GL and XML datatypes
• XML Serialization Customizing

o Without value
o With a mandatory value

• Default Mapping between XML and simple 4GL datatypes
• Mapping Example

Mapping between simple 4GL and XML datatypes

The following attributes cannot have values:

Attribute Definition

XSDAnySimpleType Map 4GL String or Varchar to XML Schema
simpleType.

XSDAnyType Map 4GL String or Varchar to XML Schema
anyType.

XSDAnyURI Map 4GL String or Varchar to XML Schema
anyURI.

XSDBase64binary Map 4GL Byte to the XML Schema base64binary.
XSDBoolean Map 4GL Int or Smallint to XML Schema boolean.
XSDByte Map 4GL Smallint to XML Schema byte.
XSDDate Map 4GL Date or Datetime to XML Schema date.
XSDDateTime Map 4GL Datetime to XML Schema dateTime.
XSDDecimal Map 4GL Decimal to XML Schema decimal.
XSDDouble Map 4GL Float to XML Schema double.
XSDDuration Map 4GL Interval to XML Schema duration.

XSDEntities Map 4GL String or VarChar to XML Schema
entities.

XSDEntity Map 4GL String or VarChar to XML Schema
entity.

XSDFloat Map 4GL Smallfloat to XML Schema float.
XSDGday Map 4GL Datetime to XML Schema gDay.
XSDGMonth Map 4GL Datetime to XML Schema gMonth.
XSDGMonthDay Map 4GL Datetime to XML Schema gMonthDay.
XSDGYear Map 4GL Datetime to XML Schema gYear.
XSDGYearMonth Map 4GL Datetime to XML Schema gYearMonth.
XSDHexBinary Map 4GL Byte to XML Schema hexBinary.

Genero Web Services

102

XSDID Map 4GL String or VarChar to XML Schema id.

XSDIDREF Map 4GL String or VarChar to XML Schema
idRef.

XSDIDREFS Map 4GL String or VarChar to XML Schema
idRefs.

XSDInt Map 4GL Integer to XML Schema int.
XSDInteger Map 4GL Decimal to XML Schema integer.

XSDLanguage Map 4GL String or VarChar to XML Schema
language.

XSDLong Map 4GL Decimal to XML Schema long..

XSDNCName Map 4GL String or VarChar to XML Schema
NCName.

XSDName Map 4GL String or VarChar to XML Schema
Name.

XSDNegativeInteger Map 4GL Decimal to XML Schema
negativeInteger.

XSDNMTOKEN Map 4GL String or VarChar to XML Schema
NMToken.

XSDNMTOKENS Map 4GL String or VarChar to XML Schema
NMTokens.

XSDNonNegativeInteger Map 4GL Decimal to XML Schema
nonNegativeInteger.

XSDNonPositiveInteger Map 4GL Decimal to XML Schema
nonPositiveInteger.

XSDNormalizedString Map 4GL String or VarChar to XML Schema
normalizedString.

XSDNotation Not supported.

XSDPositiveInteger Map 4GL Decimal to XML Schema
positiveInteger.

XSDQName Map 4GL String or VarChar to XML Schema
QName.

XSDShort Map 4GL Smallint to XML Schema short.

XSDString Map 4GL String, Char, Text or VarChar to XML
Schema string.

XSDTime Map 4GL Datetime to XML Schema time.

XSDToken Map 4GL String or VarChar to XML Schema
token.

XSDUnsignedByte Map 4GL Smallint to XML Schema unsignedByte.
XSDUnsignedInt Map 4GL Decimal to XML Schema unsignedInt.
XSDUnsignedLong Map 4GL Decimal to XML Schema unsignedLong.

103

XSDUnsignedShort Map 4GL Integer to XML Schema unsignedShort.

Facet constraints between simple 4GL and XML datatypes

Following attributes are facet constraints depending on the XSD data type used on a
simple 4GL variable to restrict the allowed value-space. (Notice that some attributes are
allowed only on some XSD datatypes). Several facet constraints can be set on the same
datatype, and a madatory values is expected (for example, XSDMinLength="8")

Attribute Definition
XSDLength Define the exact number of XML character or bytes.

XSDMinLength Define the minimum number of XML character or
bytes.

XSDMaxLength Define the maximum number of XML character or
bytes.

XSDEnumeration Define a list of allowed values separated by the
character |.

XSDWhiteSpace Perform a XML string manipulation before
serialization or deserialization.

XSDPattern Define the regular expression the value has to
match.

XSDMinInclusive Define the inclusive minimum value according to the
datatype where it is set.

XSDMaxInclusive Define the inclusive maximum value according to
the datatype where it is set.

XSDMinExclusive Define the exclusive minimum value according to
the datatype where it is set.

XSDMaxExclusive Define the exclusive maximum value according to
the datatype where it is set.

XSDTotalDigits Define the total number of digits.
XSDFractionDigits Define the number of digits of the fraction part.

XML Serialization Customizing

Following attributes are used to change the default the way to serialize 4GL into XML
and vice-versa, some needs a mandatory value, and some don't.

The following attributes cannot have values:

Attribute Definition
XMLOptional Define whether the variable can be missing.

Genero Web Services

104

XMLElement Map a 4GL simple datatype to an XML Element.
XMLAttribute Map a 4GL simple datatype to an XML Attribute.

XMLBase Set the base type of an XML Schema
simpleContent.

XMLAll Map a 4GL Record to an XML Schema all structure.

XMLChoice Map a 4GL Record to an XML Schema choice
structure.

XMLSequence Map a 4GL Record to an XML Schema sequence
structure.

XMLSimpleContent Map a 4GL Record to an XML Schema
simpleContent structure.

XSComplexType Map a 4GL Record type definition to an XML
Schema complexType.

XMLList Map a one-dimensional array to an XML Schema
list.

XMLSelector Define which member of an XMLChoice record is
selected.

Values are mandatory for the following attributes: (for example,
XMLName="myname")

Attribute Definition

XMLName Define the XML Name of a variable in an XML
document.

XMLNamespace Define the XML Namespace of a variable in an
XML document.

XMLType Force the XML type name of a variable.
XMLTypenamespace Force the XML type namespace of a variable.

XSTypename Define the XML Type Name of a 4GL type
definition.

XSTypenamespace Define the XML Type Namespace of a 4GL type
definition.

XMLElementNamespace Define the default XML namespace of all children
defined as XMLElement in a Record.

XMLAttributeNamespace Define the default XML namespace of all children
defined as XMLAttribute in a Record.

105

Default XML Mapping

 By default, GWS maps BDL variables in the input or output messages of a Genero Web
Services application to their corresponding XML data types, enabling values to be passed
between applications and Web Services. The XML data types conform to the standard
XML Schema Definition (XSD):

Data Type of BDL variable Default XML Data Type
BYTE xsd:base64binary
CHAR xsd:string
DATE xds.date
DATETIME YEAR TO
FRACTION(1-5) xsd:dateTime

DATETIME YEAR TO
SECOND xsd:dateTime

DATETIME YEAR TO
HOUR xsd:dateTime

DATETIME YEAR TO
MINUTE xsd:dateTime

DATETIME YEAR TO
YEAR xsd:gYear

DATETIME YEAR TO
MONTH xsd:gYearMonth

DATETIME YEAR TO DAY xsd:date
DATETIME MONTH TO
MONTH xsd:gMonth

DATETIME MONTH TO
DAY xsd:gMonthDay

DATETIME DAY TO DAY xsd:gDay
DATETIME HOUR TO
HOUR xsd:time

DATETIME HOUR TO
MINUTE xsd:time

DATETIME HOUR TO
SECOND xsd:time

DATETIME HOUR TO
FRACTION(1-5) xsd:time

DECIMAL xsd:decimal
FLOAT xsd:double
INTEGER xsd:int
INTERVAL xsd:duration
SMALLFLOAT xsd:float

Genero Web Services

106

SMALLINT xsd:short
STRING xsd:string
TEXT xsd:string
VARCHAR xsd:string

 In addition, the Web Service Style that you use determines what default XMLName
attributes are assigned to variables.

Mapping Example

Genero version 2.0 allows you to add optional attributes to the definition of variables.
These attributes can be used to map a BDL data type used in the input or output message
of a Genero Web Service application to a specific XML data type, rather than using the
default. For example, BDL does not have a BOOLEAN data type. If an XML Schema
boolean data type is required for an application, you can use an attribute to map a BDL
SMALLINT to a boolean.

The following example uses the XSDBoolean attribute to map a BDL SMALLINT
variable to an XML Schema Boolean type, and assigns an uppercase name as the
XMLName attribute:

GLOBALS
 DEFINE invoice_out RECORD
 ok SMALLINT ATTRIBUTE(XSDBoolean,XMLName="OK")
 END RECORD
END GLOBALS

Note: If you assign your own XMLName attributes, be sure to respect the conventions
when using the RPC Service Style.

See the Writing a GWS Server application Tutorial for additional information about
input and output messages.

XSDAnySimpleType

Map 4GL String or Varchar to XML Schema anySimpleType

XSDAnyType

Map 4GL String or Varchar to XML Schema anyType

107

XSDAnyURI

Map 4GL String or Varchar to XML Schema anyURI

XSDBase64binary

Map 4GL Byte to XML Schema base64binary

Example

DEFINE myVar RECORD ATTRIBUTE(XMLName="Root")
 val1 BYTE ATTRIBUTE(XSDBase64binary,XMLName="Val")
 END RECORD
<Root>
 <Val>F0FFC8D27FF001547FC219E1FFF009F0FFC8D27FF001547D</Val>
</Root>

XSDBoolean

Map 4GL Int or Smallint to XML Schema boolean

Example

DEFINE myVar RECORD ATTRIBUTE(XMLName="Root")
 val1 INTEGER ATTRIBUTE(XSDBoolean,XMLName="Val")
 END RECORD
<Root>
 <Val>true</Val>
</Root>

XSDByte

Map 4GL Smallint to XML Schema byte

Example

DEFINE myVar RECORD ATTRIBUTE(XMLName="Root")
 val1 SMALLINT ATTRIBUTE(XSDByte,XMLName="Val")
 END RECORD

Genero Web Services

108

<Root>
 <Val>-126</Val>
</Root>

XSDDate

Map 4GL Date or Datetime to XML Schema date

Example

DEFINE myVar RECORD ATTRIBUTE(XMLName="Root")
 val1 DATE ATTRIBUTE(XSDDate,XMLName="Val")
 END RECORD
<Root>
 <Val>2006-06-29+01:00</Val>
</Root>

XSDDateTime

Map 4GL Datetime to XML Schema dateTime

Example

DEFINE myVar RECORD ATTRIBUTE(XMLName="Root")
 val1 DATETIME ATTRIBUTE(XSDDateTime,XMLName="Val")
 END RECORD
<Root>
 <Val>2006-06-29T09:35:26.13584+01:00</Val>
</Root>

XSDDecimal

Map 4GL Decimal to XML Schema decimal

Example

DEFINE myVar RECORD ATTRIBUTE(XMLName="Root")
 val1 DECIMAL(5,3) ATTRIBUTE(XSDDecimal,XMLName="Val")
 END RECORD
<Root>
 <Val>12.345</Val>
</Root>

109

XSDDouble

Map 4GL Float to XML Schema double

Example

DEFINE myVar RECORD ATTRIBUTE(XMLName="Root")
 val1 FLOAT ATTRIBUTE(XSDDouble,XMLName="Val")
 END RECORD
<Root>
 <Val>12.78e-2</Val>
</Root>

XSDDuration

Map 4GL Interval to XML Schema duration

Example

DEFINE myVar RECORD ATTRIBUTE(XMLName="Root")
 val1 INTERVAL DAY TO SECOND
ATTRIBUTE(XSDDuration,XMLName="Val")
 END RECORD
<Root>
 <Val>P3DT10H30M45S</Val>
</Root>

XSDEntities

Map 4GL String or VarChar to XML Schema ENTITIES

XSDEntity

Map 4GL String or VarChar to XML Schema ENTITY

XSDFloat

Genero Web Services

110

Map 4GL Smallfloat to XML Schema float

Example

DEFINE myVar RECORD ATTRIBUTE(XMLName="Root")
 val1 SMALLFLOAT ATTRIBUTE(XSDFloat,XMLName="Val")
 END RECORD
<Root>
 <Val>126.435</Val>
</Root>

XSDGday

Map 4GL Datetime to XML Schema gDay

Example

DEFINE myVar RECORD ATTRIBUTE(XMLName="Root")
 val1 DATETIME DAY TO DAY ATTRIBUTE(XSDGday,XMLName="Val")
 END RECORD
<Root>
 <Val>---25</Val>
</Root>

XSDGMonth

Map 4GL Datetime to XML Schema gMonth

Example

DEFINE myVar RECORD ATTRIBUTE(XMLName="Root")
 val1 DATETIME MONTH TO MONTH
ATTRIBUTE(XSDGMonth,XMLName="Val")
 END RECORD
<Root>
 <Val>--12</Val>
</Root>

XSDGMonthDay

Map 4GL Datetime to XML Schema gMonthDay

111

Example

DEFINE myVar RECORD ATTRIBUTE(XMLName="Root")
 val1 DATETIME MONTH TO DAY
ATTRIBUTE(XSDGMonthDay,XMLName="Val")
 END RECORD
<Root>
 <Val>--12-31</Val>
</Root>

XSDGYear

Map 4GL Datetime to XML Schema gYear

Example

DEFINE myVar RECORD ATTRIBUTE(XMLName="Root")
 val1 DATETIME YEAR TO YEAR
ATTRIBUTE(XSDGYear,XMLName="Val")
 END RECORD
<Root>
 <Val>2006</Val>
</Root>

XSDGYearMonth

Map 4GL Datetime to XML Schema gYearMonth

Example

DEFINE myVar RECORD ATTRIBUTE(XMLName="Root")
 val1 DATETIME YEAR TO MONTH
ATTRIBUTE(XSDGYearMonth,XMLName="Val")
 END RECORD
<Root>
 <Val>2006-06</Val>
</Root>

XSDHexBinary

Map 4GL Byte to XML Schema hexBinary

Genero Web Services

112

Example

DEFINE myVar RECORD ATTRIBUTE(XMLName="Root")
 val1 BYTE ATTRIBUTE(XSDHexBinary,XMLName="Val")
 END RECORD
<Root>
 <Val>0FB6</Val>
</Root>

XSDID

Map 4GL String or VarChar to XML Schema ID

XSDIDREF

Map 4GL String or VarChar to XML Schema IDREF

XSDIDREFS

Map 4GL String or VarChar to XML Schema IDREFS

XSDInt

Map 4GL Integer to XML Schema int

Example

DEFINE myVar RECORD ATTRIBUTE(XMLName="Root")
 val1 INTEGER ATTRIBUTE(XSDInt,XMLName="Val")
 END RECORD
<Root>
 <Val>-1258</Val>
</Root>

XSDInteger

Map 4GL Decimal to XML Schema integer

113

Example

DEFINE myVar RECORD ATTRIBUTE(XMLName="Root")
 val1 DECIMAL(32,0) ATTRIBUTE(XSDInteger,XMLName="Val")
 END RECORD
<Root>
 <Val>12678</Val>
</Root>

XSDLanguage

Map 4GL String or VarChar to XML Schema language

XSDLong

Map 4GL Decimal to XML Schema long

Example

DEFINE myVar RECORD ATTRIBUTE(XMLName="Root")
 val1 DECIMAL(19,0) ATTRIBUTE(XSDLong,XMLName="Val")
 END RECORD
<Root>
 <Val>1267488</Val>
</Root>

XSDNCName

Map 4GL String or VarChar to XML Schema NCName

XSDName

Map 4GL String or VarChar to XML Schema Name

XSDNegativeInteger

Map 4GL Decimal to XML Schema negativeInteger

Genero Web Services

114

Example

DEFINE myVar RECORD ATTRIBUTE(XMLName="Root")
 val1 DECIMAL(32,0)
ATTRIBUTE(XSDNegativeInteger,XMLName="Val")
 END RECORD
<Root>
 <Val>-4828</Val>
</Root>

XSDNMTOKEN

Map 4GL String or VarChar to XML Schema NMToken

XSDNMTOKENS

Map 4GL String or VarChar to XML Schema NMTokens

XSDNonNegativeInteger

Map 4GL Decimal to XML Schema nonNegativeInteger

Example

DEFINE myVar RECORD ATTRIBUTE(XMLName="Root")
 val1 DECIMAL(32,0)
ATTRIBUTE(XSDNonNegativeInteger,XMLName="Val")
 END RECORD
<Root>
 <Val>1589</Val>
</Root>

XSDNonPositiveInteger

Map 4GL Decimal to XML Schema nonPositiveInteger

Example

DEFINE myVar RECORD ATTRIBUTE(XMLName="Root")
 val1 DECIMAL(32,0)

115

ATTRIBUTE(XSDNonPositiveInteger,XMLName="Val")
 END RECORD
<Root>
 <Val>-8574</Val>
</Root>

XSDNormalizedString

Map 4GL String or VarChar to XML Schema normalizedString

XSDnotation

Not supported

XSDPositiveInteger

Map 4GL Decimal to XML Schema positiveInteger

Example

DEFINE myVar RECORD ATTRIBUTE(XMLName="Root")
 val1 DECIMAL(32,0)
ATTRIBUTE(XSDPositiveInteger,XMLName="Val")
 END RECORD
<Root>
 <Val>+41893</Val>
</Root>

XSDQName

Map 4GL String or VarChar to XML Schema QName

XSDShort

Map 4GL Smallint to XML Schema short

Example

Genero Web Services

116

DEFINE myVar RECORD ATTRIBUTE(XMLName="Root")
 val1 SMALLINT ATTRIBUTE(XSDShort,XMLName="Val")
 END RECORD
<Root>
 <Val>12678</Val>
</Root>

XSDString

Map 4GL String, Char, Text of VarChar to XML Schema string

Example

DEFINE myVar RECORD ATTRIBUTE(XMLName="Root")
 val1 STRING ATTRIBUTE(XSDString,XMLName="Val")
 END RECORD
<Root>
 <Val>Hello world, how are you ?</Val>
</Root>

XSDTime

Map 4GL Datetime to XML Schema time

Example

DEFINE myVar RECORD ATTRIBUTE(XMLName="Root")
 val1 DATETIME ATTRIBUTE(XSDTime,XMLName="Val")
 END RECORD
<Root>
 <Val>23:16:03.589+01:00</Val>
</Root>

XSDToken

Map 4GL String or VarChar to XML Schema token

XSDUnsignedByte

Map 4GL Smallint to XML Schema unsignedByte

117

Example

DEFINE myVar RECORD ATTRIBUTE(XMLName="Root")
 val1 SMALLINT ATTRIBUTE(XSDUnsignedByte,XMLName="Val")
 END RECORD
<Root>
 <Val>254</Val>
</Root>

XSDUnsignedInt

Map 4GL Decimal to XML Schema unsignedInt

Example

DEFINE myVar RECORD ATTRIBUTE(XMLName="Root")
 val1 DECIMAL(32,0)
ATTRIBUTE(XSDUnsignedInt,XMLName="Val")
 END RECORD
<Root>
 <Val>1267896754</Val>
</Root>

XSDUnsignedLong

Map 4GL Decimal to XML Schema unsignedLong

Example

DEFINE myVar RECORD ATTRIBUTE(XMLName="Root")
 val1 DECIMAL(32,0)
ATTRIBUTE(XSDUnsignedLong,XMLName="Val")
 END RECORD
<Root>
 <Val>12678967543233</Val>
</Root>

 XSDUnsignedShort

Map 4GL Integer to XML Schema unsignedShort

Example

Genero Web Services

118

DEFINE myVar RECORD ATTRIBUTE(XMLName="Root")
 val1 INTEGER ATTRIBUTE(XSDUnsignedShort,XMLName="Val")
 END RECORD
<Root>
 <Val>65535</Val>
</Root>

XMLOptional

Define whether the variable can be missing or not. It specifies how a 4GL NULL value is
interpreted in XML.

 NOTE 1 : the attribute cannot be set on a type definition
 NOTE 2 : the attribute cannot be set if the main variable is not a RECORD

Example

DEFINE myVar RECORD ATTRIBUTE(XMLName="Root")
 val1 INTEGER ATTRIBUTE(XSDint,XMLName="ValOne")
 val2 FLOAT
ATTRIBUTE(XSDdouble,XMLName="ValTwo",XMLOptional)
 END RECORD
<Root>
 <ValOne>458</ValOne>
 <ValTwo>58.48</ValTwo>
</Root>

<Root>
 <ValOne>458</ValOne>
</Root>

XMLElement (Optional)

Map a 4GL simple datatype to an XML Element.

 NOTE : the attribute cannot be set on a type definition.

Example

DEFINE myVar RECORD ATTRIBUTE(XMLName="Root")
 val1 INTEGER
ATTRIBUTE(XMLElement,XSDunsignedShort,XMLName="Val1")
 rec RECORD ATTRIBUTE(XMLName="Rec")
 val2 FLOAT ATTRIBUTE(XMLElement,XMLName="Val2"),
 val3 STRING ATTRIBUTE(XMLElement,XMLName="Val3")
 END RECORD
 END RECORD
<Root>
 <Val1>148</Val1>

119

 <Rec1>
 <Val2>25.8</Val2>
 <Val3>Hello world</Val3>
 </Rec1>
</Root>

XMLAttribute

Map a 4GL simple datatype to an XML Attribute.

 NOTE 1 : the attribute cannot be set on on a type definition
 NOTE 2 : the attribute can only be set on a RECORD's member

Example

DEFINE myVar RECORD ATTRIBUTE(XMLName="Root")
 val1 INTEGER
ATTRIBUTE(XMLAttribute,XSDunsignedShort,XMLName="Val1")
 rec RECORD ATTRIBUTE(XMLName="Rec")
 val2 FLOAT ATTRIBUTE(XMLAttribute,XMLName="Val2"),
 val3 STRING ATTRIBUTE(XMLElement,XMLName="Val3")
 END RECORD
 END RECORD
<Root Val1="148">
 <Rec1 Val2="25.8">
 <Val3>Hello world</Val3>
 </Rec1>
</Root>

XMLBase

Define the simple 4GL variable used as the base type of an XML Schema simpleContent
structure.

 NOTE : the attribute can be set on one and only one member of a RECORD defined with
the XMLSimpleContent attribute

XMLAll

Map a 4GL Record to an XML Schema all structure.
The order in which the record members appear in the XML document is not significant.

Example

Genero Web Services

120

DEFINE myall RECORD ATTRIBUTE(XMLAll,XMLName="Root")
 val1 INTEGER ATTRIBUTE(XMLName="Val1"),
 val2 FLOAT ATTRIBUTE(XMLAttribute,XMLName="Val2"),
 val3 STRING ATTRIBUTE(XMLName="Val3")
 END RECORD
<Root Val2="25.8">
 <Val3>Hello world</Val3>
 <Val1>148</Val1>
</Root>

<Root Val2="25.8">
 <Val1>148</Val1>
 <Val3>Hello world</Val3>
</Root>

XMLChoice

Map a 4GL Record to an XML Schema choice structure.
The choice of the record's member is performed at runtime, and changes dynamically
according to a mandatory member. This specific member must be of type SMALLINT or
INTEGER, and have an XMLSelector attribute set. The XMLChoice attribute also
supports a "nested" value that removes the surrounding XML tag.

 NOTE 1 : valid selector values are indexes referring to members considered as XML
element nodes. All other values will raise XML runtime errors.
 NOTE 2 : nested choice records cannot be defined as main variables; there must always
be a surrounding variable.

Example

DEFINE mychoice RECORD ATTRIBUTE(XMLChoice,XMLName="Root")
 val1 INTEGER ATTRIBUTE(XMLName="Val1")
 val2 FLOAT ATTRIBUTE(XMLAttribute,XMLName="Val2"),
 sel SMALLINT ATTRIBUTE(XMLSelector),
 val3 STRING ATTRIBUTE(XMLName="Val3")
 END RECORD

Case where "sel" value is 4 Case where "sel" value is 1
<Root Val2="25.8">
 <Val3>Hello world</Val3>
</Root>

<Root Val2="25.8">
 <Val1>148</Val1>
</Root>

Nested example

DEFINE myVar RECORD ATTRIBUTE(XMLName="Root")
 val1 INTEGER ATTRIBUTE(XMLName="Val1")
 val2 FLOAT ATTRIBUTE(XMLAttribute,XMLName="Val2"),
 choice RECORD ATTRIBUTE(XMLChoice="nested")
 choice1 INTEGER
ATTRIBUTE(XMLName="ChoiceOne"),
 choice2 FLOAT
ATTRIBUTE(XMLName="ChoiceTwo"),
 nestedSel SMALLINT ATTRIBUTE(XMLSelector)
 END RECORD,

121

 val3 STRING ATTRIBUTE(XMLName="Val3")
 END RECORD

Case where "nestedSel" value is 1 Case where "nestedSel" value is 2
<Root Val2="25.8">
 <Val1>148</Val1>
 <ChoiceOne>6584</ChoiceOne>
 <Val3>Hello world</Val3>
</Root>

<Root Val2="25.8">
 <Val1>148</Val1>
 <ChoiceTwo>85.8</ChoiceTwo>
 <Val3>Hello world</Val3>
</Root>

XMLSequence (Optional)

Map a 4GL Record to an XML Schema sequence structure.
The order in which the record members appear in the XML document must match the
order of the 4GL Record.
The XMLSequence attribute also supports a "nested" value that removes the surrounding
XML tag.

 NOTE : nested sequence records cannot be defined as main variables; there must always
be a surrounding variable.

Example

DEFINE mysequence RECORD ATTRIBUTE(XMLSequence,XMLName="Root")
 val1 INTEGER ATTRIBUTE(XMLName="Val1")
 val2 FLOAT ATTRIBUTE(XMLAttribute,XMLName="Val2"),
 val3 STRING ATTRIBUTE(XMLName="Val3")
 END RECORD
<Root Val2="25.8">
 <Val1>-859</Val1>
 <Val3>Hello world</Val3>
</Root>

Nested example

DEFINE myVar RECORD ATTRIBUTE(XMLName="Root")
 val1 INTEGER ATTRIBUTE(XMLName="Val1")
 val2 FLOAT ATTRIBUTE(XMLAttribute,XMLName="Val2"),
 sequence RECORD ATTRIBUTE(XMLSequence="nested")
 seq1 INTEGER ATTRIBUTE(XMLName="SeqOne"),
 seq2 FLOAT ATTRIBUTE(XMLName="SeqTwo"),
 END RECORD,
 val3 STRING ATTRIBUTE(XMLName="Val3")
 END RECORD
<Root Val2="25.8">
 <Val1>148</Val1>
 <SeqOne>6584</SeqOne>
 <SeqTwo>85.597</SeqTwo>
 <Val3>Hello world</Val3>

Genero Web Services

122

</Root>

XMLSimpleContent

Map a 4GL Record to an XML Schema simpleContent structure.

 NOTE : one member must have the XMLBase attribute; all other members must have an
XMLAttribute attribute. If not, the compiler complains.

Example

DEFINE mysimpletype RECORD ATTRIBUTE(XMLSimpleContent,XMLName="Root")
 base STRING ATTRIBUTE(XMLBase),
 val1 INTEGER ATTRIBUTE(XMLAttribute,XMLName="Val1"),
 val2 FLOAT ATTRIBUTE(XMLAttribute,XMLName="Val2")
 END RECORD
<Root Val1="148" Val2="25.8">
 Hello
</Root>

XSComplexType

Map a 4GL Record type definition to an XML Schema complexType.

 NOTE : you can have one member as a nested sequence or choice, or as an XMLList
array with a nested sequence or choice as the array's elements; all other members must
have an XMLAttribute attribute. If not, the compiler complains.

Example

TYPE mycomplextype RECORD
ATTRIBUTE(XSComplexType,XSTypeName="MyComplexType",
XSTypeNamespace="http://tempuri.org")
 name DYNAMIC ARRAY ATTRIBUTE(XMLList) OF RECORD
ATTRIBUTE(XMLSequence="nested")
 firstname STRING ATTRIBUTE(XMLName="FirstName"),
 lastname STRING ATTRIBUTE(XMLName="LastName")
 END RECORD,
 date DATE ATTRIBUTE(XMLAttribute,XMLName="Date")
 END RECORD
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://tempuri.org" elementFormDefault="qualified" >
 <xsd:complexType name="MyComplexType">
 <xsd:sequence maxOccurs="unbounded">
 <xsd:element name="FirstName" type="xsd:string" />

123

 <xsd:element name="LastName" type="xsd:string" />
 </xsd:sequence>
 <xsd:attribute name="Date" type="xsd:date" use="required"/>
 </xsd:complexType>
</xsd:schema>

XMLList

Map a one dimentional array to an XML Schema element that has more than one
occurrence.

Example

DEFINE myVar RECORD ATTRIBUTE(XMLName="Root")
 val1 INTEGER ATTRIBUTE(XMLName="Val1"),
 list DYNAMIC ARRAY ATTRIBUTE(XMLList) OF STRING
ATTRIBUTE(XMLName="Element"),
 val2 FLOAT ATTRIBUTE(XMLName="Val2")
 END RECORD
<Root>
 <Val1>148</Val1>
 <Element>hello</Element>
 <Element>how</Element>
 <Element>are</Element>
 <Element>you</Element>
 <Val2>0.58</Val2>
</Root>

 NOTE : it is not possible to define an XMLList attribute on a main array.

XMLSelector

Define the index of the candidate among all members of an XMLChoice record that will
be serialized or de-serialized at runtime.
The index starts at 1.

 NOTE : the selector data type must be a SMALLINT or a INTEGER.

XMLName

Define the name of a variable in an XML document.

 NOTE : the attribute cannot be set on a type definition.

Genero Web Services

124

Example

DEFINE myVar RECORD ATTRIBUTE(XMLName="Root")
 val1 INTEGER ATTRIBUTE(XMLName="Val1"),
 val2 FLOAT,
 val3 INTEGER ATTRIBUTE(XMLName="Val3"),
 END RECORD
<Root>
 <Val1>148</Val1>
 <val2>0.5</val2>
 <Val3>-18547</Val3>
</Root>

XMLNamespace

Define the namespace of a variable in an XML document.

 NOTE 1 : if the attribute is set on a Record, by default all members defined as
XMLElement of that record are in the same namespace.
 NOTE 2 : if the attribute is set on an Array, by default all elements defined as
XMLElement of that array are in the same namespace.
 NOTE 3 : the attribute cannot be set on a type definition.

Example

DEFINE myVar RECORD
ATTRIBUTE(XMLName="Root",XMLNamespace="http://tempuri.org")
 attr1 INTEGER ATTRIBUTE(XMLAttribute,XMLName="Attr1"),
 val1 FLOAT
ATTRIBUTE(XMLName="Val1",XMLNamespace="http://www.4js.com"),
 val2 INTEGER ATTRIBUTE(XMLName="Val2"),
 attr2 STRING
ATTRIBUTE(XMLAttribute,XMLName="Attr2",XMLNamespace="http://anyuri.org"),
 END RECORD
<fjs1:Root xmlns:fjs1="http://tempuri.org" Attr1="158"
xmlns:fjs3="http://anyuri.org" fjs3:Attr2="Hello">
 <fjs2:Val1 xmlns:fjs2="http://www.4js.com">0.5</fjs2:Val1>
 <fjs1:Val2>-18547</fjs1:Val2>
</fjs1:Root>

XMLType

Force the XML type name of a variable by adding xsi:type at serialization or by checking
xsi:type at deserialization.

125

 NOTE : the attribute must be used with the XMLTypenamespace attribute; otherwise,
the compiler complains.

Example

DEFINE myVar RECORD ATTRIBUTE(XMLName="Root",XMLNamespace="http://tempuri.org")
 val1 FLOAT ATTRIBUTE(XMLName="Val1"),
 val2 INTEGER
ATTRIBUTE(XMLName="Val2",XMLType="MyRecord",XMLTypenamespace="http://mynamespace.org")
 END RECORD
<fjs1:Root xmlns:fjs1="http://tempuri.org">
 <fjs1:Val1>0.5</fjs1:Val1>
 <fjs1:Val2 xmlns:fjs2="http://mynamespace.org" xsi:type="fjs2:MyRecord">-
18547</fjs1:Val2>
</fjs1:Root>

XMLTypenamespace

Force the XML type namespace of a variable by adding xsi:type at serialization or by
checking xsi:type at de-serialization.

 NOTE : the attribute must be used with the XMLType attribute; otherwise the compiler
complains.

Example

DEFINE myVar RECORD ATTRIBUTE(XMLName="Root",XMLNamespace="http://tempuri.org")
 val1 FLOAT ATTRIBUTE(XMLName="Val1"),
 val2 INTEGER
ATTRIBUTE(XMLName="Val2",XMLType="MyRecord",XMLTypenamespace="http://mynamespace.org")
 END RECORD
<fjs1:Root xmlns:fjs1="http://tempuri.org">
 <fjs1:Val1>0.5</fjs1:Val1>
 <fjs1:Val2 xmlns:fjs2="http://mynamespace.org" xsi:type="fjs2:MyRecord">-
18547</fjs1:Val2>
</fjs1:Root>

XSTypename

Define the XML Schema name of a 4GL type definition.

 NOTE 1 : the attribute must be used with the XSTypenamespace attribute; otherwise the
compiler complains.
 NOTE 2 : the attribute is only allowed on a type definition.

Genero Web Services

126

Example

TYPE myType RECORD
ATTRIBUTE(XMLSequence,XSTypeName="MyFirstType",XSTypeNamespace="http://tempuri.org")
 val1 FLOAT ATTRIBUTE(XMLElement,XMLName="Val1"),
 val2 INTEGER ATTRIBUTE(XMLElement,XMLName="Val2",XMLOptional),
 attr STRING ATTRIBUTE(XMLAttribute,XMLName="Attr")
 END RECORD
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://tempuri.org" elementFormDefault="qualified" >
 <xsd:complexType name="MyFirstType">
 <xsd:sequence>
 <xsd:element name="Val1" type="xsd:double" />
 <xsd:element name="Val2" type="xsd:int" minOccurs="0" />
 </xsd:sequence>
 <xsd:attribute name="Attr" type="xsd:string" use="required" />
 </xsd:complexType>
</xsd:schema>

XSTypenamespace

Define the XML Schema namespace of a 4GL type definition.

 NOTE 1 : the attribute must be used with the XSType attribute; otherwise the compiler
complains.
 NOTE 2 : the attribute is only allowed on a type definition.

Example

TYPE myType RECORD
ATTRIBUTE(XMLChoice,XSTypeName="MyFirstChoice",XSTypeNamespace="http://tempuri.org")
 val1 FLOAT ATTRIBUTE(XMLElement,XMLName="Val1"),
 val2 INTEGER ATTRIBUTE(XMLElement,XMLName="Val2",XMLOptional),
 attr STRING ATTRIBUTE(XMLAttribute,XMLName="Attr",XMLOptional),
 set INTEGER ATTRIBUTE(XMLSelector)
 END RECORD
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://tempuri.org" elementFormDefault="qualified" >
 <xsd:complexType name="MyFirstChoice">
 <xsd:choice>
 <xsd:element name="Val1" type="xsd:double" />
 <xsd:element name="Val2" type="xsd:int" minOccurs="0" />
 </xsd:choice>
 <xsd:attribute name="Attr" type="xsd:string" />
 </xsd:complexType>
</xsd:schema>

127

XMLElementNamespace

Define the default namespace of all members of a record also defined as XML elements.

Example

DEFINE myVar RECORD
ATTRIBUTE(XMLName="Root",XMLNamespace="http://tempuri.org",
XMLElementNamespace="http://www.4js.com")
 val1 FLOAT ATTRIBUTE(XMLElement,XMLName="Val1"),
 val2 INTEGER ATTRIBUTE(XMLElement,XMLName="Val2"),
 attr STRING
ATTRIBUTE(XMLAttribute,XMLName="Attr"),
 END RECORD
<fjs1:Root xmlns:fjs1="http://tempuri.org" Attr="Hello"
xmlns:fjs2="http://www.4js.com">
 <fjs2:Val1>0.5</fjs2:Val1>
 <fjs2:Val2>-18547</fjs2:Val2>
</fjs1:Root>

XMLAttributeNamespace

Define the default namespace of all members of a record also defined as XML attributes.

Example

DEFINE myVar RECORD ATTRIBUTE(XMLName="Root",XMLNamespace="http://tempuri.org",
XMLAttributeNamespace="http://www.4js.com")
 val1 FLOAT ATTRIBUTE(XMLElement,XMLName="Val1"),
 val2 INTEGER ATTRIBUTE(XMLElement,XMLName="Val2"),
 attr1 STRING ATTRIBUTE(XMLAttribute,XMLName="Attr1"),
 attr2 DATE
ATTRIBUTE(XMLAttribute,XMLName="Attr2",XMLNamespace="http://anyuri.org"),
 END RECORD
<fjs1:Root xmlns:fjs1="http://tempuri.org" fjs2:Attr1="Hello"
xmlns:fjs2="http://www.4js.com" xmlns:fjs3=
"http://anyuri.org" fjs3:Attr2="2006-06-24">
 <fjs1:Val1>0.5</fjs1:Val1>
 <fjs1:Val2>-18547</fjs1:Val2>
</fjs1:Root>

XSDLength

Restrict the length of the data to the exact number of XML characters allowed when set
on a 4GL STRING, VARCHAR, CHAR or TEXT, or the number of bytes allowed when
set on a 4GL BYTE.

Genero Web Services

128

 NOTE 1 : XSDMinLength and XSDMaxLength can be used together, but
 XSDMaxLength value must be greater then XSDMinLength
 NOTE 2 : XSDMaxLength cannot be used with XSDLength

Examples

DEFINE myStr STRING ATTRIBUTE(XSDString,XSDLength="12",XMLName="MyString")
DEFINE myByte BYTE ATTRIBUTE(XSDBase64Binary,XSDLength="8000",XMLName="MyPicture")

XSDMinLength

Restrict the length of the data to the minimum number of XML characters allowed
when set on a 4GL STRING, VARCHAR, CHAR or TEXT, or the number of bytes
allowed when set on a 4GL BYTE.

 NOTE 1 : XSDMinLength and XSDMaxLength can be used together, but
 XSDMaxLength value must be greater then XSDMinLength
 NOTE 2 : XSDMaxLength cannot be used with XSDLength

Examples

DEFINE myStr STRING ATTRIBUTE(XSDString,XSDMinLength="12",XMLName="MyString")
DEFINE myByte BYTE ATTRIBUTE(XSDBase64Binary,XSDMinLength="8000",XMLName="MyPicture")

XSDMaxLength

Restrict the length of the data to the maximum number of XML characters allowed when set on
a 4GL STRING, VARCHAR, CHAR or TEXT, or the number of bytes allowed when set
on a 4GL BYTE.

 NOTE 1 : XSDMinLength and XSDMaxLength can be used together, but XSDMaxLength value
 must be greater then XSDMinLength
 NOTE 2 : XSDMaxLength cannot be used with XSDLength

Examples

DEFINE myStr STRING ATTRIBUTE(XSDString,XSDMaxLength="12",XMLName="MyString")
DEFINE myByte BYTE ATTRIBUTE(XSDBase64Binary,XSDMaxLength="8000",XMLName="MyPicture")

XSDEnumeration

129

Restrict the allowed value-space to a list of values separated by the characters |.

 NOTE 1 : To escape the separator character, simply double it like the following ||
 NOTE 2 : This attribute can be set on any simple 4GL variable excepted on XSDBoolean.

Examples

DEFINE myStr STRING ATTRIBUTE(XSDString,XSDEnumeration=
"one|two|three|four",XMLName="MyString")
DEFINE myDec DECIMAL(3,1) ATTRIBUTE(XSDDecimal,XSDEnumeration=
"12.1|11.8|-24.7",XMLName="MyDecimal")

XSDWhiteSpace

Perform a XML string manipulation before serialization or deserialization according to one of the
three allowed values : preserve, replace or collapse.

• preserve : the XML string is not modified.
• replace : the XML string is modified by replacing each \n,\t,\r by a single space.
• collapse : the XML string is modified by replacing each \n,\t,\r by a single space,

then each sequence of several spaces are replaced by one single space.
Leading and trainling spaces are removed too.

 NOTE 1 : The whiteSpace facet is always performed before any other facet constraints, or
 serialization or deserialization process.
 NOTE 2 : For any 4GL variable excepted STRING,CHAR and VARCHAR, only collapse is allowed.

Examples

DEFINE myStr STRING ATTRIBUTE(XSDString,XSDWhiteSpace="replace",XMLName="MyString")
DEFINE myDec DECIMAL(3,1) ATTRIBUTE(XSDDecimal,XSDWhiteSpace=
"collapse",XMLName="MyDecimal")

XSDPattern

Define a regular expression the value has to match to be serialized or deserialized without any error.

 NOTE 1 : The regular expression is defined in the XML Schema Part 2 specification available here.
 NOTE 2 : Backslash characters '\' in a regular expression must be escaped by duplicating it.

Examples

Genero Web Services

130

DEFINE myStr STRING ATTRIBUTE(XSDString,XSDPattern="A.*Z",XMLName="MyString")
DEFINE myZipCode INTEGER ATTRIBUTE(XSDInt,XSDPattern="[0-9]{5}",XMLName="MyZipCode")
DEFINE myOtherZipCode INTEGER ATTRIBUTE(XSDInt,XSDPattern="\\d{5}",
XMLName="myOtherZipCode") # regex is \d{5} see note

XSDMinInclusive

Define the minimum inclusive value allowed and depending on the datatype where it is set,
namely all numeric, date and time datatypes.

NOTE : The minimum value cannot exceed the implicit minimum value supported by the
datatype itself or the compiler will complain. For instance, with XSDShort the minimum
value is -32768.

Examples

DEFINE myCode SMALLINT ATTRIBUTE(XSDShort,XSDMinInclusive="-1000",XMLName="MyCode")
DEFINE myRate DECIMAL(4,2) ATTRIBUTE(XSDDecimal,XSDMinInclusive="100.01",
XMLName="MyRate")

XSDMaxInclusive

Define the maximum inclusive value allowed and depending on the datatype where it is set,
namely all numeric, date and time datatypes.

 NOTE : The maximum value cannot exceed the implicit maximum value supported by the
datatype itself or the compiler will complain. For instance, with XSDShort the maximum
 value is 32767.

Examples

DEFINE myCode SMALLINT ATTRIBUTE(XSDShort,XSDMaxInclusive="1000",XMLName="MyCode")
DEFINE myRate DECIMAL(4,2) ATTRIBUTE(XSDDecimal,XSDMaxInclusive="299.99",
XMLName="MyRate")

XSDMinExclusive

Define the minimum exclusive value allowed and depending on the datatype where it is set,
namely all numeric, date and time datatypes.

131

 NOTE : The minimum value cannot exceed or be equal to the implicit minimum value supported
by the datatype itself or the compiler will complain. For instance, with XSDShort the minimum
value is -32768.

Examples

DEFINE myCode SMALLINT ATTRIBUTE(XSDShort,XSDMinExclusive="-1000",
XMLName="MyCode")
DEFINE myRate DECIMAL(4,2) ATTRIBUTE(XSDDecimal,XSDMinExclusive=
"100.01",XMLName="MyRate")

XSDMaxExclusive

Define the maximum exclusive value allowed and depending on the datatype where it is set,
namely all numeric, date and time datatypes.

 NOTE : The maximum value cannot exceed or be equal to the implicit maximum value
supported by the datatype itself or the compiler will complain. For instance, with XSDShort the
maximum value is 32767.

Examples

DEFINE myCode SMALLINT ATTRIBUTE(XSDShort,XSDMaxExclusive="1000",
XMLName="MyCode")
DEFINE myRate DECIMAL(4,2) ATTRIBUTE(XSDDecimal,XSDMaxExclusive="299.99",
XMLName="MyRate")

XSDTotalDigits

Define the maximum number of digits allowed on a numeric datatype, fraction part inclusive if
there is one.

 NOTE 1 : The total digits value cannot be equal or lower then 0. NOTE 2 : On a 4GL decimal,
the total digits value cannot be lower than the precision of the 4GL decimal itself. NOTE 3 : Notice
that a decimal without any precision and scale value is a decimal(16), therfore the total digits value
must be equal or greater than 16.

Examples

DEFINE myCode SMALLINT ATTRIBUTE(XSDShort,XSDTotalDigits="4",XSDMaxExclusive=
"1000",XMLName="MyCode")

Genero Web Services

132

DEFINE myRate DECIMAL(4,2)
ATTRIBUTE(XSDDecimal,XSDTotalDigits="5",XSDMaxExclusive="299.99",XMLName="MyRate")

XSDFractionDigits

Define the maximum number of digits allowed on the fraction part of a numeric datatype.

 NOTE 1 : The fraction digits value set on a 4GL datatype without XSDDecimal set, can only be 0.
NOTE 2 : On a 4GL decimal, the fraction digits value cannot be lower than the scale of the 4GL
 decimal itself, and must be lower than the XSDTotalDigits value if set.

Examples

DEFINE myCode SMALLINT ATTRIBUTE(XSDShort,XSDFractionDigits="0",
XSDMaxExclusive="1000",XMLName="MyCode")
DEFINE myRate DECIMAL(4,2)
ATTRIBUTE(XSDDecimal,XSDTotalDigits="5",XSDFractionDigits="3",
XSDMaxExclusive="299.99",XMLName="MyRate")

133

The fglwsdl tool (WSDL and XSD)
• Using fglwsdl
• Generating files for a GWS Client

o The Web Service error structure
o The generated functions
o Example output
o Using the generated functions

• Generating files for a GWS Server
o Example output
o Writing your functions

To access a remote Web Service, you first must get the WSDL information from the
service provider. Sample services can be found through UDDI registries
(http://www.uddi.org), or on other sites such as XMethods (http://www.xmethods.net).

Using fglwsdl

The fglwsdl tool, provided as part of the Genero Web Services Extension (GWS), allows
you to get the WSDL description of any Web Service that will be accessed by a GWS
Client application, or to use a WSDL description when you are creating a corresponding
GWS Server application. It also allows you to generate 4GL data types from XML
schemas (also known as XSD).

Syntax:

 fglwsdl [-command] <filename | url | regex value>

 where:

• command is one of the command-line options
• filename is the name of a WSDL description file for a Web Service or a XML

schema file
 or
url is the web location of a WSDL description for a published Web Service or the
location of an XSD schema resource on the web. For example, provide the host
server and the name of the service: http://<host-server>/<name-of-the-
service>?WSDL

Command Line Options:

 Command Description
-V Display version information

Genero Web Services

134

-h Display this help
-l List services from a WSDL or variables from a XSD
-c [options] Generate client stub (default) to be used in a GWS Client

application
-s [options] Generate server stub to be used in a GWS Server application
-x [options] Generate data types from a XML schema (XSD)

The options for the generation of the client or server stub are listed below in the specific
WSDL options and in the Common options. These options can also be used without -c, if
you are generating a client stub (the default).

The options for the generation of data types are listed below in the specific XSD options
and in the Common options. The -x option cannot be used with -c or -s.

There is also an extra command to validate a regular expression against a value as
described in the specific Extra command.

 Extra
command Description

-regex Validate the value against the regex regular expression
described in XML Schema specification

 WSDL
Options Description

-o file Specify a Base name for the output files for one service
-n service
port Generate only for the given service name and portType

-prefix
name

Add name as the prefix of the generated web service functions,
variables and types

-
compatibility Generate a Genero 1.xx compatibility client stub

-fRPC Force RPC convention; use RPC Convention to generate the
code, regardless of what the WSDL information contains.

-disk Save WSDL and all dependencies from an URL on the disk.
Notice that to generate code in the same time you must use
option -c, -s or both, otherwise no code is generated.

 XSD
Options Description

-o file Name of the output file - if file has no extension, .inc is added
-n name
[ns]

Generate only for the given variable name and namespace if
there is one

-prefix Add name as the prefix of the generated data types

135

name

-disk Save XSD and all dependencies from an URL on the disk.
Notice that no code is generated.

Common
Options Description

-comment Add XML comments to the generation
-noHTTP Disable HTTP - search for the WSDL description or the XML

schema and its dependencies on the client instead of the
internet, for example if a company has restricted access to the
internet

-proxy
location Connect via proxy where location is host[:port] or ip[:port]

-fArray Force XML array generation instead of XML list when possible
- if the WSDL contains an XML definition of a 4GL list,
generate a 4GL array matching the same definition

-
fInheritance

Force generation of XML choice records for all inheritance
types found in the schemas, otherwise only for abstract types
and elements

-noFacets Don't generate facet constraints restricting the value-space of
simple datatype

-ext schema Add an external schema - external schemas for dependencies
won't be included in the WSDL description or in the XSD
schema if their location attributes are missing. Use this option
to add a missing external schema for a WSDL or XSD
dependency.

-
noValidation Disable XML schema validation warnings.

Generating files for a GWS Client

Using the fglwsdl tool, you can obtain the WSDL information for a GWS Client
application. The following example requests the Calculator Web Service information
from the specified URL, and the output files will have the base name ws_calculator:

 fglwsdl -o ws_calculator http://localhost:8090/Calculator?WSDL

For a client application, fglwsdl generates two output files, which should not be
modified:

• <filename>.inc - the globals file, containing declarations of global variables that
can be used as input or output for functions accessing Web Service operations,
and the global wsError record. In our example, the file is ws_calculator.inc.

Genero Web Services

136

This file must be listed in a GLOBALS statement at the top of any .4gl
modules that you write for your GWS Client application.

• <filename>.4gl - containing the definitions of the functions that can be used in
your GWS client application to perform the requested Web Service operation, and
the code that manages the Web Service request. In our example, the file is
ws_calculator.4gl.

This file must be compiled and linked into your GWS Client application.

The Web Service error structure

Check this structure, defined in the globals .inc file, for a detailed error description when
a Web Service function returns with a non-zero status.
Notice that even if status is -2 due to asynchronous calls, the record contains a
description.

DEFINE wsError RECORD
 code STRING, -- short description of the error
 codeNS STRING, -- the namespace of the error code
 description STRING, -- description of the error
 action STRING -- internal "SOAP action"
END RECORD

The generated functions

Genero Web Services client functions have the following requirements:

• The function cannot have input parameters.
• The function cannot have return values.
• The function's input message must be defined as a global or module RECORD.
• The function's output message must be defined as a global or module RECORD.

As a result, two types of GWS functions are generated for the Web Service operation that
you requested:

• One function type uses global records for the input and output. The names of
these functions end in "_g". Before calling the function in your GWS Client
application, you must set the values in the global input record. After the function
call, the status of the request is returned from the server, and the output message
is stored in the global output record. In addition to performing the desired
operation, this function handles the communication for the SOAP request and
response, and sets the values in the wsError record as needed.

• The other function type serves as a "wrapper" for the "_g" function. It passes the
values of input parameters to the "_g" function, and returns the output values and
status received from the "_g" function. Your client application does not need to

137

directly access the global records. This function can only be used if the
parameters are simple variables (no records or arrays).

The generated .inc globals file contains comments that list the prototypes of the functions
for the GWS operation, and the definitions of the global INPUT and OUTPUT records.

Example output

The example Web Service for which the WSDL information was requested, Calculator,
has an Add operation that returns the sum of two integers.

The generated file ws_calculator.inc lists the prototype for the Add and Add_g
functions, the asynchronous AddRequest_g and AddResponse_g functions, as well as
the definitions of the global variables Add and AddResponse:

Operation: Add

FUNCTION: Add_g() -- Function that uses the global input
and output records
RETURNING: soapStatus -- An integer where 0 represents
success
INPUT: GLOBAL Add
OUTPUT: GLOBAL AddResponse

FUNCTION: Add(p_a, p_b) -- Function with input parameters that
correspond
RETURNING: soapStatus ,p_r -- to the a and b variables of the
global
 -- INPUT record
 -- Return values are the status integer
and the value
 -- in the r variable of the global
OUTPUT record

FUNCTION: AddRequest_g() -- Asynchronous function that uses the
global input record
RETURNING: soapStatus -- An integer where 0 represents
success, -1 error
INPUT: GLOBAL Add -- and -2 means that a previous
request was sent and that a response is in progress.

FUNCTION: AddResponse_g() -- Asynchronous function that uses the
global output record
RETURNING: soapStatus -- An integer where 0 represents
success, -1 error
OUTPUT: GLOBAL AddResponse -- and -2 means that the response was
not yet received, and that a new call should be done later.
#VARIABLE : Add -- defines the global INPUT record
DEFINE Add RECORD ATTRIBUTE(XMLName="Add",
 XMLNamespace="http://tempuri.org/")
 a INTEGER ATTRIBUTE(XMLName="a",XMLNamespace=""),
 b INTEGER ATTRIBUTE(XMLName="b",XMLNamespace="")
 END RECORD

Genero Web Services

138

VARIABLE : AddResponse -- defines the global OUTPUT record
DEFINE AddResponse RECORD ATTRIBUTE(XMLName="AddResponse",
 XMLNamespace="http://tempuri.org/")
 r INTEGER ATTRIBUTE(XMLName="r",XMLNamespace="")
 END RECORD

Using the generated functions

The information obtained from the ws_calculator.inc file allows you to write code in
your own .4gl module as part of the Client application, using the Web Service operation
Add.

• Using parameters and return values

Since the input variables for our example are simple integers, you can call
the Add function in your Client application, defining variables for the
parameters and return values.

FUNCTION myWScall()
 DEFINE op1 INTEGER
 DEFINE op2 INTEGER
 DEFINE result INTEGER
 DEFINE wsstatus INTEGER
 ...
 LET op1 = 6
 LET op2 = 8
 CALL Add(op1, op2) RETURNING wsstatus, result
 ...
 DISPLAY result

• Using global records

You could choose to call the Add_g function instead, using the global
records Add and AddResponse directly. If the input variables are
complex structures like records or arrays, you are required to use this
function.

FUNCTION myWScall()
 DEFINE wsstatus INTEGER
 ...
 LET Add.a = 6
 LET Add.b = 8
 LET wsstatus = Add_g()
 ...
 DISPLAY AddResponse.r

In this case, the status is returned by the function, which has also put the
result in the AddResponse global record.

139

See Tutorial: Writing a Client Application for more information. The
demo/WebServices subdirectory of your Genero installation directory
contains complete examples of Client Applications.

• Using asynchonous calls

If you don't want your application to be blocked when waiting for the
response to a request, you should first call AddRequest_g; this will send
the request using the global Add record to the server. It returns a status of
0 if everything goes well, -1 in case of error, or -2 if you tried to resend a
new request before the previous response was retrieved.

FUNCTION sendMyWScall()
 DEFINE wsstatus INTEGER
 ...
 LET Add.a = 6
 LET Add.b = 8
 LET wsstatus = AddRequest_g()
 IF wstatus <> 0 THEN
 DISPLAY "ERROR :", wsError.code
 END IF
 ...

Then you can call the AddResponse_g to retrieve the response in the
AddResponse global record of the previous request. If returned status is 0
the response was successfully received, -1 means that there was an error,
and -2 means that the response was not yet received and that the function
should be called later.

FUNCTION retrieveMyWScall()
 DEFINE wsstatus INTEGER
 ...
 LET wsstatus = AddResponse_g()
 CASE wstatus
 WHEN -2
 DISPLAY "No response available, try later"
 WHEN 0
 DISPLAY "Response is :",AddResponse.r
 OTHERWISE
 DISPLAY "ERROR :", wsError.code
 END CASE
 ...

Note that you can mix the asynchronous call with the synchronous one as
they are using two different requests. In other words, you can perform an
asynchronous request with AddRequest_g, then a synchronous call with
Add_g, and then retrieve the response of the previous asynchonous
request with AddResponse_g.

Genero Web Services

140

Warning: In development mode, a single 4GL Web Service server can
only handle one request at a time, and several asynchronous requests in a
row without retrieving the corresponding response will lead to a deadlock.
To support several asynchronous requests in a row, it is recommended that
you are in deployment mode with a GAS as the front end.

Generating files for a GWS Server

You can completely write a GWS Server application for a Web Service that you have
created; see Tutorial: Writing a Server Application. However, if you want to make sure
your Web Service is compatible with that of a third-party (an accounting application
vendor, for example), you can use the fglwsdl tool to obtain the WSDL information that
complies with that vendor's standards, and to generate corresponding files that can be
used in your GWS Server application.

The following example requests the Calculator Web Service information from the
specified URL, and the output files will have the base name "ws_calculator".

 fglwsdl -s -o ws_calculator http://localhost:8090/Calculator?WSDL

For a server application, fglwsdl generates two files, which should not be modified:

• <filename>.inc - the globals file, containing declarations of global variables that
can be used as input or output to functions accessing the Web Service operations.
In our example, the file is ws_calculatorService.inc.

This file must be listed in a GLOBALS statement at the top of any .4gl
modules that you write for your GWS Server application.

• <filename>.4gl - containing a function that creates the service described in the
WSDL, publishes the operations of the service, and registers the service. In our
example, the file is ws_calculatorService.4gl.

This file must be compiled and linked into your GWS Server application.

Example output

In the generated file ws_calculatorService.inc, the definitions of the variables for the
input and output record are the same as that generated for the Web Service Client
application:

#VARIABLE : Add -- defines the global INPUT record
DEFINE Add RECORD ATTRIBUTE(XMLName="Add",
 XMLNamespace="http://tempuri.org/")
 a INTEGER ATTRIBUTE(XMLName="a",XMLNamespace=""),

141

 b INTEGER ATTRIBUTE(XMLName="b",XMLNamespace="")
 END RECORD
VARIABLE : AddResponse -- defines the global OUTPUT record
DEFINE AddResponse RECORD ATTRIBUTE(XMLName="AddResponse",
 XMLNamespace="http://tempuri.org/")
 r INTEGER ATTRIBUTE(XMLName="r",XMLNamespace="")
 END RECORD

The generated file ws_calculatorService.4gl contains a single function that creates the
Calculator service, creates and publishes the service operations, and registers the
Calculator service:

FUNCTION Createws_calculatorService()
 DEFINE service com.WebService
 DEFINE operation com.WebOperation
...
Create Web Service
 LET service =
com.WebService.CreateWebService("Calculator","http://tempuri.org/")

Publish Operation : Add
 LET operation =
com.WebOperation.CreateRPCStyle("Add","Add",Add,AddResponse)
 CALL service.publishOperation(operation,"")
...
Register Service
 CALL com.WebServiceEngine.RegisterService(service)
 RETURN 0
...
END FUNCTION

Writing your functions

The ws_calculator.inc file provides you with the global input and output records and
function names that allow you to write your own code implementing the Add operation.
Your new code should not be written in the generated modules. For example, do not add
your own version of the Add function to the generated ws_calculator.4gl module; it can
be included in your module containing the MAIN program block, or in a separate module
to be included as part of the Web server application. The function must use the generated
definitions for the global input and output records.

In your version of the operation, this function adds 100 to the sum of the variables in the
input record:

FUNCTION Add()
 LET AddResponse.r = (Add.a + Add.b) * 100
END FUNCTION

See Tutorial: Writing a Server application for more information. The demo/WebServices
subdirectory of your Genero installation directory contains complete examples of Server
Applications.

Genero Web Services

142

143

Error Messages
The following table lists all Genero Web Services Extension error messages by number
and name, provides a description of each error message, and identifies a solution for the
associated problem.

Number Name Message Solution

-15500 INTERNAL_SERVER
_ERROR

Internal runtime error
occurred in WS server
program

Contact your support center.

-15501 FUNCTION_ERROR Cannot create WS
operation because the
given function is not
defined.

Verify that the name of the BDL
function of
fgl_ws_server_publishFunction()
is correct.

-15502 FUNCTION_
DECLARATION
_ERROR

Invalid WS-function
declaration, no
parameters allowed.

Verify that the BDL function has
no input and no output
parameters.

-15503 FUNCTION_
ALREADY_EXISTS

Operation name is
already used in the
current web service.

You must change the name of
the Web-Function operation in
the function
fgl_ws_server_publishFunction().

-15504 PORT_ALREADY
_USED

WS server port
already used by
another application.

You must change the port
number in the function
fgl_ws_server_start().

-15505 BDL_XML_ERROR Some BDL data types
are not supported by
XML.

Verify that all exposed functions
don't contain one of the following
data types:

• DATETIME beginning
with MINUTE

• DATETIME beginning
with SECOND

• INTERVAL beginning
with YEAR and/or
MONTH

-15506 INTERNAL_CLIENT
_ERROR

Internal runtime error
occurred in WS client
program.

Contact your support center.

Genero Web Services

144

-15507 ALL_HANDLE
_ALLOCATED

All WS operation
handlers already
allocated.

You must free the unused client
handler with the
fgl_ws_client_freeMethod()
function.

-15508 HANDLE_NOT
_ALLOCATED

WS operation handle
not allocated.

You must first call the
fgl_ws_client_createMethod()
function to get a valid handle.

-15509 BAD_INOUT
_PARAMETER

Invalid WS
input/output
parameter
specification.

Only 1 or 2 is allowed, all other
values are incorrect.

-15510 VARIABLE_PATH
_ERROR

Invalid WS variable
path specification.

Verify that the variable path
corresponds to the input or
output record message.

-15511 INVALID_OPTION
_NAME

Invalid
fgl_ws_set/getOption()
parameter.

Verify that the option flag of the
fgl_ws_set/getOption() function
exists.

-15512 INPUT_VARIABLE
_ERROR

WS input record not
defined.

Verify that the name of the input
record on the
fgl_ws_server_publishFunction()
exists.

-15513 OUTPUT_VARIABLE
_ERROR

WS output record not
defined.

Verify that the name of the
output record on the
fgl_ws_server_publishFunction()
exists.

-15514 PORT_NOT
_NUMERIC

The port value from
the FGLAPPSERVER
environment variable
or from the parameter
of the
fgl_ws_server_start()
function is not a
numeric one.

Verify that the port value
contains only digits.

-15515 NO_AS_FOUND No application server
has been started at
specified host.

Verify that FGLAPPSERVER
contains the right host and port
where the application server is
listening.

-15516 LICENSE_ERROR No more licenses
available.

Contact your support center.

145

-15517 BAD_RUNNER
_VERSION

Current runner version
not compatible with
the Web Services
Extension.

Install the right version of the
Genero BDL.

-15518 INPUT_NAMESPACE
_MISSING

The input namespace
of your Web function
is missing.

Add a valid input namespace in
fgl_ws_publishFunction().

-15519 OUTPUT
_NAMESPACE
_MISSING

The output
namespace of your
Web function is
missing.

Add a valid output namespace in
fgl_ws_publishFunction()

-15520 CFG_SECURITY_ID
_FAILED

Cannot load a
certificate or private
key file.

Verify that each ws.ident.security
FGLPROFILE entries contain a
valid security identifier.

-15521 CFG_SECURITY
_WINID
_FAILED

Cannot find a
certificate in the
Windows key store.

Verify that each ws.ident.security
FGLPROFILE entries contain a
valid Windows security identifier.

-15522 CFG_SECURITY
_CA
_FAILED

Cannot load the
Certificate Authorities
file.

Verify that the security.global.ca
FGLPROFILE entry contains the
correct Certificate Authorities
filename.

-15523 CFG_SECURITY_
WINCA_FAILED

Cannot create the
Certificate Authorities
from the Windows key
store.

Verify that you have enough
rights to access the Windows
key store.

-15524 CFG_SECURITY_
CIPHER_FAILED

Cannot set the cipher
list.

Verify that all ciphers in the list
are valid ones and supported by
openssl.

-15525 CFG_PROXY
_HTTP
_FAILED

Unable to reach the
HTTP proxy.

Verify that the proxy.http.location
FGLPROFILE entry contains the
correct HTTP proxy address.

-15526 CFG_PROXY
_HTTPS
_FAILED

Unable to reach the
HTTPS proxy.

Verify that the
proxy.https.location
FGLPROFILE entry contains the
correct HTTPS proxy address.

-15527 CFG_PROXY
_HTTP
_AUTH_UNKNOWN

Unknown HTTP proxy
authenticate identifier.

Verify that the
proxy.http.authenticate
FGLPROFILE entry contains a
valid HTTP authenticate

Genero Web Services

146

identifier.

-15528 CFG_PROXY
_HTTPS
_AUTH
_UNKNOWN

Unknown HTTPS
proxy authenticate
identifier.

Verify that the
proxy.https.authenticate
FGLPROFILE entry contains a
valid HTTP authenticate
identifier.

-15529 CFG_AUTH_
CREATE_FAILED

Cannot create a HTTP
authenticate
configuration.

Verify that all authenticate logins
and passwords are correctly set.

-15530 CFG_AUTH_
ENCRYPTED
_CREATE_FAILED

Cannot create an
encrypted HTTP
authenticate
configuration.

Verify that all authenticate logins
and encrypted passwords are
correctly set.

-15531 CFG_SERVER
_CREATION
_FAILED

Cannot create a
server configuration.

Verify that all ws.ident.url
FGLPROFILE entries are
correctly set.

-15532 CFG_SERVER
_SECURITY
_UNKNOWN

Unknown server
configuration security
identifier.

Verify that all ws.ident.security
FGLPROFILE entries contain a
valid Security identifier.

-15533 CFG_SERVER
_AUTH
_UNKNOWN

Unknown server
configuration
authenticate identifier.

Verify that all
ws.ident.authenticate
FGLPROFILE entries contain a
valid HTTP Authenticate
identifier.

147

Server API Functions - version 1.3 only
The following table lists the APIs to create a Web Services server in BDL.

Note: These functions are valid for backwards compatibility, but they are not the
preferred way to handle Genero Web Services. See the GWS COM Library classes and
methods.

Function Description

fgl_ws_server_setNamespace() Defines the namespace
of the service on the
Web.

fgl_ws_server_start() Creates and starts the
Web Service server.

fgl_ws_server_publishFunction() Publishes the BDL
function as a Web
Function.

fgl_ws_server_generateWSDL() Generates the WSDL
file.

fgl_ws_server_process() Waits for and
processes incoming
SOAP requests.

fgl_ws_server_setFault() Sets the SOAP fault
string for a Web
Function.

fgl_ws_server_getFault() Retrieves the fault
string that was set for a
Web Function, for
testing purposes.

fgl_ws_server_setNamespace() (version 1.3)

Purpose:

This function defines the namespace of the service on the Web and must be called first,
before all other functions of the API.

Genero Web Services

148

Syntax:

FUNCTION fgl_ws_server_setNamespace(namespace VARCHAR)

Parameters:

1. namespace is the name of the namespace.

Return values:

None

Example:

01 CALL fgl_ws_server_setNamespace("http://tempuri.org/")

fgl_ws_server_start() (version 1.3)

Purpose:

This function creates and starts the server. For development or testing purposes, you may
start a Web Service server as a single server where only one request at a time will be able
to be processed. For deployment, you may start a Web Service server with an application
server able to handle several connections at one time using a load-balancing algorithm.
The value of the parameter passed to the function determines which method is used.

Syntax:

FUNCTION fgl_ws_server_start(tcpPort VARCHAR)

Parameters:

1. tcpPort is a string representing either:

• the socket port number (for a single Web Service server),
or

• the host and port value separated by a colon (for a Web
Service server connecting to an application server). The
value of port is an offset beginning at 6400.

Note: If the FGLAPPSERVER environment variable is set, the tcpPort
value is ignored, and replaced by the value of FGLAPPSERVER.

149

Return values:

None

Examples:

To start a standalone Web Service server:

01 CALL fgl_ws_server_start("8080") # A single Server is listening
02 # on port number: 8080

To start a Web Service server attempting to connect to an application server:

01 CALL fgl_ws_server_start("zeus:5") # The server attempt to connect
02 # to an application server located
03 # on host zeus and listening
04 # on the port number 6405

Possible runtime errors:

• PORT_ALREADY_USED
• PORT_NOT_NUMERIC
• NO_AS_FOUND
• LICENSE_ERROR

fgl_ws_server_publishFunction() (version 1.3)

Purpose:

This function publishes the given BDL function as a Web-Function on the Web.

Syntax:

FUNCTION fgl_ws_server_publishFunction(operationName VARCHAR,
 inputNamespace VARCHAR, inputRecordName VARCHAR,
 outputNamespace VARCHAR,outputRecord VARCHAR,
 functionName VARCHAR)

Parameters:

1. operationName is the name by which the operation will be defined on the Web.
The name is case sensitive.

2. inputNamespace is the namespace of the incoming operation message.

Genero Web Services

150

3. inputRecordName is the name of the BDL record representing the Web Function
input message or "" if there is none.

4. outputNamespace is the namespace of the outgoing operation message.
5. outputRecord is the name of the BDL record representing the Web Function

output message or "" if there is none.
6. functionName is the name of the BDL function that is executed when the Web

Service engine receives a request with the operation name defined above.

Return values:

None

Example:

01 CALL fgl_ws_server_publishFunction(
02 "MyWebOperation",
03 "http://www.tempuri.org/webservices/","myfunction_input",
04 "http://www.tempuri.org/webservices/","myfunction_output",
05 "my_bdl_function")

Possible runtime errors:

• FUNCTION_ALREADY_EXISTS
• FUNCTION_ERROR
• FUNCTION_DECLARATION_ERROR
• INPUT_VARIABLE_ERROR
• OUTPUT_VARIABLE_ERROR
• BDL_XML_ERROR
• INPUT_NAMESPACE_MISSING
• OUTPUT_NAMESPACE_MISSING

fgl_ws_server_generateWSDL() (version 1.3)

Purpose:

This function generates the WSDL file according to the BDL-server program.

Syntax:

FUNCTION fgl_ws_server_generateWSDL(serviceName VARCHAR,
 serviceLocation VARCHAR, fileName VARCHAR)
RETURNING resultStatus INTEGER

151

Parameters:

1. serviceName is the name of the web service.
2. serviceLocation is the URL of the server.
3. fileName is the name of the file that will be generated.

Return value:

1. resultStatus is a status containing:

• 0 if the file has been correctly generated.
• Any other values if the operation has failed.

Example:

01 DEFINE mystatus INTEGER
02
03 LET mystatus=fgl_ws_server_generateWSDL(
04 "CustomerService",
05 "http://localhost:8080",
06 "C:/mydirectory/myfile.wsdl")
07
08 IF mystatus=0 THEN
09 DISPLAY "Generation of WSDL done..."
10 ELSE
11 DISPLAY "Generation of WSDL failed!"
12 END IF

fgl_ws_server_process() (version 1.3)

Purpose:

This function waits for an incoming SOAP request for a given time (in seconds) and then
processes the request, or returns, if there has been no request during the given time. If a
DEFER INTERRUPT or DEFER QUIT instruction has been defined, the function returns
even if it is an infinite wait.

Syntax:

FUNCTION fgl_ws_server_process(timeout INTEGER)
 RETURNING resultStatus INTEGER

Parameter:

1. timeout is the maximum waiting time for an incoming request (or -1 for an infinite
wait)

Genero Web Services

152

Return value:

1. resultStatus is a status containing:

• 0 — Request has been processed
• -1 — Timeout has been reached
• -2 — The application server asks the runner to shutdown
• -3 — A client connection has been unexpectedly broken
• -4 — An interruption has been raised
• -5 — The HTTP header of the request was incorrect
• -6 — The SOAP envelope was malformed
• -7 — The XML document was malformed

Example:

01 DEFER INTERRUPT
02 DEFINE mystatus INTEGER
03 LET mystatus=fgl_ws_server_process(5)# wait for 5 seconds
04 # for incoming request
05 IF mystatus=0 THEN
06 DISPLAY "Request processed."
07 END IF
08 IF mystatus=-1 THEN
09 DISPLAY "No request."
10 END IF
11 IF mystatus=-2 THEN # terminate the application properly
12 EXIT PROGRAM # if connected to application server
13 END IF
14 IF mystatus=-3 THEN
15 DISPLAY "Client connection unexpectedly broken."
16 END IF
17 IF mystatus=-4 THEN
18 DISPLAY "Server process has been interrupted."
19 END IF
20 IF mystatus=-5 THEN
21 DISPLAY "Malformed or bad HTTP request received."
22 END IF
23 IF int_flag<>0 THEN
24 LET int_flag=0
25 EXIT PROGRAM
26 END IF

fgl_ws_server_setFault() (version 1.3)

Purpose:

This function can be called in a published Web-Function in order to return a SOAP fault
string to the client at the end of the function's execution.

153

Syntax:

FUNCTION fgl_ws_server_setFault(faultMessage VARCHAR)

Parameter:

1. faultMessage is a string containing the SOAP Fault string that will be returned to
the client.

Return values:

None

Example:

01 CALL fgl_ws_server_setFault(
 "The server is not able to manage this request.")

fgl_ws_server_getFault() (version 1.3)

Purpose:

This function retrieves the last fault string the user has set in a Web-Function, or an
empty string if there is none.

Note: This function is only for testing the Web Services functions before they are
published on the Web.

Syntax:

FUNCTION fgl_ws_server_getFault()
 RETURNING faultMessage VARCHAR

Parameters:

None

Return value:

1. faultMessage is the string containing the SOAP Fault string.

Example:

01 DEFINE div_input RECORD

Genero Web Services

154

02 a INTEGER,
03 b INTEGER
04 END RECORD
05
06 DEFINE div_output RECORD
07 result INTEGER
08 END RECORD
09
10 FUNCTION TestServices()
11 DEFINE string VARCHAR(100)
12 ...
13 # Test divide by zero operation
14 LET div_input.a=15
15 LET div_input.b=0
16 CALL service_operation_div()
17 LET string=fgl_ws_server_getFault()
18 DISPLAY "Operation div error: ", string
19 ...
20 END FUNCTION
21
22 FUNCTION service_operation_div()
23 ...
24 IF div_input.b = 0 THEN
25 CALL fgl_ws_server_setFault("Divide by zero")
26 RETURN
27 END IF
28 ...
29 END FUNCTION

155

Configuration API Functions - version 1.3 only
The following table lists those configuration API functions that can modify the behavior
of the Web Services engine for the client as well as for the server.

Note: These functions are valid for backwards compatibility, but they are not the
preferred way to handle Genero Web Services. See the GWS Com Extension Library
classes and methods.

 Function Description
fgl_ws_setOption() Sets an option flag with a given value.
fgl_ws_getOption() Returns the value of an option flag.

fgl_ws_setOption()

Purpose:

This function sets an option flag with a given value, changing the global behavior of the
Web Services engine.

Syntax:

FUNCTION fgl_ws_setOption(optionName VARCHAR,
 optionValue INTEGER)

Parameters:

1. optionName is one of the global flags.
2. optionValue is the value of the flag.

Return values:

None

Possible runtime error:

INVALID_OPTION_NAME

Example:

Genero Web Services

156

01 CALL fgl_ws_setOption("http_invoketimeout",5)

fgl_ws_getOption()

Purpose:

This function returns the value of an option flag.

Syntax:

FUNCTION fgl_ws_getOption(optionName VARCHAR)
 RETURNING optionValue INTEGER

Parameter:

1. optionName is one of the global flags.

Return value:

1. optionValue is the value of the flag.

Possible runtime error:

INVALID_OPTION_NAME

Example:

01 DEFINE value INTEGER
02 LET value=fgl_ws_getOption("http_invoketimeout")

Option Flags

 Flags
Client

or
Server

 Commentary

 http_invoketimeout Client Defines the maximum time in seconds a
client has to wait before the client
connection raises an error because the
server is not responding. Note: A value
of -1 means that it has to wait until the

157

server responds (the default value is -1).

 tcp_connectiontimeout Client Defines the maximum time in seconds a
client has to wait for the establishment
of a TCP connection with a server.
Note: A value of -1 means infinite wait
(the default value is 30 seconds except
for Windows, where it is 5 seconds).

 soap_ignoretimezone Both Defines if, during the marshalling and
unmarshalling process of a BDL
DATETIME data type, the SOAP engine
should ignore the time zone information.
Note: A value of zero means false (the
default value is false).

 soap_usetypedefinition Both Defines if the Web Services engine
must specify the type of data in all
SOAP requests. (This will add an
"xsi:type" attribute to each parameter of
the request.) Note: A value of zero
means false (the default value is false).

wsdl_decimalsize Server Defines if, during the WSDL generation,
the precision and scale of a DECIMAL
variable will be taken into account. See
Notes on WSDL Generation Options
below. Note: A value of zero means
false (the default value is true).

wsdl_arraysize Server Defines if, during the WSDL generation,
the size of a BDL array will be taken into
account. See Notes on WSDL
Generation Options below. Note: A
value of zero means false (the default
value is true).

wsdl_stringsize Server Defines if, during the WSDL generation,
the size of a CHAR or VARCHAR
variable will be taken into account. See
Notes on WSDL Generation Options
below. Note: A value of zero means
false (the default value is true).

Genero Web Services

158

Notes on WSDL Generation Options

1. For a BDL type DECIMAL(5,2), when "wsdl_decimalsize" is TRUE, the generated
WSDL file contains the total size and the size of the fractional part of the decimal:

<types>
 <schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.4js.com/types/">
 <simpleType name="echoDecimal5_2_a_dec5_2_out_FGLDecimal">
 <restriction base="decimal">
 <totalDigits value="5" />
 <fractionDigits value="2" />
 </restriction>
 </simpleType>
 </schema>
</types>
<message name="echoDecimal5_2">
 <part name="dec5_2" type="f:echoDecimal5_2_a_dec5_2_in_FGLDecimal" />
</message>

When "wsdl_decimalsize" is FALSE, the total size and the size of the fractional part are
not mentioned:

<message name="echoDecimal5_2">
 <part name="dec5_2" type="xsd:decimal" />
</message>

2. If the WSDL file does not contain the size, the client application has no way of
knowing the size. In this scenario, a default value for the size is generated. For example,
the exported server type DECIMAL(5,2) becomes a DECIMAL(32) on the client side.

3. It is better to keep the options "wsdl_arraysize", "wsdl_stringsize",
"wsdl_decimalsize" set to TRUE (default) so that the BDL client application can do an
exact type mapping.

159

Genero Web Services COM Extension Library
The Genero Web Services COM Extension Library provides classes and methods that
allow you to perform tasks associated with creating Services and Clients, and managing
the services. Use the IMPORT statement at the top of your Genero .4gl module to import
the library into your Genero application:

IMPORT com

The Web Services classes

Purpose: Manage Web Services servers

Summary:

• CLASS WebService
• CLASS WebOperation
• CLASS WebServiceEngine

o GLOBAL option flags
o Notes on WSDL Generation options

• CLASS HTTPServiceRequest

The HTTP classes

Purpose: Manage HTTP client network operations

Summary:

• CLASS HTTPRequest
• CLASS HTTPResponse

o Example 1 : HTTP GET request
o Example 2 : XForms HTTP POST request
o Example 3 : Streaming HTTP PUT request
o Example 4 : Asynchronous HTTP DELETE request

The TCP classes

Purpose: Manage TCP client network operations

Summary:

• CLASS TCPRequest
• CLASS TCPResponse

Genero Web Services

160

COM Library error codes

• Error codes

161

The Web Service class
Summary:

• Syntax
• Methods

See also: The Genero Web Services COM Extension Library

Syntax

The Web Service class provides an interface to create and manage Genero Web Services.

Note that status is set to zero after a successful method call.

Syntax

com.WebService

Methods

Class Methods

Name Description
com.WebService.createWebService(
 name STRING,
 namespace STRING)
 RETURNING com.WebService

Creates a WebService object by
providing the mandatory name and
namespace, which must be unique in
the entire application.
Throws an exception in case of
errors, and updates status with an
error code.

Object Methods

Name Description
setComment(
 comment STRING)

Adds a comment to a WebService; the
comment will be visible in the generated WSDL
file.
Throws an exception in case of errors, and

Genero Web Services

162

updates status with an error code.
publishOperation(
 op com.WebOperation,
 role STRING)

Publishes a WebOperation named op. The role
identifies the operation if several operations
have the same name.
Throws an exception in case of errors, and
updates status with an error code.

saveWSDL(
 location STRING)
 RETURNING status

Saves the WSDL of the WebService to the file
system; location is the URL where the service
will be deployed. Status is 0 if the file was
saved, -1 if there was an error.

generateWSDL(
 location STRING)
 RETURNING xml.DomDocument

Returns a xml.DomDocument representing the
WSDL of the WebService; location is the URL
where the service will be deployed.
Throws an exception in case of errors, and
updates status with an error code.

createHeader(
 header Variable,
 encoded INTEGER)

Creates a global Header of the WebService;
header is any Variable defining the header,
encoded specifies the encoding mechanism,
where TRUE indicates the SOAP Section 5
encoding mechanism and FALSE the XML
Schema mechanism. Since Headers are always
in Document Style, set the encoded parameter
to FALSE.
Throws an exception in case of errors, and
updates status with an error code.

163

The Web Operation class
Summary:

• Syntax
• Methods
• Usage

See also: The Genero Web Services COM Extension Library

Syntax

The Web Operation class provides an interface to create and manage the operations of a
Genero Web Service.

The Web Operation can be created as RPC Style or Document Style. Both RPC/Literal
and Doc/Literal Styles are WS-I compliant (standards set by the Web Services
Interoperability organization).

Note that status is set to zero after a successful method call.

Syntax

com.WebOperation

Methods

• Creation
• Configuration

Creation

Class Methods

Name Description
com.WebOperation.CreateRPCStyle(
 function STRING,
 operation STRING,
 input Variable,
 output Variable)
 RETURNING com.WebOperation

Creates a Request-Response RPC
Style WebOperation object, where
function is the name of the 4GL
function that is executed to process
the XML operation; operation is the
name of the XML operation; input is

Genero Web Services

164

the input record defining the input
parameters of the operation (or
NULL if there is none) output is the
output record defining the output
parameters of the operation (or
NULL if there is none).
This method returns a
WebOperation object.
Throws an exception in case of
errors, and updates status with an
error code.

com.WebOperation.CreateDOCStyle(
 function STRING,
 operation STRING,
 input Variable,
 output Variable)
 RETURNING com.WebOperation

Creates a Request-Response
Document Style WebOperation
object, where function is the name of
the 4GL function that is executed to
process the XML operation;
operation is the name of the XML
operation; input is the input record
defining the input parameters of the
operation (or NULL if there is none)
output is the output record defining
the output parameters of the
operation (or NULL if there is none).
This method returns a
WebOperation object.
Throws an exception in case of
errors, and updates status with an
error code.

com.WebOperation.CreateOneWayRPCStyle(
 function STRING,
 operation STRING,
 input Variable)
 RETURNING com.WebOperation

Creates a One-Way RPC Style
WebOperation object, where
function is the name of the 4GL
function that is executed to process
the XML operation; operation is the
name of the XML operation; input is
the input record defining the input
parameters of the operation (or
NULL if there is none).
This method returns a
WebOperation object.
Notice that there is no output
parameter to be returned to the
client.
Throws an exception in case of
errors, and updates status with an
error code.

com.WebOperation.CreateOneWayDOCStyle(
 function STRING,

Creates a One-Way Document
Style WebOperation object, where

165

 operation STRING,
 input Variable)
 RETURNING com.WebOperation

function is the name of the 4GL
function that is executed to process
the XML operation; operation is the
name of the XML operation; input is
the input record defining the input
parameters of the operation (or
NULL if there is none).
This method returns a
WebOperation object.
Notice that there is no output
parameter to be returned to the
client.
Throws an exception in case of
errors, and updates status with an
error code.

Configuration

Object Methods

Name Description
setInputEncoded(
 encoded INTEGER)

Sets the input parameter encoding mechanism of
the WebOperation, where values for encoded
are TRUE indicating the SOAP Section 5
encoding mechanism, and FALSE indicating the
XML Schema mechanism. Not recommended.
Throws an exception in case of errors, and
updates status with an error code.

setOutputEncoded(
 encoded INTEGER)

Sets the output parameter encoding mechanism
of the WebOperation; where values for encoded
are TRUE indicating the SOAP Section 5
encoding mechanism, and FALSE indicating the
XML Schema mechanism. Not recommended.
Throws an exception in case of errors, and
updates status with an error code.

addInputHeader(
 input Variable)

Adds an input header to the WebOperation,
where input is any variable previously created as
the Header of the WebService object.
Throws an exception in case of errors, and
updates status with an error code.

addOutputHeader(Adds an output header to the WebOperation,

Genero Web Services

166

 output Variable) where output is any variable previously created
as the Header of the WebService object.
Throws an exception in case of errors, and
updates status with an error code.

setComment(
 comment STRING)

Adds a comment to the WebOperation. The
comment will appear in the WSDL of the service.
Throws an exception in case of errors, and
updates status with an error code.

Usage

RPC Style Service (RPC/Literal) is generally used to execute a function, such as a
service that returns a stock option. Document Style Service (Doc/Literal) is generally
used for more sophisticated operations that exchange complex data structures, such as a
service that sends an invoice to an application, or exchanges a Word document; this is the
MS.Net default. The input or output RECORD cannot have XMLNamespace attributes
set on their members.

Calling the appropriate function to create the desired style is the only difference in your
Genero code that creates the service. The remainder of the code that describes the service
is the same, regardless of whether you want to create an RPC or Document style of
service.

Do not use the setInputEncoded() and setOutputEncoded() methods, as they will
specify the RPC/Encoded Style, which is not recommended (see Choosing a Web
Service Style).

Since release 2.0 GWS allows you to create RPC Style and Document Style operations in
the same Web Service. However, we do not recommend this, as it is not WS-I compliant.

167

The Web Service Engine class
Summary:

• Syntax
• Methods
• Usage

o Global Options flags
o Notes on WSDL Generation Options

• Examples

See also: The Genero Web Services COM Extension Library

Syntax

The Web Service Engine class provides an interface to manage the Web Services
Engine. This class does not have to be instantiated.

Note that status is set to zero after a successful method call.

Syntax:

com.WebServiceEngine

Methods:

Class Methods

Name Description
com.WebServiceEngine.RegisterService(
 ws com.WebService)

Registers a WebService to the
DVM, where ws is the
WebService to be registered.
Throws an exception in case
of errors, and updates status
with an error code.

com.WebServiceEngine.Start() Starts all registered Web
Services; throws an exception
if the services cannot be
started.

com.WebServiceEngine.ProcessServices(
 timeout INTEGER)
 RETURNING status

Specifies the wait period for
an HTTP input request, to
process an operation of one of
the registered Web Services.

Genero Web Services

168

timeout is the time in seconds
to wait for an incoming request
before returning; the value -1
specifies an infinite waiting
time. Returns a value
indicating the status.

com.WebServiceEngine.getHTTPServiceRequest(
 timeout INTEGER)
 RETURNING com.HTTPServiceRequest

Returns a
HTTPServiceRequest object
to handle an incoming HTTP
request, or null if there was
none during the given period
of time. timeout is the time in
seconds to wait for an
incoming request, and -1
means infinite wait.
Notice that any new call to
this function will raise an error
until the previous HTTP
request was handled by
sending a response back to
the client, or destroyed.
Throws an exception in case
of errors, and updates status
with an error code.

com.WebServiceEngine.SetFaultCode(
 code STRING,
 codeNS STRING)

Defines a user SOAP Fault
code to be returned to the
client, where code is the
mandatory SOAP Fault code
and codeNS is the mandatory
Code namespace. This
function has an effect only if
called inside a WebService
operation.

com.WebServiceEngine.SetFaultString(
 str STRING)

Defines a user SOAP Fault
description to be returned to
the client, where str is the
description string. This
function has an effect only if
called inside a WebService
operation.

com.WebServiceEngine.SetOption(
 flag STRING,
 value INTEGER)

Sets an option flag to change
the global behavior of the Web
Services engine, where flag is
the option flag and value is the
value of the flag. See Global
option flags.

169

Throws an exception in case
of errors, and updates status
with an error code.

com.WebServiceEngine.GetOption(
 flag STRING)
 RETURNING value

Gets an option flag value of
the Web Services engine,
where flag is the option flag
and value is the value of the
flag. See Global option flags.
Throws an exception in case
of errors, and updates status
with an error code.

Usage

A human-readable description of the error codes for RegisterService and
ProcessServices is available in the SQLCA.SQLERRM structure

ProcessServices returns a status value with the following meaning:

 0 : A request has been processed successfully
 -1 : Time out reached
 -2 : Disconnected from application server
 -3 : Lost connection with the client
 -4 : Server has been interrupted with Ctrl-C
 -5 : Bad HTTP request
 -6 : Malformed SOAP envelope
 -7 : Malformed XML document
 -8 : HTTP error
 -9 : Unsupported operation
 -10 : Internal server error
 -11 : WSDL Generation failed
 -12 : WSDL Service not found
 -13 : Reserved
 -14 : Incoming request overflow
 -15 : Server was not started
 -16 : Request still in progress
 -17 : Stax response error

Global option flags for SetOption and GetOption:

Flag Client or
Server Description

readwritetimeout Client Defines the default maximum time in

Genero Web Services

170

seconds a client, a HTTP
request/response and a TCP
request/response have to wait before to
raise an error because the server
doesn't return or accept data.
Note: A value of -1 means infinite wait
(the default value is -1)

connectiontimeout Client Defines the default maximum time in
seconds a client, a HTTPRequest and a
TCPRequest have to wait for the
establishment of a connection with a
server.
Note: A value of -1 means infinite wait
(the default value is 30 seconds except
for Windows, where it is 5 seconds).

maximumresponselength Both Defines the maximum size in KBytes a
client, the server, a HTTP or TCP
response, allows before to break.
Note: A value of -1 means no limit (the
default value is -1).

wsdl_decimalsize Server Defines whether the precision and scale
of a DECIMAL variable will be taken into
account during the WSDL generation.
See Notes on WSDL Generation
Options below.
Note: A value of zero means false (the
default value is true).

wsdl_arraysize Server Defines whether the size of a BDL array
will be taken into account during the
WSDL generation. See Notes on WSDL
Generation Options below.
Note: A value of zero means false (the
default value is true).

wsdl_stringsize Server Defines whether the size of a CHAR or
VARCHAR variable will be taken into
account during the WSDL generation.
See Notes on WSDL Generation
Options below.
Note: A value of zero means false (the
default value is true).

http_invoketimeout
(deprecated use
readwritetimeout)

Client Defines the default maximum time in
seconds a client has to wait before the
client connection raises an error
because the server is not responding.
Note: A value of -1 means that it has to
wait until the server responds (the
default value is -1)

171

tcp_connectiontimeout
(deprecated use
connectiontimeout)

Client Defines the default maximum time in
seconds a client has to wait for the
establishment of a TCP connection with
a server.
Note: A value of -1 means infinite wait
(the default value is 30 seconds except
for Windows, where it is 5 seconds).

Notes on WSDL Generation Options

1. For a BDL type DECIMAL(5,2), when "wsdl_decimalsize" is TRUE, the generated
WSDL file contains the total size and the size of the fractional part of the decimal:

<types>
 <schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.4js.com/types/">
 <simpleType name="echoDecimal5_2_a_dec5_2_out_FGLDecimal">
 <restriction base="decimal">
 <totalDigits value="5" />
 <fractionDigits value="2" />
 </restriction>
 </simpleType>
 </schema>
</types>
<message name="echoDecimal5_2">
 <part name="dec5_2" type="f:echoDecimal5_2_a_dec5_2_in_FGLDecimal" />
</message>

When "wsdl_decimalsize" is FALSE, the total size and the size of the fractional part are
not mentioned:

<message name="echoDecimal5_2">
 <part name="dec5_2" type="xsd:decimal" />
</message>

2. If the WSDL file does not contain the size, the client application has no way of
knowing the size. In this case, a default value for the size is generated. For example, the
exported server type DECIMAL(5,2) becomes a DECIMAL(32) on the client side.

3. It is better to keep the options "wsdl_arraysize", "wsdl_stringsize",
"wsdl_decimalsize" set to TRUE (default) so that the BDL client application can do
exact type mapping.

4. When setting a facet constraint attribute on a simple datatype, the generation of the
WSDL will take this attribute into account even if an option has been set to perform the
opposite.

5. Notice also that when setting one facet constraint attribute, all default ones won't be
generated anymore excepted if you specify them as facet constraint attributes.

Genero Web Services

172

Examples

Placeholder

173

The HTTP Service Request class
Summary:

• Syntax
• Methods

See also: The Genero Web Services COM Extension Library

Syntax

The HTTP Service Request class provides an interface to process incoming XML and
TEXT requests over HTTP on the server side, with an access to the HTTP layer and
additional XML streaming possibilities.

Note that status is set to zero after a successful method call.

Syntax

com.HTTPServiceRequest

Methods

• Reading request from client
• Responding to the client

Reading request from client

Object Methods
Name Description
getURL()
 RETURNING STRING

Returns the entire URL request containing the
host, port, document and query string.

getMethod()
 RETURNING STRING

Returns the HTTP method of the request
(GET,POST,PUT,HEAD,DELETE)

getRequestVersion()
 RETURNING STRING

Returns the HTTP version of the request (1.0 or
1.1).

hasRequestKeepConnection()
 RETURNING INTEGER

Returns whether the request expect the
connection to stay open after the sending of the
response.

Genero Web Services

174

getRequestHeader(
 name STRING)
 RETURNING STRING

Returns the value of the request header name, or
NULL.
Throws an exception in case of errors, and
updates status with an error code.

getRequestHeaderCount()
 RETURNING INTEGER

Returns the number of request headers.

getRequestHeaderName(
 index INTEGER)
 RETURNING STRING

Returns the name of the request header at given
position (index is starting at 1).
Throws an exception in case of errors, and
updates status with an error code.

getRequestHeaderValue(
 index INTEGER)
 RETURNING STRING

Returns the value of the request header at given
position (index is starting at 1).
Throws an exception in case of errors, and
updates status with an error code.

readFormEncodedRequest(
 utf8 INTEGER)
 RETURNING STRING

Returns the query of a POST application/x-www-
form-urlencoded request or the query string of a
GET request, decoded according to HTML4 or
XFORM if utf8 is TRUE.
Note: If utf8 is TRUE, the decoded query string is
translated from utf-8 to the locale charset that
might lead to a conversion error.
Throws an exception in case of errors, and
updates status with an error code.

readTextRequest()
 RETURNING STRING

Returns the body of the request as a string.
Supported methods are PUT and POST.
Note: The request Content-Type header must be
of the form text/* as for instance text/richtext.
Throws an exception in case of errors, and
updates status with an error code.

readXmlRequest()
 RETURNING
xml.DomDocument

Returns the body of the request as an entire XML
document. Supported methods are PUT and
POST.
Note: The request Content-Type header must be
of the form */xml or */*+xml as for instance
application/xhtml+xml.
Throws an exception in case of errors, and
updates status with an error code.

beginXmlRequest()
 RETURNING
xml.StaxReader

Begins the streaming HTTP request and returns a
xml.StaxReader object ready to read the XML
from the client. Supported methods are PUT and
POST.
Note: The request Content-Type header must be
of the form */xml or */*+xml as for instance
application/xhtml+xml.
Throws an exception in case of errors, and
updates status with an error code.

175

endXmlRequest(
 stax xml.StaxReader)

Ends the streaming HTTP request by closing the
StaxReader.
Throws an exception in case of errors, and
updates status with an error code.

Responding to the client

Object Methods
Name Description
setResponseVersion(
 version STRING)

Sets the HTTP response version (1.0 or 1.1).
Notes:

• If no set, the same version as the request is
used.

• The method must be called before sending the
response with sendResponse,
sendTextResponse, sendXmlResponse or
beginXmlResponse and endXmlResponse

Throws an exception in case of errors, and updates status
with an error code.

setResponseCharset(
 charset STRING)

Genero Web Services

176

The HTTP Request class
Summary:

• Syntax
• Methods
• Examples

See also: The Genero Web Services COM Extension Library

Syntax

The HTTP Request class provides an interface to perform asynchronous XML and
TEXT requests over HTTP for a specified URL, with additional XML streaming
possibilities.

Note that status is set to zero after a successful method call.

Syntax

com.HTTPRequest

Methods

• Creation
• Configuration
• Sending
• Response

Creation

Class Methods
Name Description
com.HTTPRequest.Create(
 url STRING)
 RETURNING com.HTTPRequest

Creates an HTTPRequest object by
providing a mandatory url with HTTP or
HTTPS as the protocol.
Note: url can be an identifier of an URL
mapping with an optional alias:// prefix.
See FGLPROFILE Configuration for more
details about URL mapping with aliases,
and for proxy and security configuration.

177

Throws an exception in case of errors,
and updates status with an error code.

Configuration

Object Methods
Name Description
setVersion(
 version STRING)

Sets the HTTP version of the request.
Note: Only 1.0 and 1.1 are
supported. Default is 1.1.
Throws an exception in case of errors,
and updates status with an error code.

setMethod(
 method STRING)

Sets the HTTP method of the request.
Note: Supported methods are GET, PUT,
POST, HEAD and DELETE. Default is
GET.
Throws an exception in case of errors,
and updates status with an error code.

setHeader(
 name STRING,
 value STRING)

Sets an HTTP header name and value for
the request, and replaces the previous
one if there was any.
Note: Setting a header after the body has
been sent, or if a streaming operation has
been started, will only be taken into
account when a new request is reissued.
Throws an exception in case of errors,
and updates status with an error code.

removeHeader(
 name STRING)

Removes an HTTP header name for the
request if it exists.
Throws an exception in case of errors,
and updates status with an error code.

clearHeaders() Removes all user-defined headers.
setCharset(
 charset STRING)

Defines the charset used when sending
text or XML; by default no charset is set.
Note: When sending text, HTTP
specification defines ISO-8859-1 as an
implicit charset.
Note: When sending XML, the user-
defined charset is used instead of the one
set in the XML document itself, which can
lead to a charset conversion error at the
server side. Therefore it is recommended

Genero Web Services

178

that you unset it by setting charset to
NULL, or that you use the same charset
that was set in the XML Document.

setAuthentication(
 login STRING,
 password STRING,
 scheme STRING,
 realm STRING)

Defines the mandatory user login and
password to authenticate to the server.
An optional scheme defines the method
to be used during authentication.
Note: Only Anonymous, Basic and Digest
are supported. Default is Anonymous.
An optional realm can also be set.
Note: With Anonymous or Digest
authentication, you must resend the
request if you get a 401 or 407 HTTP
return code (authorization required)
Note: If a user-defined authentication is
set and there is an authenticate entry for
this URL in the FGLPROFILE file, the
user-defined has priority.
Throws an exception in case of errors,
and updates status with an error code.

clearAuthentication() Removes user-defined authentication.
Note: If an authenticate entry exists in the
FGLPROFILE file, it will be used for
authentication, even if the user-defined
was removed.

setKeepConnection(
 keep INTEGER)

Defines whether the connection should
stay open if a new request occurs
again. Default is FALSE.

setTimeOut(
 timeout INTEGER)

Sets the time value in seconds to wait for
a reading or writing operation, before a
break.
Note: -1 means infinite.

setConnectionTimeOut(
 timeout INTEGER)

Sets the time value in seconds to wait for
the establishment of the connection,
before a break.
Note: -1 means infinite.

setMaximumResponseLength(
 length INTEGER)

Sets the maximum authorized size in
Kbyte of the whole response (composed
of the headers, the body and all control
characters), before a break.
Note: -1 means no limit.

179

Sending

Object Methods
Name Description
doRequest() Performs the request. Supported methods are GET,

HEAD and DELETE.
Throws an exception in case of errors, and updates
status with an error code.

doTextRequest(
 txt STRING)

Performs the request by sending an entire string at
once. Supported methods are PUT and POST.
Note: The default Content-Type header is
text/plain, but it can be changed if of the form
text/*, for instance text/richtext.
Note: Automatic conversion from locale to user-
defined charset is performed when possible,
otherwise throws an exception.
Note: In HTTP 1.1, if the body size is greater than
32k, the request will be sent in several chunks of the
same size.
Throws an exception in case of errors, and updates
status with an error code.

doXmlRequest(
 doc xml.DomDocument)

Performs the request by sending the entire
xml.DomDocument at once. Supported methods are
PUT and POST.
Note: The default Content-Type header is text/xml,
but it can be changed if of the form */xml or */*+xml,
for instance application/xhtml+xml.
Note: In HTTP 1.1, if the body size is greater than
32k, the request will be sent in several chunks of the
same size.
Throws an exception in case of errors, and updates
status with an error code.

doFormEncodedRequest(
 query STRING,
 utf8 INTEGER)

Performs an application/x-www-form-urlencoded
Forms encoded query. Supported methods are GET
and POST. The query string is a list of name/value
pairs separated with &. For example,
name1=value1&name2=value2&name3=value3.
Note: If utf8 is TRUE, the query string is encoded in
UTF-8 as specified in XForms 1.0, otherwise in
ASCII as specified in HTML 4.
Throws an exception in case of errors, and updates
status with an error code.

beginXmlRequest()
 RETURNING
xml.StaxWriter

Begins the streaming HTTP request and returns an
xml.StaxWriter object ready to send XML to the
server. Supported methods are PUT and POST.
Note: The default Content-Type header is text/xml,
but it can be changed if of the form */xml or

Genero Web Services

180

/+xml, for instance application/xhtml+xml.
Note: In HTTP 1.1, if the body size is greater than
32k, the request will be sent in several chunks of the
same size.
Throws an exception in case of errors, and updates
status with an error code.

endXmlRequest(
 writer xml.StaxWriter
)

Ends the streaming HTTP request by closing the
Stax writer.
Throws an exception in case of errors, and updates
status with an error code.

Response

Object Methods
Name Description
getResponse()
 RETURNING
com.HTTPResponse

Returns the response of one of the doRequest,
doTextRequest, doXmlRequest,
doFormEncodedRequest or beginXmlRequest
and endXmlRequest calls in an
com.HTTPResponse object.
Throws an exception in case of errors, and
updates status with an error code.

getAsyncResponse()
 RETURNING
com.HTTPResponse

Returns the response of one of the doRequest,
doTextRequest, doXmlRequest,
doFormEncodedRequest or beginXmlRequest
and endXmlRequest calls in an
com.HTTPResponse object, or NULL if the
response was not yet received.
Remarks:
If a previous call returned NULL, a new call will
return the expected response if it has already
arrived, or NULL again if the response was still
not received.
Throws an exception in case of errors, and
updates status with an error code.

181

Examples

Example 1 : HTTP GET request

 IMPORT com

 MAIN
 DEFINE req com.HTTPRequest
 DEFINE resp com.HTTPResponse

 TRY
 LET req =
com.HTTPRequest.Create("http://localhost:8090/MyPage")
 CALL req.setHeader("MyHeader","High Priority") # Set
additional HTTP header with name 'MyHeader', and value 'High
Priority'
 CALL req.doRequest()
 LET resp = req.getResponse()
 IF resp.getStatusCode() != 200 THEN
 DISPLAY "HTTP Error ("||resp.getStatusCode()||")
",resp.getStatusDescription()
 ELSE
 DISPLAY "HTTP Response is : ",resp.getTextResponse()
 END IF
 CATCH
 DISPLAY "ERROR :",STATUS||" ("||SQLCA.SQLERRM||")"
 END TRY
 END MAIN

Example 2 : XForms HTTP POST request

 IMPORT com
 IMPORT xml

 MAIN
 DEFINE req com.HTTPRequest
 DEFINE resp com.HTTPResponse
 DEFINE doc xml.DomDocument

 TRY
 LET req =
com.HTTPRequest.Create("http://localhost:8090/MyProcess")
 CALL req.setMethod("POST") # Perform an HTTP POST method
 CALL req.doFormEncodedRequest("Param1=hello&Param2=how
are you ?",FALSE) # Param1 value is 'hello', Param2 value is
'how are you ?'
 LET resp = req.getResponse()
 IF resp.getStatusCode() != 200 THEN
 DISPLAY "HTTP Error ("||resp.getStatusCode()||")
",resp.getStatusDescription()
 ELSE
 LET doc = resp.getXmlResponse() # Expect a returned
content type of the form */xml

Genero Web Services

182

 DISPLAY "HTTP XML Response is : ",doc.saveToString()
 END IF
 CATCH
 DISPLAY "ERROR :",STATUS||" ("||SQLCA.SQLERRM||")"
 END TRY
 END MAIN

Example 3 : Streaming HTTP PUT request

 IMPORT com
 IMPORT xml

 MAIN
 DEFINE req com.HTTPRequest
 DEFINE resp com.HTTPResponse
 DEFINE writer xml.StaxWriter

 TRY
 LET req =
com.HTTPRequest.Create("http://localhost:8090/MyXmlProcess")
 CALL req.setMethod("PUT") # Perform an HTTP PUT method
 CALL req.setHeader("MyHeader","Value of my header")
 LET writer = req.beginXmlRequest() # Retrieve an
xml.StaxWriter to start xml streaming
 CALL writer.startDocument("utf-8","1.0",true)
 CALL writer.comment("My first XML document sent in
streaming with genero!!!")
 CALL writer.startElement("root")
 CALL writer.attribute("attr1","value1")
 CALL writer.endElement()
 CALL writer.endDocument()
 CALL req.endXmlRequest(writer) # End streaming request
 LET resp = req.getResponse()
 IF resp.getStatusCode() != 201 OR resp.getStatusCode()
!= 204 THEN
 DISPLAY "HTTP Error ("||resp.getStatusCode()||")
",resp.getStatusDescription()
 ELSE
 DISPLAY "XML document was correctly put on the
server"
 END IF
 CATCH
 DISPLAY "ERROR :",STATUS||" ("||SQLCA.SQLERRM||")"
 END TRY
 END MAIN

Example 4 : Asynchronous HTTP DELETE request

 IMPORT com

 MAIN
 DEFINE req com.HTTPRequest

183

 DEFINE resp com.HTTPResponse
 DEFINE url STRING
 DEFINE quit CHAR(1)
 DEFINE questionStr STRING
 DEFINE timeout INTEGER

 TRY
 WHILE TRUE
 PROMPT "Enter http url you want to delete ? " FOR url
ATTRIBUTE (CANCEL=FALSE)
 LET req = com.HTTPRequest.Create(url)
 CALL req.setMethod("DELETE")
 CALL req.doRequest()
 LET resp = req.getAsyncResponse()
 # Retrieve asynchronous response for the first time
 CALL Update(resp) RETURNING questionStr,timeout
 WHILE quit IS NULL OR (quit!="Y" AND quit!="N")
 PROMPT questionStr FOR CHAR quit ATTRIBUTE
(CANCEL=FALSE,ACCEPT=FALSE,SHIFT="up")
 ON IDLE timeout
 IF resp IS NULL THEN
 # If no response at first try, retrieve it again
 LET resp = req.getAsyncResponse()
 # because we have time now !!!
 CALL Update(resp) RETURNING
questionStr,timeout
 END IF
 END PROMPT
 END WHILE
 IF quit == "Y" THEN
 EXIT PROGRAM
 ELSE
 LET quit = NULL
 END IF
 END WHILE
 CATCH
 DISPLAY "ERROR :",STATUS,SQLCA.SQLERRM
 END TRY
 END MAIN

 FUNCTION Update(resp)
 DEFINE resp com.HTTPResponse
 DEFINE ret STRING
 IF resp IS NOT NULL THEN
 IF resp.getStatusCode() != 204 THEN
 LET ret = "HTTP Error ("||resp.getStatusCode()||
 ") :"||resp.getStatusDescription()||". Do you want to quit ? "
 ELSE
 LET ret = "HTTP Page deleted. Do you want to quit ? "
 END IF
 RETURN ret, 0
 ELSE
 LET ret = "Do you want to quit ? "
 RETURN ret, 1
 END IF
 END FUNCTION

Genero Web Services

184

185

The HTTP Response class
Summary:

• Syntax
• Methods
• Usage
• Examples

See also: The Genero Web ServicesCOM Extension Library

Syntax

The HTTP Response class provides an interface to perform XML and TEXT responses
over HTTP, with additional XML streaming possibilities. Notice that status is set to zero
after a successful method call.

Syntax

com.HTTPResponse

Methods

Class Methods
Name Description

Object Methods

Name Description
getStatusCode()
 RETURNING INTEGER

Returns the HTTP status code.
When the returned HTTP status code is
401 or 407, authorization is required.
See the setAuthentication() method of
the HTTPRequest class from the Genero
Web Services Extension COM Library.

Genero Web Services

186

getStatusDescription()
 RETURNING STRING

Returns the HTTP status description.

getHeader(
 name STRING)
 RETURNING STRING

Returns the value of the HTTP header
name, or NULL if there is none.
Throws an exception in case of errors,
and updates status with an error code.

getHeaderCount()
 RETURNING INTEGER

Returns the number of headers.
Throws an exception in case of errors,
and updates status with an error code.

getHeaderName(
 index INTEGER)
 RETURNING STRING

Returns the name of the header at
position index.
Throws an exception in case of errors,
and updates status with an error code.

getHeaderValue(
 index INTEGER)
 RETURNING STRING

Returns the value of the header at
position index.
Throws an exception in case of errors,
and updates status with an error code.

beginXmlResponse()
 RETURNING xml.StaxReader

Begins the streaming HTTP response
and returns a xml.StaxReader object
ready to read XML from the server.
Note: The Content-Type header must be
of the form */xml or */*+xml, for instance
application/xhtml+xml.
Throws an exception in case of errors,
and updates status with an error code.

endXmlResponse(
 reader xml.StaxReader)

Ends the streaming HTTP response by
closing the Stax reader.
Throws an exception in case of errors,
and updates status with an error code.

getXmlResponse()
 RETURNING xml.DomDocument

Returns an entire xml.DomDocument as
response from the server.
Note: The Content-Type header must be
of the form */xml or */*+xml, for instance
application/xhtml+xml.
Throws an exception in case of errors,
and updates status with an error code.

getTextResponse()
 RETURNING STRING

Returns an entire string as response
from the server.
Note: The Content-Type header must be
of the form text/*, for instance
text/richtext.
Note: Automatic conversion to the locale
charset is performed when possible,
otherwise throws an exception.
Throws an exception in case of errors,

187

and updates status with an error code.

Examples

For examples, refer to The HTTP Request Class Examples.

Genero Web Services

188

The TCP Request class
Summary:

• Syntax
• Methods

See also: The Genero Web Services COM Extension Library

Syntax

The TCP Request class provides an interface to perform asynchronous XML and TEXT
requests over TCP, with additional XML streaming possibilities. Notice that status is set
to zero after a successful method call.

Syntax

com.TCPRequest

Methods

• Creation
• Management

Creation

Class Methods

Name Description
com.TCPRequest.Create(
 url STRING)
 RETURNING com.TCPRequest

Creates a TCPRequest object by
providing a mandatory url with TCP or
TCPS as the protocol.
Note: url can be an identifier of an URL
mapping with an optional alias:// prefix.
See FGLPROFILE Configuration for
more details about URL mapping with
aliases, and for proxy and security
configuration.
Throws an exception in case of errors,
and updates status with an error code.

189

Management

Object Methods
Name Description
setTimeOut(
 timeout INTEGER)

Sets the time value in seconds to wait
for a reading or writing operation, before
a break.
Note: -1 means infinite.

setConnectionTimeOut(
 timeout INTEGER)

Sets the time value in seconds to wait
for the establishment of the connection,
before a break.
Note: -1 means infinite.

setMaximumResponseLength(
 length INTEGER)

Sets the maximum authorized size in
Kbyte of the whole response, before a
break.
Note: -1 means no limit.

doRequest() Performs the request.
Note: The connection is shutdown for
writing to notify that no data will be sent.
Throws an exception in case of errors,
and updates status with an error code.

doXmlRequest(
 doc xml.DomDocument)

Performs the request by sending the
entire xml.DomDocument at once.
Note: The connection is shutdown for
writing to notify that no more data will be
sent.
Throws an exception in case of errors,
and updates status with an error code.

doTextRequest(
 str STRING)

Performs the request by sending a string
at once.
Note: The connection is shutdown for
writing to notify that no more data will be
sent.
Throws an exception in case of errors,
and updates status with an error code.

beginXmlRequest()
 RETURNING xml.StaxWriter

Begins the streaming HTTP request and
returns an xml.StaxWriter object ready to
send XML to the server.
Throws an exception in case of errors,

Genero Web Services

190

and updates status with an error code.
endXmlRequest(
 writer xml.StaxWriter)

Ends the streaming HTTP request by
closing the Stax writer.
Note: The connection is shutdown for
writing to notify that no more data will be
sent.
Throws an exception in case of errors,
and updates status with an error code.

getResponse()
 RETURNING com.TCPResponse

Returns the response of one of the
doRequest, doXmlRequest,
doTextRequest or beginXmlRequest and
endXmlRequest calls in a
com.TCPResponse object.
Throws an exception in case of errors,
and updates status with an error code.

getAsyncResponse()
 RETURNING com.TCPResponse

Returns the response of one of the
doRequest, doXmlRequest,
doTextRequest or beginXmlRequest and
endXmlRequest calls in a
com.TCPResponse object, or NULL if
the response was not yet received.
Remarks:
If a previous call returned NULL, a new
call will return the expected response if it
already arrived, or NULL again if the
response was still not received.
Throws an exception in case of errors,
and updates status with an error code.

191

The TCP Response class
Summary:

• Syntax
• Methods

See also: The Genero Web Services COM Extension Library

Syntax

The TCP Response class provides an interface to perform XML and TEXT responses
over TCP, with additional XML streaming possibilities. Notice that status is set to zero
after a successful method call.

Syntax:

com.TCPResponse

Methods

Object Methods
Name Description
beginXmlResponse()
 RETURNING
xml.StaxReader

Begins the streaming TCP response and returns an
xml.StaxReader object ready to read XML from the
server.
Throws an exception in case of errors, and updates
status with an error code.

endXmlResponse(
 reader xml.StaxReader
)

Ends the streaming TCP response by closing the
Stax reader.
Throws an exception in case of errors, and updates
status with an error code.

getXmlResponse()
 RETURNING
xml.DomDocument

Returns an entire xml.DomDocument as response
from the server.
Throws an exception in case of errors, and updates
status with an error code.

getTextResponse()
 RETURNING STRING

Returns a string as response from the server.
Throws an exception in case of errors, and updates
status with an error code.

Genero Web Services

192

193

The COM Library Error Codes

Code Description
0 No error.

-15534 Invalid self object.

-15535 Cannot perform operation due to invalid parameters.

-15536 Service registration failed.

-15537 Cannot create web service.

-15538 Cannot create Web operation.

-15539 Cannot publish Web operation.

-15540 Published 4GL function not found.

-15541 Published 4GL function not correctly defined.

-15542 Input parameter of published operation error.

-15543 Output parameter of published operation error.

-15544 Web Service header configuration error.

-15545 Service is already registered.

-15546 Invalid option.

-15547 Unsupported web service operation.

-15548 Bad URI.

-15549 HTTP runtime exception, see SQLCA.SQLERRM for mode details.

-15550 XML runtime exception, see SQLCA.SQLERRM for mode details.

-15551 WSDL generation failed.

-15552 Charset conversion exception, see SQLCA.SQLERRM for mode
details.

-15553 TCP runtime exception, see SQLCA.SQLERRM for mode details.

-15554 Index is out of bound.

-15555 Unsupported request-response feature.

-15556 No request was sent.

-15557 Request was already sent.

-15558 Waiting for a response.

-15559 No stream available.

-15560 Streaming is over.

-15561 Streaming in progress.

Genero Web Services

194

-15562 Streaming not yet started.

-15563 Streaming already started.

-15564 Unexpected peer stream was shutdown.

-15565 Cannot return incoming request, see SQLCA.SQLERRM for more
details.

-15599 Internal error, should not happen.

See also: The Genero Web Services COM Extension Library

195

The Genero Web Services XML
Extension Library
The Genero Web Services XML Extension Library provides classes and methods to
handle any kind of XML documents, including documents with namespaces. The library
provides a W3C-compatible DOM API, integrating additional XML Schema and DTD
validation methods. There is also an API compatible with StAX for writing or reading
XML documents where performance and speed are important.

 Use the IMPORT statement at the top of your Genero .4gl module to import the library
into your Genero application:

IMPORT xml

Remark: the DOM API of the om package is still in use, but was designed to handle
specific FGL files or to manipulate the user interface tree (the AUI tree). For all other
cases/scenarios, we recommend that you use the DOM API of the xml package.

The Document Object Modeling (DOM) classes

Purpose: Manages XML document entirely in memory with support of XML Schema and
DTD validation

Summary:

• CLASS DomDocument
o Features

• CLASS DomNode
o Types

• CLASS DomNodeList

The Streaming API for XML (StAX) classes

Purpose: Uses streaming while managing XML documents

Summary:

• CLASS StaxWriter
o Features
o Example

• CLASS StaxReader
o Event types
o Features
o Example

Genero Web Services

196

The XML serialization class

Purpose: Converts 4GL variables to XML and XML to 4GL variables

Summary:

• CLASS Serializer
o Option flags

Library error codes

Summary:

• Error codes

197

The DomDocument class
Summary:

• Syntax
• Methods
• DomDocument Features
• Examples

o Create a namespace qualifed XML document
o Validating a document against XML schemas or an embedded DTD

See also: The Genero Web Services XML Extension Library

Syntax

The DomDocument class provides methods to manipulate a data tree, following the
DOM standards.

The status is set to zero after a successful method call.

Syntax

xml.DomDocument

Methods

• Creation
• Navigation
• Management
• Node creation
• Load and save
• Configuration
• Validation
• Error management

Creation methods

Class Methods
Name Description
xml.DomDocument.create()
 RETURNING xml.DomDocument

Constructor of an empty DomDocument
object; returns a DomDocument object.

xml.DomDocument.createDocument(
 name STRING)
 RETURNING xml.DomDocument

Constructor of a DomDocument with an
XML root element; where name is the
name of the XML Element.

Genero Web Services

198

Returns a DomDocument object or NULL.
Throws an exception in case of errors, and
updates status with an error code.

xml.DomDocument.createDocumentNS(
 prefix STRING,
 name STRING,
 ns STRING)
 RETURNING xml.DomDocument

Constructor of a DomDocument with a root
namespace-qualified XML root element
where prefix is the prefix of the XML
Element or NULL, name is the name of the
XML Element, and ns is the namespace of
the XML Element. Returns a
DomDocument object.
Throws an exception in case of errors, and
updates status with an error code.

Usage

xml.domDocument.create()

Create a DomDocument without a root node.

xml.domDocument.create("ARoot")

Create a DomDocument with an initial root node named ARoot.

xml.domdocument.createDocumentNS("fjs","List","http://www.mysite.com/xm
lapi")

Produces:
<fjs:List xmlns:fjs="http://www.mysite.com/xmlapi">
[...]
</fjs:List>

Create a DomDocument with an initial root node named List with fjs as
the prefix and http://www.mysite.com/xmlapi as the namespace.

Navigation methods

Object Methods
Name Description
getDocumentElement()
 RETURNING
xml.DomNode

Returns the root XML Element DomNode object for this
DomDocument object. Returns a DomNode object, or
NULL.

getFirstDocumentNode()
 RETURNING
xml.DomNode

Returns the first child DomNode object for this
DomDocument object, or NULL.

199

getLastDocumentNode()
 RETURNING
xml.DomNode

Returns the last child DomNode object for this
DomDocument object, or NULL.

getDocumentNodesCount()
 RETURNING INTEGER

Returns the number of child DomNode objects for this
DomDocument object.

getDocumentNodeItem(
 pos INTEGER)
 RETURNING
xml.DomNode

Returns the child DomNode object at a given position for
this DomDocument object where pos is the position of the
node to return (Index starts at 1), or NULL.
Throws an exception in case of errors, and updates status
with an error code.

getElementsByTagName(
 name STRING)
 RETURNING
xml.DomNodeList

Returns a DomNodeList object containing all XML Element
DomNode objects with the same tag name in the entire
document; name is the name of the XML Element tag to
match, or "*" to match all tags. Returns a DomNodeList
object, or NULL.
Note: The returned list is ordered using a Depth-First pass
algorithm.
Throws an exception in case of errors, and updates status
with an error code.

getElementsByTagNameNS(
 name STRING,
 ns STRING)
 RETURNING
xml.DomNodeList

Returns a DomNodeList object containing all namespace
qualified XML Element DomNode objects with the same
tag name and namespace in the entire document; name is
the name of the XML Element tag to match, or "*" to match
all tags; ns is the namespace URI of the XML Element tag
to match, or "*" to match all namespaces. Returns a
DomNodeList object, or NULL.
Note: The returned list is ordered using a Depth-First pass
algorithm.
Throws an exception in case of errors, and updates status
with an error code.

selectByXPath(
 expr STRING,
 NamespacesList ...)
 RETURNING
xml.DomNodeList

Returns a DomNodeList object containing all DomNode
objects matching an XPath 1.0 expression (Not part of
W3C API); expr is the XPath 1.0 expression,
NamespacesList is a list of prefixes bounded to
namespaces in order to resolve qualified names in the
XPath expression. This list must be filled with an even
number of arguments, representing the prefix and its
corresponding namespace.
Examples :
selectByXPath("//d:Record", "d",
"http://defaultnamespace")
selectByXPath("//ns1:Record", NULL)
selectByXPath("//ns1:Records/ns2:Record",
"ns1", "http://namespace1", "ns2",
"http://namespace2")
selectByXPath("//ns1:Record", "ns1") is invalid
because the namespace definition is missing.
Note: If the namespaces list is NULL, the prefixes and
namespaces defined in the document itself are used if
available.
Note: A namespace must be an absolute URI (ex 'http://',

Genero Web Services

200

'file://').
Throws an exception in case of errors, and updates status
with an error code.

getElementById(
 id STRING)
 RETURNING
xml.DomNode

Returns the Element that has an attribute of type ID with
the given value, or NULL if there is none.
Note: Attributes with the name "ID" or "id" are not of type
ID unless so defined with setIdAttribute or
setIdAttributeNS. However, there is a specific attribute
called xml:id and belonging to the namespace
http://www.w3.org/XML/1998/namespace that is always
of type ID even if not set with setIdAttributeNS.
Throws an exception in case of errors, and updates status
with an error code.

Usage

DomDocument navigation functions deal with nodes immediately under the
DomDocument object, except for search features. To navigate through all the nodes,
you can refer to the navigation functions of the class xml.DomNode.

<?xml version="1.0" encoding="ISO-8859-1"?><?xml-stylesheet
type="text/xsl" href="card.xsl"?>
<!-- demo card --><CardList xml:id="1" >[...]</CardList>

The first node of the document is xml-stylesheet. Use getFirstDocumentNode to get
the node.
The element at position 2 is the comment <!-- demo card -->. Use
getDocumentNodeItem function to get the node.
The last node of the document is CardList. Use getLastDocumentNode to get the node.
The number of node of the document is 3. This is result of function
getDocumentNodesCount. This function only count the number of children immediately
under the DomDocument.
Note that the first line of the example, <?xml version="1.0" encoding="ISO-8859-
1"?>, is not considered as a node. To access to the information of the first line, use
getXmlVersion and getXmlEncoding functions.
Caution, if the example is in pretty printed format, the results are not the same. There
are addition text nodes representing the carriage returns.

<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type="text/xsl" href="card.xsl"?>
<!-- demo card -->
<CardList xml:id="1" >
[...]
</CardList>

See Cautions section for more details.

You can select nodes using their tag names, by XPath, or by their attributes value (if of
type ID, xml:id for example). The getElementsbyTagName and
getElementsbyTagNameNS methods return a DomNodeList object, unlike the other

201

methods that return a DomNode object. The DomNodeList is restricted to contain
objects with the same tag name and/or namespace. The selectByXPath method also
returns a DomNodeList object, but each node can have a different name.

getElementsByTagNameNS("message","http://schemas.xmlsoap.org/wsdl/")

Get the message nodes that have http://schemas.xmlsoap.org/wsdl/ as
the namespace.

getElementsByTagNameNS("message","*")

Get all the message nodes, regardless of the namespace they have.

getElementsByTagName("message")

Get all the message nodes that do not have any namespace.

selectByXPath("//xs:element", NULL)

Get all the xs:element nodes that has a namespace corresponding to
prefix xs.

selectByXPath("//Card", NULL)

Get all the Card nodes that do not have any namespace.

getElementById("1")

Get the unique node whose attribute of type ID has a value of "1".

Management methods

Object Methods
Name Description
importNode(
 node xml.DomNode,
 deep INTEGER)
 RETURNING xml.DomNode

Imports a DomNode from a DomDocument object into
this DomDocument object, where node is the node to
import. When deep is FALSE only the node is imported;
when TRUE the node and all its child nodes are
imported. Returns the DomNode object that has been
imported to this DomDocument, or NULL.
Note: Document and Document Type nodes cannot be
imported.
Throws an exception in case of errors, and updates
status with an error code.

Genero Web Services

202

clone()
 RETURNING
xml.DomDocument

Returns a copy of this DomDocument object, or NULL.

appendDocumentNode(
 node xml.DomNode)

Adds a child DomNode object to the end of the
DomNode children for this DomDocument object, where
node is the node to add. Status is updated with an error
code.
Note: Only Text nodes, Processing Instruction nodes,
Document Fragment nodes, one Element node and one
Document Type node allowed.
Throws an exception in case of errors, and updates
status with an error code.

prependDocumentNode(
 node xml.DomNode)

Adds a child DomNode object to the beginning of the
DomNode children for this DomDocument object (Not
part of W3C API); node is the node to add.
Note: Only Text nodes, Processing Instruction nodes,
Document Fragment nodes, one Element node and one
Document Type node allowed.
Throws an exception in case of errors, and updates
status with an error code.

insertBeforeDocumentNode(
 node xml.DomNode,
 ref xml.DomNode)

Inserts a child DomNode object before another child
DomNode for this DomDocument object;.node is the
node to insert, ref is the reference node - the node
before which the new node must be inserted.
Note: Only Text nodes, Processing Instruction nodes,
Document Fragment nodes, one Element node and one
Document Type node allowed.
Throws an exception in case of errors, and updates
status with an error code.

insertAfterDocumentNode(
 node xml.DomNode,
 ref xml.DomNode)

Inserts a child DomNode object after another child
DomNode for this DomDocument object (Not part of
W3C API); node is the node to insert; ref is the
reference node - the node after which the new node
must be inserted.
Note: Only Text nodes, Processing Instruction nodes,
Document Fragment nodes, one Element node and one
Document Type node allowed.
Throws an exception in case of errors, and updates
status with an error code.

removeDocumentNode(
 node xml.DomNode)

Removes a child DomNode object from the DomNode
children for this DomDocument object, where node is
the node to remove.
Note: Only Text nodes, Processing Instruction nodes,
Element nodes and Document Type nodes allowed.
Throws an exception in case of errors, and updates
status with an error code.

declareNamespace(
 node xml.DomNode,
 alias STRING,
 ns STRING)

Forces namespace declaration to an XML Element
DomNode for this DomDocument object (Not part of
W3C API); node is the XML Element DomNode that
carries the namespace definition; alias is the alias of the

203

namespace to declare, or NULL to declare the default
namespace; ns is the URI of the namespace to declare
(can only be NULL if alias is NULL).
Throws an exception in case of errors, and updates
status with an error code.

Node creation methods

Object Methods
Name Description
createNode(
 str STRING)
 RETURNING xml.DomNode

Creates an XML DomNode object from a string for
this DomDocument object (not part of W3C API);
str is the string representation of the DomNode to
be created. Returns a DomNode object, or NULL.
Throws an exception in case of errors, and updates
status with an error code.

createElement(
 name STRING)
 RETURNING xml.DomNode

Creates an XML Element DomNode object for this
DomDocument object, where name is the name of
the XML element, cannot be NULL. Returns a
DomNode object, or NULL.
Throws an exception in case of errors, and updates
status with an error code.

createElementNS(|
 prefix STRING,
 name STRING,
 ns STRING)
 RETURNING xml.DomNode

Creates an XML namespace-qualified Element
DomNode object for this DomDocument object,
where prefix is the prefix of the XML element, or
NULL to use the default namespace; name is the
name of the XML element, cannot be NULL; ns is
the namespace URI of the XML element, cannot be
NULL. Returns a DomNode object, or NULL.
Throws an exception in case of errors, and updates
status with an error code.

createAttribute(
 name STRING)
 RETURNING xml.DomNode

Creates an XML Attribute DomNode object for a
DomDocument object, where name is the name of
the XML attribute, cannot be NULL. Returns a
DomNode object, or NULL.
Note: To create a default namespace declaration
attribute use xmlns as the name. (Using
declareNamespace instead is recommended.)
Throws an exception in case of errors, and updates
status with an error code.

createAttributeNS(
 prefix STRING,
 name STRING,
 ns STRING)

Creates an XML namespace-qualified Attribute
DomNode object for this DomDocument object,
where prefix is the prefix of the XML attribute,
cannot be NULL; name is the name of the XML

Genero Web Services

204

 RETURNING xml.DomNode attribute, cannot be NULL; ns is the namespace
URI of the XML attribute, cannot be NULL. Returns
a DomNode object, or NULL.
Note: To create a namespace declaration attribute
use xmlns as the prefix and
http://www.w3.org/XML/1998/namespace as the
namespace. (Using declareNamespace instead is
recommended.)
Throws an exception in case of errors, and updates
status with an error code.

createTextNode(
 text STRING)
 RETURNING xml.DomNode

Creates an XML Text DomNode object for this
DomDocument object, where text is the data of the
XML Text node, or NULL. Returns a DomNode
object, or NULL.
Note: Only the characters #x9, #xA, #xD, [#x20-
#xD7FF], [#xE000-#xFFFD] and [#x10000-
#x10FFFF] are allowed in the content of an XML
Text node. The saveToFile() and normalize()
methods will fail if characters other than those
allowed exist in a Text node.

createComment(
 comment STRING)
 RETURNING xml.DomNode

Creates an XML Comment DomNode object for this
DomDocument object, where comment is the data
of the XML Comment node, or NULL. Returns a
DomNode object, or NULL.
Note: Only the characters #x9, #xA, #xD, [#x20-
#xD7FF], [#xE000-#xFFFD] and [#x10000-
#x10FFFF] are allowed in the content of an XML
Comment node.
The character sequence (Double-Hyphen) '--' is not
allowed in the content of an XML Comment node.
The saveToFile() and normalize() methods
will fail if this sequence or characters other than
those allowed exist in a Comment node.

createCDATASection(
 cdata STRING)
 RETURNING xml.DomNode

Creates an XML CData DomNode object for this
DomDocument object, where cdata is the data of
the XML CData node, or NULL. Returns a
DomNode object, or NULL.
Note: Only the characters #x9, #xA, #xD, [#x20-
#xD7FF], [#xE000-#xFFFD] and [#x10000-
#x10FFFF] are allowed in the content of an XML
CDATASection node.
The character sequence (Double-Hyphen) '--' is not
allowed in the content of an XML CDATASection
node. The saveToFile() and normalize()
methods will fail if this sequence or characters other
than those allowed exist in a CDATASection node.

createEntityReference(
 ref STRING)
 RETURNING xml.DomNode

Creates an XML EntityReference DomNode object
for this DomDocument object, where ref is the name
of the entity reference Returns a DomNode object,
or NULL.
Note: An Entity Reference node is read-only and

205

cannot be modified.
Throws an exception in case of errors, and updates
status with an error code.

createProcessingInstruction(
 target STRING,
 data STRING)
 RETURNING xml.DomNode

Creates an XML Processing Instruction DomNode
object for this DomDocument object, where target is
the target part of the XML Processing Instruction,
cannot be NULL; data is the data part of the XML
Processing Instruction, or NULL. Returns a
DomNode object, or NULL.
Note: Only the characters #x9, #xA, #xD, [#x20-
#xD7FF], [#xE000-#xFFFD] and [#x10000-
#x10FFFF] are allowed in the content of an XML
Processing Instruction node.
The character sequence (Double-Hyphen) '--' is not
allowed in the content of an XML Processing
Instruction. The saveToFile() and normalize()
methods will fail if this sequence or characters other
than those allowed exist in a Processing Instruction
node.
Throws an exception in case of errors, and updates
status with an error code.

createDocumentType(
 name STRING,
 publicID STRING,
 systemID STRING,
 internalDTD STRING)
 RETURNING xml.DomNode

Creates an XML Document Type (DTD) DomNode
object for this DomDocument object (Not part of
W3C API); name is the name of the document type;
publicId is the URI of the public identifier or NULL;
systemId is the URL of the system identifier or
NULL (Specifies the file location of the external
DTD subset); internalDTD is the internal DTD
subset or NULL. Returns a DomNode object, or
NULL if internalDTD is malformed.
Note: Only internal DTDs are supported.
Note: The public identifier cannot be set without the
system identifier.
Throws an exception in case of errors, and updates
status with an error code.

createDocumentFragment()
 RETURNING xml.DomNode

Creates an XML Document Fragment DomNode
object for this DomDocument object. Returns a
DomNode object, or NULL.

Usage

Creating a node for the DomDocument are done in two steps:

• create the node
• add the node to the DomDocument

Each time you create a node you need to append it at the right place in the
DomDocument. To add a node the document use the DomDocument management
methods or the DomNode manipulation methods.

Genero Web Services

206

createNode("<LastName>PATTERSON</LastName><FirstName>Andrew</FirstName>
")

Creates a structure of nodes.

createElement("CardList")

Produces
<CardList>

createElementNS("cny","Company","http://www.mysite.com/")

Produces
<cny:Company xmlns:cny="http://www.mysite.com/" /> or
<cny:Company />. See Cautions for more details.

createAttribute("Country")

Creates a Country attribute node.
To set a value to the attribute use the method setNodeValue of the
xml.DomNomde class. To add the attribute to an element node use the
method setAttributeNode of the xml.DomNode class.

createAttributeNS("tw","Town","http://www.mysite.com/cities")

Produces
xmlns:tw="http://www.mysite.com/cities" tw:Town=""
To set a value to the attribute use the method setNodeValue of the
xml.DomNomde class. To add the attribute to an element node use the
method setAttributeNodeNS of the xml.DomNode class. For optimization
reasons, the namespace is not written aside the attribute until the saving
of the DomDocument. When accessing the element node, the
namespace is not listed in the list of children. In the example above,
tw:Town="" is in the list of children not
xmlns:tw="http://www.mysite.com/cities". To access the
namespace during the DomDocument building use the method normalize
first. Normalize write the namespace declaration at the appropriate place.
If there is no previous declaration, it will be accessible as an attribute of
this element otherwise it will be an attribute of one of the ancestors of the
element.

createTextNode("My Company")

Creates a text node.

createComment("End of the card")

Produces
<!--End of the card-->

207

createCDATASection("<website>My
Company</website>")

Produces
<![CDATA[<website>My
Company</website>]]>

createEntityReference("title")

Creates the entity reference &title.

createProcessingInstruction("xml-stylesheet","type=\"text/xsl\"
href=\"card.xsl\"")

Produces
<?xml-stylesheet type="text/xsl" href="card.xsl"?>

createDocumentType("Card",NULL,NULL,"<!ELEMENT Card
(lastname,firstname,company,location)>")

Produces
<!DOCTYPE Card [<!ELEMENT Card (lastname , firstname ,
company , location)>]>
Only inline DTD are supported. The DTD has to been inserted in the
DomDocument at an appropriate place.

createDocumentFragment

Is a method that creates a lighweight DomDocument. It represents a sub-
tree of nodes that do not need to conform to well-formed XML rules. This
makes DocumentFragment easier to manipulate than a DomDocument.

for i=1 to 5
 let node = doc.createelement("Card")
 call root.appendchild(node)
end for

This produces a sub-tree with 5 Card nodes that do not have any root
node. Once the sub-tree is completed, it can be added to the
DomDocument object like any other node.

Load and save methods

Object Methods

Genero Web Services

208

Name Description
normalize() Normalizes the entire Document. This method

merges adjacent Text nodes, removes empty
Text nodes and sets namespace declarations
as if the document had been saved.
See getErrorsCount() and
getErrorDescription() to retrieve error
messages related to XML document
normalization.
Throws an exception in case of errors, and
updates status with an error code.

load(
 url STRING)

Loads an XML Document into a DomDocument
object from a file or an URL, where url is a valid
URL or the name of the file.
Note: Only the following kinds of URLs are
supported: http://, https://, tcp://, tcps://, file:///
and alias://. See FGLPROFILE Configuration
for more details about URL mapping with
aliases, and for proxy and security
configuration.
Note: See setFeature() to specify how the
document can be loaded.
Note: See getErrorsCount() and
getErrorDescription() to retrieve error
messages related to XML document loading.
Throws an exception in case of errors, and
updates status with an error code.

loadFromString(
 str STRING)

Loads an XML Document into a DomDocument
object from a string where str is the string to
load. (Not part of W3C API).
Note: See setFeature() to specify how the
document can be loaded.
Note: See getErrorsCount() and
getErrorDescription() to retrieve error
messages related to XML document loading.
Throws an exception in case of errors, and
updates status with an error code.

save(
 url STRING)

Saves a DomDocument object as an XML
Document to a file or URL, where url is a valid
URL or the name of the file.
Note: Only the following kinds of URLs are
supported: http://, https://, tcp://, tcps://, file:///
and alias://. See FGLPROFILE Configuration
for more details about URL mapping with
aliases, and for proxy and security
configuration.
Note: See setFeature() to specify how the
document can be saved.
Note: See getErrorsCount() and
getErrorDescription() to retrieve error

209

messages related to XML document saving.
Throws an exception in case of errors, and
updates status with an error code.

saveToString()
 RETURNING STRING

Saves a DomDocument object as an XML
Document to a string. Returns the string that will
contain the resulting document. (Not part of
W3C API).
Note: See setFeature() to specify how the
document can be saved.
Note: See getErrorsCount() and
getErrorDescription() to retrieve error
messages related to XML document saving.
Throws an exception in case of errors, and
updates status with an error code.

Usage

You can load an existing xml document. Before loading an xml document you need to
create the DomDocument object.

A DomDocument can load files using different URI: http://, https://, tcp://, tcps://, file://
and alias://. Use getErrorsCount() and getErrorDescription() to display errors
about the document loading.

load("data.xml")
load("http://www.w3schools.com/xml/cd_catalog.xml")
load("https://localhost:6394/ws/r/calculator?WSDL")
load("file:///data/cd_catalog.xml")
load("tcp://localhost:4242/")
load("tcps://localhost:4243/")
load("alias://demo")
where demo alias is defined in fglprofile as ws.demo.url =
"http://www.w3schools.com/xml/cd_catalog.xml"

loadfromstring("<List><elt>First element</elt><elt>Second element</elt>
<elt>Third element</elt></List>")

Produces a sub-tree with a root node List and three nodes elt and
three textnode.

A DomDocument can be saved at different URI begining with: http://, https://, tcp://,
tcps://, file:// and alias://. Use getErrorsCount() and getErrorDescription() to
display errors about the document saving.

save("myfile.xml")
save("http://myserver:8080/data/save1.xml")
save("file:///data/save.xml")
save("tcp://localhost:4242/")
save("alias://test")

Genero Web Services

210

where test alias is defined in fglprofile as ws.test.url =
"http://localhost:8080/data/save3.xml"

saveToString saves the DomDocument in a string. Use getErrorsCount() and
getErrorDescription()to display errors about the document saving

normalize function emulates a DomDocument save and load. It can be called at any
stage of the DomDocument building. This removes empty Text nodes and sets
namespace declarations as if the document had been saved.

Configuration methods

Object Methods
Name Description
setFeature(
 feature STRING,
 value STRING)

Sets a feature for the DomDocument object, where
feature is the name of a DomDocument Feature, and
value is the value of a feature.
Throws an exception in case of errors, and updates
status with an error code.

getFeature(
 feature STRING)
 RETURNING STRING

Gets a feature for the DomDocument object, where
feature is the name of the DomDocument Feature.
Returns the value of the feature.
Throws an exception in case of errors, and updates
status with an error code.

getXmlVersion()
 RETURNING STRING

Returns the document version as defined in the XML
document declaration, which is 1.0. No other versions
are supported.

getXmlEncoding()
 RETURNING STRING

Returns the document encoding as defined in the
XML document declaration, or NULL if there is none.

setXmlEncoding(
 enc STRING)

Sets the XML document encoding in the XML
declaration, or NULL.
Throws an exception in case of errors, and updates
status with an error code.

isXmlStandalone()
 RETURNING INTEGER

Returns whether the XML standalone attribute is set
in the XML declaration. Returns TRUE if the
standalone attribute in the XML declaration is set to
yes.

setXmlStandalone(
 alone INTEGER)

Sets the XML standalone attribute in the XML
declaration to yes or no in the XML declaration, or
NULL.

211

Validation methods

Object Methods
Name Description
validate()
 RETURNING INTEGER

Performs a DTD or XML Schema validation for this
DomDocument object (Not part of W3C API).
Returns the number of validation errors, or zero if
there are none.
Note: See setFeature() to specify what kind of
validation to do.
Note: See getErrorsCount() and
getErrorDescription()to retrieve error
messages related to validation errors.
Throws an exception in case of errors, and updates
status with an error code.

validateOneElement(
 elt xml.DomNode)
 RETURNING INTEGER

Performs a DTD or XML Schema validation of an
XML Element DomNode object (Not part of W3C
API); node is the XML Element DomNode to
validate. Returns the number of validation errors, or
zero if there are none.
Note: See setFeature() to specify what kind of
validation to do.
Note: See getErrorsCount() and
getErrorDescription() to retrieve error
messages related to validation errors.
Throws an exception in case of errors, and updates
status with an error code.

Error management methods

Object Methods
Name Description
getErrorsCount()
 RETURNING INTEGER

Returns the number of errors encountered during
the loading, the saving or the validation of an XML
document (Not part of W3C API). Returns the
number of errors, or zero if there are none.

getErrorDescription(
 pos INTEGER)
 RETURNING STRING

Returns the error description at given position
(Not part of W3C API); pos is the position of the
error description (index starts at 1). Returns a
string with an error description.
Throws an exception in case of errors, and

Genero Web Services

212

updates status with an error code.

Usage

for i=1 to doc.getErrorsCount()
 display "[", i, "] ", doc.getErrorDescription(i)
end for

Displays all the errors encountered in the save, load or validate of doc DomDocument.

To display other errors, use the global variable status to get the error code and
err_get(status) or sqlca.sqlerrm to get the description of the error. See error code for
more details.

Cautions

Whitespaces, line feeds and carriage returns between elements are represented as text
nodes in memory. An XML document written in a single line and a human readable
(pretty printed format) do not have the same representation in the DomDocument. Take
this under account when navigating in the document.

If a DomNode is not attached to a DomDocument and not referenced by any variable it
can be destroyed. If one child of this node is still referenced, this child is not destroyed
but its parent and the others node of the sub-tree are destroyed. To check if a node is
attached to a DomDocument use isAttached method.

DomDocument remains in memory if any of its node is still referenced in a variable.

DomDocument Features

Feature Description
format-
pretty-print

Formats the output by adding white space to produce a pretty-printed,
indented, human-readable form.
Note: Default value is FALSE.

comments Defines whether the XML comments are kept during the load of a
document
into a DomDocument object.
Note: default value is TRUE.

whitespace-
in-element-

Defines whether XML Text nodes that can be considered "Ignorable" are
kept during the load of an XML document into a DomDocument object.

213

content Note: default value is TRUE.
cdata-
sections

Defines whether XML CData nodes are kept or replaced by XML Text
nodes during the load of an XML document into a DomDocument object.
Note: default value is TRUE.

expand-
entity-
references

Defines whether XML EntityReference nodes are kept or replaced during
the load of an XML document into a DomDocument object.
Note: default value is TRUE.

validation-
type

Defines what kind of validation should be performed.
Note: Only DTD and Schema are allowed (default is Schema)

external-
schemaLoca
tion

Defines a list of namespace-qualified XML schemas to use for validation
on a DomDocument object.
Note: Value is a space-separated string of one or several pairs of strings
representing the namespace URI of the schema, followed by its location.
Example : "http://tempuri/org/NS mySchema1.xsd http://www.4js.c
om mySchema2.xsd"

external-
noNamespac
eSchemaLoc
ation

Defines a list of XML schemas to use for validation on a DomDocument
object.
Note: Value is a space-separated string of one or several strings
representing the location of a schema.
Example : "mySchema1.xsd mySchema2.xsd"

schema-
uriRecovery

Resolves or changes the location of an XML schema referenced by
import tags and namespace URIs in other schemas.
Note: Value is a space-separated string of one or several pairs of strings
representing the namespace URI to recover, followed by its location.
Example: "http://tempuri/org/NS myFile.xsd http://www.4js.com myFJS
.xsd"

Examples

Example 1 : Create a namespace qualified document with processing
instructions

To get following XML document on disk:

 <?Target1 This is my first PI ?>
 <MyPre:RootNode xmlns:MyPre="http://www.tempuri.org" >
 <MyPre:Element />
 </MyPre:RootNode>
 <?Target2 This is my last PI ?>

You must write following code:

 IMPORT xml

 MAIN
 DEFINE doc xml.DomDocument

Genero Web Services

214

 DEFINE pi xml.DomNode
 DEFINE node xml.DomNode
 DEFINE elt xml.DomNode

 # Create a document with an initial namespace qualified root
node
 LET doc =
xml.DomDocument.CreateNS("MyPre","RootNode","http://www.tempuri.org")
 # Create a Processing instruction
 LET pi = doc.createProcessingInstruction("Target1,"This is my
first PI")
 # And add it at the begining of the document
 CALL doc.prependDocumentNode(pi)
 # Create another Processing instruction
 LET pi = doc.createProcessingInstruction("Target2,"This is my
last PI")
 # And add it at the end of the document
 CALL doc.appendDocumentNode(pi)
 # Retrieve initial root node of the document
 LET elt = doc.getDocumentElement()
 # Create a new Element node
 LET node =
doc.createElement("MyPre","Element","http://www.tempuri.org")
 # And add it as child of the RootNode
 CALL elt.appendChild(node)
 # Then save the document on disk
 CALL doc.save("MyFile.xml")
 END MAIN

Example 2 : Validating a document against XML schemas or a DTD

Following code loads one or more XML schemas or uses an embedded DTD to
validate against a XML document:

 IMPORT xml

 MAIN
 DEFINE location STRING
 DEFINE xmlfile STRING
 DEFINE doc xml.DomDocument
 DEFINE ind INTEGER

 IF num_args()THEN
 # Checks the number of arguments
 CALL ExitHelp()
 ELSE
 LET doc = xml.DomDocument.Create()
 LET xmlfile = arg_val(num_args())
 IF num_args() == 2 AND arg_val(1) == "-dtd" THEN
 # User choosed DTD validation
 CALL doc.setFeature("validation-type","DTD")
 ELSE

215

 # User choosed XML Schema validation
 IF arg_val(1) == "-ns" THEN
 # Handle namespace qualified XML schemas
 IF num_args() MOD 2 != 0 THEN
 CALL ExitHelp()
 END IF
 FOR ind = 2 TO num_args()-1 STEP 2
 IF location IS NULL THEN
 LET location = arg_val(ind) || " " ||
arg_val(ind+1)
 ELSE
 LET location = location || " " || arg_val(ind)
|| " " || arg_val(ind+1)
 END IF
 END FOR
 TRY
 CALL doc.setFeature("external-
schemaLocation",location)
 CATCH
 FOR ind = 1 TO doc.getErrorsCount()
 DISPLAY "Schema error ("||ind||")
:",doc.getErrorDescription(ind)
 END FOR
 EXIT PROGRAM (-1)
 END TRY
 ELSE
 # Handle unqualified XML schemas
 FOR ind = 1 TO num_args()-1
 IF location IS NULL THEN
 LET location = arg_val(ind)
 ELSE
 LET location = location || " " || arg_val(ind)
 END IF
 END FOR
 TRY
 CALL doc.setFeature("external-
noNamespaceSchemaLocation",location)
 CATCH
 FOR ind = 1 TO doc.getErrorsCount()
 DISPLAY "Schema error ("||ind||")
:",doc.getErrorDescription(ind)
 END FOR
 EXIT PROGRAM (-1)
 END TRY
 END IF
 END IF
 END IF
 TRY
 # Load XML document from disk
 CALL doc.load(xmlfile)
 CATCH
 # Display errors if loading failed
 IF doc.getErrorsCount()>0 THEN
 FOR ind = 1 TO doc.getErrorsCount()
 DISPLAY "LOADING ERROR #"||ind||"
:",doc.getErrorDescription(ind)

Genero Web Services

216

 END FOR
 EXIT PROGRAM(-1)
 ELSE
 DISPLAY "Unable to load file :",xmlfile
 EXIT PROGRAM(-1)
 END IF
 END TRY
 TRY
 # Validate loaded document
 LET ind = doc.validate()
 IF ind == 0 THEN
 # Successful validation
 DISPLAY "OK"
 ELSE
 # Display validation errors
 FOR ind = 1 TO doc.getErrorsCount()
 DISPLAY "VALIDATING ERROR #"||ind||"
:",doc.getErrorDescription(ind)
 END FOR
 EXIT PROGRAM(-1)
 END IF
 CATCH
 DISPLAY "Unable to validate file :",xmlfile
 EXIT PROGRAM(-1)
 END TRY
 END MAIN

 # Display help
 FUNCTION ExitHelp()
 DISPLAY "Validator < -dtd | -ns [namespace schema]+ |
[schema]+ > xmlfile"
 EXIT PROGRAM
 END FUNCTION

Examples

$ fglrun Validator -dtd MyFile.xml Validates XML file using DTD embedded in the
XML file

$ fglrun Validator Schema1.xsd Schema2.xsd MyFile.xml Validates unqualified
XML file using two unqualified XML schemas

$ fglrun Validator -ns http://tempuri.org/one Schema1.xsd http://tempuri.org/two
Schema2.xsd MyFile.xml Validates namespace qualified XML file using two
namespace qualified XML schemas

217

The DomNode class
Summary:

• Syntax
• Methods
• Example

o Counting the number of nodes in an XML document

See also: The Genero Web Services XML Extension Library

Syntax

The DomNode class provides methods to manipulate a node of a DomDocument
object. You can create a DomNode object using creation methods in the DomDocument
class. Notice that status is set to zero after a successful method call.

Syntax

xml.DomNode

Methods

• Navigation
• Manipulation
• Access
• Modifier
• Attributes
• Search

Navigation methods

Object Methods
Name Description
getParentNode() RETURNING
xml.DomNode

Returns the parent DomNode object for this
DomNode object, or NULL. In the case of a
DomDocument node, this method will return
NULL (parent is not a DomNode object) but
isAttached() will return TRUE.

getFirstChild() RETURNING
xml.DomNode

Returns the first child DomNode object for this
XML Element DomNode object, or NULL.

getFirstChildElement() RETURNING Returns the first XML Element child DomNode

Genero Web Services

218

xml.DomNode object for this DomNode object, or NULL. (Not
part of W3C API).

getLastChild() RETURNING
xml.DomNode

Returns the last child DomNode object for this
XML Element DomNode object, or NULL.

getLastChildElement() RETURNING
xml.DomNode

Returns the last child XML element DomNode
object for this DomNode object, or NULL. (Not
part of W3C API).

getNextSibling() RETURNING
xml.DomNode

Returns the DomNode object immediately
following this DomNode object, or NULL.

getNextSiblingElement()
RETURNING xml.DomNode

Returns the XML Element DomNode object
immediately following this DomNode object, or
NULL. (Not part of W3C API).

getPreviousSibling() RETURNING
xml.DomNode

Returns the DomNode object immediately
preceding this DomNode object, or NULL.

getPreviousSiblingElement()
RETURNING xml.DomNode

Returns the XML Element DomNode object
immediately preceding this DomNode object, or
NULL. (Not part of W3C API).

getOwnerDocument() RETURNING
xml.DomDocument

Returns the DomDocument object containing
this DomNode object, or NULL.

hasChildNodes() RETURNING
INTEGER

Returns TRUE if this node has child nodes;
otherwise, returns FALSE.

getChildrenCount() RETURNING
INTEGER

Returns the number of child DomNode objects
for this DomNode object.

getChildNodeItem(pos INTEGER)
 RETURNING xml.DomNode

Returns the child DomNode object at a given
position for this DomNode object.
Throws an exception in case of errors, and
updates status with an error code.

Manipulation methods

Object Methods
Name Description
prependChildElement(name STRING)
 RETURNING xml.DomNode

Creates and adds a child XML Element node
to the beginning of the list of child nodes for
this XML Element DomNode object (Not part
of W3C API); name is the name of the XML
element to add. Returns the XML Element
DomNode object, or NULL.
Throws an exception in case of errors, and
updates status with an error code.

prependChildElementNS(prefix
STRING,name STRING,
 ns STRING) RETURNING
xml.DomNode

Creates and adds a child namespace-qualified
XML Element node to the beginning of the list
of child nodes for this XML Element DomNode
object (Not part of W3C API); name is the

219

name of the XML Element to add; ns is the
namespace URI of the XML Element to add.
Returns the XML Element DomNode object, or
NULL.
Throws an exception in case of errors, and
updates status with an error code.

addPreviousSibling(node
xml.DomNode)

Adds a DomNode object as the previous
sibling of this DomNode object (Not part of
W3C API); node is the node to add.
Note: The DomNode object node must be the
child of an element or document node;
otherwise, the operation fails.
Throws an exception in case of errors, and
updates status with an error code.

addNextSibling(node xml.DomNode) Adds a DomNode object as the next sibling of
this DomNode object (Not part of W3C API);
node is the node to add.
Note: The DomNode object node must be the
child of an element or document node;
otherwise, the operation fails.
Throws an exception in case of errors, and
updates status with an error code.

prependChild(node xml.DomNode) Adds a child DomNode object to the beginning
of the child list for this DomNode object (Not
part of W3C API); node is the node to add.
Note: The DomNode object node must be the
child of an element or document node;
otherwise, the operation fails.
Throws an exception in case of errors, and
updates status with an error code.

appendChild(node xml.DomNode) Adds a child DomNode object to the end of the
child list for this DomNode object; node is the
node to add.
Note: The DomNode object node must be the
child of an element or document node;
otherwise, the operation fails.
Throws an exception in case of errors, and
updates status with an error code.

insertBeforeChild(node
xml.DomNode,ref xml.DomNode)

Inserts a DomNode object before an existing
child DomNode object; node is the node to
insert, ref is the reference node - the node
before which the new node must be inserted.
Throws an exception in case of errors, and
updates status with an error code.

insertAfterChild(node
xml.DomNode,ref xml.DomNode)

Inserts a DomNode object after an existing
child DomNode object (Not part of W3C API);
node is the node to insert, ref is the reference
node - the node after which the new node must
be inserted.
Throws an exception in case of errors, and

Genero Web Services

220

updates status with an error code.
removeChild(node xml.DomNode) Removes a child DomNode object from the list

of child DomNode objects, where node is the
node to remove.
Throws an exception in case of errors, and
updates status with an error code.

replaceChild(new xml.DomNode,old
xml.DomNode)

Replaces an existing child DomNode with
another child DomNode object, where old is
the child to be replaced and new is the
replacement child.
Throws an exception in case of errors, and
updates status with an error code.

appendChildElement(name STRING)
 RETURNING xml.DomNode

Creates and adds a child XML Element node
to the end of the list of child nodes for this XML
Element DomNode object (Not part of W3C
API); name is the XML Element name. Returns
the XML Element DomNode object, or NULL.
Throws an exception in case of errors, and
updates status with an error code.

appendChildElementNS(prefix
STRING,name STRING,
 ns STRING) RETURNING
xml.DomNode

Creates and adds a child namespace qualified
XML Element node to the end of the list of
child nodes for this XML Element DomNode
object (Not part of W3C API); prefix is the
prefix of the XML Element to add; name is the
name of the XML Element to add; ns is the
namespace URI of the XML Element to add.
Returns the XML Element DomNode object, or
NULL.
Throws an exception in case of errors, and
updates status with an error code.

clone(deep INTEGER) RETURNING
xml.DomNode

Returns a duplicate DomNode object of this
node. If deep is TRUE, child DomNode objects
are cloned too; otherwise, only the DomNode
itself is cloned. Returns a copy of this
DomNode object, or NULL.*
Throws an exception in case of errors, and
updates status with an error code.

Access methods

Object Methods
Name Description
getNodeType() RETURNING STRING Gets the XML type for this DomNode object;

returns one of the XML DomNode types, or
NULL.

getLocalName() RETURNING STRING Gets the local name for this DomNode object. If

221

DomNode has a qualified name, only the local
part is returned.

getNodeName() RETURNING STRING Gets the name for this DomNode object; returns

the qualified name of this DomNode object, or
NULL. If DomNode does not have a qualified
name, the local part is returned.

getNamespaceURI()RETURNING
STRING

Returns the namespace URI for this DomNode
object, or NULL.

getNodeValue() RETURNING STRING Returns the value for this DomNode object, or
NULL.

getPrefix() RETURNING STRING Returns the prefix for this DomNode object, or
NULL.

isAttached() RETURNING INTEGER Returns whether the node is attached to the
XML document (Not part of W3C API). Returns
TRUE if this DomNode object is attached to a
DomDocument object as a child and was not
removed later on; otherwise it returns FALSE.

Modifier methods

Object Methods
Name Description
setNodeValue(val STRING) Sets the node value for this DomNode object, where

val is the node value.
Throws an exception in case of errors, and updates
status with an error code.

setPrefix(prefix STRING) Sets the prefix for this DomNode object.
Note: This method is only valid on namespace
qualified Element or Attribute nodes.
Throws an exception in case of errors, and updates
status with an error code.

toString() RETURNING STRING Returns a string representation of this DomNode
object, or NULL (Not part of W3C API).
Throws an exception in case of errors, and updates
status with an error code.

Genero Web Services

222

Attributes methods

Object Methods
Name Description
hasAttribute(name STRING)
RETURNING INTEGER

Checks whether this XML Element DomNode
object has the XML Attribute specified by name.
Returns TRUE if an XML Attribute with the given
name is carried by this XML Element DomNode
object; otherwise, returns FALSE.
Throws an exception in case of errors, and
updates status with an error code.

hasAttributeNS(name STRING,ns
STRING)
 RETURNING INTEGER

Checks whether a namespace qualified XML
Attribute of a given name is carried by this XML
Element DomNode object, where name the name
of the XML Attribute to check ns: the namespace
URI of the XML Attribute to check Returns TRUE
if an XML Attribute with the given name and
namespace URI is carried by this XML Element
DomNode object, FALSE otherwise.
Throws an exception in case of errors, and
updates status with an error code.

getAttributeNode(name STRING)
 RETURNING xml.DomNode

Returns an XML Attribute DomNode object for
this XML Element DomNode object, or NULL;
name is the name of the attribute to retrieve.
Throws an exception in case of errors, and
updates status with an error code.

getAttributeNodeNS(name
STRING,ns STRING)
 RETURNING xml.DomNode

Returns a namespace-qualified XML Attribute
DomNode object for this XML Element DomNode
object, or NULL; name is the name of the XML
Attribute to retrieve and ns is the namespace URI
of the XML Attribute to retrieve.
Throws an exception in case of errors, and
updates status with an error code.

setAttributeNode(node
xml.DomNode)

Sets (or resets) an XML Attribute DomNode
object to an XML Element DomNode object, ,
where node is the XML Attribute DomNode object
to set.
Throws an exception in case of errors, and
updates status with an error code.

setAttributeNodeNS(node
xml.DomNode)

Sets (or resets) a namespace-qualified XML
Attribute DomNode object to an XML Element
DomNode object, where node is the XML
Attribute DomNode object to set.
Throws an exception in case of errors, and
updates status with an error code.

getAttribute(name STRING)
RETURNING STRING

Returns the value of an XML Attribute for this
XML Element DomNode object, where name is
the name of the XML attribute to retrieve; returns
the XML Attribute value, or NULL.

223

Throws an exception in case of errors, and
updates status with an error code.

getAttributeNS(name STRING,ns
STRING)
 RETURNING STRING

Returns the value of a namespace qualified XML
Attribute for this XML Element DomNode object,
where name is the name and ns is the
namespace URI of the XML Attribute to retrieve;
returns the XML Attribute value, or NULL.
Throws an exception in case of errors, and
updates status with an error code.

setAttribute(name STRING,value
STRING)

Sets (or resets) an XML Attribute for this XML
Element DomNode object, where name is the
name of the XML Attribute and val is the value of
the XML Attribute.
Throws an exception in case of errors, and
updates status with an error code.

setAttributeNS(prefix
STRING,name STRING,
 ns STRING,value STRING)

Sets (or resets) a namespace-qualified XML
Attribute for this XML Element DomNode object,
where prefix is the prefix of the XML Attribute,
name is the name of the XML Attribute, ns is the
namespace URI of the XML Attribute, and val is
the value of the XML Attribute.
Throws an exception in case of errors, and
updates status with an error code.

setIdAttribute(name
STRING,isID INTEGER)

Declare (or undeclare) the XML Attribute of given
name to be of type ID. Use the value TRUE for
the parameter isID to declare that attribute for
being a user-determined ID attribute, false
otherwise.
Note: This affects the behavior of
getElementById.
Throws an exception in case of errors, and
updates status with an error code.

setIdAttributeNS(name STRING,
ns STRING,isID INTEGER)

Declare (or undeclare) the namespace-qualified
XML Attribute of given name and namespace to
be of type ID. Use the value TRUE for the
parameter isID to declare that attribute for being a
user-determined ID attribute, false otherwise.
Note: This affects the behavior of
getElementById.
Throws an exception in case of errors, and
updates status with an error code.

removeAttribute(name STRING) Removes an XML Attribute for this XML Element
DomNode object, where name is the name of the
XML attribute to remove. Status is updated with
an error code.
Throws an exception in case of errors, and
updates status with an error code.

removeAttributeNS(name
STRING,ns STRING)

Removes a namespace qualified XML Attribute
for this XML Element DomNode object, where

Genero Web Services

224

name is the name and ns is the namespace URI
of the XML Attribute to remove.
Throws an exception in case of errors, and
updates status with an error code.

hasAttributes() RETURNING
INTEGER

Returns TRUE if this node has XML Attribute
nodes; otherwise, returns FALSE.

getAttributesCount() RETURNING
INTEGER

Returns the number of XML Attribute DomNode
objects on this XML Element DomNode object.
Throws an exception in case of errors, and
updates status with an error code.

getAttributeNodeItem(pos
INTEGER)
 RETURNING Xml.DomNode

Returns the XML Attribute DomNode object at a
given position on this XML Element DomNode
object, where pos is the position of the node to
return (Index starts at 1). Returns the XML
Attribute DomNode object at the given position, or
NULL.
Throws an exception in case of errors, and
updates status with an error code.

Search methods

Object Methods
Name Description
selectByXPath(expr STRING,
NamespacesList ...)
RETURNING xml.DomNodeList

Returns a DomNodeList object containing all
DomNode objects matching an XPath 1.0 expression
(Not part of W3C API); expr is the XPath 1.0
expression, NamespacesList is a list of prefixes
bounded to namespaces in order to resolve qualified
names in the XPath expression. This list must be filled
with an even number of arguments, representing the
prefix and it corresponding namespace.
Examples :
selectByXPath("../../d:Record/*[last()]",
"d", "http://defaultnamespace")
selectByXPath("ns:Record", NULL)
selectByXPath("ns1:Records/ns2:Record",
"ns1", "http://namespace1", "ns2",
"http://namespace2")
selectByXPath("ns1:Record", "ns1") is invalid
because the namespace definition is missing.
Note: If the namespaces list is NULL, the prefixes and
namespaces defined in the document itself are used if
available.
Note: A namespace must be an absolute URI (ex
'http://', 'file://').

225

Throws an exception in case of errors, and updates
status with an error code.

getElementsByTagName(name
STRING)
 RETURNING
xml.DomNodeList

Returns a DomNodeList object containing all XML
Element DomNode objects with the same tag name,
or NULL; name is the name of the XML Element tag to
match, or "*" to match all tags.
Throws an exception in case of errors, and updates
status with an error code.

getElementsByTagNameNS(name
STRING,ns STRING)
 RETURNING
xml.DomNodeList

Returns a DomNodeList object containing all
namespace-qualified XML Element DomNode objects
with the same tag name and namespace, OR NULL.
name is the name of the XML Element tag to match,
or "*" to match all tags; ns is the namespace URI of
the XML Element tag to match, or "*" to match any
namespace.
Throws an exception in case of errors, and updates
status with an error code.

isDefaultNamespace(ns
STRING) RETURNING INTEGER

Checks whether the specified namespace URI is the
default namespace, where ns is the namespace URI
to look for. Returns TRUE if the given namespace is
the default namespace, FALSE otherwise.
Throws an exception in case of errors, and updates
status with an error code.

lookupNamespaceURI(prefix
STRING) RETURNING STRING

Looks up the namespace URI associated to a prefix,
starting from this node, where prefix is the prefix to
look for; if NULL, the default namespace URI will be
returned. Returns a namespace URI, or NULL.
Throws an exception in case of errors, and updates
status with an error code.

lookupPrefix(ns STRING)
RETURNING STRING

Looks up the prefix associated to a namespace URI,
starting from this node, where ns is the namespace
URI to look for. Returns the prefix associated to this
namespace URI, or NULL.
Throws an exception in case of errors, and updates
status with an error code.

Usage

The getElementsByTagName and getElementsByTagNameNS methods return a
DomNodeList object, unlike the other methods that return a DomNode object. The
DomNodeList is restricted to contain objects with the same tag name and/or namespace.

Genero Web Services

226

DomNode types

Type Description
ELEMENT_NODE The DomNode is an XML Element node.
ATTRIBUTE_NODE The DomNode is an XML Attribute node.
TEXT_NODE The DomNode is an XML Text node.
CDATA_SECTION_NODE The DomNode is an XML CData Section

node.
ENTITY_REFERENCE_NODE The DomNode is an XML Entity Reference

node.
PROCESSING_INSTRUCTION_NODE The DomNode is an XML Processing

Instruction node.
COMMENT_NODE The DomNode is an XML Comment node.
DOCUMENT_TYPE_NODE The DomNode is an XML DTD node.
DOCUMENT_FRAGMENT_NODE The DomNode is an XML Document

Fragment node.

Examples

Example 1 : Counting the number of nodes in an XML document

Following code counts the number of nodes of each type :

 IMPORT XML

 DEFINE nbElt INTEGER
 DEFINE nbAttr INTEGER
 DEFINE nbComment INTEGER
 DEFINE nbPI INTEGER
 DEFINE nbTxt INTEGER
 DEFINE nbCData INTEGER

 MAIN
 DEFINE document Xml.DomDocument
 DEFINE ind INTEGER
 # Handle arguments
 IF num_args() !=1 THEN
 CALL ExitHelp()
 END IF
 # Create document, load it, and count the nodes
 LET document = Xml.DomDocument.Create()
 CALL document.load(arg_val(1))
 CALL CountDoc(document)
 # Display result
 DISPLAY "Results: "

227

 DISPLAY " Elements: ",nbElt
 DISPLAY " Attributes:",nbAttr
 DISPLAY " Comments: ",nbComment
 DISPLAY " PI: ",nbPI
 DISPLAY " Texts: ",nbTxt
 DISPLAY " CData: ",nbCData
 END MAIN

 FUNCTION CountDoc(d)
 DEFINE d Xml.DomDocument
 DEFINE n Xml.DomNode
 LET n = d.getFirstDocumentNode()
 WHILE (n IS NOT NULL)
 CALL Count(n)
 LET n = n.getNextSibling()
 END WHILE
 END FUNCTION

 FUNCTION Count(n)
 DEFINE n Xml.DomNode
 DEFINE child Xml.DomNode
 DEFINE next Xml.DomNode
 DEFINE node Xml.DomNode
 DEFINE ind INTEGER
 DEFINE name STRING

 IF n IS NOT NULL THEN
 IF n.getNodeType() == "COMMENT_NODE" THEN
 LET nbComment = nbComment + 1
 END IF
 IF n.getNodeType() == "ATTRIBUTE_NODE" THEN
 LET nbAttr = nbAttr + 1
 END IF
 IF n.getNodeType() == "PROCESSING_INSTRUCTION_NODE "
 THEN
 LET nbPI = nbPI + 1
 END IF
 IF n.getNodeType() == "ELEMENT_NODE" THEN
 LET nbElt = nbElt + 1
 END IF
 IF n.getNodeType() == "TEXT_NODE" THEN
 LET nbTxt = nbTxt +1
 END IF
 IF n.getNodeType() == "CDATA_SECTION_NODE" THEN
 LET nbCData = nbCData + 1
 END IF
 IF n.hasChildNodes() THEN
 LET name = n.getLocalName()
 LET child = n.getFirstChild()
 WHILE (child IS NOT NULL)
 CALL Count(child)
 LET child = child.getNextSibling()
 END WHILE
 END IF
 IF n.hasAttributes() THEN
 FOR ind = 1 TO n.getAttributesCount()

Genero Web Services

228

 LET node = n.getAttributeNodeItem(ind)
 CALL Count(node)
 END FOR
 END IF
 END IF
 END FUNCTION

 FUNCTION ExitHelp()
 DISPLAY "DomCount <xml>"
 EXIT PROGRAM
 END FUNCTION

229

The DomNodeList class
Summary:

• Syntax
• Methods

See also: The Genero Web Services XML Extension Library

Syntax

The DomNodeList class provides methods to manipulate a list of DomNode objects.
You can create a DomNodeList object using selection methods in the DomDocument
and DomNode classes. The relationship between the DomNode objects in the list
depends on the method used to create the DomNodeList object. Notice that status is set
to zero after a successful method call.

Syntax

xml.DomNodeList

Methods

Object Methods
Name Description
getCount() RETURNING
INTEGER

Returns the number of DomNode objects in a
DomNodeList object.

getItem(pos INTEGER)
RETURNING xml.DomNode

Returns the DomNode object at a given position in a
DomNodeList object, where pos is the position of the
DomNode object to return (Index starts at 1); Returns the
DomNode object at the given position in this DomNodeList
object, or NULL.
Throws an exception in case of errors, and updates status
with an error code.

Genero Web Services

230

The Stax Writer class
Summary:

• Syntax
• Methods
• Examples

See also: The Genero Web Services XML Extension Library

Syntax

The StaxWriter class provides methods compatible with StAX (Streaming API for XML),
for writing XML documents. Notice that status is set to zero after a successful method
call.

Syntax

xml.StaxWriter

Methods

• Creation
• Configuration
• Output
• Document
• NameSpace
• Nodes

Creation methods

Class Methods
Name Description
xml.StaxWriter.create()
 RETURNING
xml.StaxWriter

Constructor of a StaxWriter object; returns the StaxWriter
object.

231

Configuration methods

Object Methods
Name Description
setFeature(
 feature STRING,
 value STRING)

Sets a feature of a StaxWriter object, where feature is name of a
feature, and value is the value of the feature. The features can
be changed at any time, but will only be taken into account at the
beginning of a new stream (see writeTo or writeToDocument).
Throws an exception in case of errors, and updates status with
an error code.

getFeature(
 feature STRING)
 RETURNING STRING

Gets a feature of a StaxWriter object, where feature is the name
of a feature; returns the feature value.
Throws an exception in case of errors, and updates status with
an error code.

Output methods

Object Methods
Name Description
writeTo(
 url STRING)

Sets the output stream of the StaxWriter object to a file or an
URL, and starts the streaming; url is a valid URL or the name of
the file that will contain the resulting XML document.
Throws an exception in case of errors, and updates status with
an error code.
Note: Only the following kinds of URLs are supported: http://,
https://, tcp://, tcps://, file:/// and alias://. See FGLPROFILE
Configuration for more details about URL mapping with aliases,
and for proxy and security configuration.

writeToDocument(
 doc
xml.DomDocument)

Sets the output stream of the StaxWriter object to an
Xml.DomDocument object, and starts the streaming; doc is the
empty xml.DomDocument object that will contain the resulting
XML document.
Throws an exception in case of errors, and updates status with
an error code.

close() Closes the StaxWriter streaming, and releases all associated
resources.

Usage

writeTo("printerList.xml")
writeTo("http://myserver:1100/documents/ptinterList.xml")
writeTo("https://myserver:1100/documents/ptinterList.xml")
writeTo("alias://printerlist")

Genero Web Services

232

where printerlistalias is defined in fglprofile as ws.printerlist.url =
"http://myserver:1100/documents/ptinterList.xml".

Document methods

Object Methods
Name Description
startDocument(
 encoding STRING,
 version STRING,
 standalone INTEGER
)

Writes an XML declaration to the StaxWriter stream, where
encoding is the encoding of the XML declaration, or NULL to
use the default UTF-8 encoding; version is the XML version of
the XML declaration, or NULL to use the default 1.0 version;
standalone when TRUE sets the standalone of the XML
declaration to "yes", when FALSE sets it to "no" or NULL.
Throws an exception in case of errors, and updates status with
an error code.

endDocument() Closes any open tags and writes corresponding end tags.
Throws an exception in case of errors, and updates status with
an error code.

dtd(
 data STRING)

Writes a DTD to the StaxWriter stream, where data is a string
representing a valid DTD, cannot be NULL.
Throws an exception in case of errors, and updates status with
an error code.

Usage

startDocument("utf-8","1.0",true)
produces
<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

dtd("note [<!ENTITY writer \"Donald Duck.\">]")

NameSpace methods

Object Methods
Name Description
setPrefix(
 prefix STRING,
 ns STRING)

Binds a namespace URI to a prefix. The prefix scope is the
current START_ELEMENT / END_ELEMENT pair; prefix
is the prefix to be bind to the URI, cannot be NULL; ns is
the namespace URI to be bind to the prefix, cannot be

233

NULL.
Throws an exception in case of errors, and updates status
with an error code.

setDefaultNamespace(
 defaultNS STRING)

Binds a namespace URI to the default namespace. The
default namespace scope is the current
START_ELEMENT / END_ELEMENT pair; defaultNS is
the URI to bind to the default namespace, cannot be
NULL.
Throws an exception in case of errors, and updates status
with an error code.

declareNamespace(
 prefix STRING,
 ns STRING)

Binds a namespace URI to a prefix, and forces the output
of the XML namespace definition to the StaxWriter stream.
The stream must point to a START_ELEMENT, and the
prefix scope is the current START_ELEMENT /
END_ELEMENT pair. prefix is the prefix to be bind to the
URI, cannot be NULL; ns is the URI to bind to the default
namespace, cannot be NULL.
Throws an exception in case of errors, and updates status
with an error code.

declareDefaultNamespace(
 defaultNS STRING)

Binds a namespace URI to the default namespace, and
forces the output of the default XML namespace definition
to the StaxWriter stream. The stream must point to a
START_ELEMENT, and the prefix scope is the current
START_ELEMENT / END_ELEMENT pair; defaultNS is
the URI to bind to the default namespace, cannot be
NULL.
Throws an exception in case of errors, and updates status
with an error code.

Nodes methods

Object Methods
Name Description
startElement(
 name STRING)

Writes an XML start element to the StaxWriter stream. All
startElement methods open a new scope and set the stream
to a START_ELEMENT; then, writing the corresponding
endElement causes the scope to be closed. name is the
local name of the XML start element, cannot be NULL.
Throws an exception in case of errors, and updates status
with an error code.

startElementNS(
 name STRING,
 ns STRING)

Writes a namespace-qualified XML start element to the
StaxWriter stream. All startElementNS methods open a new
scope and set the stream to a START_ELEMENT; then,
writing the corresponding endElement causes the scope to

Genero Web Services

234

be closed. name is the local name of the XML start element,
cannot be NULL; ns is the namespace URI of the XML start
element, cannot be NULL.
If namespace URI has not been bound to a prefix with one of
the functions setPrefix(), declareNamespace(),
setDefaultNamespace() or
declareDefaultNamespace(), the operation will fail with
an exception.
Throws an exception in case of errors, and updates status
with an error code.

emptyElement(
 name STRING)

Writes an empty XML element to the StaxWriter stream,
where name is the local name of the XML empty element,
cannot be NULL.
Throws an exception in case of errors, and updates status
with an error code.

emptyElementNS(
 name STRING,
 ns STRING)

Writes an empty namespace qualified XML element to the
StaxWriter stream, where name is the local name of the XML
empty element, cannot be NULL; ns is the namespace URI
of the XML empty element, cannot be NULL.
If namespace URI has not been bound to a prefix with one of
the functions: setPrefix(), declareNamespace(),
setDefaultNamespace() or
declareDefaultNamespace(), operation will fail with an
exception.
Throws an exception in case of errors, and updates status
with an error code.

endElement() Writes an end tag to the StaxWriter stream relying on the
internal state to determine the prefix and local name of the
last START_ELEMENT.
Throws an exception in case of errors, and updates status
with an error code.

attribute(
 name STRING,
 value STRING)

Writes an XML attribute to the StaxWriter stream, where
name is the local name of the XML attribute, cannot be
NULL; value is the value of the XML attribute, cannot be
NULL.
Attributes can only be written on the StaxWriter stream if it
points to a START_ELEMENT or an EMPTY_ELEMENT,
otherwise the operation will fail with an exception; that is, this
method can only be called after a startElement(),
startElementNS(), emptyElement(),
emptyElementNS() or attribute() and attributeNS().
Throws an exception in case of errors, and updates status
with an error code.

attributeNS(
 name STRING,
 ns STRING,
 value STRING)

Writes an XML namespace qualified attribute to the
StaxWriter stream, where name is the local name of the
XML attribute, cannot be NULL; ns: the namespace URI of
the XML attribute, cannot be NULL; value is the value of the
XML attribute, cannot be NULL.
Attributes can only be written on the StaxWriter stream if it
points to a START_ELEMENT or an EMPTY_ELEMENT,

235

otherwise the operation will fail with an exception; that is, this
method can only be called after a startElement(),
startElementNS(), emptyElement(),
emptyElementNS() or attribute() and attributeNS().
 If namespace URI has not been bound to a prefix with one of
these functions : setPrefix(), declareNamespace(),
setDefaultNamespace() or
declareDefaultNamespace(), the operation will fail with
an exception.
Throws an exception in case of errors, and updates status
with an error code.

processingInstruction(
 target STRING,
 data STRING)

Writes an XML ProcessingInstruction to the StaxWriter
stream, where target is the target of the Processing
Instruction, cannot be NULL; data is the data of the
Processing Instruction, or NULL.
Throws an exception in case of errors, and updates status
with an error code.

comment(
 data STRING)

Writes an XML comment to the StaxWriter stream where
data is the data in the XML comment, or NULL.
Throws an exception in case of errors, and updates status
with an error code.

characters(
 text STRING)

Writes an XML text to the StaxWriter stream, where text is
the value to write, cannot be NULL.
Throws an exception in case of errors, and updates status
with an error code.

cdata(
 data STRING)

Writes an XML CData to the StaxWriter stream, where data
is the data contained in the CData section, or NULL.
Throws an exception in case of errors, and updates status
with an error code.

entityRef(
 name STRING)

Writes an XML EntityReference to the StaxWriter stream,
where name is the name of the entity, cannot be NULL.
Throws an exception in case of errors, and updates status
with an error code.

StaxWriter Features

Feature Description
format-pretty-print Formats the output by adding whitespace to produce a

pretty-printed, indented, human-readable form.
Note: default value is FALSE.

smart-ending-
elements

Outputs each tag closed with an endElement() call, as
empty elements if they have no children.
Note: default value is FALSE.

Genero Web Services

236

Examples

 IMPORT xml

 FUNCTION save(file)
 DEFINE file STRING
 DEFINE writer xml.StaxWriter
 TRY
 LET writer = xml.StaxWriter.Create()
 CALL writer.setFeature("format-pretty-print",TRUE)
 CALL writer.writeTo(file)
 CALL writer.startDocument("utf-8","1.0",true)
 CALL writer.comment("This is my first comment using a
stax writer")
 CALL writer.setPrefix("c","http://www.4js.com/c")
 CALL writer.setPrefix("d","http://www.4js.com/d")
 CALL writer.setDefaultNamespace("http://www.4js.com/d")
 CALL writer.startElementNS("root",
"http://www.4js.com/d")
 CALL writer.attribute("attr1","value1")
 CALL writer.attribute("attr2","value2")
 CALL writer.attributeNS("attr3",
"http://www.4js.com/d","value3")
 CALL writer.comment("This is a comment using a stax
writer")
 CALL writer.startElementNS("eltA",
"http://www.4js.com/d")
 CALL writer.CData("<this is a CData section>")
 CALL writer.endElement()
 CALL writer.startElementNS("eltB",
"http://www.4js.com/c")
 CALL writer.characters("Hello world, I'm from the Four
J's development team")
 CALL writer.entityRef("one")
 CALL writer.endElement()
 CALL writer.processingInstruction("command1","do what
you want")
 CALL writer.endElement()
 CALL writer.comment("This is my last comment using a
stax writer")
 CALL writer.endDocument()
 CALL writer.close()
 RETURN TRUE
 CATCH
 DISPLAY "StaxWriter ERROR :",STATUS, SQLCA.SQLERRM
 RETURN FALSE
 END TRY
 END FUNCTION

237

Genero Web Services

238

The StaxReader class
Summary:

• Syntax
• Methods
• Examples

See also: The Genero Web Services XML Extension Library

Syntax

The StaxReader class provides methods compatible with StAX (Streaming API for
XML), for reading XML documents. Notice that status is set to zero after a successful
method call.

Syntax:

xml.StaxReader

Methods:

• Creation
• Configuration
• Input
• Access
• Document
• Nodes
• Processing Instructions
• Attributes
• Namespaces
• Navigation

Creation Methods

Class Methods
Name Description
xml.StaxReader.Create()
 RETURNING
xml.StaxReader

Constructor of a StaxReader object; returns the object.

239

Configuration Methods

Object Methods
Name Description
setFeature(
 feature STRING,
 value STRING)

Sets a feature of a StaxReader object, where feature is the
name of a feature, and value is the value of the feature.
The features can be changed at any time, but will only be taken
into account at the beginning of a new stream (see readFrom
or readFromDocument).
Throws an exception in case of errors, and updates status with
an error code.

getFeature(
 feature STRING)
 RETURNING STRING

Gets a feature of a StaxReader object; where feature is the
name of a feature. Returns the feature value. Status is updated
with an error code.

Input Methods

Object Methods
Name Description
readFrom(
 url STRING)

Sets the input stream of the StaxReader object to a file or an
URL, and starts the streaming; url is a valid URL or the name
of the file to read.
Throws an exception in case of errors, and updates status
with an error code.
Note: Only the following kinds of URLs are supported: http://,
https://, tcp://, tcps://, file:/// and alias://. See FGLPROFILE
Configuration for more details about URL mapping with
aliases, and for proxy and security configuration.

readFromDocument(
 doc xml.DomDocument
)

Sets the input stream of the StaxReader object to a
DomDocument object, and starts the streaming; doc is an
xml.DomDocument object that contains an XML document.
Raises a 4GL exception in case of errors, and updates status
with an error code.

close() Closes the StaxReader streaming, and releases all
associated resources.

Genero Web Services

240

Access Methods

Object Methods
Name Description
getEventType()
 RETURNING STRING

Returns a string that indicates the type of event the cursor
of the StaxReader object is pointing to. Status is updated
with an error code.

hasName()
 RETURNING INTEGER

Checks whether the StaxReader cursor points to a node
with a name. Returns TRUE if the current XML node has a
name, FALSE otherwise. This method returns TRUE for
START_ELEMENT and END_ELEMENT, FALSE for all
other nodes.
Throws an exception in case of errors, and updates status
with an error code.

hasText()
 RETURNING INTEGER

Checks whether the StaxReader cursor points to a node
with a text value. Returns TRUE if the current XML node
has a text value, FALSE otherwise. This method returns
TRUE for CHARACTERS, SPACE, CDATA, COMMENT,
ENTITY_REFERENCE and DTD, FALSE for all other
nodes.
Throws an exception in case of errors, and updates status
with an error code.

isEmptyElement()
 RETURNING INTEGER

Checks whether the StaxReader cursor points to an empty
element node. Returns TRUE if the current XML element
node has no children, FALSE otherwise.
Throws an exception in case of errors, and updates status
with an error code.

isStartElement()
 RETURNING INTEGER

Checks whether the StaxReader cursor points to a start
element node. Returns TRUE if the current XML node is a
start element node, FALSE otherwise.
Throws an exception in case of errors, and updates status
with an error code.

isEndElement()
 RETURNING INTEGER

Checks whether the StaxReader cursor points to an end
element node. Returns TRUE if the current XML node is an
end element node, FALSE otherwise.
Throws an exception in case of errors, and updates status
with an error code.

isCharacters()
 RETURNING INTEGER

Checks whether the StaxReader cursor points to a
character node. Returns TRUE if the current XML node is a
character node, FALSE otherwise.
Throws an exception in case of errors, and updates status
with an error code.

isIgnorableWhitespace()
 RETURNING INTEGER

Checks whether the StaxReader cursor points to ignorable
whitespace. Returns TRUE if the current XML node is an
ignorable character node, FALSE otherwise.
Throws an exception in case of errors, and updates status
with an error code.

241

Document Methods

Object Methods
Name Description
getEncoding()
 RETURNING STRING

Returns the document encoding defined in the XML Document
declaration, or NULL.
Throws an exception in case of errors, and updates status
with an error code.

getVersion()
 RETURNING STRING

Returns the document version defined in the XML Document
declaration, or NULL.
Throws an exception in case of errors, and updates status
with an error code.

isStandalone()
 RETURNING STRING

Checks whether the document standalone attribute defined in
the XML Document declaration is set to yes. Returns TRUE if
the standalone attribute in the XML declaration is set to yes,
FALSE otherwise.
Throws an exception in case of errors, and updates status
with an error code.

standaloneSet()
 RETURNING STRING

Checks whether the document standalone attribute is defined
in the XML Document declaration. Returns TRUE if the
standalone attribute in the XML declaration is set, FALSE
otherwise.
Throws an exception in case of errors, and updates status
with an error code.

Nodes Methods

Object Methods
Name Description
getPrefix()
 RETURNING STRING

Returns the prefix of the current XML node, or NULL.
Throws an exception in case of errors, and updates status with
an error code.

getLocalName()
 RETURNING STRING

Returns the local name of the current XML node, or NULL.
Throws an exception in case of errors, and updates status with
an error code.

getName()
 RETURNING STRING

Returns the qualified name of the current XML node, or NULL.
Throws an exception in case of errors, and updates status with
an error code.

Genero Web Services

242

getNamespace()
 RETURNING STRING

Returns the namespace URI of the current XML node, or
NULL.
Throws an exception in case of errors, and updates status with
an error code.

getText()
 RETURNING STRING

Returns as a string the value of the current XML node, or
NULL. This method is only valid on CHARACTERS, CDATA,
SPACE, COMMENT, DTD and ENTITY_REFERENCE nodes.
For an ENTITY_REFERENCE, this method returns the
replacement value, or NULL if none.
Throws an exception in case of errors, and updates status with
an error code.

Processing Instructions Methods

Object Methods
Name Description
getPITarget()
 RETURNING STRING

Returns the target part of an XML ProcessingInstruction node,
or NULL. This method is only valid on a
PROCESSING_INSTRUCTION node.
Throws an exception in case of errors, and updates status with
an error code.

getPIData()
 RETURNING STRING

Returns the data part of an XML ProcessingInstruction node,or
NULL. This method is only valid on a
PROCESSING_INSTRUCTION node.
Throws an exception in case of errors, and updates status with
an error code.

Attributes Methods

Object Methods
Name Description
getAttributeCount()
 RETURNING INTEGER

Returns the number of XML attributes defined on the
current XML node. Returns the number of attributes defined
on the current XML node, or zero. This method is only valid
on a START_ELEMENT node.
Throws an exception in case of errors, and updates status
with an error code.

getAttributeLocalName(
 pos INTEGER)

Returns the local name of an XML attribute defined at a
given position on the current XML node, where pos is the

243

 RETURNING STRING position of the attribute to return (Index starts at 1). Returns
the local name of an attribute defined at given position on
the current XML node, or NULL.
Note: This method is only valid on a START_ELEMENT
node.
Throws an exception in case of errors, and updates status
with an error code.

getAttributeNamespace(
 pos INTEGER)
 RETURNING STRING

Returns the namespace URI of an XML attribute defined at
a given position on the current XML node; pos is the
position of the attribute to return (Index starts at 1). Returns
the namespace URI of an attribute defined at the given
position on the current XML node, or NULL.
Note: This method is only valid on a START_ELEMENT
node.
Throws an exception in case of errors, and updates status
with an error code.

getAttributePrefix(
 pos INTEGER)
 RETURNING STRING

Returns the prefix of an XML attribute defined at a given
position on the current XML node; pos is the position of the
attribute to return (Index starts at 1). Returns the prefix of an
attribute defined at the given position on the current XML
node, or NULL.
Note: This method is only valid on a START_ELEMENT
node.
Throws an exception in case of errors, and updates status
with an error code.

getAttributeValue(
 pos INTEGER)
 RETURNING STRING

Returns the value of an XML attribute defined at a given
position on the current XML node; pos is the position of the
attribute to return (Index starts at 1). Returns the value of an
attribute defined at the given position on the current XML
node, or NULL.
Note: This method is only valid on a START_ELEMENT
node.
Throws an exception in case of errors, and updates status
with an error code.

findAttributeValue(
 name STRING,
 ns STRING)
 RETURNING STRING

Returns the value of an XML attribute of a given name
and/or namespace on the current XML node, or NULL;
name is the name of the attribute to retrieve, cannot be
NULL; ns is the namespace URI of the attribute to retrieve,
or NULL if the attribute is not namespace-qualified.
Note: This method is only valid on a START_ELEMENT
node.
Throws an exception in case of errors, and updates status
with an error code.

Genero Web Services

244

Namespace Methods

Object Methods
Name Description
lookupNamespace(
 prefix STRING)
 RETURNING STRING

Looks up the namespace URI associated with a given prefix
starting from the current XML node the StaxReader cursor is
pointing to, where prefix is the prefix to look for; if NULL the
default namespace URI will be returned. Returns the
namespace URI associated with the prefix, or NULL if there
is none.
Throws an exception in case of errors, and updates status
with an error code.

lookupPrefix(
 ns STRING)
 RETURNING STRING

Looks up the prefix associated with a given namespace URI,
starting from the current XML node the StaxReader cursor is
pointing to, where ns is the namespace URI to look for,
cannot be NULL. Returns the prefix associated with this
namespace URI, or NULL if there is none.
Throws an exception in case of errors, and updates status
with an error code.

getNamespaceCount()
 RETURNING INTEGER

Returns the number of namespace declarations defined on
the current XML node, or zero.
Note: This method is only valid on a START_ELEMENT
node.
Throws an exception in case of errors, and updates status
with an error code.

getNamespacePrefix(
 pos INTEGER)
 RETURNING STRING

Returns the prefix of a namespace declaration defined at a
given position on the current XML node, or NULL; pos is the
position of the namespace declaration (Index starts at 1).
Note: This method is only valid on a START_ELEMENT
node.
Throws an exception in case of errors, and updates status
with an error code.

getNamespaceURI(
 pos INTEGER)
 RETURNING STRING

Returns the URI of a namespace declaration defined at a
given position on the current XML node, or NULL; pos is the
position of the namespace declaration (Index starts at 1).
Note: This method is only valid on a START_ELEMENT
node.
Throws an exception in case of errors, and updates status
with an error code.

Navigation Methods

Object Methods
Name Description

245

hasNext()
 RETURNING INTEGER

Checks whether the StaxReader cursor can be moved to a
XML node next to it. Returns TRUE if there is still an XML
node in the stream, FALSE otherwise.
Throws an exception in case of errors, and updates status with
an error code.

next() Moves the StaxReader cursor to the next XML node. Raises a
4GL exception in case of errors, and updates status with an
error code.

nextTag() Moves the StaxReader cursor to the next XML open or end
tag. The cursor points to the end of the document if there is no
tag any longer. Raises a 4GL exception in case of errors, and
updates status with an error code.

nextSibling() Moves the StaxReader cursor to the immediate next sibling
XML Element of the current node, skipping all its child nodes.
The cursor points to the parent end tag if there are no siblings
any longer. Raises a 4GL exception in case of errors, and
updates status with an error code.

Examples

 IMPORT xml

 FUNCTION parse(file)
 DEFINE file String
 DEFINE event String
 DEFINE ret INTEGER
 DEFINE ind INTEGER
 DEFINE reader xml.StaxReader
 TRY

 LET reader=xml.StaxReader.Create()
 CALL reader.readFrom(file)

 WHILE (true)
 LET event=reader.getEventType()
 CASE event
 WHEN "START_DOCUMENT"
 DISPLAY "Document reading started"
 DISPLAY "XML Version : ",reader.getVersion()
 DISPLAY "XML Encoding : ",reader.getEncoding()
 IF reader.standaloneSet() THEN
 IF reader.isStandalone() THEN
 DISPLAY "Standalone : yes"
 ELSE
 DISPLAY "Standalone : no"
 END IF
 END IF
 WHEN "END_DOCUMENT"

Genero Web Services

246

 DISPLAY "Document reading finished"
 WHEN "START_ELEMENT"
 IF reader.isEmptyElement() THEN
 DISPLAY "<"||reader.getName()||"/>"
 ELSE
 DISPLAY "<"||reader.getName()||">"
 END IF
 FOR ind=1 TO reader.getNamespaceCount()
 DISPLAY "xmlns:"||reader.getNamespacePrefix(ind)||"="||
 reader.getNamespaceURI(ind)
 END FOR
 FOR ind=1 TO reader.getAttributeCount()
 IF reader.getAttributePrefix(ind) THEN
 DISPLAY
reader.getAttributePrefix(ind)||":"||reader.getAttributeLocalName(ind)||
 "="||reader.getAttributeValue(ind)
 ELSE
 DISPLAY
reader.getAttributeLocalName(ind)||"="||reader.getAttributeValue(ind)
 END IF
 END FOR
 WHEN "END_ELEMENT"
 DISPLAY "</"||reader.getName()||">"
 WHEN "CHARACTERS"
 IF reader.hasText() AND NOT reader.isIgnorableWhitespace()
 THEN
 DISPLAY "CHARACTERS :",reader.getText()
 END IF
 WHEN "COMMENT"
 IF reader.hasText() THEN
 DISPLAY "Comment :",reader.getText()
 END IF
 WHEN "CDATA"
 IF reader.hasText() THEN
 DISPLAY "CDATA :", reader.getText()
 END IF
 WHEN "PROCESSING_INSTRUCTION"
 DISPLAY "PI :",reader.getPITarget(),reader.getPIData()
 WHEN "ENTITY_REFERENCE"
 DISPLAY "Entity name :",reader.getName()
 OTHERWISE
 DISPLAY "Unknown "||event||" node"
 END CASE
 IF reader.hasNext() THEN
 CALL reader.next()
 ELSE
 CALL reader.close()
 EXIT WHILE
 END IF
 END WHILE
 CATCH
 DISPLAY "StaxReader ERROR :",STATUS||" ("||SQLCA.SQLERRM||")"
 END TRY
 END FUNCTION

247

StaxReader event types

Type Description XML sample
START_DOCUMENT StaxReader cursor points

to the beginning of the
XML document.

<?xml version="1.0"
standalone="no"?>

END_DOCUMENT StaxReader cursor has
reached the end of the
XML document.
Note : No additional
parsing operation will
succeed.

START_ELEMENT StaxReader cursor points
to an XML start element or
empty element node.

<p:elt attr="val"> or
<p:elt attr="val"/>

END_ELEMENT StaxReader cursor points
to an XML end element
node.

</p:elt>

CHARACTERS StaxReader cursor points
to an XML text node.

... eltA/>This is
text<eltB ...

CDATA StaxReader cursor points
to an XML CData node.

<![CDATA[<Hello,
world!>]]>

SPACE StaxReader cursor points
to an XML text node
containing only
whitespaces.

... eltA/> <eltB

...

COMMENT StaxReader cursor points
to an XML comment node.

<!-- a comment -->

DTD StaxReader cursor points
to a DTD string.

<!DOCTYPE A [
<!ELEMENT B (C+)>]>

ENTITY_REFERENCE StaxReader cursor points
to an XML entity reference
node.

&ref;

PROCESSING_INSTRUCTION StaxReader cursor points
to an XML processing
instruction node.

<?target data?>

ERROR StaxReader cursor points
to an unexpected XML
node.

Genero Web Services

248

StaxReader Features

Feature Description
expand-entity-references Defines whether XML EntityReference nodes are kept

or replaced during the parsing of an XML document.
Note: default value is TRUE.

249

The Serializer class
Summary:

• Syntax
• Methods

See also: The Genero Web Services XML Extension Library

Syntax

The Serializer class provides methods to manage options for the serializer engine, and
to use the serializer engine to serialize variables and XML element nodes. This class is a
static class and does not have to be instantiated. Notice that status is set to zero after a
successful method call.

Syntax

xml.Serializer

Methods

Class Methods
Name Description
xml.Serializer.SetOption(
 flag STRING,
 value STRING)

Sets a global option value for the
serializer engine, where flag is the
option flag, and value is the value of
the flag.
Throws an exception in case of errors,
and updates status with an error code.

xml.Serializer.GetOption(
 flag STRING)
 RETURNING STRING

Gets a global option value from the
serializer engine, where flag is the
option flag. Returns the value of the
flag.
Throws an exception in case of errors,
and updates status with an error code.

xml.Serializer.VariableToStax(
 var VARIABLE,
 stax xml.StaxWriter)

Serializes a 4GL variable into an XML
element node using a StaxWriter
object, where var is any 4GL variable
with optional XML mapping attributes,
and stax is a StaxWriter object. The
resulting XML element node of the
serialization process will be added at
the current cursor position of the
StaxWriter object.
Throws an exception in case of errors,
and updates status with an error code.

Genero Web Services

250

xml.Serializer.StaxToVariable(
 stax xml.StaxReader,
 var VARIABLE)

Serializes an XML element node into a
4GL variable using a StaxReader
object, where stax is a StaxReader
object where the cursor points to an
XML Element node, and var is any
4GL variable with optional XML
mapping attributes.
Throws an exception in case of errors,
and updates status with an error code.

xml.Serializer.VariableToDom(
 var VARIABLE,
 node xml.DomNode)

Serializes a 4GL variable into an XML
element node using a DomNode
object, where var is any 4GL variable
with optional XML mapping attributes,
and node is a DomNode object of type
ELEMENT_NODE or
DOCUMENT_FRAGMENT_NODE.
The resulting XML element node of the
serialization process will be appended
to the last child of the given node.
Throws an exception in case of errors,
and updates status with an error code.

xml.Serializer.DomToVariable(
 node xml.DomNode,
 var VARIABLE)

Serializes an XML element node into a
4GL variable using a DomNode object,
where node is a DomNode object of
type ELEMENT_NODE, and var is any
4GL variable with optional XML
mapping attributes.
Throws an exception in case of errors,
and updates status with an error code.

 xml.Serializer.VariableToSoapSection5(
 var VARIABLE,
 node xml.DomNode)

Serializes a 4GL variable into an XML
element node in Soap Section 5
encoding, where var is any 4GL
variable with optional XML mapping
attributes, and node is a DomNode
object of type ELEMENT_NODE or
DOCUMENT_FRAGMENT_NODE.
The resulting XML element node of the
serialization process will be appended
to the last child of the given node.
Throws an exception in case of errors,
and updates status with an error code.

xml.Serializer.SoapSection5ToVariable(
 node xml.DomNode,
 var VARIABLE)

Serializes an XML element node into a
4GL variable in Soap Section 5
encoding, where node is a DomNode
object of type ELEMENT_NODE, and
var is any 4GL variable with optional
XML mapping attributes.
Throws an exception in case of errors,
and updates status with an error code.

xml.Serializer.CreateXmlSchemas(
 var VARIABLE,

Creates XML schemas corresponding
to the given variable var, and fills the

251

 ar DYNAMIC ARRAY OF xml.DomDocument) dynamic array ar with
xml.DomDocument objects each
representing an XML schema.
Throws an exception in case of errors,
and updates status with an error code.

Serialization option flags

Flag Description
xml_ignoretimezone Defines whether, during the marshalling and un-marshalling

process of a BDL DATETIME data type, the Serializer should
ignore the time zone information. Note: A value of zero
means FALSE (the default value is FALSE).
Throws an exception in case of errors, and updates status
with an error code.

xml_usetypedefinition Defines whether the Serializer must specify the type of data
during serialization. (This will add an "xsi:type" attribute to
each XML data type.) Note: A value of zero means FALSE
(the default value is FALSE).
Throws an exception in case of errors, and updates status
with an error code.

Genero Web Services

252

The XML Library Error Codes

Code Description
0 No error.

-15600 Operation failed.
-15601 Name cannot be NULL.
-15602 Namespace cannot be NULL.
-15603 Prefix cannot be NULL.
-15604 Value cannot be NULL.
-15605 Node cannot be NULL.
-15606 Text cannot be NULL.
-15607 Target of a processing instruction cannot be NULL.
-15608 Name of an entity reference cannot be NULL.
-15609 XPath expression cannot be NULL.
-15610 Filename cannot be NULL.
-15611 Document cannot be NULL.
-15612 DTD string cannot be NULL.
-15613 Stax cannot be NULL.
-15614 Malformed XML name.
-15615 Malformed XML string.
-15616 Malformed XML prefix.
-15617 Malformed XML namespace.
-15618 Bad validation type.
-15619 No XML schema found.
-15620 No DTD schema found.
-15621 Feature or option cannot be NULL.
-15622 Feature or option is unsupported.
-15623 Feature or option value is invalid.
-15624 Node is not part of the document.
-15625 Node does not have the correct parent node.
-15626 Node is already linked to another node.
-15627 Cannot add a node to itself.
-15628 Index is out of bounds.
-15629 StaxWriter runtime exception, see SQLCA.SQLERRM for mode details.
-15630 StaxReader runtime exception, see SQLCA.SQLERRM for mode details.
-15631 Serializer runtime exception, see SQLCA.SQLERRM for mode details.
-15632 Document loading runtime exception, see getErrorDescription() for more

253

details.
-15633 Document saving runtime exception, see getErrorDescription() for more

details.
-15634 Invalid encoding.
-15635 PublicID of a DTD cannot be set with a SystemID.
-15636 Undefined namespace prefix in the XPath expression.
-15637 XPath expression error.
-15638 A namespace in the XPath namespace list is missing.
-15639 XPath function has two mandatory parameters.
-15640 Internal XPath error.
-15641 Invalid XPath namespace.
-15642 Unable to load schema.
-15643 Schemas are malformed or inconsistent.
-15644 URI is malformed.
-15645 Protocol layer needs a new try to complete operation.
-15646 Charset conversion error.
-15699 Internal error, should not happen.

See also: The Genero Web Services XML Extension Library

Genero Web Services

254

OM to XML Migration
This topic assists you in migrating code you have written using methods from the OM
class to code that uses methods from the XML Extension Library class.

Why Migrate?

• You need to be able to utilize a feature (such as a StyleSheet) that requires the
code to use XML class methods.

OM - XML Mapping

OM class method XML class method(s)
om.DomDocument.create xml.DomDocument.createDocument

om.DomDocument.createFromXmlFile xml.DomDocument.load

om.DomDocument.createFromString xml.DomDocument.loadFromString

om.DomDocument.copy xml.DomNode.clone

om.DomDocument.createChars xml.DomDocument.createTextNode

om.DomDocument.createEntity xml.DomDocument.createEntityReference

om.DomDocument.createElement xml.DomDocument.createElement

om.DomDocument.getDocumentElement xml.DomDocument.getFirstDocumentNode

om.DomDocument.getElementById xml.DomDocument.getElementById +
xml.DomNode.setIdAttribute or
xml.DomNode.setIdAttributeNS

om.DomDocument.removeElement xml.DomDocument.removeDocumentNode

om.DomNode.appendChild xml.DomDocument.createNode +
xml.DomNode.appendChild

om.DomNode.createChild xml.DomDocument.createNode +
xml.DomNode.appendChild

om.DomNode.insertBefore xml.DomNode.insertBeforeChild

om.DomNode.removeChild xml.DomNode.removeChild

om.DomNode.replaceChild xml.DomNode.replaceChild

om.DomNode.loadXml xml.DomDocument.loadFromString

om.DomNode.parse xml.DomDocument.createNode + add it to
the DomDocument

om.DomNode.toString xml.DomNode.toString

om.DomNode.writeXml xml.DomDocument.save

om.DomNode.write xml.DomNode.toString

om.DomNode.getId xml.DomNode.getAttributeName("Id")

255

om.DomNode.getTagName xml.DomNode.getLocalName

om.DomNode.setAttribute xml.DomNode.setAttribute

om.DomNode.getAttribute xml.DomNode.getAttribute

om.DomNode.getAttributeInteger xml.DomNode.getAttribute + condition for
the default value and the cast

om.DomNode.getAttributeString xml.DomNode.getAttribute + condition for
the default value and the cast

om.DomNode.getAttributeName xml.DomNode.getAttributeNodeItem +
xml.DomNode.getLocalName

om.DomNode.getAttributesCount xml.DomNode.getAttributesCount

om.DomNode.getAttributeValue xml.DomNode.getAttributeNodeItem +
xml.DomNode.getNodeValue

om.DomNode.removeAttribute xml.DomNode.removeAttribute

om.DomNode.getChildCount xml.DomNode.getChildrenCount

om.DomNode.getChildByIndex xml.DomNode.getChildNodeItem

om.DomNode.getFirstChild xml.DomNode.getFirstChild

om.DomNode.getLastChild xml.DomNode.getLastChild

om.DomNode.getNext xml.DomNode.getNextSibling

om.DomNode.getParent xml.DomNode.getParentNode

om.DomNode.getPrevious xml.DomNode.getPreviousSibling

om.DomNode.selectByTagName xml.DomNode.getElementsByTagName

om.DomNode.selectByPath xml.DomNode.selectByXPath

om.DomNodeList.item xml.DomNodeList.getItem

om.DomNodeList.getLength xml.DomNodeList.getCount

See also: The Genero Web Services XML Extension Library

For more information on Genero built-in classes (such as the OM class), refer to the
Genero Business Development Language Manual.

Genero Web Services

256

	GWS User Guide
	Table of Contents
	General
	Introduction to Web Services
	New Features
	Installation
	Migration Notes
	Debugging
	Examples

	Client
	Using Logical Names for Service Locations
	Tutorial: Writing a Client Application

	Server
	Writing a Web Services Function
	Choosing a Web Services Style
	Tutorial: Writing a GWS Server application
	Deployment

	Security Concepts
	Encryption and Authentication
	Certificates in Practice
	Accessing Secured Services

	Security and Web Services
	FGLPROFILE password encryption
	FGLPROFILE Configuration
	Tutorial: Configuring a Client to access an HTTPS Server
	Tutorial: Configuring a Client to connect via a Proxy
	Tutorial: Configuring a client for HTTP and Proxy Authentication
	Deploying a Client and a Server for HTTPS

	How To's
	How to Call Java APIs from Genero
	How to Call .NET APIs from Genero

	Reference
	Attributes to Customize XML Serialization
	The fglwsdl tool (WSDL and XSD)
	Error Messages
	Server API Functions - version 1.3 only
	Configuration API Functions - version 1.3 only

	COM Library
	Genero Web Services COM Extension Library
	The Web Service class
	The Web Operation class
	The Web Service Engine class
	The HTTP Service Request class
	The HTTP Request class
	The HTTP Response class
	The TCP Request class
	The TCP Response class
	The COM Library Error Codes

	XML Library]
	The Genero Web Services XML Extension Library
	The DomDocument class
	The DomNode class
	The DomNodeList class
	The Stax Writer class
	The StaxReader class
	The Serializer class
	The XML Library Error Codes
	OM to XML Migration

