IBM Informix 4GL

Concepts and Use

Version 7.31
January 2002
Part No. 000-8775

Note:
Before using this information and the product it supports, read the information in the
appendix entitled “Notices.”

This document contains proprietary information of IBM. It is provided under a license agreement and is
protected by copyright law. The information contained in this publication does not include any product
warranties, and any statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2002. All rights reserved.

US Government User Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

ii IBM Informix 4GL Concepts and Use

Table of Contents

Introduction

In This Introduction 3
About This Manual . S 3
Organization of This Manual . 3
Types of Users . 5
Software Dependencies . 6
Assumptions About Your Locale. 6
Demonstration Database and Examples . 7
Accessing Databases from Within 4GL. 8
Enhancements to Version 7.31 9
Documentation Conventions 10
Typographical Conventions 10
Icon Conventions . 11
Additional Documentation .o 1
Documentation Included with 4GL . 12
On-Line Manuals . 12
On-Line Help 13
On-Line Error Messages. 13
Related Reading . 14
Informix Welcomes Your Comments . 14
Chapter 1 Introducing INFORMIX-4GL
InThisChapter 13
WhatlIs4GL? 13
4GL Provides a Programmer’s Environment 1-3
4GL Works with Databases 14
4GL Runs in Different Environments. 15
Informix Dynamic4GL 15

Two Implementationsof4GL 15

Chapter 2 Interfaces of INFORMIX-4GL

InThisChapter 2-3
Database Access 2-5
Access to Sequential Files 2-5
ReportOutput 2-6
User Access . . . Ce e 2-6
Using Forms and Menus Ce e e 2-8
Summary Lo 2-9

Chapter 3 The INFORMIX-4GL Language

In This Chapter Ce e 3-3
A Structured, Procedural Language S e 3-3
A Nonprocedural, Fourth-Generation Language Ce e e 3-6
Database Access 3-6
Report Generation 3-7
User Interaction 3-8
Summary L oL e 3-9
Chapter 4 Parts of an Application
InThisChapter 4-3
The Database Schema . . . e 4-5
Form Specifications and Form Flles e 4-6
FormDesign 4-9
Field Entry Order 4-9
Program Source Files . . . 0]
Organization of a Program 0]
The GlobalsFiles. 41
Program ObjectFiles 41
P-Code ObjectFiles 413
C-Code ObjectFiles. 414
Example Programs 415

iv IBM Informix 4GL Concepts and Use

Chapter 5

Chapter 6

Chapter 7

The Procedural Language

In This Chapter

Declaration of Variables
Data Typing .

Automatic Data Type Conver5|on
Data Structures .

Memory Allocation

Scope of Reference.

Decisions and Loops
Statement Blocks

Comment Symbols

Exceptions .
Kinds of Exceptlons

Why Exceptions Must Be Handled .
How Exceptions Are Handled.

Database Access and Reports
In This Chapter
Using SQL in a 4GL Program

Creating 4GL Reports
The Report Driver .

The Report Definition.

The User Interface
In This Chapter
Line-Mode Interaction .

Formatted Mode Interaction .
Formatted Mode Display

Sample Code for Formatted Mode Dlsplay

Screens and Windows .
The Computer Screen and the 4GL Screen

The 4GL Window .
How Menus Are Used .

How Forms Are Used .
Defining a Form

Displaying a Form. .

Reading User Input from a Form

Screen Records .

Screen Arrays .
How the Input Process Is Controlled

5-10
5-11
5-12
5-12
5-12
5-13
5-13

6-3

6-5
6-7
6-8

7-3
7-3
7-5
7-6
7-8
7-9
7-9
7-9

7-10

7-13

7-14

7-16

7-17

7-18

7-19

7-20

Table of Contents v

How Query by ExamplelsDone 1723

How 4GL Windows AreUsed 17125
Alerts and Modal DialogBoxes. 7-26
Information Displays 7127

How the Help SystemWorks 7-28

Chapter 8 Using the Language

InThisChapter 8-3
Data Typesof4GL 8-3
SimpleDataTypes. 8-4
Number Data Types. 8-4
TimeDataTypes 8-6
Character DataTypes 8-8
LargeDataTypes. @810
Variables and Data Structures 8l
Declaringthe DataType 812
Creating Structured Data Types. 812
Declaring the Scope ofa Variable 815
Using Global Variables. 819
Initializing Variables 822
Expressionsand Values 822
Literal Values 823
Values from Variables 823
Values from FunctionCalls 824
Numeric Expressions 824
Boolean Expressions. 825
Character Expressions 826
Null Values. . . . T - Y §
Assignment and Data Conversion 828
Data Type Conversion 829
ConversionErrors 8430
Decisions and Loops . . - X
Decisions Based on NULL T, < I K]
FunctionsandCalls 834
Function Definition 834
Invoking Functions . . . T < RS 5
Arguments and Local Varlables Co 836

vi IBM Informix 4GL Concepts and Use

Chapter 9

Chapter 10

Working with Multiple Values . 8-37
Assigning One Record to Another 8-38
Passing Records to Functions . 8-38
Returning Records from Functions . 8-39

Using Database Cursors

In This Chapter 9-3

The SQL Language . 9-3

Nonprocedural SQL 9-4

Nonprocedural SELECT 9-5

Row-by-Row SQL 9-5
Updating the Cursor’s Current Row 9-8
Updating Through a Primary Key 9-9
Updating with a Second Cursor . 9-9

Dynamic SQL . 9-10

Creating Reports

In This Chapter . 10-3

Designing the Report Drlver 10-4
An Example of a Report Driver 10-5

Designing the Report Definition 10-6
The REPORT Statement . 10-8
The Report Declaration Section 10-9
The OUTPUT Section. 10-10
The ORDER BY Section . . 10-12
One-Pass and Two-Pass Reports . 10-13
The FORMAT Section 10-15
Contents of a Control Block 10-16
Formatting Reports . 10-17
PAGE HEADER and TRAILER Control Blocks . 10-18
ON EVERY ROW Control Block . 10-19
ON LAST ROW Control Block .. . 10-19
BEFORE GROUP and AFTER GROUP Control Blocks . . . 10-20
Default Reports. 10-21
Using Aggregate Functlons 10-21
END REPORT and EXIT REPORT 10-24

Table of Contents vii

Chapter 11 Using the Screen and Keyboard

InThisChapter 113
Specifyinga Form . . . T R
The DATABASE Sectlon T R
The SCREEN Section 115
The TABLES Section. 117
The ATTRIBUTES Section. 119
The INSTRUCTIONS Section 1113
Using Windows and Forms . P K5)
Opening and Displaying a 4GL Wmdow T R)
Displayinga Menu . . . o 1118
Opening and Displaying a Form b R0
Displaying DatainaForm 121
Combininga MenuandaForm. 11-23
Displaying a Scrolling Array. 11-24
Taking Input ThroughaForm 11-27
Taking Input Throughan Array. 11-30
Screen and Keyboard Options 1132
Reserved Screen Lines . . . T YA
Changing Screen Line ASS|gnments 1133
Runtime Key Assignments 11-36

Chapter 12 Handling Exceptions

InThisChapter. 123
Exceptions 124
Runtime Errors 124
SQLEndofData. 125
SQL Warnings. 126
Asynchronous Signals: Interrupt and th .o 126
Using the DEFER Statement . . . Coe e e 127
Interrupt with Interactive Statements o
Using the WHENEVER Mechanism. 12-10
What WHENEVERDoes 1211
Actionsof WHENEVER 1211
Errors Handled by WHENEVER 1212
Using WHENEVER inaProgram 12-13
Notifying theUser. 1215
Logging Runtime Errors. 1215

viii IBM Informix 4GL Concepts and Use

Appendix A Notices

Index

Table of Contents ix

Introduction

In This Introduction 3
About This Manual. R 3
Organization of This Manual . 3
Types of Users . . 5
Software Dependencies . 6
Assumptions About Your Locale. 6
Demonstration Database and Examples 7
Accessing Databases from Within 4GL . 8
Enhancements to Version7.31 9
Documentation Conventions 10
Typographical Conventions 10
Icon Conventions 11
Additional Documentation 1
Documentation Included with4GL 12
On-LineManuals 12
On-LineHelp 13
On-Line Error Messages. 13
Related Reading 14

Informix Welcomes Your Comments. 14

2 IBM Informix 4GL Concepts and Use

In This Introduction

This introduction provides an overview of the information in this manual
and describes the conventions it uses.

About This Manual

This manual introduces INFORMIX-4GL and provides a context for under-
standing the other manuals in the documentation set. It covers 4GL goals (the
kinds of programming the language is meant to facilitate), concepts and
nomenclature (parts of a program, database access, screen forms, and report
generation), and methods (how groups of language features are used
together to achieve particular effects).

Organization of This Manual

INFORMIX-4GL is a suite of tools that allow you to efficiently produce
complex interactive database applications. Using the 4GL language, you can
quickly write sophisticated, portable, forms-driven, full-screen applications
for data entry, data lookup and display, and report generation. The 4GL
development environment provides all the tools necessary to design forms,
construct and manage program modules, and compile source modules.

Introduction 3

Organization of This Manual

This manual describes 4GL at the following three levels:

s What 4GL is. Part | covers the main features of 4GL, describes the
kind of work it is meant to do, and the ways it is normally used:

o Chapter 1, “Introducing INFORMIX-4GL,” describes what 4GL
is used for and where the program can be run.

o Chapter 2, “Interfaces of INFORMIX-4GL,” describes how 4GL
allows interactive forms, SQL databases, sequential files, and
reports to work together.

o Chapter 3, “The INFORMIX-4GL Language,” introduces the
procedural and non-procedural aspects of the language.

s How 4GL is designed. Part 1l covers the fundamental ideas behind
the design of 4GL so you will know its parts and how they fit
together:

o Chapter 4, “Parts of an Application,” is an overview of the
components of a 4GL application.

o Chapter 5, “The Procedural Language,” describes three basic
4GL language features: data definition, decisions and loops, and
handling error conditions.

o Chapter 6, “Database Access and Reports,” examines the
relationship between the data in a SQL database and 4GL reports.

Some partial coding examples are used to illustrate the main points.
Read Part Il before you begin using 4GL.

4 IBM Informix 4GL Concepts and Use

Types of Users

= Howto use 4GL. Part Il explores 4GL in depth, using examples and
discussion to show how its statements are used together to solve
common programming tasks and build an application:

0

Chapter 7, “The User Interface,” reviews the major components
of an interactive 4GL application.

Chapter 8, “Using the Language,” details the data types
available in 4GL, variables, data structures and use of arrays, and
other, similar topics.

Chapter 9, “Using Database Cursors,” overviews non-proce-
dural, row-by-row, and dynamic methods of accessing an SQL
database from a 4GL application.

Chapter 10, “Creating Reports,” shows how to design 4GL report
drivers and report formatters.

Chapter 11, “Using the Screen and Keyboard,” takes a detailed
look at the methods of specifying a screen form and managing
4GL windows.

Chapter 12, “Handling Exceptions,” looks at the problem of
handling anticipated and unanticipated situations when
running a 4GL application.

A Notices appendix describes IBM products, features, and
services.

This manual has a companion, INFORMIX-4GL Reference, which shows every
part of the language in great detail. INFORMIX-4GL Concepts and Use does not
cover every feature of every statement, but provides you with the vocabulary
and understanding necessary to use INFORMIX-4GL and INFORMIX-4GL

Reference.

Types of Users

This manual is written for all 4GL users. You do not need database
management experience or familiarity with relational database concepts to
use this manual. A knowledge of Structured Query Language (SQL) however
and experience with a high-level programming language would be useful.

Introduction 5

Software Dependencies

6

Software Dependencies

This manual is written with the assumption that you are using an Informix
database server, Version 7.x or later.

Informix offers the following two implementations of the 4GL application
development language:

= The INFORMIX-4GL C Compiler uses a preprocessor to generate
INFORMIX-ESQL/C source code. This code is preprocessed in turn to
produce C source code, which is then compiled and linked as object
code in an executable command file.

s The INFORMIX-4GL Rapid Development System (RDS) uses a
compiler to produce pseudo-machine code (called p-code) in a single
step. You then invoke a runner to execute the p-code version of your
application.

Both versions of 4GL use the same 4GL statements. For a description of the
differences between the two versions, see INFORMIX-4GL Reference.

You can easily use applications developed with an earlier version of 4GL,
such as Version 4.0 or 4.1, with this version of 4GL. Also, if you have 4GL
applications written for the Windows environment, you can compile and run
the applications on a UNIX platform.

Assumptions About Your Locale

Informix products can support many languages, cultures, and code sets. All
culture-specific information is brought together in a single environment,
called a Global Language Support (GLS) locale.

The examples in this manual are written with the assumption that you are
using the default locale, en_us.8859-1. This locale supports U.S. English
format conventions for dates, times, and currency. In addition, this locale
supports the 1SO 8859-1 code set, which includes the ASCII code set plus
many 8-bit characters such as é, &, and fi.

If you plan to use non-ASCII characters in your data or your SQL identifiers,
or if you want to conform to the nondefault collation rules of character data,
you need to specify the appropriate nondefault locale.

IBM Informix 4GL Concepts and Use

Demonstration Database and Examples

For instructions on how to specify a nondefault locale, additional syntax, and
other considerations related to GLS locales, see the Informix Guide to GLS
Functionality.

Demonstration Database and Examples

4GL includes several 4GL demonstration applications and a demonstration
database called stores7 that contains information about a fictitious wholesale
sporting-goods distributor. To create the stores7 database in the current
directory, enter the following command:

dbaccessdenn?

Many (but not all) of the examples in the 4GL documentation set are based on
the stores7 database. This database is described in detail in INFORMIX-4GL by
Example. The examples are installed with your software in the
SINFORMIXDIR/demo/fgl directory. For U.S. English, go to the en_us/0333
subdirectory; for other languages, go to the appropriate subdirectory under
the fgl directory.

To use the examples, change to a directory where you want the examples to
reside, and enter the following command:

f gl excopy

Introduction 7

Accessing Databases from Within 4GL

Accessing Databases from Within 4GL

The 4GL language approximates a superset of the Informix implementation
(Version 4.1) of the industry-standard SQL language. Because the 4GL
compiler does not recognize some SQL statements, however, three methods
are supported for including SQL statements within the 4GL program:

= For most SQL syntax that was supported by Informix 4.1 database
servers, you can directly embed SQL statements in 4GL source code.
(Exceptions are the CREATE SCHEMA, DESCRIBE, INFO, SET
ISOLATION, and SET LOG statements.)

= For all SQL statements that can be prepared, you can use the
PREPARE feature of SQL to include SQL statements as text within
prepared objects; see the description of PREPARE in INFORMIX-4GL
Reference.

= For any SQL statement that your database server supports, you can
use the SQL ... END SQL delimiters.

You must use one of the last two methods for SQL statements that include
syntax that was introduced later than Informix 4.1 database servers. Such
embedded, prepared, or delimited SQL statements are passed on to the
database server for execution.

For more information about using PREPARE and SQL ... END SQL delimiters,
see INFORMIX-4GL Reference. For additional information on SQL statements,
see the Informix Guide to SQL: Syntax.

8 IBM Informix 4GL Concepts and Use

Enhancements to Version 7.31

Enhancements to Version 7.31

This product includes the following enhancements:

The NCHAR and NVARCHAR data types are now recognized and
supported. For information about the NCHAR and NVARCHAR data
types, see INFORMIX-4GL Reference.

For database servers that support long SQL identifiers, your 4GL
applications can reference SQL identifiers that are up to 128 bytes in
length. For more information about IFX_LONGID, see INFORMIX-4GL
Reference.

IBM INFORMIX-4GL is compatible with IBM Informix Client SDK
2.70.xC3 and later. Client SDK components allow developers to write
applications in the language they are familiar with, whether it be
Java™, C++, C, or ESQL. For more information about Client SDK, see
the documentation set at www.informix.com/answers.

Introduction 9

Documentation Conventions

10

Documentation Conventions

This section describes the conventions that this manual uses. These
conventions make it easier to gather information from this and other volumes
in the documentation set.

The following conventions are discussed:

= Typographical conventions
= lcon conventions

Typographical Conventions

This manual uses the following conventions to introduce new terms,
illustrate screen displays, describe command syntax, and so forth.

Convention Meaning

KEYWORD All primary elements in a programming language statement
(keywords) appear in uppercase letters in a serif font.

italics Within text, new terms and emphasized words appear in italics.

italics Within syntax and code examples, variable values that you are

italics to specify appear in italics.

boldface Names of program entities (such as classes, events, and tables),

boldface environment variables, file and pathnames, and interface
elements (such as icons, menu items, and buttons) appear in
boldface.

nmonospace Information that the product displays and information that you

monospace enter appear in a monospace typeface.

KEYSTROKE Keys that you are to press appear in uppercase letters in a sans
serif font.

¢ This symbol indicates the end of product- or platform-specific
information.

IBM Informix 4GL Concepts and Use

Icon Conventions

Tip: When you are instructed to “enter” characters or to “execute” a command,
immediately press RETURN after the entry. When you are instructed to “type” the
text or to “press” other keys, no RETURN is required.

Icon Conventions

Throughout the documentation, you will find text that is identified by several
different types of icons. This section describes these icons.

Icon Description

Identifies information that relates to the Informix Global
Language Support (GLS) feature

Identifies information that is specific to Informix Dynamic
Server and Informix Dynamic Server, Workgroup Edition

Identifies information or syntax that is specific to
INFORMIX-SE

%) o @
I) ’

These icons can apply to arow in atable, one or more paragraphs, or an entire
section. A ¢ symbol indicates the end of the feature-specific, product-
specific, or platform-specific information.

Additional Documentation

For additional information, you might want to refer to the following types of
documentation:

= Documentation included with 4GL

= On-line manuals

= On-line help

= On-line error messages

= Related reading

Introduction 11

Documentation Included with 4GL

12

Documentation Included with 4GL

The INFORMIX-4GL documentation set includes the following additional
manuals:

INFORMIX-4GL Installation Guide describes how to install the various
4GL products.

INFORMIX-4GL Reference is a day-to-day, keyboard-side companion
for 4GL programmers. It describes the features and syntax of the 4GL
language, including 4GL statements, forms, reports, and the built-in
functions and operators.

INFORMIX-4GL by Example is a collection of 30 annotated 4GL
programs. Each program is introduced with an overview; then the
program source code is shown with line-by-line notes. The program
source files are distributed as text files with the product; scripts that
create the demonstration database and copy the applications are also
included.

Guide to the INFORMIX-4GL Interactive Debugger is both an intro-
duction to the Debugger and a comprehensive reference of Debugger
commands and features. The Debugger allows you to interact with
your 4GL programs while they are running. It helps you learn more
about the 4GL language and determine the source of errors within
your programs.

Documentation notes, which contain additions and corrections to the
manuals, and release notes are located in the directory where the
product is installed. Please examine these files because they contain
vital information about application and performance issues.

On-Line Manuals

The Informix Answers OnLine CD allows you to print chapters or entire
books and perform full-text searches for information in specific books or
throughout the documentation set. You can install the documentation or
access it directly from the CD. For information about how to install, read, and
print on-line manuals, see the installation insert that accompanies Answers
OnLine. You can also access Answers OnLine on the Web at the following
URL: www.informix.com/answers.

IBM Informix 4GL Concepts and Use

On-Line Help

On-Line Help

4GL provides on-line help; to invoke help, press CONTROL-W.

On-Line Error Messages

Use the finderr script to display a particular error message or messages on
your screen. The script is located in the $INFORMIXDIR/bin directory.

The finderr script has the following syntax:

finderr nsg_num

where msg_num indicates the number of the error message to display. Error
messages range from -1 to -32000. Specifying the - sign is optional.

For example, to display the -359 error message, you can enter either of the
following:

finderr -359
or, equivalently:
finderr 359

The following example demonstrates how to specify a list of error messages.
The example also pipes the output to the UNIX more command to control the
display. You can also direct the output to another file so that you can save or
print the error messages:

finderr 233 107 113 134 143 144 154 | nore

A few messages have positive numbers. These messages are used solely
within the application tools. In the unlikely event that you want to display
them, you must precede the message number with the + sign.

The messages numbered -1 to -100 can be platform-dependent. If the message
text for a message in this range does not apply to your platform, check the
operating system documentation for the precise meaning of the message
number.

Introduction 13

Related Reading

Related Reading

The following Informix database server publications provide additional
information about the topics that this manual discusses:

s Informix database servers and the SQL language are described in
separate manuals, including Informix Guide to SQL: Tutorial, Informix
Guide to SQL: Syntax, and Informix Guide to SQL: Reference.

= Information about setting up Informix database servers is provided
in the Administrator’s Guide for your particular database server.

Informix Press, in partnership with Prentice Hall, publishes books about
Informix products. Authors include experts from Informix user groups,
employees, consultants, and customers. Recent titles about INFORMIX-4GL
include:

= Advanced INFORMIX-4GL Programming by Art Taylor (1995)

= Programming Informix SQL/4GL: A Step-by-Step Approach by Cathy
Kipp (1998)

= Informix Basics by Glenn Miller (1998)

You can access Informix Press on the Web at the following URL:
www.informix.com/Zipress.

Informix Welcomes Your Comments

Let us know what you like or dislike about our manuals. To help us with
future versions of our manuals, we want to know about any corrections or
clarifications that you would find useful. Include the following information:

= The name and version of the manual that you are using

= Any comments that you have about the manual

= Your name, address, and phone number

14 IBM Informix 4GL Concepts and Use

Informix Welcomes Your Comments

Write to us at the following address:

Informix Software, Inc.

Tools Technical Publications Department
4100 Bohannon Drive

Menlo Park, CA 94025

If you prefer to send electronic mail, our address is:
doc@informix.com
We appreciate your suggestions.

Important: The doc alias is monitored only by the Informix departments that create
and maintain manuals and on-line documentation files. It is not an appropriate
channel for technical support issues, sales inquiries, or questions about the avail-
ability of Informix products.

Introduction 15

Introducing INFORMIX-4GL

InThisChapter 1-3
What Is4GL?. oo 1-3
4GL Provides a Programmer’s Environment 1-3
4GL Works with Databases 1-4
4GL Runs in Different Environments. 1-5
Informix Dynamic4GL 1-5

Two Implementationsof4GL 1-5

1-2 IBM Informix 4GL Concepts and Use

In This Chapter

This chapter contains a high-level overview of INFORMIX-4GL. Its aim is to
orient you to the capabilities and typical uses of the product and to answer
general questions such as what kind of software 4GL is and what is it used for.

What Is 4GL?

4GL is a full-featured, general-purpose, fourth-generation programming
language with special facilities for producing the following features:

= Database query and database management using SQL

= Reports from a relational database or from other data sources

= Form- and menu-based multiuser applications

These special features make 4GL especially well-suited to developing large
database applications.

4GL Provides a Programmer’s Environment

4GL provides a Programmer’s Environment that makes it easy to create,
compile, and maintain large, multi-module programs. Within the
Programmer’s Environment, you can accomplish the following tasks:
= Create new program modules and modify existing modules
= Compile individual modules and entire applications
= Create and compile forms that the application uses
= Run compiled applications

Introducing INFORMIX-4GL 1-3

4GL Works with Databases

1-4

Use INFORMIX-SQL to interact with an Informix database (if you
have the INFORMIX-SQL product)

Get help at any time with the on-line help feature

You can also manage your applications by using commands at the operating-
system prompt rather than by using the Programmer’s Environment.

4GL Works with Databases

Although it is a complete, general-purpose programming language, 4GL is
specifically designed to make certain kinds of programs especially easy to
write. Programs of these kinds, collectively interactive database applications,
face some or all of the following special challenges:

They retrieve data from a relational database and process the data
with logic that is more complicated than SQL alone permits.

They present data using screen forms and allow users to construct
gueries against the database.

They allow users to alter database records, often enforcing complex
requirements for business rules, referential integrity, data validation,
and security.

They update a database with data processed from other databases or
from operating system files.

They generate multipage, multilevel reports based on data from a
database or other sources, often letting the user set the parameters of
the report and select the data for it.

With 4GLyou can program applications of these kinds more easily than with
any other language.

In addition, 4GL has an open, readable syntax that encourages good
individual or group programming style. Programs written in 4GL are easily
enhanced and extended. This, with its development environment, makes it
easy for programmers to become productive quickly, no matter what
programming languages they know.

IBM Informix 4GL Concepts and Use

4GL Runs in Different Environments

4GL Runs in Different Environments

4GL is the only multipurpose programming language that offers code- and
display-compatibility across operating environments. Applications that you
develop are portable to the different platforms subject to simple porting
guidelines. You can run this version of 4GL on the following types of
computers:

= On UNIX character-based terminals provided by a wide variety of
hardware vendors

= On UNIX workstations

Informix Dynamic 4GL

Informix also provides a separate product, called Informix Dynamic 4GL,
which enables you to deploy 4GL applications on platforms that support X11
protocols, and on GUIs, such as Motif, Microsoft’s Windows NT, and
Windows 95. The Dynamic 4GL product supports all the syntax features of
the INFORMIX-4GL language, as well as extensions for creating and
displaying graphical objects.

Two Implementations of 4GL

Informix provides two implementations of 4GL:

= The C Compiler, which uses a preprocessor to generate
INFORMIX-ESQL/C source code. This code is preprocessed in turn to
produce C source code, which is then compiled and linked as object
code in an executable command file.

= The Rapid Development System, which uses a compiler to produce
pseudo-machine code (called p-code) in a single step. You then invoke
a “runner” to execute the p-code version of your 4GL application.
This version is sometimes abbreviated as RDS.

For details about the differences between the two versions, see INFORMIX-
4GL Reference.

Introducing INFORMIX-4GL 1-5

Interfaces of INFORMIX-4GL

InThisChapter 2-3
Database Access. oL Lo oL 2-5
Access to Sequential Files 2-5
ReportQutput 2-6
User Accesso 2-6
Using Formsand Menus 2-8

summary e 2-9

2-2 IBM Informix 4GL Concepts and Use

In This Chapter

Multiuser application programs that you write using INFORMIX-4GL have
the following four primary interfaces to other software:

= Accessing a database through an Informix database server

= Communicating with end users through a terminal

= Accessing sequential files through the host operating system

s Generating reports that can then be sent to several destinations

Interfaces of INFORMIX-4GL 2-3

This chapter

describes these interfaces and their uses. Figure 2-1 is an

overview of how they work.

Figure 2-1
Multiuser Application Programs

IARRRRRRRNNIN N
i
nnn
i

HTICTTITITTTTITITTT

THTHTTE
T
ST

Interactive users of
database

Common data files

i M

i

N

w1
S
i M) i

Database reports
i

4GL window Q

Database

2-4 1BM Informix 4GL Concepts and Use

Database Access

Database Access

Your 4GL programs can access relational SQL databases that appropriate
Informix database servers support.

The database can be located on the same computer as the 4GL application
program, but more often, the application runs on a separate client system.

After network connections are properly established, database access is
transparent; you need not write any special code to make it happen. In fact,
the same 4GL program can work with a local database server that is located
on the same computer on one occasion, and over a network to a database
server on another computer on another occasion.

Access to Sequential Files

Your 4GL application can use standard sequential, or flat, data files in the
following ways:

= The UNLOAD statement writes selected rows of data from a database
table to a specified file.

= The LOAD statement reads a file and inserts its lines as rows into a
specified database table.

= The START REPORT or the REPORT statement can send output from a
report to a specified sequential file or to an operating-system pipe.

= The PRINT FILE statement can incorporate the contents of a specified
sequential file into the output of a 4GL report.

= The DISPLAY statement can be used to write to the screen. Using the
host operating system, you can also direct these lines to a file or to
another program.

Interfaces of INFORMIX-4GL 2-5

Report Output

Report Output

Your 4GL program can generate powerful and flexible reports, whose output
isaseries of print lines. Output can be directed to any of the following several
destinations:

= Ascreen

= Aprinter

= A host system sequential file, specified by its pathname

= A UNIX operating-system pipe to another process

The logic for generating reports is the same in all cases. The destination can
be coded into the program or selected at execution time.

Report programming is covered in more detail in Part I, with examples in
Part 111 of this book.

User Access

To provide for portability of code across different platforms, your program
interacts with the user through display areas, called windows, that have a
fixed number of character-height rows and character-width columns.

The user of your application can be using any of the following environments:

= A terminal-emulation program on a personal computer or
workstation that is connected to a UNIX network

= A character-based terminal connected to a UNIX system

No matter what the physical display device, the 4GL user interface is
programmed for fixed-size characters. A 4GL window can display a fixed
number of characters horizontally, and a fixed number of characters verti-
cally. You specify these two dimensions when you declare the 4GL window,
typically with dimensions that are sufficient to display a specific 4GL screen
form. Each 4GL window can display no more than one 4GL screen form.

2-6 1BM Informix 4GL Concepts and Use

User Access

Screen forms of 4GL are also portable across 4GL applications and platforms.
You design screen forms through which your program can display data.
Then you compile the forms separately from the other parts of the program.
The resulting compiled forms can be used with different 4GL programs.

You display a form with one program statement and fill it with data in
another; you can prompt for user input to any or all fields with a third. You
can easily open additional display areas for alerts and other information.
Interaction through a hierarchical set of ring menus (horizontal menus) is
also fully supported.

Interfaces of INFORMIX-4GL 2-7

Using Forms and Menus

Using Forms and Menus

The typical 4GL program is designed around a hierarchy of screen forms and
menus, as shown in Figure 2-2. The program presents a main menu that
contains a list of major activities; for example, query, insert, or update. The
user selects one activity and the program displays the form for that activity.
When the activity ends, the program re-displays the main menu.

Figure 2-2
Program with Forms

MAIN MENU

HIEHITT
M

HHHH T T T i
i i

CUSTOMERS: /il Il 11 ORDERS: /il T i 1t MANUFACT MAINT

M T 1 i 1 i s i —
AN] it 1 [1 1 M
[] []
i L e R . [10
M 10] [10
i] [10

The 4GL program specifies which screen elements the user interacts with at
any given time. This predictability leads to an easily maintained linear
program structure and simple program logic.

2-8 1BM Informix 4GL Concepts and Use

Summary

Summary

You use 4GL to write programs that connect key elements in the following
informational structure:

= The database

= The interactive users of the database
= Common data files

= Output from database reports

While working with the database, you use the industry-standard SQL, which
you can augment with your program logic.

As you will see in subsequent chapters, your programs have a simple method
to access common sequential files, and nonprocedural, task-oriented
methods for getting information from a database, and for defining and
producing reports.

You can use 4GL to program elaborate user interactions based on forms and
menus. This user interface is character-oriented; that is, output is displayed
in a fixed number of evenly spaced lines, each of which contains a fixed
number of monospace characters. This approach allows applications written
in 4GL to run without modification on supported platforms.

Interfaces of INFORMIX-4GL 2-9

The INFORMIX-4GL Language

InThisChapter 3-3
A Structured, Procedural Language 3-3
A Nonprocedural, Fourth-Generation Language 3-6
Database Access 3-6
Report Generation. 3-7
User Interaction 3-8

Summary L Lo e 3-9

3-2 IBM Informix 4GL Concepts and Use

In This Chapter

This chapter provides a brief tour of INFORMIX-4GL as a language. The
purpose is to give you an idea of what 4GL code looks like. Many short
examples are given in the following chapters and several complete examples
are supplied on-line with the product. For additional details on the 4GL
programming language, see Chapter 8, “Using the Language.”

As a programming language, 4GL has several important features:
= Itisa procedural language, with facilities for structured
programming.
= Itisanonprocedural, fourth-generation language with regard to:
o Database access
0 Reports
0 Form-based user interaction

» Itissimilar to C in design, but much easier to read, write, and
support.

A Structured, Procedural Language

4GL is a general-purpose programming language for creating structured
programs, the way you might use Pascal, C, COBOL, or PL/1. Like these
languages, 4GL offers statements that you can use to perform the following
tasks:

= Declare variables of different data types

= Calculate values and assign them to variables

» Declare and define functions

The INFORMIX-4GL Language 3-3

A Structured, Procedural Language

= Apply functions to data
= Display the contents of variables on the screen

Also like other programming languages, 4GL has control statements that you
can use to define choices, loops, and statement blocks of code.

Figure 3-1 shows a short, complete program in 4GL. It prompts the user for a
number and displays the square, cube, and fourth power of the number.

Figure 3-1
Short Program Example

Variables are declared by name and by data type.

—— Every program must have a MAIN

DEFI NE gi ven, product FLOAT, power | NTEGER statement where execution begins.
MAI'N
PROWPT "Enter a decimal nunber: " FOR given What the user types is converted
——LET product = given to a FLOAT value that is stored in
DI SPLAY * Exponent val ue"

FOR power = 2 TO 4 the “given” variable

LET product = product * given
DI SPLAY power, product

END FOR One of several types
SLEEP 5 of loop statements.
END MAI N

—— SLEEP 5 keeps the 4GL window
open in Line mode for five seconds.

Assignment is done with the verb LET.

Statements of 4GL that can contain other statements are called compound state-
ments. The END FOR and END MAIN keywords respectively mark the end of
the FOR and MAIN statements, which are compound statements.

Like C, the 4GL language is free-form, with whitespace characters such

as blank spaces, tabs, and linefeeds ignored in most contexts. You must,
however, insert at least one blank space between consecutive keywords,
identifiers, or literal values that appear in the same line, unless some other
separator is provided. You cannot include whitespace characters within a
keyword or identifier, and whitespace characters within literals are inter-
preted by 4GL as part of the literal.

3-4 1BM Informix 4GL Concepts and Use

A Structured, Procedural Language

4GL is not sensitive to the letter case of keywords or identifiers in a source
statement. The use of only capital letters for language keywords such as
DEFINE and MAIN is merely a convention used in these manuals, to help you
to identify keywords. You can write keywords in lowercase, or in any combi-
nation of capitals and lowercase that you prefer. However, 4GL preserves the
letter case of characters that are enclosed between quotation marks, such as
in the quoted string of the PROMPT statement in the previous code example.

The 4GL language supports structured programming. Its design encourages
you to build your program as a family of simple, reusable functions with
well-defined interfaces. The function in Figure 3-2 returns the lesser of two
integers.

Figure 3-2
Function ~ Function Simple 4GL
name arguments Function

FUNCTI ON snal l er (a,b)
DEFI NE a, b, z SMALLI NT

Variables local to

LET z = a this function
IF z > b THEN

LET z = b

END | F
RETURN z ?— Most compound statements
END FUNCTI ON are delimited by END

In these manuals, a module means an individual file. You cannot divide a
single 4GL statement between two modules. This rule also applies to
compound 4GL statements. As described in the next chapter, 4GL also has
features that make it easy to assemble large programs from many small
source code modules.

The INFORMIX-4GL Language 3-5

A Nonprocedural, Fourth-Generation Language

3-6

A Nonprocedural, Fourth-Generation Language

4GL is a nonprocedural or fourth-generation language in three important
areas:

= Database access

= Report generation

= User interaction

In these areas, you specify what is to be done, while 4GL (or the database
server) takes care of the actual sequence of operations.

Database Access

4GL includes all SQL statements supported by Informix as native statements
of the language. The function in Figure 3-3 applies a change in price to all the
items in the stock table that are purchased from a particular manufacturer.
The function returns the number of rows changed to the calling routine.

Figure 3-3
Database Access Function

FUNCTI ON mar kup(Pct Chg, manuf)
DEFI NE Pct Chg FLOAT ,

manuf CHAR(3) Program variable
UPDATE st ock used in SQL
SET unit_price = unit_price * (1+PctCh statement.

VWHERE manu_code = manuf
RETURN sql ca. sql errd[3]
- returns nunber of rows retrieved
END FUNCTI ON

UPDATE statement SQL communications area
is standard SQL. (SQLCA) is a global record.

It is the nature of many SQL statements to be nonprocedural. That is, you use
the statements to specify what is to be done, and the database server then
determines how to do it.

IBM Informix 4GL Concepts and Use

Report Generation

Using 4GL, however, you can write code that applies sophisticated logic to
the results of the SQL statements. For example, the function in the preceding
example could contain statements to validate the argument before applying
the change, or to verify the authorization of the current user to perform such
a change.

Report Generation

A 4GL report is a specialized program block that can display data from the
database. Output from reports is typically tabular in form and can be
designed for printing with page headers and footers. Some reports are
produced by noninteractive, batch programs, perhaps run at night. Any 4GL
program can produce report output if it contains the necessary logic for
extracting and formatting the data, invoking the report, and sending the
output to some destination (such as to a file, to a printer, or to the screen).

4GL divides the task of producing report output into two parts. One part that
might require procedural logic is the production of the rows of data that go
into the report. The second part is the logic within the report itself, reflecting
your decisions as to the sequence of presentation, and how to format header
and footer lines, detail lines, control breaks, and display subtotals.

You write the logic of the report in a nonprocedural form, as a collection of

code blocks that are called automatically as needed. For example, your code
block for a group subtotal can be executed automatically on each change in

the value of the group control variable. Your code block for a page footer is

called automatically at the bottom of each page.

As you design and code the logic of a report, you think about each part of the
report in isolation. 4GL supplies the logical glue that passes control of
program execution to the appropriate report sections as required.

Examples of reports are shown in subsequent chapters, particularly in
Chapter 10, “Creating Reports.” One key point: the report driver, which is the
part of the 4GL program that produces the input records (the rows of data that
the report processed) does not need to arrange the order of the extracted
rows. 4GL can automatically collect input records and sort them before
presenting them to the report code, if that is necessary.

The INFORMIX-4GL Language 3-7

User Interaction

User Interaction

4GL contains extensive support for writing interactive programs. You can fill
some or all of the fields of a form from program variables with a single
statement. With another statement, you can open up form fields for user
input with the entered data returned to program variables. For detailed
validation, you can attach blocks of code to form fields. The code is executed
when the cursor leaves or enters a field.

Figure 3-4 shows a typical screen form with a menu, together with the p-code
that would be used to display it. (Example 19 in INFORMIX-4GL by Example
contains the complete source code of this program.)

Figure 3-4
Screen Form with Menu

View Customers: Query First DHEEEN Last Exit
Digplay nexst customar in selactad sat

cmmmmmssmmssmsssssssssssssssssssssssssssss==Progs CTAL=-W Tor Help====-m=a--

Customer Humber: [181] Company Meme: [#11 Sports Supplies]
Address! [213 Erstwild Court
1
City: [Sunnyvale 1 State: [CA] Iip Code: [94086
Contact Wame: [Ludwig 1[Fauli 1
Telephone: [4AE-TE9-BA75 1
OPEN FORM f _cust FROM "f _cust™ ———— Gets precompiled form from disk
DI SPLAY FORM f _cust 1. _
MENU " New Cust omer s" Displays form fields and labels on
COMVAND " Query" screen

CALL queryCust ()
COWAND "First"
CALL firstCust()
COWVVAND " Next "
CALL next Cust () >i Displays menu choices and specifies the
COWAND " Last" code to execute when each choice is
CALL | ast Cust () selected
COMVAND "Exi t" KEY(Escape, CONTROL- E)
EXI T MENU
END MENU

3-8 IBM Informix 4GL Concepts and Use

Summary

You describe a screen form in its own source file and compile it separately
from program code. Because forms are independent of 4GL programs, forms
are easy to use with many different 4GL applications.

You can open a 4GL window, optionally containing another form, above the
current 4GL window, and then restore the original display. There is support
for scrolling lists of data during display and editing. These features are
covered in subsequent chapters.

Summary

4GL has all the features of a standard, structured programming language. It
goes beyond such languages as Pascal or C in that it supports nonprocedural,
task-oriented ways of programming database access, report generation, and
user interaction.

The INFORMIX-4GL Language 3-9

Parts of an Application

In This Chapter .
The Database Schema .

Form Specifications and Form Files .
Form Design.

Field Entry Order .

Program Source Files . .
Organization of a Program .

The Globals Files .

Program Object Files .
P-Code Obiject Files

C-Code Obiject Files .

Example Programs .

4-3
45
4-6
4-9
4-9

4-10

4-10

4-11

4-11

4-13

4-14

4-15

4-2 IBM Informix 4GL Concepts and Use

In This Chapter

You typically use INFORMIX-4GL to build an interactive database application, a
program that mediates interaction between a user and a database. The
database schema that organizes data into relational tables gives shape to one
side of the program. The needs of your user shape the other side. You write
the program logic that bridges the gap between them.

Such a program has many parts that you prepare with the help of the 4GL
Programmer’s Environment. This chapter discusses the main parts of an
application, which might include these files:

Form source files. You specify the user interface to your application,
using editable files that specify the visual appearance of the form and
the data types and attributes of the fields in the form.

Form object files. Your form specifications are compiled into a
binary form by using FORMA4GL, the 4GL form compiler. These are
loaded by the 4GL program during execution.

Message source files. You write the text of help and other messages
separately from your 4GL programs. Programs can share a common
set of messages, and you can change these (for instance, to support a
different language) independently of the programs.

Message object files. Your messages are indexed for rapid access by
mkmessage, the 4GL message compiler. Like a form, a compiled
message file can be used by many different programs.

Program source files. You write your program as one or more files of
4GL source code.

Program object files. Your sources are compiled into C code or p-
code executable files, depending on the implementation of 4GL that
you are using. For a brief description of the two implementations, see
“Two Implementations of 4GL” on page 1-5.

Parts of an Application 4-3

Figure 4-1 illustrates the parts of an application.

Figure 4-1
Parts of a 4GL Application

Message files

Ty
T

o
e v

4GL source files

LTI T

LTI T
I i
o s e
T v e
sy

o .4go

Database schema

Compiled 4GL code

Gaonnnd

= iem
Compiled
message files

R

—1
i, || Form specifications

H
T

.per

Compiled
form

4-4

IBM Informix 4GL Concepts and Use

The Database Schema

The Database Schema

Either you or another person acting as the database administrator (DBA)
must carefully design a representation of the real world, or of some
important part of it, in the structure of the database.

This picture of the real world is expressed in the form of tables of information,
each containing categories of information, called columns. It is not simple to
make the proper choice of columns and to group them into tables so that the
data can be used efficiently and reliably as your needs change. In fact, many
books have been written on the subject of how best to design a database
structure, usually referred to as a schema.

The database schema affects your 4GL program in the following ways:

= You can have program variables that have the same data types and
names as database columns. 4GL makes this easy by letting you
declare a variable as being LIKE a column in a table. When the
program is compiled, the compiler queries the database for the
appropriate data type.

= Your program can contain SQL statements that refer to names of
tables and columns. Any change in the schema might require you to
examine these statements and possibly change them.

= The logic of your program can depend on the schema. For example,
if your program must change the schema of several tables to perform
a certain operation, then you might want to use explicit database
transactions. If only a single table needs changing, you can avoid
this.

In general, before you start work on a large application, you should make
sure that the database schema is workable and that you and others who will
be using the database understand it well.

Parts of an Application 4-5

Form Specifications and Form Files

Form Specifications and Form Files

In many applications, the user interface is defined by forms. A formis a fixed,
functionally organized arrangement of fields (areas where you can display
program data and the user can enter text) and labels (static, descriptive text,)
as shown in Figure 4-2.

Figure 4-2
A Form That Contains Labels, Fields, Additional Text, and a Screen Array

Labels

] Conparmy Hane: | Overachievers, Inc

Date:|] FO Humb&p

3P lpTLon LianT L T Firioe

11
11
11
1

Sl Total
ales Tas

Fields

The end user of a program does not know about the database schema or your
carefully designed program logic. As the user sees it, the forms and the
menus that invoke them are the application. The arrangement of fields and
labels, and the behavior of the forms as the user presses different keys and
selects different menu options, create the personality of the program.

4-6 IBM Informix 4GL Concepts and Use

Form Specifications and Form Files

4GL form specification files are ASCII files. You can use an ASCII text editor to
design the labels and fields for your form. The following example shows a
portion of the form specification file that was used to create the preceding
form:

SCREEN
{
Cust onmer Nunber:[f000] Conpany Nane:[fO001]
Order No:[f002] Order Date:[f003 1 PO Nunber: [f004]
Item No. Stock No Manuf Descri ption Quantity Price Tot al
[foo5] [foo6] [fO7] [fOO08] [fo0o9] [foOl10] [fol1l]
[foo5] [foo6] [fO7] [fOO08] [fo09] [fol10] [fol1l]
[foo5] [foo6] [fO7] [fOO08] [fo09] [foOl0] [fol1l]
[foo5] [foo6] [fO7] [fOO08] [fo0o9] [foOl0] [fol1l]
Sub- Total : [f012]
Tax Rate [f013]% [f014] Sal es Tax: [f015]
Order Total: [f016]
}
TABLES
customer orders itenms stock state
ATTRI BUTES

f 000 = orders. custonmer_num
f001 = custoner. conpany;

To view the entire text of this example, see Example 11 in INFORMIX-4GL by
Example.

After you specify a form, you compile it with FORMA4GL, the 4GL form
compiler, as illustrated in Figure 4-3. The result is a portable binary file that
can be opened and displayed from any 4GL program on any platform that
4GL supports.

Figure 4-3

IARRRRRRR R

LT The Form

LIy

am Compilation

T

e
T Process

.per ’ :

Form compiler

Compiled forms are independent of the programs that use them, so you can
use the same forms in different applications for a consistent look and feel.

Parts of an Application 4-7

Form Specifications and Form Files

Because forms are so important to the users of your application, you should
consider designing the main forms before any other part of the program. You
can quickly prototype programs that display forms so that your users can
give you their opinions.

The following text is from the program that displayed the form Figure 4-2 on
page 4-6:

MAI N
OPEN FORM fx FROM "f _orders"
DI SPLAY FORM f x
DI SPLAY "2478" TO orders. cust oner _num
DI SPLAY "Overachi evers, Inc" TO custoner.conpany
SLEEP 60
END MAI N

4-8 IBM Informix 4GL Concepts and Use

Form Design

Form Design

Designing a good user interface is integral to the success of your program.
The forms you create to develop the user interface provide an interaction
gateway between the end user and the database. Consider the following
points when you create forms for your application:

= Isthe purpose of the form clear from its title and the title of the menu
command that invokes it?

= Arefields in the form arranged in the same logical order that the user
typically follows in transcribing or describing the information?

= Isthe same information always given the same label in every form in
which it appears?

= Are form labels consistent in style and content?
= Isthe relationship between various forms as clear as possible?
= Isitobvious how to complete the form and what fields are required?

Field Entry Order

With 4GL, you can constrain the user to entering fields in a preset order, or
you can permit entry into fields in any order desired by the user. Because
application and form requirements differ, you can control these factors on a
form-by-form basis.

Parts of an Application 4-9

Program Source Files

4-10

Program Source Files

You express the logic of your application with 4GL statements in program
source files.

Organization of a Program

If you use the C Compiler version of 4GL, the files that contain executable 4GL
statements require .4gl as the file extension; otherwise, the program compiler
cannot find them. If you use the Rapid Development System (RDS) imple-
mentation of 4GL, however, you can omit the .4gl file extension.

Because 4GL is a structured programming language, executable statements
can appear only within logical sections of the source code called program
blocks. This can be the MAIN statement, or else a REPORT or FUNCTION
statement. A function is a unit of executable code that can be called by name.
In a small program, you can write all the functions used in the program in a
single file. As programs grow larger, you will usually want to group related
functions into separate files, or modules, with the declarations that they use.

Each source file usually reflects a self-contained unit of program logic. Source
files are sometimes called source modules.

Execution of any program begins with a special, required program block
named MAIN. The source module that contains MAIN is called the main
module. The following example is a small but complete 4GL program:

MAI N
CALL saylt()
END MAI N

FUNCTI ON sayl t ()
DI SPLAY "Hel | o, world!"
END FUNCTI ON

This single module contains the MAIN program block, delimited by the
keywords MAIN and END MAIN, and one other function named saylt().

IBM Informix 4GL Concepts and Use

The Globals Files

A single function cannot be split across source modules. The preceding
program example has two functions, however, so it could be split into two
source modules. The first would be the MAIN program block, as follows:

MAI N
CALL saylt()
END MAI N

The second module could contain the three lines of function saylt() just as
shown above. It could also contain data or other functions related to saylt(),
if there were any.

Functions and reports are available globally. For example, you can reference
the sayIt() function in any source module of your program, provided that the
function is defined somewhere in the program.

The Globals Files

In 4GL programs, global variables (variables that are available to more than
one source module) must be declared in globals files and imported through
the GLOBALS ‘filename’ statement by each 4GL module that uses them. For
more information on local and global variables, see “Variables and Data
Structures” on page 8-11.

Program Object Files

Both the C Compiler and the RDS implementations of 4GL provide their own
source code compiler command. These can generate distinct, executable
forms of the same 4GL program:

= For the C Compiler implementation, c4gl, the command to invoke a
C compiler, generates code that can be executed directly by the
hardware of the computer after an executable program is created.

= For the RDS implementation, fglpc, the p-code compiler, generates
hardware-independent pseudo-machine code, which is not directly
executable by the operating system or GUI, but that can be inter-
preted by the 4GL p-code runner.

Parts of an Application 4-11

Program Object Files

4-12

Both implementations can take the same 4GL source code as input. If the

C code option is selected, the output is a C language object file. When this file
is linked with other 4GL libraries (and optionally with C object modules),
an independent executable program is produced. This process is illustrated
in Figure 4-4. Because C code is not machine-independent, a compiled

C version of a 4GL program must be recompiled before it can be executed on
another computer system that uses a different C compiler.

Figure 4-4

Ty

HTTT] The C ObjeCt Code

T

Generation Process

RN RNRRRRNNRNNN:

.4gl

o

C code compiler

4GL source file

Linkable .o file

If compilation to p-code is chosen, p-code intermediate object files are created
that are executable under the 4GL runner.

Both types of compiled files are binary. That is, the file is not printable or
editable as text. All the modules of an application must be compiled to the
same form. That is, the executable version of your program cannot mix

C code and p-code units, although the p-code runner can be customized to
call C object modules.

For details of the steps that are required for compiling 4GL source files of all
types, as well as for using C with 4GL, see INFORMIX-4GL Reference.

IBM Informix 4GL Concepts and Use

P-Code Object Files

P-Code Object Files

As illustrated in Figure 4-5, you can use fglpc, the command to invoke the
p-code compiler, to translate a 4GL source module into p-code. The output of
the p-code compiler will have the file extension .4go.

T Figure 4'5
i The P-Code Object
i

HITTIT] Code Generation

LTI T

HHTTT T Process

P-code compiler

When your application is in several source modules, you first compile each
separate module to p-code, as shown in Figure 4-6. Then you can concatenate
the individual p-code files using a utility (cat in UNIX environments) to make
the executable .4gi program file.

Tip: When you use the Programmer’s Environment to build and maintain your
program, module linking is done automatically for you.

Figure 4-6
Steps to Creating an Executable Program Under the P-Code Runner

RN,

LT

LTI
e

.4ql

P-code compiler

’ # 4gi

Concatenation utility
(cat on UNIX)

Parts of an Application 4-13

C-Code Object Files

4-14

To execute a .4gi file, you call the 4GL p-code runner. Use fglgo to execute the
p-code instructions in the file as shown in Figure 4-7, activating your
program.

Figure 4-7
Components of a
Runnable P-Code

Application
P-code
=

P-code runner

Agi application

C-Code Object Files

You can use the C-code compiler, c4gl, to translate a source module directly
into machine code, which is done in the following three primary stages:

1. The module is translated to INFORMIX-ESQL/C source code.
2. The ESQL/C processor converts that to C source code.
3. The compiler translates to C object code for your computer.

Figure 4-8 illustrates this procedure.

Figure 4-8
Steps to Creating a C Object File

Ty

ey
T
T
T
T
RN RNR RN,

’# c #

Native compiler

LI
L
T g

e
T
THLETETTTT T
LTy

.4gl

C compiler

IBM Informix 4GL Concepts and Use

Example Programs

From the operating-system command line, a single call to the c4gl command
performs all the steps, or all these steps can be automatically accomplished
through the Progammer’s Environment.

On UNIX systems, the default extension is .4ge. However, it is not required.
You can hame your executable applications anything that you like, within the
rules for valid filenames on your operating system and network.

The C file from a single source module is compiled to an .o file. Several .o files
for a multi-module application can be combined into a single executable file
through the Programmer’s Environment or using another concatenation
utility. In fact, the c4gl command line accepts any combination of .4gl files,
.ec files, .c files, and .o files to produce a single .4ge executable file, as illus-
trated in Figure 4-9.

Figure 4-9
) Steps to Creating
an Independently
Executable 4GL
Program
o= 0
Linker =
Age

Example Programs

Now that you know the parts of a 4GL program, you should look at a few of
them to see what they are like. A number of programming examples are
distributed with 4GL. INFORMIX-4GL by Example contains 30 complete and
annotated 4GL programs.

Parts of an Application 4-15

The Procedural Language

In This Chapter .

Declaration of Variables .
Data Typing .

Automatic Data Type ConverS|on
Data Structures .

Records .
Arrays
Memory AIIocatlon

Scope of Reference.

Decisions and Loops
Statement Blocks .

Comment Symbols

Exceptions. .
Kinds of Exceptlons .

Why Exceptions Must Be Handled
How Exceptions Are Handled

5-10
5-11
5-12

5-12
5-12
5-13
5-13

5-2 IBM Informix 4GL Concepts and Use

In This Chapter

INFORMIX-4GL is a fourth-generation programming language. However, it
uses some concepts based on procedural languages (such as Pascal and C).
This chapter describes concepts that are based on procedural programming.
In particular, it describes how to accomplish the following tasks:

» Declare variables

s Organize statements for decisions and looping

= Handle exceptions

Declaration of Variables

4GL has a flexible mechanism for declaring program variables. You specify a
datatype for every variable, but there is automatic conversion between many
data types. Data can be structured as records or arrays and can be allocated
statically or dynamically. Variables can have either local or module scope.

Data Typing

4GL is a strongly typed language. That is, whenever you declare a program
variable, you must specify its data type; for example, INTEGER or CHAR. The
compiler ensures that only data of that type can be stored in that variable. The
following example is a declaration of several types of variables:

DEFI NE aFl oat FLOAT
onel nt, anotherlnt |NTEGER,
aString CHAR(20)

Data types that 4GL supports for program variables include all the primitive
data types (except SERIAL) that are valid in columns of an Informix database,
as well as BYTE and TEXT, the binary large object (blob) data types.

The Procedural Language 5-3

Automatic Data Type Conversion

5-4

Every data type of 4GL can be classified into one of three logical categories:

= Simple data types store a single value in the format of some primitive
SQL data type. Every data type of 4GL except ARRAY, BYTE, TEXT, and
RECORD is a simple data type.

= Large data types (BYTE and TEXT) can store blobs.

= Structured data types (ARRAY and RECORD) can store ordered sets of
values.

An important point to note is that 4GL defines a specific NULL value for every
data type. NULL means unknown, rather than 0, which is a precise value. You
can assign NULL to any variable, and you can test any variable for NULL
content. This is necessary to support database operations, because NULL is a
distinct value (or, to be more precise, a non-value) within a database table.

Automatic Data Type Conversion

With some strongly typed languages, it is an error to assign a value of one
data type to a variable of a different data type. In contrast, 4GL allows you to
assign any value to any variable, provided that there is a reasonable way of
converting the value to the data type of the receiving variable.

LET aFl oat
LET onel nt

2.71828
aFl oat-- assigns integer 2

The LET statement is used for assignment. The first of the preceding LET
statements assigns a literal decimal number to a variable of the FLOAT data
type. In this code fragment, the variables aFloat and onelnt are declared in
the DEFINE statement example in “Data Typing” on page 5-3.

In the second LET statement, a FLOAT value (which is the contents of the
variable aFloat) is assigned to the INTEGER variable onelnt. 4GL converts the
FLOAT value to an INTEGER to match the data type of the receiving variable.
To do so, the fractional part of the floating point number is truncated.

Another common data type conversion is that between a character value and
almost any other data type.

LET aString = aFl oat-- assigns "2.71828" to aString

This statement assigns a FLOAT value to a variable whose data type is CHAR
(a character string). 4GL converts the numeric value to characters and then
assigns that string value to the CHAR variable aString.

IBM Informix 4GL Concepts and Use

Data Structures

4GL will also attempt to convert a character string to a number or to some
other data type. The second of the following LET statements assigns a string
of numeric characters to a FLOAT variable:

LET aString = "3.141592"
LET aFloat = aString-- assigns 3.141592 into aFl oat

If the characters in the string can be interpreted as a literal value of the
receiving data type, then the conversion is done. Most data types have a
printable character representation, and 4GL converts automatically between
the printable form and the internal form.

Of course, there are some cases when conversion is not allowed. For example,
the BYTE and TEXT data types cannot be converted into any other type. Such
errors are typically detected at compile time.

Some conversions, however, can only be found to be impossible at execution
time. The following example fails in its attempt to convert a large floating-
point number to an INTEGER data type.

LET aFl oat
LET onel nt

2E12-- about 100 tinmes the maxi numinteger size
aFl oat-- this causes a runtine error

You can manage such runtime errors in any of several ways:

= Anticipating them and inserting programmed tests to avoid them

= Trapping the error at execution time

= Letting the runtime error terminate the program with an appropriate
message

For a table that identifies all the pairs of data types for which 4GL supports
automatic data type conversion, see INFORMIX-4GL Reference.

Data Structures

The structured data types enable you to organize program data into records
and arrays, both of which are sometimes called data structures.

These data types (ARRAY and RECORD) can store ordered sets of values of
other 4GL data types. You can also declare an ARRAY variable whose elements
are RECORD variables, or a RECORD variable that has ARRAY or RECORD
members, but you cannot declare an ARRAY of ARRAY variables.

The Procedural Language 5-5

Data Structures

Records

The RECORD data type stores a group of values that are treated as a unit. Each
member variable of a record has a name. Unlike blob or simple data types, you
can use a RECORD variable to represent an entire row in a database table. The
following code fragment declares a record:

DEFI NE st ockRow, saveSt ockRow RECORD
stock_num | NTEGER ,
manu_code CHAR(3) ,
description CHAR(15) ,
unit_price MONEY(S,2) ,

uni t CHAR(4) ,
uni t _descr CHAR(15)
END RECORD

This statement defines two program variables. Their names are stockRow
and saveStockRow. Each variable is a record with six members. The member
named manu_code is a three-character string. You refer to this member of the
stockRow record as stockRow.manu_code. The parallel member of the other
record, saveStockRow, would be called saveStockRow.manu_code. Note
the record.member notation, where a period (.) separates the record qualifier.

The members of these records are all simple data types. A record can contain
members, however, that are other records or arrays. Another interesting
aspect of this record is that it contains one member for each column in the
stock table of the stores7 demonstration database. Because it is so common
to define a record that matches one-for-one to the columns of a database
table, 4GL provides an easier way of doing this:

DEFI NE st ockRow, saveSt ockRow RECORD LI KE st ock. *

This statement causes the 4GL compiler to refer to the database, extract the
names and types of all the columns, and insert them in the program. In this
way, you can ensure that the program will always match the database
schema. (A previous DATABASE statement must identify the database.)

You can also fetch a row of a database table into such a record:

SELECT * I NTO st ockRow. * FROM st ock
WHERE st ock_num = 309 and nmanu_nane = "HRO'

You can assign the contents of all the members of one record to another
record with a single LET statement;

LET saveSt ockRow. * = stockRow. *

5-6 1BM Informix 4GL Concepts and Use

Data Structures

You can do this even when the two records are not defined identically. The
assignment is done member-by-member. As long as the records have the
same number of members, and data values from each member on the right
can be converted to the data type needed by the corresponding member on
the left, you can assign the contents of one record to another.

Arrays

Like RECORD, the ARRAY data type of 4GL does not correspond to any single
primitive data type of SQL. The ARRAY data type stores an ordered set of
values that are all the same data type, for every 4GL data type except ARRAY.
You can declare one-, two-, or three-dimensional arrays. The elements of the
array can be simple data types, blobs, or records, as the following example
shows:

DEFI NE st ockTabl e ARRAY[200] OF RECORD LI KE stock. *

This array variable is named stockTable. It contains 200 elements, each of
which is a record with as many members as there are columns in the stock
table in the database. One of those columns is named stock_num. You would
access the stock_num member of the 52nd element of the array by writing
stockTable[52].stock_num.

The first element of any array is indexed with subscript 1. This differs from
the C language, and some other programming languages, where the first
element is always zero. The subscript value that selects an element can be
given as an expression. Expressions are described in “Expressions and
Values” on page 8-22.

The Procedural Language 5-7

Memory Allocation

Memory Allocation

4GL supports the allocation of memory to program variables either statically,
as part of the executable program file, or dynamically, at execution time. You
choose the method to use by the location of your DEFINE statement within
the source module.

In the program in Figure 5-1 on page 5-8, greeting and audience are static
variables, whose memory is allocated during compilation, because they are
declared outside of any program block. In the same example, message is a
variable local to the saylt() function in which it is defined; memory for
message is allocated dynamically, when its function is invoked at runtime.

Figure 5-1
Examples of Static and Dynamic Memory Allocation for Variables

DEFI NE greeting CHAR(5)
DEFI NE audi ence CHAR(5)

MAI N
LET greeting = "Hell o"
LET audi ence = "world" Module-scope variables are
CALL saylt() allocated statically.

END MAI N

FUNCTI ON saylt ()
DEFI NE nessage CHAR(40) - Local variables are
LE'SF nessage = greeting , " " , audience, "!" allocated dynamically when
DI SPLAY nessage i i

END FUNCTI ON the function is

entered.

. __|
The topics of data allocation, scope of reference, visibility, and program
blocks are considered in detail in INFORMIX-4GL Reference. In summary:

= Variables that you declare outside of any MAIN, REPORT, or
FUNCTION statement have as their scope of reference the same
module in which they are declared. Unless their names conflict with
the names of local variables, they are visible in the entire module.
They can be referenced by any statement in the same source file that
follows the definition. Memory for these module variables is allocated
statically, at compile time, and become part of the program image.

= Variables that you declare within a function are local to the function.
New copies of these variables are created each time the function is
called. They are discarded when the function exits.

5-8 IBM Informix 4GL Concepts and Use

Scope of Reference

Scope of Reference

The scope of reference of a variable is where its name can be used in the
program. Variables that you declare can have local or module scope:

= Local variables declared within a program block are local to that
program block. Their scope of reference is from the point of decla-
ration to the end of the program block. Local variables are created
each time that their FUNCTION, report, or MAIN statement is
entered. They cease to exist when execution of that program block
terminates.

= Module variables declared outside of any program block have a
scope that extends from the point of declaration to the end of the
module.

The GLOBALS ... END GLOBALS statement declares variables that are visible
in any other module that includes the GLOBALS filename statement, where
filename specifies the module that contains the GLOBALS ... END GLOBALS
statement. (See “Global Scope: Within Several Modules” on page 8-16.)

Certain built-in features of the 4GL language are global in scope, including
the named constants TRUE, FALSE, and NOTFOUND; the global variables
status; int_flag, and quit_flag; and the members of the SQLCA record.

The Procedural Language 5-9

Decisions and Loops

Decisions and Loops

4GL has statements for looping and decision making comparable to other
computer languages. These statements are covered in “Decisions and Loops”
on page 8-31 and in INFORMIX-4GL Reference. The following table gives a brief
summatry.

Statement Name Description

IF...THEN...ELSE Tests Boolean (TRUE/FALSE) conditions

CASE Makes multiple-choice decisions
WHILE Is used for general loops controlled by a Boolean condition
FOR Is used for loops that iterate over an array

There is also FOREACH, a special loop used for database access, as described
in “Row-by-Row SQL” on page 9-5. These control statements can be nested.
A key point is that their syntax is simple and regular:

= Most compound 4GL statements (those that can contain other state-
ments) are closed by specific END statement keywords. Thus, the IF
statement is closed with END IF, CASE with END CASE, and so on.

= Every looping statement has a specific EXIT option for early termi-
nation. You leave the WHILE statement with EXIT WHILE, you leave
FOR with EXIT FOR, and so on.

= Nospecial punctuation is needed in 4GL code. You do not need to put
semicolons between statements as in C or Pascal, although you can
do so if you prefer. Nor are you required to use parentheses around
a Boolean condition, as in C. But again, you can do so if you prefer.

4GL also supports GOTO and LABEL statements, by which control of program
execution can jump from one statement to another within a program block.

5-10 IBM Informix 4GL Concepts and Use

Statement Blocks

Statement Blocks

Many 4GL statements such as LET and CALL are atomic; that is, they contain
only themselves. Others are compound; that is, they can contain other state-
ments. The most common compound statements include these, as the
following table shows.

Statement Name Description

IF...THEN...ELSE THEN and ELSE each introduce a block of statements.
The ELSE block is optional.

FOR The body of a FOR loop is a block of statements.
WHILE The body of a WHILE loop is a block of statements.
CASE WHEN and OTHERWISE each introduce a block of statements.

Statement blocks can be nested. That is, one compound statement can contain
another. Figure 5-2 is a code fragment that contains a nested IF statement
block from Example 9 in INFORMIX-4GL by Example.

Figure 5-2
IFint_flag THEN Example of a
LET int_flag = FALSE Nested IF

CALL clear_lines(2, 16)

IF au_flag = "U'" THEN -- a conpound st at enent Statement Block
LET gr_custoner.*= gr_workcust . * %
DI SPLAY BY NAME gr_custoner. *
END | F
CALL nsg("Custoner input ternminated.")
RETURN (FALSE)

END | F

The statement
block begins.

Any statement block can be empty. That is, you do not need to supply any
statements in contexts where 4GL syntax requires a statement block.

The Procedural Language 5-11

Comment Symbols

5-12

Comment Symbols

To comment your 4GL code, use double hyphens (--) or the sharp (#) sign for
individual lines (as in the previous code example), or braces ({ and }) for one
or more contiguous lines of code. The compiler does not process comments.
Comment symbols that appear between quotation marks (single or double)
are treated as literal symbols, rather than as comments. Comments cannot be
nested.

Exceptions

An exception (sometimes called an error condition or a runtime error) is an
unplanned event that interferes with normal execution of a program. An
exception is not expected to occur in the normal course of program execution,
and special action is often required when an exception does occur.

Kinds of Exceptions

There are several kinds of exceptions. Most can be classified within one of the
following categories:

= Runtime errors. Errors in program statements detected by 4GL at
runtime. These errors can be classified by the kind of statement in
which they occur:

o SQL error. Errors reported by the database server.

o File I/O. Errors using files managed by the host operating
system.

o Screen I/O. Errors using the screen.
o Validation. Errors using the VALIDATE statement.

o Expression. Errors in evaluating 4GL expressions; for instance, a
data conversion error or an invalid array subscript.

= SQL end of data. Warnings that you have reached the end of a set of
rows being fetched through a database cursor.

IBM Informix 4GL Concepts and Use

Why Exceptions Must Be Handled

= SQL warning. A warning condition reported by the database server,
typically of lower severity than SQL errors.

= External signals. Events detected by the host operating system. An
external signal is usually not directly related to 4GL program state-
ments. Two common external signals that 4GL can handle are
Interrupt (CONTROL-C) and Quit (CONTROL-).

Why Exceptions Must Be Handled

Exceptions are unplanned in the sense that they are events of low probability.
Usually your program cannot predict or control when they will occur. This
does not mean that they are always unexpected. Consider the following
examples:

= You are certain that there will be an end to any selection of rows. Itis
just that you do not always know which row will be the last.

= You are sure that some user will eventually try to cancel an
operation, but you do not know when.

Even runtime exceptions must always be anticipated, no matter how
carefully you write your code.

Because program exceptions are sure to happen, you must design the
program to handle them in a rational manner. But because they are of low
probability, you want to handle them:

= away from the main line of processing, so the code for the normal,
expected sequence of events is clear and readable.

= with a minimum of overhead at execution time.

How Exceptions Are Handled

When a runtime error is encountered, any SQL transaction in progress is
automatically rolled back. Then 4GL writes a message to the error log, which
is by default the screen. You can also establish an error log file on disk.

Unless you establish some way of handling exceptions, 4GL attempts to
continue program execution when any exception occurs. For some errors,
however, this is not possible, and the program terminates abnormally.

The Procedural Language 5-13

How Exceptions Are Handled

5-14

For many exceptions, the default response is correct. But you can anticipate
and handle other types of exceptions with 4GL statements, including the
DEFER and WHENEVER statements, as follows:

= DEFER INTERUPT and DEFER QUIT

The DEFER statement can be used to instruct your executing program
to set built-in global variables, rather than terminate the program,

when an Interrupt or Quit signal is generated by the user. By testing
the variable, you can determine when the user is ready to end a pro-
gram, and respond accordingly in an orderly manner to the request.

= WHENEVER ERROR

The WHENEVER ERROR statement establishes the policy of your pro-
gram for handling SQL errors, screen 1/0 errors, and validation
errors.

= WHENEVER ANY ERROR

The WHENEVER ANY ERROR statement extends the WHENEVER
ERROR policy to expression errors.

= WHENEVER WARNING

The WHENEVER WARNING statement establishes the policy of your
program for handling SQL warnings.

= WHENEVER NOT FOUND

The WHENEVER NOT FOUND statement establishes the policy of
your program for handling SQL “end of data” conditions.

Not all runtime errors can be trapped by WHENEVER. For a list of fatal errors
that always terminate program execution, see INFORMIX-4GL Reference. See
also the DEFER and WHENEVER statement descriptions in INFORMIX-4GL
Reference.

When using 4GL to develop a new program or to modify an existing
program, you might want to use one set of exception-handling policies
during development, when your developers can read the error messages, but
use another policy after the completed program is deployed, if your users are
not likely to benefit from reading the text of any runtime error messages.

IBM Informix 4GL Concepts and Use

Database Access and Reports

InThisChapter 6-3
Using SQL ina4GL Program 6-3
Creating4GL Reports 6-5

The Report Driver. 6-7

The Report Definition 6-8

6-2 IBM Informix 4GL Concepts and Use

In This Chapter

One main reason to use INFORMIX-4GL is the ease with which you can access
and modify data in a database. SQL, the international standard for relational
database access, is an integral part of the 4GL language. Another reason to use
4GL is the ease by which you can design and generate reports. This chapter
describes how to use SQL to access data in a 4GL program and how to
generate reports.

Using SQL in a 4GL Program

You can use SQL in a 4GL program in the following three ways:

1. Incorporate nonprocedural SQL statements as 4GL program
statements.

Any SQL statement that does not return data to the program (for
example, ALTER, CREATE, UPDATE, or REVOKE, among many), can
be embedded within the program for execution in sequence with
other 4GL statements. In many cases, you can use data from program
variables as part of the statement.

In addition, any SELECT statement that returns a single row of data
can be written into the program and used to get data from the data-
base and assign it to variables.

Database Access and Reports 6-3

Using SQL in a 4GL Program

6-4

2. Use a database cursor to retrieve a set of rows from the database, one
row at a time.

A cursor contains a SELECT statement that might return multiple
rows of data. You use an OPEN statement to start the selection. You
use FETCH statements to fetch one selected row at a time, assigning
the column data to variables. In this way, your program can scan a
selection of rows, or bring all or part of the selection into memory
and store it in an array.

The FOREACH loop is another mechanism that can be used to open a
cursor and fetch rows in sequence.

3. Use dynamic SQL to prepare new statements at execution time.

You can assemble the text of an SQL statement and then pass it to the
database server for execution. In this way, you can write an
application that adapts to the schema of the database or to user selec-
tion criteria at execution time.

The concepts behind all three of these methods are discussed in greater detail
in Chapter 9, “Using Database Cursors,” and Chapter 10, “Creating Reports.”
Additional discussion and examples are provided in the Informix Guide to
SQL: Tutorial.

Tip: In this version of 4GL, you can directly embed most 4.1 SQL statements. If you
want to include SQL syntax introduced after Version 4.1, you must prepare the
statement before including it in the program. (You prepare a statement by using the
PREPARE statement.) For a list of supported SQL statements, see the description of
the PREPARE statement in “INFORMIX-4GL Reference.”

IBM Informix 4GL Concepts and Use

Creating 4GL Reports

Creating 4GL Reports

A report is a special program block of 4GL that can produce formatted output.
typically based on values from a database. This output can be sent to the
screen, to a printer, to a file, or (through a pipe) to another program.

Output from a well-designed report should be arranged so that the eye of the
reader can easily pick out the important facts, such as column totals or sub-
totals. A report is meant to be viewed on the screen or on paper, so it needs
to be arranged in pages, often with a header and a footer on each page, possibly
with page totals.

The most important technique for making data clear to the eye is logical
layout. The data items should almost always be arranged so that:

» the reader can quickly find an item.

= logically related items are near each other.

= groups of data with logically related values appear near one another,
so that group totals and subtotals can be calculated and shown.

Database Access and Reports 6-5

Creating 4GL Reports

Figure 6-1 shows some output from a typical 4GL report.

Figure 6-1

Example of a 4GL Report

WEST COAST WHOLESALERS,

1400 Hanbonon

Menl o Park, CA 94025

Drive

1991

Il To:

ATTN:

uet
| eur
| eur
net

(& Tue. Apr 30,
EI nvoi ce Nunber: 00000001029 Bi
o il nvoi ce Date: Tue. Apr30,1991
'PO Nunber: 2799099
iShip Date: Tue. Apr 30, 1991
'Ship Weight: 32.00 Ibs.
1Shi ppi ng I nstructions: UPS Bl ue
O
item St ock Manuf
O 'Nunber Nunber Code Descri ption
C): 1 000005 ANZ tennis racq
P2 000103 PRC frnt derail
v 3 000104 PRC rear derail
O 4 000009 ANZ vol | eybal |
o
O
O
O

O il nvoi ce 0000001029

(@)
I NC. :
1O
O
Customer Nunber 104 :O
Play Ball! :
East Shopping Cntr. :O
422 Bay Road H
Redwood City, CA 94026 :O
Ant hony Hi ggi ns :O
O
Uni t Item :
Qy Unit Price Tot al 'O
3 each $19.80 $59. 40 IO
2 each $20.00 $40.00 !
2 each $58.00 $116. 00
1 each $20.00 $20.00 1O
Sub-total: $235.40 1O
Sales Tax (6.500%: $19.72 :
Shi ppi ng Char ge: $48. 00 :O
Total: $371.12-
O
O

Page 1

|

0

— Report header

— Invoice total

— Page footer

6-6

IBM Informix 4GL Concepts and Use

In 4GL, the program logic that specifies what data to report is separate from
the program logic that formats the output from the report. Any 4GL program
that produces output from a report must include a part that produces the
data from a database (or from some other source), and a second part that
formats the data as output from a report.

The Report Driver

In these manuals, the part of the 4GL program that sends data to the report is
called the report driver, and the part that specifies how to format and display
the output from the report is called the report definition, as Figure 6-2 shows.

Figure 6-2
Process for Generating Output from a 4GL Report

Database Report driver Report definition Report output

The Report Driver

The part of a program that supplies the report with rows of data (also known
as input records) is called the report driver. It has the following features:
= It can interact with the database and with the user.
= Itignores all formatting issues, such as page length.
= It can supply data for multiple reports simultaneously.
= Data that it sends to a report can come from sources outside any
database; for example, productivity data from user commands.

The primary concern of the row-producing logic in a report driver should be
the selection of data, rather than the arrangement or formatting of data.

The report driver can use specialized 4GL statements to take the following
actions:
1. Use START REPORT to initialize each report to be produced.

2. Whenever a row of report data is available, use OUTPUT TO REPORT
to send it as an input record to the report definition.

3. Ifthereportdriver detects an error, use TERMINATE REPORT to bring
the report generation process to an end.

4. After the last row is sent, use FINISH REPORT to end the report.

Database Access and Reports 6-7

The Report Definition

6-8

The last two actions are mutually exclusive. Unless there is the need for an
abnormal termination, FINISH REPORT terminates execution of the report.

From the standpoint of the report driver, no other statements are required.
The driver can concurrently produce input records for multiple reports.

Although a database is the usual source of data for a report, input records can
come from any source, including the user, calculations, or sequential files.
Because the report driver pays no attention to issues of formatting, grouping,
or totalling, it produces input records as a by-product of other activities.

Your program is not required to produce input records in any special order.
It is generally more efficient, however, to retrieve data from the database in
the desired order, using the ORDER BY directive. You can, however, produce
input records in any order, and leave the sorting to the report definition.

The 4GL statements that logically make up a report driver can appear within
a single program block, or they can be distributed across several functions.

The Report Definition

You define how the output from the report is formatted in the REPORT
statement, which in several ways resembles the FUNCTION statement of 4GL.
The REPORT definition consists of the following several sections, in a fixed
order:

= REPORT prototype. This section declares the name of the report, and
list its formal arguments. This name must be unique among named
program blocks.

= DEFINE section. This section declares variables that are local to the
report, including its formal arguments and other variables (such as
for calculated results).

= OUTPUT section. This section defines the size and margins of the
report page. This section takes effect when the report is started.

= ORDER BY section. This section specifies the order for the input
records, and whether or not they are provided to the report already
ordered.

= FORMAT section. This section specifies what is to be done to the
input records to produce and format the output from the report.

IBM Informix 4GL Concepts and Use

The Report Definition

The control blocks that you write in the FORMAT section are the heart of the
report definition, and contain all its intelligence. Statements in the control
blocks of this section can specify actions to take in the following contexts:

= Top (header) of the first page of the report.
= Top (header) of every page after the first.

= Bottom (footer) of every page.

s Each new row as it arrives.

= The start of a group of rows. (A group is one or more rows having
equal values in a particular column.) This statement block is often
used for clearing totals and other accumulated values.

= The end of a group of rows. In this block, you typically print
subtotals and other aggregate data for the group that is ending. You
can call on aggregate functions like SUM and MAX for this
information.

= After the last row has been processed.

You can use most 4GL statements in the FORMAT section of a report. For
example, you can call functions and interact with the user. Some statements
of 4GL that are not valid within a report definition include the following:

= DEFER (which can only appear in the MAIN program block)

= MAIN, FUNCTION, and REPORT (which are each program blocks; you
cannot nest one 4GL program block within another)

= RETURN (which can only appear in a FUNCTION program block)

Use EXIT REPORT, rather than RETURN, to terminate processing of input
records from within a REPORT definition. EXIT REPORT resembles in its effect
what TERMINATE REPORT does in a report driver.

Use PRINT, rather than DISPLAY, to produce output within a REPORT
definition.

4GL invokes the sections and control blocks within a REPORT definition non-
procedurally, at the proper time, as determined by the data that the report is
processing. You do not have to write code to calculate when a new page
should start. Neither do you have to write comparisons to detect when a
group of rows has started or ended. All that you have to write are the state-
ments that are appropriate to the situation, and 4GL supplies the glue to make
them work.

Database Access and Reports 6-9

The Report Definition

For more information about report drivers and report definitions, see
Chapter 10, “Creating Reports,” in this manual, as well as INFORMIX-4GL
Reference.

6-10 IBM Informix 4GL Concepts and Use

The User Interface

In This Chapter .
Line-Mode Interaction.

Formatted Mode Interaction
Formatted Mode Display

Sample Code for Formatted Mode Dlsplay .

Screens and Windows .
The Computer Screen and the 4GL Screen

The 4GL Window .
How Menus Are Used.

How Forms Are Used .
Defining a Form

DATABASE Section .

SCREEN Section .

TABLES Section . .

ATTRIBUTES Section . .

INSTRUCTIONS Section .
Displaying a Form.

Reading User Input from a Form
Screen Records .
Screen Arrays

How the Input Process Is Controlled.

How Query by Example Is Done .

7-3
7-3
7-5
7-6
7-8

7-9
7-9
7-9

7-10

7-13
7-14
7-14
7-15
7-15
7-16
7-16
7-16
7-17
7-18
7-19

7-20
7-23

7-2

How 4GL Windows Are Used .
Alerts and Modal Dialog Boxes

Information Displays .

How the Help System Works

IBM Informix 4GL Concepts and Use

7-25
7-26
7-27

7-28

In This Chapter

Built into INFORMIX-4GL is a complete system of character-oriented user
interaction. Because 4GL ischaracter-oriented, the same 4GL applications can
run on high-end workstations and on character-based terminals. 4GL enables
you to create highly flexible, portable, interactive, multiuser applications
using screen forms and menus.

Line-Mode Interaction

A 4GL program can operate with its user interface in line mode or formatted
mode. Line mode is the same typewriter-like mode of interaction that UNIX
shell scripts use. You put the user interface in line mode by executing a
DISPLAY statement that does not specify a screen location. The following
example illustrates a simple program that operates in line mode:

MAI N
DEFI NE cent Deg, fahrDeg DECI MAL(5, 2)
DEFI NE keepOn CHAR(1)
LET keepOn = "y"
DI SPLAY "Centi grade-to-fahrenheit conversion."
WH LE keepOn == "y"
PROWPT "Centigrade tenp: " FOR cent Deg
LET fahrDeg = (9*centDeg)/5 + 32

DI SPLAY "ol d-fashi oned equi val ent: ", fahrDeg
PROWPT "More of this (y/n) ? " FOR CHAR keepOn
END WHI LE
END MAI N

Because the first DISPLAY statement does not give a screen row and column
for output, the screen is put in line mode. Each line of display and each
prompt displayed by PROMPT scrolls up the screen in the manner of a
typewriter.

The User Interface 7-3

Line-Mode Interaction

7-4

When you execute this program, the interaction on the screen resembles the
following example, in which data entry by the user has been underscored:

Centi grade-to-fahrenheit conversion.
Centigrade tenmp: 16

ol d-fashi oned equi val ent: 60.80
More of this (y/n) ? y

Centigrade tenp: 28

ol d-fashi oned equivalent: 82.40
More of this (y/n) ? n

You can use simple interactions of this kind for quick tests of algorithms. Line
mode also has the virtue that you can redirect line mode output to disk from
the command line. The following program displays two columns from the
customer table using line-mode output:

DATABASE st ores?
MAI N
DEFI NE custno LI KE custoner. customer_num
conpany LI KE cust oner. conpany
DECLARE cust CURSOR FOR
SELECT cust omer _num conpany FROM cust oner
FOREACH cust | NTO cust no, conpany
DI SPLAY custno, conpany -- Line node display
END FOREACH
END MAI N

You could execute this program from the command line, redirecting its
output into a file, with a statement like the following one (assuming the
program has been compiled to 4GL p-code in a file named dumpZ2col.4gi):

fgl go dunp2col | custcols. dat

The data could also be piped into another command, but there is no equiv-
alent input statement; PROMPT only accepts input from a real keyboard.

IBM Informix 4GL Concepts and Use

Formatted Mode Interaction

Formatted Mode Interaction

Normally, 4GL keeps the user interface in formatted mode. That is, the output
of the program is automatically formatted for screen display. The program’s
output is positioned by rows and columns. On character terminals, the initial
4GL window is the same size as the screen and is referred to as the 4GL screen.

The following table shows a brief summary of the 4GL statements that you
can use to manage the user interface in formatted mode.

Statement

Purpose

DISPLAY...AT
DISPLAY FORM
DISPLAY...TO
PROMPT
INPUT

CONSTRUCT
MESSAGE
ERROR

Write data at specific rows and columns.

Display the background of a prepared form.

Write data into one or more fields of a form.

Prompt the user for a single value or a one-character response.

Let the user enter data into one or more fields or arrays of
fields on a form.

Let the user enter query criteria into the fields of a form.
Display a short message of warning or confirmation.

Display a short message documenting a serious error to the
screen.

These statements are described in detail in “Screen and Keyboard Options”
on page 11-32 and in INFORMIX-4GL Reference.

The User Interface 7-5

Formatted Mode Display

Formatted Mode Display

In formatted mode, certain lines of the two-dimensional screen are reserved
for certain types of information. You can change the location of these lines,
but you cannot eliminate their special uses. The following table shows the
reserved screen lines with their default positions.

Default Point of
Line Name Purpose Position Reference

Prompt Output and input of PROMPT statement FIRST 4GL window

Menu Ring-menu display occupies two lines FIRST 4GL window
Message Output of the MESSAGE statement FIRST+1 4GL window
Form Top line of any form FIRST+2 4GL window
Comment Explanatory text for current form field LAST 4GL window
Error Output of the ERROR statement LAST 4GL screen

7-6 1BM Informix 4GL Concepts and Use

Formatted Mode Display

Figure 7-1 shows how the reserved lines are arranged on the screen when the
default reserved line positions are in effect.

Figure 7-1
Default Reserved Line Positions

Wida Customera: Query Firet PHEEEN Lase Exie
Dizplay medt customar in selected Gat
m—mmm s mm s m e e ———————fress [TRL-W for Help------—----

Customer RMusber: [181] Cowpasny Hame: [ALl Sports Supplies]
Adctre=e: [313 Erstwild Court]
1
City: [Suninygvale] Stoate: [CA] Zip Code: [94906

Comtact Nawg: [Ludwig 1l Paull |
Talephona: [408-709-08175 1

Prompt line FIRST
Menu line FIRST

Menu help MENU+1
Message line FIRST+1

Form line FIRST+2

Space for form

Comment line LAST Error line LAST

To create this screen, a form was displayed using DISPLAY FORM; some data
values were written into form fields using DISPLAY...TO; and then a MENU
statement was used to display a five-option menu (the options Query
through Exit). The line of hyphens with Pr ess CONTROL- Wf or Hel pis literal
text in the first line of the form that was displayed.

The User Interface 7-7

Sample Code for Formatted Mode Display

7-8

This diagram makes the screen appear crowded with conflicting uses. In
reality, the dedicated lines are used at distinct times. For example, the Prompt
line is used by the PROMPT statement and the Menu line by the MENU
statement. The program cannot execute both PROMPT and MENU at the same
time, so no conflict is possible. By default, both lines are assigned to the first
4GL window line.

The assignment of specific rows to screen lines can be changed while the
program is running (see “Screen and Keyboard Options” on page 11-32). The
key point is that these lines exist and have assigned display positions.

Sample Code for Formatted Mode Display

In the following example, screen output is achieved using DISPLAY AT, so the
PROMPT statement uses only the current screen position (first line of the
window, by default). As a result, this dialog will not scroll, but will re-use the
same two screen rows over and over.

MAI N
DEFI NE cent Deg, fahrDeg DECI MAL(5, 2)
DEFI NE keepOn CHAR(1)
LET keepOn = "y"
DI SPLAY "Centigrade conversion" AT 12,1
WH LE keepOn == "y"
PROWPT "Centigrade tenp: " FOR centDeg
LET fahrDeg = (9*centDeg)/5 + 32
DI SPLAY centDeg, "C ==> ", fahrDeg, "F' AT 3,1
PROWT "More of this (y/n) ? " FOR CHAR keepOn
END WHI LE
END MAI N

IBM Informix 4GL Concepts and Use

Screens and Windows

Screens and Windows

In order to understand the way that forms and menus are used, you should
understand the distinction between the 4GL screen and a 4GL window.

The Computer Screen and the 4GL Screen

The computer screen is the physical surface on which your program displays
data. When 4GL program output is directed to the screen, it appears in the
4GL screen, also known as the logical screen.

If you are using a terminal, the entire computer screen is the 4GL screen. If
you are using a workstation, the window in which you are working is
considered the 4GL screen.

The 4GL Window

A 4GL window is a rectangular area within which your program can display
output. Initially, your program has one 4GL window that fills the 4GL screen.
Additional 4GL windows can be opened or closed as needed.

Each 4GL window is a new rectangular area on which 4GL can display output.
You can use a second or additional 4GL windows in the same way that you
use the first one: to display messages and to prompt for input and to display
menus and forms.

All 4GL windows are contained inside the boundaries of the 4GL screen. They
can be the same size or smaller than the screen, but not larger. Any 4GL
window can overlap or completely obscure another 4GL window.

At any given time, only one 4GL window is current. This window is where
DISPLAY, MENU, and other interactive statements operate. Other windows
can be completely or partly visible, but only the current window is active.

The User Interface 7-9

How Menus Are Used

How Menus Are Used

The MENU statement enables you to offer the end user a ring menu that
contains menu options. 4GL displays the menu on the designated Menu line
of the current window. As the user presses the TAB or arrow keys or
SPACEBAR, 4GL moves the cursor from menu option to menu option. The user
presses RETURN to select the current option. The user can also select a menu
option by pressing the activating character (usually, but not always, set to be
the first letter of the menu option) to select an option.

In your 4GL program, you supply the list of options and, for each option, a

block of statements. When the user selects an option, 4GL executes the block
of code corresponding to it. You can create as many levels of ring menus as
you like.

One common use of this technique is to create nested menus, as illustrated in
Figure 7-2.

Main:

Amusements:

Laughs:

7-10

Figure 7-2
Nested Menus
Anuse Anger Make_sad Exit
I
I I I I
Jokes Laught er Sm | es Exi t
I
I I I I I
HaHa Chuckl e Sni cker Mai n Exi t

In the illustration, the initial menu offers at least three basic emotions. The
user can choose to enter the Amuse, Anger, or Make_sad ring menu or
choose Exit to leave the program.

If the user chooses Amuse, the second-tier ring menu replaces the first.

The Exit menu option moves the screen cursor to the pervious menu or, if you
are already at the top tier of that menu, it exits from the program. Alterna-
tively, you could create a ring-menu option that bypasses the natural
hierarchal ring-menu structure. An example is shown in the third-tier menu,
which offers the ability to jump back to the top tier by choosing Main.

The number of ring-menu levels that you can create is limitless.

IBM Informix 4GL Concepts and Use

How Menus Are Used

Figure 7-3 shows a simple menu-driven program. When the program runs,
the menu shown in the lower portion will be seen by the end user.

Figure 7-3
Menu-Driven Program

MAI' N
—— MENU " Laught er " .
COWAND " Haha" [™A good Taugh. The code after CQMMAND is executed
CALL doLaugh(1) when that option is selected.

COWAND " Chuckl e" "A small |augh."
CALL dolLaugh(2)
COMWAND " Sni cker" "A snothered | augh."”

CALL doLaugh(3) [An option can respond to specific
COWAND KEY("e", ESC, CONTROL- E) "Enough" keystrokes as well.
"Stop it, you're killing me."
EXIT MENU
END MENU
END MAI N

aughter: Haha Chuckle Snicker Enough
good laugh. Menu help of current
option is displayed.

L
&

Menu title displays to the
left of the Menu line.

— Each COMMAND line presents
one option to the user.

This program presents a menu that contains four options: Haha, Chuckle,
Snicker, and Enough. The user selects a menu option by typing its initial
letter or by moving the cursor and pressing RETURN. You can also arrange for
an option to be selected using other keys; for example, the option Enough can
be chosen by pressing either ESCAPE or the CONTROL-E.

When the user selects a menu option, 4GL executes the block of code that
follows the COMMAND statement for that option. In this example, if the user
selects the third option, Snicker, the code CALL doLaugh(3) will be
executed. When all the code for that option has been executed (in this case,
when the doLaugh() function returns), the MENU statement resumes
execution and the user can pick another option (unless EXIT MENU is encoun-
tered, as in the case of Enough).

The User Interface 7-11

How Menus Are Used

Figure 7-4 shows an implementation of doLaugh() and an example of the
output that it produced when several menu options were selected.

Figure 7-4
Output Produced by doLaugh() Function

CONSTANT firstLaff = 3, lastLaff = 24
VARI ABLE haha | NTEGER = firstLaff
FUNCTI ON doLaugh(| af f num | NTEGER)
CASE | af f num
WHEN 1
DI SPLAY "Ho ho ho hoo hoo ha hee ho. Hum" AT haha, 1
WHEN 2
DI SPLAY "Tee hee hee hee hee! Scuse me." AT haha, 1
WHEN 3

DI SPLAY "Snrt!snrt!snrt!nff!" AT haha, 1
END CASE
LET haha = haha + 1
I F haha > lastLaff THEN LET haha = firstLaff END I F
END FUNCTI ON

Menu line
Menu help line

Laughter: Haha [Chuckle | Snicker Enough
& small laugh.
Ho ho ho hoo hoo ha hee ho. Hum.]\
Sart!snrt!sart ! mfr! Other lines used by
Tee hee hee hee hee! Scuse me. Jr DISPLAY statement

After a command block completes, 4GL redraws the Menu line and Menu
Help line, and waits for the user to choose another menu option. Program
control remains within the MENU statement until it executes an EXIT MENU
statement within some COMMAND block. The program on the previous page
executes EXIT MENU when the Enough option is chosen.

You can write any number of lines of code in acommand block. The example
program shows a common style in which each command block contains

a single function call, but you can use most 4GL statements in a command
block. You can communicate with the user with MESSAGE, DISPLAY, or
PROMPT statements, open additional 4GL windows, or even start another
MENU statement.

7-12 IBM Informix 4GL Concepts and Use

How Forms Are Used

You can change the appearance of a menu while the program is executing.
Within the menu, you can execute the HIDE and SHOW commands to hide or
display menu options. For example, you could test the level of privilege of
a user within the current database, and then either HIDE or SHOW a choice
such as Delete row, depending on whether the user has delete privilege.

All these features are covered in detail in INFORMIX-4GL Reference.

How Forms Are Used

A form is a fixed arrangement of fields and labels. You design a form with fields
to hold data items that you want to display, and labels to describe the fields
to the user. Figure 7-5 shows the form used in Example 11 in INFORMIX-4GL
by Example.

Figure 7-5
A Sample Screen Form

The User Interface 7-13

Defining a Form

Defining a Form
The following two steps are involved in creating a form:

= Specify the contents of a form in a form specification file, a text file
that you create with any text editor that can generate ASCII text.
Form specification filenames should be given the extension .per.

= Compile the form specification file. Compiled forms are usually
given the file extension .frm.

The FORMA4GL utility program is used to create .frm files. Once compiled, a
4GL form can be used by any 4GL program.

The form specification file has several sections. The DATABASE, SCREEN, and
ATTRIBUTES sections are required, while the TABLES and INSTRUCTIONS
sections are optional. The order of appearance of the sections is fixed. The
sections of the form specification file are described next.

After you have designed a form and compiled its specification, it is ready for
use by a program.

The form specification file that produces the form in Figure 7-5 on page 7-13
is considered in further detail beginning with “Specifying a Form” on

page 11-3. Special syntax and keywords of form files are discussed in
INFORMIX-4GL Reference.

DATABASE Section

The DATABASE section names a database from which column data types can
be determined when the form is compiled. Alternatively, you can use the
keyword FORMONLY to indicate that the form does not rely on a database.
For example, you can identify the stores7 database as follows:

DATABASE st ores?

7-14 IBM Informix 4GL Concepts and Use

Defining a Form

SCREEN Section

The SCREEN section contains an ASCII version of the form, including text
labels establishing the size and location of form fields. Here fields are labeled
by field tags, internal names that are not displayed when the form appears at
runtime. The following example is also the SCREEN section of the form in
Figure 7-5:

SCREEN
{
Cust omer Nunber: [f 000] Conpany Nane:[fO001
Order No:[f002] Order Date:[f003] PO Nunber: [f004]
Item No. Stock No Manuf Descri ption Quantity Price Tot al
[foo5] [foo6] [fO7] [fOO08] [fo09] [foOl10] [fol1l]
[foo5] [foo6] [fO7] [fOO08] [fo0o9] [foOl0] [fol1l]
[foo5] [foo6] [fO7] [fOO08] [fo09] [foOl10] [fol1l]
[foo5] [foo6] [fO7] [fOO08] [fo09] [foOl10] [fol1l]
}
END

TABLES Section

The TABLES section lists the tables or table aliases in the default database
specified in the DATABASE section, or specified here by table qualifiers, from
whose columns the field data types will be taken. An alias is required if an
owner or database qualifier of the table name is needed. For example, you
can identify tables as follows:

TABLES
cust oner
orders
itens

st ock
cat al og

The User Interface 7-15

Displaying a Form

ATTRIBUTES Section

In the ATTRIBUTES section, you specify the characteristics of each field: the
field name, the type of data that it will display, the editing rules applied
during input, and any special display attributes, such as color. For example:

ATTRI BUTES
f 000 = custoner. customer_num ;
f001 = custoner. conpany ;
f002 = orders. order_num ;
f003 = orders.order_date ;
f004 = orders. po_num;
fO05 = itens.itemnum, NCENTRY ;
f006 = itens.stock_num;
f007 = itens. manu_code ;
f008 = stock.description , NCENTRY ;
f009 = itens.quantity ;
f010 = stock.unit_price , NCENTRY ;
f010 = items.total _price, NCENTRY ;
END
INSTRUCTIONS Section

In the INSTRUCTIONS section, you can group fields into screen records and
screen arrays. These records and arrays can be displayed and read as logical
units, as the following example shows:

I NSTRUCTI ONS

SCREEN RECORD s_itens[4] (itemnum, stock_num, manu_code ,
description , quantity, unit_price , total_price)

END

In the INSTRUCTIONS section, you can also change the default delimiters of
form fields when they are displayed on character-based systems.

Displaying a Form
Your program can use a form in the following ways:

= With OPEN FORM or OPEN WINDOW ... WITH FORM, you load the
compiled form from disk into memory and make it ready for use.

You can open as many forms as needed, subject only to the limits of
memory and maximum number of open files on your platform.

7-16 IBM Informix 4GL Concepts and Use

Reading User Input from a Form

= With DISPLAY FORM, you draw the contents of a form (its labels and
the outlines of its fields) in the current 4GL window. The picture of
the form replaces any previous data values in that window.

You can display a form as many times as necessary. You can display
the same form in different 4GL windows. (The use of additional win-
dows is described in “How 4GL Windows Are Used” on page 7-25.)

= With DISPLAY...TO, you can fill the fields with data from program
variables.

You can also use the CLEAR FORM statement to empty the fields of data.

Reading User Input from a Form

With the INPUT statement, your program waits for the user to supply data for
specific fields of the form in the current 4GL window. In the INPUT statement,
you must list the following information:

= The program variables that are to receive data from the form
= The corresponding form fields in which the user will enter the data

When invoked, the INPUT statement enables the specified fields. The user
moves the cursor from field to field and types new values. Each time the
cursor leaves a field, the value typed into that field is deposited into the
corresponding program variable. Other fields on the form are deactivated.
The INPUT statement ends when the user does one of the following actions:

= Uses the Accept key (by default, ESCAPE) to resume execution and
examine and process the values the user has entered

= Uses the Cancel key (by default, CONTROL-C) to resume execution
and ignore any changes made to the form

s Completes entry of the last field, when field order is set to
CONSTRAINED

This is the same as Accept. See “Field Order Constrained and Uncon-
strained” on page 11-30 as well as INFORMIX-4GL Reference.

The User Interface 7-17

Screen Records

Screen Records

In the form file, you can specify a group of fields as a logical screen record.
During input, your program can associate a program record with a screen
record, automatically filling the RECORD variable in memory with data from
the form.

Screen records can make your program shorter and easier to read, and can
display all or part of a row from the database. You can use asterisk (wildcard)
notation when referring to all the fields of the program record or the screen
record. Suppose that your program defines a record variable in this way:

DEFI NE it enRow RECORD LIKE itens.*

This line declares a record variable with one member for each column of the
items table. Now suppose that in the current form there are four fields that
correspond to the last four columns of the items table. The schema of the
stores7 demonstration database, which is used in the following discussion, is
described in INFORMIX-4GL by Example.

In the form file, these fields are grouped into a screen record with the
following line in the INSTRUCTIONS section:

I NSTRUCTI ONS

SCREEN RECORD itenDetail (stock_num nanu_code, quantity,
total _price)

The program could take input from the four fields by specifying the fields
and the corresponding record members individually:
I NPUT itenmRow. st ock_num itenmRow. manu_code,
itemrow quantity, itemRow total _price
FROM stock_num manu_code, quantity, total _price

Or you can specify the last four members of the program record using THRU
notation and all the fields of the screen record using an asterisk:

I NPUT itenmRow. stock_num THRU it enRow. total _price
FROM i tenDetail . *

But because the names of the members in the program record are the same as
the names of the form fields, this can be further shortened to:

I NPUT BY NAME itenmRow. st ock_num THRU itenmRow. total _price

7-18 IBM Informix 4GL Concepts and Use

Screen Arrays

Screen Arrays

In the form specification, you can also specify a group of screen records as a
screen array. During input, you can associate a program array of records with
an array of form fields on the screen, as illustrated in Figure 7-6.

Figure 7-6
Screen Record Associated with a Screen Array

Custarsy Humbar ;[2478 1 Covpany Mems; | Dvarachievera. Inc [l
Oc dur Mu:| 1 Ordwr Dots.] | FO Humkwr:]| 1

Irem M. Srack Mo Haror baserlECyon I]_unm.ll:ij _ Frica

|
Screen array of
4 records

| | | 1
| | | 14
| | | 1

Tae Hate [T= “eleg Four [

Order Totel: [
Screen record of 7 fields

As Figure 7-7 shows, the program array typically has many more rows of
data than will fit on the screen.

Figure 7-7
Typical Screen Array Displaying Part of a Much Larger Program Array

ARRAY

1177777 1777 1////7777 1777777777777/ [many] OF
/ RECORD in

I111111 1111 111177777 1177177777777/ ™™
I171717 1717 177177777 [717177/7777/777 Soteen aray
/ isplays a
1411111 1111 111111111 1111111111111/ fon records
array of
I111717 1117 117177177 7177771777777/ | RECORD

/ variables in
memory.

1177777 1777 1///7/7777 1777777777777/

The User Interface 7-19

How the Input Process Is Controlled

7-20

4GL lets the user scroll the array on the screen through the rows of the
program array. The user can change the display using the 4GL PageUp

and PageDown logical keys or scroll through the array one line at a time by
using the arrow keys.

To add a record, the user can press the logical Insert key, and 4GL will open
the display to create an empty screen record. When the user has filled this
record, 4GL inserts the data into the program array.

To delete data, the user can press the logical Delete key, and 4GL will delete
the current record from the display and from the program array, and redraw
the screen array so that deleted records will no longer be shown. Depending
on how your program is written, you can also programmatically remove the
record from the database. For a complete list of logical key assignments, see
the description of the OPTIONS statement in INFORMIX-4GL Reference.

How the Input Process Is Controlled

Your program stops in the INPUT or INPUT ARRAY statement and waits while
the user enters data. You can write blocks of code, however, that are automat-
ically executed by 4GL during input, to monitor and control the actions of the
user during data entry. The control blocks with ROW, INSERT, or DELETE
keywords are valid only in INPUT ARRAY statements, and not with INPUT:

= BEFORE INPUT

Just as the INPUT operation is starting, this block of code can display
initial or default values, clear totals, and generally prepare the screen
and program variables.

s BEFORE FIELD

As the cursor is entering the specified field, this block can take some
action, such as initialize the contents of the field, based on values in
other fields.

= AFTERFIELD

When input in the specified field is complete, this block can validate
what the user entered, or can initialize other fields, based on the
value just entered.

IBM Informix 4GL Concepts and Use

How the Input Process Is Controlled

ON KEY

When the user presses any of a list of keys that you specify, this block
can give the user special assistance; for example, displaying a list of
common values for the current field.

BEFORE ROW

When the cursor is about to enter a new row of a screen array, this
block can take some action, such as update other fields on the screen
to reflect the row being entered.

AFTER ROW

When the cursor is leaving a row of a screen array, this block can take
some action, such as update the screen or the database to account for
changes made in the row.

BEFORE INSERT

When the user has requested creation of a new row in a screen array,
this block can take some action, such as initialize the new row with
default values.

BEFORE DELETE

When the user presses the Delete key to remove a row from a screen
array, this block can take some specified action before the row is
deleted.

AFTER DELETE

When the user presses the Delete key to remove a row from a screen
array, this block can take some specified action after the row is
deleted.

AFTER INSERT

When the cursor is about to leave a newly inserted row of a screen
array, this block can update totals based on the new data, and can
insert the new row into the database.

AFTER INPUT

When the input operation is ending, this block can validate the
entered data, check for required fields that might be missing, and
erase any special usage messages.

The User Interface 7-21

How the Input Process Is Controlled

You write these blocks as part of the INPUT or INPUT ARRAY statement. When
the INPUT or INPUT ARRAY statement is executed, 4GL enables the screen for
input and awaits user keystrokes. When the user presses a key that creates
any of the situations described in the preceding list, 4GL automatically calls
your block of code.

You can include most executable 4GL statements in these blocks, as well as
two special keyword clauses that can reposition the screen cursor:

= NEXTFIELD

Use this clause in an AFTER FIELD or ON KEY block to direct the
cursor to a specified next field, or back to the same field to correct an
error in data entry.

= NEXT ROW

Use this clause in an AFTER ROW or ON KEY block to move the cursor
to a specified row of a screen array. 4GL scrolls the array as necessary
to show the specified row.

NEXT FIELD and NEXT ROW should only be used in situations where the
program controls the order in which fields are visited by the user. For
additional information on programming this type of user interaction, see
“Field Order Constrained and Unconstrained” on page 11-30.

7-22 IBM Informix 4GL Concepts and Use

How Query by Example Is Done

How Query by Example Is Done

4GL lets you take input from a form in another way: instead of entering literal
values for the program to process, your user can enter logical criteria for a
query. The process is known as query by example. The user enters a value or a
range of values into one or several form fields. Then your program retrieves
the database rows that satisfy the requirements that the user entered.

The 4GL statement that makes query by example possible is CONSTRUCT, as
illustrated in Figure 7-8.

Figure 7-8
—— Program variable to receive CONSTRUCT
the selection criteria Statement

Names of database columns that
can be tested
CONSTRUCT bool ExpStr

ON custoner_num fname,' | nanme
FROM cust _num first_name, |ast_nane

L— Names of form fields associated with

those columns

The CONSTRUCT statement operates much like INPUT. The CONSTRUCT
statement lists names of database columns and names of fields in the current
form that correspond to those database columns. It also supports control
blocks (including ON KEY, BEFORE FIELD, AFTER FIELD, BEFORE CONSTRUCT,
and AFTER CONSTRUCT) that resemble in their names and functionality
several of the INPUT statement control blocks.

You provide a single program variable to hold the criteria for the query.
When the CONSTRUCT statement executes, 4GL enables the form fields listed
in this CONSTRUCT statement for input. The user can enter either specific
values, or requirements such as >5 (meaning any value greater than 5) or
="Sn{iy]th*" (meaning any value beginning with “Smith” or “Smyth”).

The User Interface 7-23

How Query by Example Is Done

7-24

When the user presses Accept, 4GL converts the input into a Boolean
expression suitable for use in the WHERE clause of a SELECT statement. This
character string is returned to the program variable. When the CONSTRUCT
statement shown in the previous illustration has completed, the following
character string might be stored in the program variable boolExpStr:

custonmer_num > 5 AND | nane MATCHES "Snfiy]th*"

Now it is up to your program to use the Boolean expression to fetch the
database row, or rows, that the user wants to see. This fetch includes the
following steps:

1. Combine the Boolean expression string with other text to form a
complete SELECT statement:

LET full Stmt = "SELECT * FROM customer WHERE " |,
bool ExpStr

2. Prepare the SELECT statement for execution:
PREPARE gbeSel FROM ful | Stnt

3. Associate the prepared statement with a database cursor:
DECLARE gbeCur CURSOR FOR gbeSel

4. Open the cursor and fetch the rows it has selected.

What you do with the rows depends on the specific application. Often the
reason for the CONSTRUCT is to select rows to be viewed by the user. In such
a case, the program could display each row individually in a form, or
grouped in a screen array. Or you might choose a set of rows for processing
in a report or specify a set of rows to be deleted or updated, and so forth.

IBM Informix 4GL Concepts and Use

How 4GL Windows Are Used

How 4GL Windows Are Used

Each 4GL program begins with a 4GL window that fills and covers the entire
4GL screen. This screen area might be any of the following display devices:

= A terminal-emulation window on a workstation
= The physical screen of a serial terminal

Additional 4GL windows can be created and further manipulated with the
following statements.

Statement Purpose

OPEN WINDOW Create a new window and make it the current window.
You specify its size and location in relation to the upper-
left corner of the screen.

CLOSE WINDOW Close and discard a window by name.

CLEAR WINDOW Empty the contents of a window, erasing anything
displayed on it.

CURRENT WINDOW Bring a window to the front if necessary, and make it
current.

Only the current 4GL window has keyboard focus. This means that any
interaction initiated by the user through the keyboard goes to the current 4GL
window.

The statements listed in the table in “Formatted Mode Interaction” on
page 7-5 all operate upon the current 4GL window.

The User Interface 7-25

Alerts and Modal Dialog Boxes

Alerts and Modal Dialog Boxes

One frequent use of a 4GL window is to display an error message or a dialog
box to which the user must respond. Using only a few statements, you can
perform the following tasks:

s Open a4GL window.

= Conduct a dialog with the user.

= Close the 4GL window.

Figure 7-9 shows what an alert window might look like.

Figure 7-9
Alert Window

Main 4GL window
being used by MENU
and DISPLAY

Subordinate 4GL
window being used for
dialog via PROMPT

The code that presented this window follows:

FUNCTI ON donodal ()
DEFI NE ansr CHAR(1)
OPEN W NDOW nodal AT 4, 6
W TH 3 ROA5, 64 COLUWMNS
ATTRI BUTE(BORDER, PROWPT LI NE 2)
PROWPT "Is this getting too silly (y/n)? " FOR CHAR ansr
CLOSE W NDOW nodal
RETURN ("Y' = UPSHI FT(ansr))
END FUNCTI ON

The domodal() function opens a subordinate 4GL window, prompts the user
for a single-letter response, closes the window, and returns either TRUE or
FALSE, depending on whether the response was the letter Y or not. A function
like this can be used at almost any point within a program.

7-26 IBM Informix 4GL Concepts and Use

Information Displays

Information Displays

Another common use for a 4GL window is to display helpful information to
the user during input. In Figure 7-10, you see a larger window that contains
a form, partly covered by another 4GL window.

Figure 7-10
Subordinate Window Displayed During Input

. 4GL window
e filled by form for
Custorar Furkbasr:| Compmny Heme:[order search

Ora=r Fo:| rder Dmke;|

Ship Do Mowd Cugrgor wuslng F3. . BNO BTTON KBUD,
CURLDMET .

Cori Lot M Lompany Hame
131] [Art Sportm Supplies]
L Sporte Spot .

L] I il e Soorbs i Subordinate
I : window being used

for DISPLAY ARRAY

Lo

L&rs] Lo ALGDE SpOTEE

FS (LTREL-B) TOr more CUukCOMErs

The user is to enter a customer number in a field of the form. Assume that
user presses a designated key to ask for help. Within the INPUT statement, in
the ON KEY block for that key, the program calls a function that does the
following:

s Opens a4GL window
= Displays a form in that 4GL window

= Uses DISPLAY ARRAY to show a scrolling list of rows from the
customer table, using the form in the current 4GL window

When the user presses Accept, the function will note the customer number in
the last-current row. This value will be returned as the result of the function.
Before the function returns, it will close the 4GL window it opened. That
makes the larger 4GL window current again.

The User Interface 7-27

How the Help System Works

7-28

The ON KEY block will display the returned customer number in the form
field so the user will not have to enter it.

1.

How the Help System Works

4GL supports a simple and effective system of providing help to users in the
form of help messages associated with interactive statements in your
program. The purpose of a help message is to guide the user in contexts
where it might not be clear how the program is intended to be used.

You might take the following typical steps in creating a useful help facility for
an application:

Think of each situation where the user might need detailed guidance
and write a message that explains what to do at that point.

The text can be as long as you want. Only printable characters, blank
spaces, and tab characters are allowed.

Assign to each message a unique positive integer number between 1
and 32700.

Put the message texts with their numbers and optional comments
into a text file.

Compile the text file using the 4GL message compiler utility
mkmessage.

In your program source file, specify the name of the file of compiled
help messages in an OPTIONS HELP FILE statement.

In each interactive statement, specify the HELP number clause to
name the help message number that you designed for that statement.

IBM Informix 4GL Concepts and Use

How the Help System Works

Figure 7-11 gives an overview of this process.

Figure 7-11
A Source Module, an ASCII Help File, and a Help Window

MAI N
+—— OPTIONS HELP FI LE "haha.ient
MENU " Laught er”
COWAND "Haha" "A good |augh." HELP 1

_\ OPTIONS statement
names help file.

HELP clause specifies a
numbered message in the file.

option Haha
.1

This choice produces a |line of output describing a

full, rotund, Saint N cholas or Falstaff sort of a |augh,
suitable for informal occasions especially the aftermath
of a large, convivial neal.

Message
displayed when
Help key used.

HELF - Jozresn [Hesuns
Crds LHEs Help ssxsion

115 charce producas a line of output describing a

full, ratund, Saint Micholas or Falstafr zort of a laugh,
sdikbabls Far tntarmal ococasions ospoclially the aftermath
a1 1 large, convlwlal messal

If the user presses the Help key (CONTROL-W by default) while the interactive
statement is executing, 4GL displays the message whose number you
specified.

The display takes up the full current window, hiding the main window and
any subordinate windows.

Like a form file, a message file can be used with more than one program. You
can use more than one message file within a program; executing the OPTIONS
HELP FILE statement changes the active file at any time.

The User Interface 7-29

How the Help System Works

You can write a HELP number clause in any statement that requests input from
the user: PROMPT, INPUT, or CONSTRUCT. You can specify a different help
message number for each option of a MENU statement. In addition, you can
start the help display from anywhere in the program by calling the library
function showhelp(n), where n specifies the message number in the current
help file. Using this function, you can start a help display from, for example,
an ON KEY block of a DISPLAY statement.

7-30 IBM Informix 4GL Concepts and Use

Using the Language

InThisChapter 8-3
Data Typesof4GL 8-3
SimpleDataTypes 8-4
Number Data Types . . . Co 8-4
Differences Between DECIMAL and MONEY Data Types. .o 8-5
Numeric Precision S 8-5

Time Data Types Ce e 8-6
Character Data Types. . . . e 8-8
CHAR and VARCHAR Compared e 8-9

Large Data Types = S A
Variables and Data Structures 811
Declaring the DataType. 812
Creating Structured DataTypes 812
Declaringan Array 813
Declaringa Record . . . e - R
Declaring the Scope of a Varlable 815
Scope of Reference 816

Time of Memory Allocation 817

Using Global Variables 819
Global Variable Declaration . . . S - i

Using GLOBALS Within a Single Module 820

Global Versus Module Scope. 821

Initializing Variables 822

Expressionsand Values 822

Literal Values 823
Values from Variables. 823
Values from FunctionCalls. 824
Numeric Expressions. 824
Boolean Expressions 825
Character Expressions 826
Null Values . . . T < v 4
Null Values in Arlthmetlc . -

Null Values in Comparisons 827

Null Values in Boolean Expressions 827
Assignment and Data Conversion. 828
Data Type Conversion 829
ConversionErrors. 83
Decisions and Loops . . . < R
Decisions Based on NULL - X
FunctionsandCalls. 834
Function Definition 834
Invoking Functions . . . e 1)
Arguments and Local Varlables e 836
Working with Multiple Values 837
Assigning One Record to Another 838
Passing Records to Functions 838
Returning Records from Functions 839

8-2 IBM Informix 4GL Concepts and Use

In This Chapter

INFORMIX-4GL has the features of a structured language such as Pascal or C
as well as advanced features of its own. This chapter surveys the basic
features of 4GL as a programming language.

Data Types of 4GL

As Chapter 5, “The Procedural Language,” indicates, 4GL is a strongly-typed
language. Program variables, the formal arguments of functions and reports,
and the values that are returned by functions and expressions must be repre-
sented as being of some data type. The data type determines the internal
format in which a data value is stored, and also implies what operations on
that value are valid.

Sections that follow describe the simple, large, and structured data types of
4GL and identify their role in various programming contexts, including
declarations of variables, expressions, and function calls.

Using the Language 8-3

Simple Data Types

8-4 IBM Informix 4GL

Simple Data Types

4GL supports a number of simple data types. They are called simple because
each of these data types describes a single item of information (as opposed to
a collection or an array of items). The simple data types of 4GL are a robust

subset of the data types for database columns of Informix database servers.

Each of the simple data types is discussed in detail in INFORMIX-4GL
Reference. There you will find information on their minimum and maximum
capacities, the proper format for literal values of each data type, and other
details. The data types are summarized below as background material for the
rest of the chapter.

Number Data Types

4GL supports seven representations of numeric values (some of which have
more than one keyword or have scale or precision options).

Data Type Keywords Kind of Data Represented

DEC(p, s) Decimal fixed-point numbers, of specified precision (p) and
DECIMAL(p, s) scale (s)

NUMERIC(p, s)

MONEY(p, s), Currency amounts, of specified precision (p) and scale (s)
MONEY(p), MONEY (defaulting to 16, 2)

DEC(p) Decimal floating-point numbers, of specified precision (p)
DECIMAL(p) (defaulting to 16)

NUMERIC(p)

FLOAT Binary floating-point numbers, with precision of C double
DOUBLE PRECISION

REAL Binary floating-point numbers, with precision of C float
SMALLFLOAT

INT Whole numbers, from -2,147,483,647 to +2,147,483,647
INTEGER

SMALLINT Whole numbers, from -32,767 to +32,767

Concepts and Use

Number Data Types

Synonyms for the names of some data types, such as REAL for SMALLFLOAT,
are supported to conform to the ANSI/ISO standard for SQL. The arithmetic
operators of 4GL can manipulate and return number values, as the following
table shows.

Operator Symbols Names of Operators
+, - Unary plus and unary minus operators
+, - Binary addition and binary subtraction operators
* [** Multiplication, division, and exponentiation operators

MOD Modulus operator

Differences Between DECIMAL and MONEY Data Types

The internal representations of fixed-point DECIMAL and MONEY data types
are identical. The only difference between these two data types is that when
4GL displays a MONEY value to the screen or a report, it formats the number
as currency.

Numeric Precision

Some 4GL number data types are implemented as standard C data types.

Data Type Description
FLOAT Same as C double
SMALLFLOAT Same as C float
INTEGER Same as C long
SMALLINT Same as C short

A library of C functions for working with DECIMAL and MONEY data types
is included with both 4GL and INFORMIX-ESQL/C.

Using the Language 8-5

Time Data Types

GLS

Time Data Types

4GL supports the following three data types for keeping track of time.

Data Type Kind of Data Represented

DATE Points in time, specified as calendar dates

DATETIME Points in time stored with a specified precision, as calendar dates,
times of day, or both

INTERVAL Spans of time stored with a specified precision, either in years and
months, or else in days or smaller units of time

A DATE value is stored internally as a count of days before or after midnight,
31 December 1899; that is, January 1, 1900, would be stored as 1. When it
displays a DATE value to the screen or a report, 4GL formats it according to
directions in the DBDATE environment variable, so your user can tailor the
display of date values to match local conventions. You can also employ the
USING operator to format DATE values.

By using the GLS features of 4GL, DATE values (and DATETIME values) can be
displayed according to the cultural conventions of the current locale. You can
also use the DBCENTURY environment variable to choose the present,
previous, or next century. For details, see INFORMIX-4GL Reference and the
Informix Guide to GLS Functionality. ¢

You can mix DATE values with integers when doing arithmetic (for example,
subtracting 7 to get a date for the same day of the previous week). The
difference between two DATE values, however, is an INTEGER value. You
must use the UNITS operator to convert the difference to an INTERVAL value.

A DATETIME value can have more or less precision than a DATE value: it can
specify a date, a time, or both, and can be exact to a fraction of a second.

An INTERVAL value represents a span of time, not a particular moment in
time. For example, “three hours™ is an interval; “three o’clock™ is a point in
time. You can do arithmetic that mixes DATE, DATETIME, and INTERVAL
values, yielding new DATETIME or INTERVAL values.

4GL does not support automatic conversion between INTERVAL values with
YEAR or MONTH time units and INTERVAL values of smaller precision.

8-6 I1BM Informix 4GL Concepts and Use

Time Data Types

Some built-in operators accept or return DATE values. Built-in functions and
operators are described in INFORMIX-4GL Reference.

Built-In Operator

Purpose

CURRENT
DATE(expr)

DAY (date-expr)

EXTEND(date, qual)

MDY(m, d, y)

MONTH(date-expr)
TIME
TODAY

int-expr UNITS qual

WEEKDAY (date-expr)

YEAR((date-expr)

Returns the current date and time as a DATETIME value
Converts an integer or string value to DATE or DATETIME

Returns the day of the month from a DATE or DATETIME
value

Changes the precision of a DATE or DATETIME value,
returning a DATETIME value

Composes a DATE value from integer values for month, day,
year

Returns the month from a DATE or DATETIME value
Returns the current time of day as a character string
Returns the current date as a DATE value

Converts an integer to an INTERVAL value of specified
precision

Returns the day of the week from a DATE or DATETIME
value

Returns the year from a DATE or DATETIME value

These operators are identical in name and use to functions available in SQL
statements. Used in SQL, they apply to values in the database. You can also
use them in other 4GL statements, applying them to program variables.

DATE, DATETIME, and INTERVAL data types are discussed in detailed in
INFORMIX-4GL Reference.

Using the Language 8-7

Character Data Types

8-8

Character Data Types

4GL supports several data types to represent strings of bytes in memory, as
the following table shows.

Data Type Kind of Data Represented

CHAR(length) Character strings of fixed length, up to 32,767 bytes
CHARACTER(length)

NCHAR(size) Character strings of fixed length, up to 32,767 bytes
VARCHAR(length) Character strings of varying length, up to 255 bytes
NVARCHAR(size) Character strings of varying length, up to 255 bytes
TEXT Character strings up to 23! bytes

The most important of these is CHAR or its synonym CHARACTER, which is
the default 4GL data type. TEXT can store strings, but it is classified as large
(rather than character) data type, because 4GL manipulates TEXT values in a
different way from CHAR or VARCHAR values.

NCHAR and NVARCHAR are both locale-sensitive character data types,and
are interpreted and converted to CHAR or VARCHAR data types. When
NCHAR and NVARCHAR data types are sent from the server to the client, they
are converted to CHAR or VARCHAR data types, respectively. When CHAR or
VARCHAR data types are sent from the client to the server, they are converted
to NCHAR and NVARCHAR data types, respectively.

The following operators are among built-in operators of 4GL that can accept
or return CHAR or VARCHAR values.

Operator Purpose

variable [start, end] Specifies a substring from a CHAR or VARCHAR value

ASCII int-expr Returns a specific ASCII character as a CHAR(1) value

(1of2)

IBM Informix 4GL Concepts and Use

Character Data Types

Operator Purpose

char-expr CLIPPED Returns a character value, without trailing blank spaces
LENGTHY(char-expr) Returns the length bytes, disregarding trailing blank spaces

value USING "mask” Returns the string representation of a value, formatted to fit
a specified pattern

(2 0f 2)

Within a DISPLAY statement (that displays values to the screen) or a PRINT
statement (that sends values to a report), you can use the COLUMN operator
to set the beginning position of the value of the current line of output.

CHAR and VARCHAR Compared

In the database, the important difference between CHAR and VARCHAR
columns is that only the actual length of a VARCHAR value is stored to disk,
while a CHAR value always occupies its full declared size.

This difference is not important for program variables because 4GL always
allocates enough memory to hold the declared size of a VARCHAR value. For
example, VARCHAR(25) always occupies 26 bytes of memory, even if you
store a 1-byte value in it. (The 26th byte stores the end-of-data symbol.) You
cannot economize on program memory by using VARCHAR in place of
CHAR.

In a program, the difference between the two data types is that when you
reference a CHAR variable, you always get its full declared size in bytes, filled
out with trailing blank spaces if necessary. The CLIPPED operator can be used
to drop any trailing whitespace. When you refer to a VARCHAR variable, you
get only its current data contents, without any padding. For this reason, the
CLIPPED operator is less often needed with VARCHAR variables.

Using the Language 8-9

Large Data Types

IDS

Large Data Types

The data types BYTE and TEXT are collectively known as large or blob (binary
large object) data types. They represent strings of data that can be of any
length. The only difference between a BYTE and a TEXT data type is that a
BYTE value can contain any combination of binary values, while TEXT data
items contain any number of printable characters. Informix Dynamic Server
supports blob data types. ¢

The LOCATE statement of 4GL must specify whether the contents of a blob
variable are to be held in memory or in a file. You can change this location
dynamically, as the program runs. Typical uses for blob variables are as

follows:

To fetch blob values from the database and store them in program
variables of the same data type

When the receiving variable is located in a file, this is effectively a
disk-to-disk copy from the database to the file.

To store blob values from program variables into the database

When the source variable is located in a file, this is effectively a disk-
to-disk copy from the file to the database.

To view or modify a blob value, using some external program that
understands the contents of the blob

The following example uses a blob variable with an external editor:;

1.

3.

Retrieve a blob consisting of a graphic from an Informix database
and store it as a blob variable located in a disk file.

Call a paint-type editing program, make changes in the graphic, save
the changes, and exit from the editor.

Reload the modified graphic in the database.

Editing graphics generally requires a GUI.

8-10 IBM Informix 4GL Concepts and Use

Variables and Data Structures

Variables and Data Structures

A program variable is a named location in memory where a value can be
stored. There are five things to know about any variable:

Data type. What kind of data value can it hold?

A given variable can store data in a specific format (or range of for-
mats) that is determined by the declared data type of the variable.

Structure. Does it contain only a single value or is it a collection of
several values? If it is an aggregate, how can the individual simple
values be accessed?

For example, an array is a vector of values of the same data type. You
access a single value by writing a subscript, as in custNumList[15].

Scope of reference. In what parts of the program can 4GL or the
database server recognize its name?

There are three possibilities, which are discussed in greater detail
later in this chapter; they are local, module, and global.

Visibility. Within its scope of reference, is there any conflict with
other program variables that have the same name?

INFORMIX-4GL Reference discusses the visibility rules for 4GL vari-
ables whose names are not unique within their scope.

Time of allocation. When during the execution of the program is the
variable created and initialized?

There are two possible times: memory for the variable can be allo-
cated at compile time, as part of the executable program file, or else
at runtime, dynamically, while the program is executing.

Using the Language 8-11

Declaring the Data Type

8-12

Declaring the Data Type

The characteristics of a variable are decided when you declare a variable. To
declare a variable is to write a statement that tells 4GL about the variable. Use
the keyword DEFINE for this. The following DEFINE statement declares four
simple variables:

DEFI NE
j, custNum | NTECGER |,
cal | Dat e DATETI ME YEAR TO SECOND ,
sorryMsg CHAR(40)

State the data type of a variable after its name. In the preceding declaration,
variables j and custNum are INTEGER; the data type of callDate is DATETIME
YEAR TO SECOND, and the data type of sorryMsg is CHAR(40). Any of the
simple data types that were listed earlier in this chapter can be used.

You can also use the LIKE keyword to specify that the data type of a variable
is the same as the data type of a specified column in an Informix database:

DEFI NE cust Fnane LI KE custoner. f nane

The advantage of using LIKE in this way for indirect typing is that if the
database schema changes, you need only recompile your program to make
sure that the data types of your variables match those in the database.

Creating Structured Data Types

Until now, only simple and blob data types have been considered. 4GL also
supports data types that contain many individual values. Such data types are
considered to have a structure. You specify the structure of a variable by
stating that it is an ARRAY or a RECORD in the DEFINE statement.

IBM Informix 4GL Concepts and Use

Creating Structured Data Types

Declaring an Array

An array is a set of elements that are all of the same data type, ordered along
one or more dimensions. The following two examples are array declarations:

DEFI NE cust NuniTab ARRAY [2000] OF LI KE custoner. cust omer _num
DEFI NE cust ByProd ARRAY [100, 25] OF MONEY(12)

The number of elements is specified in brackets. The example shows a single
dimension array 2,000 elements long and a 100 by 25 (100x25) two-dimen-
sional array. Three-dimensional arrays can also be created.

All elements of an array have the same data type. This can be one of the
simple or large data types, or it can be a record. You specify the data type of
the array in the OF clause that follows the name of the array.

You access an element of an array by naming the array with a subscript
expression in brackets, as in custNumTab[175] or custByProd[j,prodNum].

Declaring a Record

A record is a collection of variables, each with its own data type and name.
You put them in a record so you can treat them as a group, as follows:

DEFI NE per son RECORD
honorific VARCHAR(40) , -- e.g. "Excellency"
initial CHAR(1) ,
famName CHAR(30)

END RECORD

You access a member of a record by writing the name of the record, a dot
(known as dot notation), and the name of the member. For example,
person.initial is the second member of the person record.

You can declare a record that has one member for each column in a database
table. The names of the members and their data types are derived from the
database. The only exception is that SERIAL data types are converted to
INTEGER data types. In the simplest form, you write:

RECORD LI KE t abl enane. *
As in the following:

DEFI NE cust Rec RECORD LI KE custoner. *

Using the Language 8-13

Creating Structured Data Types

8-14

The statement creates a record named custRec having one member for each
column of the customer table. Each record member has the name and the
data type of the corresponding column in the table.

You can augment table columns with other members. The following clause
retrieves the names of columns and their types:

LI KE t abl enane. *
This, in effect, defines a RECORD:

DEFI NE cust Pl us RECORD
row | NTEGER ,
cust omer RECORD LI KE customer. *
bal anceDue DECI MAL(8, 2)
END RECORD

The preceding statement creates a record named custPlus having a member
for each column of the customer table and two additional members. The
member custPlus.row is an integer. The member custPlus.balanceDue is a
decimal number. In this case, where the LIKE clause only generates some of
the members of the record, you must use an END RECORD clause to finish the
record definition.

Because custPlus.customer is a record within the record, a reference to the
Iname member of the record is specified as:

cust pl us. cust oner. | nane

IBM Informix 4GL Concepts and Use

Declaring the Scope of a Variable

Declaring the Scope of a Variable

You specify the scope of a variable within its source module by where in the
source module you write the DEFINE statement:

If it is within a function, the scope is local to that function. The
variable can only be referenced while the function is executing.
(Functions are described in “Functions and Calls” on page 8-34.)

If it is at the top of the source module and outside any MAIN,
REPORT, or FUNCTION statement, the variable is considered a
module variable. Its name can be used anywhere from that point to
the end of the source module.

If it is in a GLOBALS statement in a module separate from any other
statements, the variable is available in that module (and in any other
module that includes the GLOBALS "filename".4gl statement that
defines that variable).

The context of the DEFINE statement also determines the following
characteristics of a variable:

Scope of reference. This portion of the source code is where the 4GL
compiler recognizes the variable name.

Time of allocation. 4GL allocates memory for the variable at time of
allocation.

4GL also supports recursion (a function calling itself). Each separate call to a
function allocates its own copy of local variables.

Using the Language 8-15

Declaring the Scope of a Variable

8-16

Scope of Reference

The context of a DEFINE statement determines the scope of reference of the
name of a variable, sometimes more briefly referred to as its scope. During
compile time, the scope of reference is that portion of the source code in
which the 4GL compiler can recognize the name of the variable. Outside its
scope, the name is unknown or might reference a different variable.

Local Scope: Within a Program Block

Within the definition of a function or report, or within a MAIN program
block, DEFINE declares local variables. The scope of reference of a local
variable is restricted to the same program block in which it is declared. The
DEFINE statements that declare local variables must precede any executable
statement within the same program block.

Modular Scope: Within a Source Module

Outside any FUNCTION, REPORT, or MAIN program block, DEFINE declares
module variables. The scope of reference of a module variable is the entire
source module. Module variable definitions must appear at the beginning of
the source module, before the first program block.

Global Scope: Within Several Modules

The GLOBALS "filename".4gl statement can extend the scope of module
variables that you declare outside any FUNCTION, REPORT, or MAIN
program block and within a GLOBALS ... END GLOBALS statement. (This can
contain DATABASE and DEFINE statements.) The following scope of reference
is for a variable that you declare in this way:

= The module where the GLOBALS ... END GLOBALS statement appears

= Any other modules that include a GLOBALS "filename".4gl
statement, where "filename".4gl is the module that contains the
GLOBALS ... END GLOBALS statement that declares the variable.

Both the GLOBALS ... END GLOBALS and the GLOBALS "filename".4gl
statements must appear at the beginning of a source module, before the first
program block, and before any executable statements.

IBM Informix 4GL Concepts and Use

Declaring the Scope of a Variable

Time of Memory Allocation

The context of the DEFINE statement also determines when the memory for
the variable is allocated. How and when 4GL handles memory allocation for
a variable depends on the scope of reference of the variable.

Allocation of Local Variables

Storage for local variables is allocated dynamically. 4GL allocates this storage
when control of execution passes to the program block (a FUNCTION, MAIN,
or REPORT statement) that contains the declaration of the local variable.

Local variables are initialized in the same order in which their names appear
in their program block.

Allocation of Module Variables

Storage for module variables is allocated statically, in the executable image of
the program. 4GL allocates this storage when the program begins execution
and deallocates it when the program terminates.

Module variables are initialized in the same order in which their names (and
the names of any global variables) appear in the source module.

Allocation of Global Variables

Storage for global variables is also allocated statically. 4GL allocates this
storage when the program begins execution and deallocates it when the
program terminates. To be able to handle references to a global variable
across several source modules, however, 4GL makes a distinction between
variable declaration and variable definition:

= Variable declaration tells the 4GL compiler the name and the data type
of the variables so that the compiler can verify references to this
variable in a given source code module.

= Variable definition allocates the memory for the global variable. For
global variables, memory is allocated statically, as part of the
program image.

Using the Language 8-17

Declaring the Scope of a Variable

8-18

The GLOBALS ... END GLOBALS statement defines the global variables. It also
declares them so the compiler can verify references to a global variable in the
same module where it is defined.

To make a global variable visible in other modules of the program, you only
need to declare these variables. You do not need to define them because
memory only needs to be allocated once and is done so with the

GLOBALS ... END GLOBALS statement.

To declare global variables in other modules, you must:

= putthe GLOBALS ... END GLOBALS statement in a separate source
file.

= at the top of each source file that references a global variable, put the
GLOBALS "filename".4gl statement, where "filename".4gl is the name
of a file containing the GLOBALS ... END GLOBALS statement.

The following example declares global variables in the globs.4gl source file:
GLOBALS
DEFINE a, b, c INT ,
X,Y,z CHAR(10)
END GLOBALS

To reference these variables in other source modules, you would put the
following statement at the top of each source module using a global variable:

GLOBALS "gl obs. 4gl "

The following section discusses global variable declarations in detail.

IBM Informix 4GL Concepts and Use

Using Global Variables

Using Global Variables

The GLOBALS statement defines and declares a global variable. All references
to a global variable refer to the same location in memory. This statement has
two forms:

= If you use the LIKE keyword in any DEFINE statement, you must
identify the database that contains the referenced database columns.
You can do this in either of the following two ways:

0 Precede the GLOBALS ... END GLOBALS statement with a
DATABASE statement specifying the database containing the
referenced columns.

o Qualify each referenced column with its table name.

» If aglobal variable defined within the GLOBALS ... END GLOBALS
block has the same name as a local variable, then the local identifier
takes precedence within its scope of reference. A module variable in
the same source module cannot have the same name as a global
variable.

The following program segment defines a variable like the customer table of
the stores7 demonstration database:

DATABASE st ores?
GLOBALS

DEFI NE p_custonmer RECORD LI KE customner. *
END GLOBALS

Global Variable Declaration

The globals file contains global variable definitions and must have a .4gl file
extension; for example, this file can be named globals.4gl. You compile this
file as part of your multiple-module program. This globals file should contain
only GLOBALS ... END GLOBALS statements. It cannot contain 4GL executable
statements. (DATABASE and DEFINE statements are valid, however, because
these are not executable.) Different source files can reference different globals
files.

Using the Language 8-19

Using Global Variables

8-20

Using GLOBALS Within a Single Module

The following program fragment defines a global record, a global array, and
a simple global variable that are referenced by code in the same source
module:

DATABASE st ores?

GLOBALS

DEFI NE p_cust oner RECORD LI KE | braz. custoner.*
p_state ARRAY[50] OF RECORD LIKE state.* ,
state_cnt SMALLINT |,
arraysi ze SMALLI NT

END GLOBALS

MAI N

LET arraysize = 50
END MAI N
FUNCTI ON get _states()

FOREACH c_state INTO p_state[state_cnt].*
LET state_cnt = state_cnt + 1
IF state_cnt > arraysize THEN
EXI T FOREACH
END | F
END FOREACH

END FUNCTI ON

FUNCTI ON st at e_hel p()

DEFI NE i dx SMALLINT ...

CALL SET_COUNT(state_cnt)

DI SPLAY ARRAY p_state TO s_state.*
LET idx = ARR CURR()

LET p_custoner.state = p_state[idx].code
DI SPLAY BY NAME p_custoner. state

END FUNCTI ON
The 4GL compiler will generate an error if you defined a module variable

with a name of arraysize, p_customer, p_state, or state_cnt in the same
module containing the GLOBALS statement.

However, used in this context, the GLOBALS statement simply defines
variables with module scope. For other modules to be able to access the
variables, they must use the GLOBALS "filename".4gl statement, and to do so,
the GLOBALS ... END GLOBALS statement must appear in a separate source
file.

IBM Informix 4GL Concepts and Use

Using Global Variables

Global Versus Module Scope

When a variable is declared in a GLOBALS statement, the variable is still a
module variable as far as the current source module is concerned, but you
can use it anywhere in your program. When you do this, the source modules
share the single copy of the variable. If the value is changed in one module,
it is changed throughout the program. Figure 8-1 shows that the numbers in
the boxes indicate the value of taxRate at the specified point in the program.

Figure 8-1
The Difference Between Global and Local Variable
glob.4gl subl.4gl
GLOBALS GLOBALS "gl ob. 4gl "
DEFI NE t axr at e DECI MAL(4, 3) LET taxrate = 1.085
END GLOBALS DEFI NE
NYCt axRat e DECI MAL(4, 3)
uninitialized LET NYCtaxrate = taxrate * 2
1.085
sub2.4gl wildduck.4gl [j
GLOBALS “gl ob. 4gl " DEFI NE t axr at e DECI MAL(4, 3)
DI SPLAY “% ax is” , taxrate AT 2,2 LET taxrate = 1.15
1.085 115

In Figure 8-1, the source module glob.4gl declares a variable taxrate as a
global variable. The current value of the global variable is available to any
function in any module that references the global source module.

Another source module, subl.4gl, references the GLOBALS file glob.4gl, and
assigns a value of 1. 085 to taxrate.

A third module, wildduck.4gl, defines a module variable named taxrate and
assigns it a value. Because there is no reference to the globals file glob.4gl,

this module-level assignment is permitted. No change in the value of taxRate
in wildDuck.4gl will affect the current value of the global variable taxRate.

Finally, a routine in a fourth module, sub2.4gl, displays the current value of
the global variable taxrate, 1. 085.

Using the Language 8-21

Initializing Variables

8-22

Initializing Variables

You initialize variables using the LET statement:

DEFI NE Pi, TwoPi SMALLFLOAT
LET Pi = 3.1415926
LET TwoPi = 2*Pi

The declaration of a variable must precede any executable statement in the
same program block.

4GL programmers often initialize global variables at a single point in the
program, such as immediately after the last DEFINE or DATABASE statement
in the MAIN program block.

Expressions and Values

A value is a specific item of information. An expression specifies how a value
is to be calculated. You can use expressions at many points in a 4GL program,
including the following contexts;

= Function calls, to specify the arguments to functions

= Decision and looping statements, to control program flow

= Reports, to specify the values to print in the report

= SQL statements, to specify values to be inserted into the database

= LET statements, to specify values to be assigned to variables
Every value has a data type, one of the simple or large data types that were
listed earlier in this chapter. The 4GL compiler knows the data type of every

component of an expression, so it can tell the data type of the returned value
that the expression specifies.

For a detailed discussion of 4GL and SQL expressions, see INFORMIX-4GL
Reference.

IBM Informix 4GL Concepts and Use

Literal Values

Literal Values

The simplest kind of expression is a literal value, that is, a literal represen-
tation of a number, a date, a character string, or some other kind of data.

Some literal numbers are: -7, 3.1415926, 1e-8. 4GL assumes any literal number
with a fractional component has the data type DECIMAL(32), the most precise
number data type available.

Enclose literal character values in quotes: " Record i nserted. " You can use
asingle quote (') or double quotes (") to delimit a character literal, but both
delimiters of the same value must be the same. In single-byte locales, 4GL
assumes that any literal character value has the data type CHAR(n), where n
is the number of characters between the quotes.

You can also write literal values of DATE, DATETIME, and INTERVAL data
types. For details of these data types, see INFORMIX-4GL Reference.

Values from Variables

The next simplest kind of expression is the name of a simple variable or the
name of one element of a structured variable. Suppose that the following
names are declared and a value assigned to pi:

DEFI NE
j, prodNum | NTEGER
pi SMALLFLOAT
LET pi = 3.1415926

Following these statements, you can use the name pi as an expression
meaning 3.1415926 and having the data type SMALLFLOAT. The names j and
prodNum are expressions meaning, “the value that was last stored in this
variable,” and have a data type of INTEGER.

References to a component of a structured variable are also expressions. The
ARRAY element cust ByProd[j, prod_nuni is an expression meaning, “the
value that was last stored in the subscripted element of this array.” For the
expression to be valid, both j and prod_num must have values that are
positive integers within the declared dimensions of the custByProd ARRAY
variable.

Using the Language 8-23

Values from Function Calls

8-24

Values from Function Calls

A function can return one or more values. In fact, this is the most common
reason to write a function: to calculate and return a value. (Functions are
discussed in more detail in “Functions and Calls” on page 8-34.) Any
function that returns a single value can be used as an expression.

You write a call to a function by writing the name of the function followed by
its arguments enclosed in parentheses. See also “Data Type Conversion” on
page 8-29.

The use of functions returning more than one value is discussed in “Working
with Multiple Values” on page 8-37.

Numeric Expressions

You can write expressions that calculate numeric values. You can use the
arithmetic operators to combine numeric literals and the names of numeric
constants, variables, and functions to calculate new values. The following
statement from an example in the preceding chapter contains several
numeric expressions:

LET fahrDeg = (9*centDeg)/5 + 32

In this statement, 9, 5, and 32 are literals, and centDeg is the name of a
variable. The expression 9* cent Deg tells 4GL to produce a new value by
multiplying two values, and (9* cent Deg) / 5+32 tells it how to produce
another new value by dividing and then adding.

As previously noted, 4GL carries intermediate results of calculations on
numbers with fractional components in its most precise data type,
DECIMAL(32). This helps prevent many errors due to rounding and
truncation, and reduces the chance that an intermediate result will overflow.
However, it is still possible for a badly planned calculation to cause overflow,
round-off, or truncation errors. As with any computer language, you should
think through the precision requirements of any critical calculation.

Integer and numeric expressions are described in INFORMIX-4GL Reference.

IBM Informix 4GL Concepts and Use

Boolean Expressions

Boolean Expressions

In 4GL, the result of comparing two values by using any Boolean or relational
operator is an integer value of 1 (if the result of the comparison is TRUE)

or 0 (if the result is FALSE). Suppose the following variables have been
declared and initialized:

DEFI NE maxRow, rowNum | NTEGER

The expression r owNum==maxRow is a Boolean comparison; that is, it is a
Boolean expression with a value of either 1 or 0.

Tip: You can write an equality comparison using either a single equals sign or a
double one. If you have used the C language, you might prefer to write ==; if your
experience has been with other languages you might prefer to use just one.

Other Boolean operators include <> or != for “not-equals,” and LIKE or
MATCHES for character pattern matching. Two especially important
relational operators are IS NULL and 1S NOT NULL. You can use these to test
for the presence of a null value in a variable. (For more information on the use
of null values, see “Null Values” on page 8-27 and INFORMIX-4GL Reference.)
Most other Boolean operators of 4GL return FALSE if any operand is NULL.

All these relational tests return 1 to mean “true” or 0 to mean “false.” The
names TRUE and FALSE are predefined 4GL constants with those values.

You can combine numeric values with the Boolean operators AND, OR, and
NOT. Often you use these to combine the results of relational expressions,
writing expressions such as keepOn="Y" AND r owNum < nmaxRows. That
expression means:

= Take the value of the comparison keepOn="Y" (which is 1 or 0).

= Take the value of the comparison r owNumxnmaxRows (1 or 0).

= Combine those two values using AND to produce a new value.
Usually you write Boolean expressions as part of IF statements and other
decision-making statements (for some examples, see “Decisions and Loops”
on page 8-31). However, a comparison is simply a humeric expression. You

can store its value in a variable, pass it as a function argument, or use it any
other way that an expression can be used.

For more on relational and Boolean expressions, see INFORMIX-4GL Reference.

Using the Language 8-25

Character Expressions

8-26

Character Expressions

You can express a character value literally (as a quoted string) or as an
expression that returns a character string. In many contexts, 4GL can convert
a value of any simple data type automatically to a string that a CHAR or
VARCHAR variable of sufficient declared length can store.

The following expressions return a character value:

= Thename of aninitialized CHAR, VARCHAR, NCHAR, or NVARCHAR
variable

= A call to a function that returns a CHAR, VARCHAR, NCHAR, or
NVARCHAR value

= Asubstring of a literal, a variable, or the returned value from a
function returning a CHAR, VARCHAR, NCHAR, or NVARCHAR value

A substring is written as one or two numbers in square brackets. The first is
the position of the first character to extract, and the second is the position of
the last. Suppose the following variable exists:

DEFI NE del Confirm CHAR(11)
LET del Confirm = "Row del et ed"

Now you can write del Confirnf 1, 3] asan expression with the value Row
and the expression del Confirni5, 8] is the value del e. The expression
del Confirnf4] ordel Confirni4, 4] isasingle-space character.

It should be noted that the substring expression uses the same notation as the
subscript to an array. The following example shows an array of character
values:

DEFI NE conpani es ARRAY[75] OF CHAR(15)

The expression conpani es[61] produces the character value from the 61st
element of the array. The expression conpani es[1, 7] would cause an error
at compile time because the array companies does not have two dimensions.
However, the expression conpani es[61] [1, 7] accesses the 61stelementand
then extracts the first through the seventh letters of that value.

IBM Informix 4GL Concepts and Use

Null Values

Null Values

For every SQL data type, the Informix database servers define a null value. A
value of NULL in a database column means do not know, or not applicable, or
unknown. Because null values can be read from the database into program
variables, 4GL also supports a null value for every data type. The keyword
NULL stands for this unknown value. A variable of any data type can contain
NULL, and a function can return a variable with a value of NULL. If a null
value appears in a character expression, 4GL substitutes blank characters for
the value.

Null Values in Arithmetic

If you do arithmetic that combines a number with NULL, the result is NULL.
Adding 1 to unknown must result in unknown. If any value in an arithmetic
expression is NULL, then the expression returns the value NULL.

Null Values in Comparisons

If you compare a null value to anything else, the result is NULL. Is “A” equal
to unknown? The only answer can be unknown. Thus every comparison
expression has not two but three possible results: TRUE, FALSE, and unknown,
or NULL.

It is worth noting that the decision-making statements such as IF and WHILE
do not distinguish this third result. They treat NULL the same as FALSE. This
can cause problems when you test values that might be NULL. That is why
the operators IS NULL and IS NOT NULL are provided; they allow you to
detect null values and respond according to the requirements of your
application.

Null Values in Boolean Expressions

The Boolean operators AND and OR give special treatment to NULL. In the

case of OR, when one of its arguments is TRUE, its result is TRUE no matter

what the other argument might be. But if one of its arguments is FALSE and
the other is NULL, then OR must return NULL, because 4GL does not know

whether its result should be TRUE or FALSE.

Using the Language 8-27

Assignment and Data Conversion

8-28

Assignment and Data Conversion

In creating a useful 4GL program, you write expressions to describe values
and then you do something with the values. Sometimes you display them or
pass them as arguments to functions. Most often, you assign a value for a
variable; that is, you tell 4GL to store the value in the memory reserved for the
variable.

DEFI NE fahr Deg, cent Deg DECI MAL(4, 2)
LET cent Deg 10. 28
LET fahr Deg (9*centDeg)/5 + 32

The expression is (9* cent Deg) / 5+32. The LET statement causes 4GL to
calculate the value of the expression and to store that value in the memory
reserved for the variable fahrDeg.

You can assign a value to a variable in the following ways:

s Use the LET statement. This assignment is the most common.
s Use the CALL ... RETURNING statement to call a function and store
the value it returns:
CALL tempConvert(32) RETURN NG f ahr Deg

= Use the INTO clause of an SQL statement to get a value from the
database and assign it to a variable:

SELECT COUNT(*) | NTO maxRow FROM st ock
Other SQL statements that support INTO include SELECT, FETCH, and
FOREACH.
= Use the INITIALIZE statement to set a variable, or all members of a
record, to NULL or to other values:
I NI TIALI ZE cust Row. * TO NULL

= Use PROMPT to accept values that the user entered from the
keyboard:

PROVPT "Enter tenp to convert: " FOR cent Deg

= Use INPUT or INPUT ARRAY to get values from fields of a form and
put them in variables:

I NPUT cust Rec.* FROM custoner. *

= Use CONSTRUCT to get a query by example expression from a form
and put it in a variable:

CONSTRUCT BY NAME wher e ause ON custoner. *

IBM Informix 4GL Concepts and Use

Data Type Conversion

Data Type Conversion

All the preceding methods of assignment perform the same action: they store
values in variables. Each performs automatic data conversion when is
necessary and possible. Data conversion is necessary when the data type of
the passed value is different from the data type of the variable (or the formal
argument of a 4GL function or report) that receives it.

As previously noted, 4GL has liberal rules for data conversion. It will attempt
to convert a value of almost any data type to match the data type of the
receiving variable. For a table that summarizes the rules and shows data type
incompatibilities, see INFORMIX-4GL Reference. The pairs of data types that
are identified in that table as supporting automatic data type conversion are
called compatible 4GL data types.

DEFI NE num DECI MAL(8, 6)
DEFI NE chr CHAR(8)

LET num = 2.18781

LET chr = num

The second assignment statement asks 4GL to initialize chr, a character
variable, from the value of num, a numeric variable. In other words, this
statement asks 4GL to convert the value in num to a character. It does that
using the same rules it would use when displaying the number, in this case
producing the string 2. 187810 (with all six declared decimal places of the
fractional part filled in).

LET num = chr[1, 3]

Given the initialization of chr to the string 2. 187810, the expression

chr[1, 3] returnsthe characters 2. 1. Because the receiving variable is of data
type DECI MAL(8, 6) , 4GL converts the characters into the number value
2.100000 and assigns that value to num.

For systems or locales that define some symbol other than period (.) to
represent the decimal separator, 4GL would use that symbol to replace the
period in the converted string value.

Using the Language 8-29

Conversion Errors

Conversion Errors

Some data type conversions cannot be done. When 4GL can recognize at
compile time that a particular conversion is illegal, it returns a compiler error.

4GL can convert BYTE to TEXT, and TEXT to BYTE, but it does not attempt to
convert these to other data types because 4GL does not know enough about
the internal structure of the values of these large data types to convert them.

Some conversions might prove to be impossible only at execution time. Then
the error will be detected while the program is running. For example, the
following program tries to assign a CHAR value to a SMALLINT variable:

DATABASE st ores7
DEFI NE a, b SMALLINT, c,d CHAR(10)

MAI' N

LET c="appl e"

DI SPLAY "This is c ", c AT 3,3
SLEEP 2

LET a=c

DI SPLAY "This is a ", a AT 5,5
SLEEP 4

END MAI N

For more information, see “Runtime Errors” on page 12-4.

8-30 IBM Informix 4GL Concepts and Use

Decisions and Loops

Decisions and Loops

The statements you use to control the sequence of execution are similar to
those in other languages you might have used. You can find details in
INFORMIX-4GL Reference for each of the following statements.

The IF...THEN...ELSE statement tests for Boolean (yes/no) conditions. You
write the test as a conditional statement, usually a relational comparison or a
Boolean combination of relational comparison. If the value of the expression
is 1 (TRUE), the THEN statements are executed. When the expression
evaluates to 0 (FALSE) or is NULL, the ELSE statements are executed. For
example:

I F pronpt Answer MATCHES "[yY]" THEN

DELETE WHERE CURRENT OF cust Cursor
ELSE

DI SPLAY "Row not del eted at your request”
END | F

The CASE((expr) statement implements multiple branches. This statement has
two forms. The first form is a simple form that compares one expression for
equality against a list of possible values. For example:

CASE (VEEKDAY(shi p_date))
WHEN O- - Sunday

DI SPLAY "W | ship by noon Monday"
WHEN 5-- Friday

DI SPLAY "W | ship by noon Saturday"
WHEN 6-- Saturday already

DI SPLAY "W | ship by noon Mnday"
OTHERW SE

| F DATETI ME (12) HOUR TO HOUR <

EXTEND(CURRENT, HOUR TO HOUR) THENDI SPLAY "W | ship by 5
today"ELSE -- past noon
DI SPLAY "W | ship by noon tonorrow'

END | F

END CASE

The second form of CASE is effectively a list of else-if tests. No expression
follows the keyword CASE, but a complete Boolean expression (instead of a
comparison value) follows each WHEN keyword. For example:

MAI N
DEFI NE pronpt Answer CHAR(10)
PROWPT "Del ete current row? " FOR pronpt Answer
CASE
WHEN pr onpt Answer MATCHES "[Yy]"
DI SPLAY "Row wi || be deleted." AT 2,2

Using the Language 8-31

Decisions and Loops

8-32

VWHEN pr onpt Answer MATCHES " [Nn]"
DI SPLAY "Row not deleted." AT 2,2
WHEN pr onpt Answer MATCHES (" Maybe")
DI SPLAY "Pl ease neke a decision." AT 2,2
OTHERW SE
DI SPLAY "Pl ease read the instructions again." AT 2,2
END CASE
SLEEP 5
END MAI N

The WHILE statement provides for generalized looping. You can use the EXIT
statement to break out of a loop early. For example:

LET j=1
WH LE manyQObj[j] 'S NOT NULL
LET j =j + 1
IFj > maxArraySi ze THEN -- off the end of the array
LET j = naxArraySi ze
EXIT WH LE
END | F
END WHI LE
DI SPLAY "Array contains ",j," elenents."

The FOR statement provides counting loops. For example:

FORj = 1 TO naxArraySi ze
IF manyQbj[j] 1S NOT NULL THEN
LETj =j-1
EXIT FOR
END | F
END FOR
DI SPLAY "Array contains ",j," elenents."

An additional loop, the FOREACH loop, is discussed in “Row-by-Row SQL”
on page 9-5.

IBM Informix 4GL Concepts and Use

Decisions Based on NULL

Decisions Based on NULL

If a Boolean comparison evaluates to NULL (see “Null Values on page 8-27),
it will have the same effect as FALSE:
= IF NULL ... always executes the ELSE statements (if any).
m CASE (NULL) ... always executes the OTHERWISE statements (if any).
= WHILE NULL ... does not execute its loop statements at all.
Using a NULL value as either the starting or the ending number in a FOR loop
results in an endless loop. The FOR loop ends when the control variable

equals the upper limit, but a NULL value cannot equal anything; hence the
loop never ends.

Using the Language 8-33

Functions and Calls

8-34

Functions and Calls

A function is a named block of executable code. The function is your primary
tool for achieving a readable, modular program.

Function Definition

You define a function when you specify the executable statements it contains.
Figure 8-2 shows a definition for a simple function.

Figure 8-2
Function name Name of argument Simple Function
Definition
FUNCTI ON f ahr ToCent (ft enp)
DEFI NE ftenp, FiveNi nths FLOAT ———Variables local
LET FiveNinths = 5/9 to function
RETURN (ftenp - 32) * FiveN nths
END FUNCTI ON

This example shows the important parts of a function definition. It contains
the following statements:
= A FUNCTION statement that defines the following aspects:
o The name of the function (fahrToCent in the example)
o How many arguments it takes (just one in the example)

= A function program block, statements between the FUNCTION and
END FUNCTION:

0 DEFINE statements must appear before other kinds of
statements.

o Executable statements do the work of the function. In the
example there is only one, a RETURN statement.

Variables declared in the program block are local to the function. The variable
named FiveNinths is local to this function; it is not available outside the
function, although other FiveNinths variables can be declared at the module
level, locally in other functions, or globally.

IBM Informix 4GL Concepts and Use

Invoking Functions

When the 4GL compiler processes a function definition, it generates the
executable code of the function. Once defined, a function is available to any
4GL module in your program. That is, the scope of reference of the name of a
function (or of a report) is global. The name of a function or report must not
be the same as the name of one of its formal arguments, however, or else the
local name (the argument) will occlude the visibility of the global name.

Invoking Functions

You cause a function to be executed by calling it. The two ways to call a
function are:

= Inanexpression

= Through the CALL statement
When a function returns a single value, you can call it as part of an
expression. The fahrToCent() function described previously returns a single

value, so it can be called in an expression that expects the data type of the
returned value:

LET tnp_range = fahrToCent (naxTenp) - fahrToCent (m nTenp)

This statement contains two calls to the function fahrToCent(). The
statement subtracts one of these values from the other, and assigns the result
to the variable tmp_range of data type FLOAT.

When a function returns no values or multiple values, you must use the CALL
statement. Functions that return one value can be called in this way also.

CALL nergeFiles()
CALL fahrToCent (currTenp) RETURNI NG cTenp

The useful ability to return more than one value from a function is considered
further in “Working with Multiple Values” on page 8-37.

Using the Language 8-35

Arguments and Local Variables

8-36

Arguments and Local Variables

The arguments you provide when a function is called are, in effect, local
variables of the function. That is, these names (such as the name ftemp in the
fahrToCent() function) represent values that are passed to the function when
it is called. They are local to the function.

The following events happen when a function is called:

= Variables local to the function are allocated in memory, including the
those that represent the arguments. In the function fahrToCent(),
local variables are fiveNinths and ftemp, its argument.

= Each expression in the argument of the function call is evaluated. In
the following call, the expression t ar get Tenp + 20 is evaluated.
LET limtTenp = fahrToCent (target Tenp + 20)

s Each argument value is assigned to its argument variable, as
described earlier (“Assignment and Data Conversion” on page 8-28).
When an argument value has a different data type from the
argument variable, 4GL attempts to convert it, as in any assignment.

= The statements of the function definition are executed.
= Thelocal variables, including the argument variables, are discarded
and their memory is reclaimed.

The key point is that the expressions you write in the call to a function are
assignments to local variables of the function. Knowing this, you can answer
some common questions:

s Does a value passed to a function require a specific data type?

No, because the value is assigned to the argument variable, and 4GL
will attempt to convert it to the specific type. It is sufficient that the
expression in the call and the function argument be of compatible
data types.

= Can afunction assign new values to its arguments?
Yes, because they are simply local variables.

= Does this change the contents of variables that appear in the call to
the function?

No, because the argument variables are local to the function.

IBM Informix 4GL Concepts and Use

Working with Multiple Values

This method of passing arguments to functions is known as call by value. An
alternative technique, call by reference, is used in some other programming
languages, but generally not by 4GL. The only calls by reference in 4GL are
references to BYTE and TEXT data types. These are called by reference because
passing blobs by value is not practical.

The use of call by value has an effect on performance. Each argument value
is copied into the function’s variable. When the arguments are bulky
character strings, the time such copying takes can be significant. A common
way of avoiding this time penalty is to use global variables.

Working with Multiple Values

4GL lets you work with record variables in a consistent and flexible way. The
basic rules for records are:

= The name of a record followed by a dot and an asterisk, record.*, also
means a list of all the members of the record.
= You can select a range of members using record.first THRU last, where
first and last are names of members of record.
These examples illustrate the use of these rules:

DEFI NE
rSSS1, rSSS2 RECORD sl1, s2, s3 SMALLINT END RECORD
rFFC RECORD f1, f2 FLOAT , ¢3 CHAR(7) END RECORD

FUNCTI ON t akes3(a, b, c)
DEFI NE a, b, ¢ SMALLI NT

END FUNCTI ON

These statements define three record variables and declare a function that
takes three arguments. The function takes3() is used in examples in subse-
guent sections.

Using the Language 8-37

Assigning One Record to Another

8-38

Assigning One Record to Another

To assign a value to a single member of a record, you use LET.

LET rSSS1.s1 = 101
LET rSSS1.s2 = rSSS1.s1 + 1
LET rSSS1.s3 = 103

You can assign one record to another using LET when they have the same
number of members.

LET rSSS2.* = rSSS1. *

This statement assigns the three members of rSSS1 to the corresponding
members of rSSS2.

In other words, 4GL assigns members one at a time, with automatic data type
conversion performed as required. The members must all have simple data
types, and the data types must be the same, or else must be compatible. (As
defined earlier, compatible means that data type conversion is possible.)

Passing Records to Functions

The name of a record is a list of values; and a function takes a list of
arguments. Thus you can use a record as a list of arguments.

CALL takes3(rFFC. *)
The previous statement is equivalent to listing the members:
CALL takes3(rFFC.f1,rFFC. f2,rFFC c3)

When calling a function, you can also mix record members and single
expressions as arguments:

CALL takes3(17, rSSS1.f2 THRU rSSSL. f 3)

IBM Informix 4GL Concepts and Use

Returning Records from Functions

Returning Records from Functions

A function can return more than one value. To make this occur, write a
RETURN statement in the FUNCTION definition that contains a list of expres-
sions. Figure 8-3 illustrates this statement. The function agedBalances()
returns the amounts that a specified customer owes as three numbers:
amounts owed for 30 days or less, 31 to 60 days, and more than 60 days.

Figure 8-3
agedBalances() Function

DATABASE st ores?7

FUNCTI ON agedBal ances(cn)

DEFI NE cn LI KE customer. custoner_num,
bal 30, bal 60, bal 90 DEC(8, 2) ,
ordDate LIKE orders. order_date ,
ordAnt DEC(8, 2)

LET bal 30 = 0.00
LET bal 60 = 0
LET bal 90 = 0

DECLARE bal Curs CURSOR FOR
SELECT order_date, SUMitens.total _price)
FROM orders, itemns
WHERE or ders. cust omer _num = cn
AND orders. order_num = itens.order_num
GROUP BY order_date

FOREACH bal Curs | NTO ordDat e, ordAm
| F ordDate <= TODAY - 90 THEN
LET bal 90 = bal 90 + or dAnt
ELSE | F ordDate <= TODAY - 60 THEN
LET bal 60 = bal 60 + or dAnt
ELSE
LET bal 30 = bal 30 + ordAnt
END I F
END FOREACH
RETURN bal 30, bal 60, bal 90
~ Y J
END FUNCTI ON I The RETURN statement

must match in number of
values in the calling
function.

Using the Language 8-39

Returning Records from Functions

A function like this one can be used in several ways. It can be used in a
CALL ... RETURNING statement. You list variables to receive the values.

DEFI NE bal Short, bal Med, bal Long MONEY(10)

CALL agedBal ances(cust Nunber)
RETURNI NG bal Short, bal Med, bal Long

If you have a record with appropriate members of the appropriate number of
data types, you can refer to it in the RETURNING clause of the CALL
statement, as follows:

DEFI NE bal Rec RECORD b1, b2, b3 MONEY(10) END RECORD

CALL agedBal ances(cust Nunber) RETURNI NG bal Rec. *

8-40 IBM Informix 4GL Concepts and Use

Using Database Cursors

InThisChapter 9-3
The SQL Language. 9-3
Nonprocedural SQL 9-4
Nonprocedural SELECT 9-5
Row-by-RowSQL oL 9-5
Updating the Cursor’s CurrentRow 9-8
Updating Through a Primary Key 9-9
Updating with a Second Cursor 9-9

DynamicSQL. 910

9-2 IBM Informix 4GL Concepts and Use

In This Chapter

In many ways, the SQL language can be considered a subset of the 4GL
language because you can embed many SQL statements in a 4GL program.
This chapter describes how to work with database cursors using SQL in a 4GL
program.

The SQL Language

SQL can be used both procedurally and non-procedurally, depending on the
needs of your application. Similarly, SQL statements can be static—that is,
created at compile time—or dynamic. Dynamic statements are composed
during runtime, based in whole or in part on information supplied or
selected by the user of the application.

For additional information about the use of SQL in general and embedded in
a 4GL program in particular, see the Informix Guide to SQL: Tutorial, and the
Informix Guide to SQL: Syntax. For information on preparing SQL statements,
see INFORMIX-4GL Reference. If you want to use an SQL statement that was not
part of 4.10 SQL (such as CREATE TRIGGER) or a statement using features that
were not in 4.10 SQL (such as CREATE TABLE with a fragmentation specifi-
cation), then the statement must be prepared.

Using Database Cursors 9-3

Nonprocedural SQL

Nonprocedural SQL

Figure 9-1 provides an example of SQL use shown earlier in this book. It
defines a function named markup() whose purpose is to alter the prices of
stock received from a specified manufacturer.

Figure 9-1
markup() Function

Argumentused in SET
clause

Argument used in
WHERE clause

FUNCTI ON mar kup(manuf ,
DEFI NE

chapgePct)
manuf CHAR(3) ,
changePct Cl MAL(2, 2)
UPDATE st ock
SET unit_price = unif_price * (l+changePct)
WHERE nanu_code = manuf
RETURN sql ca. sql errd[3] -- nunber of rows affected
END FUNCTI ON

The function takes two arguments. The first, manuf, is the code for the
supplier whose prices are to be changed. The second, changePct, is the
fraction by which prices should be changed.

The following example is a call to markup():

LET rowCount = markup("ANZ", 0. 05)
DI SPLAY rowCount, " stock itens changed."

The SQL statement UPDATE in the definition of the markup() function causes
achange in the unit prices of certain stock items in the database. The function
argument values are used in this UPDATE statement, one in the SET clause
and one in the WHERE clause.

This function is an example of the nonprocedural use of SQL. The UPDATE
statement will examine many rows of the stock table. It might update all,
some, or none of them. The 4GL program does not loop, updating rows one
at atime; instead it specifies the set of rows using a WHERE clause and leaves
the sequence of events to the database server.

9-4 IBM Informix 4GL Concepts and Use

Nonprocedural SELECT

Nonprocedural SELECT

All 4.1-level SQL statements except the SELECT statement can be used by
writing them in the body of a function. SELECT also can be used this way as
long as only a single row is returned. The following function returns the
count of unpaid orders for a single customer, given the customer name:

FUNCTI ON unpai dCount (cust)
DEFI NE cust LIKE custoner. conpany ,
t heAnswer | NTEGER
SELECT COUNT(*) I NTO t heAnswer
FROM cust orrer, orders
WHERE cust oner. conpany = cust
AND cust oner. cust omer _num = or ders. cust oner _num
AND orders. paid_date I'S NULL
RETURN t heAnswer
END FUNCTI ON

Because the SELECT statement returns only an aggregate result (a count), it
can return only a single value. The argument variable cust is used in the
WHERE clause. The result of the SELECT operation is assigned to the local
variable theAnswer by the INTO clause.

SQL statements do not allow program variables in all contexts. You can refer
to the syntax diagrams in Informix Guide to SQL: Syntax to find out which ones
do not.

Row-by-Row SQL

When a SELECT statement can return more than one row of data, you must
write procedural logic to deal with each row as it is retrieved. You do this in
four or five steps, as shown:

1. If you want to generate your SQL statement dynamically—for
example, using the 4GL CONSTRUCT statement to generate dynamic
search criteria—place your statement text in a CHAR variable and use
the SQL PREPARE statement. For more information, see “Dynamic
SQL” on page 9-10 and the Informix Guide to SQL: Syntax.

2. You declare a database cursor, which is a name that stands for a
selection of rows.

Using Database Cursors 9-5

Row-by-Row SQL

3. You specify the rows using a SELECT statement. While you often
specify a selection from a single table, you are free to specify rows
formed by unions or joins over many tables, and including calcu-
lated values, literal values, aggregates, and counts.

4. You use a FOREACH statement to automatically open the cursor,
FETCH one row for each traversal of the FOREACH loop, and then
close the cursor after you have processed the last row of the selection
set.

Alternatively, you can open the cursor, causing the database server to retrieve
the first of the specified set of rows, retrieve rows one at a time through the

cursor using the FETCH statement (and process each one as it is produced),

and then close the cursor, releasing the set of rows.

Figure 9-2 on page 9-7 contains a SELECT statement that retrieves one row for
each customer that has an unpaid order in the demonstration database. The
selected data consists of the customer number and the total value of that
customer’s unpaid orders. The DECLARE statement must be executed before
FOREACH in showCustDue().

9-6 1BM Informix 4GL Concepts and Use

Row-by-Row SQL

Figure 9-2
Row-by-Row SQL Example
DECLARE cust Due CURSOR FOR A cursor
SELECT C. custonmer_num SUMI.total _price) represents a set
FROM customer C, orders O, itens | of rows.
WHERE C. custoner _num = QO custonmer _num]
AND O. order_num = |.order_num The set of rows is
AND O paid_date IS NULL defined by a SELECT
GROUP BY C. custoner_num statement.
FUNCTI ON showCust Due()
DEFI NE
cust LI KE custoner. custoner_num
amt _owi ng MONEY(8, 2)
DI SPLAY "Custoner", COLUW 15, "total unpaid"
FOREACH cust Due | NTO cust, ant_ow ng The FOREACH loop
DI SPLAY cust, COLUWN 15, ant_owi ng USI NG " $$$, $$3. 3" iterates once per row
END FCREACH from specified cursor.
END FUNCTI ON

Unless used in conjunction with a PREPARE statement, the SELECT statement
is written within a DECLARE statement, which creates a database cursor. The
cursor, when opened, represents the set of all selected rows. (For more on
database cursors and active sets, see the Informix Guide to SQL: Tutorial.)

The FOREACH statement in 4GL has three effects:

= It opens the database cursor.
= Forevery row in the selected set, FOREACH:

o fetches the column values for that row. (In the example, it assigns
the fetched values to local variables cust and amt_owing.)

0 executes the statements in the body of the loop (a single DISPLAY
in the preceding example).

= It closes the cursor.

Using Database Cursors 9-7

Updating the Cursor's Current Row

9-8

This pattern is common for many programs: open a cursor, fetch the rows and
process each row, and close the cursor. The step process each row, of course, can
be elaborate, especially when you process a row by displaying it in a screen
form for the user to read or change.

Updating the Cursor’s Current Row

When you have fetched a row of a single table (not a row produced by joining
tables) through a cursor, you can delete or update that particular row, by
performing the following steps:

= Make the cursor an update cursor, which locks the selected row.

= Indicate in your UPDATE statement that you want to update the
current cursor row.

To make the cursor an update cursor, add the keywords FOR UPDATE to the
cursor declaration; you can also limit the update to certain columns by speci-
fying those column names in the FOR UPDATE clause. When using the cursor,
you can update or delete the current row by writing an UPDATE or DELETE
statement as usual and adding the clause WHERE CURRENT OF cursor,
supplying the name of the cursor from which you fetched the row.

The following function uses a cursor to scan the orders table and deletes any
row for which the paid date is at least a month old. Note that the same task
could more easily be accomplished by a nonprocedural UPDATE.

DECLARE ol dOrder CURSOR FOR
SELECT order_num pai d_date FROM orders
——no WHERE cl ause, all rows scanned
FOR UPDATE
FOREACH ol dOrder | NTO o_num p_date
IF 30 < (TODAY - o_nun) THEN
DELETE FROM or ders WHERE CURRENT OF ol dOr der
END | F
END FOREACH

The clause FOR UPDATE tells the database server that you can update or
delete fetched rows. It is not required in an ANSI-compliant database.

IBM Informix 4GL Concepts and Use

Updating Through a Primary Key

Updating Through a Primary Key

Often you will find reasons why you cannot or should not update the current
row through the same cursor. For example, if the cursor produces rows based
on a join of multiple tables, you can use the nonprocedural UPDATE or
DELETE statement instead.

Be sure that the cursor produces a row that contains the primary key of the
row to be updated, so that you can isolate the exact row you want to modify.
When you fetch a row, you fetch the values of its primary key into program
variables.

If you decide to change the row, you execute the UPDATE or DELETE
statement that contains a WHERE clause that selects the specific row based on
its primary key values.

Updating with a Second Cursor

The following situation arises frequently. You want to select a set of rows
using a cursor. You will display each row on the screen and wait for the user
to react. The user might then tell you to delete or update the displayed row.

This situation is not a problem when your program is the only one using the
database; you can use UPDATE ... WHERE CURRENT OF or you can update
using the primary key, whichever is appropriate.

However, the situation does become difficult when multiple users might be
working in the same table at the same time, using multiple copies of your
program or using different programs. You do not want to lock the row while
your user examines it; your user might answer the telephone or go to lunch,
blocking other users out. Hence you do not want to select rows using an
update cursor, which locks rows.

Using Database Cursors 9-9

Dynamic SQL

The answer is to use two cursors. The first, primary cursor selects the rows of
interest. You include in each row the primary key columns. The second
cursor selects only one row based on its primary key and is declared FOR
UPDATE. When the user chooses to update the current row, proceed as
follows:

1. Open the second cursor.

2. Fetch the one matching row into a temporary record.

If the row with this ROWID value cannot be found, you know that
another user must have deleted it while your user was looking at the
screen display.

3. Compare the second set of column values to the ones you displayed
to the user.

If any important ones have changed, you know that some other user
has altered this row while your user was looking at the display.
Notify your user and do not proceed.

4. Update the row through the second cursor using WHERE CURRENT
OF.

5. Close the second cursor.

You can find examples of this kind of programming in INFORMIX-4GL by
Example.

Dynamic SQL

In the preceding examples, the SQL statements are static. That is, they were
written into the program source, and hence are static in that their clauses are
fixed at the time the source module is compiled. Only the values supplied
from program variables can be changed at execution time.

You will need to generate the contents of the SQL statement itself many times
while the program is running. For instance, you probably want users of your
program to be able to retrieve records based on queries they devise during
the day-to-day operation of their business. In other words, in real time. When
you do this, you are using dynamic SQL.

9-10 IBM Informix 4GL Concepts and Use

Dynamic SQL

The following function uses dynamic SQL. It assembles the text of a GRANT
statement and executes it. It takes the following three arguments:

= The name of the user to receive the privilege.
= The name of a table on which the privilege is to be granted.

= The name of a table-level privilege to be granted (for example,
INSERT), as follows:

FUNCTI ON t abl eGrant (whom tab, priv)
DEFI NE whom tab, priv CHAR(20), granText CHAR(100)
LET granText ="GRANT " , priv, " ON" , tab,

" TO" , whom

PREPARE granite FROM granText
EXECUTE granite

END FUNCTI ON

This function does nothing about handling the many possible errors that
could arise in preparing and executing this statement. You can find a version
of the same program that does handle errors in “Using WHENEVER in a
Program” on page 12-13.

Using Database Cursors 9-11

Creating Reports

InThisChapter . 103
Designing the Report Driver 104
An Example ofaReport Driver 105
Designing the Report Definition 106
The REPORT Statement. 108
The Report Declaration Section 109
The OUTPUT Section. 1010
The ORDERBY Section. 1012
SortKeys . . . 0 15 4
One-Pass and Two-Pass Reports 05 K
Two-Pass Logic for Row Order 10-13
Two-Pass Logic for Aggregate Values. 10-14
Further Implications of Two-Pass Logic 10-14

The FORMAT Section 1015
Contents of a ControlBlock 10-16
Formatting Reports 1017
PAGE HEADER and TRAILER Control Blocks 10-18
ON EVERY ROW ControlBlock 10-19
ON LAST ROW Control Block 1019
BEFORE GROUP and AFTER GROUP Control Blocks 10-20
Nested Groups 1020
Default Reports. . . . 0 S
Using Aggregate Functlons 0 F
Aggregate Calculations. 10-22
Aggregate Counts 1023
Aggregates Over a Group of Rows 1023

END REPORT and EXITREPORT 10-24

10-2 IBM Informix 4GL Concepts and Use

In This Chapter

As explained in “Creating 4GL Reports” on page 6-5, a 4GL report program
has the following parts:

= Areport driver that produces rows of data
= A report definition that sorts the rows (if necessary), creates subtotals
and other summary information, and formats the rows for output

When you design a 4GL report program, you can design these two parts
independently. A report driver can produce rows for any number of reports.

This chapter explains how to design the report driver and the report
formatter to generate reports. The 4GL statements that you use for generating
reports are covered in detail in INFORMIX-4GL Reference. You can also find
several examples of programs that produce reports distributed with 4GL.

Creating Reports 10-3

Designing the Report Driver

10-4

Designing the Report Driver

This section describes what a report driver does and provides an example of
row-producing code. The report driver executes the following steps:

1. Initialize the report using the START REPORT statement.

This statement initializes the report definition. It can also specify the
destination of output from the report, such as the screen, the printer,
a file, or another program.

2. Generate rows of data, sending each row using OUTPUT TO REPORT.

This statement, which is similar to a function call, passes one row of
data to the report. Although called a “row,” each group of data val-
ues need not come from a row of a database table. The values can
come from any source, including calculations made by your pro-
gram. It is equally valid to look at a row as an input record.

3. Conclude row processing.
4. Terminate the report using FINISH REPORT.

Totals and other aggregates are calculated, output from the report is sent to
some destination, and any intermediate files are closed.

These steps assume that no problems are encountered in processing the rows
and in producing output from the report. If the report driver detects an error
at any point, you can then use the TERMINATE REPORT statement (instead of
FINISH REPORT) to abort the report.

IBM Informix 4GL Concepts and Use

An Example of a Report Driver

An Example of a Report Driver

Row production can be a natural part of a 4GL application. Figure 10-1 shows
a brief example of row-producing code. (The report definition appears in
Figure 10-3 on page 10-8.)

Figure 10-1
Report Driver Code Example

FUNCTI ON mi nRows(destfile)

DEFINE mn LI KE manuf act. manu_Nane ,
sn LI KE stock. stock_num,
sd LI KE stock. description ,
sp LIKE stock.unit_price ,
su LI KE stock.unit ,
destfile CHAR(120)
DECLARE mi nSt ock CURSCR FOR
SELECT manu_Name , stock_num, description ,
unit_price, unit
FROM manufact M stock S

VWHERE M manu_code = S. nanu_code Rows are generated in

ORDER BY 1, 2
sorted order.
START REPORT mni nSt ockRep TO destFile Report is initialized;
. file destination can be
FOREACH m nSt ock | NTO mm, sn, sd, sp, su avariable
QUTPUT TO REPORT ni nSt ockRep(mm, sn, sd, sp, su) '
END FOREACH \ Y J
FI NI SH REPORT mi nSt ockRep
END EUNCTI ON Values f(_Jrone row are
passed like function
arguments.
Report output
completed and file
closed.

This function takes a filename (it might be a complete pathname) as its
argument and produces a report with that destination.

The values in each row describe one row of merchandise from the stores7
demonstration database. The values are produced by a database cursor
defined on a join of the stock and manufact tables. They are produced in
sorted order using the row-ordering capability of the database server.

The name of the report, minStockRep(), appears in the START REPORT,
OUTPUT TO REPORT, FINISH REPORT, and TERMINATE REPORT statements.

Creating Reports 10-5

Designing the Report Definition

10-6

Designing the Report Definition

This section describes the REPORT statement and its sections, control blocks,
and functions that you use in a report definition. Although both the
FUNCTION and REPORT statements define 4GL program blocks, a report is
not a function. Some of the differences are as follows:

= The CALL statement cannot invoke a report; attempting to do so
produces a fatal error.

= Reports are not recursive. The results will be unpredictable if the
START REPORT statement invokes a report that is already running.

= The Interactive Debugger cannot analyze a report definition.

= Areport does not return anything to its driver. It is an error to
include the RETURN statement within a report definition.

s The 4GL statements NEED, PAUSE, PRINT, and SKIP are valid in report
definitions, but produce errors if they appear in a function:

Although a report has the general form of a function, its contents are quite
different. The body of a function contains whatever statements you specify,
while the body of a report contains several independent statement blocks
that must appear in a fixed sequence, if they are present, and are executed
as needed. The fixed sequence for the statement blocks within the REPORT
statement is:

= DEFINE

= OUTPUT
= ORDERBY
= FORMAT

However, within the FORMAT statement block, statements can appear in any
order. Figure 10-2 on page 10-7 shows the minStockRep() report definition
that completes the preceding example. This code is examined in detail in the
topics that follow.

IBM Informix 4GL Concepts and Use

Designing the Report Definition

Figure 10-2
minStockRep() Report Definition

REPORT mi nSt ockRep(manNane, stNum stDes, stPrice, stUnit)
—

DEFI NE iy Values for one row
m sc, showMVanName SMALLINT , passed as arguments.
DEFI NE
manNane, thisMan LI KE manuf act. manu_nane ,
st Num LI KE stock. stock_num, .
stDes LIKE stock.description , Local variables created at
stPrice LIKE stock.unit_price , START REPORT time; kept
stUnit LIKE stock.unit .
QUTPUT until FINISH REPORT.
LEFT MARG N 8
PAGE LENGTH 20 -- short page for testing purposes
ORDER
EXTERNAL BY manNane, stNum States that rows are
ECRVAT produced in sorted
FI RST PAGE HEADER sequence.
PRI NT "Stock report", COLUMN 62, PAGENO USI NG " ###"
SKIP 2 LINES
PAGE HEADER Statement blocks are
PRINT "Stock report", COLUW 62, PAGENO USI NG " ### called when necessary
SKIP 2 LINES q
PAGE TRAI LER as rows are processed.
SKIP 2 LINES)
LET nmisc = 65 - LENGTH(t hi sMan) Calculated COLUMN value is
PRINT OOLUMN i sc, thi sMan used to right-justify name.
LET showvanNane = TRUE
BEFORE GROUP OF nanNane
LET thi sMan = nanNane H H
LET showManName = TRUE Logic to display
AFTER GROUP OF manNanme manufacturer in first line of
SKIP 1 LINE roup or at top of page.
ON EVERY ROW group P otpag
| F showvanNane THEN -- start of new group so...
PRINT thisMan; -- with no newine —— Semicolon suppresses
END | FLET showNanName = FALSE new line after printing.

PRI NT COLUWN 20, stNum USI NG " ###"
COLUWN 25, stDes CLIPPED ,
COLUWN 45, stPrice USING "$, $$$. &&" ,
COLUWN 55, stUnit CLI PPED

ON LAST ROW
SKIP TO TOP OF PACGE
PRI NT COUNT(*), " total rows processed."
END REPORT

Creating Reports 10-7

The REPORT Statement

Figure 10-3 shows an excerpt from the output of this report. The page length
was set to 20 for testing; it would normally be longer.

Figure 10-3
A Sample 4GL Report

10-8

St ock report

61

f Produced by PAGE HEADER control block
Ni kol us205 3 gol f bal |l s$312. 00 case Name display triggered by
runni ng shoes$97.00 each BEFORE GROUP action

Norge5 tenni s racquet $28.00 each

Blank line written by AFTER

ProCycl e101 bicycle tires$88.00 box GROUP control block
bi cycl e brakes$480.00 case
frnt derailleur$20.00 each

ProCycl e J' Produced by PAGE

FOOTER control block

The REPORT Statement

All reports are defined by a REPORT statement. This statement is similar in
some ways to a FUNCTION statement. It begins with a prototype that declares
the name of the report, and a list of formal arguments. The following example
is the beginning of the minStockRep() report definition:

REPORT mi nSt ockRep(manNane, st Num stDes, stPrice, stUnit)

DEFI NE
m sc, showManName SMALLI NT ,
manNane, thisMan LI KE manuf act. manu_nane ,
st Num LI KE st ock. num,
st Des LI KE stock. description ,
stPrice LIKE stock.unit_price ,
stUnit LIKE stock.unit

The report name is used to identify this report in the START REPORT, OUTPUT
TO REPORT, FINISH REPORT, and TERMINATE REPORT statements within the
report driver. This name cannot be the same as the identifier of another
report, or function, or global variable, that is defined in the same 4GL
program.

IBM Informix 4GL Concepts and Use

The Report Declaration Section

The END REPORT keywords (described in a later section) terminate the report
definition.

The formal arguments to the report indicate the number of actual values that
the report driver can pass to the report as one input record. This report takes
five arguments. For the purposes of this report, one set of these values makes
a row. Within the body of the report, you must define a local variable of the
REPORT program block that corresponds to each argument. You can then
refer to these variables to find values of the current report row.

When the report driver code executes OUTPUT TO REPORT, it sends another
set of values (that is, another row), to the report for processing. The following
statement is from “An Example of a Report Driver” on page 10-5:

FOREACH m nStock | NTO mm, sn, sd, sp, su
QUTPUT TO REPORT mi nSt ockRep(mm, sn, sd, sp, su)
END FOREACH

The Report Declaration Section

A report declares local variables, much like a function. Their definition must
immediately follow the REPORT statement. You must declare a local variable
that matches the name and data type of each argument. You can also declare
additional local variables to store other values that the report uses.

The minStockRep() report defines several local variables using the LIKE
keyword. Just as you can define the local variables of a function using LIKE,
you can use the LIKE keyword to assign a data type from the current database
to a report variable.

The local variables of a report are created and initialized when the START
REPORT statement is executed. They remain in existence until the report is
ended by FINISH REPORT (or by TERMINATE REPORT). These variables are
not reinitialized each time OUTPUT TO REPORT is executed. (This is one of the
ways that a report differs from a function. The local variables of a function are
created anew each time that the function is called.)

Creating Reports 10-9

The OUTPUT Section

10-10

The OUTPUT Section

The OUTPUT section of a report is executed and takes effect at START REPORT
time. The values that it sets can be changed only if START REPORT overrides
them by specifying different values. The report assumes that output is
produced in a monospace font, so that every character has the same width.

This section contains statements that set the basic format of the report. The
five statements that establish page layout are summarized in the following
table.

Statement Usage

LEFT MARGIN Number of spaces inserted to the left of every print line

RIGHT MARGIN Total number of printed characters in any line, including left
margin spaces (This statement is ignored unless the FORMAT
EVERY ROW default report formatting option, or default
WORDWRAP is used.)

TOP MARGIN Number of blank lines to print above the page header.
BOTTOM Number of blank lines to print after the page trailer (also
MARGIN known as a footer)

PAGE LENGTH Total number of lines per page, including margins and page
header and trailer sections

These values must be expressed as literal integers. (Use the START REPORT
statement, if you want to use variables to specify page dimensions.)

The TOP OF PAGE specification in the OUTPUT section can specify a character
value (as a quoted string) that 4GL can use to cause a page-eject. If you omit
it, 4GL starts a new page by printing empty lines.

The REPORT TO keywords can be followed by a default destination for output
from the report. (But any destination in the START REPORT statement takes
precedence over what REPORT TO specifies.) The destination must be
specified as a quoted string (except that a named pipe destination can be a
character variable).

IBM Informix 4GL Concepts and Use

The OUTPUT Section

Figure 10-4 illustrates the page layout statements.

Figure 10-4
Statements That Establish Page Layout Specifications

 TOP MARGIN 3

A Page header
y lines
A

PAGE
LENGTH

Lines for PRINT
output

/

} Page trailer
lines

Y

¥ BOTTOM

»le > MARGIN
LEFT Space for PRINT output
MARGIN

y

RIGHT MARGIN

Y

The vertical arrows represent page dimensions that you specify in units of
lines; the horizontal arrows represent page dimensions that you specify in
units of monospace characters.

Creating Reports 10-11

The ORDER BY Section

10-12

The ORDER BY Section

The ORDER BY section of a report specifies whether the rows of data are to be
sorted, and if so, whether or not they will be produced in sorted sequence.
You must decide between the following three cases:

1. The order of the rows is not important; that is, the report is simply a
list of rows in the order in which they happen to be generated. To
choose this, omit the ORDER BY section entirely.

When ORDER BY is not used, you should not process rows in groups
or take aggregate values over them.

2. The rows need to be generated in the order specified by the report
driver. To choose this, specify ORDER EXTERNAL BY and list the field
on which the sort takes place.

If the report driver code fails to generate the rows in their proper
sequence, the report output will be incorrect.

3. The rows need to be sorted, but the report driver does not produce
them in the correct order. To choose this, you write ORDER BY and
specify the fields to sort on. You do not use EXTERNAL in this case.

When rows are to be sorted, it is best if the report driver code can produce
them in correct order. When the rows come from the database, you can use
the ORDER BY clause of the SELECT statement. The database server has the
most efficient ways of producing sorted rows.

When it is necessary that the report itself order the rows, 4GL uses two-pass
report logic, as discussed in “One-Pass and Two-Pass Reports” on page 10-13.

Sort Keys

The ORDER BY statement can specify the sort keys of the report. Here is the
ORDER BY specification in minStockRep(). The EXTERNAL keyword specifies
that rows should be sorted, and that they are produced by the report driver
in sorted order, rather than sorted by minStockRep().

ORDER
EXTERNAL BY manNane, st Num

IBM Informix 4GL Concepts and Use

One-Pass and Two-Pass Reports

The priority of the sort keys decreases from first to last; that is, the first one
named is the major sort key. In the example, rows are sorted on manName.
Within groups that contain matching manName values, rows are sorted on
the value of stNum.

The sort keys are used to define groups of rows. You can use the BEFORE
GROUP and AFTER GROUP sections to take special actions on these groups.

One-Pass and Two-Pass Reports
Report data is processed in one of the following two ways:

= One-pass. Rows are processed as they are produced. Each time a row
is produced by an OUTPUT TO REPORT statement, it is processed and
the resulting output is written to the report destination.

= Two-pass. Rows are collected, saved, sorted, and then processed. As
rows are produced, they are saved in atemporary table in the current
database. When FINISH REPORT is executed, all the saved rows are
retrieved in sorted order and processed.

4GL chooses between these methods based on two things: how the report
rows are ordered and how the report uses aggregate functions.

Two-Pass Logic for Row Order

Sorting of rows is essential to most reports. If the rows are not sorted, they
cannot be divided into groups with similar values. These groups are the basis
for subtotals and other summary information.

Sometimes it is convenient for the report driver to produce the rows in the
sequence you need. Other times this is not possible; the rows are produced in
random order. In such cases, 4GL uses a two-pass report to sort rows before
they are formatted.

Creating Reports 10-13

One-Pass and Two-Pass Reports

10-14

Two-Pass Logic for Aggregate Values

Aggregate functions are used to get totals and other computed values (see
“Using Aggregate Functions” on page 10-21). You are allowed to refer to
aggregate values anywhere in the FORMAT section of a report. When you use
aggregate functions, you are asking for values based on the contents of all
rows within the defined REPORT (a total aggregate), or within a specified
GROUP (a GROUP aggregate).

When you do not use aggregate functions, or when you use them only in the
ON LAST ROW block, 4GL can employ one-pass logic. But if you refer to
aggregate functions outside the LAST ROW block, 4GL must use a two-pass
report. A two-pass report works as follows:

= When the report driver executes OUTPUT TO REPORT, the row value
is saved in a temporary table, and the aggregate function values are
accumulated in memory.

= When the report driver executes FINISH REPORT to indicate that no
more rows will be produced, 4GL retrieves all the rows from the
temporary table in their proper sequence and sends them to the
report for formatting.

The values of the aggregate functions are now available while the rows are
processed because they have been pre-computed.

Further Implications of Two-Pass Logic

When a report uses one-pass logic, the execution time of report output is
distributed over all the OUTPUT TO REPORT statements because each row is
formatted as it is received. The only action of FINISH REPORT is to print final
totals.

When a report uses two-pass logic, the OUTPUT TO REPORT statement runs
quickly because it merely inserts a row in a temporary table. The actions of
FINISH REPORT, however, can be quite lengthy, because that is when all rows
are retrieved and formatted.

IBM Informix 4GL Concepts and Use

The FORMAT Section

A two-pass report builds a temporary table in the database that is current at
the time START REPORT is executed. The same database must be open when
OUTPUT and FINISH statements are executed. This places a restriction on the
report driver: it cannot change databases (that is, execute the DATABASE
statement or a CONNECT statement embedded in an ESQL/C function)
during a two-pass report.

An error also occurs if the report definition requires two-pass logic but no
database is open when the report attempts to read or write atemporary table.
Even if your report obtains all of its rows from some source other than a
database, two-pass logic requires a database for the temporary tables.

You must use caution, however, when writing code that refers to global
variables or that interacts with the user. In a two-pass report, the formatting
code is not called until all rows have been produced and FINISH REPORT has
been executed. Global variables might not have the same values, and the
screen might not display the same data as when the rows were produced.

The FORMAT Section

Within the FORMAT section of a report, you place blocks of code that produce
output lines of data in the report. The following table summarizes the control
blocks.

Statement Usage

PAGE HEADER Prints the heading of any page

FIRST PAGE Prints a special heading or cover page

HEADER

PAGE TRAILER Prints a footer at the end of any page

BEFORE GROUP Initializes counters and totals at the start of a group of rows

with similar contents; prints group headings

(1of2)

Creating Reports 10-15

Contents of a Control Block

10-16

AFTER GROUP Prints totals and other summary information following a

group of rows with similar contents

ON EVERY ROW Formats and displays detail lines; accumulates totals and
calculated values for use by AFTER GROUP blocks
ON LAST ROW Displays final totals and aggregate values over all rows
(20f2)

4GL executes these control blocks automatically at appropriate times as rows
are processed. For example, 4GL calls the PAGE TRAILER code block when it
is time to print the page trailer. When that block completes, 4GL prints the
blank lines corresponding to the BOTTOM MARGIN and prints the page-eject
string, if any.

If additional information is written to the output from the report, 4GL prints
the TOP MARGIN blank lines and calls the PAGE HEADER block.

Contents of a Control Block

Within a formatting control block, you can write any executable 4GL state-
ments that you like, except for the following statements:

CONSTRUCT
DISPLAY ARRAY
INPUT

INPUT ARRAY
MENU

RETURN

You can, however, call functions that use these statements to interact with the
user. You can even start other reports and send output to them.

IBM Informix 4GL Concepts and Use

Formatting Reports

Formatting Reports

Usually a block contains code to test and set the values of local variables, and
code to format and print the input records (whose values are stored in the
local variables corresponding to the REPORT statement argument list).

The following report execution statements are available to display data.

Statement Usage

SKIP Inserts blank lines

NEED Forces a set of lines to appear on the same page

PRINT FILE Embeds the contents of a file in the output

PRINT Writes lines of output

PAUSE Waits for the user to press RETURN, but only if the output is going

to the screen; otherwise, it is not an option

It is with PRINT that you send report data to the output destination. Like the
DISPLAY statement, PRINT accepts a list of values to display. Within a PRINT
statement, you can use various features of 4GL to format the output,
including the following operators.

Keyword Usage

ASCII Prints specified character values

CLIPPED Eliminates trailing spaces from CHAR or NCHAR values
COLUMN Positions the data in the specified column

PAGENO Returns the current page number on report output
SPACES Prints a specified number of spaces

USING Formats dates, numbers, and currency amounts
WORDWRAP Displays long character strings in a multiple-segment field

Creating Reports 10-17

PAGE HEADER and TRAILER Control Blocks

10-18

PAGE HEADER and TRAILER Control Blocks

Within the PAGE HEADER and PAGE TRAILER control blocks, you write code
that formats the pages of the report with fixed headings and pagination. The
minStockRep() report from Figure 10-1 on page 10-5 contains this page
heading code:

PAGE HEADER
PRI NT "Stock report", COLUW 62, PAGENO USI NG " ###"
SKIP 2 LI NES

It prints a fixed heading and a page number, and keeps count of the pages. A
total of three lines is written, one line of heading and two blank lines. These
lines are in addition to the TOP MARGIN lines specified in the OUTPUT
section.

If a FIRST PAGE HEADER block is present, then the PAGE HEADER block does
not take control until the second page of output is started.

The minStockRep() report contains this page trailer code:

PAGE TRAI LER
SKI P 2 LI NES
LET m sc = 65 —LENGTH(t hi sMan)
PRI NT COLUWN mi sc, t hi sMan
LET showivanNanme = TRUE

The report prints the manufacturer name from the last-processed group of
rows, right-justified, on the last line of the page. The person reading the
report can find a manufacturer quickly by scanning the bottom-right corner
of each page. The code also sets a flag that tells the ON EVERY ROW block to
display the manufacturer name in the next detail line (because that will be the
first detail line of the next page).

The FIRST PAGE HEADER section is similar to the PAGE HEADER except that
4GL calls it only once, before any other block. You can use it to display a cover
or a special heading on the first page. In a two-pass report, you could put

code in this section to notify the user that report output is finally beginning.

IBM Informix 4GL Concepts and Use

ON EVERY ROW Control Block

ON EVERY ROW Control Block

In the ON EVERY ROW control block, you write the code to display each detail
row of the report. The following block is from the sample report specification
in Figure 10-1 on page 10-5:

ON EVERY ROW

| F showManNane THEN —start of new group so...
PRI NT t hisMan; —wi th no newine
LET showManNane = FALSE

END | F

PRI NT COLUWN 20, stNum USI NG "###" ,
COLUWN 25, stDes CLIPPED ,
COLUWN 45, stPrice USING "$, $$$. &&" ,
COLUWN 55, stUnit CLI PPED

It displays a line like this:
Ni kol us 205 3 golf balls $312.00 case

The leading spaces are produced by the LEFT MARGIN statement in the
OUTPUT section. This code suppresses the manufacturer name except in the
first row of a group or the first row on a new page.

ON LAST ROW Control Block

After the final row and any closing AFTER GROUP OF statements have been
processed, and the FINISH REPORT statement has been encountered, 4GL calls
the ON LAST ROW control block. In this block, you can write code to
summarize the entire report. You can use SKIP TO TOP OF PAGE in this block
to ensure that the final totals appear on a new page.

The ON LAST ROW block from minStockRep() follows:
ON LAST ROW
SKIP TO TOP OF PAGE
PRI NT COUNT(*), " total rows processed."

For the use of COUNT(*) and other aggregate functions, see “Using Aggregate
Functions” on page 10-21.

Creating Reports 10-19

BEFORE GROUP and AFTER GROUP Control Blocks

10-20

BEFORE GROUP and AFTER GROUP Control Blocks

Whenever the value of a sort key changes between one row and the next, it
marks the end of one or more groups of rows and the start of another. In the
same minStockRep() example, whenever there is a change of manName, a
group of rows ends and another begins. The same is true of a change in
stNum, but because stock numbers are unique in this database, these
“groups” never have more than one member.

A BEFORE GROUP control block is called when the first row of the new group
has been received, but before it is processed by the ON EVERY ROW control
block. In it, you can put statements that:

= initialize counts, totals, and other values calculated group-by-group.

= print group headings, use the NEED STATEMENT to ensure sufficient
space on the page, or force a skip to a new page for the group.

» set flags and local variables used in the ON EVERY ROW block.

The BEFORE GROUP statement used in minStockRep() from Figure 10-1 on
page 10-5 follows:

BEFORE GROUP OF nmnNane
LET t hi sMan = nmanNane
LET showivanNanme = TRUE

The first statement saves the manufacturer name from the first row of the
new group so it can be used in the page trailer, as described earlier. The
second statement sets a flag that tells the ON EVERY ROW block to display the
manufacturer name in the next detail line because that will be the first detail
line of this group.

An AFTER GROUP block is called when the last row of its group has been
processed by the ON EVERY ROW block. In it, you can put statements that
calculate and print subtotals, summaries, and counts for the group.

Nested Groups

Each of the sort keys that you list in the ORDER section defines a group. In the
report example there are two keys and therefore two groups:

ORDER
EXTERNAL BY manNane, st Num

IBM Informix 4GL Concepts and Use

Default Reports

These groups are “nested” in the sense that the rows in a major group can
contain multiple groups of the minor group.

In general, the BEFORE and AFTER blocks for minor groups will be called
more times than those for major groups. The group for the last sort key you
specify will change the most often. Only the ON EVERY ROW block will be
executed more frequently.

Default Reports

The FORMAT section is required in every report definition, but you are not
required to specify any control blocks. If it is useful for the report output to
be simply a listing of every input record that was passed by the report driver,
then you can specify EVERY ROW as the only FORMAT section specification.
No other control blocks are valid when you specify EVERY ROW. Reports that
use this simplified format for output are called default reports, and are seldom
used in production code.

Using Aggregate Functions

Often, reports that deal with sorted data need to collect aggregate values over
the rows: counts, subtotals, averages, and extreme high or low values. You
can produce such statistics yourself by writing code in different blocks. For
example, you could collect an average value over a group the following way:

1. In the BEFORE GROUP block, initialize variables for the sum and the
count to zero.

2. Inthe ON EVERY ROW block, increment the count variable and add
the current row’s value to the sum variable.

3. Inthe AFTER GROUP block, calculate the average and display it.
4GL contains built-in aggregate-value functions for most common needs. You
can, however, write your own statistical functions to calculate other values,

or to avoid the need to do two-pass reporting, or both. For example, if you
want to keep running totals or page totals, these must be hard-coded.

Creating Reports 10-21

Using Aggregate Functions

10-22

Aggregate Calculations

For sums, averages (means), and extremes, 4GL supplies these functions.

Function Usage Over Many Rows

SUM (expression) Accumulates a sum
AVG(expression) Calculates an average
MIN(expression) Finds a minimal value

MAX (expression) Finds a maximal value

For MIN() and MAX(), the expression can be any 4GL expression. For SUM()
and AVG(), the expression must be a number or INTERVAL expression.
Typically, the argument of an aggregate function is one of the arguments to
the REPORT, but it can also be a literal value, a local variable, and even a
function call.

When using function calls or global variables, keep in mind that rows might
all be processed at FINISH REPORT time. Also keep in mind that aggregates
are accumulated separately from the code that uses them. Therefore, doing a
calculation on a local variable and then aggregating it will not produce the
answer you expect. Unless the argument is an aggregate function in a report
parameter (which is not modified before any attempted aggregation), the
results of the aggregate are not readily predictable.

These aggregate functions can be qualified with a WHERE clause to select
only a subset of rows. The WHERE clause typically applies criteria to the row
values themselves, but you can employ any Boolean expression that is valid
in an IF statement. For example, the following lines could be added to the
LAST ROW block in Figure 10-1 on page 10-5:

PRI NT "Lowest itemprice", MN(stPrice)
PRI NT "Average | owcost itenl ,
AVGE(st Price) WHERE stPrice < 100

These lines would display the minimum overall stPrice values, and the
average of all stPrice values that were less than $100.

IBM Informix 4GL Concepts and Use

Using Aggregate Functions

Aggregate Counts

For counts, 4GL supplies the COUNT(*) and PERCENT(*) functions. The value
of COUNT(*) is the number of records processed by the report. You can see it
in use in the ON LAST ROW control block in Figure 10-1 on page 10-5.

COUNT(*) can also be qualified with a WHERE clause, however, so as to count
only a subset of rows. The following lines could be added to the ON LAST
ROW control block of minStockRep():

PRI NT "nunber of boxed itens" ,
COUNT(*) WHERE stUnit = "box"

The PERCENT(*) function returns the value of one count as a percentage of the
total number of rows processed:

PRI NT "percent of case lots" ,
PERCENT(*) WHERE stUnit = "case"

Aggregates Over a Group of Rows

You most often need aggregate values collected over the rows of one group;
for example, a sum over a group to produce a group subtotal. You can use any
of the six aggregate functions within an AFTER GROUP block for this purpose.
You must use the keyword GROUP to specify that you want the aggregate
value over the rows of the current group.

For example, the following lines could be added to the AFTER GROUP block
in the minStockRep() report on Figure 10-1 on page 10-5:

PRI NT "Count of stock itens: " , GROUP COUNT(*) USING "<<<"
PRI NT "Avg price of ‘each’ items: " ,
GROUP AVG(stPrice) WHERE stUnit = "each"

This code displays a group count, which is simply a count of rows in that
group, and an average. The average is taken over a subset of the rows of the
group. When the subset is empty (when no rows have st Uni t =" each"), the
value of the aggregate function is NULL. Otherwise, any null values are disre-
garded in calculating aggregate values.

Creating Reports 10-23

END REPORT and EXIT REPORT

10-24

The value of GROUP PERCENT(*) WHERE... might not be what you expect.
It returns the number of rows in the group that met the condition, as a
percentage of the total number of rows in the entire report, not as a
percentage of the rows in the group. Because it requires the total number of
rows, GROUP PERCENT forces a report to use two-pass logic. To calculate a
percentage within a group, you can use explicit code such as:

PRINT "Pct ‘each’ itens in group " ,

((100 * GROUP COUNT(*) VHERE stUnit = "each")
/ (GROUP COUNT(*))

USI NG "<<. &&"

END REPORT and EXIT REPORT

Just as END MAIN marks the end of the MAIN statement, and END FUNCTION
marks the end of a function definition, a REPORT program block must be
terminated by the END REPORT keywords. If control of execution reaches the
END REPORT keywords, it returns to the report driver.

You can exit from a report definition before the END REPORT keywords by
executing the EXIT REPORT statement. This statement has the same effect
within a REPORT statement that TERMINATE REPORT has in the report driver.
When EXIT REPORT is executed, 4GL closes the report, and its local variables
are deallocated.

Typically, the EXIT REPORT statement is not executed unless some condition
is detected that indicates that further processing of input records should not
continue; for example, when the printer is out of paper. You can use EXIT
REPORT within a report in situations where RETURN would be appropriate in
a function. But as noted earlier in this chapter, RETURN is not valid in a
report.

IBM Informix 4GL Concepts and Use

Using the Screen and Keyboard

In This Chapter .

Specifying a Form .

The DATABASE Sectlon

The SCREEN Section . .
Specifying Screen DlmenS|ons .
Screen Records and Screen Arrays .
Multiple-Segment Fields .

The TABLES Section .

The ATTRIBUTES Section .
The Field Name .
The Field Data Type .

Fields Related to Database Columns .

Form Only Fields.

Editing Rules .

Default Values. .
The INSTRUCTIONS Sectlon

Field Delimiters .
Screen Records
Screen Arrays .

Using Windows and Forms .

Opening and Displaying a 4GL Wlndow

Opening Additional 4GL Windows
4GL Window Names

Controlling the Current 4GL Wlndow.

Clearing the 4GL Window.
Closing the 4GL Window .
Displaying a Menu

11-3

11-3
11-5
11-5
11-6
11-6
11-7
11-7
11-9
11-10
11-10
11-10
11-11
11-11
11-12
11-13
11-13
11-13
11-14

11-15
11-16
11-16
11-17
11-17
11-17
11-17
11-18

Opening and DisplayingaForm 11-20

Form Names and Form References. 11-20
Displaying the Form. 121
Displaying DatainaForm 121
Changing Display Attributes. 11-22
Combininga MenuandaForm 11-23
Displaying a Scrolling Array 11-24
Taking Input ThroughaForm. 11-27
Help and Comments. 11-27
Keystroke-Level Controls 11-28
Field-Level Control 1128
Field Order Constrained and Unconstralned 1130
Taking Input Throughan Array 11-30
Screen and Keyboard Options 11-32
Reserved Screen Lines 11-32
Changing Screen Line Assignments. 11-33
Getting the Most on the Screen 11-34
Runtime Key Assignments 11-36
Dedicated Keystrokes . . . N T4
Intercepting Keys with ON KEY Ce e o 1139

11-2 IBM Informix 4GL Concepts and Use

In This Chapter

The architecture of the INFORMIX-4GL user interface is described in

Chapter 3, “The INFORMIX-4GL Language.” The concepts behind the state-
ments described in this chapter are covered in “The User Interface” on

page 7-3.

This chapter details the way you program the user interface for your 4GL
applications. Because screen forms are important to this, the first topic
explains how you specify a form. Then statements you use to open 4GL
windows and fill them with forms and menus are discussed. At the end of the
chapter, keyboard and screen line customization are discussed.

Specifying a Form

This section describes the contents of a form specification file in detail. The
idea of managing screen forms in separate files was introduced in “Form
Specifications and Form Files” on page 4-6. An overview of how your
programs use forms is given in “How Forms Are Used” on page 7-13.

Using the Screen and Keyboard 11-3

Specifying a Form

Figure 11-1 shows a screen image of a sample form.

Figure 11-1
A Screen Image of a Sample Form

Fields

Screen array of 4
records, each
having 7 fields

L L abels (fixed text)

4GL forms are traditionally designed in a WYSIWYG (what-you-see-is-what-
you-get) environment using an ASCII text editor. Each ASCII form specifi-
cation contains several sections as summarized in the following table. Some
are mandatory, others are optional. The order of the sections is significant.

Form Section Usage

DATABASE Specifies the database containing the tables and views whose
columns are associated with fields in your form

SCREEN Specifies the arrangement of fields and text that will appear in
your form after it is compiled and displayed

TABLES Specifies which tables have columns associated with the fields
in the form, and can declare aliases for tables that require
qualifiers

ATTRIBUTES Declares a name for each field, and assigns attributes to it

INSTRUCTIONS Specifies non-default delimiters and screen records

For more information on form specifications and statements, see INFORMIX-
4GL Reference.

11-4 1BM Informix 4GL Concepts and Use

The DATABASE Section

The DATABASE Section

Typically a form field holds data from a particular column in the database.
For example, the previous form begins with a field labeled Customer
Number. This field displays data from the customer_num column in the
customer table of the stores demonstration database.

You can associate a form field with a database column. In such cases,
FORMA4GL, the form compiler, will look in the specified database to determine
the data type for that column and will use that as the data type of the form
field.

The first line in the form specification file is a DATABASE specification. It tells
the form compiler which database to use when looking for columns.

DATABASE st ores7

Some forms use no database at all; that is, they have no fields that correspond
to a database column. When this is the case, you can write:

DATABASE f or nonl y

The SCREEN Section

In the SCREEN section, you specify the appearance of the form on the screen.
With a text editor, you paint a picture of the form as you want it to appear. The
SCREEN section of the form on Figure 11-1 on page 11-4 appears below. The
lines between the curly braces ({ }) are a picture of the form as it is to appear
on the screen. (The lines that contain the braces are not part of the form
image.)

SCREEN

{

Cust omer Nunber:[f000] Conpany Nane:[fO001]

Order No:[f002] Order Date:[f003] PO Number: [f 004]

Item No. Stock No Manuf Descri ption Quantity Price Tot al

[foo5] [foo6] [fO7] [fOO08] [fo09] [fol10] [fol1l]

[foo5] [foo6] [fO7] [fOO08] [fo09] [foOl10] [fol1l]

[foo5] [foo6] [fO7] [fOO08] [fo0o9] [foOl0] [fol1l]

[foo5] [foo6] [fO7] [fOO08] [fo09] [fol0] [fol1l]

Sub- Total : [f012]

Tax Rate [f013 1% [f014] Sal es Tax: [fO015]

Order Total: [f016]

Using the Screen and Keyboard 11-5

The SCREEN Section

11-6

The square brackets ([]) delimit fields into which the program can later
display data and take input. Text outside brackets is label text. It will be
displayed exactly as typed. A field consists of the spaces between brackets. If
you need to make two fields adjacent, you can use a single pipe symbol (|)
to separate the fields.

Each form field must contain a field tag, a name used to link the field in the

SCREEN section to its attributes in the ATTRIBUTES section of the form speci-
fication. The first field in the SCREEN section of the previous example has the
field tag f000.

When you use the same field tag in more than one field (the tag f009 appears
four times in the preceding example), you indicate that the field is really one
part of a larger whole, either a multiple-segment field or a screen array.

Specifying Screen Dimensions

By default, the forms compiler assumes that your form will be displayed in a
format of 24 lines of 80 columns each. If you intend to use the form in a larger
window, you must specify larger dimensions in the SCREEN statement.

Screen Records and Screen Arrays

A screen record is a collection of fields that are treated as a group, just as a
program record is a collection of members you want to treat as a related
group. 4GL makes it easy to display all the elements of a program record into
the corresponding fields of a screen record, or to take input from a screen
record into a program record.

A screen array is an array of similar fields that your program will treat as a
unit, like a program array. 4GL enables you to associate an array of data in the
program with an array of fields on the screen, so that the user can view or edit
the rows of data on the screen.

The form example in Figure 11-1 on page 11-4 has a screen record composed
of the fields tagged f005, f006, f07, f008, f009, f010, f011. These fields make up
an order item detail record. They are repeated four times vertically to make
an array of four records. A statement in the INSTRUCTIONS section of the
form is used to declare the array of records. See “The INSTRUCTIONS
Section” on page 11-13.

IBM Informix 4GL Concepts and Use

The TABLES Section

The process of displaying an array of data is discussed in “Taking Input
Through an Array” on page 11-30.

Multiple-Segment Fields

To display a string that is too long to fit on a single line of the form, you can
create multiple-segment fields that occupy rectangular areas on successive
lines of the form. The SCREEN section must repeat the same field tag in each
segment of the multiple-segment field, and the ATTRIBUTES section must
assign the WORDWRAP attribute to the field.

Your 4GL program treats a multiple-segment field as a single field. When it

displays text, any string longer than the first segment is broken at the last tab
or blank character before the end of the segment. Thus, word boundaries are
respected. The rest of the string is continued in the first character position of
the next segment. This process is repeated until the end of the last segment,
or until the last character is displayed, whichever happens first.

The TABLES Section

The TABLES section is closely related to the DATABASE section. In it you
specify the tables that supply data for this form. The TABLES section of the
form in Figure 11-1 on page 11-4 is:

TABLES
custoner orders itens stock state

Any tables that contain columns named in the ATTRIBUTES section of the
form (described in the next section of this chapter), must be listed in the
TABLES section. The forms compiler will look for these tables in the database
named in the DATABASE section.

You can also assign aliases to table names in the TABLES section. For example,
in the TABLES section you can write;

TABLES postings = financial.postings

This gives the short table name postings to the table known in full as
financial.postings. You must use the short name in the ATTRIBUTES section
of the form.

Using the Screen and Keyboard 11-7

The TABLES Section

11-8

Aliases are needed in the following cases:

= You are using an ANSI-compliant database. In such cases, you must
declare table aliases—even if you are only drawing data from one
table—unless the end user of your application is also the owner of
every table in the TABLES section. This is because table owners must
be specified when using ANSI-compliant databases.

= You are drawing data from several tables with the identical column
names. The alias is necessary because you cannot qualify a form field
name with a table identifier or owner name.

= You are accessing data from tables in remote databases. The alias is
necessary because you are restricted in the attributes section to the
following format:

tabl e_identifier.colum_nane

= Youwantacondensed way to refer to atable. The full name of a table
can be quite lengthy because it can contain an owner name, a
database name, and a site name. Aliases make referencing such
tables more convenient and your form specification more readable.

Like the DATABASE section, the TABLES section is used only to get
information needed by FORMA4GL. It has no effect when the form is used by a
program. The data you display in a form can come from any source,
including any table in an Informix database.

IBM Informix 4GL Concepts and Use

The ATTRIBUTES Section

The ATTRIBUTES Section

In the ATTRIBUTES section, you give detailed specifications for each of the
fields you have defined in the SCREEN section. The two most important
attributes for any field are its field name and its data type.

The field name is the name that you use, in your program, to put data into a
field and get data out of it.

You assign these and other attributes in a series of specifications. The
ATTRIBUTES section for the form in Figure 11-1 on page 11-4 follows. It illus-
trates some of the many attributes that can be assigned to a field. (For a
complete list of attributes, see INFORMIX-4GL Reference.)

ATTRI BUTES
f 000 = orders. custonmer_num

f001 = customer. conmpany;

f002 = orders. order_num

f003 = orders.order_date, DEFAULT = TODAY;
f004 = orders. po_num

f005 = itens.item num NOENTRY;

f006 = itens.stock_num

f007 = itens. manu_code, UPSHI FT;

f 008 = stock.description, NCENTRY;

f009 = itens.quantity;

f010 = stock.unit_price, NCENTRY;

fOll = itens.total _price, NCENTRY;

f012 = fornonly. order_anmount, TYPE MONEY(7, 2);
f013 = fornonly.tax_rate;

f014 = state.code, NCENTRY;

f015 = fornonly. sal es_tax TYPE MONEY;

f016 = fornonly.order_total;

Using the Screen and Keyboard 11-9

The ATTRIBUTES Section

11-10

The Field Name

A field name is the name your program uses to refer to a field for data display
or input. The field name is often the same as the name of a database column.
For example, the first specification from the sample ATTRIBUTES section
follows:

f000 = orders. customer_num

This says that the field shown in the SCREEN section with a field tag of f000
is associated with the customer_num column of the orders table. As a result,
the name of this field is customer_num. To display data in this field, you
would write a statement such as:

DI SPLAY max_cust _numtl TO cust oner _num

The Field Data Type

The data type affects how data is displayed in the field; for example, numeric
data is right-justified and character data is left-justified. The data type also
affects how the field behaves while the user is entering data during input; for
example, the user cannot enter non-numeric characters in a field with a
numeric type. You can specify the type of data that can be stored in a field
directly or indirectly.

Fields Related to Database Columns

You will often want fields to display data taken directly from a database
column. To simplify the definition of such fields, you can name the database
column and table. The field then receives both its name and its data type from
the database:

f009 = items. quantity ;

In this example, all the fields with tag f009 (there are four in “The SCREEN
Section” on page 11-5) take their name and data type from the quantity
column of the items table. The items table must have been listed in the
TABLES section of the form; also, a table of that name must exist in the
database named in the DATABASE section at the time the form is compiled.

IBM Informix 4GL Concepts and Use

The ATTRIBUTES Section

FORMA4GL opens the named database and verifies that it contains an items
table with a quantity column. It takes the data type of that column as the data
type for the field. The advantage is that, if the database schema changes the
datatype of a particular column, you can keep your forms consistent with the
new schema simply by recompiling them.

Form Only Fields

A field that is not related to a particular database column is called a form only
field. You specify its name and its data type in the attributes statement:

f012 = fornonly. order_anmount TYPE MONEY(7, 2)

The field with tag f012 is given the name order_amount. In a program, you
display data in the field by using this name. FORMA4GL cannot consult a
database to see what the type should be, so you must tell it with a TYPE
attribute clause. If you omit type information, the default is a character string
equal in size to the number of spaces between brackets in the SCREEN section.

Editing Rules

You can specify editing rules for fields in the ATTRIBUTES section. Some of the
rules you can apply to a field are shown in the following table. (For details on
form attributes, see INFORMIX-4GL Reference.)

Attribute Usage

DOWNSHIFT Changes the lettercase as the user types. (An example of the

UPSHIFT UPSHIFT attribute can be seen in “The ATTRIBUTES Section” on
page 11-9.)

INCLUDE Specifies a list of values permitted on input. (For example, you
could limit entry to the letters M or F, or to a certain range of
numbers.)

(10of2)

Using the Screen and Keyboard 11-11

The ATTRIBUTES Section

Attribute Usage

PICTURE Specifies an edit pattern or format string, such as (###) ###-##HH
for a USA telephone number. (The user is allowed to type only
letters or digits as the pattern dictates. The punctuation you
supply, such as parentheses or hyphens, is filled in automatically
as the user types.)

REQUIRED Specifies that user is not allowed to press Accept without having
entered some value to the field.

VERIFY Makes the user enter data in the field twice, checking that it is
identical the second time.

(2 0f 2)

You can also program specific input-editing rules by writing AFTER FIELD
blocks in the INPUT statement.

Default Values

In the ATTRIBUTES section, you can specify a default value for a field. The
value will be filled in automatically when an INPUT operation begins, and the
user can replace it. Alternatively, you can DISPLAY data in fields prior to
input, and use the displayed data as default values.

11-12 IBM Informix 4GL Concepts and Use

The INSTRUCTIONS Section

The INSTRUCTIONS Section

You use the INSTRUCTIONS section of the form for special features: field
delimiters, screen records, and screen arrays.

Field Delimiters

Normally when a form is displayed, fields are displayed with the same
square brackets that you used in the SCREEN section to define them. In the
INSTRUCTIONS section, you can specify different delimiters. Most often this
feature is used to change the delimiters to spaces, thus causing the fields to
be drawn without any visible markers.

Screen Records

A screen record is a group of fields that you want your program to treat as a
unit. A screen record, like a program variable that is a record, is a collection
of named members. You can display all the members of a record variable in
the matching fields of a screen record with a single DISPLAY statement. You
can request input from all the fields of a screen record, and have the input
values deposited in the matching members of a program variable, with one
INPUT statement.

Using the Screen and Keyboard 11-13

The INSTRUCTIONS Section

Screen Arrays

A screen array is a group of screen records that you want to treat as a scrolling
table. The form shown on Figure 11-1 on page 11-4 has a screen array defined
this way. Figure 11-2 on page 11-14 shows the relationship between array
fields as they appear in the SCREEN section, the ATTRIBUTES section, and the
INSTRUCTIONS section of a form.

Figure 11-2
Array Fields in SCREEN, ATTRIBUTES, and INSTRUCTIONS Sections of a Form

SCREEN
{
Cust omer Nunber: [f 000] Conpany Nare:[f001]
Order No: [f002] Order Date:[f003] PO Nunber:[f004]
Item No. Stock No Manuf Descri ption Quantity Price Tot al
[foo5] [foo6] [fO7] [fOO08] [foo9] [foO10] [fOl1]
[foo5] [foo6] [fO7] [fOO08] [foo9] [fO10] [fol1 1
[foo5] [foo6] [fO7] [fOO08] [foo9] [foO10] [fOl1]
[foo5] [foo6] [fO7] [fOO08] [foo9] [fO10] [fol1 1
f005 = items.itemnum NCENTRY;
Field tags connect SCREEN ;886 = : E :x~ %gﬁkgggg‘ UPSH FT-
and ATTRIBUTES sections. f008 = stock.descripti ,on, NGENTi?Y;
f009 = items. quantity;
f010 = stock.unit_price, NCENTRY;
f011 = items.total _price, NCENTRY;
Dimension number marks Field names are used to group
an array of records. fields into records and arrays.
| NSTRUCTI ONS

SCREEN RECORD sa_itens[4] (
items.itemnum items.stock_num ‘itens. manu_code,
stock. description, itens.quantity,
stock.unit_price, itens.total _price)

To use the array, your program must contain an array of records with similar
members. It can use the DISPLAY ARRAY statement to display all the records
in the array in the rows of the screen array.

11-14 IBM Informix 4GL Concepts and Use

Using Windows and Forms

Using Windows and Forms

As Figure 11-3 ilustrates, for character-based terminals and the workstations
that emulate them, all of your screen output takes place in a single window.
If the output device is a real terminal, its screen is the window. If the output
device is a graphical screen emulating a terminal in a graphical window, then
the screen is that window. This section discusses the ways your program can
make the best use of 4GL windows.

Figure 11-3
The 4GL Screen on a Workstation and a Terminal

an
uuuuuuuuuuu

Subordinate Windows used by
4GL windows other programs

The program is displayed on the 4GL screen. However, you can further
control program output by creating additional rectangular areas within the
confines of the screen. These can also be considered 4GL windows. The size
and contents of 4GL windows within it, are under the control of your

program.

An application can have many 4GL windows. They can be the same size as or
smaller than the 4GL screen. They can overlap. You can bring a particular
window to the top, so that it is fully visible, or completely cover a particular
window. And 4GL windows can be closed and opened, depending on the
requirements of the application.

Using the Screen and Keyboard 11-15

Opening and Displaying a 4GL Window

11-16

Opening and Displaying a 4GL Window

The initial 4GL window is created automatically when 4GL first encounters an
170 statement. This first 4GL window fills the screen. In the statements you
use for controlling windows, you can refer to this initial 4GL window as
SCREEN.

The program cannot find out what that size is. Most programs assume that it
allows 24 lines of 80 columns because that is the size of most character-based
terminals. If your program contains forms or reports that require a larger
window, it might not run on some terminals.

Opening Additional 4GL Windows

You can open additional 4GL windows with the OPEN WINDOW statement.
This statement is covered in detail in INFORMIX-4GL Reference. An example of
the statement follows:

OPEN W NDOW st ockPopup AT 7, 4 WTH 12 ROA5, 73 COLUWNS
ATTRI BUTE(BORDER, FORM LI NE 4)

You can specify the following things when you open a new 4GL window:

= Location. With the AT clause, you specify the location of the upper-
left corner (1,1) of the new window in relation to the screen. The units
are character positions.

= Size. In the WITH clause, you specify the size of the window in one
of two ways: with a specific number of rows and columns, or by
specifying a form. If you specify FORM or WINDOW WITH FORM, the
screen dimensions of that form establish the size of the new 4GL
window (see “Specifying Screen Dimensions” on page 11-6).

= Border. In the ATTRIBUTE clause, you can specify a border for the
window. The statement in the preceding example opens a bordered
window.

= Color. In the ATTRIBUTE clause, you can also specify a color for all
text displayed in the window. You cannot specify a background
color, only the foreground, or text, color.

= Line numbers. You can set the locations of the standard lines for the
menu, messages, prompts, and comments. These lines are discussed
in detail in “Changing Screen Line Assignments” on page 11-33.

IBM Informix 4GL Concepts and Use

Opening and Displaying a 4GL Window

4GL Window Names

The first argument of OPEN WINDOW is a name for the window. You can use
this argument to assign a global name to the window.

The following line specifies errorAlert as a global name for a window:
OPEN WNDOW errorAlert AT 10, 20 WTH 4 ROA5, 40 COLUWNS

Anywhere else in the program (even in another source module), you can
write a statement that refers to the errorAlert window. To make a window
current, you would enter:

CURRENT W NDOW errorAl ert

Controlling the Current 4GL Window

Only one 4GL window can be current at a time. When you open a hew 4GL
window, it becomes current. It is on top visually, covering any other 4GL
windows that it overlaps.

The current window receives all output of the DISPLAY, PROMPT, MENU, and
MESSAGE statements. It is used by all INPUT statements. An error occurs if
the program tries to use a form field when that field is not part of the form in
the current window.

Clearing the 4GL Window

You can clear all displayed text from a window with the CLEAR WINDOW
statement. This removes all output, including menus, form fields, and labels.
The window being cleared need not be the current window.

If you clear the current window from within a MENU statement, the menu
will be redisplayed. This is not true of forms; you must redisplay a form
explicitly.

Closing the 4GL Window

To remove a window, use the CLOSE WINDOW statement. It makes the
window invisible and unusable until you re-create it with OPEN WINDOW.
When you close a window, the next window below it becomes the current
window.

Using the Screen and Keyboard 11-17

Displaying a Menu

This means that if you are using a form or menu (and hence using the current
window), and you call a subroutine that opens a window, uses it, and closes
it again, the original window will again be current when the subroutine
returns. This is the behavior you would expect.

However, if you are using a window and call a subroutine that makes another
window current and does not close it, the wrong window will be current
when the subroutine returns, and an error might follow.

Displaying a Menu

The key concepts of menus are included in “How Menus Are Used” on
page 7-10. That topic also includes an example of the code you use to create
a menu. The details of the MENU statement are in INFORMIX-4GL Reference.

11-18 IBM Informix 4GL Concepts and Use

Displaying a Menu

When you execute the MENU statement, a ring menu is displayed on the
assigned Menu line of the current window. Normally, you will display a
menu across the top line of a window, usually above the display of a form.
Other ways to use menus are as follows:

FUNCTI ON al ert Menu(nsg , opl , op2 , op3)
DEFI NE ~ wi ndowW dt h, indent SMALLINT ,
ret , mseg , opl , op2 , op3 CHAR(20)
LET wi ndoww dth = 40
LET i ndent = (wi ndoww dt h- LENGTH(nsg))/ 2
OPEN W NDOW al ert2 AT 10,20 WTH 5 ROA5, w ndowW dt h COLUWNS
ATTRI BUTE (BORDER, MENU LI NE LAST)
DI SPLAY nmsg CLI PPED AT 3,1
MENU " Respond"
COMVAND opl
LET ret = oplEXIT MENU
COMVAND op2
LET ret = op2EXIT MENU
COMVAND op3
LET ret = op3 EXIT MENU
END MENU
CLOSE W NDOW al ert 2
RETURN r et
END FUNCTI ON

The alertmenu() function is given a short message and three choices, as the
example shows.The choices would normally be keywords such as OK, NO,
CANCEL, or SAVE. The function opens a small 4GL window. In the windowy, it
displays the message line below a menu composed of the three choices.

The choices in the menu are not constants as is usually the case, but variables,
specifically, the function arguments. An example of how the function could
be called follows:

MAI N

DEFI NE ret CHAR(20)

CALL al ertMenu("alert nmessage here" , "FIRST" , "SECOND' , "TH RD")
RETURNI NG r et

END MAI N

Using the Screen and Keyboard 11-19

Opening and Displaying a Form

11-20

The function would display a window that looks like Figure 11-4.

Figure 11-4

RESPOND FI RST | SECOND THI RD An Alternative Way
of Using the MENU

al ert nmessage here Statement

Whichever menu option the user chooses is returned as the function’s result.

Note that although the function opens its window with the attribute MENU
LINE LAST, the menu begins on the next-to-last line. See “Changing Screen
Line Assignments” on page 11-33.

Opening and Displaying a Form

It takes only two program statements to open and display a form. The
OPEN FORM statement brings the compiled form into memory by using a
command such as:

OPEN FORM or der Frm FROM " f or der s"

This statement causes 4GL to search for a compiled form file named
forders.frm. The file suffix .frm is supplied automatically and must not be
used. 4GL looks first in the current directory and then in directories named in
the DBPATH environment variable.

Form Names and Form References

The first argument of OPEN FORM is a name for the form. You use that name
to manage the form later in the program.

When you specify a form name in conjunction with the OPEN FORM
statement, it becomes the global name of the form:

OPEN FORM or der Form FROM "f or der s"

Anywhere else in the program (even in another source module), you can
write a statement that refers to this form.

IBM Informix 4GL Concepts and Use

Displaying Data in a Form

Displaying the Form

After opening a form, you can use DISPLAY FORM to display it in the current
window:

DI SPLAY FORM or der Form

The current 4GL window is cleared from the Form line to the bottom. The
fields and labels of the form are drawn on the current window, starting at the
Form line. The fields are initially empty.

The form must fit within the current 4GL window, allowing for reserved lines.
For more information, see “Specifying Screen Dimensions” on page 11-6 and
“Opening Additional 4GL Windows” on page 11-16.

By default, the Form line is the third line of the 4GL window, but you can
change it. For more information, see “Changing Screen Line Assignments”
on page 11-33.

You can display a form repeatedly in one window or in different windows.
However, you can only display one form per 4GL window.

Displaying Data in a Form

When the form has been displayed, your program can display data in its
fields. The DISPLAY TO statement is used for this. It takes a list of expressions
and a list of field names in which to display them. You can display data in one
field at a time.

DI SPLAY "Sal ari ed" TO enp_status

More often, you display a list of expressions, in the form of variables, in a list
of fields:

DI SPLAYt heCust Num t heCust Nane, 0, O
TO cust oner _num conpany, order_ant, order_total

You can display all the elements of a record in the fields of a screen record
with one statement.

Using the Screen and Keyboard 11-21

Displaying Data in a Form

11-22

A common technique is to use the names of database columns as the names
of both the fields in a form and the members of a record. The following
example shows how a record variable is defined to contain one member for
each column in a table:

DEFI NE cust Row RECORD LI KE cust oner . *

If the form in the current window has a screen record with corresponding
fields (see “Screen Records” on page 11-13), you can display all the members
of this record variable in the fields of the screen record with one statement:

DI SPLAY cust Row. * TO cust Fi el ds. *

Alternatively, when the current form has fields whose names are the same as
the members of the record, you can display all the members this way:

DI SPLAY BY NAME cust Row. *

The BY NAME clause can be used whenever you want to display program
variables in fields that have the same names.

Changing Display Attributes

4GL supports visual attributes such as REVERSE and BOLD, and a range of
colors when the output device supports them. These display attributes can be
assigned to a 4GL window, to an entire form, or to one or more individual
fields. The following techniques will help you make the best use of attributes:

= To set display attributes for the entire 4GL application, use the
OPTIONS statement before opening any windows.

= To set display attributes for all text in one window, use the
ATTRIBUTE clause of the OPEN WINDOW statement.

= To set display attributes for all lines of a form without changing the
attributes of other lines of the window, use the ATTRIBUTE clause of
the DISPLAY FORM statement.

= To set specific display attributes for one field of a form, use the
REVERSE or the COLOR clause for that field in the ATTRIBUTES
section of the form specification file. The COLOR clause takes a
WHERE keyword, so you can make the color of the field dependent
on its contents or on the contents of other fields.

= To override the display attributes of specific fields as you display
data in them, use the ATTRIBUTE clause of the DISPLAY TO statement.

IBM Informix 4GL Concepts and Use

Combining a Menu and a Form

The preceding methods of setting visual attributes are the most important.
There are others, and the precedence among methods is more complicated
than this list shows. For more information on visual attributes, see
INFORMIX-4GL Reference.

Combining a Menu and a Form

It is common to have both a menu and a form in the same 4GL window. The
form fields provide the structure for displaying information. Your user can
choose menu options to tell the program what information to display.

A common example is a program that lets the user browse through a series
of rows from the database, one row at a time. Several of the programming
examples in INFORMIX-4GL by Example are devoted to just this problem. The
basic technique is as follows:

1. Setup a database cursor to represent the selected set of rows.

2. Display a form that has fields for the columns of one row.

3. Execute a MENU statement that includes an option such as Next to
cause the display of the next row.

4. Inthe COMMAND block for the Next menu option, you use:
m FETCH to get the next row from the cursor.
= DISPLAY to show the fetched values in the form.
Thus each time the user selects menu option Next, the program displays a
new row. By using a SCROLL cursor (which supports backward as well as

forward movement through the rows) you can easily provide menu choices
for Prior, First, and Last row displays.

Using the Screen and Keyboard 11-23

Displaying a Scrolling Array

Displaying a Scrolling Array

Your 4GL program might frequently need to display a scrolling list of rows.
The screen array is used for this. In the form in Figure 11-5, the rows of the
catalog table from the 4GL demonstration database are being scrolled
through a screen array. The form specification file for this form is from
Example 18 of INFORMIX-4GL by Example.

Figure 11-5
A Scrolling Array from the catalog Table

Catalog ¥ r Trock Descrlption Manuf &0 LuFar
1AAE] I [enmabal]l gloves] | Hern
ipaez] M) ¥ |easeball gloves] [Husky

1HARE] [*¥] [[Basmaball gloves] [SmiEh Screen array of 5
MLLLEN] I]] ¥ |ensabal]l | Hero y
tEEes] (W] [casabail b f sy records

""--"---""--"---""-""x --------------------------------- Screen record of 6

11-24

ALTTOME FE¥ GEQUEHLE
To awkk wocept bwice or COMTRAOL-E fields
To scroll wup and down Arrow keys
To wied or update:
cabalay adverbisleg [vEcchar) F4 ar COHTROL-%
catalog descriphion |text] F& or COMTROL-T

To implement a scrolling display like this, your program must do two things:

= Display a form containing a screen array of screen records.

= Define an array of records, each record having members that corre-
spond to the fields of the screen records.

IBM Informix 4GL Concepts and Use

Displaying a Scrolling Array

In the example, these two things are accomplished in the manner shown in

Figure 11-6.
Figure 11-6
Definitions of a Screen Array and a Record Array
I NSTRUCTI ONS
Smsgyafgﬁsmsa—catw] (Screen array of screen
st ack_num records |s_d_ef|n_ed in the
manu_nane, form specification file.
has_pi c,
has_desc,
descri ption)
f0ll = itens.total price, NCENTRY;
DEFI NE
ga_catrows ARRAY[200] OF RECORD
cat al og_nunll KE cat al og. cat al og_num
st ock_num LI KE st ock. st ock_num
manu_naneLl KE manuf act . manu_nane,
has_pi cCHAR(1),
has_descCHAR(1),
ENDdechr i pti onCHAR(15) Array of records with matching
CORD names is defined in the
program.

The screen array has 5 records; the array in the program has 200. The
members of the records have the same names and appear in the same order.

Using the Screen and Keyboard 11-25

Displaying a Scrolling Array

The program uses a FOREACH loop to fill the array with rows fetched from
the database (refer to “Row-by-Row SQL” on page 9-5). Once the program
array has been loaded with data, the scrolling display can be started with the
DISPLAY ARRAY statement. But first the program must call the built-in
function SET_COUNT() to tell 4GL how many records in the array have useful
data, as illustrated in Figure 11-7. Only these rows will be shown in the

display.
Figure 11-7
The SET_COUNT() Function and the ARR_CURR(') Function
CALL SET_COUNT(cat_cnt) SET_COUNT() function tells

DI SPLAY ARRAY ga_catrows TO sa_cat. *
ON KEY (CONTROL- E)
EXI T DI SPLAY
ON KEY (CONTROL-V, F5)
CALL show_ advert (arr_curr())

ON KEY (CONTROL-T, F6) :>— ARR_CURR() function returns
CALL show descr(arr_curr()) the index of the array row whose

END DI SPLAY contents are in the current screen
row.

4GL how many array items
contain valid data.

During a DISPLAY ARRAY statement, 4GL interprets the keystrokes used for
scrolling (up and down arrows and others). It responds to them by scrolling
the rows from the array in memory through the lines of the screen array.

As shown in the previous example, you can write ON KEY blocks within
DISPLAY ARRAY to act on specific keystrokes. In the example, if the user
presses either CONTROL-V or F5, the program calls a function named
show_advert(). If you read Example 18 in INFORMIX-4GL by Example, you
will see that this function opens a new window to display an expanded view
of one column.

11-26 IBM Informix 4GL Concepts and Use

Taking Input Through a Form

Taking Input Through a Form

Once your program displays a form, it can take input from the user through
the form fields. In its simplest form, the INPUT statement, like the DISPLAY
statement, takes a list of program variables and a list of field names.

I NPUT stockNum quantity FROM stock_num itemqty

In this example, two fields—stock_num and item_qgty—are enabled for
input. Fields by these names must, of course, exist in the form displayed into
the current window.

The program waits while the user types data into the field and presses the
Accept key. (The Accept key is ESCAPE by default, but the actual keyboard
assignment can be changed; see “Runtime Key Assignments” on page 11-36).
The data is assigned into the program variables stockNum and quantity and
the program proceeds.

INPUT supports the same shortcuts for naming records as DISPLAY does. You
can ask for input to all members of a record, from all fields of a screen record,
and you can ask for input BY NAME from fields that have the same names as
the program variables.

Help and Comments

In the ATTRIBUTES section of a form, you can specify an explanatory
comment for any form field. These comments are displayed during input.
When the cursor enters a field, the comment for that field is displayed on a
specified line of the screen, the Comments line. This line is by default the last
line of the window, but can be changed; see “Changing Screen Line Assign-
ments” on page 11-33.

You can also associate a help message with any INPUT operation. See “How
the Help System Works” on page 7-28.

Using the Screen and Keyboard 11-27

Taking Input Through a Form

11-28

Keystroke-Level Controls

Some programs require precise control over user actions during input. You
can do this, too, by writing one or more ON KEY blocks as part of the INPUT
statement. 4GL executes the statements in your ON KEY code block whenever
the user presses one of the specified keys during input.

A typical use for an ON KEY block is to display special assistance. You can tell
your user something like Press CONTROL-P for a list of price codes.
In an ON KEY block for the CONTROL-P key, you can open a 4GL window and
display in it the promised list. After getting the necessary information, your
user can finish entering data and terminate the INPUT statement by pressing
the Accept or Cancel key.

Field-Level Control

Sometimes you want to make a form even more responsive to the user, or you
might require more detailed control over the user’s actions:

= To make a form seem lively and “intelligent,” you want to cause a
visible response to the user’s last action, if possible anticipating the
user’s likely next action.

= To catch errors early, saving the user time, you want to verify each
value as soon as it is entered, with respect to values in other fields.

To achieve this level of control, write BEFORE FIELD and AFTER FIELD blocks
of code as part of the INPUT statement. These are groups of 4GL statements
that are called automatically as the user moves the cursor through the fields
on the form.

Using a BEFORE FIELD Block

A BEFORE FIELD block is executed as the cursor is just entering a field. In the
following example, a message is displayed when the cursor enters a field,
and is removed when the cursor leaves the field:

I NPUT. . .

BEFORE FI ELD cust oner _num

MESSACGE "Enter custoner nunber or press F5 for a list."
AFTER FI ELD cust omer _num

MESSAGE "*"

IBM Informix 4GL Concepts and Use

Taking Input Through a Form

You could get the same effect by writing the message as a COMMENT
attribute for this field in the form specification. But if you did that, the
message would be displayed whenever the form is used. In this case, the
popup list of customers is a service offered only within this particular INPUT
statement. The same form might be used in other contexts where you do not
mean to do anything special for an Fs key.

A typical use of BEFORE FIELD is to prepare likely default values. As the
cursor enters a shipping-charge field, the program calculates, stores, and
displays an estimated charge. This is done only if no value has previously
been entered to the field.

BEFORE FI ELD shi pChar ge
| F shi pRec. shi pCharge |I'S NULL THEN
LET shi pRec. shi pCharge =
shi pEst Cal c(shi pRec. shi pWei ght, cust Rec. state)
DI SPLAY BY NAME shi pRec. shi pChar ge
END | F

Using an AFTER FIELD Block

An AFTER FIELD block is called as the cursor is just leaving a field. In it, you
can write statements that perform the following tasks:

= Check the value of the field for validity with respect to other form
fields and with respect to the database.

= Display values in other fields as a result of the value just entered into
this one.

The following simple example shows validation:

AFTER FI ELD cust omer _num
- Prevent user fromleaving an enpty custoner_numfield
I F gr_custoner.custonmer_num | S NULL THEN
ERROR "You nust enter a custoner nunber. Please do so."
NEXT FI ELD cust oner _num
END I F

The NEXT FIELD statement sends the cursor to the specified field (in this case,
back to the field it had just left). It terminates execution of the AFTER FIELD
block and starts execution of the BEFORE FIELD block of the destination field.

The block from which the preceding example is taken (Example 15 in
INFORMIX-4GL by Example) does more. When a customer number is entered,
it performs the following tasks:

Using the Screen and Keyboard 11-29

Taking Input Through an Array

11-30

= Uses SELECT to read that customer’s row from a database table

= If no row exists, displays the fact and uses NEXT FIELD to repeat the
input
= Initializes other fields of the form with data from the database row

Field Order Constrained and Unconstrained

In a BEFORE or AFTER FIELD block or an ON KEY block, you can also write a
NEXT FIELD statement, forcing the cursor to move to a particular field. Many
existing 4GL programs control the cursor in this way:. It is done to direct the

user’s attention to important data, or to require the user to enter certain data.

This tight control over actions of your user is a natural way to manage
computer interaction on a character-based terminal. Programmers can
assume that the cursor never enters the Discount field without first having
passed through the Customer Number field, for example. The BEFORE FIELD
block for Discount could therefore refer to the value of Customer Number
with certainty that it was present.

Through the 4GL OPTIONS statement you can adjust the amount of freedom
your user will have in moving through a form. If you set FIELD ORDER
CONSTRAINED, you can accurately predict the path your user will follow
when moving through a form.

If, however, FIELD ORDER UNCONSTRAINED is set, the user will be able to
move through the form in any particular order using the arrow key.

Taking Input Through an Array

The DISPLAY ARRAY statement lets the user view the contents of an array of
records, but the user cannot change them. You can use INPUT ARRAY to allow
the user to alter the contents of records in the array, to delete records, and to
insert new records.

The preparation for array input is similar to that for DISPLAY ARRAY:

1. You design a form containing a screen array of screen records.

2. You define a program array of records. The members of each record
match the fields of the screen record.

IBM Informix 4GL Concepts and Use

Taking Input Through an Array

3. Ifthe user can alter existing data, you pre-load data into the program
array and use the built-in SET_COUNT() function to specify how
many array items contain data.

4. You execute an INPUT ARRAY statement, naming the program array
as areceiving variable and the screen array as its corresponding field.

The same INPUT statement can also name ordinary program variables
corresponding to ordinary form fields. The user directs the cursor through
the fields as usual.

When the cursor enters the screen array on the form, 4GL handles the
scrolling of the array, allowing the user to edit and change the contents of the
fields by using arrow keys to navigate through the cells of the screen array.
You can control and monitor these changes with BEFORE and AFTER FIELD
blocks as usual. The built-in ARR_CURR() function is available to tell you
which array element is being changed. Besides the NEXT FIELD statement,
you can execute the NEXT ROW statement to reposition the cursor to a
different row.

4GL also supports an Insert key to open a new, empty row in the array, and a
Delete key to delete a row. You can monitor and control these actions with
BEFORE and AFTER INSERT and DELETE blocks. You can redefine the Insert
or Delete key using the OPTIONS statement.

Using the Screen and Keyboard 11-31

Screen and Keyboard Options

Screen and Keyboard Options

Now that you understand how 4GL uses the screen, a review of options for
customizing the user interface follows.

Reserved Screen Lines

Figure 11-8 shows a summary of the reserved, or dedicated, screen lines.

Figure 11-8
Reserved Screen Lines

Prompt line FIRST
Menu line FIRST

Yida Cusbomera: Juery Fire: SHERES ExiE
Dizplay meHt customar in selocted oot Menu help MENU+1

Message line FIRST+1

Customer Musber: [18L] Company Hame: [ALl Sports Supplies |

Adctre=m; [213 Erstwild Court] Form line FIRST+2
L 1

City: [Sumnyvale | State: [CA] Zip Cooe: [94900

Comtact Wane: |Lucwis I Paull]

Tolephone: [408-789-0075]

Comment line LAST
Error line LAST

= Prompt line. The PROMPT statement prompts the user for input to
one or more variables. It displays its prompt string on the specified
line and the user types a response on the same line.

= Menu line. The MENU statement displays a “ring” (horizontal)
menu on this line. The user moves the cursor from choice to choice
with the TAB and arrow keys.

MENU and PROMPT can share the same line. Each clears the line and
rewrites it as necessary.

11-32 IBM Informix 4GL Concepts and Use

Changing Screen Line Assignments

= Menu Help line. In the MENU statement, you can also write an
explanatory phrase for each menu choice. As the user moves the
cursor across menu options, the explanations are displayed on this
line. The Menu line is always the line immediately below the menu.

= Message line. The MESSAGE statement is used to show a short
message to the user. The Message line can share the line after the
Menu line because the MENU statement rewrites its help line when it
starts or resumes. The Message line could also be the same as the
Comment line.

= Form line. The top line of a screen form is displayed on this line by
the DISPLAY FORM statement.

= Comment line. When designing a screen form, you can specify an
explanatory comment for any field. As the user moves the cursor
through the fields of the form, these explanations are displayed on
the Comment line.

= Error line. The ERROR statement is used for providing the user with
a message serious enough to warrant an audible warning. The Error
line and the Comment line should not be assigned the same position.
Otherwise, if an error message appears in a field that has the
COMMENTS attribute, comment text overwrites the error message.

The Error line is special in another way. All other reserved lines represent
positions within the current 4GL window where text can be written, replacing
previous text on that line. The Error line specifies a position where a one-line
error message appears on the physical screen, without regard to the position
or size of the current 4GL window.

Changing Screen Line Assignments

The default layout of reserved screen lines is usually satisfactory. If you
change it, you should make sure that your new layout is consistent across
your application and with other applications that your users will see. You can
change the assignment of logical lines to line numbers in two ways,
depending on your needs:

= With the OPTIONS statement, you can change the assignment of one
or more lines for all windows.

= With the ATTRIBUTES clause of OPEN WINDOW, you can assign the
logical lines for one window when you create it.

Using the Screen and Keyboard 11-33

Changing Screen Line Assignments

There are, however, some line assignments you cannot change. For example,
the Menu Help line always follows the Menu line, so the Menu line can never
be last. If you specify MENU LINE LAST, 4GL treats it as if you had assigned
LAST-1.

Getting the Most on the Screen

The most common reason for changing screen line assignments is to increase
the maximum number of lines available for other purposes. To do this, you
make multiple screen lines use the same row. The following table shows
which lines can share the same screen row.

Menu
Menu Help Message Form Comment Error
Prompt Yes Yes Yes Notel Yes Yes
Menu No Note 2 Notel Note3 Yes
Menu help Note 2 Notel Yes Yes
Message Notel Yes Yes
Form Note 1 Yes
Comment Yes

11-34 IBM Informix 4GL Concepts and Use

Changing Screen Line Assignments

In this table, the word Yes means that the two intersecting types of screen
lines can share the same screen row because the lines appear at different
times, and each clears the row before using it. Potential problems are
discussed in the following notes:

1.

The screen form is not automatically redrawn after it has been
overwritten. If you display a prompt, menu, message, or comment in
a line used by a form, the only way to restore the complete form is to
redisplay the form and then redisplay the data in its fields.

If you make the Message line the same as Menu or Menu Help, you
must be careful when using the MESSAGE statement from within
MENU. You must program a delay before resuming the menu
operation. Otherwise the menu will replace the message text too
quickly for the user to read it. If messages and menus are used at
different times, there is no difficulty having them using the same
row.

When you use both a menu and a form, you should probably not
make the Comment and Menu lines the same. You can make the
Comment line the same as the Menu Help line. Then both types of
explanations appear on the same screen row.

The error text is always displayed on the designated Error line of the physical
screen. When you design a 4GL window as described in “How 4GL Windows
Are Used” on page 7-25, you do not need to allow for an Error line.

Using the Screen and Keyboard 11-35

Runtime Key Assignments

Runtime Key Assignments

The 4GL runtime environment uses several logical function keys and
provides default keyboard assignments. These can easily be reassigned. The
abstract function keys are summarized in the following table.

Key Name Purpose of Key Default Keystrokes

Accept Selects the current menu option in a ESCAPE
statement; terminates input during
CONSTRUCT, INPUT, and INPUT
ARRAY; terminates DISPLAY ARRAY

Interrupt Represents the external interrupt signal; stty interrupt key
available when interrupts are deferred (usually CONTROL-C)
with the DEFER statement

Insert Requests insertion of a new line during F1
INPUT ARRAY, starting execution of a
BEFORE INSERT block

Delete Requests deletion of the current line F2
during ARRAY, starting execution of a
BEFORE DELETE block

Next Causes scrolling to the next page (group F3
of lines) during DISPLAY ARRAY and
INPUT ARRAY

Previous Causes scrolling to the previous page F4

(group of lines) during DISPLAY ARRAY
and INPUT ARRAY

Help Starts the display of the specified help CONTROL-W
message from the current help file

You can change the assignment of the logical keys to physical keystrokes with
the OPTIONS statement. The two common problems that require you to
change them are:

11-36 IBM Informix 4GL Concepts and Use

Runtime Key Assignments

s The EScAPE key is often a prefix value for function keys.

The operating system might wait a fraction of a second after ESCAPE
is pressed, in order to make sure it is not the start of an escape
sequence, before passing it to the program. On some systems, this
can cause a delay in the response of your program to the Accept key.

= The numbering of function keys is not consistent from one version of
UNIX to another.

Some terminals might have different physical keys than those
defined in the termcap file.
Dedicated Keystrokes

The following physical keys have dedicated uses during some 4GL
statements.

Use in INPUT, INPUT ARRAY, and
Key Name CONSTRUCT Use in MENU

CONTROL-A* Switches between overtype and insert None
modes

CONTROL-D* Deletes from the cursor to the end of None

the field
CONTROL-H* During text entry, moves the cursor Moves highlight to next
(backspace) left one position (nondestructive option to the left
backspace)
CONTROL-I* or Moves the cursor to the next field, None
TAB* except in a WORDWRAP field, where

it inserts a tab or skips to a tab,
depending on mode

CONTROL-J Moves the cursor to the next field, Moves the highlight to
(Linefeed) except ina WORDWRAP field, where the next option to the
it inserts a new line or moves down right
one line, depending on mode

An asterisk indicates that the key cannot be used in an ON KEY clause.

(1of2)

Using the Screen and Keyboard 11-37

Runtime Key Assignments

Key Name

Use in INPUT, INPUT ARRAY, and
CONSTRUCT

Use in MENU

CONTROL-L*

CONTROL-M or
RETURN
CONTROL-N

CONTROL-R*

CONTROL-X*
LEFT ARROW
Right Arrow

Up Arrow

DOWN ARROW

INSERT
DELETE
PGUP

PGDN

During text entry, moves the cursor
right one position

Completes entry of the current field,;
cursor moves to next field (if any;
otherwise, same as Accept)

Same as CONTROL-J

Causes the screen to be redrawn

Deletes the character under the cursor
Same as BACKSPACE
Same as CONTROL-L

Usually moves to the previous field,
except ina WORDWRAP field, where
itmoves up one line in the field, and in
an INPUT ARRAY, it moves to the
corresponding field in the previous
row

Usually moves to the next field, except
in a WORDWRAP field, where it
moves down one line in the field, and
in an INPUT ARRAY, it moves to the
corresponding field in the next row

Same as the logical Insert key
Same as the logical Delete key
Same as the logical Next key

Same as the logical Previous key

Moves the highlight to
the next option to the
right

Accepts the option that is
currently highlighted

None

Causes the screen to be
redrawn

None
Same as BACKSPACE
Same as CONTROL-L

Moves the highlight to
the next option to the left

Moves the highlight to
the next option to the
right

None
None
None

None

An asterisk indicates that the key cannot be used in an ON KEY clause.

IBM Informix 4GL Concepts and Use

(2 of 2)

Runtime Key Assignments

Intercepting Keys with ON KEY

The names in the first column of the preceding table are accepted in an ON
KEY clause, with the noted exceptions. If you redefine these keys using ON
KEY, they lose their dedicated abilities. For example, if you redefine the uP
key in a DISPLAY ARRAY statement, the user will have no way to move the
cursor upward. Similarly, if you specify RIGHT in a KEY clause of a MENU

COMMAND, the user will not be able to move through the menu using the

RIGHT ARROW key.

Using the Screen and Keyboard 11-39

Runtime Key Assignments

11-40 IBM Informix 4GL Concepts and Use

Handling Exceptions

In This Chapter .

Exceptions.
Runtime Errors .

SQL End of Data
SQL Warnings . .
Asynchronous Signals: Interrupt and QU|t

Using the DEFER Statement. . .
Interrupt with Interactive Statements .

INTERRUPT with INPUT and CONSTRUCT
Deferred INTERRUPT with the MENU Statement

Using the WHENEVER Mechanism .
What WHENEVER Does

Actions of WHENEVER.
Errors Handled by WHENEVER.
Using WHENEVER in a Program

Notifying the User .

Logging Runtime Errors .

12-3
12-4
12-4
12-5
12-6
12-6

12-7
12-8
12-8
12-10

12-10
12-11
12-11
12-12
12-13

12-15
12-15

12-2 IBM Informix 4GL Concepts and Use

In This Chapter

Exceptions, usually referred to as errors, are unusual occurrences that you
might sometimes wish would never happen to your program. Of course, you
know they will happen, and you know you need to write your programs so
they behave in reasonable ways when errors and other unplanned for events
occur.

This chapter reviews the categories of exceptional conditions and how 4GL
reacts to them when you do not specify what to do. It then details the
mechanisms that 4GL gives you for handling them, as follows:

» The DEFER statement allows you to convert asynchronous signals
into synchronous flags that you can poll.

= The WHENEVER statement lets you change how 4GL responds to
specific error conditions.

The following table summarizes the types of exceptions 4GL can recognize
and the flags it can test and set in each case.

Error Type Flag Checked
Interrupt signal int_flag
Quit signal quit_flag
Runtime error, expression error, file error, status

display error, initialization error

SQL error status, SQLCA.SQLCODE
SQL warnings SQLCA.SQLAWARN
SQL end of data error status=NOTFOUND

or

SQLCA.SQLCODE=NOTFOUND

Handling Exceptions 12-3

Exceptions

Exceptions

You can write your 4GL program to recognize and respond to the following
types of exceptions:

= Runtime errors (sometimes called execution errors)
= SQL end-of-data conditions
= SQL warnings

= Asynchronous signals, meaning signals from the keyboard or
elsewhere, occurring at an unplanned for time

Runtime Errors

Runtime, or execution, errors are serious conditions that are detected by the
database server or by 4GL at runtime. Although they are divided into several
categories, these errors all have one thing in common: if they occur and the
program does not explicitly handle them, the program will terminate
immediately. To handle these types of errors, you must use the WHENEVER
ERROR statement. For more information, see “Using the WHENEVER
Mechanism” on page 12-10.

A negative error code number is associated with every type of execution
error. For every number, there is an error message. Error numbers and their
associated messages are available on-line. In addition, your 4GL application
can call a function, ERR_GET(), to retrieve the message text for any error
number. For more information, see INFORMIX-4GL Reference.

Execution errors are divided into five groups based on the kinds of program
actions that can cause them:

ms Expression errors. These arise when 4GL attempts to evaluate an
expression that violates the rules of the language. For example, error
- 1348 occurs when an attempt is made to divide by zero. Error -1350
occurs when 4GL cannot convert between data types.

= File errors. These arise when 4GL tries to access a file and the
operating system returns an error code. For example, error -1324
means that a report output file could not be written.

12-4 1BM Informix 4GL Concepts and Use

SQL End of Data

= SQL errors. These arise when the database server detects an error in
an SQL statement. For example, error -201 results from a syntax error
in an SQL statement, while error -346 shows that an attempt to
update a row in a table failed.

= Screenerrors. These arise when something goes wrong with a screen
interaction. For example, error -1135 means that the row or column
in a DISPLAY AT statement falls outside the current 4GL window.

= Initialization and validation errors. The INITIALIZE and VALIDATE
statements are used to initialize or test program variables against a
special database table, syscolval. Errors in the operation of these
statements are in a separate category; you handle them apart from
other errors.

SQL End of Data

When the database server is unable to retrieve a specified row, it reaches an
end-of-data condition and sets the SQLCODE member of the SQLCA record

t0 100. 4GL includes a built-in constant called NOTFOUND that has a value of
100.

By default, 4GL continues execution of your program when an end-of-data
condition is encountered. However, you can test for this condition after the
following statements:

s FETCH
= FOREACH
s SELECT

If the value of SQLCA.SQLCODE is greater than zero, there was no row
available.

Alternatively, your program can treat an end-of-data condition as an error
condition so that when it occurs, your program is diverted to code that
handles it.

To change the default behavior of 4GL, use the WHENEVER NOT FOUND
statement. For more information, see “Using the WHENEVER Mechanism”
on page 12-10.

Handling Exceptions 12-5

SQL Warnings

SQL Warnings

Some SQL statements can detect conditions that are not errors, but that can
provide important information for your program. These conditions are called
warnings and are signalled by setting warning flags in the SQLAWARN
member of the SQLCA record.

As with end of data, you have a choice in how to treat an SQL warning. By
default, 4GL sets SQLCA.SQLAWARN and continues execution of the
program. You can insert code after any SQL statement to test the SQLAWARN
flag values.

To change this default behavior, you can use the WHENEVER WARNING
statement, described in “Using the WHENEVER Mechanism” on page 12-10.

Asynchronous Signals: Interrupt and Quit

External signals are asynchronous signals that—unless specifically deferred—
are delivered by the operating system to a running program. An
asynchronous signal is one that is not related to an action of the program.

Common external signals such as Interrupt and Quit would typically be

generated by the user. The keystroke that generates an Interrupt signal is
known as the Interrupt key; the keystroke that generates a Quit signal is
known as the Quit key. On some systems, physical keys associated with

external signals can be reassigned.

Generally speaking, unless intercepted, an external signal that reaches an
application causes the application to terminate immediately. 4GL provides
mechanisms for testing for and handling Interrupt and Quit signals.

At first glance, it is difficult to see why an external signal of any kind should
be allowed to terminate a running program. But in fact, it is often quite useful
to allow user-induced exceptions to end programs during certain stages of
program development or debugging.

12-6 1BM Informix 4GL Concepts and Use

Using the DEFER Statement

For example, if you create a FOREACH or WHILE routine without a termi-
nation point, you cannot stop the routine without killing the process or
rebooting the system. However, if interrupts are not trapped, pressing the
Interrupt key (CONTROL-C by default) ends the program immediately. Later,
once you have perfected the routine, any external signals can be deferred
using the 4GL DEFER statement (described in the next section) and more
polite mechanisms put in place to handle unanticipated user requests.

Using the DEFER Statement

Because it is generally not convenient for the user to immediately terminate
an application from the keyboard, 4GL provides a DEFER statement that:

= captures an Interrupt or Quit signal.

= sets the appropriate 4GL flag, allowing you to deal with the external
signal programmatically.

The DEFER mechanism allows you to choose how to handle Interrupt or Quit
signals. To enable this mechanism, you include the DEFER statement once, at
the beginning of your 4GL program. This statement has two forms: DEFER
INTERRUP and DEFER QUIT.

With the DEFER INTERRUPT statement, the Interrupt key combination is
trapped and TRUE is assigned to the built-in global variable int_flag. After it
has been deferred, the Interrupt signal has no effect on most program state-
ments, but it does terminate some interactive statements, as described in the
next section.

With the DEFER QUIT statement, the Quit key combination, CONTROL-\, is
caught, and TRUE is assigned to the built-in global variable quit_flag.

Some systems can deliver other external signals, but these are not handled by
the DEFER mechanism of 4GL. There are also synchronous signals that
represent runtime errors that are trapped by the operating system, usually
for major program faults such as indexing past the end of an array.

The DEFER statement can only appear in the MAIN statement. Its effect
cannot later be undone. After its signal has been deferred, the physical
Interrupt key or Quit key can be assigned to a logical key in an ON KEY
clause.

Handling Exceptions 12-7

Interrupt with Interactive Statements

12-8

Interrupt with Interactive Statements

The following table summarizes the effect of a user-generated Interrupt
signal when DEFER INTERRUPT is in effect.

Statement Description

INPUT When INTERRUPT is named in an ON KEY clause, the signal is
treated as just another keystroke. That is, DEFER can trap the
signal. Otherwise, the signal terminates the INPUT statement. In
this case, any AFTER INPUT block is executed, and control of
program execution then passes to the next statement.

CONSTRUCT When INTERRUPT is named in an ON KEY clause, the signal is
treated as the activation key for that control block. Otherwise, the
signal causes CONSTRUCT to end. Any AFTER CONSTRUCT
block is executed, and control passes to the next statement.

DISPLAY When INTERRUPT is named in an ON KEY clause, the signal is
ARRAY treated as just another keystroke. Otherwise, the operation ends,
and control passes to the next statement.

MENU When INTERRUPT is named in a MENU clause, the signal is
treated as just another keystroke. The menu operation continues,
but INTERRUPT can be named ina COMMAND KEY list and can
be used to initiate an action.

PROMPT When INTERRUPT is named in an ON KEY clause, the signal is
treated as just another keystroke. That is, DEFER can trap the
signal. If an Interrupt signal is generated, the PROMPT statement
terminates, and NULL is assigned to the receiving variable.

INTERRUPT with INPUT and CONSTRUCT

You will often use program logic similar to the following program fragment
with INPUT or CONSTRUCT statements:

DEFER | NTERRUPT
LET int_flag = FALSE
LET cancel l ed = FALSE
-- the Interrupt flag is specifically set FALSE
INPUT . ..

BEFORE | NPUT

MESSACGE "Use CTRL-E to cancel input."
ON KEY (CONTROL-E)-- 1ogical cancel

IBM Informix 4GL Concepts and Use

Interrupt with Interactive Statements

LET cancell ed = TRUE
EXI T | NPUT
...other clauses of |NPUT..
AFTER | NPUT

-- tests to see if an Interrupt has been received (is TRUE)

IF int_flag THEN
LET cancell ed = TRUE
ELSE

...post-process based on Accept key..
END | F

END | NPUT
| F cancel | ed THEN

MESSAGE "I nput cancel l ed at your request!"

END | F

The code sample establishes three ways for the user to terminate the INPUT
operation:

Accept key. Normal completion of INPUT is signaled by pressing the
Accept key. The statements in the AFTER INPUT block are used to
perform any final validation of the entered data.

Interrupt key. When the user generates an Interrupt signal, 4GL ends
the INPUT operation, but in doing so it executes the AFTER INPUT
block. The program checks the setting of int_flag. If TRUE, the INPUT
operation is terminated. It exits the AFTER INPUT block early if it was
entered due to an Interrupt signal.

CONTROL-E. The program establishes a logical Cancel key based on
using an unassigned control key trapped by an ON KEY block.

The example code converts both cancellations, the built-in cancellation due
to the Interrupt signal and the programmed signal based on CONTROL-E, into
a TRUE value in a variable named cancelled. This is value cleared before the
INPUT operation begins, and is tested afterward.

When INTERRUPT is used in an ON KEY clause, INTERRUPT no longer termi-
nates the operation, so the preceding example could be written in this way:

-- DEFER | NTERRUPT run earlier

LET cancel l ed = FALSE
I NPUT ...

BEFORE | NPUT
MESSACGE "Use ctrl-E to cancel entry"

ON KEY (control-E, Interrupt) —I ogical cance
LET cancelled = TRUE

Handling Exceptions 12-9

Using the WHENEVER Mechanism

12-10

EXI T | NPUT
...other clauses of |NPUT...
END | NPUT
| F cancel | ed THEN
MESSAGE "I nput cancelled at your request!"
END | F

This explicit handling of INTERRUPT with an ON KEY statement prevents
execution of AFTER INPUT following INTERRUPT. Logic of either type can
also be used with CONSTRUCT.

Deferred INTERRUPT with the MENU Statement

Normally the arrival of the Interrupt signal has no effect on a MENU
operation. Typically a program should treat a user-generated Interrupt key
as a sign that the user is at least impatient. You can write a MENU program
block so that it treats INTERRUPT as a keystroke and uses it to exit the menu:

MENU " Scrol | i ng nmenu”
COWAND "First" "View first row of set" HELP 301

COVMMVAND "Next" "View next row of set" HELP 302

...etc etc

COWWAND KEY(ESCAPE, | NTERRUPT) "Exit" "Exit this nmenu"
EXIT MENU

END MENU

Using the WHENEVER Mechanism

The WHENEVER compiler directive handles various exceptional conditions:

= Runtime errors from the database server or from the 4GL program
= Warnings from the database server or from the 4GL program
= SQL end-of-data conditions
The WHENEVER directive is based on the ANSI/ZISO standard for embedded
SQL, which defines the keywords and basic operation of that statement.

Informix has extended the standard syntax of WHENEVER to support
additional keywords, conditions, and actions.

Like the declarations of variables or DEFER, the WHENEVER directive is not
an executable statement.

IBM Informix 4GL Concepts and Use

What WHENEVER Does

What WHENEVER Does

Every WHENEVER compiler directive has the following logical format:
VWHENEVER condition action

Here condition specifies some exceptional condition, and action specifies an
action for the 4GL program to take when that condition is detected. One
possible action is CONTINUE, which instructs 4GL to take no action.

After you issue the WHENEVER directive, you can write your program logic
as if the specified condition would never happen. For details on how to use
WHENEVER, see INFORMIX-4GL Reference.

Actions of WHENEVER

You can specify the following four possible types of actions using variations
of the WHENEVER statement:

= WHENEVER ... CONTINUE specifies that if the exceptional condition
happens, itis to be ignored. 4GL sets the status variable and attempts
to continue executing the program.

= WHENEVER ... STOP specifies that if the exceptional condition
happens, the program terminates. Any uncommitted database trans-
action is rolled back and an error message is displayed.

= WHENEVER ... CALL function_name specifies that if the exceptional
condition occurs, then the specified function should be called. The
function that you specify cannot have arguments.

= WHENEVER ... GOTO label_name specifies that if the exceptional
condition occurs, then control of program execution should jump to
a specified label within the same program block

Including WHENEVER in a source module changes the way that the compiler
produces code, starting with that line, and continuing to the end of the
module, or to the next WHENEVER directive for the same condition. If you
specify an action other than to do nothing (CONTINUE), then the compiler
automatically generates code to test for the exceptional condition after each
statement that might cause it, and to carry out the specified action if the
specified exceptional condition occurs.

Handling Exceptions 12-11

Errors Handled by WHENEVER

Errors Handled by WHENEVER

The condition keyword of WHENEVER specifies what errors are to be handled.
The keywords and the errors trapped are shown in this table.

< b
s 2 S = <
g £ g 0 Qo % g
5 £ & g S8 %o &
o = o o 5= 58 @
Keyword & & & 3 £8 & ¢
NOT FOUND L
WARNING or [
SQLWARNING
ERROR or ||]]
SQLERROR
ANY ERROR || - || - [

By default, 4GL executes a program that has no WHENEVER directives as if it
contained the following WHENEVER directives:

WHENEVER NOT FOUND CONTI NUE
VWHENEVER WARNI NG CONTI NUE
WHENEVER ANY ERROR CONTI NUE

That is, all exceptions are ignored. Some errors, however, called fatal errors,
cannot be trapped by WHENEVER,; these errors are listed in INFORMIX-4GL
Reference. A fatal error causes the program to terminate, regardless of what
any WHENEVER directive specifies.

12-12 IBM Informix 4GL Concepts and Use

Using WHENEVER in a Program

Using WHENEVER in a Program

In the next code example, a function contains two SQL statements, either of
which could produce an error if the function arguments are not correct. For
the purpose of this function, see “Dynamic SQL” on page 9-10.

To prevent runtime errors in these two statements from terminating the
program, the WHENEVER compiler directive has been inserted with code to
test the SQL error value after each statement.

FUNCTI ON t abl eGrant ()
DEFI NE whom, tab , priv , granText VARCHAR(255)

LET granText = "GRANT " , priv,
" ON" , tab,
" TO" , whom

VWHENEVER SQLERROR CONTI NUE
PREPARE granite FROM granText
| F SQLCA. SQLCODE == 0 THEN
EXECUTE granite
I F SQLCA. SQLCODE == 0 THEN
RETURN -- all done in good style
END | F
END | F
VWHENEVER SQLERROR STOP
-- Sonme SQL error if we get here
DI SPLAY "The following prepared statenent is in error:"
DI SPLAY gr anText
DI SPLAY "Error is ", SQLCA. SQLCODE USI NG " - <<<<<<"
", neaning:"
DI SPLAY ERR_GET(SQLCA. SQLCODE)
END FUNCTI ON

The WHENEVER directives are placed around the statements of interest. Here
WHENEVER SQLERROR CONTINUE causes errors in the PREPARE or EXECUTE
statements to be ignored. The only effect of an error will be to set a negative
code in the SQL communications area and the status variable.

The WHENEVER SQLERROR STOP directive terminates the program if an error
occurs. If it were omitted, then the effect of the first WHENEVER directive
would continue to the end of the source module.

Handling Exceptions 12-13

Using WHENEVER in a Program

12-14

Using WHENEVER ERROR for Non-Fatal Errors

Most execution errors can be prevented from terminating the program by the
WHENEVER ERROR directive, which establishes the policy of your program
for handling runtime errors. For example, when an error is encountered at a
given point in your program, you could take any of the following actions:

= Ignore errors.

= Call a function.

= Jump to a label.

= Display a PROMPT statement to get more guidance from your user.

The WHENEVER ERROR directive is a condensed way of putting an IF
statement after every SQL statement in order to establish what action should
be taken when errors occur.

Using WHENEVER ANY ERROR for Expression Errors

You can cause a variable to be checked after an error occurs in evaluating an
expression by using the ANY keyword with a WHENEVER ERROR directive.

Using WHENEVER WARNING for SQL Warnings

By default, 4GL sets to Wone or more characters in SQLCA.SQLAWARN and
continues execution when it encounters a warning. Although a WHENEVER
WARNING directive can be used to make the program call a function or go to
a label when an SQL warning flag is set, normally you do not want the SQL
warning flags to divert the program.

Using WHENEVER NOT FOUND for SQL End of Data

By default, 4GL sets SQLCA.SQLCODE (and status) to 100 (NOTFOUND) and
continues execution when it encounters an end-of-data condition. Although
the statement WHENEVER NOT FOUND can be used to make the program call
a function or go to a label when SQL input finds an end-of-data condition,
you normally do not want this condition to cause any diversion of the
program.

IBM Informix 4GL Concepts and Use

Notifying the User

Notifying the User

The 4GL Error line is a one-line display dedicated to the display of messages.
(See “Screen and Keyboard Options” on page 11-32.) The Error line becomes
visible in the following three cases:

= When you execute the ERROR statement to display a message that
you composed

= When you execute the ERR_PRINT() function to display a message
based on a 4GL error number

= When you execute the ERR_QUIT() function to display a message
and terminate the program

In fact, the Error line is a one-line 4GL window that is automatically opened
on the screen (see “Opening and Displaying a 4GL Window” on page 11-16).
After an ERROR statement or call to ERR_PRINT(), this window remains open
and visible until a keystroke event occurs. Then it is closed, revealing any
form or menu that might be hidden beneath it.

Logging Runtime Errors

You can maintain a file that lists sequentially all the error messages that
are issued while the 4GL application is running. One easy way to do this
is through the STARTLOG() function and involves the following steps:

1. Call the built-in STARTLOG(" filename*) function from the MAIN
statement, where filename specifies the file (and can also include a
pathname) in which error messages will be logged.

2. After an error is detected, use the following assignment statement:

LET vari abl e = ERR _GET(st at us)
where variable is a variable declared as data type CHAR and is of suf-
ficient length to hold the text of the error message.

3. Call ERRORLOG(variable) to make a new entry in filename.

The last two steps are not needed if you are satisfied with the default error
records that are logged automatically after STARTLOG() has been invoked. (If
you do include the last two steps, then the first step is not required.)

Handling Exceptions 12-15

Logging Runtime Errors

In step 2, if filename matches no existing file specification, 4GL creates that file.
If filename already exists, 4GL opens that file and positions the file pointer so
that any subsequent error or warning message will be appended to this file.
For your 4GL program to be portable, you should store filename in a variable,
rather than calling STARTLOG() with a literal string as its argument.

For details of the ERR_GET(), ERRORLOG(), and STARTLOG() functions and
for the default format of STARTLOG() error records, see INFORMIX-4GL
Reference.

12-16 IBM Informix 4GL Concepts and Use

Notices

IBM may not offer the products, services, or features discussed
in this document in all countries. Consult your local IBM repre-
sentative for information on the products and services currently
available in your area. Any reference to an IBM product,
program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does
not infringe any IBM intellectual property right may be used
instead. However, it is the user’s responsibility to evaluate and
verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering
subject matter described in this document. The furnishing of this
document does not give you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

For license inquiries regarding double-byte (DBCS) information,
contact the IBM Intellectual Property Department in your
country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

A-2

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS I1S” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not

apply to you.

This information could include technical inaccuracies or typographical
errors. Changes are periodically made to the information herein; these
changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Corporation
J74/G4

555 Bailey Ave

P.O. Box 49023

San Jose, CA 95161-9023
U.S.A.

Such information may be available, subject to appropriate terms and condi-
tions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equiv-
alent agreement between us.

IBM Informix 4GL Concepts and Use

Trademarks

Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-1BM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

This information contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names
and addresses used by an actual business enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color illus-
trations may not appear.

Trademarks

AlX; DB2; DB2 Universal Database; Distributed Relational Database
Architecture; NUMA-Q; 0S/2, 05/390, and OS/400; IBM Informix";
C-1ISAM"; Foundation.2000™; IBM Informix" 4GL; IBM Informix"
DataBlade™ Module; Client SDK™: Cloudscape™; Cloudsync™;

IBM Informix" Connect; IBM Informix" Driver for JDBC; Dynamic
Connect™; IBM Informix" Dynamic Scalable Architecture™ (DSA);

IBM Informix" Dynamic Server™; IBM Informix" Enterprise Gateway
Manager (Enterprise Gateway Manager); IBM Informix™ Extended Parallel
Server™; i.Financial Services™:; J/Foundation™; MaxConnect™; Object
Translator™; Red Brick Decision Server™:; IBM Informix” SE;

IBM Informix" SQL; InformiXML™: RedBack"; SystemBuilder™; U2m™;
UniData"; UniVerse"; wintegrate™ are trademarks or registered trademarks
of International Business Machines Corporation.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other
countries.

Windows, Windows NT, and Excel are either registered trademarks or trade-
marks of Microsoft Corporation in the United States and/or other countries.

Notices A-3

Trademarks

UNIX is a registered trademark in the United States and other countries
licensed exclusively through X/Open Company Limited.

Other company, product, and service names used in this publication may be
trademarks or service marks of others.

A-4 IBM Informix 4GL Concepts and Use

A B C D EF G H I

J K LMNOPOQRSTUVWXYZQ@

Index

A

Accept key
terminating INPUT
operation 12-9
using 11-27
AFTER FIELD block 11-12, 11-29
AFTER GROUP block 10-23
AFTER GROUP control block 10-20
Aggregate
functions 10-21
values 10-14
Alias of a table
inaform 11-7
in the TABLES section 11-7
ANSI-compliant database
table aliases in a form 11-8
update cursors 9-8
Application
files 4-3
interactive database 1-4, 4-3
multi-user 2-3
Arithmetic operators 8-5
ARRAY
data type 5-7
declaration 8-12
Array, screen 11-6
Arrow keys 7-20
Assign
record 8-38
value 8-38
Asynchronous signals 12-6
ATTRIBUTES section of form
specification
commenting 11-27
multiple-table forms 11-7
using 11-9 to 11-12

Automatic error logging 12-15

B

BEFORE FIELD block
typical use of 11-29
using 11-28
BEFORE GROUP control
block 10-20
Binary Large Objects (blobs) 5-3
Blobs 8-10
Boldface type Intro-10
Boolean expressions 8-25
BY NAME clause, DISPLAY
statement 11-22

C

C Compiler 1-5,4-11, 4-14
C language 3-3,3-4
C source code 1-5
c4gl command 4-11, 4-14
CALL statement 5-11, 8-28, 8-35,
8-38, 10-6
CASE keyword 8-31
CASE statement 5-11, 8-31
cat command 4-13
Character data types 8-8 to 8-10
Character-based terminal 7-3
Characters
letter case 3-5
lowercase 3-5
uppercase 3-5
whitespace 3-4
Chronological data types 8-6
CLEAR WINDOW statement 11-17

A B C D E F G H

CLOSE WINDOW statement 11-17
COBOL 3-3
Column connected to form
fields 11-10
Command block 7-12
COMMAND statement 7-11
Comment symbols 5-12
Commenting form fields 11-27
Compatible data types 8-29
Compliance icons Intro-11
Compound 4GL statements 5-10
Compound statements 3-4
CONNECT statement 10-15
CONSTRUCT statement 7-5, 8-28,
9-5
effect of Interrupt signal
upon 12-8
using 7-23
Contact information Intro-15
Control blocks, REPORT
statement 6-9
CONTROL keys, default
assignments 11-37
Control of execution 5-10
Control statements 3-4
Current window 7-9

D

Data
data allocation 5-8
data conversion 5-4, 8-28 to 8-30
definition 5-3 to 5-9
records 5-6
structures 5-6, 8-11 to 8-27
Data type
ARRAY 5-7
Binary Large Object (blob) 5-3
Binary Large Objects (blobs) 8-10
BYTE 5-3,8-10
CHAR 5-3
character and string 8-8 to 8-10
chronological 8-6
conversion 5-3, 8-29
conversion errors 8-30
DATE 8-6to0 8-7
DATETIME 8-6 to 8-7
DECIMAL 8-4,8-5

2 IBM Informix 4GL Concepts and Use

J K L

declaration 5-3
declaring 8-12 to 8-14
FLOAT 8-4
INTEGER 5-3, 8-4
INTERVAL 8-6 to 8-7
MONEY 8-4, 8-5
NCHAR 8-8
NUMERIC 8-4
NVARCHAR 8-8
REAL 8-5
RECORD 5-6
SERIAL 5-3
SMALLFLOAT 8-5
TEXT 5-3,8-10
using 8-4to 8-10
using NULL values 5-4
DATABASE
section 11-5
specification in a form file 11-5
statement 11-5, 11-11
Database
accessing 2-5
administrator (DBA) 4-5
interactive applications 1-4, 4-3
schema 4-5
server 2-5
DBDATE environment variable 8-6
DBPATH environment
variable 11-20
Decision tree 5-10
DECLARE statement 9-6
Default argument values 11-12
Default locale Intro-6
DEFER statement 5-14, 12-3, 12-7
DEFINE statement 3-5, 5-6, 5-8,
8-15 to 8-17, 8-34
Delete key 7-20
Delete privilege 7-13
DELETE statement 9-8
Dependencies, software Intro-6
Display
errors 12-5
field attributes 11-22
DISPLAY ARRAY statement
displaying records in an
array 11-14
effect of Interrupt signal
upon 12-8
using 11-26, 11-30

M NO P QIR STUVWX Y Z @

DISPLAY FORM statement 11-21

DISPLAY statement 2-5, 6-9,
7-3to 7-8

DISPLAY TO statement 11-21,
11-22

Displaying forms 7-16

Documentation, on-line
manuals Intro-12

Documentation, types of

related reading Intro-14
Dynamic 4GL 1-5
Dynamic SQL 6-4

E

END FOR statement 3-4
END MAIN statement 3-4
END REPORT keywords 10-24
END statement 5-10
Environment variables Intro-10

DBDATE 8-6
en_us.8859-1 locale Intro-6
Error

conditions 5-12

conversion 8-30

line 12-15

runtime 5-12, 5-14
Error logging 12-15
ERROR statement 7-5, 11-33
ERRORLOG() function 12-15
Errors

display 12-5

screen display 12-5
ERR_GET() function 12-15
Escape key 11-27,11-37
ESQL/C 4-14
Example code 3-6, 3-8
Exceptions

defined 5-12

handling, 5-12 to 5-14

types 5-12
EXIT REPORT statement 6-9, 10-24
Expressions

Boolean 8-25

character 8-26

described 8-22 to 8-27

errors 12-4

numeric 8-24

A B C D E F G H

relational 8-25
External signals 12-6

F

FALSE 8-33
Feature icons Intro-11
FETCH statement 6-4, 9-6, 11-23
fglpc command 4-11
Field
data type 11-10
delimiter 11-6, 11-13
multiple segment 11-6, 11-7
names in screen forms 11-9, 11-10
responding to entry or exit by
user 11-28
tag, using 11-6
File errors 12-4
File extensions 4-15
Agi 4-13
A4gl 4-10
4go 4-13
File types
form object 4-3
form source 4-3
globals 4-11
message object 4-3
message source 4-3
program object 4-3
program source 4-3
FINISH REPORT statement 6-7,
10-4
Flat files 2-5
FLOAT value 5-4
FOR statement 3-4, 5-11, 8-32
FOREACH statement 5-10, 6-4,
9-6 to 9-8, 11-26
Form
compiler 4-3, 4-7
displaying 7-16, 11-20
field comments 11-27
line 11-21
name, specifying 11-20
object files 4-3
opening 11-20
opening and
displaying 11-20 to 11-23
portability 2-7

J K

source files 4-3
specification file 4-3, 4-6 to 4-9,
7-14
using 2-8, 3-8, 4-6 to 4-9,
7-14 to 7-22
Form specification file
components 11-4
DATABASE 11-11
display attributes 11-22
FORMA4GL utility 7-14
Formatted mode 7-5to 7-8
Formatting reports 6-8, 10-17
FORMONLY field 11-11
Fourth generation language 3-6
Function calls, using 8-24
Function keys 11-37
FUNCTION statement 4-10, 10-6
Functions 8-34 to 8-37
returning values 8-39

L M NOP QR STUVWXY Z @

INPUT ARRAY statement 8-28
Input record 6-7
Input records, as a synonym for a
row 10-4
INPUT statement 8-28
defined 7-5
effect of Interrupt signal
upon 12-8
using 7-20, 11-27
Insert key 7-20
INSTRUCTIONS section of form
specification 11-13 to 11-14
Interface, character based 2-6, 2-9
Interrupt
key, with AFTER INPUT 12-9
signal 12-7
Interrupt signals 5-13
INTO clause 8-28
I1SO 8859-1 code set Intro-6

G

Global variable 5-9

GLOBALS keyword 4-11

GLOBALS statement 5-9, 8-15,
8-16 to0 8-18

GOTO statement 5-10

Graphical terminals 7-3

GROUP keyword 10-23

H

Header block 10-18

Help key 7-29

Help message, displaying 11-27

Help system, creating for an
application 7-28

Icons

compliance Intro-11

feature Intro-11
Indirect typing 8-12
Informix Dynamic 4GL 1-5
INFORMIX-SQL 1-4
INITIALIZE statement 8-28, 12-5

J

Jump statements 5-10

L

LABEL statement 5-10
Language features
database access 2-5
database schema 4-5
machine code 4-14
MAIN module 4-10
message file 4-3
nonprocedural programming 3-6
object module 4-15
overview of 4GL 1-3
procedural language 3-3
reports 2-6, 3-7
source code modules 4-3, 4-10
Large data types 5-4
LET statement 5-4 to 5-5, 5-6, 5-11,
8-22, 8-28, 8-38
Letter case 3-5
LIKE keyword 5-6, 8-19
using 8-12
Line mode 7-3to 7-4
Literal value 8-23
LOAD statement 2-5

Index 3

A B C D E F G H

Local variables 5-9

Locale Intro-6

LOCATE statement 8-10
Looping statement 5-10
Lowercase characters, using 3-5

M

Machine code 4-11, 4-14
MAIN module 4-10
MAIN statement 3-4, 4-10
Margins, setting report 10-10
Menu
options 7-10
using 2-8, 3-8, 7-10 to 7-13
MENU statement 7-8, 7-10
displaying and
using 11-18 to 11-20
effect of Interrupt signal
upon 12-8
using 11-19
using DEFER INTERRUPT
with 12-10
Message
compiler 4-3
source files 4-3
Message compiler utility 7-28
MESSAGE statement 7-5, 11-33
mkmessage utility 7-28
Module 3-5
Module variables 5-9, 8-16
Monospace font 10-10
Motif 1-5
Multiple-segment fields 11-7
Multi-user application 2-3, 9-9

N

Named constants 5-9

Named pipe 10-10

NEED statement 10-6

Nested groups 10-20

Nesting statement blocks 5-11, 6-9

Network, interfacing to 2-5

NEXT FIELD keywords, INPUT
statement 11-29

Nonprocedural use of SQL 9-4

NULL value 8-27

4 IBM Informix 4GL Concepts and Use

J K

Null values 8-33
NULL values, using 5-4
Numeric data type 8-4

0

Object module
concatenating 4-13
machine code 4-11, 4-14
p-code 4-11, 4-13
using 4-11to 4-15
ON EVERY ROW control
block 10-19
ON KEY clause
code block 11-28
using 11-39
ON LAST ROW control block 10-19
On-line Help for
developers Intro-13
On-line manuals Intro-12
OPEN FORM statement 11-20
OPEN WINDOW statement 11-16
Operating-system pipe 2-5
Operating-system standard
files 2-5
OPTIONS statement
changing line assignments 11-33
setting window display
attributes 11-22
ORDER BY statement 10-12
ORDER EXTERNAL
statement 10-12
Organization of a 4GL
program 4-10
OUTPUT Section 10-10
OUTPUT TO REPORT
statement 6-7, 10-4
Owner name 11-8

P

PageDown key 7-20
PageUp key 7-20
Pascal 3-3
Passing records 8-38
PAUSE statement 10-6
p-code

object files 4-13

L M NOPOQQWRSTUVWXY Z @

runner 4-14

pipe 2-6

PL/1 3-3

Primary Key 9-9

PRINT FILE statement 2-5

PRINT statement 6-9, 10-6, 10-17

Program array, in relation to screen
array 7-20

Program flow statements 5-10

Prompt line 11-32

PROMPT statement 3-5, 7-3 to 7-8,
8-28, 12-8

Pseudo-code Intro-6

Pseudo-machine code (p-code) 1-5,
4-11

Punctuation in 4GL 5-10

Q

Query by example
description 7-23
using the CONSTRUCT
statement 7-23
Quit signals 5-13, 12-7

R

Rapid Development System 1-5,
4-11
Record
defined 5-6
variables 7-18
RECORD keyword, defining screen
arrays 8-12
Related reading Intro-14
Report
code blocks 10-16 to 10-21
creating 10-3 to 10-24
creating and using 6-5 to 6-9
definition 10-3
designing 3-7
driver 6-7 to 6-8, 10-3
format section 10-15
formatting 6-8, 10-17
generating 3-7
headers 10-15
one-pass and two-pass 10-13
operating-system pipe 2-5

A B C D E F G H

output 2-6

sort keys 10-12

trailers 10-15

user interaction 3-8

using aggregate values 10-14
REPORT definition 6-8
Report prototype 10-8
Report signature 10-8
REPORT statement 2-5, 4-10, 10-6
REPORT TO keywords 10-10
Reserved lines 7-6
RETURN statement 6-9, 10-6
Ring menu 7-10
Row

passed to report driver 10-4

production by a report

driver 10-5
Runner, using to execute p-
code Intro-6

Runtime error 5-12, 5-14
Run-time errors 12-4 to 12-7

S

Scope of reference 5-9
Screen array

description 11-6
Screen array, in relation to program

array 7-20

Screen form

portability 2-7

reserved line positions 11-32
Screen record 11-6

using 7-18

within a screen array 11-6, 11-13
SCREEN section of form

specification

field delimiters 11-6

using 11-5
Screen, defined 7-9
SCROLL cursor 11-23
Scrolling array 11-24
SELECT statement 6-3, 6-4, 9-5
Sequential files 2-5
Setting report margins 10-10
showhelp() function 7-30
Simple data types 5-4, 8-4
SKIP statement 10-6

J K

Software dependencies Intro-6
Sort keys 10-12
Source code module 3-5
Source modules 4-3, 4-10
SQL language
communications area 3-6
dynamic SQL 6-4
errors 12-5
nonprocedural use of 9-4
use of a second cursor 9-9
using in 4GL programs 2-9, 3-6,
6-4
using SQL statements in
4GL 9-3t09-10
SQLCA record 12-6
Standard file I/0 2-5
START REPORT statement 2-5, 6-7,
10-4, 10-6
STARTLOG() function 12-15
Statement blocks
empty 5-11
nesting 5-11
Statements
compound 3-4
control 3-4
String data types 8-8 to 8-10
Structured data types 5-4
Synchronous signals 12-7
System requirements
database Intro-6
software Intro-6

T

TABLES section of form
specification 11-7
Terminal
character-based 2-6
emulation 2-6
TERMINATE REPORT
statement 6-7, 10-4
TOP OF PAGE clause 10-10
Trailer block 10-18

U

UNLOAD statement 2-5
UPDATE statement 9-4

L M NOP QR STUVWXY Z @

Uppercase characters
using 3-5
User interface, character based 3-8

V

VALIDATE statement 12-5
Validation errors 12-5
Value 8-22 to 8-27
Variables

aFloat 5-4

astring 5-4

data typing 5-3

DBCENTURY 8-6

global 4-11, 8-17 to 8-21

initializing 8-22

int_flag 5-9

local 8-36

module 8-16

NULL values 5-4

oneint 5-4

quit_flag 5-9

scope of reference 8-15

status 5-9

using 5-3 to 5-9, 8-11 to 8-27

W

WHENEVER statement 5-14
WHENEVER statement,
using 12-3,12-7,12-10 to 12-13

WHILE statement 5-10, 5-11, 8-32
Whitespace characters 3-4
Window

4GL 11-16

current4GL 7-9

defined 2-6, 7-9

opening and

displaying 11-15to 11-18

Windows 95 1-5
Windows NT 1-5
WORDWRAP attribute 11-7
workstations 7-3

X

X11 protocol 1-5

Index 5

	Informix Online Documentation
	Table of Contents
	Introduction
	In This Introduction
	About This Manual
	Organization of This Manual
	Types of Users
	Software Dependencies
	Assumptions About Your Locale
	Demonstration Database and Examples
	Accessing Databases from Within 4GL

	Enhancements to Version 7.31
	Documentation Conventions
	Typographical Conventions
	Icon Conventions

	Additional Documentation
	Documentation Included with 4GL
	On-Line Manuals
	On-Line Help
	On-Line Error Messages
	Related Reading

	Informix Welcomes Your Comments

	Introducing INFORMIX-4GL
	In This Chapter
	What Is 4GL?
	4GL Provides a Programmer’s Environment
	4GL Works with Databases
	4GL Runs in Different Environments
	Informix Dynamic 4GL
	Two Implementations of 4GL

	Interfaces of INFORMIX-4GL
	In This Chapter
	Database Access
	Access to Sequential Files
	Report Output
	User Access
	Using Forms and Menus
	Summary

	The INFORMIX-4GL Language
	In This Chapter
	A Structured, Procedural Language
	A Nonprocedural, Fourth-Generation Language
	Database Access
	Report Generation
	User Interaction

	Summary

	Parts of an Application
	In This Chapter
	The Database Schema
	Form Specifications and Form Files
	Form Design
	Field Entry Order

	Program Source Files
	Organization of a Program
	The Globals Files

	Program Object Files
	P-Code Object Files
	C-Code Object Files

	Example Programs

	The Procedural Language
	In This Chapter
	Declaration of Variables
	Data Typing
	Automatic Data Type Conversion
	Data Structures
	Records
	Arrays

	Memory Allocation
	Scope of Reference

	Decisions and Loops
	Statement Blocks
	Comment Symbols

	Exceptions
	Kinds of Exceptions
	Why Exceptions Must Be Handled
	How Exceptions Are Handled

	Database Access and Reports
	In This Chapter
	Using SQL in a 4GL Program
	Creating 4GL Reports
	The Report Driver
	The Report Definition

	The User Interface
	In This Chapter
	Line-Mode Interaction
	Formatted Mode Interaction
	Formatted Mode Display
	Sample Code for Formatted Mode Display

	Screens and Windows
	The Computer Screen and the 4GL Screen
	The 4GL Window

	How Menus Are Used
	How Forms Are Used
	Defining a Form
	DATABASE Section
	SCREEN Section
	TABLES Section
	ATTRIBUTES Section
	INSTRUCTIONS Section

	Displaying a Form
	Reading User Input from a Form
	Screen Records
	Screen Arrays

	How the Input Process Is Controlled
	How Query by Example Is Done
	How 4GL Windows Are Used
	Alerts and Modal Dialog Boxes
	Information Displays

	How the Help System Works

	Using the Language
	In This Chapter
	Data Types of 4GL
	Simple Data Types
	Number Data Types
	Differences Between DECIMAL and MONEY Data Types
	Numeric Precision

	Time Data Types��
	Character Data Types
	CHAR and VARCHAR Compared

	Large Data Types

	Variables and Data Structures
	Declaring the Data Type
	Creating Structured Data Types
	Declaring an Array
	Declaring a Record

	Declaring the Scope of a Variable
	Scope of Reference
	Time of Memory Allocation

	Using Global Variables
	Global Variable Declaration
	Using GLOBALS Within a Single Module
	Global Versus Module Scope

	Initializing Variables

	Expressions and Values
	Literal Values
	Values from Variables
	Values from Function Calls�
	Numeric Expressions�
	Boolean Expressions
	Character Expressions
	Null Values
	Null Values in Arithmetic
	Null Values in Comparisons
	Null Values in Boolean Expressions

	Assignment and Data Conversion
	Data Type Conversion
	Conversion Errors

	Decisions and Loops
	Decisions Based on NULL

	Functions and Calls
	Function Definition
	Invoking Functions
	Arguments and Local Variables

	Working with Multiple Values
	Assigning One Record to Another
	Passing Records to Functions
	Returning Records from Functions

	Using Database Cursors
	In This Chapter
	The SQL Language
	Nonprocedural SQL
	Nonprocedural SELECT
	Row-by-Row SQL
	Updating the Cursor’s Current Row
	Updating Through a Primary Key
	Updating with a Second Cursor �

	Dynamic SQL

	Creating Reports
	In This Chapter
	Designing the Report Driver
	An Example of a Report Driver

	Designing the Report Definition
	The REPORT Statement
	The Report Declaration Section
	The OUTPUT Section
	The ORDER BY Section
	Sort Keys

	One-Pass and Two-Pass Reports
	Two-Pass Logic for Row Order
	Two-Pass Logic for Aggregate Values
	Further Implications of Two-Pass Logic

	The FORMAT Section �
	Contents of a Control Block
	Formatting Reports
	PAGE HEADER and TRAILER Control Blocks
	ON EVERY ROW Control Block
	ON LAST ROW Control Block
	BEFORE GROUP and AFTER GROUP Control Blocks
	Nested Groups

	Default Reports
	Using Aggregate Functions
	Aggregate Calculations
	Aggregate Counts
	Aggregates Over a Group of Rows

	END REPORT and EXIT REPORT

	Using the Screen and Keyboard
	In This Chapter
	Specifying a Form
	The DATABASE Section
	The SCREEN Section
	Specifying Screen Dimensions
	Screen Records and Screen Arrays
	Multiple-Segment Fields

	The TABLES Section
	The ATTRIBUTES Section
	The Field Name
	The Field Data Type
	Fields Related to Database Columns
	Form Only Fields
	Editing Rules
	Default Values

	The INSTRUCTIONS Section
	Field Delimiters
	Screen Records
	Screen Arrays

	Using Windows and Forms
	Opening and Displaying a 4GL Window
	Opening Additional 4GL Windows
	4GL Window Names
	Controlling the Current 4GL Window
	Clearing the 4GL Window
	Closing the 4GL Window

	Displaying a Menu
	Opening and Displaying a Form
	Form Names and Form References
	Displaying the Form

	Displaying Data in a Form
	Changing Display Attributes

	Combining a Menu and a Form
	Displaying a Scrolling Array
	Taking Input Through a Form
	Help and Comments
	Keystroke-Level Controls
	Field-Level Control
	Field Order Constrained and Unconstrained

	Taking Input Through an Array

	Screen and Keyboard Options
	Reserved Screen Lines
	Changing Screen Line Assignments
	Getting the Most on the Screen

	Runtime Key Assignments
	Dedicated Keystrokes
	Intercepting Keys with ON KEY

	Handling Exceptions
	In This Chapter
	Exceptions
	Runtime Errors
	SQL End of Data
	SQL Warnings
	Asynchronous Signals: Interrupt and Quit

	Using the DEFER Statement
	Interrupt with Interactive Statements
	INTERRUPT with INPUT and CONSTRUCT
	Deferred INTERRUPT with the MENU Statement

	Using the WHENEVER Mechanism
	What WHENEVER Does
	Actions of WHENEVER
	Errors Handled by WHENEVER
	Using WHENEVER in a Program

	Notifying the User
	Logging Runtime Errors

	Notices
	Index

