

©2008 Four J’s Development Tools, Inc. www.4js.com

\

User Guide
Version 2.11

Copyright © 2008 by Four J’s Development Tools, Inc. All rights reserved. All information, content,
design, and code used in this documentation may not be reproduced or distributed by any printed,
electronic, or other means without prior written consent of Four J’s Development Tools, Inc.

Genero® is a registered trademark of Four J’s Development Tools, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks.

• IBM, AIX, DB2, DYNIX, Informix, Informix-4GL and Sequent are registered trademark of
IBM Corporation.

• Digital is a registered trademark of Compaq Corporation.

• HP and HP-UX are registered trademarks of Hewlett Packard Corporation.

• Intel is a registered trademark of Intel Corporation.

• Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

• Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in the
United States, other countries, or both.

• Oracle, 8i and 9i are registered trademarks of Oracle Corporation.

• Red Hat is a registered trademark of Red Hat, Inc.

• Sybase is a registered trademark of Sybase Inc.

• Sun, Sun Microsystems, Java, JavaScript™, and Solaris are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries.

• All SPARC trademarks are trademarks or registered trademarks of SPARC International,
Inc. in the United States and other countries.

• UNIX is a registered trademark of The Open Group.

All other trademarks referenced herein are the property of their respective owners.

Note: This documentation is for Genero 2.11. See the corresponding on-line documentation at the
Web site http://www.4js.com/online_documentation for the latest updates. Please contact your
nearest support center if you encounter problems or errors in the on-line documentation.

iii

Table Of Contents
General

Genero Application Server Overview..1
GAS Deployment Architecture ..4
GAS Startup and Command Options..13
Glossary and Acronyms..16

Installation and Configuration

Installation...19
Quick Start - Adding New Applications ...29
Configuration of the Genero Application Server ...40
Automatic Discovery of User Agent (adua.xrd) ...44
Using the Debugger ..51
Validating Configuration (XCF) Files...53
Licensing...55

Basic Concepts

The Application URI ..61
Aliases ..65
Authentication and the Genero Application Server ...67
Internationalization and GAS ..72

GAS Connector (Web Server0

Configuring the GAS Connector ...79
Connector Configuration Reference ...84

GDCAX/GJC

Adding a GDCAX or GJC Application ...91
How Templates Work for the GDCAX or GJC ..96

Web Services

Adding a Web Service Application..101
Hot Restart of Genero Web Services..105

GWC Basics

What is the Genero Web Client? ..108
Adding Applications ..111
How Browser-Based Themes, Templates, and Snippet Sets work for the GWC....116
How the GWC uses Web Technologies (to deliver an application)119
Genero Web Client Application Directory Structure..127
Session Variables and Cookies ..131
File Transfer within the GWC..136

Genero Application Server

iv

Customize the UI for the GWC

Understanding the Snippet-Based Rendering Engine ..143
User Interface Customization Options ..151
Customize the User Interface with Genero Presentation Styles153
Customize the User Interface with Cascading Style Sheets (CSS)159
Template CSS Reference ...166
Customize the User Interface with Templates and Snippets179
Customize the User Interface with JavaScript ..186
Front End Protocol ..192

GWC How-to

Tutorial - Working with the Genero Web Client...195
How to Create a Breadcrumb Trail ...219
How to Vary the Widget Display based on a Field Attribute220
How to Relate Styles, Classes, and Selectors..222
How to Display a Label as a Hyperlink ...224

GAS Configuration Reference

GAS Configuration File Overview ...227
Resource List - Configuration Reference..231
Component List - Configuration Reference...235
Application Execution Component - Configuration Reference................................236
Application Timeout Component - Configuration Reference...................................243
Web Application Picture Component - Configuration Reference250
Application List Reference (Defining Applications) ...252
Service List - Configuration Reference ...259

GWC Template Language Reference

Template Language Reference for the Snippet-Based Rendering Engine.............265
Template Instructions..266
Template Expressions ..274
Template Functions ..277
Template Paths Overview...297
Template Paths - Server hierarchy ...299
Template Paths - Document hierarchy ...300
Template Paths - Application hierarchy ..303
Template Paths - StartMenu hierarchy ...312
Template Paths - TopMenu hierarchy...316
Template Paths - Toolbar hierarchy..320
Template Paths - Window hierarchy ...323
Template Paths - Layout hierarchies ..331
Template Paths - Widgets hierarchies ..346

Migration

Migrating from GAS 2.10.x or GWC 2.10.x...365

Table Of Contents

v

Migrating to GWC 2.10 ...369
Migrating to Genero Application Server 2.00 ..372

Genero Application Server

vi

1

Genero Application Server Overview
Topics

• What is the Genero Application Server?
• The GAS Daemon
• Application Server Connector
• Front-ends and Extensions

What is the Genero Application Server?

Genero Application Server (GAS) is an engine that delivers Genero applications. It
creates relationships between various front-ends (the Genero Desktop Client Active X,
the Genero Java Client and the Genero Web Client) and the DVMs which run the
applications. The GAS also manages a pool of DVMs for Web Services applications.
See also Front-ends and Extensions.

This Application Server is interfaced with a Web Server to handle requests from the
Internet. Communication between the Web Server and the GAS daemon is handled by
the Application Server Connector.

GAS Daemon

With the support of the http protocol, the GAS daemon provides a direct connection for
access to applications without using a Web Server. During the development phase, you
can exclude the Web Server from your development architecture.

GAS simplifies the deployment phase by taking care of the connection to the
applications. No software installation or configuration is needed on the end user's side; a
simple browser is all that is required to access the program.

GAS Connector

The GAS connector sends requests from the Web Server to the correct GAS daemon.
Several GAS daemons can be configured to load balance the requests. The
configuration of GAS daemons is done in the connector.xcf file (the GAS connector
configuration file), found in the script directory of the Web Server.

Genero Application Server

2

There are two kinds of connectors: CGI and ISAPI. While they use different
technologies, they both play the same role and use the same GAS connector
configuration file. The ISAPI connector is only available on Windows platforms.

Front-ends and Extensions

The Genero Application Server can serve your applications with these various front-ends
and extensions.

• Genero Desktop Client ActiveX

Genero Desktop Client Active X (GDC/AX) allows you to run the Genero Desktop
Client via a Web site or http address. The first time you access the Client in
Active X mode, the GDC/AX software installs itself on your client machine and
creates a shortcut in Windows Start Menu. The GDC can then be executed from
the web page or directly using the shortcut.

For more information and installation instructions, refer to the Genero Desktop
Client Manual.

• Genero Web Client

The Genero Web Client (GWC) allows you to deliver Genero applications in a
Web browser, without having to install any software on the client machine.
Starting with 2.11, the GWC is included in the installation for the GAS. When
working with the GWC, scan the GWC-specific sections in the Table of Contents.

For a more detailed overview of the GWC, see What is the Genero Web Client?

• Genero Web Services Extension

The Genero Web Services Extension (GWS) allows you to implement Web
services. Web services are a standard way of communicating between
applications over the Internet or Intranet. A web service can be a server that
exposes services, or a client that consumes a service.
For more information and installation instructions, refer to the Genero Web
Services Extension Manual.

• Genero Java Client

Genero Java Client (GJC) is a graphical front-end for delivering Genero
applications. It is written in Java and can be run under any operating system
which supports J2SE Java Runtime Environment (JRE) version 1.4.2 or higher.
GJC can also be embedded into an HTML page thanks to an Applet, which will
work on any browser that supports Java Plug-in technology with a 1.4.2 or higher
J2SE Java Runtime Environment.

General

3

For more information and installation instructions, refer to the Genero Java Client
Manual.

Genero Application Server

4

GAS Deployment Architecture
Topics

• GAS Architecture
• Connection Types
• High Availability
• Services Pool (GWS only!)

GAS Architecture

This section looks at the following topics:

• Components involved in the GAS solution - Detailing the path from the DVM to
the browser and back.

• Third-party software requirements
• Component relationships - The relationship between the user agent, the GAS,

the Dynamic Virtual Machine (DVM), and the files required by each.

Components involved in the GAS solution

The GAS works with a user agent/front end, a Web server, the Genero Web Client
daemon (gasd), a Dynamic Virtual Machine (DVM), and a database server to provide
Web applications to the user.

General

5

The components involved are shown in the diagram above.

• A user agent (1) or the GDC (1) or the GJC (1) initiates a request through a Web
server (2).

• The Web server spans and communicates with the client CGI Connector, an
executable named either fglccgi or fglcisapi. The GAS Connector configuration
is specified in the file connector.xcf.

• The Connector handles communication with the Application Server, also called
the GAS daemon (3). The GAS daemon is a process named gasd. The gasd
configuration is set in the file as.xcf (default) or a user-specified configuration file.
The gasd must be started and listening for requests from the GAS Connector.

• Upon receiving a request, the gasd selects the next available port (as defined in
the gasd configuration file) and starts a DVM (4).

• The DVM runs the BDL program, which in turn interacts with the specified
database (5).

Communication is bi-directional, with information flowing back to the user agent.

Genero Application Server

6

In development, it is typical to have the user agent (browser) connect directly to the
application server, bypassing the Web server and Connector. For production, it is
recommended that you include the Web server in your GAS solution.

Third-party software requirements

The user agent, Web server, Genero BDL, and database server are not included. For
information about supported third-party software, refer to System Requirements (in the
section Installation).

Component Relationships

The diagram above provides another look at connections between a user agent, the
client front end, and a DVM. It also identifies which files are needed by each engine.

Connection Types

When running an application, there are two methods of connecting to the application
server:

• Connect directly to the application server
• Connect to the application server through a Web server.

General

7

Connect directly to the application server

Direct connection allows the user agent to connect directly to the Application Server,
without using a Web Server. Direct connection is provided to simplify the architecture of
development environments. It is not recommended for production environments.

Notes:

• Connecting directly to the application server is the typical connection method
used in development environments.

• A direct connection is always much faster than connecting through a Web server,
as it removes the routing of the request through the Web server and GAS
Connector.

Connect to the application server through a Web server

When you connect through a Web Server, the GAS Connector routes requests from the
Web server to an application server. Connectors are available in two forms:

• As a Common Gateway Interface (CGI) executable, usable on any CGI 1.1 Web
servers.

• As an Internet Information Server (IIS) plug-in, usable on any IIS web server
(version 5.x or greater).

Notes

• To use the HTTPS protocol, you must connect through a Web Server. Native
support of HTTPS by the application server is not supported at this time

• Two types of Connectors are available:
o Common Gateway Interface (CGI) executables, which are usable on any

CGI 1.1 web servers. The CGI connector executables are named
fglccgi under Unix systems and fglccgi.exe under Windows systems.

Genero Application Server

8

For example, if you installed the connector in the cgi-bin directory of your
web server, you'll access your application using the URL:

http://server:port/cgi-bin/fglccgi/wa/r/application

or for Windows systems:

http://server:port/cgi-bin/fglccgi.exe/wa/r/application

o Internet Information Server (IIS) plug-in, usable on any IIS web server
since version 5.

The IIS connector is named fglcisapi.dll. To access to your
application through this connector, you use the syntax:

http://server:port/scripts/fglcisapi.dll/wa/r/application

High Availability

The following diagram illustrates the possible path of an application request.

General

9

The Client sends a request to the Web Server. There are two methods that the client
might use to identify which Web Server to send the request to. It can make a DNS
request, and the DNS request can specify which Web Server to send the request to. The
DNS database can be updated while monitoring the Web Servers for availability. The
other solution is to use hardware (layer switch) that dispatches the load and monitors the
system.

The Web Server starts the GAS Connector (which is on the same physical machine as
the Web Server). For the initial connection, the GAS Connector reads from its
configuration file (connector.xcf) and randomly chooses from the list of available
Application Servers. If the selected Application Server does not respond, it attempts to
connect to the next available Application Server, and so on until a successful connection
is established.

The Application Server attaches to an available Dynamic Virtual Machine (DVM) to
handle the request. If no DVM is available to process the request, the Application Server
attempts to create a new DVM to process the request.

The Virtual Machine connects to the Database (or Database Cluster or Replica).

Services Pool (GWS Only!)

When you define a Web Service application, you specify execution parameters that
determine the number of DVMs available at any one time to service a request for that
Web Service. These parameters are defined in the Application Server configuration file.

When you define a Web Service application, the EXECUTION element sets the runtime
environment for that application by specifying the parameters for executing the Web
Service application. This application configuration can either reference a predefined
SERVICE_APPLICATION_EXECUTION_COMPONENT (and inherit the runtime
environment settings defined for that component) or the individual execution elements
can be explicitly set for the application.

Within the EXECUTION element, the POOL element sets the limitations regarding the
number of Virtual Machines that are attached to a Web Service. You specify three
values within a POOL element:

• The START element specifies the number of Virtual Machines to start when the
Genero Application Server starts.

• The MIN_AVAILABLE element specifies the minimum number of Virtual
Machines to have alive while the Genero Application Server is running.

• The MAX_AVAILABLE element specifies the maximum number of Virtual
Machines to have alive while the Genero Application Server is running.

Genero Application Server

10

For the discussion that follows, assume the following values have been specified for the
three pool elements for a Web Service applicaiton:

 START=3
 MIN_AVAILABLE=2
 MAX_AVAILABLE=5

When the Genero Application Server first starts, the START element defines how many
DVMs to start for a particular Web service. For our example, this means that 3 DVMs are
started.

In addition to the POOL elements mentioned above, a Web Service application definition
also includes a DVM_FREE timeout. The DVM_FREE timeout, specified in seconds, is
used to shut down a DVM that has no request to process. After DVM_FREE seconds
pass, if there are no requests to process, the DVMs are released to reach
MIN_AVAILABLE. For this example, one DVM is released.

As a request come in, if there are no available DVMs free to process the request, then a
DVM is launched to process the request. For example, if six requests come in, then six
DVMs are started to process those six requests.

General

11

Once a request is completed, the DVM is immediately released to reach the
MAX_AVAILABLE number. It does NOT wait for DVM_FREE to release the DVM. In our
example, this reduces the total number of DVMs to five.

After DVM_FREE time, if there are no more requests to process, then the DVMs are
released to reach MIN_AVAILABLE number.

The only way to limit the number of DVMs is to use the MaxLicenseConsumption
attribute within the SERVICE_LIST element. This attribute limits the amount of DVMs
that can be concurrently running across all applications referenced by the
SERVICE_LIST element.

Genero Application Server

12

When this attribute is used, a DVM can be placed in the queue waiting for an available
DVM. Once in the queue, request waits in the request queue until a DVM becomes
available and is able to process that request OR the REQUEST_QUEUE timeout is
reached. If the REQUEST_QUEUE timeout is reached, the Genero Application Server
returns an error message and logs "REQUEST_QUEUE timeout expired".

For example, if MaxLicenseConsumption=5 and a new request comes along, then that
request waits in the request queue until a DVM becomes available and is able to
process that request OR the REQUEST_QUEUE timeout is reached.

General

13

GAS Startup and Command Options
You configure the GAS through a configuration file. This configuration file can be the
default configuration file ($FGLASDIR/etc/as.xcf) or a custom configuration file that is
specified when the Genero Application Server is started. For more information about
setting configuration parameters in the configuration file, refer to GAS Configuration File
Overview.

Starting the GAS involves running the gasd command. This starts the gasd - the Genero
Application Server daemon. When starting the GAS, you can specify options to provide
additional information on how the application server is started, in addition to the settings
in the configuration file, as well as providing information about the application server.

Summary of gasd command:

This tool (gasd) manages the Genero Application Server daemon and performs some
configuration setting and checking.

Syntax:

gasd [options]

Options:

Option Description
-h This option displays help information.
-p directory

--as-directory
directory

This option allows you to specify the Genero Application
Server directory.

--configuration-
check

This option validates the GAS configuration file and exits.
Errors are displayed to error output.

--configuration-
explode

This option explodes the GAS configuration file into
separate files, one for each application, which are then
stored in $FGLASDIR/tmp. Each file lists the entire
configuration for an application, expanding the inherited
components.

-f
configuration_file

--configuration-
file
configuration_file

This option allows you to specify which configuration file to
use when starting the Genero Application Server daemon
(gasd). If not specified, the default configuration file
($FGLASDIR/etc/as.xcf) is used.

--configuration-
no-validation

This option skips the XSD validation phase for the
configuration file.
The $FGLASDIR/etc/cfas.xsd file is the XML Schema
Description file that documents the rules and constraints of
the as.xcf syntax. You can use this file with an XML tool to

Genero Application Server

14

validate the as.xcf file.
--product-
information

This option displays product information.

--development By default, template and snippet files are cached by the
GAS daemon. Setting this option causes the GAS daemon
to reload template and snippet files each time a new page
is created. By setting this option, developers can see
changes made to template and snippet files without having
to restart the GAS daemon.

-d Unix Only !

--no-daemon Unix
Only !

This option starts the daemon as a foreground process.
When this option is omitted, the daemon is started as a
background process.

-E name=value

--resource-
overwrite
name=value

This option overwrites the resource defined in the
configuration file or creates a new one.
Example:
gasd -E res.dvm.wa=$FGLDIR/bin/myrun
If in the configuration file "res.dvm.wa" has another value it
is now set to myrun. The final value is the one set in the
option.

--resource-define
name=value

This option declares a resource. If the declared resource
exists in the configuration file, the final value of the
resource is the one set in the configuration file. The
resources can be set to any resource defined in the
configuration files or the ones defined by the -E or --
resource-overwrite options.

--service-install
Windows Only !

This option installs Genero Application Server as a service
and exits.

--service-
uninstall Windows
Only !

This option uninstalls the Genero Application Server as a
service and exits.

-V
--version
--Version

This option displays version information.

Note:

• As of version 2.0, the "-l" option for controlling Genero Application Server logging
has been removed. Logging options are now controlled by specifying LOG
elements in the Genero Application Server configuration file. For more details,
see Logging - Configuration Reference.

General

15

What does "address already in use" mean ?

The message "address already in use" means that an appliction server (gasd) has
already been started on the same port. Check in the AS configuration file (default
$FGLASDIR/as.xcf) to identify the port where the application server (gasd) started. The
port number is identified in the following section:

<INTERFACE_TO_CONNECTOR>
 <TCP_BASE_PORT>6300</TCP_BASE_PORT>
 <TCP_PORT_OFFSET>94</TCP_PORT_OFFSET>
 ...
</INTERFACE_TO_CONNECTOR>

The default port specified is 6394 - derived by adding the base port (6300) to the port
offset (94). Set the values to a port which is not used by another application.

Genero Application Server

16

Glossary and Acronyms
In this section, many terms and acronyms used throughout this document are briefly
defined.

For more details on the various web technology terms and acronyms found on this page,
visit either www.w3c.org or www.w3schools.com.

CSS Cascading style sheets. CSS is a simple mechanism for adding
style (e.g. fonts, colors, spacing) to Web documents.

DTD Document Type Definition. The purpose of a DTD is to define the
legal building blocks of an XML document. It defines the document
structure with a list of legal elements and attributes.

DVM The Dynamic Virtual Machine or Runtime System that is installed
on the Application Server and executes the application program.

GAS Genero Application Server. Defined by the computer system that
houses the Dynamic Virtual Machine (DVM).

GDCAX Genero Desktop Client / Active X.

GJC Genero Java Client. A client technology that renders applications in
a Java Graphical User Interface.

GWC Genero Web Client. A client technology that renders the application
in an HTML Graphical User Interface (browser).

GWS Genero Web Services. A web service is any piece of software that
makes itself available over the internet and uses a standardized
XML messaging system. XML is used to encode all
communications to a web service. For example, a client invokes a
web service by sending an XML message, then waits for a
corresponding XML response. Because all communication is in
XML, web services are not tied to any one operating system or
programming language--Java can talk with Perl; Windows
applications can talk with Unix applications. See also SOA.

HTML Hyper Text Markup Language. An HTML file is a text file containing
markup tags. The markup tags tell the Web browser how to display
the page.

JavaScript JavaScript is a scripting language designed to add interactivity to
HTML pages. A JavaScript consists of lines of executable computer
code that can be embedded directly into HTML pages. It is an
interpreted language, meaning that the scripts execute without
preliminary compilation. Most browsers support JavaScript, and
anyone can use JavaScript without purchasing a license.

SOA Service-Oriented Architecture. In SOA, autonomous, loosely-
coupled and coarse-grained services with well-defined interfaces

General

17

provide business functionality and can be discovered and accessed
through a supportive infrastructure. This allows internal and
external system integration as well as the flexible reuse of
application logic through the composition of services to support an
end-to-end business process.

User Agent A User Agent is a client agent. It can be a browser, the Genero
Desktop Client or the Genero Java Client.

Web Server A computer that delivers (serves up) Web pages. Every web server
has an IP address and possibly a domain name. For example, if
you enter the URL http://www.4js.com in your browser, this sends a
request to the server whose domain name is 4js.com. The server
then fetches the home page and sends it to your browser. Any
computer can be turned into a web server by installing server
software and connecting the machine to the Internet.

WSDL Web Services Description Language. WSDL is an XML-based
language for describing Web services and how to access them.

XML Short for Extensible Markup Language, a specification developed
by the W3C. XML is a pared-down version of SGML, designed
especially for Web documents. It allows designers to create their
own customized tags, enabling the definition, transmission,
validation, and interpretation of data between applications and
between organizations. For more information, please refer to the
W3C web site at www.w3.org.

XML Schema XML Schema is an XML-based alternative to a DTD. An XML
Schema describes the structure of an XML document. The XML
Schema language is also referred to as XML Schema Definition
(XSD).

XHTML EXtensible HyperText Markup Language. XHTML is aimed to
replace HTML. XHTML is almost identical to HTML 4.01. XHTML is
a stricter and cleaner version of HTML. XHTML is HTML defined as
an XML application.

XPath XPath is a language for navigating in XML documents.

XSD See XML Schema.

XSL XML Style Sheets. XML does not use predefined tags (you can use
any tag names you wish), and the meaning of these tags are not
well understood. For example, a <table> element could mean an
HTML table, a piece of furniture, or something else - and a browser
does not know how to display it. XSL describes how the XML
document should be displayed.

XSLT XSLT is a language for transforming XML documents into XHTML
documents or to other XML documents.

19

Installation
Topics

• System requirements
• Installation
• Directory and files created or touched
• Starting the GAS and Validating the Installation with the GDC or GDC/AX
• Starting the GAS and Validating the Installation with the GWC
• The 404/400 error (when using fglccgi.exe or fglcisapi.dll)

System Requirements

• Operating systems
• Virtual machine
• Web Server
• User Agent
• Database

Operating System

Genero Application Server is supported on a large brand of operating systems, such as
Linux, IBM AIX, HP-UX, SUN Solaris and Microsoft Windows.

Each Genero Application Server package is identified with an operating system code
(hpx1100, w32vc71). You must install the Genero Application server package
corresponding to the operating system that you use.

For the detailed list of supported operating systems, please refer to the Four J's support
web site.

Virtual Machine

DVM for Genero 2.00+ is required.

Web Server

Any web server compliant with CGI (Common Gateway Interface) version 1.1 is
supported. For development platforms, we recommend Apache httpd. For more
information, refer to http://httpd.apache.org.

User Agent

Any Genero Front End or a Web Services client.

Genero Application Server

20

For the Genero Web Client, the supported user agents include:

User Agent Provider Version(s) Supported

Microsoft Internet Explorer (IE) 6.x
Internet Explorer (IE) 7.x

Mozilla FireFox 2.x
Opera Software Opera 9.x
Apple, Inc. Safari 3.x

Database

Any database accessible from the DVM or from the ODI. Refer to the Genero Business
Development Language Manual for details.

Installing the Genero Application Server

The software is provided as an auto-extractible installation program (i.e. product files
and installation program are provided in the same file). The name of the package
includes the operating system type and version. Ensure the package name corresponds
to your operating system before starting the installation program.

You should also know what type of installation to choose when prompted.

Do I need to be superuser to install Genero Application Server ?

You do not need to be superuser to install Genero Application Server. However, some
parts of the Genero Application Server need to be installed with special rights. For
example, installation of the connector assumes that you have the rights to install the
product in the web server directories.

Select the Installation Type

The installation type you select depends on whether you are installing the software on
the application server host, the web server host, or a host that will contain both the
application server and web server.

• Type 1: Install the Application Server - choose for the application server host.
• Type 2: Install the Connector - choose for the web server host.
• Type 3: Install both the Application Server and Connector.

The installation procedure differs between UNIX and Windows platforms:

Installation and Configuration

21

• Installing on UNIX
• Installing on Windows

Installing on UNIX platforms

The installation program provides options that allow you to specify configuration options
from the command line . You can display the installation program options using the -h
option:

$ /bin/sh fjs-gas-wersion-hpx1100.sh -h

The installation program identifies the operating system and checks that all the system
requirements are met before starting to copy the product files to your disk.

To perform the installation, run the auto-extractible shell script with the -i option:

$ /bin/sh fjs-gas-version-hpx1100.sh -i

Your application server and web server may reside on separate machines. As such, you
are presented with three installation choices:

1 --- Application Server (Application server - gasd)
2 --- Web Server (CGI Connector)
3 --- Full installation (Application server and CGI Connector)

Installation type 1 installs the GAS engine on your application server. Only this part is
needed for development purpose.

Installation type 2 installs the GAS Connector on your web server.

Installation type 3 assumes that your application server and web server are the same
machine.

After you select an installation type, the installation program copies the product files to
the relevant directories on disk.

Once the files are copied to disk, follow the instructions displayed.

Note: You can install the package as root using -r or --root option.

Installing on Microsoft Windows platforms

On Microsoft Windows, GAS is provided as a standard Windows setup program.
Distribution files and installation program are provided in the same file.

fjs-gas-version-windows.exe

Genero Application Server

22

When you execute the setup program, a wizard guides you through the installation
process. At one point, you will be asked to select the type of installation: Application
Server, Web Server, Full Installation, or Custom.

• If your Application Server and Web Server sit on separate hosts, you would
select Application Server or Web Server according to the host machine's role.
For development, you may bypass the Web Server and connect directly to the
Application Server for development and testing; in this scenario, select
Application Server.

• If your Application Server and Web Server reside on the same host, select Full
Installation.

On Microsoft Windows, GAS can be installed as a Windows service. If installed as a
Windows service, the GAS daemon can be started automatically at the server startup.

With Microsoft Internet Information Services, the installed files may not have the right
permissions. You will need to update these files permissions to fit IIS permissions.

Directory and files created or touched

The following table lists those directories and files created by or touched during the
installation process.

Directory File Description
<webserver> Web Server installation

directory.
<webserver>/<script>/ fglccgi GAS connector.
 fglcgienv Tool to check Web Server

environment.
 connector.xcf Connector configuration

file.
$FGLASDIR GAS installation directory.
 envas Script for setting

environment variables.
$FGLASDIR/app GWC applications external

configuration files.
$FGLASDIR/bin gasd GAS daemon.
$FGLASDIR/etc as.xcf GAS configuration file.
$FGLASDIR/log By default, GAS log files

are written to this directory.

Installation and Configuration

23

$FGLASDIR/tmp Default file transfer
directory.

$FGLASDIR/tpl/ generodefault.html Template directory
containing the default
template file for the built-in
rendering engine.
Note: The
generodefault.html
template is not used for
the snippet-based
rendering engine.

$FGLASDIR/tpl/set1
$FGLASDIR/tpl/set2
$FGLASDIR/tpl/set3

main.xhtml Snippet-based rendering
engine template
subdirectories. Each sub-
directory contains a
template file (main.xhtml)
and a set of .xhtml
snippets that define how
the snippet-based
rendering engine displays
the objects in the UI.

$FGLASDIR/web demos.html Root directory for direct
communication to the
application server.
Demonstrations listing.

$FGLASDIR/web/fjs gwccore.js
gwccomponents.js
gwccomponents.css

JavaScript handling the
application behavior.
Default cascading style
sheet for Set1.

$FGLASDIR/web/fjs/asapi application.js JavaScript handling
communication with
Genero Web Client.

 wrappers.js JavaScript handling
widgets behavior.

$FGLASDIR/web/fjs/uaapi webBrowser.js JavaScript handling user
agents specifics.

$FGLASDIR/web/fjs/defaultTheme genero.css Default cascading style
sheet for legacy engine.

 genero.js JavaScript handling the
application design.

<script> is the script directory of your web server (example "cgi-bin" for Apache and
"scripts" for Internet Information Services).

Genero Application Server

24

See also Genero Web Client Application Directory Structure.

Starting the GAS and Validating the Installation with the GDC/AX

Application Server

Note: If you installed the GAS daemon as a service on Windows and have started the
service, skip to step 3.

1. Set the GAS environment using the script $FGLASDIR/envas
2. Launch the GAS daemon gasd
3. Check the connection to the GAS with a direct connection by launching a demo

application.

For the GDCAX, use Internet Explorer to access to the demo application (
http://myApplicationServer:6394/wa/r/gdc-demo), replacing
myApplicationServer with the name of the server hosting the GAS. The first
time you access to the demo application, the ActiveX will install by itself. For
more information, refer to the Genero Desktop Client Manual.

For the GDC, you need to create a shortcut pointing to the demo application
(http://myApplicationServer:6394/wa/r/gdc-demo)

To create the shortcut, you must start the GDC in administrative mode using the
--admin or -a option. Refer to the Genero Desktop Client Manual for more
information on creating shortcuts.

To create the shortcut required for this test, once you have started the New
Shortcut wizard, select the By HTTP option:

Installation and Configuration

25

In the HTTP connection information page, you provide the application URL. On
most systems, you can replace the "myApplicationServer" with "localhost" for this
test.

http://localhost:6394/wa/r/gdc-demo

Genero Application Server

26

Tips:

On Windows platforms, if an application does not start you can debug the problem by
manually launching the program. For example, use the command: gasd -E
res.dvm.wa="cmd /K start cmd". The GAS opens a DOS command window when it
accesses the application. In the DOS window, the environment for the application is set;
you can now manually run the program and check step-by-step what went wrong.

Web Server

1. Perform the Application Server checkup first
2. Ensure that your webserver is correctly configured by accessing a static page

like index.html
3. Check your connector.xcf file, figure out if you access the right GAS
4. Launch a demonstration program through the web server

http://myWebServer/cgi-bin/fglccgi/wa/r/myApp

Installation and Configuration

27

Starting the GAS and Validating the Installation with the GWC

Important! After you upgrade your GAS, you must refresh the css and js downloaded in
the browser cache by clearing the browser cache. For many browsers, you can
accomplish this by pressing CTRL + F5.

Application Server

Note: If you installed the GAS daemon as a service on Windows and have started the
service, skip to step 3.

1. Set the Genero Web Client environment using the script $FGLASDIR/envas.
2. Launch the GAS daemon gasd with the gasd command.

To have the gasd reload template and snippet files each time a new page is
created, start the GAS daemon with the --development flag. This is useful if you
are making changes to either the template or snippet files, and wish to see the
results without having to restart the GAS daemon. For more information on
starting the Genero Application Server daemon and the various command
options, please refer to the chapter Startup and Command Options .

3. Check the connection to the application server using a URI providing a direct
connection. A variety of demonstration applications are provided with the
installation of Genero Web Client:

 http://<myApplicationServer>:6394/wa/r/Edit
 http://<myApplicationServer>:6394/demos.html

The latter URI displays a list of the available demonstration programs.The
Demos application is provided with the installation files, and is pre-
configured and ready to run.

Web Server

1. Check the installation of your application server (as stated in the previous
paragraph).

2. Ensure that your web server is correctly configured by accessing a static page
(such as index.html)

3. Launch a demonstration program using a URI inclusive of the Web server
connector.

 http://<myWebServer>/cgi-bin/fglccgi/wa/r/myApp

4. Note: On Windows platforms, when connecting via a Web server, you must
include the extension when calling fglccgi.exe, as shown in the following URL:

 http://<web_server>/cgi-bin/fglccgi.exe/demos.html

Genero Application Server

28

The 404/400 error (when I use fglccgi.exe or fglcisapi.dll)

With IIS 6.x, running cgi or isapi is disabled by default. To use fglccgi.exe or fglcgisapi,
you need to enable their execution.

1. In the IIS manager console, go to the "Web Service Extension".
2. Select "CGI Extensions".
3. Click on "Allow".
4. Repeat this process with "ISAPI Extensions".

Installation and Configuration

29

Quick Start - Adding New Applications
In order to have the GAS deliver an application, you need to provide the application's
configuration details to the GAS.

Topics

• Understanding application configuration
• Creating an application group
• Creating an application configuration file
• Adding an application directly to the GAS configuration file
• Configuring database environment variables for an application
• Using a script to set the application’s environment
• Specifying an images directory for an application

Understanding Application Configuration

Before you start, you should have successfully installed the Genero Application Server
and validated your installation. See Installation for more details.

Once you've verified that you can display the demo application with the desired front-end
client, you then add your own custom applications to the configuration. While there are
several ways to specify application configuration, this topic will outline the best practices
for adding your application configuration details to the GAS configuration.

Genero Application Server

30

To add applications:

Step 1: Identify (or create) an abstract application

An abstract application is an application definition that defines the various configuration
settings (known as components) that the Genero Application Server needs to run an
application. In other words, the purpose of an abstract application is to provide default
components / configuration details that can be inherited by other applications. These
components can include defining resources, environment variables, timeout settings,
themes, and more. An abstract application cannot be directly executed.

By default, abstract applications have been defined for you in the GAS configuration file
(default as.xcf) for each of the various front-end clients. For example, an abstract
application named "defaultgwc" has been defined for you for use with the Genero Web
Client. You can use this default abstract application, or you can create a new abstract
application.

Abstract applications must be defined in the GAS configuration file. After updating the
GAS configuration file, the GAS must be restarted.

An abstract application is used to define a configuration set shared by multiple
applications. Internal and external applications will inherit an abstract application's
configuration via the Parent attribute of their APPLICATION tag.

An abstract application is defined in the same way an internal or external application is
defined, except it has an extra attribute set in its APPLICATION tag, where
Abstract="TRUE".

When you define the configuration for a specific application, you can override the
settings you inherit from the abstract application.

Step 2: Create an application group

A GROUP defines a directory that contains application-specific configuration files.
Groups must be defined in the GAS configuration file.

By creating a group, you can add new application configuration files in the group
directory, and the applications are instantly available to the GAS without having to restart
the application server.

Instructions for creating an application group are provided below.

Step 3: Create the external application configuration file

To add a configuration file for an application, you create a new file within the group
directory. The name of the file should match the name of the application, and have an
XCF suffix. For example, if the application name was "app1", then you would create a

Installation and Configuration

31

configuration file named "app1.xcf". In this file, you specify a parent application - the
abstract application from which this application will inherit its default settings.

These files are known as external application configuration files. You could also add the
same information to the GAS configuration file; however you have to restart the GAS
whenever you modified the GAS configuration file. By using groups and external
application configuration files, you've provided flexibility in growing the number of
applications delivered by the GAS without having to worry about the impact of restarting
the GAS.

NOTE: When an application is defined within the GAS configuration file, it is known as
an internal application. When an application is defined in a separate application
configuration file, it is referred to as an external application, and its configuration file is
known as an external application configuration file.

Instructions on creating an external application configuration file are provided below.

Creating an Application Group

The GROUP element defines an alias for a directory containing one or more external
application configuration files. The alias is then used in the application URL, letting the
GAS know in which directory to find the external application configuration file.

You can use application groups to organize your applications into logical groups or a
hierarchy.

Consider the following application URL:

 http://<server>/cgi-bin/fglccgi/wa/r/accounting/app1

In this URL, both a group ("accounting") and an application name ("app1") are specified.
The Genero Application Server, on receiving this application request, uses the group
alias to identify the directory holding the external application configuration file.

 <GROUP Id="accounting">/path/config/accounting</GROUP>

Within this directory, the Genero Application Server would expect to file a file whose
name matches the name of the application with an .xcf suffix. In this example, the
Genero Application Server would be looking for a file named "app1.xcf".

Syntax

 <GROUP Id="groupId"> path </GROUP>

Notes

1. groupId is the alias.

Genero Application Server

32

2. path is the physical path to the directory.

Examples

 <GROUP Id="demo">$(res.path.demo.app)</GROUP>

This example assigns the alias demo to the directory containing the external application
configuration files for demo applications. The path is defined using a RESOURCE
$(res.path.demo.app). By wisely using RESOURCE elements, you can set your
configuration where a change to the directory structure only requires a change to a
single RESOURCE element in the configuration file.

To access an application defined externally and contained within this group, you would
enter an application URL that includes the alias in its path:

 http://server/cgi-bin/fglccgi/wa/r/demo/CardStep1

Based on this URL, the Genero Application Server expects to find the configuration file
CardStep1.xcf within the directory specified for the demo group.

The default group

The Genero Application Server configuration file provides a default group, defined using
the name _default. When an external application configuration file is added to this
group, the application URL can omit using a group name and simply reference the
application.

For example, the GAS installs with demo applications for use with the GWC, to include
an application that demonstrates Edit fields. You access the application by entering:

 http://server/cgi-bin/fglccgi/wa/r/Edit

The application URL does not specify a group, and the Edit application is not defined
internally. It must therefore be defined in an external application configuration file,
located in the directory defined for the _default alias.

 <GROUP Id="_default">$(res.path.app)</GROUP>

The RESOURCE $(res.path.app) resolves to $FGLASDIR/app, where you find a file
named Edit.xcf. This is the Edit application's external application configuration file.

Creating an Application Configuration File

The APPLICATION element defines an application environment. Within this element, you
can define local resources, change the execution environment, the timeout settings and

Installation and Configuration

33

the picture and output settings. You can refer to previously defined components by using
the tag attribute Using.

Syntax

<APPLICATION Id="appId" [Abstract="{ TRUE | FALSE }"] [
Parent="pAppId"] >
 [resource] [...]
 [<EXECUTION [Using=" exCompId "] > execution </EXECUTION>]
 [<TIMEOUT [Using=" timeCompId "] > timeout </TIMEOUT>]
 [<PICTURE [Using=" picCompId "] > picture </PICTURE>]
 [<OUTPUT Rule="UseGWC">
 <MAP Id="DUA_GWC" Allowed=" { TRUE | FALSE } " >
 [<THEME [Using=" themeCompId "] > theme </THEME>]
 </MAP>
 </OUTPUT>]
</APPLICATION>

Notes

1. appId is the application identifier
2. pAppId is the parent application identifier
3. An abstract application is used to share common configuration between multiple

child applications. An abstract application can't be instantiated.
4. resource is a local RESOURCE definition
5. exCompId, timeCompId, picCompId and themeCompId are components

identifiers
6. the content of execution, timeout, picture and theme is the same as the content

of their respective components

Example 1

The simplest external application configuration file only needs to specify a parent
application and the path to the compiled application files. In this example, the application
inherits the configuration settings of the parent application. This XML would be saved in
a file named appname.xcf, where appname is the name of the application.

The following XML defines the Edit application in an external application configuration
file Edit.xcf.

01 <APPLICATION Parent="defaultgwc">
02 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
03
xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/2.11/cfextwa.x
sd">
04 <EXECUTION>
05 <PATH>$(res.path.fgldir.demo)/Widgets</PATH>
06 </EXECUTION>
07 </APPLICATION>

Notes

Genero Application Server

34

1. The name of the application is the name of the .xcf file. The Id attribute of
<APPLICATION> tag is omitted for external applications; even if included, its value
is not read. Instead, the GAS uses the name of the configuration file to match to
the value of the Id attribute.
In the example above, the Id of the application is Edit.

2. The external application configuration file is re-read at each application launch.
There is no need to restart GAS after modifying an external configuration file.

3. The directory where the GAS searches for the external application configuration
file is defined in as.xcf by the tag <GROUP Id="_default">directory</GROUP>.
The default after installation is $FGLASDIR/app.

4. The Parent application is defined as "defaultgwc". This means that the
application will inherit the configuration settings defined for the default GWC
(defaultgwc) application, which is an abstract application defined in the GAS
configuration file.

5. The path to the application executables is defined by the PATH component.
6. No MODULE element is needed when the external configuration file shares the

same name as the application. When there is no defining <MODULE> tag in the
application configuration, the module taken by default is the name of the
application.

Limitations

1. An external application cannot be an Abstract application.
2. An external application can only inherit from an internal application.

Example 2

While an application inherits its base configuration from the parent application, additional
configuration elements can be added and existing configuration elements can be
overwritten. This next example of a hypothetical external application configuration file,
tutorialStep1.xcf, which would be found in the demo directory.

01 <APPLICATION Parent="demo-tut-abstract">
02 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
03
xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/2.11/cfextwa.x
sd">
04 <!-- Define a resource to the template HTML file -->
05 <RESOURCE Id="res.template.tutorial"
Source="INTERNAL">$(res.path.demo.dem-
tut)/web/tutorial/tutorialStep1.html</RESOURCE>
06 <EXECUTION>
07 <PATH>$(res.path.demo.dem-tut)/src</PATH>
08 <MODULE>tutStep1.42r</MODULE>
09 </EXECUTION>
10 <!-- Override default rendering template -->
11 <OUTPUT>
12 <MAP Id="DUA_AJAX">
13 <THEME>
14 <TEMPLATE Id="_default">$(res.template.tutorial)</TEMPLATE>
15 </THEME>
16 </MAP>

Installation and Configuration

35

17 </OUTPUT>
18 </APPLICATION>

Notes

1. Line 01 specifies the parent application as "demo-tut-abstract". Unless a value is
overwritten locally in the application configuration, the child application inherits
the configuration elements defined by the parent application.

2. Line 05 defines a local RESOURCE. This resource maps to a template file.
3. Lines 07-08 provide the path and file name of the program executable. It is

common to exclude the MODULE element when the executable name matches
the application name as provided in the URL. In this example, if the external
application configuration file had been named "tutStep1.xcf", then the MODULE
element specifying the program executable as "tutStep1.42r" could have been
excluded.

4. Line 12 defines the OutputMap as "DUA_GWC".
5. Line 14 overrides the _default template with the template defined by the

$(res.template.tutorial) resource in Line 04.

For additional information on the APPLICATION element and its child elements, see
Application List Reference.

To summarize, applications are typically defined using external application configuration
files, which are recognized as soon as they are added to a GROUP directory.

Adding Applications to the GAS Configuration File

While it is recommended that you add new applications using application groups and
external application configuration files, you have the option of adding your application's
configuration details directly in the GAS configuration file. Modifications to this file are
recognized only after the application server is restarted.

Both GROUP and APPLICATION configuration takes place within the
APPLICATION_LIST element in the Genero Application Server configuration file.

<APPLICATION_LIST>
 [group | application] [...]
</APPLICATION_LIST>

To provide the application configuration within the Genero Application Server
configuration file, you add an APPLICATION element and use the Id attribute to specify
the application name. It is this application name that is then used within the application
URL.

Consider the following URL:

Genero Application Server

36

 http://<server>/cgi-bin/fglccgi/wa/r/app1

If the application is defined internally, you would expect to find an APPLICATION
element with an Id that matches the application name provided in the URL:

 <APPLICATION Id="app1" Abstract="FALSE" Parent="defaultgwc">
 ...
 </APPLICATION>

The elements you can define between the APPLICATION tags is the same as for those
applications defined externally. For details, see Creating an Application Configuration
File.

Example in as.xcf defining 'gwc-demo' application

01 <?xml version="1.0" encoding="ISO-8859-6"?>
02 <?fjsApplicationServerConfiguration Version="1.30"?>
03 <CONFIGURATION>
...
181 <APPLICATION_LIST>
...
222 <!--Sample application for GWC-->
223 <APPLICATION Id="gwc-demo" Parent="defaultgwc">
224 <EXECUTION>
225 <PATH>$(res.path.fgldir.demo)</PATH>
226 <MODULE>demo.42r</MODULE>
227 </EXECUTION>
228 </APPLICATION>
...
234 <APPLICATION_LIST>
...
235 <CONFIGURATION>

Notes

The above example shows the minimum information required to define an application in
the application server configuration file.

1. The application is defined within the APPLICATION tags. The attributes shown in
the example are only a few of the attributes allowed within the APPLICATION
tags. For a more complete list of application tags, see the Application List
Reference.

2. The Id tag specifies the name of the application. It is this name that is referenced
in the URI.

3. The Parent tag identifies the parent application. This may be an executable or
abstract application. This application inherits the attribute values set for the
parent application. For those attributes that are assigned a value both in the
parent application definition and within this application's definition, the value set
for the application overrides the value set for the parent.

4. The EXECUTION section contains additional tags providing information needed to
execute the correct application.

Installation and Configuration

37

5. The PATH attribute defines the directory containing the module to be executed. It
is typical to list a resource that maps to the directory than the actual directory.

6. The MODULE attribute identifies the module to execute. Note that the extension is
used.

Warning: After making changes to the internal application configuration file, the
application server (gasd) must be restarted for the changes to take effect.

Configuring the Database Environment

You may need to set database-related environment variables for your application to work
correctly. Environment variables are set within the EXECUTION element of an
application's configuration.

Syntax

 <ENVIRONMENT_VARIABLE Id="env_var">env_value</ENVIRONMENT_VARIABLE>

Notes

1. env_var is the environment variable name.
2. env_value is the value used to set the variable name.

Example (using Informix)

<APPLICATION Id="myapp" Parent="defaultgwc">
 <EXECUTION>
 <ENVIRONMENT_VARIABLE
Id="INFORMIXDIR">ifx_path</ENVIRONMENT_VARIABLE>
 <ENVIRONMENT_VARIABLE
Id="INFORMIXSERVER">ifx_server</ENVIRONMENT_VARIABLE>
 <ENVIRONMENT_VARIABLE
Id="LD_LIBRARY_PATH">library_path</ENVIRONMENT_VARIABLE>
 <PATH>/home/myapp/bin</PATH>
 <MODULE>app.42r</MODULE>
 </EXECUTION>
</APPLICATION>

Notes

1. Replace ifx_path with the value of the INFORMIXDIR environment variable.
2. Replace ifx_server with the value of the INFORMIXSERVER environment

variable.
3. Replace library_path with the value of the LD_LIBRARY_PATH environment

variable.

Genero Application Server

38

Using a Script to set the Environment

Rather than specifying the environment variables with ENVIRONMENT_VARIABLE
elements, you can provide an application configuration that calls a script, where the
script sets the execution environment.

Example

<?xml version="1.0"?>
<APPLICATION Parent="defaultgwc"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/2.10/cfextwa.x
sd">
 <EXECUTION>
 <PATH>/home/f4gl/gep/configfiles/officestoredemo</PATH>
 <DVM>/bin/sh</DVM>
 <MODULE>gdc-kiosk.sh</MODULE>
 </EXECUTION>
</APPLICATION>

Notes:

1. PATH is where the script is stored.
2. DVM is the command to execute the script.
3. MODULE is the script file.

Specifying an Application's Images Directory

By default, the GAS looks for images in $FGLASDIR/pic. You can add your images to
this directory or you can specify your own image directory. To define your own directory
of images, you first define an alias for the directory in the Genero Application Server
configuration file, and then reference the alias in the application configuration.

Defining an Alias

An alias is like any Web Server alias. This maps a URL path to the server directory. For
example:

<INTERFACE_TO_CONNECTOR>
 ...
 <DOCUMENT_ROOT>$(res.path.docroot)</DOCUMENT_ROOT>
 <ALIAS Id="/images">/home/app/images</ALIAS>
 ...
<INTERFACE_TO_CONNECTOR>

Installation and Configuration

39

In this example, the alias /images is mapped to the directory /home/app/images.

After you have added the alias to the GAS configuration file, you must restart the GAS
daemon. Remember, you must restart the Genero Application Server daemon (gasd)
whenever you make any changes to the GAS configuration file, as this file is read at
start-up.

Once the GAS restarts, you can access an image with the URL:

 http://<app_server>:6394/images/img.png

(This example assumes the img.png file is in directory /home/app/images.)

Referencing the Alias in the application configuration

Having defined the alias, you reference the alias within the application configuration.

Syntax

 <PICTURE>
 <PATH>$(connector.uri)alias</PATH>
 </PICTURE>

Notes

1. alias is the alias previously defined in the INTERFACE_TO_CONNECTOR
element.

2. $(connector.uri) allows for pictures stored on the application server to be
available to the Web server.

Example

<APPLICATION Id="myapp" Parent="defaultgwc">
 <EXECUTION>
 <PATH>/home/myapp/bin</PATH>
 <MODULE>app.42r</MODULE>
 </EXECUTION>
 <PICTURE>
 <PATH>$(connector.uri)/images</PATH>
 </PICTURE>
</APPLICATION>

For more details on application configuration, see also:

• Application List Reference
• Adding a GDCAx / GJC application
• Adding a GWC Application
• Adding a GWS application

Genero Application Server

40

Configuration of the Genero Application Server
Configuration involves two configuration files: the Genero Application Server
configuration file (as.xcf) and the GAS Connector configuration file (connector.xcf).

Topics

• Configuring the GAS
• Configuring the GAS Connector
• Deploying applications
• Creating an application deployment strategy

Configuring the GAS

To request an application, you can access the Genero Application Server directly or you
can access the server via a Web server. See Connection Types in the Architecture
section for more information.

To achieve a desired level of performance, it is possible to host multiple application
servers and multiple Web servers.

For each GAS added to the solution, an administrator must create an application server
configuration file specifically to support that application server. An application server
configuration file specifies the resources (variables), timeout parameters, environment
variables, port settings, and application-specific details for an application server. For a
full explanation of the application server configuration file, you can start with the GAS
Configuration File Overview.

TheGAS installs with a default configuration file, as.xcf. To start an application server
using this default configuration file, run:

• gasd (to start as a daemon in the background)
• gasd -d (to start the process in the foreground)

To specify a different application server configuration file, use the "-f" option to specify
the file by name:

• gasd -f custom_as.xcf -d

where custom_as.xcf is the application configuration file.

To create an custom application server configuration file, create a copy of the default
application server configuration file as.xcf , rename the file, and modify the file as
needed.

Configuring multiple application servers

Installation and Configuration

41

When configuring multiple application servers on the same host, take care to assign
mutually exclusive ports between the application servers. In the application server
configuration file, you specify two types of port settings: INTERFACE_TO_CONNECTOR and
INTERFACE_TO_DVM.

The INTERFACE_TO_CONNECTOR section specifies the port number where the application
server listens for requests. If you plan to have multiple application servers (gasd) on the
same host, ensure the application servers (gasd) daemons are listening on different
ports. To accomplish this, change the port offset for each application server you plan to
run. For example, one daemon can be configured to listen on port 6394 (base port of
6300 + port offset of 94), while another can be configured to start on port 6395 (base
port of 6300 + port offset of 95).

If you do not specify unique ports for each application server, you will receive an error
when starting the second or subsequent application server, stating that the application
server could not start or that the specified port is already in use.

Warning!: Any change in the port set in the INTERFACE_TO_CONNECTOR section of
the application server configuration file requires a similar change in the Connector
configuration file.

The INTERFACE_TO_DVM section specifies the range of port numbers on which the
application server can start a DVM to service an application request. When setting the
range, you specify three things:

• The DVM base port
• The range interval
• The list of excluded ports

The combination of these settings determine the range of port values available for the
application server to start DVMs to service requests for applications. For example, if you
set the DVM base port as 6420, the port range interval to 10000, and list 10 excluded
ports, the range becomes 6420 through (6420 + 10000 + 10), or 6420 through 16430.

When several application servers run on the same host, each application server should
specify a mutually exclusive range of ports. As an administrator, ensure that there is no
overlapping of ports in the ranges specified for the various application servers.
Continuing with our previous example, when adding a second application server, the
DVM base port would be set to 16431.

If the ranges do overlap, the application servers continue to function, looking for the next
available DVM within its port range to service new requests. Failure to prevent
overlapping port ranges simply result in an application server being able to only run a
subset of the expected number of applications, as DVMs will not be able to start once all
ports within the specified range are in use.

Genero Application Server

42

Configuring the GAS Connector (for a Web server)

For each Web server you introduce into your solution, you must install and configure the
GAS Connector. For information on configuring the GAS Connector, see Configuring the
GAS Connector.

When configuring a Connector, you should ensure that each server reference reaches
the correct application server. In other words, verify that each base port and port offset
set in the GAS Connector configuration file (connector.xcf) file match a base port and
port offset set in an application server configuration file (as.xcf).

Deploying Applications

To deploy an application, it must be defined for the Genero Application Server.

For information about adding applications to your Genero Application Server
configuration, see:

• Quick Start - Adding New Applications
• Adding GDCAX / GJC Applications
• Adding GWC Applications
• Adding GWS Applications

Creating an application deployment strategy

When an application is requested, the application server starts a DVM to handle the
request. Having all applications served by a single application server may not perform as
desired. To provide scalability, the GAS Connector can direct specific applications to
specific application servers and/or spread the requests for one application across
several application servers.

When a user enters the URL for an application that goes through a Web server, the
Connector references its configuration file in order to identify the application server to
receive the request. For information on modifying the Connector configuration file, see
Configuring the GAS Connector.

Once the application server has been identified, the request is passed to the application
server. The application server identifies which application to display by matching the
application asked for in the URI against the Id listed in either the GAS configuration file

Installation and Configuration

43

(as.xcf) or, if not present, by matching the application name against the file names
used for external application configuration files.

Applications defined as an external application have the benefits of enabling
organization by groups (allowing for a taxonomy of applications to be constructed), for
adding/removing applications without having to restart the application server, and
reducing risk of overwriting application configuration settings during upgrades of the
GAS.

Genero Application Server

44

Automatic Discovery of User Agent (adua.xrd)
adua.xrd is the configuration file used by the Application Server to determine which user
agent is used. This file is stored in $FGLASDIR/as/etc.

Tip: Under most circumstances, modification of this file is not necessary.

Topics

• Output Maps Overview
• How an Output Map is chosen
• Modifying the auda.xrd file to specify custom Output Maps
• Specifying a specific Output Map in the application URI
• AUDA Syntax Diagrams
• Usage Example

Output Maps Overview

This section will document Maps > Resources > Templates and template snippets.

How an Output Map is chosen

The Output Map used by an application is defined by the auda.xrd file, located in the
$FGLASDIR/etc directory.

The Genero Application Server first identifies the value of the RULE element for the
application. The RULE element is defined in the application configuration defined for and
interpreted by the Genero Application Server.

For example, if the value of the RULE element is UseGWC, then drop into that element.
Once inside that element, the type of device that is being used to display the application
in the browser determines which Output Map is used to render the application.

<?xml version="1.0" encoding="UTF-8"?>
<?fjsRuleConfiguration Version="2.11"?>
<RULE_LIST
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/2.11/xrd.xsd">
 <!-- Output Driver Determination (XRD - XML Rule Definition) -->

Installation and Configuration

45

 <RULE Id="UseGDC">
 <TABLE Id="1" Key="User-Agent">
 <ROW>
 <IN>MSIE</IN>
 <ACTION Type="RESULT">DUA_GDC</ACTION>
 </ROW>
 <ROW>
 <IN>GDC</IN>
 <ACTION Type="RESULT">DUA_GDC</ACTION>
 </ROW>
 </TABLE>
 </RULE>
 <RULE Id="UseGJC">
 <TABLE Id="1" Key="User-Agent">
 <ROW>
 <ACTION Type="RESULT">DUA_GJC</ACTION>
 </ROW>
 </TABLE>
 </RULE>
 <RULE Id="UseGWC">
 <TABLE Id="1" Key="User-Agent">
 <ROW>
 <IN>Symbol-WC</IN>
 <ACTION Type="RESULT">DUA_Symbol-WC</ACTION>
 </ROW>
 <ROW>
 <IN>Symbian OS</IN>
 <ACTION Type="RESULT">DUA_PDA</ACTION>
 </ROW>
 <ROW>
 <IN>EPOC</IN>
 <ACTION Type="RESULT">DUA_PDA</ACTION>
 </ROW>
 <ROW>
 <IN>iPhone</IN>
 <ACTION Type="RESULT">DUA_PDA</ACTION>
 </ROW>
 <ROW>
 <IN>Windows CE</IN>
 <ACTION Type="RESULT">DUA_PDA</ACTION>
 </ROW>
 <ROW>
 <IN>PalmOS</IN>
 <ACTION Type="RESULT">DUA_PDA</ACTION>
 </ROW>
 <ROW>
 <IN>PalmSource</IN>
 <ACTION Type="RESULT">DUA_PDA</ACTION>
 </ROW>
 <ROW>
 <IN>Opera Mini</IN>
 <ACTION Type="RESULT">DUA_PDA</ACTION>
 </ROW>
 <ROW>
 <IN>MSIE</IN>
 <ACTION Type="RESULT">DUA_AJAX_HTML</ACTION>
 </ROW>

Genero Application Server

46

 <ROW>
 <ACTION Type="RESULT">DUA_AJAX</ACTION>
 </ROW>
 </TABLE>
 </RULE>
</RULE_LIST>

As shown in the sample auda.xrd file listed above, for handheld devices such as EPOC,
iPhone, Windows CE, and PalmOS, the DUA_PDA Output Map is chosen. This Output
Map consists of snippets that are designed to deliver an application on a handheld
device. For other devices (such as desktop computers and standard laptops), the
DUA_AJAX Output Map is selected.

Note: The built-in rendering engine remains for backwards compatibility and legacy
implementations, however to use the built-in rendering engine you must either modify
the auda.xrd file to specify "DUA_GWC" as the Output Map to use or explicitly reference
the DUA_GWC Output Map in the application's URL. Both topics are covered below.

Modifying the auda.xrd file to specify custom Output Maps

If you have created a custom Output Map, you simply modify the Output Maps specified
within the auda.xrd file to reference your new Output Map.

For example, imagine you have created an Output Map named DUA_AJAX1.

In the auda.xrd file installed by default, you would identify those situations where that
application should use your custom Output Map. The decision is still based on the
device on which the browser will display the application.

 ...
 <ROW>
 <ACTION Type="RESULT">DUA_AJAX1</ACTION>
 </ROW>
 ...

Specifying a specific Output Map in the application URI

You can specify an exact Output Map to use by including the Output Map declaration
within the URL of the application.

For example, to specifically use the DUA_PDA Output Map when calling the Edit demo
application, you would use the following URI:

Installation and Configuration

47

 http://localhost:6394/wa/r/gwc-demo?OutputMap=DUA_PDA

You can force an application to use a specific Output Map by providing the Output Map
as an argument in the application URL.

Example 1

 http://localhost:6394/wa/r/gwc-demo?OutputMap=DUA_GWC

In this example, the demo application is rendered using the DUA_GWC Output Map,
which renders the application using the built-in rendering engine and its default theme.

Example 2

 http://localhost:6394/wa/r/gwc-demo?OutputMap=DUA_PDA

In this example, the demo application is rendered using the DUA_PDA Output Map,
which renders the application using the snippet-based rendering engine and the PDA
theme.

AUDA Syntax Diagrams

• RULE_LIST
• RULE
• TABLE
• ROW

Syntax:

<RULE_LIST>
 <RULE Id="useId">
 <TABLE Id="numId" Key="keyType">
 <ROW>
 <IN>inType</IN>
 <OUT>outType</OUT>
 <ACTION Type="actionType">actionName</ACTION>
 </ROW>
 [<ROW> ...]
 </TABLE>
 </RULE>
 [<RULE> ...]
</RULE_LIST>

Example:

01 <RULE_LIST>
02 <RULE Id="UseGDC">

Genero Application Server

48

03 <TABLE Id="1" Key="User-Agent">
04 <ROW>
05 <IN>MSIE</IN>
06 <ACTION Type="RESULT">DUA_GDC</ACTION>
07 </ROW>
08 <ROW>
09 <IN>GDC</IN>
10 <ACTION Type="RESULT">DUA_GDC</ACTION>
11 </ROW>
12 </TABLE>
13 </RULE>
14 <RULE Id="UseGJC">
15 <TABLE Id="1" Key="User-Agent">
16 <ROW>
17 <ACTION Type="RESULT">DUA_GJC</ACTION>
18 </ROW>
19 </TABLE>
20 </RULE>
21 </RULE_LIST>

Note: A usage example is provided at the bottom of this section.

RULE_LIST

The RULE_LIST element is the main element of an XRD (XML Rule Definition) used by
the Genero Application Server and contains the following child element:

1. One or more RULE elements.

RULE

The RULE element defines a unique rule. The RULE element must specify an Id
attribute; this required attribute takes a string value. The identifier (Id) of the rule defines
its name, as it is going to be used later, in files such as the Genero Application Server
configuration file. Valid values for the Id attribute include:

• UseGDC
• UseGWC
• UseGJC

The RULE element contains the following child element:

Installation and Configuration

49

1. One or more TABLE elements. Each rule uses tables, which can be linked in
order to have a complete process.

TABLE

The TABLE element must specify two attributes, an Id attribute and a Key attribute.

• The required Id attribute takes a string value. This attribute provides the table
with a unique identifier (Id), which is necessary for linking tables.

• The required Key attribute takes a string value (NMToken). The Key attribute
defines which what is gioing to be analyzed. Currently, only two values are
supported: HTTP_ACCEPT and HTTP_USER_AGENT. Those values are
transmitted by the connector to the Genero Application Server.

The TABLE element contains the following child element:

1. One or more ROW elements. Each table contains on or more rows. Rows are
processed sequentially in order of appearance in the XRD file; therefore rows are
not named.

ROW

The ROW element may contain the following child elements:

1. Zero or more IN elements (optional). The IN element takes a string value, and
specifies a string or sub-string that must be in the search string.

2. Zero or more OUT elements (optional). The OUT element takes a string value,
and specifies a string or sub-string that must not be in the search string (they
must be OUT).

3. One ACTION element (required). The ACTION element must specify a Type
attribute and takes a required string (NMToken) value. If the string matches the
IN and OUT rules (i.e., the IN and OUT conditions are met), this element defines
the action to perform. Valid values for this element type are:

o GOTO_TABLE - Jumps to the specified table.
o RESULT - Sends the result.

Genero Application Server

50

Usage Example

For this example, suppose you want to use GDCAX for Internet Explorer browsers and
GJC for all other browser types. To achieve this, you have configure your application to
support both Output Maps.

In your Genero Application Server configuration file (as.xcf), you would add a rule,
such as UseAllOutputDriver shown below:

<APPLICATION Id="test" Parent="defaultwa">
 <EXECUTION>
 <PATH>$(res.path.fgldir.demo)</PATH>
 <MODULE>demo.42r</MODULE>
 </EXECUTION>
 <OUTPUT Rule="UseAllOutputDriver">
 <MAP Id="DUA_GJC" Allowed="TRUE">
 <RENDERING Using="cpn.rendering.wa"/>
 <THEME Using="cpn.theme.default.gjc"/>
 </MAP>
 <MAP Id="DUA_GDC" Allowed="TRUE">
 <RENDERING Using="cpn.rendering.wa"/>
 <THEME Using="cpn.theme.default.gdc"/>
 </MAP>
 </OUTPUT>
</APPLICATION>

In adua.xrd, you would have the following:

<RULE Id="UseAllOutputDriver">
 <TABLE Id="1" Key="User-Agent">
 <ROW>
 <IN>MSIE</IN>
 <ACTION Type="RESULT">DUA_GDC</ACTION>
 </ROW>
 <ROW>
 <ACTION Type="RESULT">DUA_GJC</ACTION>
 </ROW>
 </TABLE>
</RULE>

With this example, if the User-Agent value contains MSIE, GDCAX will be used;
otherwise the GJC (java applet) will be used.

Installation and Configuration

51

Using the Debugger
This section provides instructions for using the debugger for the GAS.

Topics

• Using the debugger on Windows
• Using the debugger on Unix

Using the Debugger for the GAS on the Windows platform:

To run the FGL debugger, you have to tell gasd not to run "fglrun" directly; instead, gasd
must open a DOS command or a xterm window and run "fglrun -d".

1. In %FGLASDIR%/etc/as.xcf, change:
 <RESOURCE Id="res.dvm.wa"
Source="INTERNAL">$(res.fgldir)\bin\fglrun.exe</RESOURCE>
to:
 <RESOURCE Id="res.dvm.wa" Source="INTERNAL">cmd /K start
cmd</RESOURCE> (Windows)
 <RESOURCE Id="res.dvm.wa"
Source="INTERNAL">/home/test/xterm.sh</RESOURCE> (Unix)

2. In the application configuration file (default as.xcf), change the DVM availability
timeout value to allow you time to type your debug commands.
For example, change:
 <DVM_AVAILABLE>10</DVM_AVAILABLE>
to:
 <DVM_AVAILABLE>60</DVM_AVAILABLE> This change allows you 60 seconds
in which to type your debug commands.

3. Restart the gasd. (The gasd must be restarted whenever you modify the
application server configuration file (default as.xcf) in order for the changes to
take effect.)

4. Enter the application URL in your browser. This opens a shell window.

5. Type the commands to run the application:
 fglrun -d test.42r <<< Sets the debugger on program test.42r.
 b test:20 <<< Sets a break point.
 run <<< Runs the application.
This refreshes the browser like FGL debugger does with GDC.

Tip: You can also run gasd from the command line and override some the settings for
res.dvm.wa:

Genero Application Server

52

• gasd -E res.dvm.wa="cmd /K start cmd" (Windows)
• gasd -E res.dvm.wa="/home/test/xterm.sh" (Unix)

Warning! Using gasd as a service

If you are using gasd as a service, you need to allow the service to interact with the
desktop.

• Select the service.
• Open the properties
• In the "Log On" folder tab, check "Allow service to interact with desktop".
• Apply the change.
• Restart the service.

Using the Debugger for the GAS on Unix

The following instructions assume that you are operating within a graphical environment.
If you are not operating within a graphical environment, simply enter the commands you
want to process in the script.

To run the gasd, enter the following:

 gasd -E res.dvm.wa="/home/test/xterm.sh"

In the xterm.sh shell, you have: /usr/X11R6/bin/xterm (the complete path to xterm).

This removes all of the options given by gasd along with all error messages. A new
xterm is opened. At this point, proceed as you would if you were running your
applications from a Windows platform.

Installation and Configuration

53

Validating Configuration (XCF) Files
The Genero Application Server provides XML Schema Definition (XSD) files, which can
be used to validate your Genero Configuration Files (XCF) in any enhanced XML editor.

Topics

• What is an XML Schema Definition file?
• Specifying the XCD file
• Validating with the gasd tool
• Enhanced XML Editors
• Validation Steps

What is an XML Schema Definition file?

An XML Schema Definition (XSD) file provides the syntax and defines a way in which
elements and attributes can be represented in a XML document. It also advocates that
the given XML document should be of a specific format and specific data type. XSD is
fully recommended by W3C consortium as a standard for defining an XML document,
and has replaced the use of Document Type Definition (DTD) files. For more information
on XSD, please refer to the W3C consortium web site at http://www.w3.org.

Specifying the XSD file

The XSD file to use for validation is explicitly defined within the XML file. For example:

• In the GAS configuration file (as.xcf), the following entry exists:

xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/2.10/cfa
s.xsd"

• In external configuration files, add the following entry if not present:

xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/2.10/cfe
xtwa.xsd"

• In the Connector configuration file (connector.xcf), the following entry exists:

xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/2.10/cfc
onnector.xsd"

Genero Application Server

54

Validating with the gasd tool

There are two options that can prove useful in validating the GAS configuration file with
the gasd tool:

--configuration-check

The configuration-check option validates the GAS configuration file and exits. Errors are
displayed to error output.

--configuration-explode

The configuration-explode option explodes the GAS configuration file into separate files,
one for each application, which are then stored in $FGLASDIR/tmp. Each file lists the
entire configuration for an application, expanding the inherited components.

For more information on the options for the gasd command, see GAS Startup and
Command Options.

Enhanced XML Editors

Any search for "XML Editors" across the various search engines return a long list of XML
Editors that use the XML Schema Definition file to validate the XML within the various
configuration (XCF) files. One well-known XML editor is Altova XML (XML Spy); a fuller
list of tools can be found on the XML Schema page of the W3C consortium, under Tools.

http://www.w3.org/XML/Schema

Validation Steps

With a good XML editor, you can validate your Genero configuration (XCF) files. You
can:

1. Check that your XML file is well-formatted.
2. Validate your XML file against the referenced XML Schema Definition (XSD) file.
3. Add new elements with completion assistance.

Installation and Configuration

55

Licensing
This topic provides an explanation of how licensing works through the use of diagrams. It
does not replace the license agreement.

• Licensing - Base Example
• Licensing - Using the RUN command
• Licensing - Multiple User Agents
• Licensing - Summary Case

Licensing - Base Example

This diagram shows two (2) User Agents connected to two (2) DVMs. (The connection is
made via the Web server, fglccgi / fglcisapi, and gasd.)

In this scenario, two (2) runtime licenses are used.

Note: Most browsers now support tabs. It is important to understand that for this
discussion, each browser is assumed to be using only one tab. If you open two tabs in a
browser, and each tab connects to its own DVM, then it is just as if two browsers were
being used, and two (2) runtime licenses are used.

Genero Application Server

56

Licensing - Using the RUN command

This diagram shows two (2) user agents connected to an application, which in turn calls
other applications using the Genero BDL RUN command or the RUN WITHOUT WAITING
statement.

In this scenario, two (2) runtime licenses are used.

Installation and Configuration

57

Licensing - Multiple User Agents

This diagram shows four (4) user agents running on two (2) different PCs and connected
to four (4) DVMs.

In this scenario, four (4) runtime licenses are used.

Genero Application Server

58

Licensing - Summary Case

This diagram shows four (4) user agents running on two (2) different PCs and connected
to four (4) DVMs, some of which are running external DVMs using the Genero BDL RUN
command.

In this scenario, four (4) runtime licenses are used.

Genero Front Ends and License Counting

The Genero Front End -- whether GWC, GDC-HTTP, GDCAX, or GJC -- does not
require any additional license information.

When a user requests an application, the gasd starts a DVM to handle the request. It is
the DVM that consumes a license. For example, one license is used when an application
is started from a User Agent. If within this application, a RUN or a RUN WITHOUT
WAITING is executed, the same license is used, even if the first User Agent opens new
User Agents.

If, however, an application is started in another User Agent (without RUN or RUN
WITHOUT WAITING), a new license is used.

Installation and Configuration

59

When the license is freed depends on how the application is exited. A license is freed
when the applications closes, or to be more exact, when the DVM is shut down. If the
user exits the application by clicking on the cancel or exit button, the DVM is shut down
and the license is immediately freed. If, however, the user does not exit the application
but instead closes the User Agent, the DVM continues to run until the application times
out (the number of seconds is set for the USER_AGENT timeout). After the timeout
period passes, the gasd closes the connection to the DVM, the DVM shuts down, and
the license is freed.

To determine the number of licenses used, run "fglWrt -u" followed by "fglWrt -a
info users".

Warning

GDC-HTTP and GDCAX do not have the same license counting rules as the GDC has in
other connection modes (rlogin, telnet or ssh). For the latter, one license is consumed
per GDC monitor, no matter the number of applications launched. This is also true for
GJC-HTTP and GJC Applet versus GJC in other connection modes.

61

The Application URI

To access an application, you specify the necessary information in the browser's
address bar by entering in the appropriate application URI.

Topics

• URI Syntax
• Examples

URI Syntax

The syntax of a URI follows the standards described in the RFC 2616. A list of example
URIs is provided below.

http[s]://
 {
 web-server[:web-server-port]
 [
 /directory [...]
 /script-directory
 /connector
]
 |
 app-server[:app-server-port]
 }
 /scope
 /action
 /group
 /
 {
 web-application-id
 }
 [
 ?
 parameter=parameter-value
 [
 &
 parameter=parameter-value
]
 [...]
]

Note: https is slower than http due to encryption.

Genero Application Server

62

Explanation of syntax options

Option Data
Type Explanation Valid Values

web-server STRING Name or IP address of the Web
Server.

web-server-
port INTEGER Port on which the Web Server

listens.

directory STRING Any directory or virtual directory
on the Web Server.

script-directory STRING The script directory.

connector STRING The name of the connector. fglccgi, fglccgi.exe,
fglcisapi.dll

app-server STRING Name or IP address of the
Application Server.

app-server-
port INTEGER Port on which the Application

Server listens.

scope STRING Scope we are working on. wa, ja, ws

action STRING Action requested of the
Application Server. r

group STRING Application Group defined in
as.xcf

web-
application-id STRING Web Application identifier.

parameter STRING Parameter to communicate to
the Application Server. Arg, UserAgent

parameter-
value STRING Parameter value.

URI Examples

Example 1 - Connection through CGI connector

Calls the "myApp" application through the "myWebServer" Web Server, using the CGI
connector:

http://myWebServer/cgi-bin/fglccgi/wa/r/myApp

Basic Concepts

63

Note: On Windows platforms, when connecting via a Web server, you must include the
extension when calling fglccgi.exe, as shown in the following URL:

http://myWebServer/cgi-bin/fglccgi.exe/wa/r/myApp

Example 2 - Connection through isapi connector

Calls the "myApp" application through the "myWindowsWebServer" Web Server, running
IIS, using the ISAPI connector:

http://myWindowsWebServer/scripts/fglcisapi.dll/wa/r/myApp

Example 3 - Direct connection to gasd

Calls the "myApp" application on the "myApplicationServer" Application Server, listening
to port 6394:

http://myApplicationServer:6394/wa/r/myApp

Example 4 - Connection using a group

Calls the "myApp" application defined in group "demo" through the "myWebServer" Web
Server,

http://myWebServer/cgi-bin/fglccgi/wa/r/demo/myApp

Example 5 - Starting applications with arguments

Calls the "myApp" application with arguments, through the "myWebServer" Web Server:

http://myWebServer/cgi-bin/fglccgi/wa/r/myApp?Arg=Val1&Arg=Val2

Notes:

1. A question mark (?) follows the application name.
2. Val1 is the value of the first argument and Val2 is the value of the second

argument.
3. Each argument is separated by an ampersand (&).

For more details on arguments configuration see the PARAMETERS section.

Example 6 - Calling Desktop application

Calls the "appid" application from the Genero Desktop Client monitor using a http
connection.

http://appserver:6394/ja/r/appid

Genero Application Server

64

A call to the same application using the GDCAX use the URL with "wa" not "ja".

http://appserver:6394/wa/r/appid

Example 7 - Calling a Web Service application

To get the WSDL for a specified service:

http://appserver:6394/ws/r/appid/service?WSDL

To access the Web service:

http://appserver:6394/ws/r/appid/service

If the Web service uses a group:

http://appserver:6394/ws/r/groupid/appid/service

Access through a webserver (apache for example):

http://webserver/cgi-bin/fglccgi/ws/r/appid/service

Basic Concepts

65

Aliases
Creating an ALIAS element for the Genero Application Server is similar to creating an
alias on a Web server. When you create an alias, you are creating a virtual directory.
Any document you wish to publish should be in a directory that can be published; the
alias is a mechanism for publishing a directory. Just as a Web browser uses an alias to
publish content, the Genero Front End uses the alias to publish content required by the
Front End application (such as images, cascading style sheets, html, and JavaScript).

Why specify an alias?

• Most aliases are shorter than the actual path name of the directory.
• An alias is more secure; users do not know where your files are physically

located and cannot use that information to modify your files.
• Aliases make it easier for you to relocate directories for your site. Rather than of

changing the path for the directory within your configuration files and templates,
you simply change the mapping between the alias and the physical location of
the directory.

Syntax:

<ALIAS Id="AliasPath"> physicalPath </ALIAS>

Notes:

When creating an ALIAS element, you specify the alias path with the Id attribute and you
provide the physical path as the element's value.

1. aliasPath is the name of the alias.
2. physicalPath is the physical directory path.

Example:

<INTERFACE_TO_CONNECTOR>
 <TCP_BASE_PORT>6300</TCP_BASE_PORT>
 <TCP_PORT_OFFSET>94</TCP_PORT_OFFSET>
 <DOCUMENT_ROOT>$(res.path.docroot)</DOCUMENT_ROOT>
 <ALIAS Id="/fjs/pics">/fjs/gas/web/fjs/pics</ALIAS>
</INTERFACE_TO_CONNECTOR>

In the example shown above, if the client requests the file /fjs/pics/myimage.png, the
Genero Application Server returns myimage.png, found in the server directory
/fjs/gas/web/fjs/pics.

For more information on working with images, see Picture Component - Configuration
Reference.

Note: Some aliases are not taken into account if they are not defined in the right order. If
alias X is a substring of alias Y, the aliases must be defined in order by the length of the
alias path, from longest to shortest. For example:

Genero Application Server

66

• X is the alias /myapp for directory /xxx/test.
• Y is the alias /myapp/images for directory /yyy/images.

The definition of alias Y (/myapp/images) must appear before the definition of alias X
(/myapp) to allow you to reach files in the physical path /yyy/images.

Basic Concepts

67

Authentication and the Genero Application Server
Authentication in the Genero Application Server provides the ability to:

• Start an application with authenticated user rights using a user's environment,
profiles, access privileges, and so on.

• Provide a Single Sign-On (SSO) solution.

Topics

• Using Kerberos
• System Requirements
• Configuring Authentication
• Authentication Process for Applications delivered by the GWC
• Enabling Kerberos authentication for a GWC application

Using Kerberos

Authentication for applications served by the Genero Application Server utilizes the
Kerberos protocol. Kerberos is a secure method for authenticating a request for a
service in a computer network.

A free implementation of this protocol is available from the Massachusetts Institute of
Technology (http://web.mit.edu/Kerberos). Kerberos is available in many commercial
products as well.

Active Directory provides central authentication and authorization services for Windows-
based computers. Kerberos is used by default for authentication in Active Directory.

System Requirements

Implementation constraints are related to the Kerberos architecture and implementation.

• A well-configured Active Directory / Kerberos server is required.
• Clients (to include the User Agent and Web Server Connector) must have

network access to the Kerberos server.

Windows Only:

• The Web Server (Apache or IIS) must be launched as either the host account or
a domain user account. It must not be launched as a local user account.

Genero Application Server

68

• The Genero Application Server must be launched as either as the Local System
Account (the account, by default, when installing the Genero Application Server)
or as Domain Administrator (or a member of the Domain Administrators group).

Configuring Authentication

Authentication relies on Kerberos and it is assumed that the system administrator has
set up the participating servers to support Kerberos. The list below summarizes the
steps one must take to enable Kerberos authentication for a Genero application:

1. Set authentication configuration in the Genero Application Server configuration
file (default as.xcf). See Application Server Configuration Reference:
Authentication for more information.

2. Configure the application to use authentication by adding an AUTHENTICATION
element to the application configuration. See Defining Applications , Defining
Web Services, and Setting the Execution Environment for more information.

3. Update the Connector configuration file to use fully-qualified names for the
Genero Application Server hosts. See Connector Configuration Reference for
more information.

For a summarized walkthrough of implementing authentication for a GWC application,
see "Authentication for GWC Applications" in the Genero Web Client Manual.

Authentication Process for Applications delivered by the GWC

This section outlines the authentication process for an application requiring
authentication that is delivered via the Genero Web Client.

Basic Concepts

69

Authentication Process for a GWC Application

1. User logs on to the domain (such as Active Directory).
2. User attempts to access an application from a User Agent (browser), where

access to the application is restricted and therefore requires authentication. For
example, the user enters the URL for the application, such as
http://server.fully.qualified.domain.name:6394/wa/r/AuthApplication.

3. User Agent receives an HTTP 401 response from the Web Server asking for
authentication credentials. The response header includes: "WWW_Authenticate:
Negotiate". An HTTP 401 response code is used when access to a resource is
protected and the client did not provide valid authentication credentials.

4. The User Agent sends its granted ticket to the Web Server. The response header
includes: "Authorization: Negotiate <Ticket>". At this point, the user is
authenticated on the Web Server.
The Web Server can now relay the request for the application through the
Connector to the Genero Application Server.

5. The Web Server Connector sends the application request to the Genero
Application Server along with another ticket that authenticates the user to the
server. The ticket grants the access to the Genero Application Server; no
additional login or password information is required.

6. The Genero Application Server starts the requested application by launching a
Dynamic Virtual Machine (DVM) as the authenticated user.
Note: When not using authentication, the DVM is started as the user who started
the Genero Application Server.

7. The DVM sends the AUI tree to the Genero Application Server.
8. The Genero Application Server processes the AUI tree using the Genero Web

Client and sends the resulting html page to the Web Server Connector.
9. The Connector forwards the page to the User Agent.

Genero Application Server

70

Enabling Kerberos authentication for a GWC application

Assuming your network has been configured to support Kerberos authentication, this
section outlines the steps you must take to enable Kerberos authentication for your
application. Note that this section is not intended to provide you with all possible
configurations for Kerberos within the Genero Application Server, but instead highlights
configuration changes necessary to implement Kerberos authentication in order for a
Web application to be delivered by the Genero Web Client.

Step One: Configure the Genero Application Server

Configure the Genero Application Server to handle authentication using Kerberos by
configuring the <AUTHENTICATION> element in the Genero Application Server
configuration file (as.xcf):

<AUTHENTICATION Type="KERBEROS">
 <REALM></REALM>
 <SERVICE_NAME>gassvc</SERVICE_NAME>
 <KEYTAB>$(res.path.as)/etc/gwc.keytab</KEYTAB>
</AUTHENTICATION>

See also Authentication Configuration Reference

Step Two: Configure the application

Modify the application configuration to include an <AUTHENTICATION> element. As only
Kerberos authentication is supported at this time, specify KERBEROS as the authentication
type:

<APPLICATION Parent="defaultgwc">
 <EXECUTION>
 <PATH>$(res.path.fgldir.demo)/Widgets</PATH>
 <AUTHENTICATION>KERBEROS</AUTHENTICATION>
 </EXECUTION>
</APPLICATION>

See also Application List Reference

Step Three: Configure the Connector

Update the GAS Connector configuration file (connector.xcf) and replace all server IP
addresses with fully-qualified domain names:

<REQUEST_LIST>
 <DEFAULT>
 <SERVER>myserver.mydomain.com:port</SERVER>
 </DEFAULT>
<REQUEST_LIST>

See also Connector Configuration Reference

Basic Concepts

71

Step Four (for Windows systems only): Configure Kerberos
Service Principal Names

Two Kerberos Service Principal Names are used:

• An HTTP service name is used by the User Agent for access to the Web Server.
• gassvc service name is used by the Connector to ask for access to the Genero

Application Server.

Genero Application Server

72

Internationalization and GAS

This section explains how the Genero Application Server handles international
applications.

Topics

• Encoding Architecture
• Charsets Configuration
• Supported Charsets

NOTE: Encoding rules have been enhanced for the snippet-based rendering engine,
used by the GAS for the GWC. You can customize rendering engine output encoding as
well as preferred input encoding. You are also able to use User Agent-preferred
encodings.

Encoding Architecture

International applications are applications using one or more non-ASCII character sets to
support one or more languages. The diagram below summarizes the GAS encoding
architecture:

Basic Concepts

73

Charsets Configuration

Charsets can be defined in four places :

1. With environment locales when launching a DVM.
2. In HTML charset in template.
3. Inside XML files used by the GAS.
4. With environment locales when launching the GAS.

DVM Locale

If application files (such as .4gl, .per, .4st files) contain characters in a specific encoding,
the DVM has to run in this encoding.

Setting a DVM in a specific encoding is described in the Genero BDL Reference Manual,
section "Programming Applications", chapter "Localization". Locales can be set in the
GAS executing environment, or with the <ENVIRONMENT_VARIABLE> tag inside the as.xcf
file.

Example in as.xcf with KOI8-R (Russian) charset:

01 <?xml version="1.0" encoding="UTF-8"?>
02 <?fjsApplicationServerConfiguration Version="1.30"?>
...
130 <COMPONENT_LIST>
131 <EXECUTION_COMPONENT Id="cpn.wa.execution.local">
132 <ENVIRONMENT_VARIABLE
Id="FGLDIR">$(res.fgldir)</ENVIRONMENT_VARIABLE>
133 <ENVIRONMENT_VARIABLE
Id="FGLGUI">$(res.fglgui)</ENVIRONMENT_VARIABLE>
134 <ENVIRONMENT_VARIABLE
Id="PATH">$(res.path)</ENVIRONMENT_VARIABLE>
...
139 <ENVIRONMENT_VARIABLE Id="LC_ALL">ru_RU.KIO8-
R</ENVIRONMENT_VARIABLE>
140 <DVM>$(res.dvm.wa)</DVM>
141 </EXECUTION_COMPONENT>
...
158 </COMPONENT_LIST>

HTML charset

In order to correctly handle application data in the User Agent, the HTML page charset
needs to be set. Because GAS generates HTML pages from templates, charset needs to
be defined in templates. Information about setting a charset in an HTML page can be
found in HTML Specification - The Document Character Set.

Example in generodefault.html with BIG5 (Chinese) charset:

01 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
02 <html>

Genero Application Server

74

03 <head>
04 $(res.meta-tags)
05 <meta http-equiv="Content-Type" content="text/html; charset=BIG5">
06 <title>Title of the page</title>
07
08 <script language=javascript
src="$(connector.uri)/fjs/uaapi/webBrowser.js"></script>
09 <script language=javascript
src="$(connector.uri)/fjs/asapi/application.js"></script>
...
19 </head>
...

XML Encoding

GAS uses XML files like as.xcf or external application configuration files, and these
files may include international characters. How to define an encoding in an XML file is
described in Extensible Markup Language - Character Encoding.

Example in as.xcf with ISO-8858-6 (Arabic) charset:

01 <?xml version="1.0" encoding="ISO-8859-6"?>
02 <?fjsApplicationServerConfiguration Version="1.30"?>
03 <CONFIGURATION>
...

GAS System Encoding

GAS interacts with Operating Systems in many ways:

• Writes log files
• Opens files defined in as.xcf
• Reads arguments on command line
• and more

In these cases, GAS needs to know which encoding is used by the Operating System.
The Operating System encoding is defined via environment variables as described in
The Single Unix - Specification Version 2 - Locale.

Example in command line with th_TH.tis620 (Thai) locale:

01 LC_ALL=th_TH.tis620 gasd -d
Then gasd starts with 'TIS-620' system encoding

Locales supported by an Operating System can be displayed with command locale -a.
If the Operating System doesn't support the desired encoding, or if a specific encoding is
needed, the system encoding can be defined with the FGLAS_SYSENCODING environment
variable which overrides system locales.

Example in command line with UTF-8 :

01 LC_ALL=th_TH.tis620 FGLAS_SYSENCODING=UTF-8 gasd -d

Basic Concepts

75

Then gasd starts with 'UTF-8' system encoding

Note: Encodings have different names across Operating Systems. To unify them, GAS
manages an encoding name conversion. For each UNIX platform, a charset.alias file
is provided for mapping the Operating System encoding name to a canonical encoding
name.

Default Encoding

By default, GAS uses UTF-8 encoding for handling all Unicode characters.

Supported Charsets

The following list contains all character sets known by the GAS. One coded character
set can be listed with several different names. Depending on your Operating System,
DVM may support these character sets. Refer to the Genero BDL Reference Manual,
section "Programming Applications", chapter "Localization" for more information.

ANSI_X3.4-1968 ANSI_X3.4-1986 ASCII CP367 IBM367 ISO-IR-6 ISO646-US
ISO_646.IRV:1991 US US-ASCII CSASCII
UTF-8
ISO-10646-UCS-2 UCS-2 CSUNICODE
UCS-2BE UNICODE-1-1 UNICODEBIG CSUNICODE11
UCS-2LE UNICODELITTLE
ISO-10646-UCS-4 UCS-4 CSUCS4
UCS-4BE
UCS-4LE
UTF-16
UTF-16BE
UTF-16LE
UTF-32
UTF-32BE
UTF-32LE
UNICODE-1-1-UTF-7 UTF-7 CSUNICODE11UTF7
UCS-2-INTERNAL
UCS-2-SWAPPED
UCS-4-INTERNAL
UCS-4-SWAPPED
C99
JAVA
CP819 IBM819 ISO-8859-1 ISO-IR-100 ISO8859-1 ISO_8859-1 ISO_8859-1:1987
L1 LATIN1 CSISOLATIN1
ISO-8859-2 ISO-IR-101 ISO8859-2 ISO_8859-2 ISO_8859-2:1987 L2 LATIN2
CSISOLATIN2
ISO-8859-3 ISO-IR-109 ISO8859-3 ISO_8859-3 ISO_8859-3:1988 L3 LATIN3
CSISOLATIN3
ISO-8859-4 ISO-IR-110 ISO8859-4 ISO_8859-4 ISO_8859-4:1988 L4 LATIN4
CSISOLATIN4
CYRILLIC ISO-8859-5 ISO-IR-144 ISO8859-5 ISO_8859-5 ISO_8859-5:1988
CSISOLATINCYRILLIC

Genero Application Server

76

ARABIC ASMO-708 ECMA-114 ISO-8859-6 ISO-IR-127 ISO8859-6 ISO_8859-6
ISO_8859-6:1987 CSISOLATINARABIC
ECMA-118 ELOT_928 GREEK GREEK8 ISO-8859-7 ISO-IR-126 ISO8859-7
ISO_8859-7 ISO_8859-7:1987 CSISOLATINGREEK
HEBREW ISO-8859-8 ISO-IR-138 ISO8859-8 ISO_8859-8 ISO_8859-8:1988
CSISOLATINHEBREW
ISO-8859-9 ISO-IR-148 ISO8859-9 ISO_8859-9 ISO_8859-9:1989 L5 LATIN5
CSISOLATIN5
ISO-8859-10 ISO-IR-157 ISO8859-10 ISO_8859-10 ISO_8859-10:1992 L6
LATIN6 CSISOLATIN6
ISO-8859-13 ISO-IR-179 ISO8859-13 ISO_8859-13 L7 LATIN7
ISO-8859-14 ISO-CELTIC ISO-IR-199 ISO8859-14 ISO_8859-14 ISO_8859-
14:1998 L8 LATIN8
ISO-8859-15 ISO-IR-203 ISO8859-15 ISO_8859-15 ISO_8859-15:1998 LATIN-9
ISO-8859-16 ISO-IR-226 ISO8859-16 ISO_8859-16 ISO_8859-16:2001 L10
LATIN10
KOI8-R CSKOI8R
KOI8-U
KOI8-RU
CP1250 MS-EE WINDOWS-1250
CP1251 MS-CYRL WINDOWS-1251
CP1252 MS-ANSI WINDOWS-1252
CP1253 MS-GREEK WINDOWS-1253
CP1254 MS-TURK WINDOWS-1254
CP1255 MS-HEBR WINDOWS-1255
CP1256 MS-ARAB WINDOWS-1256
CP1257 WINBALTRIM WINDOWS-1257
CP1258 WINDOWS-1258
850 CP850 IBM850 CSPC850MULTILINGUAL
862 CP862 IBM862 CSPC862LATINHEBREW
866 CP866 IBM866 CSIBM866
MAC MACINTOSH MACROMAN CSMACINTOSH
MACCENTRALEUROPE
MACICELAND
MACCROATIAN
MACROMANIA
MACCYRILLIC
MACUKRAINE
MACGREEK
MACTURKISH
MACHEBREW
MACARABIC
MACTHAI
HP-ROMAN8 R8 ROMAN8 CSHPROMAN8
NEXTSTEP
ARMSCII-8
GEORGIAN-ACADEMY
GEORGIAN-PS
KOI8-T
MULELAO-1
CP1133 IBM-CP1133
ISO-IR-166 TIS-620 TIS620 TIS620-0 TIS620.2529-1 TIS620.2533-0
TIS620.2533-1
CP874 WINDOWS-874
VISCII VISCII1.1-1 CSVISCII
TCVN TCVN-5712 TCVN5712-1 TCVN5712-1:1993
ISO-IR-14 ISO646-JP JIS_C6220-1969-RO JP CSISO14JISC6220RO

Basic Concepts

77

JISX0201-1976 JIS_X0201 X0201 CSHALFWIDTHKATAKANA
ISO-IR-87 JIS0208 JIS_C6226-1983 JIS_X0208 JIS_X0208-1983 JIS_X0208-
1990 X0208 CSISO87JISX0208
ISO-IR-159 JIS_X0212 JIS_X0212-1990 JIS_X0212.1990-0 X0212
CSISO159JISX02121990
CN GB_1988-80 ISO-IR-57 ISO646-CN CSISO57GB1988
CHINESE GB_2312-80 ISO-IR-58 CSISO58GB231280
CN-GB-ISOIR165 ISO-IR-165
ISO-IR-149 KOREAN KSC_5601 KS_C_5601-1987 KS_C_5601-1989 CSKSC56011987
EUC-JP EUCJP EXTENDED_UNIX_CODE_PACKED_FORMAT_FOR_JAPANESE
CSEUCPKDFMTJAPANESE
MS_KANJI SHIFT-JIS SHIFT_JIS SJIS CSSHIFTJIS
CP932
ISO-2022-JP CSISO2022JP
ISO-2022-JP-1
ISO-2022-JP-2 CSISO2022JP2
CN-GB EUC-CN EUCCN GB2312 CSGB2312
CP936 GBK MS936 WINDOWS-936
GB18030
ISO-2022-CN CSISO2022CN
ISO-2022-CN-EXT
HZ HZ-GB-2312
EUC-TW EUCTW CSEUCTW
BIG-5 BIG-FIVE BIG5 BIGFIVE CN-BIG5 CSBIG5
CP950
BIG5-HKSCS BIG5HKSCS
EUC-KR EUCKR CSEUCKR
CP949 UHC
CP1361 JOHAB
ISO-2022-KR CSISO2022KR

79

Configuring the GAS Connector
To include a Web server in your solution, you must install the GAS Connector on the
host of the Web server. Once the GAS Connector is installed, you modify the
configuration file connector.xcf and define how the Web server routes its application
requests, provide load-balancing of applications across application servers, and what
error messages display.

Topics

• What is a GAS Connector?
• Routing an application request
• Load balancing application requests
• Setting error messages

Important: This help topic provides examples of common configuration needs. For a
complete listing of all configuration options, see the Connector Configuration Reference.

What is a GAS Connector?

A GAS Connector allows a Web server to handle requests from the user agent to the
Genero Application Server daemon (gasd). The GAS Connector can dispatch requests
to different Application Server daemons based on the requested application, resulting in
load balancing of applications. The configuration of the GAS Connector is completed in
the connector.xcf file.

The Connector configuration file is installed on the webserver in the directory
<webserver>/<script>, where webserver is the document root directory and script the
executables directory. See Installation for more information on installing and locating the
Connector configuration file,

Routing an application request

When the GAS Connector receives an application request, it needs to know two things:
the application server host and the port number where the application server is listening
for new requests. This server and port number information must be provided in the
configuration file.

Within the REQUEST_LIST element, you define REQUEST elements that specify the
server and port offset information for an application request for a named application
(specified by the Id tag). Create a REQUEST element for each application you wish to
specifically route. Using a REQUEST element routes an application to one or more

Genero Application Server

80

application servers based on its application Id. This allows you to effectively run an
application on a dedicated server, if that is a need. You also have a DEFAULT element,
specifying the server and port offset for application requests not explicitly named in any
REQUEST element. If you have no application servers defined in the DEFAULT
element, then only applications whose Id matches a REQUEST element will be run.

Elsewhere, within the INTERFACE_TO_APPLICATION_SERVER element, you define a
single base port value in the TCP_BASE_PORT element. This value is added to the
port offset to identify the port number where the application server is listening for
application requests.

Example:

01 <CONFIGURATION>
02 <CONNECTOR>
03 <INTERFACE_TO_APPLICATION_SERVER>
04 <TCP_BASE_PORT>6300</TCP_BASE_PORT>
05 </INTERFACE_TO_APPLICATION_SERVER>
06 <REQUEST_LIST>
07 <DEFAULT>
08 <SERVER>server_1:94</SERVER>
09 </DEFAULT>
10 <REQUEST Id="Edit">
11 <SERVER>server_3:95</SERVER>
12 </REQUEST>
13 </REQUEST_LIST>
14 ...
15 </CONFIGURATION>

In this example:

• Lines 03-05 define the base port as 6300.
• Lines 07-09 define the default server, which will be forwarded all application

requests not handled by an REQUEST element.
• Line 08 specifies the server (by name in this example), and gives a port offset of

94. Add this to the base port, and the GAS Connector will send the application
requests for this server to port 6394.

• Lines 10-12 define the server to receive all requests for the application named
"Edit".

• Line 11 specifies the server (again by name), and gives a port offset of 95. Add
this to the base port, and the GAS Connector will send the application requests
for this server to port 6395.

For detailed configuration guidance, refer to the Connector Configuration Reference.

GAS Connector (Web Server)

81

Load balancing application requests

As discussed in the previous section, the REQUEST and DEFAULT elements of the
GAS Connector configuration file specifies to which server an application request is
routed.

Balancing requests by application name

One method of load balancing is to have specific application servers dedicated to
handling specific application requests. In this setup, you simply add the requisite
REQUEST elements to the configuration file.

01 <CONFIGURATION>
02 <CONNECTOR>
03 ...
04 <REQUEST_LIST>
05 <DEFAULT>
06 <SERVER>server_1:94</SERVER>
07 </DEFAULT>
08 <REQUEST Id="Edit">
09 <SERVER>server_3:94</SERVER>
10 </REQUEST>
11 <REQUEST Id="Button">
12 <SERVER>192.168.0.10:94</SERVER>
13 </REQUEST>
14 </REQUEST_LIST>
15 ...
16 </CONFIGURATION>

In this example, application requests are balanced across three servers:

• Lines 05-07 define the server to receive all application requests that are NOT for
the "Edit" or "Button" application.

• Lines 08-10 define the server to receive all requests for the "Edit" application.
• Linex 11-13 define the server to receive all requests for the "Button" application.

Balancing across application servers

A second method of load balancing is to have multiple application servers handle
requests for one application. This method is useful when a single application server
cannot keep up with the number of requests being sent to it. To distribute application
requests across multiple application servers, define multiple SERVER elements within
the REQUEST or DEFAULT element. Balancing the requests across the listed servers is
managed by the GAS Connector. The requests are evenly spread across the servers
listed.

01 <CONFIGURATION>
02 <CONNECTOR>
03 ...
04 <REQUEST_LIST>
05 <DEFAULT>

Genero Application Server

82

06 <SERVER>server_1:94</SERVER>
07 <SERVER>server_2:94</SERVER>
08 </DEFAULT>
09 <REQUEST Id="Edit">
10 <SERVER>server_3:94</SERVER>
11 <SERVER>server_4:94</SERVER>
12 </REQUEST>
13 <REQUEST Id="Button">
14 <SERVER>192.168.0.10:94</SERVER>
15 </REQUEST>
16 </REQUEST_LIST>
17 ...
18 </CONFIGURATION>

In this example, requests are routed across six application servers:

• Lines 05 - 08 specify the set of application servers that will serve all applications
not specified by name in a REQUEST element. Requests are evenly distributed
across the two servers specified.

• Lines 09 - 12 specify the two application servers that will serve all requests for
the "Edit" application. Requests are evenly distributed across the two servers
specified.

• Lines 13 - 15 specify the single application server that will server all requests for
the "Button" application.

For detailed configuration guidance, refer to the Connector Configuration Reference.

Setting the error messages

The administrator specifies the errors that display when the application cannot be
served. The default installation provides html files that display appropriate error pages
for six common error types. The administrator can customize these html files or change
other error-related settings.

Syntax:

<ERROR_LIST>
 <ERROR Id="num">
 <HTTP_STATUS>status</HTTP_STATUS>
 <HTTP_HEADER Id="hname">hvalue</HTTP_HEADER> [...]
 <BODY_FILE>errfile</BODY_FILE>
 </ERROR>
<ERROR_LIST>

Notes:

1. num is the error identifier
2. status is the http status

GAS Connector (Web Server)

83

3. hname is the http header name, for example Pragma
4. hvalue is the hname value, for example no-cache
5. errfile is the file to display when the error occurs

Genero Web Services Notes:

1. For SOAP errors, status is ignored and set to "500 Internal Server Error" as
specified in Simple Object Access Protocol (SOAP) 1.1 - 6.2 SOAP HTTP
Response.

Example:

01 <ERROR_LIST>
02 <ERROR Id="1">
03 <HTTP_STATUS>400 Bad Request</HTTP_STATUS>
04 <HTTP_HEADER Id="Pragma">no-cache</HTTP_HEADER>
05 <BODY_FILE>connector-error-1</BODY_FILE>
06 </ERROR>
07 ...
08 <ERROR Id="3">
09 <HTTP_STATUS>404 Not Found</HTTP_STATUS>
10 <HTTP_HEADER Id="Pragma">no-cache</HTTP_HEADER>
11 <BODY_FILE>connector-error-3</BODY_FILE>
12 </ERROR>
13 ...
14 </ERROR_LIST>

For detailed configuration guidance, refer to the Connector Configuration Reference.

Genero Application Server

84

Connector Configuration Reference
The file connector.xcf is the configuration file for the Genero Application Server
(GAS) Connector. The file is stored in the Web Server’s CGI binaries directory.

Syntax:

<CONFIGURATION>
 <CONNECTOR>
 <INTERFACE_TO_APPLICATION_SERVER>
 ...
 </INTERFACE_TO_APPLICATION_SERVER>
 <REQUEST_LIST>
 ...
 </REQUEST_LIST>
 <ERROR_LIST>
 ...
 </ERROR_LIST>
 </CONNECTOR>
</CONFIGURATION>

Notes:

1. One CONFIGURATION element. The main element of all configuration files. There
are no attributes for the CONFIGURATION element.

2. One CONNECTOR element. A connector is uniquely defined in the configuration file.
There are no attributes for the CONNECTOR element.

3. Zero or one INTERFACE_TO_APPLICATION_SERVER element. This section defines
the parameters necessary to access the Application Server by providing the
application port definition section.

4. One REQUEST_LIST element. This section lists all the requests to be forwarded to
the Application Server. A request can be made for a Web Service or a Web
Application. The request forwarding section.

5. Zero or one ERROR_LIST element. This section contains all errors that the
connector can produce, and specifies which files are displayed when an error
occurs.

INTERFACE_TO_APPLICATION_SERVER

Within the INTERFACE_TO_APPLICATION SERVER element, you specify the base port for
the Genero Application Server Connector. The base port specifies which port will be
used in conjunction of the offset specified in each server.

Syntax:

GAS Connector (Web Server)

85

<CONFIGURATION>
 <CONNECTOR>
 <INTERFACE_TO_APPLICATION_SERVER>
 <TCP_BASE_PORT> port </TCP_BASE_PORT>
 </INTERFACE_TO_APPLICATION_SERVER>
 request_list section
 error_list section
 </CONNECTOR>
</CONFIGURATION>

Notes:

1. port is the base port number. This number is added to the port offset specified in
a SERVER element within the REQUEST_LIST section. Usually, this base port
corresponds to the TCP_BASE_PORT for the Genero Application Server, defined in
the INTERFACE_TO_CONNECTOR section of the Genero Application Server
configuration file.

2. The default value for the TCP_BASE_PORT element is 6300.
3. There are no attributes available for the TCP_BASE_PORT element.

Example:

01 <INTERFACE_TO_APPLICATION_SERVER>
02 <TCP_BASE_PORT>6300</TCP_BASE_PORT>
03 </INTERFACE_TO_APPLICATION_SERVER>

REQUEST_LIST

The REQUEST_LIST element lists all the requests to be forwarded to the Application
Server. A request can be made for a Web Service or a Web Application. This section
defines the ports where application servers are listening for requests. At least one
default server must be specified, although multiple default servers can be listed to
provide load balancing for performance. Application-specific application servers can also
be specified.

Syntax:

<CONFIGURATION>
 <CONNECTOR>
 interface_to_application_server section
 <REQUEST_LIST>
 <DEFAULT>
 <SERVER> defserver:offset </SERVER> [...]
 </DEFAULT>
 rqServer [...]

Genero Application Server

86

 </REQUEST_LIST>
 error_list section
 </CONNECTOR>
</CONFIGURATION>

where rqServer is:

<REQUEST Id="appName">
 <SERVER>appServer:offset</SERVER> [...]
</REQUEST>

Notes:

1. defserver is the default application server name or IP address.
NOTE: When configuring the connector for participation in a solution that
includes Kerberos authentication, you must specify the fully-qualified name of the
server (as shown in Example 2 below).

2. offset is the offset port number for an application server. This value, when added
to the application server base port (specified in the
INTERFACE_TO_APPLICATION_SERVER section), identifies the port where
the application server is listening for requests. For example, the default port for
GAS is 6394 (the base port of 6300 + the offset of 94).

3. You can only specify one DEFAULT element. Within the DEFAULT element, you
can specify multiple SERVER elements.

4. appName is the unique identifier (Id) of either the Web Application or the Web
Service, as defined in the Genero Application Server configuration file for the
specified appserver or in an external application configuration file accessible by
the Genero Application Server specified by appserver.

5. appServer is a Genero Application Server server name or IP address.
6. You can specify multiple REQUEST elements. A request is defined by its required

Id attribute. The Id attribute must either match an application Id specified for an
APPLICATION element in the Genero Application Server configuration file, a Web
Service Id specified in the Genero Application Server configuration file, or the
filename of an external application configuration file accessible by the Genero
Application Server. If the Id does not match either of these, the GAS Connector
will answer requests for this Id with a "404 object not found" error.

7. There are no available attributes for the REQUEST_LIST, DEFAULT, and SERVER
elements.

Example 1:

01 <REQUEST_LIST>
02 <DEFAULT>
03 <SERVER>localhost:94</SERVER>
04 <SERVER>localhost:95</SERVER>
05 </DEFAULT>
06 <REQUEST Id="Edit">
07 <SERVER>localhost:96</SERVER>
08 </REQUEST>
09 </REQUEST_LIST>

GAS Connector (Web Server)

87

In this example, if the called application is "Edit", the request is redirected to the
application server launched on port 6396 (base port + offset), otherwise the request is
sent to one of the default servers listening on ports 6394 and 6395.

Example 2:

01 <REQUEST_LIST>
02 <DEFAULT>
03 <SERVER>myserver.mydomain.com:94</SERVER>
04 </DEFAULT>
05 </REQUEST_LIST>

In this example, the fully-qualified domain name is used to define the server. You must
use a fully-qualified domain name when using Kerberos authentication.

ERROR_LIST

The ERROR_LIST element specifies what information is displayed when specific errors
occur.

Syntax:

<CONFIGURATION>
 <CONNECTOR>
 interface_to_application_server section
 request_list section
 <ERROR_LIST>
 <ERROR Id="errID">
 <HTTP_STATUS> status </HTTP_STATUS>
 <HTTP_HEADER Id=" header"> headerValue </HTTP_HEADER>
 <BODY_FILE> filename </BODY_FILE>
 </ERROR>
 [...]
 </ERROR_LIST>
 </CONNECTOR>
</CONFIGURATION>

Syntax:

<ERROR_LIST>
 error [...]
</ERROR_LIST>

where error is:

<ERROR Id="code">

Genero Application Server

88

 <HTTP_STATUS> status </HTTP_STATUS>
 <HTTP_HEADER Id="header"> value </HTTP_HEADER>
 <BODY_FILE> filename </BODY_FILE>
</ERROR>

Notes:

1. code is the error code; a string value specifying the connector error identifier.
There are six different error codes:

 Error Code Description
 1 Application ID not specified.
 2 Unable to find the configuration.
 3 Application not found.
 4 Cannot connect to the Application Server.
 5 Cannot connect to the Application Server any longer.

 6 Connection lost between the Connector and the Application
Server.

2. status is the http status associated to this error, such as:

400 Bad Request

3. HTTP status to return when the error occurs.
4. header is the header variable name, such as:

Pragma

5. value is the header variable value, such as:

no-cache

6. When set to no cache, it directs the browser to not keep the file in the cache.
 The headers are put before the error message, like cache control, redirection,
and so on.

7. filename is the name of the file associated to this error. The file contains the html
to display when the error is encountered, and is located in your Web Server
script directory (the same directory that stores the connector.xcf file).

Genero Web Services Notes:

1. For SOAP errors, status is ignored and set to "500 Internal Server Error" as
specified in Simple Object Access Protocol (SOAP) 1.1 - 6.2 SOAP HTTP
Response.

Example:

GAS Connector (Web Server)

89

01 <ERROR_LIST>
02 <ERROR Id="1">
03 <HTTP_STATUS>400 Bad Request</HTTP_STATUS>
04 <HTTP_HEADER Id="Pragma">no-cache</HTTP_HEADER>
05 <BODY_FILE>connector-error-1</BODY_FILE>
06 </ERROR>
07 <ERROR Id="2">
08 <HTTP_STATUS>500 Internal Server Error</HTTP_STATUS>
09 <HTTP_HEADER Id="Pragma">no-cache</HTTP_HEADER>
10 <BODY_FILE>connector-error-2</BODY_FILE>
11 </ERROR>
12 <ERROR Id="3">
13 <HTTP_STATUS>404 Not Found</HTTP_STATUS>
14 <HTTP_HEADER Id="Pragma">no-cache</HTTP_HEADER>
15 <BODY_FILE>connector-error-3</BODY_FILE>
16 </ERROR>
17 <ERROR Id="4">
18 <HTTP_STATUS>503 Service Unavailable</HTTP_STATUS>
19 <HTTP_HEADER Id="Pragma">no-cache</HTTP_HEADER>
20 <BODY_FILE>connector-error-4</BODY_FILE>
21 </ERROR>
22 <ERROR Id="5">
23 <HTTP_STATUS>503 Service Unavailable</HTTP_STATUS>
24 <HTTP_HEADER Id="Pragma">no-cache</HTTP_HEADER>
25 <BODY_FILE>connector-error-5</BODY_FILE>
26 </ERROR>
27 <ERROR Id="6">
28 <HTTP_STATUS>502 Bad Gateway</HTTP_STATUS>
29 <HTTP_HEADER Id="Pragma">no-cache</HTTP_HEADER>
30 <BODY_FILE>connector-error-6</BODY_FILE>
31 </ERROR>
32 </ERROR_LIST>

This example is taken from the default settings in the GAS Connector configuration file.

91

Adding a GDCAX or GJC Application
This section will help you to set up an application rapidly. For complete details on
possible configuration parameters and settings, see Application List Reference.

Topics

• An overview of application configuration
• Creating an abstract application
• Configuring an application for the Genero Desktop Client ActiveX
• Configuring an application for the Genero Java Client
• An overview of external application configuration
• Creating an external application group
• Configuring an external application

Application Configuration Overview

When you configure an application, there are many pieces of information that must be
provided to the Genero Application Server. However, much of this information is
common across a set of applications. Therefore, rather than have you provide all the
information each time you configure an application, Genero supports the concept of
inheritance. You define abstract applications to hold the basic information that is
common across your applications, and then you configure your application to inherit the
settings of the abstract application. There is no limit to the levels of inheritance: an
application can inherit from another application (abstract or not) that inherits from
another application, and so on. To inherit a default configuration from another
application, you specify it as the parent of the application.

In general, an abstract application is defined first. This abstract application is not
executable, but is intended to provide the baseline default configuration for other
applications to inherit. You can create as many abstract applications as you require, and
abstract applications can inherit a default configuration from another abstract application.

When configuring an application that is to be an executable, you can provide the
configuration details in either the Genero Application Server configuration file, or you can
create a separate application-specific configuration file, known as an external
application configuration file. If you add the application to the Genero Application
Server configuration file, you must stop and restart the Genero Application Server for the
application to be recognized. If you create an external application configuration file, you
can add the file into a defined GROUP directory and the application is immediately
available without having to do a GAS restart.

See also:

• Quick Start - Adding New Applications
• Configuring the Genero Application Server
• Application List Reference

Genero Application Server

92

Creating Abstract Applications

To simplify application configuration, an application can specify a parent application to
provides default configuration settings needed to run the application. An abstract
application is an application that is created not as an executable, but to be a parent
providing configuration defaults for executable applications. You should create your own
abstract application and use it as the parent for a set of programs that share common
configurations.

Tip: If you use this inheritance mechanism efficiently, you can configure new
applications with only a few entries in a configuration file.

To specify an abstract application, set the Abstract attribute to TRUE.

Warning: Abstract applications can only be defined in the application server
configuration file, they cannot be defined in an external application configuration file.

Example for web applications:

01 <APPLICATION Id="defaultwa" Abstract="TRUE">
02 <EXECUTION Using="cpn.wa.execution.local"/>
03 <OUTPUT>
04 <MAP Id="DUA_GWC" Allowed="FALSE"/>
05 <MAP Id="DUA_GJC" Allowed="FALSE"/>
06 <MAP Id="DUA_GDC" Allowed="FALSE"/>
07 </OUTPUT>
08 </APPLICATION>

In this example, DUA_GWC, DUA_GJC and DUA_GDC are OutputMap, which indicates the
Front End used to display the application. Note that no OutputMap is enabled as the
attribute Allowed is set to FALSE.

Example for GDCAX applications:

01 <!--This is the default application for GDC-->
02 <APPLICATION Id="defaultgdc" Parent="defaultwa" Abstract="TRUE">
03 <OUTPUT Rule="UseGDC">
04 <MAP Id="DUA_GDC" Allowed="TRUE"/>
05 <RENDERING Using="cpn.rendering.wa"/>
06 <THEME Using="cpn.theme.default.gdc"/>
07 </MAP>
08 </OUTPUT>
09 </APPLICATION>

GDCAX / GJC

93

Configuring applications for Genero Desktop Client ActiveX
(GDC/AX)

To add an application for GDC/AX, you only need to specify:

• your application Id
• the parent application where the main configuration is set (in this example,

defaultgdc)
• the path to your compiled files
• the main module to launch

In the following example the path is a resource; this can also be an absolute path to your
application files.

Example:

01 <APPLICATION Id="gdc-demo" Parent="defaultgdc">
02 <EXECUTION>
03 <PATH>$(res.path.fgldir.demo)</PATH>
04 <MODULE>demo.42r</MODULE>
05 </EXECUTION>
06 </APPLICATION>

defaultgdc is the parent of any web application for GDCAX.

Example:

01 <APPLICATION Id="defaultgdc" Parent="defaultwa" Abstract="TRUE">
02 <TIMEOUT Using="cpn.gdc-gjc.timeout.set1"/>
03 <OUTPUT Rule="UseGDC">
04 <MAP Id="DUA_GDC" Allowed="TRUE">
05 <RENDERING Using="cpn.rendering.gdc-gjc"/>
06 <THEME Using="cpn.theme.default.gdc"/>
07 </MAP>
08 </OUTPUT>
09 </APPLICATION>

The defaultgdc application inherits from the defaultwa application. In the Abstract
application section, defaultwa is the parent for any web application and no OutputMap is
enabled; defaultgdc enables DUA_GDC OutputMap and specifies the environment for this
OutputMap.

Genero Application Server

94

Configuring applications for Genero Java Client (GJC)

To add an application for GJC, you only need to specify:

• your application Id
• the parent application where the main configuration is set (in this example,

defaultgjc)
• the path to your compiled files
• the main module to lunch

In the following example the path is a resource; this can also be an absolute path to your
application files.

Example:

01 <APPLICATION Id="gjc-demo" Parent="defaultgjc">
02 <EXECUTION>
03 <PATH>$(res.path.fgldir.demo)</PATH>
04 <MODULE>demo.42r</MODULE>
05 </EXECUTION>
06 </APPLICATION>

defaultgjc is the parent of any web application for GJC.

Example:

01 <APPLICATION Id="defaultgjc" Parent="defaultwa" Abstract="TRUE">
02 <TIMEOUT Using="cpn.gdc-gjc.timeout.set1"/>
03 <OUTPUT Rule="UseGJC">
04 <MAP Id="DUA_GJC" Allowed="TRUE">
05 <RENDERING Using="cpn.rendering.gdc-gjc"/>
06 <THEME Using="cpn.theme.default.gjc"/>
07 </MAP>
08 </OUTPUT>
09 </APPLICATION>

The defaultgjc application inherits from the defaultwa application. In the Abstract
application section, defaultwa is the parent for any web application and no OutputMap is
enabled; defaultgjc just enables DUA_GJC OutputMap and specifies the environment for
this OutputMap.

Using External Application Configuration Files

To configure an application using an external application configuration file, you provide
the same code that you would for adding an application directly to the Genero

GDCAX / GJC

95

Application Server configuration file, except that you store this information in a file whose
name matches that of the application. For example, to create a file for a program named
Edit, you would create an external application configuration file with the name Edit.xcf.
You must use the .xcf suffix. You then place this file in a group directory as configured in
the Genero Application Server configuration file.

Creating a Group

A group consists of a group name and a directory in which external application
configuration files can be placed. When a front-end starts an application whose
configuration information is in an external application configuration file, it must provide
the group name to direct the Genero Application Server to the directory where the file
resides, and the application name to identify which file to read. As with applications, a
group is specified in the APPLICATION_LIST component of the Genero Application
Server configuration file.

Syntax:

 <GROUP Id="groupId"> path </GROUP>

Notes:

1. groupId is the alias
2. path is the physical path to the directory

Example:

01 <GROUP Id="_default">$(res.path.app)</GROUP>
02 <GROUP Id="demo-gdc">$(res.path.app)/tutorial/appNotes</GROUP>

For information on how Genero Front-Ends may use GROUP entries, refer to the
documentation for the specific front-end.

Configuring an External Application

Create a separate .xcf file for each application. Because the application and
configuration file share the same name, there is no need to specify the Id attribute. In the
following example, if the file was named "gdc-demo.xcf, then this configuration file would
accomplish the same task as when included in the Genero Application Server
configuration file; the only difference between this example and the example shown
above for Genero Desktop Client is the lack of the Id attribute.

Example:

01 <APPLICATION Parent="defaultgdc">
02 <EXECUTION>
03 <PATH>$(res.path.fgldir.demo)</PATH>
04 </EXECUTION>
05 </APPLICATION>

Genero Application Server

96

How Templates Work for the GDCAX or GJC
A template is an html file that displays your application through a browser, using a
Genero Front End. A template can have predefined variables or tags. Templates are
stored in $FGLASDIR/tpl directory. Genero Web Services Extension does not need a
template as it is not a Front End but a server that waits for requests.

You can define your own templates and use them in your applications. See the GAS
Configuration Reference section on how to set up a template.

Topics

• GAS tags
• GDCAX Template
• GJC Template

GAS tags

GAS tags are predefined variables you can use in a GDCAX / GJC template.

Syntax:

$(resource-name)
|
<tag gwc:tpl-attribute="tpl-value" [...]>...</tag>

Notes:

1. resource-name is the name of a resource defined in the Genero Application
Server configuration file.

2. tag is an html tag.
3. tpl-attribute is a gwc template attribute (see the GWC manual for more

information).
4. tpl-value is the value of the template attribute.

While most resources are defined in the Genero Application Server configuration file,
pre-defined resources are provided that, while not explicitly defined in the configuration
file, are available for your use. These resources include:

Pre-Defined
Resource

Description

application.id Application identifier in as.xcf
constant.meta-tags Will be replaced by GAS meta tags. Only used for

GWC.

GDCAX / GJC

97

server.version Will be replaced by GAS version.
application.start.uri Will be replaced by GAS URI. It is used in the restart

template page.
For example:
URL is http://localhost/cgi-
bin/fglccgi/wa/r/demo?Arg=val1&Arg=val2
GAS URI will be /cgi-
bin/fglccgi/wa/r/demo?Arg=val1&Arg=val2

application.querystring Will be replaced by the URL substring after the
question mark.
For example:
URL is http://localhost/cgi-
bin/fglccgi/wa/r/demo?Arg=val1&Arg=val2
The querystring will be Arg=val1&Arg=val2

connector.uri Will be replaced by the URL path to the connector.
Available for any Front End (GWC, GDC, or GJC).
For example:
URL is http://localhost/cgi-
bin/fglccgi/wa/r/demo?Arg=val1&Arg=val2
The querystring will be /cgi-bin/fglccgi

GDCAX Template

The template provided by the GAS package only indicates that the GDCAX package
needs to be installed. After GDCAX installation, this template is replaced by the GDCAX
default template.

Example fglgdcdefault.html:

01 <HTML>
02 <HEAD>
03 <TITLE>
04 $(application.id) - Four J's Genero Desktop Client - Active X
05 </TITLE>
06 <META http-equiv="expires" content="1">
07 <META http-equiv="pragma" content="no-cache">
08 </HEAD>
09
10 <BODY BGCOLOR="#FFFFFF" onload="startIt();"
onbeforeunload="preventClose();">
11 <H2>
12 Application: $(application.id)

Genero Application Server

98

13 </H2>
14 <CENTER>
15 <OBJECT NAME="gdc"
16 Id="DesktopClient"
17 CLASSID="clsid:2311DF65-9D1A-4dda-94AA-90568D989633"
18 CODEBASE="/fjs/activex/gdc.cab#version=1,32,1,5"
19 height=440
20 width=395>
21 [Object not available! Did you forget to build and register
the server?]
22 </OBJECT>
23 </CENTER>
24 </BODY>
25
26 <SCRIPT language="javascript">
27 function startIt()
28 {
29 // the serverUrl must be set BEFORE starting the application
30 if ("$(connector.uri)" != ""){
31 gdc.setSrvUrl(location.protocol + "//" + location.host + "1
$(connector.uri)" + "/wa/r/" + "$(application.id)" + "?" +
"$(application.querystring)");
32 } else {
33 gdc.setSrvUrl(location.href);
34 }
35 gdc.setPictureUrl("$(pictures.uri)");
36 gdc.setAppName("$(application.id)");
37 return false;
38 }
39 function preventClose()
40 {
41 event.returnValue = "Genero Desktop Client";
42 }
43
44 </SCRIPT>
45
46 </HTML>

Notes:

1. version indicates the GDC ActiveX version. If this version is greater than the
GDC ActiveX installed on the client computer, the client installation will be
updated. In this example, 1,21,1,3 corresponds to GDCAX version 1.21.1c.

2. startIt() javascript function has been added to launch the application specified
in gdc.setAppName function.

3. preventClose() javascript function asks the user if he really wants to leave the
html page, which will close all the GDCAX applications.

Tip: To hide the GDCAX monitor, use a style.

Example:

01 <STYLE type="text/css">

GDCAX / GJC

99

02 .hidden { display: none; }
03 </STYLE>
04 ...

05 <OBJECT NAME="gdc" class="hidden" ...>
06 ...
07 </OBJECT>

In this example, the GDCAX monitor is not displayed thanks to the hidden style.

GJC Template

The template provided with the GAS package, only indicates that you need to install the
GJC package.

Example fglgjcdefault.html:

01 <HTML>
02 <HEAD>
03 <TITLE>
04 $(application.id) - Four J's Genero Java Client
05 </TITLE>
06 <META http-equiv="expires" content="1">
07 <META http-equiv="pragma" content="no-cache">
08 </HEAD>
09 <BODY BGCOLOR="#FFFFFF">
10 <H2>
11 You must install the Four J's Genero Java Client extension
before you can use it with the Application Server
12 </H2>
13 </BODY>
14 </HTML>

After GJC installation, this template file is replaced by the GJC default template.

GJC default template:

01 <HTML>
02 <HEAD>
03 <TITLE>
04 $(application.id) - Four J's Genero Java Client
05 </TITLE>
06 <META http-equiv="expires" content="1">
07 <META http-equiv="pragma" content="no-cache">
08 </HEAD>
09 <BODY BGCOLOR="#FFFFFF">
10 <H1>

Genero Application Server

100

11 Application: $(application.id)
12 </H1>
13 <CENTER>
14 <APPLET NAME="gjc" CODE="com.fourjs.monitor.Monitor"
ARCHIVE="gjc.jar" codebase="/fjs/applet" WIDTH=300 HEIGHT=200
MAYSCRIPT>
15 <PARAM NAME="resourcesPath" VALUE="/fjs/applet">
16 <PARAM NAME="applicationId" VALUE="$(application.id)">
17 <PARAM NAME="applicationQuerySring"
VALUE="$(application.querystring)">
18 <PARAM NAME="connectorURI" VALUE="$(connector.uri)">
19 </APPLET>
20 </CENTER>
21 </BODY>
22 </SCRIPT>
23 </HTML>

101

Adding a Web Service Application
This section will help you to set up an application rapidly. For complete details on
possible configuration parameters and settings, see Service List Reference.

Topics

• An overview of application configuration
• Creating an abstract application
• Configuring an application for the Genero Web Services Extension
• An overview of external application configuration
• Creating an external application group
• Configuring an external application

Application Configuration Overview

When you configure an application, there are many pieces of information that must be
provided to the Genero Application Server. However, much of this information is
common across a set of applications. Therefore, rather than have you provide all the
information each time you configure an application, Genero supports the concept of
inheritance. You define abstract applications to hold the basic information that is
common across your applications, and then you configure your application to inherit the
settings of the abstract application. There is no limit to the levels of inheritance: an
application can inherit from another application (abstract or not) that inherits from
another application, and so on. To inherit a default configuration from another
application, you specify it as the parent of the application.

In general, an abstract application is defined first. This abstract application is not
executable, but is intended to provide the baseline default configuration for other
applications to inherit. You can create as many abstract applications as you require, and
abstract applications can inherit a default configuration from another abstract application.

When configuring an application that is to be an executable, you can provide the
configuration details in either the Genero Application Server configuration file, or you can
create a separate application-specific configuration file, known as an external
application configuration file. If you add the application to the Genero Application
Server configuration file, you must stop and restart the Genero Application Server for the
application to be recognized. If you create an external application configuration file, you
can add the file into a defined GROUP directory and the application is immediately
available without having to do a GAS restart.

See also:

• Quick Start - Adding New Applications
• Configuring the Genero Application Server
• Service List Reference

Genero Application Server

102

Creating Abstract Applications

To simplify application configuration, an application can specify a parent application to
provides default configuration settings needed to run the application. An abstract
application is an application that is created not as an executable, but to be a parent
providing configuration defaults for executable applications. You should create your own
abstract application and use it as the parent for a set of programs that share common
configurations.

Tip: If you use this inheritance mechanism efficiently, you can configure new
applications with only a few entries in a configuration file.

To specify an abstract application, set the Abstract attribute to TRUE.

Warning: Abstract applications can only be defined in the application server
configuration file, they cannot be defined in an external application configuration file.

Example for web applications:

01 <APPLICATION Id="defaultwa" Abstract="TRUE">
02 <EXECUTION Using="cpn.wa.execution.local"/>
03 <OUTPUT>
04 <MAP Id="DUA_GWC" Allowed="FALSE"/>
05 <MAP Id="DUA_GJC" Allowed="FALSE"/>
06 <MAP Id="DUA_GDC" Allowed="FALSE"/>
07 </OUTPUT>
08 </APPLICATION>

In this example, DUA_GWC, DUA_GJC and DUA_GDC are OutputMap, which indicates the
Front End used to display the application. Note that no OutputMap is enabled as the
attribute Allowed is set to FALSE.

Example for web services applications:

01 <APPLICATION Id="ws.default" Abstract="TRUE">
02 <EXECUTION Using="cpn.ws.execution.local"/>
03 <TIMEOUT Using="cpn.ws.timeout.set1"/>
04 </APPLICATION>

Configuring applications for Genero Web Services Extension

To add an application for a Genero Web Service, you only need to specify:

GWC Basics

103

• your application Id
• the parent application where the main configuration is set (in this example,

ws.default)
• the path to your compiled files
• the main module to launch

In the following example, the path is a resource. The path can also be an absolute path
to your application files. This configures a GWS server that any Web Service Client can
connect to.

Example:

01 <APPLICATION Id="calculator" Parent="ws.default">
02 <EXECUTION>
03 <PATH>$(res.path.calculator)/server</PATH>
04 <MODULE>calculatorServer.42r</MODULE>
05 </EXECUTION>
06 </APPLICATION>

ws.default is the parent of any web services application.

Note: Because a DVM can have several services defined in it, the Web Service DVM is
an application. The services defined inside are still named service. The published
functions are named operations.

Example 2:

01 <APPLICATION Id="echo" Parent="ws.default">
02 <EXECUTION>
03 <PATH>$(res.path.fgldir.demo)/WebServices/echo/server</PATH>
04 <MODULE>echoServer</MODULE>
05 </EXECUTION>
06 </APPLICATION>

Accessing the Web Service (Web Services URI information)

To get the WSDL for a specified service:

http://appserver:6394/ws/r/appid/service?WSDL

To access the Web service:

http://appserver:6394/ws/r/appid/service

If the Web service uses a group:

http://appserver:6394/ws/r/groupid/appid/service

Access through a webserver (apache for example):

http://webserver/cgi-bin/fglccgi/ws/r/appid/service

Genero Application Server

104

Using External Application Configuration Files

To configure a Web Service application using an external application configuration file,
you provide the same code that you would for adding an application directly to the GAS
configuration file, except that you store this information in a file whose name matches
that of the application. For example, to create a file for a Web Service named
echoServer, you would create an external application configuration file with the name
echoServer.xcf. You must use the .xcf suffix. You then place this file in a group
directory as configured in the GAS configuration file.

Creating a Group

A group consists of a group name and a directory in which external application
configuration files can be placed. When a front-end starts an application whose
configuration information is in an external application configuration file, it must provide
the group name to direct the Genero Application Server to the directory where the file
resides, and the application name to identify which file to read. A group is specified in
the SERVICE_LIST component of the GAS configuration file.

Syntax:

 <GROUP Id="groupId" > path </GROUP>

Notes:

1. groupId is the alias
2. path is the physical path to the directory

Example:

01 <GROUP Id="demo-gws">$(res.path.app)/tutorial/demo-gws</GROUP>

Configuring an External Application

Create a separate .xcf file for each application. Because the application and
configuration file share the same name, there is no need to specify the Id attribute. In the
following example, if the file was named "echo.xcf, then this configuration file would
accomplish the same task as when included in the Genero Application Server
configuration file; the only difference between this example and the Example 2 shown
above is the lack of the Id attribute.

Example:

01 <APPLICATION Parent="ws.default">
02 <EXECUTION>
03 <PATH>$(res.path.fgldir.demo)/WebServices/echo/server</PATH>
04 <MODULE>echoServer</MODULE>
05 </EXECUTION>
06 </APPLICATION>

GWC Basics

105

Hot Restart of Genero Web Services
Topics

• Overview
• Principles
• Using Hot Restart of Web Services

Overview

The GWS hot restart in the Genero Application Server provides the ability to:

• Change Web Services programs without restarting Genero Application Server.
• Enhance High Availability of Genero Web Services.

Principles

The hot restart is only available for Web Services defined in external configuration files.
It is not available for services defined in the GAS configuration file.

When a hot restart is issued, all current requests are finished properly, after which all
new requests are serviced by the new Web service.

Using Hot Restart of Web Services

Step 1: To avoid the overriding of the previous version of the program that still serve the
current requests, put the new service in a different directory

Step 2: Change the external configuration file. For example:

Original Configuration Example:

<?xml version="1.0" encoding="UTF-8"?>
<!-- echo demo service application -->
<APPLICATION Parent="ws.default">
 <EXECUTION>
 <PATH>$(res.path.fgldir.demo)/WebServices/echo/echoServer</PATH>

Genero Application Server

106

 <MODULE>echoServer</MODULE>
 </EXECUTION>
</APPLICATION>

New Configuration Example:

<?xml version="1.0" encoding="UTF-8"?>
<!-- echo demo service application -->
<APPLICATION Parent="ws.default">
 <EXECUTION>
 <PATH>$(res.path.fgldir.demo)/WebServices/newecho/echoServer</PATH>
 <MODULE>echoServer</MODULE>
 </EXECUTION>
 <TIMEOUT />
</APPLICATION>

In this example, the old service is in echo directory and the new service in newecho
directory.

Step 3: Tell the Application Server to reload the modified configuration files:

For Linux, issue the command: kill -1 gasdPID or killall -1 gasd

Instead of number -1, you can use the -SIGHUP keyword.

For Windows, if the Application Server runs in a DOS console, use: Ctrl+Break

To use the Ctrl+Break on windows, in the fglprofile set the entry
fglrun.ignoreDebuggerEvent to true, otherwise the Ctrl+Break will be sent to the DVM.

For Windows, if the Application Server runs as a service, use: sc control
name_of_gas_service paramchange

For example:

SERVICE_NAME: fglas_2.10.01_210907122547
 TYPE : 10 WIN32_OWN_PROCESS
 STATE : 4 RUNNING

(STOPPABLE,NOT_PAUSABLE,IGNORES_SHUTDOWN)
 WIN32_EXIT_CODE : 0 (0x0)
 SERVICE_EXIT_CODE : 0 (0x0)
 CHECKPOINT : 0x0
 WAIT_HINT : 0x0

In this example, the service name is fglas_2.10.01_210907122547.

Note:

• name_of_gas_service: You can find this name on the properties of the service
or do a query with on a DOS console: sc query | more

GWC Basics

107

Genero Application Server

108

What is the Genero Web Client?
This section introduces you to the Genero Web Client (GWC). The GWC is included as
part of the GAS, starting with GAS 2.11.

Topics

• Overview
• Rendering Engine change with 2.10
• Key Players
• Limitations

Overview

The Genero Web Client (GWC), you can deliver true Web applications from those
applications developed in the Genero Business Development Language (BDL). Having
the underlying source written in Genero BDL means that the GWC is flexible enough to
let you build a simple Web application to a corporate Web application, with only a few
limitations. It brings to BDL applications the Internet world and the ability to be integrated
in a Web site. It renders the application using technologies understood by a browser
using well-known Web technologies like xHTML, XSLT, CSS and JavaScript. As a result,
it can deliver the application to any device equipped with a Web browser.

Why deliver an application as a Web application?

• Web application deployment is easier and cheaper than desktop application
deployment.

• The client requires a browser; no software needs to be installed on the client.

The GWC uses templates and snippet sets, written using a Genero "template language"
in addition to other Web-based languages (xHTML, XSLT, JavaScript) to create dynamic
web pages. Different snippet sets are provided to allow the dynamic web pages to be
created using the language appropriate for the client browser. The AJAX theme snippet
set is aimed at desktop browsers, while the PDA theme snippet set is aimed at handheld
devices.

Rendering Engine Change with GWC 2.10

Starting with GWC 2.10, a snippet-based rendering engine replaces the legacy built-in
rendering engine. This new rendering engine provides you with complete control of the
customization of the user interface components, and removes many of the limitations
imposed by the legacy rendering engine.

GWC Basics

109

Four J's will continue to provide the legacy built-in rendering engine for those GWC
deployments that are already in place, however it will no longer be enhanced. If you do
not wish to migrate your application to use the snippet-based rendering engine, you can
configure your applications to run in the legacy mode. The documentation in this guide is
primarily for those applications that use the snippet-based rendering engine. For
documentation covering the legacy built-in rendering engine, refer to the GWC 2.00
manual available on the Four J's Web site (http://www.4js.com).

Key Players

When working with applications deployed in a Web environment, you will likely need to
identify or add team members who are proficient in various Web technologies. Many of
these technologies will be unfamiliar to your traditional Genero BDL application
developer.

The key players involved in developing Web-based applications are listed by area:

Area Player Responsibility
Application Design Responsible for the rendering aspects of the application within

GWC by adding and modifying templates and CSS to influence
the look-and-feel of the application. Members of this team
should be proficient with HTML and CSS.

Application
Development

Responsible for the development of the Genero application,
concentrating on the business logic. Members of this team
should be proficient with Genero Business Development
Language.

Advanced
Production

Responsible for the additional functionality and navigation
added to an application through the use of the template
language to link BDL form objects and JavaScript to define the
behavior. Members of this team should be proficient with HTML
and JavaScript.

Deployment and
Infrastructure

Responsible for the complete GWC solution from a component
perspective: the installation and configuration of the application
server and Web server; the communication between the user
agent, Web server, application server, DVM, and database
server. Members of this team should be proficient in working on
the different platforms and operating systems where the
application will reside and proficient in administration of the
Web server.

It is rare that a single person fulfills the requirements demanded in each of these areas.

Having some knowledge of Web technologies like HTML, XML, style sheets and
JavaScript ease GWC understanding. You can find Web standards at http://www.w3.org.
Take a look at http://www.w3schools.com tutorials to get a quick start.

Genero Application Server

110

Limitations

For the most part, a Genero application reacts the same across the different Front End
clients (GWC, GDC, and so on). There are, however, limitations for applications being
rendered by the GWC 2.10 snippet-based rendering engine:

• Local actions (such as Copy, Paste, and Cut) are not supported.
• MDI (Multi Document Interface) is not supported. For more information on MDI

Windows, refer to the Genero Business Development Language Manual.
• With multiple windows, in PAGE MODE (Set 2) and PDA MODE (Set 3), only the

active window is displayed.
• With multiple windows, in AJAX MODE (Set1), only the one modal dialog

(STYLE='dialog') is displayed as a pop-up. The first normal window displays as
the page background.

• Old widgets are not supported
• DialogTouched is not supported
• FrontCalls and Front End Functions are not fully supported by the GWC. Often

this is due to permissions; the browser does not have the permissions necessary
to execute the front end function. For more information on Front End Functions,
refer to the Genero Business Development Language Manual.

Accelerators

The GWC will recognize the first accelerator defined for an action (acceleratorName). It
will not recognize those accelerators defined by acceleratorName2, acceleratorName3,
or acceleratorName4.

You can set the accelarator key combination to any combination you wish. There are,
however, a set of keys that you should avoid using, as there may be unintended side
effects. This set includes:

• Tab
• Shift-Tab
• Down
• Up
• Next
• Prior
• Home
• End

GWC Basics

111

Adding Applications
This section will help you to set up an application rapidly. For complete details on
possible configuration parameters and settings, see Application List Reference.

Topics

• An overview of application configuration
• Creating an abstract application
• Configuring an application for the Genero Web Client
• An overview of external application configuration
• Creating an external application group
• Configuring an external application
• What if the applicaiton doesn't start?

Application Configuration Overview

When you configure an application, there are many pieces of information that must be
provided to the Genero Application Server. However, much of this information is
common across a set of applications. Therefore, rather than have you provide all the
information each time you configure an application, Genero supports the concept of
inheritance. You define abstract applications to hold the basic information that is
common across your applications, and then you configure your application to inherit the
settings of the abstract application. There is no limit to the levels of inheritance: an
application can inherit from another application (abstract or not) that inherits from
another application, and so on. To inherit a default configuration from another
application, you specify it as the parent of the application.

In general, an abstract application is defined first. This abstract application is not
executable, but is intended to provide the baseline default configuration for other
applications to inherit. You can create as many abstract applications as you require, and
abstract applications can inherit a default configuration from another abstract application.

When configuring an application that is to be an executable, you can provide the
configuration details in either the Genero Application Server configuration file, or you can
create a separate application-specific configuration file, known as an external
application configuration file. If you add the application to the Genero Application
Server configuration file, you must stop and restart the Genero Application Server for the
application to be recognized. If you create an external application configuration file, you
can add the file into a defined GROUP directory and the application is immediately
available without having to do a GAS restart.

See also:

• Quick Start - Adding New Applications
• Configuring the Genero Application Server
• Application List Reference

Genero Application Server

112

Creating Abstract Applications

To simplify application configuration, an application can specify a parent application to
provides default configuration settings needed to run the application. An abstract
application is an application that is created not as an executable, but to be a parent
providing configuration defaults for executable applications. You should create your own
abstract application and use it as the parent for a set of programs that share common
configurations.

Tip: If you use this inheritance mechanism efficiently, you can configure new
applications with only a few entries in a configuration file.

To specify an abstract application, set the Abstract attribute to TRUE.

Warning: Abstract applications can only be defined in the application server
configuration file, they cannot be defined in an external application configuration file.

Example for web applications:

01 <APPLICATION Id="defaultwa" Abstract="TRUE">
02 <EXECUTION Using="cpn.wa.execution.local"/>
03 <OUTPUT>
04 <MAP Id="DUA_GWC" Allowed="FALSE"/>
05 <MAP Id="DUA_GJC" Allowed="FALSE"/>
06 <MAP Id="DUA_GDC" Allowed="FALSE"/>
07 </OUTPUT>
08 </APPLICATION>

In this example, DUA_GWC, DUA_GJC and DUA_GDC are OutputMap, which indicates the
Front End used to display the application. Note that no OutputMap is enabled as the
attribute Allowed is set to FALSE.

Example for a GWC application:

01 <!--This is the default application for GWC-->
02 <APPLICATION Id="defaultgwc" Parent="defaultwa" Abstract="TRUE">
03 <TIMEOUT Using="cpn.gwc.timeout.set1"/>
04 <PICTURE Using="cpn.gwc.picture"/>
05 <OUTPUT Rule="UseGWC">
06 <MAP Id="DUA_Symbol-WC" Allowed="TRUE">
07 <RENDERING Using="cpn.rendering.xslt"/>
08 <THEME Using="cpn.theme.default.gwc">
09 <TEMPLATE Id="_default">$(res.theme.symbol-
wc.stylesheet)</TEMPLATE>
10 </THEME>
11 </MAP>
12 <MAP Id="DUA_GWC" Allowed="TRUE">
13 <RENDERING Using="cpn.rendering.gwc"/>
14 <THEME Using="cpn.theme.default.gwc"/>
15 </MAP>

GWC Basics

113

16 <MAP Id="DUA_AJAX" Allowed="TRUE">
17 <RENDERING Using="cpn.rendering.gwc2" />
18 <THEME Using="cpn.theme.ajax.gwc" />
19 </MAP>
20 <MAP Id="DUA_PAGE" Allowed="TRUE">
21 <RENDERING Using="cpn.rendering.gwc2" />
22 <THEME Using="cpn.theme.page.gwc" />
23 </MAP>
24 <MAP Id="DUA_PDA" Allowed="TRUE">
25 <RENDERING Using="cpn.rendering.gwc2" />
26 <THEME Using="cpn.theme.pda.gwc" />
27 </MAP>
28 </OUTPUT>
29 </APPLICATION>

Configuring applications for Genero Web Client (GWC)

To add an application for GWC, you only need to specify:

• your application Id
• the parent application where the main configuration is set (in this example,

defaultgwc)
• the path to your compiled files
• the main module to launch

In the following example the path is a resource; this can also be an absolute path to your
application files.

Example:

01 <APPLICATION Id="demo" Parent="defaultgwc">
02 <EXECUTION>
03 <PATH>$(res.path.fgldir.demo)</PATH>
04 <MODULE>demo.42r</MODULE>
05 </EXECUTION>
06 </APPLICATION>

defaultgwc is the parent of any web application for GWC.

Example:

01 <APPLICATION Id="defaultgwc" Parent="defaultwa" Abstract="TRUE">
02 <TIMEOUT Using="cpn.gwc.timeout.set1"/>
03 <PICTURE Using="cpn.picture.webserver"/>
04 <OUTPUT Rule="UseGWC">
05 <MAP Id="DUA_GWC" Allowed="TRUE">
06 <THEME Using="cpn.theme.default.gwc"/>

Genero Application Server

114

07 </MAP>
08 </OUTPUT>
09 </APPLICATION>

The defaultgwc application inherits from the defaultwa application. In the Abstract
application section, defaultwa is the parent for any web application and no OutputMap is
enabled; defaultgwc just enables DUA_GWC OutputMap and specifies the environment
for this OutputMap.

Using External Application Configuration Files

To configure an application using an external application configuration file, you provide
the same code that you would for adding an application directly to the Genero
Application Server configuration file, except that you store this information in a file whose
name matches that of the application. For example, to create a file for a program named
demo, you would create an external application configuration file with the name
demo.xcf. You must use the .xcf suffix. You then place this file in a group directory as
configured in the Genero Application Server configuration file.

Creating a Group

A group consists of a group name and a directory in which external application
configuration files can be placed. When a front-end starts an application whose
configuration information is in an external application configuration file, it must provide
the group name to direct the Genero Application Server to the directory where the file
resides, and the application name to identify which file to read. As with applications, a
group is specified in the APPLICATION_LIST component of the Genero Application
Server configuration file.

Syntax:

 <GROUP Id="groupId" > path </GROUP>

Notes:

1. groupId is the alias
2. path is the physical path to the directory

Example:

01 <GROUP Id="_default">$(res.path.app)</GROUP>
02 <GROUP Id="gwc-demo">$(res.path.app)/tutorial/gwc-demo</GROUP>

GWC Basics

115

Configuring an External Application

Create a separate .xcf file for each application. Because the application and
configuration file share the same name, there is no need to specify the Id attribute. In the
following example, if the file was named "demo.xcf", then this configuration file would
accomplish the same task as when included in the Genero Application Server
configuration file; the only difference between this example and the example shown
above is the lack of the Id attribute.

Example:

01 <APPLICATION Parent="defaultgwc">
02 <EXECUTION>
03 <PATH>$(res.path.fgldir.demo)</PATH>
04 <MODULE>demo.42r</MODULE>
05 </EXECUTION>
06 </APPLICATION>

What if the application doesn't start?

When you request an application, if it does not start, then chances are there is
something wrong in the configuration. Some suggestions:

• Check your environment variables in $FGLASDIR/etc/as.xcf.
• The log files in $FGLASDIR/log may have some details about the error

messages.
• If you access the application through a web server, ensure that your

connector.xcf is correctly configured.

When you receive the "Error: Runtime error. Try again ..." page

Your application cannot start. Check your application configuration.

Usually, the path to your program is not the correct one.

Genero Application Server

116

How Browser-Based Themes, Templates, and
Snippet Sets work for the GWC
When the GAS displays an application with the GWC, it detects the type of browser
being used to display the application and applies the appropriate theme to render the
application correctly for that browser type. This section discusses the use of themes,
maps, templates, and snippet sets and the browser types they support.

Topics

• Themes, Templates, and Snippet Sets
• Default Themes (Snippet Sets)

Themes, Templates, and Snippet Sets

"Snippet sets are adapted to the different classes of Web browsers."

When the GWC displays an application in a browser, it identifies the browser type or
class and, based on that browser type, uses a theme (a specific set of template and
snippet files) to render the application. The Genero Web Client installs with five pre-
defined snippet sets (described below); you can customize those snippet files or you can
create your own theme and snippet set. After determining the browser type, the GWC
uses the information provided by the auda.xrd file to select the theme to use.

Within the GAS configuration file, the association is made between the THEME, a MAP,
and the TEMPLATE and SNIPPET files.

See also:

• How the GWC uses web technologies to deliver an application
• Customizing the User Interface with templates and snippets

Default Themes (Snippet Sets)

The GAS installs with default snippet sets.

AJAX (and AJAX_HTML) Theme

The AJAX theme is based on a JavaScript framework. It provides your applications with
a Genero experience that closely resembles the Genero Desktop Client experience, but
provides it in a Web 2.0 environment. The AJAX theme should work with all desktop

GWC Basics

117

browsers. Applications displayed in a FireFox browser should display as expected.
Applications displayed in Internet Explorer (IE6 and IE7) are largely functional, however
be aware that some layout problems exist. Safari and Opera support is currently at an
early stage.

Note: Starting with 2.11, there is a new output map DUA_AJAX_HTML specifically made
for IE special features like Canvas. This theme has the same functionality as the
DUA_AJAX theme has for the other browsers.

PDA Theme

The PDA theme does not require JavaScript. This theme should be used for PDA and
SmartPhone browsing. It is tested on a Windows Mobile 5 PDA.

The PDA theme is based on pages exchanged with the Web server. As a result, some
Genero features cannot be rendered as they are on a Desktop client (autonext, picture,
triggers execution, focus-based actions, and so on). In some cases, your applications
might behave differently than it would if delivered by a Desktop client. We have set up a
server side algorithm to support legacy applications as close as possible to the Desktop
clients and we will continue to improve this support.

The PDA theme also modifies the layout of your application to fit on a PDA screen. For
example, tables and HBoxes are "verticalized". A table does not display as a traditional
table; the PDA theme displays each column on a separate line. This is a designed
behavior, created because most PDA devices do not have screens wide enough to
handle a traditional table layout.

PAGE (and PAGE_HTML) Themes

The PAGE theme does not require JavaScript and offers a Web 1.0 non-intrusive (no
CSS) rendering for your application. This theme is based on pages exchanged with the
Web server (like the PDA theme). Examining the PAGE theme and its snippet set is the
best way to understand our new rendering engine principles. Feel free to play with it and
modify it.

Note: Starting with 2.11, there is a new output map DUA_PAGE_HTML specifically
made for IE special features like Canvas. This theme has the same functionality as the
DUA_PAGE theme has for the other browsers.

To see an application rendered by each of these themes, launch the Demos application.

GWC Template

GWC template uses the GWC instructions. The instructions are tag attributes prefixed by
the namespace gwc.

Genero Application Server

118

Example:

01 <?xml version="1.0"?>
02 <html xmlns:gwc="http://www.4js.com/GWC"
xmlns="http://www.w3.org/1999/xhtml"
xmlns:svg="http://www.w3.org/2000/svg">
03 <head>
04 <title gwc:condition="application/ui"
05 gwc:marks="title [application/CID, (application/ui ?
application/ui/text : '')
06 + (application/ui/window ? ' - ' +
application/ui/window/name : '')]">Genero Web Client</title>
07 ...
08 </head>
09
10 <body ... >
11 ...
12 <!-- Application ending -->
13 <div gwc:condition="application/state/ended" class="gEnding"
gwc:content="includeSnippet('EndingPage')" />
14 ...
15 <!-- first the topmost normal window -->
16 <div gwc:condition="application/ui/topmostNormalWindow"
gwc:content="application/ui/topmostNormalWindow" />
17 ...
18 </body>
19 ...
20 </html>

Notes:

1. On lines 04-06, the page title will be replaced by the application title.
2. On line 16, the <div ...

gwc:content="application/ui/topmostNormalWindow" /> section will add
the application window.

GWC Basics

119

How the GWC uses Web Technologies (to deliver
an application)
The Genero Web Client allows developers to create applications using the Genero
Business Development Language (Genero BDL) and deliver the applications as web
applications. To deliver a Genero application as a web application, the Genero Web
Client must render the application as an xHTML-based application.

This section presents the main concepts that drive a Genero Web Client project. Genero
Web Client uses a template for rendering. There are four main parts to Genero Web
Client rendering: generated HTML (core), CSS (look), JavaScript (widgets shaping and
behavior), and template language.

Topics

• How an application is rendered by the GWC
• Templates
• Cascading Style Sheets
• JavaScript
• Template Language

How an Application is Rendered by the GWC

The following provides a general explanation of the steps taken when the Genero Web
Client delivers an application, starting with the user entering in the URL and ending with
the application displayed in the user agent (browser).

Genero Application Server

120

The end user requests the application by entering the appropriate URI in the user agent
(1).

The request for the application is routed to a Genero Application Server. If a Web server
is involved, the Connector configuration file routes the application to the correct
application server. The Genero Application Server's configuration files contain the
information about which themes are to be used for the requested application. (2)

Unless explicitly specified by the URI or the application configuration, the appropriate
theme is selected based on the type of user agent (desktop browser, PDA, and so on).
The auda.xrd file is responsible for selecting the appropriate theme for a specific type of
user agent. (3)

GWC Basics

121

In the GAS configuration file, a theme is defined by a TEMPLATE and a series of
SNIPPETS. The template file in turn provides the references for any JavaScript and CSS
files. (4)

The GAS, meanwhile, has started a DVM to serve the application. The DVM creates the
AUI tree (Abstract User Interface describing components and behaviours), which is sent
to the Genero Application Server. (5)

The Genero Web Client's snippet-based rendering engine uses the AUI tree (provided
by the DVM) and the template and snippet files (specified by the application's
configuration in the GAS configuraiton files) to create an XML / xHTML document that is
passed to the user agent. (6, 7)

Any JavaScript and CSS is applied to the xHMTL file by the user agent before displaying
the application to the user. (8)

Template

A template is an xHTML file that displays your application through a browser, using a
Genero front end. A template defines how and where your application is displayed inside
a HTML page. Genero Web Client has a default template showing the current
application window.

With the old rendering engine, we focused on layout change based on container
selections. We need to ensure to change that to concentrate on speaking of snippets
based rendering offering complete flexibility around HTML generation.

The following template example is an excerpt of the default template file provided at
installation for the DUA_AJAX output map, $FGLASDIR/tpl/set1/main.xhtml.

<?xml version="1.0"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<!-- Copyright 2006-2008 Four J's Development Tools. All Rights
Reserved. -->
<html xmlns:gwc="http://www.4js.com/GWC"
xmlns="http://www.w3.org/1999/xhtml"
xmlns:svg="http://www.w3.org/2000/svg">
<gwc:dummy
 gwc:omit-tag="true"
 gwc:define="
 tplImages application/connectorURI+'/fjs/set1/img/';
 ...
"
>
<head>
 <title gwc:condition="application/ui" gwc:marks="title
[application/CID, (application/ui ? application/ui/text : '')
 + (application/ui/window ? ' - '
 + application/ui/window/name : '')]">Genero Web Client</title>

Genero Application Server

122

 <meta http-equiv="Content-Type" gwc:attributes="content
XPathConfig('/APPLICATION/OUTPUT/RENDERING/MIME_TYPE/text()')+';
charset='+document/encoding" />
 <script type="text/javascript"> var gwc = { initTime:new
Date().getTime(), cfg:{} } </script>
 <script type="text/javascript">
 gwc.cfg.development = ;
 ...
 </script>
 <script type="text/javascript" gwc:attributes="src
application/connectorURI+'/fjs/gwccomponents.js'" defer="defer">
</script>
 <script type="text/javascript" gwc:attributes="src
application/connectorURI+'/fjs/gwccore.js'" defer="defer"> </script>
 <link rel="stylesheet" gwc:attributes="href
application/connectorURI+'/fjs/gwccomponents.css'" type="text/css"
title="Default Theme"/>
 <link rel="shortcut icon" gwc:attributes="href
application/connectorURI+'/favicon.ico'" type="image/x-icon" />
 ...
 <style type="text/css" id="gStyleList"/>
</head>

<body
 gwc:marks="
 _href document/URL;
 launch
application/meta/launch?[application/CID,application/meta/launch/url+'?
t=']:null;
 processing application/state/processing &&
noop(document/URL)?[application/CID]:null;
 interactive application/state/interactive &&
noop(document/URL)?[application/CID]:null;
 end application/state/ended/normal?[application/CID]:null;
 style application/ui ? [application/CID, application/ui/StyleList]
: null;
 "
 gwc:attributes="
 class (!isIe6 ? 'gHasContentBoxModel' : '') + (isIe6 ?
'gHasBorderBoxModel' : '');
 "
>
 <!--noscript>

 Your browser must support
javascript.</noscript-->
 <input type="hidden" id="gSuaURL" gwc:attributes="value
document/URL"/>
 ...
 <!-- Application ending -->
 <div gwc:condition="application/state/ended" class="gEnding"
gwc:content="includeSnippet('EndingPage')" />

 <gwc:dummy gwc:omit-tag="true" gwc:condition="application/ui">
 <!-- Application user interface -->

 <!-- first the topmost normal window -->
 <div gwc:condition="application/ui/topmostNormalWindow"
gwc:content="application/ui/topmostNormalWindow" />

GWC Basics

123

 <!-- second, each modal window -->
 <div
 gwc:condition="application/ui/window && (
!application/ui/topmostNormalWindow ||
application/ui/topmostNormalWindow && application/ui/window
&& application/ui/topmostNormalWindow/name !=
application/ui/window/name)"
 gwc:content="application/ui/window"
 />

 <div gwc:condition="application/ui/StartMenu"
gwc:replace="application/ui/StartMenu" />
 </gwc:dummy>

 <!-- File Transfer -->
 <div class="gFiles"
gwc:condition="application/meta/fileTransfer/currentFiles/length"
gwc:content="includeSnippet('FileTransfer')"/>

 <!-- Errors -->
 <fieldset style="float:left; clear:both"
gwc:condition="document/errors">
 <legend>Errors</legend>
 <pre gwc:content="document/errors" />
 </fieldset>
</body>
</gwc:dummy>

</html>

Cascading Style Sheet

Cascading style sheets (CSS) are used to format xHTML pages. If you are not familiar
with this technology, please refer to the W3C web site at www.w3.org.

Genero Web Client uses CSS to place and shape widgets. The menu buttons are
displayed flat, thanks to a CSS style:

Excerpt from gwccomponents.css:

01 .gDialog,
02 .gMenu {
03 float: left;
04 clear: both;
05 width: 95%;
06 padding: 0px 16px 2px 0px;
07 margin: 0px 2px 10px 2px;
08 -moz-border-radius-bottomright: 16px;
09 -moz-border-radius-topright: 16px;
10 background-color: #F4F4F4;
11 }

Genero Application Server

124

Any INPUT inside an element of the class menu has no border.

The widget shaping includes widget states. The following screenshot illustrates noEntry
and other states for input fields:

Thanks to the snippet concept, developers can add any kind of CSS class to their
generated HTML code - you are not limited to the CSS provided by default.

JavaScript

GWC is able to interact with the browser using the browser framework (HTTP, HTML
Forms, and so on) named Page Mode. GWC will provide the browser a complete xHTML
page describing the current 4GL application state. JavaScript could be used, in this
case, on the browser side for any purpose such as a calendar pop-up or input control as
picture, format, and so on.

GWC is also able to interact with the browser using a JavaScript framework. In this case,
the GWC provides to this JavaScript framework incremental HTML modifications
(according to the template and template snippets) and some dialog structures directly
issued from the DVM. The JavaScript framework can then have a more 4GL-like
behavior.

We provide a template/snippets customization set with a complete JavaScript
FrameWork. You will be able to customize widgets dynamic behaviour by modifying
JavaScript hooks, but in reality main modifications can (and should) be done mostly on
snippets and thru CSS.

GWC Basics

125

Template Language

The template language has been introduced to integrate web-designed pages and
extend generated HTML capabilities. The selection criteria are:

• web design tools friendly (does not disturb a web page layout)
• powerful enough

This language is used in templates and snippets. It is interpreted by the Genero Web
Client engine which generates new HTML code. You can perform instructions ranging
from simple condition tests to loop on table lines.

There are three types of items: template instructions, template expressions, and
template paths.

Template instruction

A template instruction is a predefined attribute added to a HTML tag. It defines how the
HTML tag is interpreted.

Syntax

<tag gwc:instruction="expression" ... > ... </tag>

Example

01 <div gwc:replace="window"></div>

The template instruction is gwc:replace. This is an instruction to replace the <div> tag
with the HTML code for the current window.

Template expression

A template expression is the template instruction value. It can be a string, an operation,
or a conversion function.

Example

01 orientation=='horizontal'?'':' gRadioGroupVertical'

This conditional expression returns an empty string if the value of orientation path is
horizontal otherwise it returns gRadioGroupVertical.

Template path

The template path is used to access an element of the current application. The element
can range from the entire application window to a field value in a table.

Genero Application Server

126

Example

01 <title gwc:content="application/ui/window/text">Title of the
page</title>

The template path is application/ui/window/text, returning the title of the window.

For more information

• For more information on the template language, refer to the Template Language
Reference section.

GWC Basics

127

Genero Web Client Application Directory
Structure

When developing and testing applications with the Genero Web Client, you typically
conduct all your development using the Genero Application Server and not the Web
server. For production, when including the Web server, certain files need to be
relocated to the Web server host.

• Development application directory structure (application server only)
• Production application directory structure

For a list of the files and directories created during installation, see the Installation -
Directory and Files help topic.

Development Application Directory Structure

For any Genero application, you have to manage multiple files: source code files, their
compiled versions, and other files associated with the DVM (.4ad, .4st, and so on).
When you display a Genero application using the Genero Web Client, additional files
must be managed: templates, snippets, CSS, and JavaScript files.

Four J's recommends that you organize the directory to represent a small local web site,
as shown in the example below.

Example

• myApp: root directory of your application
o src: 4GL programs, per files, and so on
o web: root directory of the local application web site

 img: images required by the application
 inc: JavaScript and CSS files
 html: application-specific template and snippet files

This example provides a simple directory structure for organizing files for a single
application. The directory structure and organization can get more complex when you
are managing several modules or applications and/or a larger web site, especially when
you re-use files across applications.

You should then define an ALIAS that points to the root directory of the local application
Web site, as shown in the example below.

Example

<INTERFACE_TO_CONNECTOR>

Genero Application Server

128

 ...
 <DOCUMENT_ROOT>$(res.path.docroot)</DOCUMENT_ROOT>
 <ALIAS Id="/mysite">/myApp/web</ALIAS>
 ...
</INTERFACE_TO_CONNECTOR>

In this example, the alias "/mysite" enables access to the files stored in the directory
"/myApp/web/". Using the alias, you can connect to the local web site using the URI
http://<app_server>:6394/mysite/page.html, where page.html is in the
myApp/web directory.

For deployment, you can copy the entire web site to your Web server, or set a special
directory to gather the modified templates. This makes the template configuration in the
as.xcf easier.

To avoid breaking links, build the web site with absolute paths. For example, specify
"/mysite/img/pic.png" not "../img/pic.png".

Where to Place Files for Production

When it is time to put your application in production, you will introduce the Web server to
your solution and may want to move some of the files to the Web server. It is not
necessary to move the files to the Web server, however. In fact, Four J's recommends
you keep all files on the application server and move them to the Web server only if
performance issues arise.

Topics

• Files that can exist on either the application server or the Web server
• Keeping files on the application server
• Moving files to the Web server
• Maintaining files on both the application server and Web server.

Files that can exist on either the application server or the Web
server

The following files can exist on either the application server or the Web server:

• CSS
• JavaScript
• Images
• Documents (html, MS Word, PDF, and so on)

Note: Template and snippet files must be located on the application server, as they are
used to create the XML (xHTML) file that is passed to the browser.

GWC Basics

129

Keeping files on the application server

If you plan to leave the files on the application server only, you should not have to do
any alterations to the existing files with the possible exception of the template files. In
order for a Web server to access files stored on the application server,
$(connector.uri) must be used in front of the directory path for the files listed above.
At runtime, $(connector.uri) is replaced by:

• Nothing when you access the application by connecting directly to the application
server.

• /cgi-bin/fglccgi/<session> when you access via a Web server.

To summarize, $(connector.uri) is required to retrieve documents sitting on the
application server when going through a Web server.

Moving files to the Web server

When moving files from the application server to the Web server, you must:

• Ensure you have defined the same aliases for the Web server as you have
declared in the application server configuration file. Refer to the <ALIAS> section
in your application configuration file.

• Move the CSS, JavaScript, and documents to the correct place on the Web
server (in the directories specified by the aliases) .

• Move template images. Template images are those used by the template, not by
your application (background images, logos, and so on).

• Whether you move application images depends on whether the image extension
is referenced in your application.

o If you haven't specified the image extension in your application, the
Genero Application Server will automatically make the extension
resolution for you (by searching for .png, .gif, and so on). Such images
need to remain on the application server. Otherwise, the html page will
search for an image without extension on your Web server and won't find
it.

o If you have specified the extension in your program, you can move the
image to the Web server.

o Remove $(connector.uri) from your <PICTURE> path in as.xcf.
o In the template file, remove reference to $(connector.uri) where the

path references files now stored on the Web server.

Locating Files on both the Application Server and the Web
Server

If you wish to allow access from both the Web server or the application server
simultaneously, you should:

• Put the files on both the application server and the Web server.
• Remove references to $(connector.uri).

Genero Application Server

130

By removing the $(connector.uri), as long as the files exist on both the application
server and the Web server, you can access the files regardless of the connection type
used.

Tips:

• If you do not have the necessary files on the Web server and you remove
$(connector.uri), the Web server will not be able to access the files on the
application server files.

• You may decide to leave a subset of the files on the application server and not
place them on the Web server. For example, you may decide to leave
gwccomponents.css on the application server, and only copy your custom CSS
files to the Web server. In this situation, you would leave $(connector.uri) in
the path to gwccomponents.css in your template.

GWC Basics

131

Session Variables and Cookies
Topics

• What are Session Variables and Cookies
• Why Session Variables? Use Cases
• Working with Session Variables and Cookies
• Building HTTP Cookies in the configuration file
• Setting session variables with front-end functions
• Setting session variables with a snippet-based rendering engine function
• Setting session variables with a Client Side Framework function
• Session variables template path

Session Variables and Cookies

A session variable is a name-value pair maintained for the duration of the session by
the GAS. A session variable is accessible from the user agent, the application, and the
GWC snippet-based rendering engine.

In order to make a session variable persistent between two runs of an application, you
must store the session variable in an HTTP cookie. The cookie is a text-only string
containing the name-value pair and is saved into the memory of your browser. The
cookie is then sent back to the GAS on all future requests for the application.

Why Session Variables? Use Cases

There are a variety of reasons why you would want to introduce a session variable. For
example:

• You can have an application set a session variable and use it inside a template
snippet, without having to design a form field or a static label in the form.

• You can place a hidden field in an HTML form that will be sent along with other
form data (and fetch them from the application) without having to design a form
field in the 4GL form.

• From the client-side front-end (CSF), you can use a session variable to hold data
that can be used from inside a template snippet to keep a state between two
page updates.

• From the browser, you can save the session variable as an HTTP cookie to hold
data that can be retrieved between two runs of an application by the same user.
For example, to store the users preferences.

Genero Application Server

132

Working with Session Variables and Cookies

The way to share session variables between two runs of an application is to persist the
session variable means of HTTP cookies. Therefore, Genero must provide a way to set
and get session variables to and from cookies.

Create, Set, and Get Session Variables and HTTP Cookies

A session variable or cookie can be created and updated in the following ways:

• From the GAS, an administrator can create and set HTTP Cookies in the
configuration file.

• From the application, a 4GL developer can set or get session variables through
front-end functions.

• From the templates (snippet-based rendering engine), a designer can prepare
form variables with a snippet-based rendering engine function or CSF function
and can access session variables through template paths.

• From the User Agent (browser), a request can set session variables through form
variables. A session variable can be created using a Client Side Framework
function.

GWC Basics

133

Session Variable / HTTP Cookie synchronization

Every session variable may not need to be put into an HTTP cookie; conversely every
HTTP cookie value need not be put into a session variable.

The idea is to tag each session variable that has to be set into a cookie. The snippet-
based rendering engine (with the GAS) would be in charge of maintaining the
cookies/session variables synchronization. On incoming HTTP requests, the engine
would update corresponding session variables; on outgoing HTTP responses, the
engine would set changed cookies. Between the request and the response, the 4GL
developer can update session variables. Therefore, updating an HTTP cookie is
indirectly done by updating its session variables.

Build HTTP Cookies in the Configuration File

The main goal of cookies is to keep a state, through session variables, between two runs
of an application by the same user. The number of cookies associated with an
application should be constant.

You declare cookies for an application within the configuration file.

Examples of cookie declarations

<!-- session cookie -->
<HTTP_COOKIE Id="cookie1">
 <VARIABLE Id="var1" />
 <VARIABLE Id="var2" />
 <VARIABLE Id="var3" />
 <VARIABLE Id="var4" />
</HTTP_COOKIE>
<!-- persistent cookie that applies only to this application -->
<HTTP_COOKIE Id="cookie2" Expires="date" Domain="domain">
 <VARIABLE Id="var5" />
 <VARIABLE Id="var6" />
</HTTP_COOKIE>
<!-- secure persistent cookie with default variable value and constant
value -->
<HTTP_COOKIE Id="cookie3" Expires="date" Domain="domain" Secure="TRUE"
HttpOnly="TRUE">
 <VARIABLE Id="var7" />
 <VARIABLE Id="var8">Initial value</VARIABLE>
 <CONSTANT Id="constant1">A value</CONSTANT>
</HTTP_COOKIE>

Note: All cookies and all associated session variables will be shared between all
applications.

Genero Application Server

134

Setting session variables with front-end functions

A set of front-end functions allows you to dynamically set and get session variables from
within your Genero application. These front-end functions are:

• session.getvar(varname): Return the value of session variable called
varname. Return an empty string if varname doesn't exist.

• session.setvar(varname , value): Set value value to session variable called
varname and return 1 if successful, 0 otherwise.

Note: Setting a variable to an empty string is equivalent to deleting the
variable.

Setting session variables with a snippet-based rendering engine
function

To create a session variable (when there is no existing function with the same name), a
snippet-based rendering engine function is provided.

makeSessionVarIDID(varName, varValue)

In the template itself, you would add this function using a line such as the following:

<input type="hidden" gwc:attributes="name
makeSessionVarIDID('var1','value1')" />

When you use this function, the GAS first builds a page with a session variable, however
it is not created in the application context yet. When the form is submitted by the User
Agent to the GAS, the engine creates the session variable.

Note: Setting a variable to an empty string is equivalent to deleting the variable.

Setting session variables with Client Side Framework API

To create a session variable, a CSF function is provided.

GWC Basics

135

gwc.capi.SessionVar(varName, varValue)

In the template itself, you would add this function using a line such as the following:

<input type="button" onclick="gwc.capi.SessionVar('var1','value1')" />

When you use this function, the CSF submits the variable to the GAS. The session
variable is immediately created in the application context.

Note: Setting a variable to an empty string is equivalent to deleting the variable.

Access session variables using template paths

Session variables are held by a collection. As a result, there is a collection path to iterate
through the full collection of variables, as well as a selector path to access a session
variable by name.

application/meta/variables
application/meta/variable[<name>]
application/meta/variable/XDID
application/meta/variable/name
application/meta/variable/value
application/meta/variable/readOnly

See also: The ApplicationMetaInformation object and The Variables object (part of
Template Paths - Application Hierarchy)

Genero Application Server

136

File Transfer within the GWC

When working with applications, there are security issues involved when retrieving files
from or sending files to the DVM host. This is especially true for applications being
delivered via a Web browser. When using the fgl_putfile() and fgl_getfile() methods, the
user will be prompted to select where the file is placed on the local device (fgl_putfile) or
which file to upload (fgl_getfile).

Warning! The implementation of file transfer relies on the snippet-based rendering
engine first introduced with GWC 2.10. For more information, see Application Rendering.

Topics

• File transfer: Uploading a file
• File Transfer: Downloading a file
• File transfer and the GAS configuration file
• Troubleshooting FAQ

File Transfer: Uploading a File

In a Genero application, uploading a file from the front end to the application server host
is handled by the fgl_getfile() built-in function. For details about this function, refer to the
Built-In Functions topic in the Genero Business Development Language Manual.

• Uploading a file to the DVM
• Preparing to deploy with GWC

Uploading a file to the DVM

The next figure illustrates the process of uploading a file to the DVM.

GWC Basics

137

Notes:

1. A form definition file defines the EDIT field with the STYLE="FileUpload"
attribute. The field displays with a Browse button that allows the user to locate
the file. Once the file is located and selected by the user, it is transferred to the
application server. The application server stores the file in the directory specified
by the TEMPORARY_DIRECTORY element.

2. The user executes the action that results in a call to the FGL_GETFILE() built-in
function. It requests the file from the application server.

3. The file data is transferred from the application server and saved in the directory
specified by the second FGL_GETFILE() parameter.

Preparing to deploy with GWC

When using the GWC to deploy an application that includes uploading a file, verify the
following:

• FileUpload.xhtml snippet exists
• Form definition file specifies FileUpload style
• Template form method set correctly

FileUpload.xhtml snippet

Uploading a file with GWC requires that the mode (snippet set) include a
FileUpload.xhtml snippet. For example, in the as.xcf:

 <SNIPPET Id="Edit"
Style="FileUpload">$(res.path.tpl.ajax)/FileUpload.xhtml</SNIPPET>

Genero Application Server

138

Form Definition File modifications

When the application displays a form, for those fields relating to file uploads, the user
should be prompted to select the file to upload. In the form definition file, add a STYLE
attribute of 'FileUpload' to the field or fields where the user selects the file to upload. For
example, from the .PER file:

 EDIT main1 = formonly.main1, STYLE="FileUpload"

When an EDIT field has the STYLE attribute of 'FileUpload', the FileUpload.xhtml
snippet is used to render that field. All other EDIT fields continue to use the Edit.xhtml
snippet for rendering.

Template modifications

For the PAGE and PDA snippet sets only, add the attribute
enctype="multipart/form-data" to the <form> tag in the template file (main.xhtml).
For example, if the template file states:

 <form method="post" id="gDialogForm" gwc:attributes="action
document/URL">

Then update the entry to include the attribute enctype="multipartform-data":

 <form method="post" id="gDialogForm" gwc:attributes="action
document/URL" enctype="multipart/form-data">

File Transfer: Downloading a File

In a Genero application, downloading a file from the DVM (application server host) is
handled by the fgl_putfile() built-in function. For details about this function, refer to the
Built-In Functions topic in the Genero Business Development Language Manual.

When preparing to deliver an application that includes a file download via the GWC, no
modifications need to be made to the source files, form definition files, templates, or
snippet sets. The application, and the file download, will work as-is given the default
snippets.

• Download with FGL_PUTFILE()
• Using document/bloburl

GWC Basics

139

Download with FGL_PUTFILE()

The next figure illustrates the process of downloading a file to the front end host from the
DVM using the FGL_PUTFILE() built-in method.

Notes:

1. The FGL_PUTFILE command causes the file to be downloaded to move to the
application server.

2. Retrieving a file sent by the DVM via an FGL_PUTFILE call is done using a File
Transfer path (file/url). For details about File Transfer paths, see FileTransfer
Object in Template Paths - Application hierarchy.

3. File data is downloaded to the front end host.

Using document/bloburl

The next figure illustrates the process of using the document/bloburl path to build an
URL that requests files located on the DVM host.

To create the link, you would add code similar to the following to your template file:

<a gwc:attributes="href document/blobUrl + '/report.pdf'">Click to
download report

Genero Application Server

140

Notes:

1. The front end requests the file using the document/blobUrl path. For details on
the document/blobUrl path, see the Document object in Template Paths -
Document hierarchy.

2. The GAS passes the request to the DVM.
The DVM then searches for the requested file in the FGLIMAGEPATH directory.
For information on FGLIMAGEPATH, please refer to the 'Environment Variables'
topic in the Genero Business Development Language Manual.

3. Once the file is located, the DVM sends the file to the GAS.
4. The GAS then sends the file to the front end.

You can download any type of file that resides in the FGLIMAGEPATH directory. It is not
limited to image files. A common use is when an application creates a report and wants
to display a link that the user can click to display the document on the front end.

File Transfer and the GAS Configuration File

• File transfer timeout
• File upload temporary directory

For complete details on the configuration file elements referenced below, refer to the
Genero Application Server Manual.

GWC Basics

141

File Transfer Timeout

In the GAS configuration file, the FILE_TRANSFER's TIMEOUT element determines when
uploaded files are deleted. In other words, the timeout value determines how long
uploaded files remain available. The files are removed from the temporary directory after
the timeout period specified between the TIMEOUT tags elapses. The files are also
removed when the GAS is shut down.

<FILE_TRANSFER>
 <TIMEOUT> timeout </TIMEOUT>
</FILE_TRANSFER>

Notes:

1. timeout is specified in seconds.
2. By default, the value is 600 seconds (10 minutes).

File Upload Temporary Directory

In the GAS configuration file, you specify the directory in which the uploaded files are
stored. The DVM retrieves the file from this temporary directory for processing. The files
remain in the temporary directory for the duration of the timeout period.

Important! This directory does not impact the fgl_getfile() destination directory and file
name. It instead represents the temporary holding area between the Front End and the
DVM.

<INTERFACE_TO_CONNECTOR>
 [...]
 <TEMPORARY_DIRECTORY> dir </TEMPORARY_DIRECTORY>
 [...]
</INTERFACE_TO_CONNECTOR>

Note:

1. By default, the TEMPORARY_DIRECTORY element is set to:
 <TEMPORARY_DIRECTORY>$(res.path.tmp)</TEMPORARY_DIRECTORY>
The default value of the resource $(res.path.tmp) is $FGLASDIR/tmp, where
the value of $FGLASDIR is dependant on the operating system.

Troubleshooting FAQ

• EDIT field rendering
• Forms statement error -8067
• Forms statement error -8066

Genero Application Server

142

EDIT field rendering

Issue: The EDIT field does not render with a browse button.

Solution: Ensure two items: the EDIT field is defined with STYLE="FileUpload", and the
snippet set includes the FileUpload.html snippet. See File Transfer: Uploading a File for
details.

Forms statement error -8067

Issue: When attempting to upload a file, the following error displays:
 Event(Time="772.338228', Type='VM error data') / FORMS statement error number -
8067. \012Could not read source file for file transfer.\012

Solution: You must specify enctype="multipart/form-data" in the template's FORM
tag. See Template Modifications for details.

Forms statement error -8066

Issue: When attempting to upload a file, the following error displays:
 Event(Time="15.928500", Type='VM error data') / Program stopped at 'test.4gl', line
number 27.\012FORMS statement error number -8066.\012Could not write destination
file for file transfer.\012</Event>

Solution: Check that the path is correct or that you have the permissions to write in the
directory you upload the file to.

143

Understanding the Snippet-Based Rendering
Engine
Topics

• What is the Snippet-Based Rendering Engine?
• Understanding Snippet-Based Rendering
• Rendering Configuration
• Why are some widgets partially rendered?

What is the Snippet-Based Rendering Engine?

Prior to Genero Web Client 2.10, there was a single rendering engine known as the built-
in rendering engine. As the name implies, how an application was rendered was "built in"
to the rendering engine. Starting with GWC 2.10, however, the GWC comes with a new
rendering engine: a snippet-based rendering engine has been added, while the legacy
built-in rendering engine remains for backwards compatibility.

The snippet-based rendering engine allows application developers and designers to fully
customize the rendering of a Genero application user interface in a web browser through
the use of externally-defined template snippets. With these snippets, you can adapt the
output for any kind of web browsers, from the simplest PDA to the best JavaScript-
enabled desktop browser. In addition, device-specific mark-up language can be added to
connect external devices (such as barcode readers) to Genero applications.

By default, the GWC defaults to using the snippet-based rendering engine. The
rendering engine selected is defined by an OutputMap, and the OutputMap is chosen
based on the browser signature or is explicitly specified in the application's URL. See
How Browser-Based Themes, Templates, and Snippet Sets work for the GWC for more
information.

Understanding Snippet-Based Rendering

Snippet-based rendering relies upon the GWC object model. The GWC object model
ensures that all available data regarding the application is used to render the page
properly. Sources for the data include the application's abstract user interface (AUI) , the
document data (holds information about the rendering of the current document such as
the URL to send the form back to, rendering errors, and so on), and server data (gives
access to static information about the server, such as the application server version
number).

Genero Application Server

144

The GWC object model exposes this data through properties. These properties are
accessible by means of a path notation within GWC expressions; the GWC expressions
held by GWC template attributes.

The GWC reads the application's AUI tree, which is the abstract definition of the
application's current user interface. Some of the objects in the object model point to a
well-defined entity within the AUI tree (such as a Window object, a Form object, and Edit
object, and so on). Other objects in the object model correspond to an entity that is used
by other AUI objects (such as the GridLayout component, created each time a Grid,
ScrollGrid, or Group object appear in the AUI tree). The objects in this object model are
wrapped by GWC UI Components.

The rendering of a GWC UI Component is driven by the template snippets. The template
snippets are read dynamically at runtime. A template snippet is parsed within the context
of the associated component. The main template controls the overall rendering for the
application page.

The template and snippet files provided for use with the snippet-based rendering engine
are either XHTML or XSL (in comparison with the HTML templates used with the legacy
built-in rendering issue).

• XHTML is merely an adaptation of HTML to be XML well-formatted; XHTML
template and snippet files are XML well-formatted documents. When a snippet is
using XHTML, then you can use gwc template language (gwc tags) within the
snippet file.

Customize the UI for the GWC

145

• XSLT snippets use standard XSLT; you cannot use gwc tags within this file.
(Right now, only used to provide a snippet to handle the StyleList node and
subnodes from the AUI tree.)

NOTE: The rendering engine will not load XML data referenced in snippets such as XML
schemas or DTDs. As a result, the rendering engine will not be able to control or validate
the snippet content against these schemas or use entities defined in these schemas.
Therefore, snippets should not embed references such as é as this could result
in unwanted behavior.

Rendering Configuration

An application's configuration ultimately decides whether an application is rendered
using the built-in rendering engine or the snippet-based rendering engine. This section
identifies those parts of the Genero Application Server configuration file that determine
how the application is rendered.

Output Drivers

The OUTPUT_DRIVER element (found within
WEB_APPLICATION_RENDERING_COMPONENT elements) defines the three
different rendering engine options. From the Genero Application Server configuration
file:

01 <WEB_APPLICATION_RENDERING_COMPONENT Id="cpn.rendering.gwc">
02 <OUTPUT_DRIVER>GWC</OUTPUT_DRIVER>
03 </WEB_APPLICATION_RENDERING_COMPONENT>
04 <WEB_APPLICATION_RENDERING_COMPONENT Id="cpn.rendering.gwc2xhtml">
05 <OUTPUT_DRIVER>GWC2</OUTPUT_DRIVER>
06 </WEB_APPLICATION_RENDERING_COMPONENT>
07 <WEB_APPLICATION_RENDERING_COMPONENT Id="cpn.rendering.xslt">
08 <OUTPUT_DRIVER>XSLT10</OUTPUT_DRIVER>
09 </WEB_APPLICATION_RENDERING_COMPONENT>

There are three output driver options:

• GWC (Line 02) - When this output driver is specified, the legacy built-in rendering
engine is used.

• GWC2 (Line 05) - When this output driver is specified, the snippet-based
rendering engine is used.

• XSLT10 (Line 08) - This output driver was created to enable customers to deploy
Web applications to specific handheld devices prior to the implementation of the
snippet-based rendering engine. You should not use this output driver unless
instructed so by Genero support personnel.

Genero Application Server

146

Important: The output driver that should be used is GWC2. the others are available for
legacy application compatibility.

Themes / Snippet Sets

A WEB_APPLICATION_THEME_COMPONENT defines the theme (the set of templates
and snippets) to be used by the GWC when rendering an application that requests that
theme. A theme designed for the built-in rendering engine only contains TEMPLATE
elements (as SNIPPET elements are ignored by the built-in rendering engine), while a
theme designed for the snippet-based rendering engine contains both TEMPLATE and
SNIPPET elements.

For example, the AJAX theme includes both TEMPLATE and SNIPPET elements, with
various TEMPLATE elements defining the overall presentation of the application on a
page and various SNIPPET elements for each AUI object that could be displayed by a
form. As an application developer or designer, you can customize the XHTML snippet
files to customize an AUI object.

01 <WEB_APPLICATION_THEME_COMPONENT Id="cpn.theme.ajax.gwc">
...
07 <TEMPLATE
Id="_default">$(res.path.tpl.ajax)/main.xhtml</TEMPLATE>
08
09 <SNIPPET Id="Window">$(res.path.tpl.ajax)/Window.xhtml</SNIPPET>
10 <SNIPPET Id="Menu">$(res.path.tpl.ajax)/Menu.xhtml</SNIPPET>
11 <SNIPPET
Id="MenuAction">$(res.path.tpl.ajax)/MenuAction.xhtml</SNIPPET>
12 <SNIPPET Id="Dialog">$(res.path.tpl.ajax)/Dialog.xhtml</SNIPPET>
13 <SNIPPET Id="Action">$(res.path.tpl.ajax)/Action.xhtml</SNIPPET>
14 <SNIPPET Id="Form">$(res.path.tpl.ajax)/Form.xhtml</SNIPPET>
15 <SNIPPET Id="VBox">$(res.path.tpl.ajax)/VBox.xhtml</SNIPPET>
16 <SNIPPET Id="HBox">$(res.path.tpl.ajax)/HBox.xhtml</SNIPPET>
17 <SNIPPET Id="Group">$(res.path.tpl.ajax)/Group.xhtml</SNIPPET>
18 <SNIPPET Id="Table">$(res.path.tpl.ajax)/Table.xhtml</SNIPPET>
19 <SNIPPET Id="Grid">$(res.path.tpl.ajax)/Grid.xhtml</SNIPPET>
20 <SNIPPET
Id="ScrollGrid">$(res.path.tpl.ajax)/ScrollGrid.xhtml</SNIPPET>
21 <SNIPPET
Id="GridLayout">$(res.path.tpl.ajax)/GridLayout.xhtml</SNIPPET>
22 <SNIPPET
Id="FormField">$(res.path.tpl.ajax)/FormField.xhtml</SNIPPET>
23 <SNIPPET Id="Folder">$(res.path.tpl.ajax)/Folder.xhtml</SNIPPET>
24 <SNIPPET Id="Edit">$(res.path.tpl.ajax)/Edit.xhtml</SNIPPET>
25 <SNIPPET
Id="DateEdit">$(res.path.tpl.ajax)/DateEdit.xhtml</SNIPPET>
26 <SNIPPET
Id="ButtonEdit">$(res.path.tpl.ajax)/ButtonEdit.xhtml</SNIPPET>
27 <SNIPPET
Id="TextEdit">$(res.path.tpl.ajax)/TextEdit.xhtml</SNIPPET>
28 <SNIPPET Id="Label">$(res.path.tpl.ajax)/Label.xhtml</SNIPPET>
29 <SNIPPET
Id="ComboBox">$(res.path.tpl.ajax)/ComboBox.xhtml</SNIPPET>
30 <SNIPPET Id="Button">$(res.path.tpl.ajax)/Button.xhtml</SNIPPET>

Customize the UI for the GWC

147

31 <SNIPPET
Id="CheckBox">$(res.path.tpl.ajax)/CheckBox.xhtml</SNIPPET>
32 <SNIPPET
Id="RadioGroup">$(res.path.tpl.ajax)/RadioGroup.xhtml</SNIPPET>
33 <SNIPPET Id="Image">$(res.path.tpl.ajax)/Image.xhtml</SNIPPET>
34 <SNIPPET
Id="StaticLabel">$(res.path.tpl.ajax)/StaticLabel.xhtml</SNIPPET>
35 <SNIPPET
Id="StaticImage">$(res.path.tpl.ajax)/StaticImage.xhtml</SNIPPET>
36 <SNIPPET Id="Slider">$(res.path.tpl.ajax)/Slider.xhtml</SNIPPET>
37 <SNIPPET
Id="SpinEdit">$(res.path.tpl.ajax)/SpinEdit.xhtml</SNIPPET>
38 <SNIPPET
Id="TimeEdit">$(res.path.tpl.ajax)/TimeEdit.xhtml</SNIPPET>
39 <SNIPPET
Id="ProgressBar">$(res.path.tpl.common)/ProgressBar.xhtml</SNIPPET>
40 <SNIPPET Id="HLine">$(res.path.tpl.ajax)/HLine.xhtml</SNIPPET>
41 <SNIPPET
Id="HBoxTag">$(res.path.tpl.ajax)/HBoxTag.xhtml</SNIPPET>
42 <SNIPPET
Id="TopMenu">$(res.path.tpl.ajax)/TopMenu.xhtml</SNIPPET>
43 <SNIPPET
Id="TopMenuGroup">$(res.path.tpl.ajax)/TopMenuGroup.xhtml</SNIPPET>
44 <SNIPPET
Id="TopMenuCommand">$(res.path.tpl.ajax)/TopMenuCommand.xhtml</SNIPPET>
45 <SNIPPET
Id="TopMenuSeparator">$(res.path.tpl.ajax)/TopMenuSeparator.xhtml</SNIP
PET>
46 <SNIPPET
Id="ToolBar">$(res.path.tpl.ajax)/ToolBar.xhtml</SNIPPET>
47 <SNIPPET
Id="ToolBarItem">$(res.path.tpl.ajax)/ToolBarItem.xhtml</SNIPPET>
48 <SNIPPET
Id="ToolBarSeparator">$(res.path.tpl.ajax)/ToolBarSeparator.xhtml</SNIP
PET>
49 <SNIPPET
Id="StartMenu">$(res.path.tpl.ajax)/StartMenu.xhtml</SNIPPET>
50 <SNIPPET
Id="StartMenuGroup">$(res.path.tpl.ajax)/StartMenuGroup.xhtml</SNIPPET>
51 <SNIPPET
Id="StartMenuCommand">$(res.path.tpl.ajax)/StartMenuCommand.xhtml</SNIP
PET>
52 <SNIPPET
Id="StartMenuSeparator">$(res.path.tpl.ajax)/StartMenuSeparator.xhtml</
SNIPPET>
53 <SNIPPET
Id="EndingPage">$(res.path.tpl.common)/EndingPage.xhtml</SNIPPET>
54 <SNIPPET
Id="FileTransfert">$(res.path.tpl.common)/FileTransfer.xhtml</SNIPPET>
55 <SNIPPET
Id="StyleList">$(res.path.tpl.common)/StyleList.xsl</SNIPPET>
56 </WEB_APPLICATION_THEME_COMPONENT>

Genero Application Server

148

Notes

1. Line 01 specifies the component's Id: "cpn.theme.ajax.gwc". An application
definition can inherit the settings of this component by specifying this Id value in
the Using attribute in its THEME element.

2. Line 07 defines the main template file for this component.
3. Lines 09 - 55 provide the template snippets for this component.

For information on customizing a template or snippet file, see Customizing Templates
and Snippets.

Output Maps

As discussed above, how an application is rendered by the Genero Web Client depends
on two components: the RENDERING component (which defines which rendering
engine is used) and the THEME component (which specifies which template and snippet
files to use).

An Output Map gives the ability to group together a single RENDERING component and
a single THEME component into a named Output Map, which can then be specified for
an application. By using the Using attribute, you can specify a
WEB_APPLICATION_RENDERING_COMPONENT and a
WEB_APPLICATION_THEME_COMPONENT, previously defined within the
COMPONENT_LIST section of the Genero Application Server configuration file.

Output Maps are defined within an APPLICATION element (defined within the
APPLICATION_LIST section). For example, the GWC abstract application defines
various MAP elements; an application that specifies this application as its PARENT
application will be able to use one of these Output Maps, which in turn specifies the
RENDERING and THEME to use when rendering the application. You can allow or deny
some OutputMap by setting the Allowed attribute accordingly.

01 <!--This is the default application for GWC-->
02 <APPLICATION Id="defaultgwc" Parent="defaultwa" Abstract="TRUE">
03 <TIMEOUT Using="cpn.gwc.timeout.set1"/>
04 <PICTURE Using="cpn.gwc.picture"/>
05 <OUTPUT Rule="UseGWC">
06 <MAP Id="DUA_Symbol-WC" Allowed="TRUE">
07 <RENDERING Using="cpn.rendering.xslt"/>
08 <THEME Using="cpn.theme.default.gwc">
09 <TEMPLATE Id="_default">$(res.theme.symbol-
wc.stylesheet)</TEMPLATE>
10 </THEME>
11 </MAP>
12 <MAP Id="DUA_GWC" Allowed="TRUE">
13 <RENDERING Using="cpn.rendering.gwc"/>
14 <THEME Using="cpn.theme.default.gwc"/>
15 </MAP>
16 <MAP Id="DUA_AJAX_HTML" Allowed="TRUE">
17 <RENDERING Using="cpn.rendering.gwc2html" />
18 <THEME Using="cpn.theme.ajax.gwc" />
19 </MAP>

Customize the UI for the GWC

149

20 <MAP Id="DUA_AJAX" Allowed="TRUE">
21 <RENDERING Using="cpn.rendering.gwc2xhtml" />
22 <THEME Using="cpn.theme.ajax.gwc" />
23 </MAP>
24 <MAP Id="DUA_PAGE_HTML" Allowed="TRUE">
25 <RENDERING Using="cpn.rendering.gwc2html" />
26 <THEME Using="cpn.theme.page.gwc" />
27 </MAP>
28 <MAP Id="DUA_PAGE" Allowed="TRUE">
29 <RENDERING Using="cpn.rendering.gwc2xhtml" />
30 <THEME Using="cpn.theme.page.gwc" />
31 </MAP>
32 <MAP Id="DUA_PDA" Allowed="TRUE">
33 <RENDERING Using="cpn.rendering.gwc2" />
34 <THEME Using="cpn.theme.pda.gwc" />
35 </MAP>
36 </OUTPUT>
37 </APPLICATION>

Notes

1. Line 02, the application Id stated defaultgwc. An application that specfies
defaultgwc as its Parent will inherit these settings.

2. Line 05, the Output Rule is to "UseGWC", meaning that this application is to be
displayed using the Genero Web Client.

3. Lines 06 - 35 define the various Output Map options made possible
(Allowed="TRUE") to an application that inherits the configuration of this abstract
application.

4. Lines 06 - 11 define the DUA_Symbol-WC Output Map. Do not use this map
unless instructed by Four J's support.

5. Lines 12 - 15 define the DUA_GWC Output Map. Its RENDERING element
specifies "cpn.rendering.gwc", which maps to the GWC output driver, which in
turn informs the Genero Web Client to use the built-in rendering engine to
render the application (as discussed in the previous section). It also specifies that
"cpn.theme.default.gwc" as the theme.

6. Lines 16 - 19 define the DUA_AJAX_HTML Output Map. Its RENDERING
element specifies "cpn.rendering.gwc2html", which maps to the GWC output
driver, which in turn informs the Genero Web Client to use the snippet-based
rendering engine to render the application (as discussed in the previous section).
Tip: The DUA_AJAX_HTML Output Map is designed to be the default Output
Map for Internet Explorer.

7. Lines 20 - 23 define the DUA_AJAX_HTML Output Map. Its RENDERING
element specifies "cpn.rendering.gwc2xhtml", which maps to the GWC output
driver, which in turn informs the Genero Web Client to use the snippet-based
rendering engine to render the application (as discussed in the previous section).
Tip: The DUA_AJAX_HTML Output Map is designed to be the default Output
Map for Mozilla FireFox and other browsers.

8. Lines 24 - 27 define the DUA_PAGE Output Map. Its RENDERING element
specifies "cpn.rendering.gwc2", which maps to the GWC output driver, which in
turn informs the Genero Web Client to use the snippet-based rendering engine to
render the application (as discussed in the previous section).
Tip: The DUA_PAGE_HTML Output Map is designed as a reference

Genero Application Server

150

implementation. It provides a basic implementation of each snippet, illustrating
the behavior of the snipped-based rendering engine and providing a reference
implementation for testing purposes. Its does not use the Client Side Framework.
It is recommended that you use the DUA_AJAX or DUA_PDA Output Maps
instead.

9. Lines 28 - 31 define the DUA_PAGE Output Map. Its RENDERING element
specifies "cpn.rendering.gwc2", which maps to the GWC output driver, which in
turn informs the Genero Web Client to use the snippet-based rendering engine to
render the application (as discussed in the previous section).
Tip: The DUA_PAGE_HTML Output Map is designed as a reference
implementation. It provides a basic implementation of each snippet, illustrating
the behavior of the snipped-based rendering engine and providing a reference
implementation for testing purposes. Its does not use the Client Side Framework.
It is recommended that you use the DUA_AJAX or DUA_PDA Output Maps
instead.

10. Lines 32 - 35 define the DUA_PDA Output Map. Its RENDERING element
specifies "cpn.rendering.gwc2", which maps to the GWC output driver, which in
turn informs the Genero Web Client to use the snippet-based rendering engine to
render the application (as discussed in the previous section).
Tip: The DUA_PDA Output Map is designed to be the default Output Map for
browsers on hand-held devices.

For complete details on all elements of the Genero Application Server configuration file,
refer to the GAS Configuration Reference.

Why are some widgets partially rendered?

The default rendering is accomplished with CSS and javascript. If you lack one of the
two features, the rendering may be incorrect.

• Check that your browser meets the browser requirements and that it supports
javascript.

• Check your installed files, especially the directory "web/fjs" on the application
server (AS) side.

• Check that CSS and javascript files are reachable on the AS side.
o With direct connection, type the URL in your browser -

http://<server>:6394/fjs/defaultTheme/genero.css
o With connection through a web server, apache for example, use

http://<server>/cgi-bin/fglccgi/fjs/default/genero.css
• Check that your templates have application/connectorURI in front of each

reference to a file on the application server. For example, gwccomponents.css is
on the application server, the reference to this file in the default template is:
<link rel="stylesheet" gwc:attributes="href
application/connectorURI+'/fjs/gwccomponents.css'"
type="text/css" title="Default Theme"/>

Customize the UI for the GWC

151

User Interface Customization Options
There are a variety of options available that allow you to customize the application
interface delivered by the Genero Web Client:

• Customize with Genero presentation styles
• Customize with CSS
• Customize templates and snippets
• The User Interface and JavaScript

You can use all four methods when customizing your application; the methods are not
exclusive. Best practices state that you should customize first with Genero Presentation
Styles, then with CSS, then with modification of the template and snippet files, and finally
with JavaScript.

Customize with Genero Presentation Styles

Genero Presentation Styles allow you to define a set of decoration properties to be used
for graphical objects. Presentation Styles are provided to centralize attributes related to
the user interface elements. Genero presentation styles provide a centralized
customization for all application displayed by the Genero Desktop Client (GDC), Genero
Web Client (GWC), or Genero Java Client (GJC). Typical presentation attributes define
font properties and foreground and background colors. Some presentation attributes will
be specific to a given class of widgets.

Presentation Styles are defined in a .4st resource file which is distributed with other
runtime files.

For more information:

• Customize the User Interface with Genero Presentation Styles

Customize with CSS

Cascading Style Sheets (CSS) provide a simple mechanism for adding styles (such as
fonts, colors, and spacing) to Web documents. You will typically use CSS when you
want to make simple interface changes, such as using different colors.

For more information:

Genero Application Server

152

• Customize the User Interface with Cascading Style Sheets (CSS)
• Template CSS Reference

Customize Templates and Snippets

Templates and snippet sets provide you with a mechanism for customizing the rendering
of the HTML displayed in the browser. By customizing the template and snippet files,
you can change the layout of the application and the structure of the widgets.

For more information:

• How snippets render the application interface
• Customizie the User Interface with Templates and Snippets

Customize with Javascript

JavaScript provides an interaction with the engine. JavaScript can enable you to create
your own widgets.

For more information:

• Customize the User Interface with JavaScript

Customize the UI for the GWC

153

Customize the User Interface with Genero
Presentation Styles
Starting with GWC 2.10, the Genero Application Server generates a CSS for those
applications that currently use Genero Presentation Styles (defined in a .4st file).

Topics

• How GWC generates CSS from Presentation Styles
• Customizing how the GWC transforms your Presentation Styles
• Who takes priority between Presentation Styles and existing CSS files
• Generating CSS from Presentation Styles - Limitations
• Shortcuts syle['allInlines4ST'] and style['allClasses4ST']

How GWC generates CSS from Presentation Styles

Genero presentation styles use a .4st file to provide centralized styles for use across the
various Genero application front-ends. It is assumed that you have created your .4st file
that defines the styles you want to apply to the application. This file defines the set of
attributes related to the decoration of user interface elements.

In addition to having a presentation style file created, your application must also call the
appropriate .4st file using the ui.lnterface.loadStyles() method.

The DVM creates the AUI Tree. This AUI tree includes the StyleList node, which
contains child Style nodes. These child Style nodes contain StyleAttribute nodes, where
each StyleAttribute node contains a name (attribute name) and value.

The GWC rendering engine converts these StyleAttributes into CSS based upon the
XSLT document defined for the selected theme. For example, the default
"cpn.theme.ajax.gwc" theme has the following SNIPPET element defined:

 <SNIPPET
Id="StyleList">$(res.path.tpl.common)/StyleList.xsl</SNIPPET>

This file, the StyleList.xsl file, is an XSLT file that defines how the .4st file is translated
into the appropriate CSS entry.

Genero Application Server

154

Customizing how the GWC transforms your Presentation Styles

While the GWC can process the entries in the .4st file, not all .4st entries are translated
into valid CSS entries by default.

In this example, the .4st file used a color "lightMagenta". For example, to define a
background color for the Edit field, we created a .4st file as follows:

<StyleList>
 <Style name="Edit">
 <StyleAttribute name="backgroundColor" value="lightMagenta"/>
 </Style>
</StyleList>

If the GWC generated a CSS entry for the application as follows:

.gEdit {
 background-color: lightMagenta;
}

When the application surfaces in the browser, the background color for the fields would
not be light magenta. The reason behind this is that "lightMagenta" is not a valid color for
CSS.

Note:

1. With the default StyleList.xsl file, GWC makes an automatic conversion of the
following color names to RGB values: green, darkOlive, lightTeal, lightOrange,
lightMagenta, darkTeal, lightRed, darkYellow, lightYellow. As such, the color
'lightMagenta' is translated into a valid CSS color.

To map your own RGB value to the 'lightMagenta' color, modify the StyleList.xsl file to
change the value "lightMagenta" to the appropriate RGB color value before displaying
the application in a browser. Modifying this file consists of three steps:

Customize the UI for the GWC

155

Step 1: Create a copy of the default StyleList.xsl file. By creating a copy of the file, you
avoid having the file overwritten when you upgrade the GWC. For this example, let's
name this file StyleListCustom.xsl.

Step 2: Within the WEB_APPLICATION_THEME_COMPONENT in the GAS
configuration file, modify the SNIPPET element for the StyleList to reference your copy
of the file.

<SNIPPET
Id="StyleList">$(res.path.tpl.common)/StyleListCustom.xsl</SNIPPET>

Step 3: Open the StyleListCustom.xsl file and create a new entry that sets the
"lightMagenta" color to the desired RGB value.

<xsl:template name="translateColor">
 <xsl:choose>
 <xsl:when test="@value='green'">#00ff00</xsl:when>
 <xsl:when test="@value='lightMagenta'">#ffc0ff</xsl:when>
 [...]
 <xsl:otherwise><xsl:value-of select="@value"/></xsl:otherwise>
</xsl:template>

Notes:

• To create an entry we copied the line above defining the translation for the value
'green' and modified as required.

• To find the hexadecimal name that is valid for CSS, we looked up the valid color
names and hex names on the W3C site:
http://www.w3schools.com/css/css_colornames.asp

• This file is written in XSLT. To make modifications to this file, it would be very
useful to understand and be able to work with XSLT. The site w3schools.com
provides online training for XSLT.

After this entry has been made to the style list file and the changes saved, the
appropriate CSS is generated when the application is run. You can view the source
created and see that the CSS entry has changed to the following:

.gEdit {
 background-color: #ffc0ff;
}

This is valid CSS and is able to be interpreted by the browser.

Genero Application Server

156

What takes priority: Presentation Styles or existing CSS files

If you have the same attribute defined both in the CSS stylesheets (such as the
gwccomponents.css) and in the .4st file, the .4st file will take priority.

For example, if we add a background color to the gwccomponents.css file:

.gEdit {
border-width: 1px;
background-color: aqua;

}

We then also have the background color for the Edit field defined in our .4st file:

<StyleList>
 <Style name="Edit">
 <StyleAttribute name="backgroundColor" value="#7FFF00"/>

 </Style>
</StyleList>

The rendering engine will translate the .4st into a CSS entry, and this entry will take
precedence over the value defined in the CSS stylesheet.

Generating CSS from Presentation Styles - Limitations

Limitations exist regarding:

Customize the UI for the GWC

157

• Common attributes
• Pseudo selectors
• TTY attributes
• Browser limitations

Common Attributes

Only the common attributes provided by the Genero Presentation Styles are translated
into CSS. For other presentation styles (such as positioning), customization must be
done within the snippet files. For more information on the Genero Presentation Styles,
refer to the Presentation Styles topic in the Genero Business Development Language
Manual. .

Pseudo Selectors

Genero presentation styles include pseudo selectors, where a style is applied only when
some conditions are fulfilled.

<Style name="Edit:focus" >

Pseudo selectors, however, are NOT translated into CSS by the Genero Web Client. In
order to handle pseudo selectors, you must include style paths within the snippet file
itself.

For more information on pseudo selectors defined in the presentation styles, refer to the
Pseudo Selectors paragraph within the Presentation Styles topic in the Genero Business
Development Language Manual.

TTY attributes

The GWC does not handle the entries for (TTY-based) display attributes defined in
either the .4GL or the form specification file, such as FONTPITCH, BOLD, REVERSE,
BLINK, UNDERLINE, INVISIBLE, BLACK, and so on.

Browser Limitations

There are some difference between browsers on what the browser supports in terms of
CSS. For example, Internet Explorer does not support background color on Edit fields.

Shortcuts style['allInlines4ST'] and style['allClasses4ST']

syle['allInlines4ST'] is equivalent to:

 (style['textColor']?' color:'+colorToRGB(style['textColor'])+';':'')+

Genero Application Server

158

 (style['backgroundColor']?' background-
color:'+colorToRGB(style['backgroundColor'])+';':'')+
 (style['fontSize']?' font-size:'+style['fontSize']+';':'')

syle['allClasses4ST'] is equivalent to:

 (style['border']?' gBorder_'+style['border']:'') +
 (style['fontFamily']?' gFontFamily_'+style['fontFamily']:'') +
 (style['fontWeight']?' gFontWeight_'+style['fontWeight']:'') +
 (style['textDecoration']?'
gTextDecoration_'+style['textDecoration']:'') +
 (style['fontStyle'] ?' gFontStyle_'+style['fontStyle'] :'')

Customize the UI for the GWC

159

Customize the User Interface with Cascading
Style Sheets (CSS)
CSS is one of the fastest and the simplest way to change your application's look. Most
generated HTML elements have classes and containers (<DIV>) so you can change the
widget's look and place the elements where you want. This section describes how you
can modify existing or add new CSS. Understanding this chapter requires knowledge of
CSS. We use CSS 2 standards described on the W3C site. For more information on
CSS, refer to the tutorials at http://www.w3schools.com.

Topics

• Default CSS
• Adding New Styles
• Override Existing Styles
• Applying a Style to a Widget (Form Object)

For information about using existing .4st presentation style files, click here.

We assume that you have read the section How the GWC Uses Web Technologies and
understand the principles.

Default CSS

The Genero Web Client provides default CSS files. Each set of snippets have their own
CSS. Which CSS file is used is based on the Style Sheet link provided by the theme's
template file. For example, if the application is using the AJAX theme (the DUA_AJAX
Output Map), then the template being used is the main.xhtml template located in the
directory $FGLASDIR/tpl/set1.

Within this template file:

01 <head>
02 <title gwc:condition="application/ui" gwc:marks="title
[application/ui/CID,window/name
 + ' - ' + application/ui/text + ' - ' +
document/URL]">Title</title>
03 <meta http-equiv="Content-Type" gwc:attributes="content

XPathConfig('/APPLICATION/OUTPUT/MAP[@Id=../@DUA]/RENDERING/MIME_TYPE/t
ext()')+';
 charset='+document/encoding" />
04 <script type="text/javascript" gwc:attributes="src
application/connectorURI+'/fjs/gwccomponents.js'"

Genero Application Server

160

 defer="defer"> </script>
05 <script type="text/javascript" gwc:attributes="src
application/connectorURI+'/fjs/gwccore.js'"
 defer="defer"> </script>
06 <link rel="stylesheet" gwc:attributes="href
application/connectorURI+'/fjs/gwccomponents.css'"
 type="text/css" title="Default Theme"/>
07 <link rel="shortcut icon" gwc:attributes="href
application/connectorURI+'/favicon.ico'"
 type="image/x-icon" />
08 <script type="text/javascript" gwc:content="'var gDialog=' +
document/dialog" />
09 <script type="text/javascript" gwc:content="'var gElementMarkTree='
+
 document/marks" />
10 <script type="text/javascript" gwc:content="'var gComponentList=' +
 document/components" />
11 <script type="text/javascript" gwc:condition="application/ui"
gwc:content="'var
 gDbdate=\'' + application/ui/dbdate + '\''" />
12 <!--script gwc:content="'alert(\''+application/state+'\');'"/-->
13 <!-- the next element will be replaced by the current 4GL window
based on the
 associated window snippet -->
14 <!-- if the 4GL window has a specific style, a snippet configured
with that
 style will be used -->

15 <style type="text/css" gwc:condition="application/ui/StyleList"
gwc:content="application/ui/StyleList"/>
16 </head>

The CSS used for applications being rendered using the AJAX theme is defined by the
<LINK> element defined by line 07 in the example above. When you resolve the
references, this link maps to the file $FGLASDIR/web/fjs/gwccomponents.css.

In the CSS reference section, you have the available styles for each widget. GWC styles
are prefixed by the letter "g". Note that not all styles listed in the CSS Reference section
have a default defined in the default genero.css file.

Example using CSS

The following screenshot is the Edit demonstration program using the default template
main.xhtml, which specifies the gwccomponents.css style sheet.

Customize the UI for the GWC

161

Example without using CSS

The following screenshot is the same program (the Edit demonstration program) without
a CSS applied. Although the application is fully functional, the appearance is not as nice
as the program displayed using the default CSS.

Genero Application Server

162

Adding New Styles

When you define a new style or redefine an existing style, you can either use LINK tags
to include styles declarations defined in an external file (an external CSS) or you can
declare the style directly in your HTML template using STYLE tags. When style
information is read by the browser, if a style is defined multiple times and/or in multiple
locations, the one with the highest weight is used. For information regarding the weight
between various styles, refer to the documentation provided on the W3C site.

Include a Custom Style Sheet

After creating a new style sheet in an external file, use LINK tags to include the style
declarations defined in the external file. The LINK tag is added to the template. In the

Customize the UI for the GWC

163

code snippet below, styles defined in mystyles.css override styles defined in
genero.css in accordance with the priorities described in CSS standards.

 ...
11 <link rel="stylesheet" gwc:attributes="href
application/connectorURI+'/fjs/gwccomponents.css'"
 type="text/css" title="Default Theme"/>
12 <link rel="stylesheet" gwc:attributes="href
application/connectorURI+'/fjs/mystyles.css'"
 type="text/css"/>
 ...

When the second link is added for the additional stylesheet, notice that we do not
provide a second title attribute. Browsers such as FireFox use these titles to allow the
user to select between the two defined stylesheets by the title rather than combining the
two stylesheets. By eliminating the title attribute for the link, the resulting CSS is the
combination of the two stylesheets. For selectors defined in both stylesheets, those
selector attributes defined in the second stylesheet (line 12 above) take precedence over
those selector attributes defined in the first stylesheet (line 11 above).

Adding a STYLE tag within the template

Use STYLE tags to declare a new style directly in the template file. This style will only be
available to applications that use this template file.

 ...
04 <link rel="stylesheet" gwc:attributes="href
application/connectorURI+'/fjs/gwccomponents.css'"
 type="text/css" title="Default Theme"/>
 ...
05 <style type="text/css" gwc:condition="application/ui/StyleList"
gwc:content="application/ui/StyleList"/>
05 <style type="text/css">
06 .mystyle {
07 width: 100%;
08 background-color: beige;
09 }
10 </style>

Overriding existing styles

you can override defined styles. To override defined styles, you have to give the same
selector and add new styles or redefine existing styles.

For example, here is the style declaration from the default Genero CSS for the AJAX
theme (gwccomponents.css) for the selector .gDialog. This selector is for a dialog
object.

Genero Application Server

164

 .gDialog,
 .gMenu {
 float: left;
 clear: both;
 width: 95%;
 padding: 0px 16px 2px 0px;
 margin: 0px 2px 10px 2px;
 -moz-border-radius-bottomright: 16px;
 background-color: #F4F4F4;
 }

To add a new style for this selector -- for example, a background color -- simply add the
CSS style background-color for this selector in either a custom CSS file or in a STYLE
tag in your template file:

 .gDialog{
 background-color: #FF0000;
 }

As this is a new style, it will be added to the style information read from the
gwccomponents.css file for this selector. And as the selector attribute backgroud-
color is defined twice (initially in the gwccomponents.css file and again in your style
declaration), the one with the higher weight will be used.

Applying a Style to a Widget (Form Object)

You can add your own styles for any widget (form object) by adding the STYLE attribute
to the widget in the form definition file. (.per file or .4fd file). The STYLE attribute value
is transmitted to the HTML class attribute.

01 EDIT f001=FORMONLY.field1, STYLE="style1 style2";

Generated HTML (part of)

<input type="text" id="ge29" title="" size="17" value="" style=""
class="gField
gInherit gDisabled gEdit gcstyle1 gcstyle2 gEdit_gcstyle1
gEdit_gcstyle2" readonly="readonly"/>

Corresponding CSS

 .gcstyle1 {
 border: 1px solid #00FF00;
 background-color: #FF0000;
 }

 .gcstyle2 {
 width: 100%;

Customize the UI for the GWC

165

 }

Important! While the STYLE was defined as "style1" and "style2" for the widget (form
object), the CSS must preface these style names with "gc" (for .name) and "g" (for name,
like Edit)

For more information on the technical detail behind this specific topic, see Relating
Styles, Classes, and Selectors.

Genero Application Server

166

Template CSS Reference

You can use Cascading Style Sheets (CSS) to customize the look and feel of your
application.

Topics

CSS Syntax

CSS uses a specific syntax to define the style of HTML elements. This
section presents the various syntax options.

Genero CSS Selectors

This section lists Genero CSS selectors by category (Containers,
FormFields, Dialogs, and more). Not all selectors are valid for each of the
three modes (AJAX, PAGE, PDA); you must view the generated HTML to
see which selectors are valid for the mode (template and snippet sets)
being used to display your application.

CSS Syntax

CSS uses a specific syntax to define the style of HTML elements.

Syntax

selector {
 style [...]
}

Notes

1. selector is a path defining on which HTML tags the styles have to be applied
2. style is a CSS style property as defined in the W3C site

Here is an excerpt of the selector syntax used with the Genero Web Client default
theme:

 Selector Description
 BODY This selector applies to any BODY tag.
 #gWorkspace This selector applies to any tag having gWorkspace for id.

Customize the UI for the GWC

167

 .gGrid This selector applies to any tag having gGrid for class.

 .gMenu SPAN This selector applies to any SPAN tag which is a
descendant of a tag having gMenu for class.

 INPUT.queryZone This selector applies to any INPUT tag having queryZone
for class.

 .gToolBar .hover *
This selector applies to any tag which is a descendant of
a tag having hover for class and which is a descendant of
a tag having gToolBar for class.

You can merge common styles configurations by grouping selectors in a comma
separated list:

selector1 , selector2 , selector3 {
 styles [...]
}

For a complete reference for selector syntax, refer to the W3C site.

Template CSS

This section provides a list of selectors recognized by the Genero Web Client. It is
divided into the following sections:

• Containers CSS: GRID, TABLE, SCROLLGRID, GROUP, FOLDER, PAGE,
HBOX, VBOX

• FormFields CSS: FormField Box, EDIT, TEXTEDIT, BUTTON, BUTTONEDIT,
DATEEDIT, CHECKBOX, COMBOBOX, RADIOGROUP, LABEL, Construct

• Dialog CSS: MENU, DIALOG, TOPMENU, TOOLBAR, MESSAGE, ERROR
• Other CSS

Notes

1. Not all selectors are valid for each of the three modes (AJAX, PAGE, PDA); you
must view the generated HTML to see which selectors are valid for the mode
(template and snippet sets) being used to display your application.

2. You can create your own selectors by adding classes to your snippet files.

Containers CSS

• GRID

Genero Application Server

168

• TABLE
• SCROLLGRID
• GROUP
• FOLDER
• PAGE
• HBOX
• VBOX

GRID

 Selector Description
 .gGrid The SPAN tag containing the grid
 .gGridLine A line of the grid

TABLE

 Selector Description
 .gTableBox The SPAN tag containing the table
 .gTable The TABLE tag
 .gTable col.gHidden A hidden table column
 .gTable TH
 .gTable THEAD TR TH A table header cell

 .gTable TR A table row
 .gTable TD A table cell
 .gTable TD * Any table cell descendant
 .gTable TD
.gCurrentField The field having the focus in the table

 .gTable
INPUT.gTableHeader A column input header; used to sort the table

 .gTable
.disabledTableHeader A disabled table column header

 .gTable .disabled A disabled field of the table
 .gTable .gSortAsc An ascending sorted table column
 .gTable .gSortDesc A descending sorted table column
 .gTable
.gCurrentRow * Any descendant of the currently selected row

 .gTable
.gButtonEdit A ButtonEdit widget in the table

Customize the UI for the GWC

169

 .gTable .gAction An action item (ex: the button of a ButtonEdit widget) in
the table

 .gTable
.activeButtonEdit
.gAction

The action item of the currently active ButtonEdit widget in
the table

 .gTable
.activeButtonEdit
.gButtonEdit

The input part of the currently active ButtonEdit widget in
the table

 .gFill .gTable A Grid Table once the JavaScript layout function has
finished its processing

SCROLLGRID

 Selector Description
 .gScrollGridBox The SPAN tag containing the scrollgrid
 .gScrollGrid The scrollgrid itself
 .gHLineBox HR A horizontal line in the scrollgrid

GROUP

 Selector Description
 .gGroupBox The SPAN tag containing the group
 .gGroup
 .gGroupBox .gGroup The container box of a group

 .gGroupTitle
 .gGroupBox
.gGroupTitle

The title of a group

FOLDER

 Selector Description
 .gFolder The DIV tag containing the folder pages

Genero Application Server

170

PAGE

 Selector Description
 .gFolder
.gPageHeader A page header

 .gFolder .gPage A folder header
 .gFolder
.selectedPageHeader The currently selected page header

 .gFolder
.selectedPage The currently selected page

HBOX

 Selector Description
 .gHBox A HBOX container
 .gHBox TD A HBOX column

VBOX

 Selector Description
 .gVBox A VBOX container
 .gVBoxLine
 .gVBox TD A VBOX line

FormFields CSS

• FormField Box
• EDIT
• TEXTEDIT

Customize the UI for the GWC

171

• BUTTON
• BUTTONEDIT
• DATEEDIT
• CHECKBOX
• COMBOBOX
• RADIOGROUP
• LABEL
• Construct

FormField Box

 Selector Description
 .gFormFieldBox The SPAN tag containing the formfield
 .gCurrentField The FormField having the input
 .gJustifyCenter A FormField having the JUSTIFY attribute set to center
 .gJustifyLeft A FormField having the JUSTIFY attribute set to left
 .gJustifyRight A FormField having the JUSTIFY attribute set to right
 .gShiftDown A FormField having the DOWNSHIFT attribute set
 .gShiftUp A FormField having the UPSHIFT attribute set
 .gNoEntry A FormField having the NOENTRY attribute set
 .gNotNull A FormField having the NOT NULL attribute set
 .gRequired A FormField having the REQUIRED attribute set
 .gTypeByte A FormField having the BYTE target type
 .gTypeChar A FormField having the CHAR target type
 .gTypeDate A FormField having the DATE target type
 .gTypeDatetime A FormField having the DATETIME target type
 .gTypeDecimal A FormField having the DECIMAL target type
 .gTypeFloat A FormField having the FLOAT target type
 .gTypeInteger A FormField having the INTEGER target type
 .gTypeInterval A FormField having the NTERVAL target type
 .gTypeMoney A FormField having the MONEY target type
 .gTypeSmallfloat A FormField having the SMALLFLOAT target type
 .gTypeSmallint A FormField having the SMALLINT target type
 .gTypeString A FormField having the STRING target type
 .gTypeText A FormField having the TEXT target type
 .gTypeVarchar A FormField having the VARCHAR target type
 .gVerify A FormField having the VERIFY attribute set

Genero Application Server

172

EDIT

 Selector Description
 .gEdit An Edit widget

 .gFill .gEdit An Edit widget once the Javascript layout function has
finished its processing

TEXTEDIT

 Selector Description
 .gTextEdit A TextEdit widget

 .gScrollbarHorizontal A TextEdit widget having the SCROLLBARS attribute set to
horizontal

 .gScrollbarVertical A TextEdit widget having the SCROLLBARS attribute set to
vertical

 .gFill .gTextEdit An TextEdit widget once the Javascript layout function
has finished its processing

BUTTON

 Selector Description
 .gButtonBox The SPAN tag containing the button
 .gButtonBox
.gAction The image or text for this button

 .pressedButtonBox A pressed button

 .gFill .gButtonBox A Button once the Javascript layout function has finished
its processing

 .gFill .gHBoxTag
.gButtonBox

A Button in a Grid HBox tag once the Javascript layout
function has finished its processing

Customize the UI for the GWC

173

BUTTONEDIT

 Selector Description
 .gButtonEdit A ButtonEdit widget

 .gFill .gButtonEdit An ButtonEdit widget once the JavaScript layout function
has finished its processing

DATEEDIT

 Selector Description
 .gDateEdit A DateEdit widget

 .gFill .gDateEdit A DateEdit widget once the JavaScript layout function has
finished its processing

 .calendar The calendar widget
 .calendar THEAD
.nav The calendar widget's navigation bar

 .calendar TD A calendar widget cell
 .calendar THEAD
.nav .info The calendar widget's date

 .calendar THEAD
.days TD The calendar widget's days bar

 .calendar THEAD
.days .we Weekend days in the calendar widget's days bar

 .calendar TBODY TD A calendar widget's day number cell
 .calendar TBODY
.hover

A calendar widget's day number cell having the mouse
over it

 .calendar TBODY
.today Today's cell in the calendar widget

 .calendarIcon The DateEdit widget's calendar icon

CHECKBOX

 Selector Description
 .gCheckBox
 .gFormFieldBox
.gCheckBox

A CheckBox widget

Genero Application Server

174

 .gTable TD
.gCheckBox A CheckBox widget in a table

 .nullState A CheckBox widget having no state
 .checkedState A checked CheckBox widget
 .uncheckedState An unchecked CheckBox widget

COMBOBOX

 Selector Description
 .gComboBox A ComboBox widget
 .comboboxEdit The ComboBox input field
 .comboboxButton The ComboBox button
 .comboboxList The ComboBox list of values
 .comboboxList DIV A ComboBox list item
 .comboboxList
DIV.over The ComboBox list item having the focus

 .comboboxList
DIV.selected The currently selected ComboBox list item

 .gCurrentField
.comboboxEdit The ComboBox having the input

 .disabled
.comboboxEdit A disabled ComboBox input field

 .disabled
.comboboxButton A disabled ComboBox button

 .gQuery
.comboboxEdit A ComboBox input in construct mode

 .gFill
.comboboxEdit

A ComboBox input once the JavaScript layout function
has finished its processing

 .gFill .gHBoxTag
.comboboxEdit

A ComboBox input in a Grid HBox tag once the
JavaScript layout function has finished its processing

RADIOGROUP

 Selector Description
 .gRadioGroup A RadioGroup widget

Customize the UI for the GWC

175

 .gOrientationHorizontal
DIV

An option of a RadioGroup widget having its
ORIENTATION attribute set to horizontal

LABEL

 Selector Description
 .gLabel A form label
 .gFill .gLabelBox
LABEL

A static Label once the JavaScript layout function has
finished its processing

 .gFill .gHBoxTag
.gLabelBox LABEL

A static Label in a Grid HBox tag once the JavaScript
layout function has finished its processing

Construct

 Selector Description
 INPUT.queryZone A formfield in construct mode
 INPUT.currentQueryZone The formfield in construct mode having the focus

Dialog CSS

• MENU
• DIALOG
• TOPMENU
• TOOLBAR
• MESSAGE
• ERROR

MENU

 Selector Description
 .gMenu The DIV tag containing the menu
 .gMenu SPAN The menu title
 .gMenu UL The menu actions container
 .gMenu LI A menu action
 .gMenu LI.hover A menu action having the mouse cursor over it

Genero Application Server

176

 .gMenu INPUT The image or text associated to the menu action
 .gMenu
LI.gCurrentAction
INPUT

The image or text for the current menu action

 .gMenu LI.gHidden A hidden menu action

 .gStyleDialog IMG The image associated to a menu having the STYLE
attribute set to Dialog

DIALOG

 Selector Description
 .gDialog The DIV tag containing the action panel
 .gDialog UL The action panel container
 .gDialog LI An action
 .gDialog LI.hover An action having the mouse cursor over it
 .gDialog LI.gHidden A hidden action
 .gDialog INPUT The text associated to the action

TOPMENU

 Selector Description
 .gTopMenu The DIV tag containing the TopMenu
 .gTopMenu UL The container for the TopMenu list of top groups
 .gTopMenu LI A TopMenu top group
 .gTopMenu UL UL A TopMenu group's items lis
 .gTopMenu LI LI A TopMenu group item
 .gTopMenu UL UL UL A sub-group's items list
 .gTopMenu label The TopMenu text
 .gTopMenu .gAction The image or text for a TopMenu command
 .gTopMenu .hover The TopMenu item having the mouse cursor over it
 .gTopMenu HR A TopMenu separator
 .gTopMenu
LI.gHidden A hidden TopMenu item

Customize the UI for the GWC

177

TOOLBAR

 Selector Description
 .gToolBar The DIV tag containing the ToolBar
 .gToolBar UL The container for the ToolBar items
 .gToolBar LI A ToolBar item
 .gToolBar HR A ToolBar separator
 .gToolBar INPUT The image or text for a ToolBar item
 .gToolBar .hover The ToolBar item having the mouse cursor over it

 .gToolBar .hover * The image or text for a ToolBar item having the mouse
cursor over it

 .gToolBar .pressed A pressed ToolBar item
 .gToolBar
LI.gHidden A hidden ToolBar item

MESSAGE

 Selector Description
 #gMessage The P tag containing the message

ERROR

 Selector Description
 #gError The P tag containing the error message

Other CSS

 Selector Description
 #gDialogForm The HTML form containing the workspace
 #gForm The container of the application's current form
 #gForm .gHidden Any hidden elements in the form
 #gFormTable The TABLE tag containing the form
 #gForm-div The DIV tag containing the form
 #gPanel The TD tag containing the action panel

Genero Application Server

178

 BODY The BODY tag of the page
 .defaultButton An image for which the resource has not been found
 .disabled
 .disabled OPTION A disabled element of the application

 .gCurrentCell
.disabled A disabled element of a screen array

 SELECT.gCurrentField The ComboBox widget having the focus
 .gStretchX An Image widget having the STRETCH attribute set to X
 .gStretchY An Image widget having the STRETCH attribute set to Y
 .gAutoScale An Image widget having the AUTOSCALE attribute set\
 .gHLineBox HR A horizontal line

 .gFill .gHLineBox HR A horizontal line once the JavaScript layout function has
finished its processing

 .gFill .gHBoxTag
.gHLineBox HR

A horizontal line in a Grid HBox tag once the JavaScript
layout function has finished its processing

Customize the UI for the GWC

179

Customize the User Interface with Templates and
Snippets
The HTML that is sent to the browser is dependant on the templates and snippets used
by the rendering engine. To change the HTML that is generated, you can change the
template and snippets that produce the HTML.

Topics

• Writing a Custom Snippet
• Example of Snippet Customization
• Using your Custom Snippet
• Do I have to restart the GAS to see the result of changes in my template or

snippet files?

We assume that you have read the section How the GWC Uses Web Technologies and
understand the principles. This section describes how you modify the default GWC
rendering to customize your Web application. Understanding this chapter requires
knowledge of CSS and JavaScript. Refer to the tutorials at http://www.w3schools.com to
get an overview of these technologies.

Writing a Custom Snippet

To change how a specific interface object is rendered by the snippet-based rendering
engine, you modify the snippet itself.

To do this, you need to:

1. Identify the snippet that is associated with the interface object that you wish to
modify.

2. Identify the language that the snippet is written in. We know that the snippets
have template language (for that provides the path to the interface object(s), but
the snippets may also include JavaScript and HTML (as with the AJAX theme -
Set 1) or may simply be in HTML (as with the PDA theme - Set 3).

3. Create a copy of the snippet and make your modifications to the copy. Do not
modify the snippet that comes installed with the product. If you modify the
snippets provided with the product, you will lose your work when you upgrade the
product. You can place the copy in a directory of your choosing; when you define
the resource for your custom snippet you will be able to specify the path to the
snippet file. See Using your Custom Snippet for more information.

Warning! By default, the Genero Application Server caches the template and snippet
files; you must either restart the application server to use the latest template and snippet
files, or you must start the application server using the --development option. See
Installing and Starting the GWC for more information.

Genero Application Server

180

Modify a Snippet Example

In this example, the Image snippet is being modified to display differently depending on
whether the file being displayed is a Flash file (with a .swf extension) or another type of
image file.

Example AJAX Mode (Set 1 Snippets)

For AJAX Mode, we want to customize the Image snippet file so that it uses an HTML
object tag instead of an image tag, as the object tag can handle the SWF. We then want
to provide conditional code: if it is a Flash File, do x, if it is not a Flash File, do y.

Before Customization

01 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
02 <html xmlns:gwc="http://www.4js.com/GWC">
03
04 <!-- the head element is ignored -->
05 <head>
06 <meta http-equiv="Content-Type" content="text/html; charset=utf-
8" />
07 <title>Image snippet</title>
08 </head>
09 <body>
10 <!-- the template snippet is the content of the gwc:snippet-root
element -->
11 <gwc:snippet-root>
12 <img
13 gwc:condition="hidden!=1"
14 gwc:attributes="
15 src value ? ImageURI(value) : null; title comment;
16 class (hidden!=2?'':' gHidden');
17 "
18 />
19 </gwc:snippet-root>
20 </body>
21 </html>

After Customization

01 <?xml version="1.0" encoding="UTF-8"?>
02 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
03 <html xmlns:gwc="http://www.4js.com/GWC">
04
05 <!-- the head element is ignored -->
06 <head>
07 <meta http-equiv="Content-Type" content="text/html; charset=utf-
8" />
08 <title>Image snippet</title>

Customize the UI for the GWC

181

09 </head>
10 <body>
11 <!-- the template snippet is the content of the gwc:snippet-root
element -->
12 <gwc:snippet-root>
13 <img
14 gwc:condition="(hidden!=1) && !contains(value,
'.SWF')"
15 gwc:attributes="src value ? ImageURI(value) : null; title
comment;class
 (hidden!=2?'':' gHidden');"
16 style="max-width:480px;margin:10px;padding:20px;background-
color:black;"
17 />
18 <object gwc:condition="!hidden && contains(value,
'.SWF')" width="480px"
 style="margin:10px;">
19 <param name="movie" gwc:attributes="value ImageURI(type ==
'Image' ? value :
 image)"/>
20 <embed width="480px" gwc:attributes="src ImageURI(value)"/>
21 </object>
22
23 </gwc:snippet-root>
24 </body>
25 </html>

Notes

1. In Line 14, the gwc:condition instruction handles files that are NOT flash files
(files without an SWF extension).

2. In Line 18, the gwc:condition instruction handles files that are flash files (files with
an SWF extension).

Example PDA Mode (Set 3 Snippets)

For the PDA example, when a Flash file is found, we simply want the application to
inform the user that their device does not support this type of file.

Before Customization

01 <?xml version="1.0"?>
02 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
03 <html xmlns:gwc="http://www.4js.com/GWC" xml:lang="fr">
04 <head>
05 <meta http-equiv="Content-Type" content="text/html; charset=utf-
8" />
06 <title>Image snippet</title>
07 </head>
08 <body>
09 <gwc:snippet-root>
10 <img gwc:condition="!hidden"
11 gwc:attributes="src ImageURI(type == 'Image' ? value :

Genero Application Server

182

image)
12 ;width (autoscale ? (contains(width, 'px') ? width :
number(width)*6) : null)
13 ;height (autoscale ? (contains(height, 'px') ? height :
number(width)*10) : null)
14 ;title comment
15 ;alt comment
16 ;class 'gImage gStyle_'+translate(class, ' -/\#.=+()[]',
'____________') +
17 (' gColor_'+style['textColor']) +
18 (tag ? ' gTag_'+translate(tag, ' -/\#.=+()[]',
'____________') : '')"/>
19 </gwc:snippet-root>
20 </body>
21 </html>

After Customization

01 <?xml version="1.0" encoding="UTF-8"?>
02 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
03 <html xmlns:gwc="http://www.4js.com/GWC" xml:lang="fr">
04 <head>
05 <meta http-equiv="Content-Type" content="text/html; charset=utf-
8" />
06 <title>Image snippet</title>
07 </head>
08 <body>
09 <gwc:snippet-root>
10 <img gwc:condition="!hidden && !contains(value,
'.SWF')"
11 width="200px"
12 gwc:attributes="src ImageURI(type == 'Image' ? value : image)
13 ;title comment
14 ;alt comment
15 ;class 'gImage gStyle_'+translate(style, ' -/\#.=+()[]',
'____________') +
16 (color ? ' gColor_'+color:'') +
17 (tag ? ' gTag_'+translate(tag, ' -/\#.=+()[]',
'____________') : '')"/>
18 <div style="border:1px solid orange;
19 background-color:#F4F4F4;
20 text-align:center;"
21 gwc:condition="!hidden && contains(value,
'.SWF')">
22 This animation cannot be displayed

23 on this device.</div>
24 </gwc:snippet-root>
25 </body>
26 </html>

Notes

1. In Line 10, the gwc:condition instruction handles files that are NOT flash files
(files without an SWF extension).

Customize the UI for the GWC

183

2. In Line 21, the gwc:condition instruction handles files that are flash files (files with
an SWF extension).

Using your Custom Snippet

Once you have customized a snippet, you then need to make the snippet available.

• Specify a custom snippet for a specific application
• Specify a snippet for all applications

Specify a customized snippet for a specific application

If you only want to apply your customized snippet on a per application basis, you would
override the resources for the snippets within the application's configuration.

01 <?xml version="1.0" encoding="UTF-8"?>
02 <APPLICATION Parent="defaultgwc">
03 <EXECUTION>
04 <PATH>/home/srcdir/app1</PATH>
05 <MODULE>app1</MODULE>
06 </EXECUTION>
07 <OUTPUT>
08 <MAP Id="DUA_AJAX">
09 <THEME>
10 <SNIPPET
Id="Image">/home/srcdir/app1/Snippets/Set1_Image.xhtml</SNIPPET>
11 </THEME>
12 </MAP>
13 <MAP Id="DUA_PDA>
14 <THEME>
15 <SNIPPET
Id="Image">/home/srcdir/app1/Snippets/Set3_Image.xhtml</SNIPPET>
16 </THEME>
17 </MAP>
18 </OUTPUT>
19 </APPLICATION>

Specify a customized snippet across all applications

If you want to have your customized snippet apply across all of your applications, then
you want it to be part of the defined sets for the various application themes (AJAX,
PAGE, PDA).

You have three options:

Option 1: You can alter how the snippet is defined within each of the relevant
WEB_APPLICATION_THEME_COMPONENTS

Genero Application Server

184

01 ...
02 <WEB_APPLICATION_THEME_COMPONENT Id="cpn.theme.ajax.gwc">
03 ...
04 <SNIPPET
Id="RadioGroup">$(res.path.tpl.ajax)/RadioGroup.xhtml</SNIPPET>
05 <SNIPPET
Id="Image">/home/srcdir/app1/Snippets/Set1_Image.xhtml</SNIPPET>
06 <SNIPPET
Id="StaticLabel">$(res.path.tpl.ajax)/StaticLabel.xhtml</SNIPPET>
07 ...
08 </WEB_APPLICATION_THEME_COMPONENT>
09 ...
10 <WEB_APPLICATION_THEME_COMPONENT Id="cpn.theme.pda.gwc">
11 ...
12 <SNIPPET
Id="RadioGroup">$(res.path.tpl.pda)/RadioGroup.xhtml</SNIPPET>
13 <SNIPPET
Id="Image">/home/srcdir/app1/Snippets/Set3_Image.xhtml</SNIPPET>
14 <SNIPPET
Id="StaticLabel">$(res.path.tpl.pda)/Label.xhtml</SNIPPET>
15 ...
16 </WEB_APPLICATION_THEME_COMPONENT>
17 ...

Option 2: You can create new WEB_APPLICATION_THEME_COMPONENTS, then
modify the auda.xrd to reference these components. To create new
WEB_APPLICATION_THEME_COMPONENTS, you would copy and paste the content
of the existing components and provide your copies with new names.

01 ...
02 <WEB_APPLICATION_THEME_COMPONENT Id="cpn.theme.ajax.gwc">
03 ...
04 <SNIPPET
Id="RadioGroup">$(res.path.tpl.ajax)/RadioGroup.xhtml</SNIPPET>
05 <SNIPPET Id="Image">$(res.path.tpl.ajax)/Image.xhtml</SNIPPET>
06 <SNIPPET
Id="StaticLabel">$(res.path.tpl.ajax)/StaticLabel.xhtml</SNIPPET>
07 ...
08 </WEB_APPLICATION_THEME_COMPONENT>

09 <WEB_APPLICATION_THEME_COMPONENT Id="cpn.theme.ajax2.gwc">
10 ...
11 <SNIPPET
Id="RadioGroup">$(res.path.tpl.ajax)/RadioGroup.xhtml</SNIPPET>
12 <SNIPPET
Id="Image">/home/srcdir/app1/Snippets/Set1_Image.xhtml</SNIPPET>
13 <SNIPPET
Id="StaticLabel">$(res.path.tpl.ajax)/StaticLabel.xhtml</SNIPPET>
14 ...
15 </WEB_APPLICATION_THEME_COMPONENT>

16 ...
17 <WEB_APPLICATION_THEME_COMPONENT Id="cpn.theme.pda.gwc">
18 ...
19 <SNIPPET
Id="RadioGroup">$(res.path.tpl.pda)/RadioGroup.xhtml</SNIPPET>

Customize the UI for the GWC

185

20 <SNIPPET Id="Image">$(res.path.tpl.pda)/Image.xhtml</SNIPPET>
21 <SNIPPET
Id="StaticLabel">$(res.path.tpl.pda)/Label.xhtml</SNIPPET>
22 ...
23 </WEB_APPLICATION_THEME_COMPONENT>
24 <WEB_APPLICATION_THEME_COMPONENT Id="cpn.theme.pda2.gwc">
25 ...
26 <SNIPPET
Id="RadioGroup">$(res.path.tpl.pda)/RadioGroup.xhtml</SNIPPET>
27 <SNIPPET
Id="Image">/home/srcdir/app1/Snippets/Set3_Image.xhtml</SNIPPET>
28 <SNIPPET
Id="StaticLabel">$(res.path.tpl.pda)/Label.xhtml</SNIPPET>
29 ...
30 </WEB_APPLICATION_THEME_COMPONENT>
31 ...

Option 3: You could replace the image snippet files in the respective template
directories. For this solution, you would name your custom snippet file the same name
as the snippet file provided during the installation.

If you choose either solution 1 or 2, when you upgrade the GWC you will have to modify
the GAS configuration file to re-apply your changes. If you choose solution 3, you will
have to replace the relevant snippet files with your custom versions each time you do an
upgrade.

Do I have to restart the GAS to see the result of changes in my
template or snippet files?

By default, the Genero Application Server daemon (gasd) keeps the template and
snippet files in its cache. When developers make changes to a template or snippet file,
the change is not recognized until the Genero Application Server daemon is restarted.

To change this default behavior, you can specify the --development flag. This flag is
only valid for the Genero Application Server provided with the GWC install package.

For more information on starting the Genero Application Server daemon and the various
command options, please refer to the Genero Application Server Manual.

Genero Application Server

186

Customize the User Interface with JavaScript
This section discusses the implementation of the user interface with JavaScript. We
assume that you have read the section How the GWC Uses Web Technologies and
understand the principles. This help topic will not teach you how to write JavaScript
code. For an introduction to working with JavaScript, refer to the Learn JavaScript
tutorial at http://www.w3schools.com.

Topics:

• Client-Side Framework (CSF)
• gwc:marks template instruction
• Reserved functions
• Component styles
• Client-side framework API
• Toolkit API

Warning! We recommend leaving the default JavaScript files unchanged; Modifying
default JavaScript files is not supported. To add your own JavaScript, create a new
JavaScript file and reference it in the main template.

Client-Side Framework (CSF)

The client-side framework (CSF) is the part of the GWC that runs on the client side
(browser) when in AJAX mode.

The primary goal of the CSF is to manage application life. The primary goals of the
client-side JavaScript is to provide objects that allow scripts to interact with the user,
control the web browser, and alter the document content that appears within the web
browser window. JavaScript eases the interaction with users and refines the
application's design.

gwc:marks template instruction

The gwc:marks template instruction is a convenient way to identify an HTML element,
send data, or send events from GWC template snippets to the client-side framework
(CSF).

Data in the gwc:marks template instruction is sent in a JavaScript structure, not in the
xHTML document.

Customize the UI for the GWC

187

The gwc:marks template instruction is a generic tool provided by the GWC. The CSF
makes its own usage of this tool.

Syntax

<tag gwc:marks="mkp expr [; ...] " ...>
...
</tag>

Notes:

1. mkp is the name of the mark
2. expr is the data sent to the CSF

Relating Components to JavaScript Objects

Each component that has a CID template path has a related entry in the
gwc.componentSet in gwccomponents.js. For example, the Edit component (defined in
the template snippet Edit.xhtml) is related to the object gwc.componentSet.Edit
(defined in gwccomponents.js).

Providing the expression

When the gwc:marks instruction is used, the CSF expects either a component identifier
(CID) with data, or null.

Because the CSF needs to link the gwc:marks instruction to the right GWC JavaScript
component in gwccomponents.js, the component identifier (CID) must be provided with
the data. The CID is the unique identifier of an instance of a component in the HTML
page. Because of this, you need to use an array within the expression, with the CID at
the first place. For example:

Genero Application Server

188

01 gwc:marks="mkp [CID, data1, ..., dataN]"

The other allowed value as expression is null. This informs the CSF to remove the mark.

01 gwc:marks="mkp null"

To send data from a template path to a JavaScript function, use this:

01 gwc:marks="currentFieldStyle [CID,'gCurrent'+type]"

When a mark is created or removed, the related function is called in gwcComponents.js.
The call can be treated as an event.

For example, the following shows how to use the marker as an event only (without any
data).

01 gwc:marks="modifiable isModifiable ? [CID] : null"

The JavaScript function related to the mark name is called when the page is loaded the
first time, and subsequently when the expression is changing.

On the JavaScript side

On the JavaScript side, the data is stored in a JavaScript Array object, and the function
with the same name as the mark is called.

The function looks like this: function(polarity, eid, CID, component, data)

1. polarity is the reason why the function is called. polarity is true if the mark is
added and false if the mark is removed (data of the mark is null).

2. eid is the HTML id of the element where the gwc:mark is placed on.
3. CID is the component identifier of the template snippet that defined the mark.
4. component is the JavaScript object directly related to the component. This object

can be used to store temporary data related to the component.
5. data is the expression that is provided to the mark.

For example, consider the following hypothetical gwc:marks instruction.

01 gwc:marks="someTableInfo [CID,offset,pageSize,size];

This instruction, when placed in the snippet Table.xhtml, will cause the CSF to call the
following function in gwccomponents.js:

01 gwc.componentSet.Table = {
02
03 someTableInfo: function(polarity, eid, cid, component, data) {
04
05 var offset = data[1];
06 var pageSize = data[2];
07 var size = data[3];

Customize the UI for the GWC

189

08 ...
09 }
10 }

Notice that the mark name and the function prefix name (someTableInfo) match.

Note:

1. When the expression is changing, the related JavaScript function is called twice:
the first time with polarity == false, and the second time with polarity == true (as if
it was removed and then added).

Reserved Functions

Some optional reserved function of the component can be called by the client-side
framework (CSF). These functions should not be used as a mark name.

Reserved Function Description
 GetValue(component
)

This function is called by the CSF when it needs to know the
current value of the component. The function returns the
current value of the component, or undefined (a JavaScript
keyword) if there is no value.

 currentField(
polarity, component
)

This function is called by the CSF when the field gets or loses
the focus. The polarity argument is true if the component
receives the focus, and the polarity argument is false if the
component loses the focus.

 currentCell(
polarity, component
)

This function is called by the CSF when the matrix cell
gains or loses the focus. The polarity argument is true if
the matrix cell receives the focus, and the polarity
argument is false if the matrix cell loses the focus.

 currentTable(
polarity, component
)

This function is called by the CSF when the table is made
current. The polarity argument is true if the table receives
the focus, and the polarity argument is false if the table
loses the focus.

 currentRow(
polarity, component,
rowIndex)

This function is called by the CSF when the row of the table
having focus has changed. If polarity is false, rowIndex is the
index of the row that loses the focus. If polarity is true,
rowIndex is the index of the row that receives the focus.

Example:

01 gwc.componentSet.Edit = {
02 ...

Genero Application Server

190

03 GetValue:function(component) {
04
05 var eid = gwc.core.state.FirstMarkEid(component.cid, 'field');
06 if (eid != undefined)
07 return gwc.tk.IdToElement(eid).value;
08 }
09 ...

Component Styles

It is possible to select a different JavaScript component according to the widget's style
specified in the form definition file (.PER or .4FD).

If a style is defined, the name of the component is: componentName + '_' +
styleName

Note:

1. The function that creates the final component name is at the top of
gwccomponents.js

Example:

In the .PER file, the ATTRIBUTES section defines an EDIT field as follows:

01 ...
02 ATTRIBUTES
03 EDIT edit1 = formonly.edit1, STYLE = "FileUpload";
04 ...

In the gwccomponents.js file, the component is:

01 gwc.componentSet.Edit_FileUpload = {
02 ...

This EDIT widget is transformed to define the file upload widget.

Client-Side Framework API

The client-server framework (CSF) API provides a set of functions to manage links
between marks and components.

Customize the UI for the GWC

191

The following list is a subset of the available functions.

Reserved Function and variables Description
gwc.core.state.FirstMarkEid(
CID, markName)

This function returns the HTML id of the first
element of the component CID that has the
markName name.

gwc.core.state.FirstMarkData(
CID, markName)

This function returns the mark data (the
JavaScript Array) of the component CID that
has the markName name.

gwc.core.state.MarkData(CID,
markName, eid)

This function returns the only mark data
based that has CID as component identifier,
markName as mark name and eid as HTML
element id.

gwc.core.state.ComponentByCid(
CID)

This function returns the component object
that has CID as identifier.

gwc.capi.SessionVar(varName,
varValue)

This function set the session variable named
varName with value varValue.

gwc.cfg.localeDateStrings If the entry gwc.cfg.localeDateStrings is not
defined (see snippet main.xhtml), the CSF
tries to detect automatically the name of the
days and months in the current browser locale.

ToolKit API

The toolkit API is a collection of general purpose JavaScript functions. The purpose of
this toolkit is to provide browser-independent functions. These functions are stored in
gwc.tk.*

Note:

1. These functions change according to the needs of the client-server framework.
As a result, it is not possible to exhaustively list them.

Example:

This example sets the CSS class 'myRedColor' on the HTML element that has the id
'myId'

01 gwc.tk.AddClass(gwc.tk.IdToElement('myId'), 'myRedColor');

Genero Application Server

192

Front End Protocol
The Front End Protocol is a set of instructions sent by the User Agent to the Genero
Application Server.

Summary

• Exclusive/Inclusive forms
• Usage

Exclusive/Inclusive forms

User Agents send form data to form data processing agents as a sequence of control-
name and control-value. For example, the browser sends pairs of name=value to the
Genero Application Server. Most controls have names but the value submitted is not
always the one expected. Inclusive form is introduced to workaround the default
behaviour.

Syntax

Exclusive form

control-name=control-value
that is
<prefix> [container] = [[ss/prefix] <value>]

Inclusive form

control-name/control-value=
that is
<prefix> [container] [/ [ss/prefix] <value>] =

Where

• prefix is a character to identify the type of action.
• container is the component identifier.
• ss is a subprefix.
• value is the value expected by the Genero Application Server which is not always

the default value that a User Agent sends.

To build the control-name use the template paths IDID (inclusive form) or XDID
(exclusive form).
Facilities are available as functions in the Front End Protocol Functions section.

Customize the UI for the GWC

193

Example

Exclusive form

<input type="radio" gwc:attributes="name XDID; value ID;... />
produces
<input type="radio" name="a" value="89"... />

Inclusive form

<input type="submit" gwc:attributes="name IDID"... />
produces
<input type="submit" name="a/89"... />

Usage

The Front End Protocol is used to enhance user agents that have "poor" interactivity like
Personal Digital Assistants.

Example of a ComboBox value selection helper
A ComboBox (<select> html widget) is redesigned as a set of buttons (input of type
submit). The Select widget is submitted in exclusive form. The Button has a name but
the value represents the displayed text of the button and not the value expected from a
ComboBox.

<p gwc:omit-tag="true" gwc:repeat="cb_item items">
 <input type="submit" gwc:attributes="disabled
isModifiable?NULL:'disabled'; name makeValueIDID(id,cb_item/name);
value cb_item/text"/>
</p>

Add this sample in the $FGLASDIR/set2/ComboBox.xhtml. Instead of selecting the
ComboBox value, click on the button to select a value in the ComboBox list.

195

Tutorial - Working with the Genero Web Client
This tutorial provides you with some hands-on experience in running and customizing a
Web application delivered by the Genero Web Client front-end.

Topics

• Step 0: Run the tutorial demo application
• Step 1: Use a custom snippet file
• Step 2: Customize the template and add a new CSS
• Step 3: Customize the snippets
• Step 4: Customize Snippet to use JavaScript to render the widget
• Summary

Genero Application Server

196

Step 0: Run the tutorial demo application
The Genero Application Server installs with a demo application known as the Contact
List (Card Manager) application. The default configuration provided in the GAS
configuration file allows you to run this demo application without any additional
configuration.

To run the demo application, start the GAS and then enter the following URL in a
browser:

http://localhost:6394/wa/r/demo/Card

Note: For the purpose of this tutorial, it is assumed that you are connecting to the GAS
directly. If your browser is on a different host than the GAS, you will have to replace
"localhost" with the name or IP address of the GAS host. Likewise, if you have changed
the port number from the installation default of 6394, you will have to modify the port
number accordingly.

Figure 0-1: The application displayed with the Genero Desktop Client

GWC How To...

197

Figure 0-2: The application displayed by the GAS with the Genero Web Client

Things to observe:

• Colors are kept (they match the colors of the application delivered in GDC)
• The action panel positioning is different from where it sits with the GDC. The

GDC has the action panel along the right-hand side of the application, whereas
the GWC displays the action panel across the top of the application window,
under the toolbar.

Card.xcf

<?xml version="1.0"?>
<APPLICATION Parent="defaultgwc"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/2.10/cfextwa.x
sd">
 <EXECUTION>
 <PATH>$(res.path.demo.app)/card/src</PATH>
 <MODULE>card.42r</MODULE>
 </EXECUTION>
</APPLICATION>

Genero Application Server

198

Step 1: Use a custom snippet file
For the next part of this tutorial, a custom snippet file has been created to display image
widgets for this application.

Enter the following URL in a browser:

http://localhost:6394/wa/r/demo/CardStep1

Figure 1-1: Contact displayed prior to referencing the custom Image snippet in the
application configuration file.

GWC How To...

199

Figure 1-2: Contact displayed after referencing the custom Image snippet in the
application configuration file.

Thing to observe:

• An image is now displayed in the appropriate spot on the form.

Application Configuration File: CardStep1.xcf

Examine the application configuration file for this step in the tutorial.

<?xml version="1.0"?>
<APPLICATION Parent="defaultgwc"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/2.11/cfextwa.x
sd">

Genero Application Server

200

 <EXECUTION>
 <PATH>$(res.path.demo.app)/card/src</PATH>
 <MODULE>card.42r</MODULE>
 </EXECUTION>
 <OUTPUT>
 <MAP Id="DUA_AJAX">
 <THEME>
 <SNIPPET Id="Image"
Style="Picture">$(res.path.demo.app)/card/tpl/set1/Image.xhtml</SNIPPET
>
 </THEME>
 </MAP>
 <MAP Id="DUA_AJAX_HTML">
 <THEME>
 <SNIPPET Id="Image"
Style="Picture">$(res.path.demo.app)/card/tpl/set1/Image.xhtml</SNIPPET
>
 </THEME>
 </MAP>
 </OUTPUT>
</APPLICATION>

Notes:

• The additional configuration elements (OUPUT, MAP, THEME, SNIPPET) do the
following:
For the Output Map DUA_AJAX, the snippet to be used for the Image widget is
defined by the entry in the application configuration file. For all other snippets, the
entries defined in the as.xcf file for the DUA_AJAX Output Map are used. The
same configuration is done for DUA_AJAX_HTML. For the rest of the document,
it is considered that DUA_AJAX_HTML has the same configuration of snippets
than DUA_AJAX.

Modifications to the template and snippet files

A new snippet file has been created for the rendering of the Image widgets for this
application.

To identify what is different, you can compare the Image.xhtml file provided with the
default AJAX theme ($FGLASDIR/tpl/set1/Image.xhtml) with the snippet file specified by
the SNIPPET element in the application configuration file. Using Genero Studio's
Graphical Differential tool, we can quickly identify the differences between the two files,
as shown in Figure 1-3 below:

GWC How To...

201

Figure 1-3: The differences between the default and custom Image snippet files, with the
customized values shown in blue.

Notes:

• In Line 16, an additional condition is being checked for: the value of the formfield
should not be "photo"

• In Line 37, the src tag is modified to specify a different Image location: the
/card/img alias, which is defined in the as.xcf file:
<ALIAS Id="/card/img">$(res.path.demo.app)/card/src/photo</ALIAS>

Usually, application pictures are configured through the picture component. In this
example, the common pictures are handled by the picture component, alias "/pic", and
the application images are served through alias "/card/img". Another solution could be to
copy all the common picture in the application image directory and set the component
picture path to alias /card/img.

<PICTURE>
 <PATH>$(connector.uri)/card/img</PATH>
</PICTURE>

In this case you do not need to customize your image snippet file.

Genero Application Server

202

Step 2: Customize the template and add additional
CSS
For the next step in this tutorial, a header and footer have been added.

Enter the following URL in a browser:

http://localhost:6394/wa/r/demo/CardStep2

Figure 2-1: Application prior to adding header and footer.

GWC How To...

203

Figure 2-2: Application after adding header and footer.

Things to observe:

• Both a header and a footer have been added.
• The formatting of the look-and-feel of the header and footer is controlled by the

entries provided in the latest CSS file added to the application's template.

Application Configuration File: CardStep2.xcf

Examine the application configuration file for this step in the tutorial.

<?xml version="1.0"?>
<APPLICATION Parent="defaultgwc"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/2.10/cfextwa.x
sd">
 <EXECUTION>
 <PATH>$(res.path.demo.app)/card/src</PATH>

Genero Application Server

204

 <MODULE>card.42r</MODULE>
 </EXECUTION>
 <OUTPUT>
 <MAP Id="DUA_AJAX">
 <THEME>
 <TEMPLATE
Id="_default">$(res.path.demo.app)/card/tpl/set1/main.xhtml</TEMPLATE>
 <SNIPPET Id="Image"
Style="Picture">$(res.path.demo.app)/card/tpl/set1/Image.xhtml</SNIPPET
>
 </THEME>
 </MAP>
 </OUTPUT>
</APPLICATION>

Notes:

• For the Output Map DUA_AJAX, a custom template has been specified.

Modifications to the template and snippet files

Using Genero Studio's Graphical Differential tool, we can quickly identify the differences
between the two files, as shown in Figure 2-3 and 2-4 below:

Figure 2-3: The addition of the custom CSS, with the customized values shown in blue.

GWC How To...

205

Figure 2-4: The addition of the header and footer code to the template file, with the
customized values shown in blue.

Add a header that displays a logo

To add a header to the application display, the following code is placed in the custom
template file:

<div class="card-header" style="background-color:#e6e6e6">
<img src="..." gwc:attributes="src application/connectorURI +
'/fjs/demo/card-logo.png'" alt="Genero logo"/>
</div>

Notes:

• displays image from the indicated URL
• displays the name / description of image if image

not displayed

Genero Application Server

206

Add a footer that includes a mail link

To add a footer to the application display, the following code is placed in the custom
template file:

<div class="card-footer">For any issues or comments please contact
support@4js.com</div>

Add a custom CSS file

To add a custom CSS file, an entry is made under the existing CSS entry and within the
HEAD tags (as shown in Figure 2-3):

<link rel="stylesheet" gwc:attributes="href
application/connectorURI+'/fjs/demo/card.css'" type="text/css"
title="Default Theme"/>

For this example, we have provided a CSS for you. Before moving to the next step, you
can make changes to this CSS file and view the results in the displayed application..

GWC How To...

207

Step 3: Customize Snippet to vary Rendering
based on Style
For the next step in this tutorial, various things are added:

First, the FormField snippet has been modified such that all fields where the REQUIRED
attribute is set to true (1) are marked on the UI with an asterisk.

Second, customized Edit snippets are created to render Edit widgets based on their
assigned styles. If the field is representing an email address, that field is assigned the
style of "Email", and a custom Edit snippet is called to render the field as a link that,
when clicked, opens a new message to the clicked-on address. If the field is
representing a Web address, that field is assigned the sytle of "OpenURL", and a
custom Edit snippet is called to render that field: displaying an Open button that, when
clicked, opens the specified URL.

Enter the following URL in a browser:

http://localhost:6394/wa/r/demo/CardStep3

Genero Application Server

208

Figure 3-1: Contact displayed after referencing the customized FormField and Edit
snippets in the application configuration file.
Fields such as 'Email' and 'Web Site', while still being Edit fields, are rendered differently
based upon their assigned styles.

GWC How To...

209

Figure 3-2: In input, required fields are marked with an asterisk

Things to observe:

• The Email field displays as a link that, when clicked, opens a new mail message
using the default mail program.

• The Web Site field displays as a link also, when clicked, the specified Web Site
displays.

Application Configuration File: CardStep3.xcf

Examine the application configuration file for this step of the tutorial.

<?xml version="1.0"?>
<APPLICATION Parent="defaultgwc"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/2.10/cfextwa.x
sd">
 <EXECUTION>
 <PATH>$(res.path.demo.app)/card/src</PATH>
 <MODULE>card.42r</MODULE>
 </EXECUTION>
 <OUTPUT>
 <MAP Id="DUA_AJAX">
 <THEME>
 <TEMPLATE
Id="_default">$(res.path.demo.app)/card/tpl/set1/main.xhtml</TEMPLATE>
 <SNIPPET Id="Image"
Style="Picture">$(res.path.demo.app)/card/tpl/set1/Image.xhtml</SNIPPET
>
 <SNIPPET
Id="FormField">$(res.path.demo.app)/card/tpl/set1/FormField.xhtml</SNIP
PET>
 <SNIPPET Id="Edit"
Style="Email">$(res.path.demo.app)/card/tpl/set1/Edit_Email.xhtml</SNIP
PET>
 <SNIPPET Id="Edit"
Style="OpenURL">$(res.path.demo.app)/card/tpl/set1/Edit_OpenURL.xhtml</
SNIPPET>
 </THEME>

Genero Application Server

210

 </MAP>
 </OUTPUT>
</APPLICATION>

Notes:

• Three snippets have been added for the DUA_AJAX Output Map for this
application.

• A new SNIPPET element has been added for all FormField widgets.
• A new SNIPPET element has been added, specifying the custom snippet file to

use for Edit fields associated with the style "Email".
• A new SNIPPET element has been added, specifying the custom snippet file to

use for Edit fields associated with the style "OpenURL".

Modifications to the template and snippet files

Changes to the FormField snippet provide the code that places an asterisk next to
required fields, when you are in input mode:

<span style="color:red" gwc:condition="item/isModifiable
&& item/isRequired && item/hidden!=1"
>*

isRequired notation is used to determine whether the required attribute is set to true, and
if so an asterisk is displayed.

For the two custom Edit snippets, open the relevant files and observe the following:

For the Edit snippet for the style Email, the following has been added:

<a gwc:attributes="href 'mailto:'+value"
gwc:content="'mail'" />

For the Edit snippet for the style OpenURL, the following has been added:

<input type="button" value="Open" gwc:attributes="onclick
'OpenURL(\''+value+'\')'"/>

GWC How To...

211

Step 4: Customize Snippet to use JavaScript to
render the widget
For the next part of this tutorial, a custom Table snippet uses the gwc:marks instruction
to make a call to a JavaScript that renders the table based on the value selected in the
Page size list box.

Enter the following URL in a browser:

http://localhost:6394/wa/r/demo/CardStep4

Figure 4-1: Contact List with customized Table widget

Genero Application Server

212

Things to observe:

• The table widget displays with a list box labeled "Page size". Selecting different
values from this list box changes the number of rows displayed for the table.

Application Configuration File: CardStep4.xcf

Examine the application configuration file for this step in the tutorial. Note that a new
entry has been added, specifying a custom snippet file for all Table widgets.

<?xml version="1.0"?>
<APPLICATION Parent="defaultgwc"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/2.10/cfextwa.x
sd">
 <EXECUTION>
 <PATH>$(res.path.demo.app)/card/src</PATH>
 <MODULE>card.42r</MODULE>
 </EXECUTION>
 <OUTPUT>
 <MAP Id="DUA_AJAX">
 <THEME>
 <TEMPLATE
Id="_default">$(res.path.demo.app)/card/tpl/set1/main.xhtml</TEMPLATE>
 <SNIPPET Id="Image"
Style="Picture">$(res.path.demo.app)/card/tpl/set1/ImageStep4.xhtml</SN
IPPET>
 <SNIPPET
Id="FormField">$(res.path.demo.app)/card/tpl/set1/FormField.xhtml</SNIP
PET>
 <SNIPPET Id="Edit"
Style="Email">$(res.path.demo.app)/card/tpl/set1/Edit_Email.xhtml</SNIP
PET>
 <SNIPPET Id="Edit"
Style="OpenURL">$(res.path.demo.app)/card/tpl/set1/Edit_OpenURL.xhtml</
SNIPPET>
 <SNIPPET
Id="Table">$(res.path.demo.app)/card/tpl/set1/Table.xhtml</SNIPPET>
 </THEME>
 </MAP>
 </OUTPUT>
</APPLICATION>

Modifications to the template and snippet files

By this point, you should easily identify that a custom snippet for the Table widget has
been created and specified for this application.

Adding a select to change the number of lines displayed in a table

• In Table.xhtml, add a select item to the footer

GWC How To...

213

<select gwc:marks="changePageSize [CID]" gwc:attributes="id
'pgsz_'+id">
 <option gwc:attributes="value makePageSizeIDID(id ,
1)">1</option>
 <option gwc:attributes="value makePageSizeIDID(id ,
5)">5</option>
 <option gwc:attributes="value makePageSizeIDID(id ,
10)">10</option>
 <option gwc:attributes="value makePageSizeIDID(id ,
15)">15</option>
 <option gwc:attributes="value makePageSizeIDID(id ,
20)">20</option>
 <option gwc:attributes="value makePageSizeIDID(id ,
30)">30</option>
 <option gwc:attributes="value makePageSizeIDID(id ,
50)">50</option>
 <option gwc:attributes="value makePageSizeIDID(id ,
size)">all</option>
</select>

makePageSizeIDID is the template function that will send the action to
change the pageSize of the table
changePageSize is the new function we add to the component Table

• In card.js, handle the table pageSize resizing when the select item changes its
value:

gwc.componentSet.Table.changePageSize = function(polarity, eid,
cid, component, data) {
 // set an event on the object to submit the action when the
value is changed
 gwc.tk.SetEventEx(polarity, document.getElementById(eid),
'change', gwc.componentSet.Table.sentPageSize);
}

changePageSize is the function we declared in the Table.xhtml snippet
using the gwc:marks instruction.
gwc.tk.SetEventEx is a function of the toolkit to handle (add/remove)
events it take 4 arguments.
 polarity: boolean, to add or remove the handler
 elt: item on with the handler is set/removed
 ev: event name
 handler: function attached to the event

Warning! As with all functions in the CSF toolkit, this function is subject
to changes.

gwc.componentSet.Table.sentPageSize = function(ev,elt){
 gwc.capi.Action(elt.value);
}

Genero Application Server

214

gwc.componentSet.Table.sentPageSize is the handler associate to the
'onchange' event of the select item.
gwc.api.Action sent an action to the engine.

• Add your custom snippet in the application configuration file

<SNIPPET
Id="Table">$(res.path.demo.app)/card/tpl/set1/Table.xhtml</
SNIPPET>

• Add your custom js to main.xhtml

<script type="text/javascript" gwc:attributes="src
application/connectorURI+'/demo/card.js'" defer="defer">
</script>

Send an action to the engine (see the custom Image.xhtml snippet)

Clicking on the picture of the contact will send the "changeimg" action to the engine and
open a window to upload a new image for the contact.
Note, accepting the dialog without changing the image will set the image to blank.

• use the api gwc.capi.Action defined in $FGLASDIR/web/gwccore.js

(Warning! These apis are subject to changes)

<a gwc:attributes="href
'javascript:gwc.capi.Action(gwc.core.state.ActionDidByName(
\'changeimg\'))'">[...]

Communicate with external web sites like googlemap, geonames

To use googlemap you need to to sign up for a key at http://code.google.com/apis/maps.
You can use the current key if you are testing with localhost server.

• populate a 4GL field with javascript

GWC How To...

215

Figure 4-2: The Check Location button is added to the form.

Google Map and geonames are used to fill the country name. Clicking on
the button gives the focus to the country field and opens the Google map.
Once the map opens, double click on a country name to populate the
country field.

Excerpt from Edit_GoogleMap.xhtml snippet:

<input type="button" value="Choose"
 gwc:condition="isModifiable"
 gwc:attributes="onclick 'gwc.capi.Focus(\'' + cid +
'\');' +

Genero Application Server

216

 'OpenMap(\''+ application/connectorURI + '/fjs/demo/card-
map.html\',\'wd_country\',\'' + value + '\')'"
/>

The field should have the focus, if you want the value to be taken in
account by the 4GL application. To set the focus on a field, use the
JavaScript api function gwc.capi.Focus.

Excerpt from card.js

function SetCountry(id,value) {
 var elt = gwc.tk.IdToElement(id);
 elt.value = value;
}

gwc.tk.IdToElement is a function of the toolkit that get the html object given the id
of this element. The field is then filled with the value returned by geonames.

Figure 4-3: GoogleMap

GWC How To...

217

• send information to other web sites

GoogleMap is used to locate and check the address. In the Edit_GoogleMap.xhtml
snippet, get the value of the fields address, town and country.

<input type="button" value="Check location"
 gwc:condition="!isModifiable"
 gwc:define="address FormField['formonly.address']/item/value;
 town FormField['formonly.town']/item/value;
 country FormField['formonly.country']/item/value;
 "
 gwc:attributes="onclick 'ShowLocation(\''+
application/connectorURI + '/fjs/demo/card-map.html\','
 + '\'' + escapeJS(translate(address, ['\'',','] ,' ')) + '\','
 + '\'' + escapeJS(translate(town, ['\'',','] ,' ')) + '\','
 + '\'' + escapeJS(translate(country, ['\'',','] ,' ')) + '\''
 + ')'"
/>

In card.js, the JavaScript function ShowLocation submits the data to the map
page. GoogleMap locates and displays the address on the map.

function ShowLocation(url,address,town,country) {
 var args = "id=&value=&address=" + address + "&town=" + town +
"&country=" + country;
 var win = window.open(url + "?" + args
,"CardMap","toolbar=no,menubar=no,location=no,height=500,width=500
");
}

Genero Application Server

218

Figure 4-4: GoogleMap locates and displays the address on a map.

Tutorial Summary

Throughout this tutorial, you have customized your application's User Interface using
CSS, snippets, template files, and JavaScript.

You should have noted that at no time did you have to change the application source
code.

GWC How To...

219

How to Create a Breadcrumb Trail
The following code displays the list of windows, otherwise known as a "breadcrumb
trail".

<div gwc:condition="application/ui">

 <span gwc:condition="w/form" gwc:content="' :: ' + (w/form/text ||
w/text || w/form/name)"/>

</div>

You add this code to your template file (the main.xhtml file within the snippet set). Where
you place this code in your file determines where the breadcrumb trail appears within the
application interface.

Genero Application Server

220

How to Vary the Widget Display based on a Field
Attribute
You have a form that has several fields that share the same widget type -- for example,
a group of text edit fields -- however you want the rendering of the individual fields to be
different based on some attribute of the field.

In this example, we provide you with an example of how you would have a snippet
render the field differently based on a field attribute. A TAG attribute is added to a
defined EDIT field to identify that field as one that contains a location. The value of this
TAG attribute is then evaluated by a condition instruction within the snippet file and
generates the appropriate code accordingly.

First, we modify the form specification file to include a TAG attribute with a value that
specifies it as a location (e.g., sayhello).

01 EDIT edt10=formonly.edt10, SCROLL, TAG="sayhello";

You now have a value that you can use within the Edit.xhtml snippet file to react to the
tag based on a gwc:condition instruction.

01 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
02 <html xmlns:gwc="http://www.4js.com/GWC">
03
04 <!-- the head element is ignored -->
05 <head>
06 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"
/>
07 <title>Edit snippet</title>
08 </head>
09 <body>
10 <!--
11 (fontPitch ? ' gFontPitch_'+fontPitch : ' gFontPitch_variable') +
12 -->
13 <gwc:snippet-root>
14
15 <input type="text" readonly="readonly" class="gField gInherit"
16 gwc:marks="
17 field [CID];
18 currentFieldStyle [CID,'gCurrentField'];
19 modifiable isModifiable?[CID]:null;
20 "
21 gwc:attributes="
22 type isPassword ? 'password' : 'text';
23 class _tpl_+(isModifiable ? '':' gDisabled') +
24 ' g'+type+' '+prefix('gc',class)+'
'+prefix('g'+type+'_gc',class) +
25 (hidden!=2?'':' gHidden') +
26 (justify ? ' gJustify_'+justify : (isNumeric ? '
gJustify_right' : '')) +
27 (shift ? ' gShift_'+shift : '') +

GWC How To...

221

28 ' gFontFamily_'+style['fontFamily'];
29 style (style['textColor']?' color:'+style['textColor']+';':'')
+
30 (style['backgroundColor']?' background-
color:'+style['backgroundColor']+';':'');
31 value value;
32 size width;
33 maxLength maxLength || null;
34 title comment;
35 "
36 />
37 <image gwc:condition="tag=='sayhello'" onclick="alert('hello')"
 gwc:attributes="src application/connectorURI + '/pic/accept.png'"
/>
38 </gwc:snippet-root>
39 </body>
40 </html>

Notes

1. In Line 37, a gwc:condition instruction specifies that if the value of the tag is
"sayhello" then include the image tag specified.

Genero Application Server

222

How to Relate Styles, Classes, and Selectors
When defining forms, you can use the STYLE attribute to assign a style to particular
form objects. This help topic examines how the STYLE attribute can ultimately result in a
selector that can then be referenced by CSS.

Form Objects and Styles

When defining a form element, you can use the style attribute to specify a presentation
style for the form element. For example, the following code sample from a .PER file
assigns a style (named "mystyle") to the style attribute for an Edit field:

EDIT f01 = FORMONLY.f01, STYLE="mystyle"

Now that the style is set for the form element, when displaying the form within the GWC,
you want to have your CSS dictate how that style displays. In other words, you want the
CSS to recognize the "mystyle" style attribute and format the display accordingly.

Accessing a Style using the Class template path

When an object has the STYLE attribute defined, the result is that the "class" attribute of
the GWC object is set using the value assigned to the STYLE attribute.
As a result, the style can be accessed using the template path class.

Continuing with the example started above, the snippet Edit.xhtml uses this "class"
attribute

<input type="text"
 [...]
 gwc:attributes="
 [...]
 class [...]
 ' g'+type+' '+prefix('gc',class)+' '+prefix('g'+type+'_gc',class) +
 [...]
/>

This code within the snippet file generates an attribute class="... gEdit_gcmystyle gEdit
gcmystyle ..." or (roughly):

<input type="text" class="gEdit_gcmystyle gEdit gcmystyle" />

Using Class values as Selectors

With the class generated by the snippet file, the class vaues gEdit_gcmystyle,
gcmystyle, or gEdit.gcmystyle can be used as selectors.

GWC How To...

223

Where to use Class values as Selectors

Depending on the HTML structure in the snippet, you can set the GWC class attribute
elsewhere, so you can have other selectors.

Example

<div class="gEdit">
 <input type="text" class="gEdit_gcmystyle gcmystyle"/>
</div>

This example would provide the selector gEdit for the container of the Edit (div), and
gEdit_gcmystyle or gcmystyle or gEdit gwcmystyle for the Edit itself (input).

Genero Application Server

224

How to Display a Label as a Hyperlink
The following example shows how to display a label on a form as an active hyperlink.
While this example displays a label as a hyperlink, you can use this example as a
template for making other types of widgets widget appear as hyperlinks.

Step 1: Create a snippet file that displays a label as a hyperlink (for example,
LabelURL.xhtml).

<?xml version="1.0"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns:gwc="http://www.4js.com/GWC">

<!-- the head element is ignored -->
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title>Label snippet</title>
</head>
<body>
<!-- the template snippet is the content of the gwc:snippet-root
element -->
 <gwc:snippet-root>
 <a gwc:content="value" gwc:attributes="href value"/>
 </gwc:snippet-root>
</body>
</html>

Step 2: In the application configuration file (.xcf file), add a SNIPPET element that
specifies to use the newly-created snippet file ("LabelURL.xhtml") when the form
displays a label whose style property is "LabelUrl".

<APPLICATION Parent="defaultgwc"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/2.10/cfextwa.x
sd">
 <EXECUTION>
 <PATH>$(res.qa.path)\howtos\LabelURL\src\4gl</PATH>
 </EXECUTION>
 <OUTPUT>
 <MAP Id="DUA_AJAX">
 <THEME>
 <SNIPPET Id="Label"
Style="LabelUrl">$(res.qa.path)\mypath\src\web\LabelURL.xhtml</SNIPPET>
 </THEME>
 </MAP>
 </OUTPUT>
</APPLICATION>

Step 3: For each label you want to appear as a URL, set the style property to "LabelUrl"
(as shown in the .PER file example below):

GWC How To...

225

LAYOUT (STYLE="MyStyle")
GRID g1
{
Enter a URL in the edit and click on change action
to make the URL appear as a link
[edt10]
[lbl01]
}
END
END

ATTRIBUTES
EDIT edt10=formonly.edt10, SCROLL;
LABEL lbl01=formonly.lbl01, STYLE="LabelUrl";
END

To run and test this example, you can use the sample .4GL code provided below.

MAIN

DEFINE edt10 STRING
LET edt10 = "http://www.google.com"
CLOSE WINDOW SCREEN
OPEN WINDOW w WITH FORM "sample"

INPUT BY NAME edt10 WITHOUT DEFAULTS ATTRIBUTES(UNBUFFERED)
 ON ACTION change
 DISPLAY edt10 TO lbl01
END INPUT

CLOSE WINDOW w
END MAIN

227

GAS Configuration File Overview
The Genero Application Server is configured through a configuration file. The default
configuration file is the as.xcf file, located in the $FGLASDIR/etc directory. You can
create a separate Genero Application Server configuration file by creating a copy of the
as.xcf file and making your modifications to the copy. You can specify which
configuration file to use when starting the Genero Application Server by using the "-f"
option. For more information about starting the Genero Application Server, refer to the
Genero Application Server Overview section in this manual.

The configuration file is written using XML. The document consists of elements, the
boundaries of which are either delimited by start-tags and end-tags, or, for empty
elements, by an empty-element tag. Each element has a type, identified by name,
sometimes called its "generic identifier" (GI), and may have a set of attributes. Each
attribute specification has a name and a value.

The top-most element in the Application Server configuration file is the CONFIGURATION
element. The CONFIGURATION element is the root element for all Genero configuration
files. A configuration file will have one CONFIGURATION element which serves as the
global configuration element. There are no attributes available for the CONFIGURATION
element.

The CONFIGURATION element contains a single child element, the APPLICATION_SERVER
element. The Application Server configuration starts with this element.

Syntax:

<CONFIGURATION>
 <APPLICATION_SERVER>
 <RESOURCE_LIST>
 ...
 </RESOURCE_LIST>
 <COMPONENT_LIST>
 ...
 </COMPONENT_LIST>
 <INTERFACE_TO_CONNECTOR>
 ...
 </INTERFACE_TO_CONNECTOR>
 <INTERFACE_TO_DVM>
 ...
 </INTERFACE_TO_DVM>
 <LOG>
 ...
 </LOG>
 <FILE_TRANSFER>
 ...
 </FILE_TRANSFER>
 <AUTHENTICATION>
 ...
 </AUTHENTICATION>
 <APPLICATION_LIST>
 ...

Genero Application Server

228

 </APPLICATION_LIST>
 <SERVICE_LIST>
 ...
 </SERVICE_LIST>
 </APPLICATION_SERVER>
</CONFIGURATION>

Notes:

The APPLICATION_SERVER element contains the following child elements:

1. One RESOURCE_LIST element, containing a list of resources.
2. One COMPONENT_LIST element, containing a list of components.
3. One INTERFACE_TO_CONNECTOR element, specifying the interface between the

Genero Application Server (GAS) and the GAS Connector. The connector is
either the CGI connector (fglccgi), the ISAPI filter (fglcisapi), or the user agent
through direct connection.

4. One INTERFACE_TO_DVM element, specifying the interface to the Dynamic Virtual
Machine.

5. Zero or more LOG elements, specifying the type of information that is logged and
where it is logged to.

6. Zero or more FILE_TRANSFER elements, specifying the directory where files are
stored while being transferred between the front-end machine and the DVM.

7. Zero or one AUTHENTICATION element, specifying authentication parameters.
8. Zero or one APPLICATION_LIST element, containing a list of applications.
9. Zero or one SERVICE_LIST element, containing a list of Web Services.

Configuration File Element Listing

The elements contained within the Genero Application Server configuration file are listed
below. The elements are described in detail within other sections of this manual; click on
an element name to be taken to the page discussing that element (when viewing this
manual online).

• APPLICATION_SERVER
o RESOURCE_LIST

 PLATFORM_INDEPENDENT
 RESOURCE

 WNT
 RESOURCE

 UNX
 RESOURCE

o COMPONENT_LIST
 WEB_APPLICATION_EXECUTION_COMPONENT

 ENVIRONMENT_VARIABLE
 PATH
 DVM
 MODULE

GAS Configuration Reference

229

 AUTHENTICATION
 PARAMETERS

 SERVICE_APPLICATION_EXECUTION_COMPONENT
 ENVIRONMENT_VARIABLE
 PATH
 DVM
 MODULE
 AUTHENTICATION
 PARAMETERS
 POOL

 START
 MIN_AVAILABLE
 MAX_AVAILABLE

 WEB_APPLICATION_TIMEOUT_COMPONENT
 USER_AGENT
 REQUEST_RESULT
 DVM_AVAILABLE

 SERVICE_APPLICATION_TIMEOUT_COMPONENT
 DVM_AVAILABLE
 DVM_FREE
 REQUEST_QUEUE
 REQUEST_RESULT

 WEB_APPLICATION_PICTURE_COMPONENT
 PATH

 WEB_APPLICATION_RENDERING_COMPONENT
 OUTPUT_DRIVER

 WEB_APPLICATION_THEME_COMPONENT
 TEMPLATE

o INTERFACE_TO_CONNECTOR
 TCP_BASE_PORT
 TCP_PORT_OFFSET
 LIMIT_REQUEST_SIZE
 DOCUMENT_ROOT
 TEMPORARY_DIRECTORY
 ERROR_DOCUMENT
 ALIAS

o INTERFACE_TO_DVM
 ADDRESS
 TCP_BASE_PORT
 TCP_PORT_RANGE
 EXCLUDED_PORT

o LOG
 OUTPUT
 FORMAT
 CATEGORIES_FILTER
 RAW_DATA

o FILE_TRANSFER
 TIMEOUT

o AUTHENTICATION
 REALM
 SERVICE_NAME

Genero Application Server

230

 KEYTAB
o APPLICATION_LIST

 GROUP
 APPLICATION

 RESOURCE
 EXECUTION

 ENVIRONMENT_VARIABLE
 PATH
 DVM
 MODULE
 AUTHENTICATION
 PARAMETERS

 TIMEOUT
 USER_AGENT
 REQUEST_RESULT
 DVM_AVAILABLE

 PICTURE
 PATH

 OUTPUT
 MAP

 RENDERING
 OUTPUT_DRIVER

 THEME
 TEMPLATE

o SERVICE_LIST
 GROUP
 APPLICATION

 RESOURCE
 EXECUTION

 ENVIRONMENT_VARIABLE
 PATH
 DVM
 MODULE
 AUTHENTICATION
 PARAMETERS
 POOL

 START
 MIN_AVAILABLE
 MAX_AVAILABLE

 TIMEOUT
 DVM_AVAILABLE
 DVM_FREE
 REQUEST_QUEUE
 REQUEST_RESULT

 | GAS Configuration File Overview

GAS Configuration Reference

231

Resource List - Configuration Reference
Resources allow you to create resources, or variables, for use within the configuration
files and templates. Resources can be defined in the general RESOURCE_LIST
element or within individual application or Web service configurations.

RESOURCE_LIST

The RESOURCE_LIST element of the Genero Application Server configuration file allows
you to define RESOURCE elements, which can then be referenced in your configuration
files and template files. A resource is a kind of variable that can be used in the
configuration files and in template files. By defining and using resources, when the value
of the resource needs updating, it becomes possible to modify the resource in one
location - within the RESOURCE_LIST - and the new value is carried through the various
components that reference the resource.

A resource is defined as platform-independent or platform-dependent, based on the
section in which the resource is defined.

Syntax:

<RESOURCE_LIST>
 <PLATFORM_INDEPENDENT> [resource] [...] </PLATFORM_INDEPENDENT>
 [<WNT> resource [...] </WNT>]
 [<UNX> resource [...] </UNX>]
</RESOURCE_LIST>

Notes:

The RESOURCE_LIST element may contain the following child elements:

1. One PLATFORM_INDEPENDENT element (required).
2. One WNT element (required).
3. One UNX element (required).

Example:

<RESOURCE_LIST>
 <PLATFORM_INDEPENDENT>
 <RESOURCE Id="res.fglgui" Source="INTERNAL">1</RESOURCE>
 ...
 </PLATFORM_INDEPENDENT>
 <WNT>
 <RESOURCE Id="res.dvm.wa"
Source="INTERNAL">$(res.fgldir)\bin\fglrun.exe</RESOURCE>
 ...
 </WNT>

Genero Application Server

232

 <UNX>
 <RESOURCE Id="res.dvm.wa"
Source="INTERNAL">$(res.fgldir)/bin/fglrun.exe</RESOURCE>
 ...
 </UNX>
</RESOURCE_LIST>

For more information on defining a resource, refer to the RESOURCE section below.

PLATFORM_INDEPENDENT

The PLATFORM_INDEPENDENT element containing a list of platform-independent
resources, available on both Unix and Windows platforms.

Notes:

The PLATFORM_INDEPENDENT element may contain the following child element
(described below):

1. Zero or more RESOURCE elements (optional).

WNT

The WNT element containing a list of Windows NT resources: those resources are only
available on the Windows NT/2000/XP operating systems.

Notes:

The WNT element may contain the following child element (described below):

1. Zero or more RESOURCE elements (optional).

UNX

The UNX element contains a list of those resources that are only available on UNIX
operating systems. There is no difference between UNIX systems like Linux, AIX, HP-
UX, Solaris, and so on.

GAS Configuration Reference

233

Notes:

The UNX element may contain the following child element (described below):

1. Zero or more RESOURCE elements (optional).

RESOURCE

A RESOURCE element defines a resource, or variable, that can be used in the
configuration files and in template files. It takes two attributes, an Id attribute and a
Source attribute.

• The Id attribute provides a unique identifier for the resource. It is this unique
identifier that is used elsewhere in the various configuration files to reference this
resource, and therefore must be unique.

• The Source attribute specifies where the resource will find its value:
o INTERNAL indicates that the resource value is provided inline as the

content of the element.
o FILE indicates that the resource value is stored in a file, and the content

of the element is the path and file name of the file.
o ENVIRON indicates that the resource value is the value of the

environment variable specified as the content of the element.

Syntax:

<RESOURCE Id="resId" Source="(FILE | INTERNAL | ENVIRON) " > resData
</RESOURCE>

Notes

1. resId is the resource identifier
2. resData is the resource data. Its use depends on the value of the Source

attribute.
o If Source is FILE, resData is the path to this file.
o If Source is INTERNAL, resData is the value of the resource.
o If Source is ENVIRON, resData is the name of an environment variable.

3. Resources are used in the configuration files or in the template files using the
syntax:
 $(resId)

Usage Examples:

The following example illustrates a resource defined inline.

Genero Application Server

234

<RESOURCE Id="res.dvm.wa"
Source="INTERNAL">$(res.fgldir)/bin/fglrun.exe</RESOURCE>

The following example illustrates a resource defined as the contents of a file. In this
example, the resource is a file named generodefault.html, stored in the template
directory specified by the resource res.path.tpl:

<RESOURCE Id="res.theme.default.gwc.template"
Source="FILE">$(res.path.tpl)/generodefault.html</RESOURCE>

The following example illustrates a resource defined as the value of an environment
variable. In this example, the resource res.os contains the value of the environment
variable OS. For example, on a Windows system, the environment variable OS could
have the value Windows_NT.

<RESOURCE Id="res.os" Source="ENVIRON">OS</RESOURCE>

GAS Configuration Reference

235

Component List - Configuration Reference
Within the Genero Application Server configuration file, you can define various
application components. Components are sets of preset variables, and are used by
applications that share common configurations. Within the COMPONENT_LIST element,
you specify components to be available for use by applications. When defining an
application, you can then reference the component by its unique Id.

Components are grouped by type. Each component type is discussed in its own section
of this manual.

Types of components:

The COMPONENT_LIST element may contain the following child elements, or
component types:

• Zero or more WEB_APPLICATION_EXECUTION_COMPONENT elements
(optional).

• Zero or more SERVICE_APPLICATION_EXECUTION_COMPONENT elements
(optional).

• Zero or more WEB_APPLICATION_TIMEOUT_COMPONENT elements
(optional).

• Zero or more SERVICE_APPLICATION_TIMEOUT_COMPONENT elements
(optional).

• Zero or more WEB_APPLICATION_PICTURE_COMPONENT elements
(optional).

• Zero or more WEB_APPLICATION_RENDERING_COMPONENT elements
(optional).

• Zero or more WEB_APPLICATION_THEME_COMPONENT elements (optional).

Syntax:

<CONFIGURATION>
 <APPLICATION_SERVER>
 ...
 <COMPONENT_LIST>
 executionComponent [...]
 applicationTimeoutComponent [...]
 serviceTimeoutComponent [...]
 pictureComponent [...]
 renderingComponent [...]
 themeComponent [...]
 </COMPONENT_LIST>
 ...
 </APPLICATION_SERVER>
</CONFIGURATION>

Notes:

1. The COMPONENT_LIST element does not support any attributes.

Genero Application Server

236

Application Execution Component - Configuration
Reference
An Execution component prepares the runtime environment for an application or Web
service, defining execution rules and setting the execution environment. An Execution
component is referenced in an application by its unique identifier, set by the Id attribute.

• Web Application Execution Component
• Service Application Execution Component

WEB_APPLICATION_EXECUTION_COMPONENT

The WEB_APPLICATION_EXECUTION_COMPONENT creates a Web application execution
component, which defines a set of execution parameters that are used when starting the
Web application. It takes an attribute Id, which specifies the unique identifier for this set
of execution definitions. It is this unique identifier that is referenced by an application,
providing that application with a base set of execution parameters. The attribute
AllowUrlParameters defines whether the parameters provided on the command line
should be ignored ("FALSE", default value) or provided to the DVM ("TRUE").

Syntax:

<WEB_APPLICATION_EXECUTION_COMPONENT Id="compId" [
AllowUrlParameters="allowParam"] >
 [<ENVIRONMENT_VARIABLE Id="envId" > env </ENVIRONMENT_VARIABLE>
[...]]
 [<PATH> path </PATH>]
 [<DVM> dvm </DVM>]
 [<MODULE> module </MODULE>]
 [<AUTHENTICATION> authtype </AUTHENTICATION>]
 [<PARAMETERS> parameterSettings </PARAMETERS>]
</WEB_APPLICATION_EXECUTION_COMPONENT>

Notes:

The WEB_APPLICATION_EXECUTION_COMPONENT element may contain the following child
elements (described below):

1. Zero or more ENVIRONMENT_VARIABLE elements (optional).
2. Zero or one PATH element (optional).
3. Zero or one DVM element (optional).
4. Zero or one MODULE element (optional).
5. Zero or one AUTHENTICATION element (optional).
6. Zero or one PARAMETERS element (optional).

GAS Configuration Reference

237

Example:

<WEB_APPLICATION_EXECUTION_COMPONENT Id="cpn.wa.execution.local">
 <ENVIRONMENT_VARIABLE
Id="FGLDIR">$(res.fgldir)</ENVIRONMENT_VARIABLE>
 <ENVIRONMENT_VARIABLE Id="PATH">$(res.path)</ENVIRONMENT_VARIABLE>
 <ENVIRONMENT_VARIABLE
Id="INFORMIXDIR">$(res.informixdir)</ENVIRONMENT_VARIABLE>
 <ENVIRONMENT_VARIABLE
Id="INFORMIXSERVER">$(res.informixserver)</ENVIRONMENT_VARIABLE>
 ...
 <DVM>$(res.dvm.wa)</DVM>
</WEB_APPLICATION_EXECUTION_COMPONENT>

SERVICE_APPLICATION_EXECUTION_COMPONENT

The SERVICE_APPLICATION_EXECUTION_COMPONENT creates a Web service execution
component, which defines a set of execution parameters that are used when starting the
Web service. It takes an attribute Id, which specifies the unique identifier for this set of
execution definitions. It is this unique identifier that is referenced by a Web service,
providing that Web service with a base set of execution parameters.

Syntax:

<SERVICE_APPLICATION_EXECUTION_COMPONENT Id="compId">
 <ENVIRONMENT_VARIABLE Id="envId" > env </ENVIRONMENT_VARIABLE> [...]
 [<PATH> path </PATH>]
 [<DVM> dvm </DVM>]
 [<MODULE> module </MODULE>]
 [<AUTHENTICATION> authtype </AUTHENTICATION>]
 [<PARAMETERS> parameterSettings </PARAMETERS>]
 [<POOL> poolSettings </POOL>]
</SERVICE_APPLICATION_EXECUTION_COMPONENT>

Notes:

The SERVICE_APPLICATION_EXECUTION_COMPONENT element may contain the following
child elements (described below):

1. Zero or more ENVIRONMENT_VARIABLE elements (optional).
2. Zero or one PATH element (optional).
3. Zero or one DVM element (optional).
4. Zero or one MODULE element (optional).
5. Zero or one AUTHENTICATION element (optional).
6. Zero or one PARAMETERS element (optional).
7. Zero or one POOL element (optional).

Genero Application Server

238

Example:

<SERVICE_APPLICATION_EXECUTION_COMPONENT Id="cpn.wa.execution.local">
 <ENVIRONMENT_VARIABLE
Id="FGLDIR">$(res.fgldir)</ENVIRONMENT_VARIABLE>
 <ENVIRONMENT_VARIABLE Id="PATH">$(res.path)</ENVIRONMENT_VARIABLE>
 <ENVIRONMENT_VARIABLE
Id="INFORMIXDIR">$(res.informixdir)</ENVIRONMENT_VARIABLE>
 <ENVIRONMENT_VARIABLE
Id="INFORMIXSERVER">$(res.informixserver)</ENVIRONMENT_VARIABLE>
 ...
 <DVM>$(res.dvm.wa)</DVM>
</SERVICE_APPLICATION_EXECUTION_COMPONENT>

ENVIRONMENT_VARIABLE

The ENVIRONMENT_VARIABLE element provides the value to be set for an environment
variable. It takes an attribute Id, which specifies the name of the environment variable.
Prior to starting the application, the environment variable is set using this information.

Usage Example:

 <ENVIRONMENT_VARIABLE Id="FGLGUI">1</ENVIRONMENT_VARIABLE>

In this example, the environment variable FGLGUI is set to 1.

The CGI transmits the environment variables it receives from the web server to the GAS.
Each environment variable is prefixed by FGL_WEBSERVER_ for the DVM environment

PATH

The PATH element specifies the current working directory for the application module.

Usage Example:

 <PATH>/home/appdir/sales/</ENVIRONMENT_VARIABLE>

GAS Configuration Reference

239

DVM

The DVM element specifies the name of the Dynamic Virtual Machine you want to use to
start and run the application. Typically this value is fglrun for Unix Systems (UNX) and
fglrun.exe for Windows NT/2000/XP (WNT).

Usage Example:

 <DVM>$(res.dvm.wa)</DVM>

MODULE

The MODULE element specifies the application module name (the name of the .42r
module you want to run). If omitted, the Genero Application Server uses the name of the
requested application.

While this element can be specified as part of an execution component, it is typically
defined at the application level.

Usage Example:

 <MODULE>Edit</MODULE>

AUTHENTICATION

The AUTHENTICATION element specifies the type of authentication to be used for the
application. At this time, only Kerberos is supported.

While this element can be specified as part of an execution component, it is typically
defined at the application level.

Usage Example:

 <AUTHENTICATION>KERBEROS</AUTHENTICATION>

Genero Application Server

240

PARAMETERS

The PARAMETERS element specifies the parameters to provide on the DVM command
line. To enable URL parameters, in the EXECUTION tag, set the AllowUrlParameters
attribute of the to TRUE.

Syntax:

 <PARAMETERS>
 [<PARAMETER> parameterValue </PARAMETER> [...]]
 </PARAMETERS>

Usage Examples:

The following example provides two parameters:

• Hello world!
• Again

 <PARAMETERS>
 <PARAMETER>Hello world!</PARAMETER>
 <PARAMETER>Again</PARAMETER>
 </PARAMETERS>

If URL parameters are allowed, these parameters are listed after the ones defined in the
configuration file.

POOL

The POOL element sets the limitations regarding the number of Virtual Machines that are
attached to a Web Service. You specify three values within a POOL element: the number
of Virtual Machines to start when the Genero Application Server starts, the minimum
number of Virtual Machines to have alive while the Genero Application Server is running,
and the maximum number of Virtual Machines to have alive while the Genero
Application Server is running.

Note: The POOL element is only available for Web Services.

Syntax:

<POOL>
 [<START> startValue </START>]
 [<MIN_AVAILABLE> minValue </MIN_AVAILABLE>]

GAS Configuration Reference

241

 [<MAX_AVAILABLE> maxValue </MAX_AVAILABLE>]
</POOL>

Notes:

The POOL element may contain the following child elements (described below):

1. Zero or one START elements (optional).
2. Zero or one MIN_AVAILABLE element (optional).
3. Zero or one MAX_AVAILABLE element (optional).

Example:

<POOL>
 <START>5</START>
 <MIN_AVAILABLE>3</MIN_AVAILABLE>
 <MAX_AVAILABLE>10</MAX_AVAILABLE>
</POOL>

In this example, 5 Virtual Machines are started to service the Web service when the
Genero Application Server starts; the number can fall as low as 3 Virtual Machines or
raise as high as 10 Virtual Machines. For more information on setting service pool
elements, refer to the Service Pool section of the Deployment Architecture for Web
Services topic.

START

The START element specifies the number of Virtual Machines to start for this Web
Service when the Genero Application Server starts.

Constraint:

START <= MAX_AVAILABLE

MIN_AVAILABLE

The MIN_AVAILABLE element specifies the minimum number of available Virtual
Machine to be attached to a Web Service. It can be either less than or greater than the
value specified by START. If START > MIN_AVAILABLE, based on the setting of DVM_FREE,
the number of DVMs can decrease to reach MIN_AVAILABLE.

Genero Application Server

242

Constraint:

0 <= MIN_AVAILABLE <= MAX_AVAILABLE

MAX_AVAILABLE

The MAX_AVAILABLE element specifies the maximum number of available Virtual
Machines to be attached to a Web Service.

Constraints:

START <= MAX_AVAILABLE
MIN_AVAILABLE <= MAX_AVAILABLE

GAS Configuration Reference

243

Application Timeout Component - Configuration
Reference
Timeout components provide instruction on how the Genero Application Server (GAS) or
Web service responds after a specific period of time has passed, providing mechanisms
to react to time-based events (such as user inactivity or the time it takes to start a new
application). Each timeout element specifies the number of seconds to wait prior to
having the application server perform the task related to the timeout element. A timeout
is fired when the specific condition is met.

Timeout elements can be defined for either:

• Web applications (timeouts relating to the Front End - GDC, GJC, or GWC)
• Web services

Within the COMPONENT_LIST element of the Genero Application Server configuration file,
you can define timeout components (a WEB_APPLICATION_TIMEOUT_COMPONENT or
SERVICE_APPLICATION_TIMEOUT_COMPONENT) that can later be referenced when
configuring an application, in order to set the timeout values for the application.
Individual timeout elements can then be overwritten within the application's configuration
itself.

WEB_APPLICATION_TIMEOUT_COMPONENT

The WEB_APPLICATION_TIMEOUT_COMPONENT element creates a Web application timeout
component, which define a set of timeout values to be used when configuring a Web
application. It takes an attribute Id, which specifies the unique identifier for this set of
timeout definitions. It is this unique identifier that is referenced by an application,
providing that application with a base set of timeout values.

Why are Web application timeouts necessary? When a Front End client connects to a
DVM via the Genero Application Server (GAS), the connection between the Front End
client and the GAS is not persistent (although the connection between the GAS and the
DVM is persistent). The Genero Application Server needs the timeout settings to
determine whether these components have remained alive and that communication can
continue between the two.

The Front End client can send two types of requests to the DVM: a POST request when
sending data to the DVM and a GET request when asking whether there is data to
retrieve. The Genero Application Server, however, cannot send a request to the Front
End client because the Front End client does not have a public address.

As a result, a request is always initiated by the Front End client and the server response
is done with the same connection. Between requests, the Genero Application Server

Genero Application Server

244

stores data sent from the DVM in its buffer and keeps it for the next GET request from
the Front End client.

Syntax:

<WEB_APPLICATION_TIMEOUT_COMPONENT Id="appTimeOutID">
 [<USER_AGENT> uaTimeOut </USER_AGENT>]
 [<REQUEST_RESULT> requestTimeOut </REQUEST_RESULT>]
 [<DVM_AVAILABLE> dvmTimeOut </DVM_AVAILABLE>]
</WEB_APPLICATION_TIMEOUT_COMPONENT>

Notes:

The WEB_APPLICATION_TIMEOUT_COMPONENT element may contain the following child
elements (described below):

1. Zero or one USER_AGENT element (optional).
2. Zero or one REQUEST_RESULT element (optional).
3. Zero or one DVM_AVAILABLE element (optional).

Example:

<WEB_APPLICATION_TIMEOUT_COMPONENT Id="cpn.wa.timeout.set1">
 <USER_AGENT>300</USER_AGENT>
 <REQUEST_RESULT>240</REQUEST_RESULT>
 <DVM_AVAILABLE>10</DVM_AVAILABLE>
</WEB_APPLICATION_TIMEOUT_COMPONENT>

In this example, the Id value - cpn.wa.timeout.set1 - can be referenced when defining
an application. When an application references a component by its Id value, it inherits
the settings defined by that component.

USER_AGENT timeout (user inactivity)

The User Agent timeout is used to identify a period of user inactivity. The USER_AGENT
element specifies the number of seconds to wait for a client request before assuming
that the Front End client has died (based on user inactivity). After the specified period
passes without the client emitting a further request, the Genero Application Server asks
the Virtual Machine to properly close the application.

Under normal operation, the Front End client sends a GET request to the Genero
Application Server immediately after receiving a response. Therefore, if the client has
not sent a request to the Genero Application Server before the USER_AGENT timeout
expires, the Genero Application Server assumes that the Front End client has died and
asks the DVM to shut down.

GAS Configuration Reference

245

With the Genero Desktop Client Active X and Genero Java Client, the USER_AGENT
timeout usually does not expire. When the user closes the application, the DVM handling
that application is properly shut down.

With the Genero Web Client, however, the USER_AGENT timeout proves to be particularly
useful. As with the other Front End clients, when a user properly exits an application, the
DVM handling that application is properly shut down and the license that the application
consumed is released back into the Genero license application pool. When the user
does not properly exit the application, however, the DVM remains alive and continues to
consume a license even though the Front End client has died. This can occur with the
Genero Web Client when a user closes the browser instead of properly exiting the
application; the Front End client has no mechanism to tell the Genero Application Server
that the user has closed his browser. Because of the USER_AGENT timeout, however, the
USER_AGENT timeouts and Genero Application Server unilaterally close the socket to the
DVM, which causes the DVM to shut down and the license to be released.

Usage Example:

 <USER_AGENT>300</USER_AGENT>

In this usage example, the User Agent timeout is set to 300 seconds.

REQUEST_RESULT timeout (transaction pending)

The Request Result timeout is used to inform the user when a transaction is taking
longer than expected. The REQUEST_RESULT element specifies the number of seconds to
wait for the Virtual Machine to give an answer to the Application Server, after which the
Application Server sends a “transaction pending” page to the Front End client to inform
the user that this transaction may take a little longer than expected. This is also known
as sending a keepalive response. The default transaction pending page automatically
submits a new request to wait for the DVM to complete its processing.

Under normal operations, the Front End client sends a GET request to the Genero
Application Server immediately after receiving a response. Meanwhile, the Genero
Application Server stores data sent by the DVM for the application in its buffer, waiting
for a GET request from the client. When the GET request is received by the Genero
Application Server, if the server has data sent by the DVM in its buffer, the stored data is
sent back to the Front End client. If the DVM does not have data to send, the Genero
Application Server waits and, if the DVM is still processing the request after the specified
REQUEST_RESULT timeout expires, it sends the keepalive response to the Front End
client and resets the REQUEST_RESULT timer.

Tip: The number of seconds specified for the REQUEST_RESULT timeout should be less
that the cgi timeout. By default, the Apache Web server has the cgi timeout default to

Genero Application Server

246

300 seconds. Therefore, the REQUEST_RESULT timeout has an initial default setting of
240 seconds.

Usage Example:

 <REQUEST_RESULT>240</REQUEST_RESULT>

In this usage example, the Request Result timeout is set to 240 seconds.

DVM_AVAILABLE timeout (DVM startup time)

The DVM Available timeout provides a delay for the DVM to start and be available. The
DVM_AVAILABLE element specifies how long (in seconds) the Genero Application Server
allows for the DVM to start.

The DVM_AVAILABLE timeout provides a mechanism for the Genero Application Server to
handle the failure of the DVM to start. If the DVM has not started by the time the
DVM_AVAILABLE timeout expires, the Genero Application Server sends an error message
to the Front End client and logs the message: "DVM_AVAILABLE timeout expired."

The DVM_AVAILABLE timeout is only applicable when you start an application or you
launch sub process in interactive mode (IN FORM MODE). If you run the sub process in
background (IN LINE MODE), the DVM_AVAILABLE timeout is not applicable.

Usage Example:

 <DVM_AVAILABLE>10</DVM)AVAILABLE>

In this usage example, the DVM Available timeout is set to 10 seconds.

SERVICE_APPLICATION_TIMEOUT_COMPONENT

The SERVICE_APPLICATION_TIMEOUT_COMPONENT element creates a Web service
application timeout component, which define a set of timeout values to be used when
configuring a Web service. It takes an attribute Id, which specifies the unique identifier
for this set of timeout definitions. It is this unique identifier that is referenced by a Web
service, providing that Web service with a base set of timeout values.

The Genero Application Server handles the Web Services Server side. It takes care of
the DVM requested by a Web Services client.

GAS Configuration Reference

247

Syntax:

<SERVICE_APPLICATION_TIMEOUT_COMPONENT Id="sTimeOutID">
 <DVM_AVAILABLE>dvmTimeOut</DVM_AVAILABLE>
 <DVM_FREE>dvmFreeTimeOut</DVM_FREE>
 <REQUEST_QUEUE>rqTimeOut</REQUEST_QUEUE>
 <REQUEST_RESULT>rrTimeOut</REQUEST_RESULT>
</SERVICE_APPLICATION_TIMEOUT_COMPONENT>

Notes:

The SERVICE_APPLICATION_TIMEOUT_COMPONENT element may contain the following
child elements (described below):

1. Zero or one DVM_AVAILABLE element (optional).
2. Zero or one DVM_FREE element (optional).
3. Zero or one REQUEST_QUEUE element (optional).
4. Zero or one REQUEST_RESULT element (optional).

Example:

<SERVICE_APPLICATION_TIMEOUT_COMPONENT Id="cpn.ws.timeout.set1">
 <DVM_AVAILABLE>10</DVM_AVAILABLE>
 <DVM_FREE>10</DVM_FREE>
 <REQUEST_QUEUE>10</REQUEST_QUEUE>
 <REQUEST_RESULT>240</REQUEST_RESULT>
</SERVICE_TIMEOUT_COMPONENT>

In this example, the Id value - cpn.ws.timeout.set1 - can be referenced when defining
an Web service. When a Web service references a component by its Id value, it inherits
the settings defined by that component.

DVM_AVAILABLE timeout (DVM startup time)

The DVM Available timeout provides a delay for the DVM to start and be available. The
DVM_AVAILABLE element specifies how long (in seconds) the Genero Application Server
allows for the DVM to start.

The DVM_AVAILABLE timeout provides a mechanism for the Genero Application Server to
handle the failure of the DVM to start. If the DVM has not started by the time the
DVM_AVAILABLE timeout expires, the Genero Application Server sends an error message
to the Front End client and logs the message: "DVM_AVAILABLE timeout expired."

Usage Example:

 <DVM_AVAILABLE>10</DVM_AVAILABLE>

Genero Application Server

248

In this usage example, the DVM Available timeout is set to 10 seconds.

DVM_FREE timeout

The DVM Free timeout is used to shut down a DVM that has no request to process. The
DVM_FREE element specifies how long (in seconds) a DVM waits with no request to
process before determining whether to shut down.

How the DVM reacts when it has no request to process is dependant on the settings for
the Web services pool of DVMs. After the DVM_FREE timeout expires, the DVM is shut
down if the number of running DVMs is greater than MIN_AVAILABLE. If a DVM has no
request to process and the number of DVMs is greater than MAX_AVAILABLE, the DVM
does not wait for the DVM_FREE timeout to expire but instead shuts down immediately.

Usage Example:

 <DVM_FREE>10</DVM_FREE>

In this usage example, the DVM Free timeout is set to 10 seconds.

REQUEST_QUEUE timeout

The Request Queue timeout prevents a request from waiting indefinitely for a DVM to be
made available. The REQUEST_QUEUE element specifies how long (in seconds) a request
waits for a DVM to be available to handle the request. The DVM can either be an
existing DVM or a new DVM started to handle the request. If a new DVM cannot be
started and all other DVMs are busy processing other requests, the request will be
rejected after the REQUEST_QUEUE timeout expires and an error message is logged:
"REQUEST_QUEUE timeout expires". This prevents a request from being in the request
queue indefinitely.

Note: The pool of requests and the pool of DVMs are independent. A request is
processed as long as a DVM is available to process the request. If a request comes in
and there are no available DVMs to process that request, the system attempts to start a
new DVM. If a new DVM cannot be started and the DVM_AVAILABLE timeout expires, the
request remains in the pool of requests until either a DVM becomes available to process
the request or the REQUEST_QUEUE timeout expires, at which time the request is notified
that it could not be processed.

GAS Configuration Reference

249

Usage Example:

 <REQUEST_QUEUE>10</REQUEST_QUEUE>

In this usage example, the Request Queue timeout is set to 10 seconds.

REQUEST_RESULT timeout

The Request Result timeout prevents a request from processing indefinitely. The
REQUEST_RESULT element specifies the maximum amount of time (in seconds) for the
DVM to process the request. If the time expires, GAS closes the connection and logs an
error.

Usage Example:

 <REQUEST_RESULT>240</REQUEST_RESULT>

In this usage example, the Request Result timeout is set to 240 seconds.

Genero Application Server

250

Web Application Picture Component -
Configuration Reference
The Picture component defines how images are served. A Picture component is
referenced in an application by its unique identifier, set by the Id attribute.

WEB_APPLICATION_PICTURE_COMPONENT

The WEB_APPLICATION_PICTURE_COMPONENT element specifies the directory from which
images are served. It takes an attribute Id, which specifies the unique identifier for this
Picture component. It is this unique identifier that is referenced by an application,
providing that application with the location of its image directory.

You need to specify only the alias to the picture directory. The mapping between the
alias and the physical directory where the images are stored is defined in the
INTERFACE_TO_CONNECTOR element. For more information on setting up aliases, refer to
the Aliases section of this manual.

Syntax:

<WEB_APPLICATION_PICTURE_COMPONENT Id="resID">
 <PATH>$(connector.uri)aliasPath</PATH>
</WEB_APPLICATION_PICTURE_COMPONENT>

Notes:

1. resID is the unique identifier for this picture component definition.
2. $(connector.uri) is the resource for the Web server directory.

If you are using a direct connection, the resource $(connector.uri) is empty.
If you connect through an Apache web server, $(connector.uri) is replaced by
/cgi-bin/fglccgi/, assuming your URL is http://WebServer/cgi-
bin/fglccgi/wa/r/AppID.
If $(connector.uri) is not specified in the picture path, the web server is
searched for the images.

3. aliasPath is an alias path, mapping to the physical directory that stores the image
files. You define the alias in the INTERFACE_TO_CONNECTOR element.

Example:

<WEB_APPLICATION_PICTURE_COMPONENT Id="cpn.picture">
 <PATH>$(connector.uri)/fjs/pics</PATH>
</WEB_APPLICATION_PICTURE_COMPONENT>

Note: The Front End clients use $(pictures.uri) in their templates to access the pictures.
This corresponds to the picture component path: $(connector.uri)/fjs/pics.

GAS Configuration Reference

251

The path to the pictures must specify an alias. The alias would be defined in the
INTERFACE_TO_CONNECTOR element:

<INTERFACE_TO_CONNECTOR>
 <TCP_BASE_PORT>6300</TCP_BASE_PORT>
 <TCP_PORT_OFFSET>94</TCP_PORT_OFFSET>
 <DOCUMENT_ROOT>$(res.path.docroot)</DOCUMENT_ROOT>
 <ALIAS Id="/fjs/pics">$(res.path.pics)</ALIAS>
</INTERFACE_TO_CONNECTOR>

Tip: When creating your html pages, use the absolute alias path to html objects like
images or JavaScript files; for example, use /fjs/pic/accept.png rather than
../pic/accept.png. This saves time when moving from a development environment
(direct connection to the GAS) to a production environment (connection through a web
server).

PATH

The PATH element specifies the URL for the directory where the images reside. This URL
typically consists of the Web server directory resource combined with an alias for the
image directory.

Refer to the discussion under WEB_APPLICATION_PICTURE_COMPONENT for more
information on defining the PATH element.

Genero Application Server

252

Application List Reference (Defining Applications)
For each application to be serviced by the Genero Application Server, you must provide
the details for that application in either the Genero Application Server configuration file or
in an external application server configuration file. This section of the documentation
outlines the rules for writing the XML that defines an application; for information about
the general process of defining applications and groups, refer to the Adding Applications
for Genero Web Client or Genero Desktop Client section of this manual.

For information about configuring for Web applications, refer to the Defining Web
Services section of this manual.

APPLICATION_LIST

The APPLICATION_LIST element provides a list of groups and Web applications (for
those Web applications defined within the Genero Application Server configuration file).
It takes an attribute MaxLicenseConsumption, which takes an integer specifying the
maximum number of licenses that can be consumed.

Syntax:

<APPLICATION_LIST MaxLicenseConsumption=numlicenses />
 [<GROUP element.>] [...]
 [<APPLICATION>] [...]
 ...
</APPLICATION_LIST

Notes:

The APPLICATION_LIST element may contain the following child elements (described
below):

1. Zero or more GROUP elements (optional).
2. Zero or more APPLICATION elements (optional).

Example:

<APPLICATION LIST MaxLicenseConsumption=10 />
 <GROUP Id="appgroup">/home/appgroup</GROUP>
 <APPLICATION Id="gwc-demo" Parent="defaultgwc">
 <EXECUTION>
 <PATH>$(res.path.fgldir.demo)</PATH>
 <MODULE>demo.42r</MODULE>
 </EXECUTION>
 </APPLICATION>
</APPLICATION_LIST>

GAS Configuration Reference

253

GROUP

The GROUP element allows you to specify a directory where external application
configuration files are located. Once a GROUP has been declared, an administrator can
add an external application configuration file into the specified directory, and the Genero
Application Server will be able to locate and use that file without having to be restarted.

It takes an attribute Id, which specifies the unique identifier for this group. When calling
an application defined by an external application configuration file, you must provide the
group Id and the name of the external application configuration file name (without the
extension), which is typically the name of the application.

Syntax:

<GROUP Id="groupName"> path </GROUP>

Notes:

1. groupName is a string that uniquely identifies the group.
2. path is the directory path where the external application configuration files are to

be placed.

Usage Examples:

 <GROUP id="tut-demo">$(res.path.as.demo)/tut/app</GROUP>
 <GROUP id="mygroup">/home/myuser/config</GROUP>

APPLICATION

An APPLICATION element defines an application. It takes up to four attributes:

• Id (required for applications defined within the Genero Application Server
configuration file; optional for applications defined in an external application
configuration file) - A string used to uniquely identify this application configuration
element. The Id specified is compared to the application name in the request.

• Parent - A string that identifies the parent application, or the application from
which this application will inherit its default configuration/settings.

• MaxLicenseConsumption - A non-negative Integer specifying the maximum
license consumption.

• Abstract - Defines whether this application configuration element is an abstract
application. It expects a boolean string; the valid values for this type are "TRUE"
and "FALSE". An Abstract application can not instantiate Virtual Machines.
Abstract configurations are used purely in the scope of future inheritance of the

Genero Application Server

254

configuration for other Web applications. Abstract applications can only be
defined in the application server configuration file, they cannot be defined in an
external application configuration file.

When you define an application, you can specify the following elements (described
below):

• Zero or more RESOURCE elements (optional).
• Zero or one EXECUTION elements (optional).
• Zero or one TIMEOUT elements (optional).
• Zero or one PICTURE elements (optional).
• Zero or one OUTPUT elements (optional).

Example:

<APPLICATION Id="gwc-demo" Parent="defaultgwc">
 <EXECUTION>
 <PATH>$(res.path.fgldir.demo)</PATH>
 <MODULE>demo.42r</MODULE>
 </EXECUTION>
 <TIMEOUT> </TIMEOUT>
 <PICTURE> </PICTURE>
 <OUTPUT> </OUTPUT>
</APPLICATION>

For more information on the process of defining applications, refer to Adding
Applications.

RESOURCE

The RESOURCE element defines a resource available for this application. For more
information on defining resources, refer to the Resources section in this manual.

EXECUTION

The EXECUTION element sets the runtime environment for the application by specifying
the parameters for executing a Web application. You can reference a predefined
WEB_APPLICATION_EXECUTION_COMPONENT to inherit the runtime environment settings of
that component by including the Using attribute, specifying the unique identifier for that
execution component, and/or you can set individual execution elements specific to the
application. The attribute AllowUrlParameters defines whether the parameters provided

GAS Configuration Reference

255

on the command line should be ignored ("FALSE", default value) or provided to the DVM
("TRUE").

Settings defined locally within the EXECUTION element override settings defined in
included execution components.

Possible execution elements include:

• Zero to many ENVIRONMENT_VARIABLE elements.
• Zero or one PATH element.
• Zero or one DVM element.
• Zero or one MODULE element.
• Zero or one AUTHENTICATION element.
• Zero or one PARAMETERS element.

For more information on defining execution elements, refer to Setting the Execution
Environment section of this manual.

Usage Examples:

<EXECUTION Using="cpn.wa.execution.local" />
<EXECUTION Using="cpn.wa.execution.local">
 <ENVIRONMENT_VARIABLE Id="FGLGUI>1</ENVIRONMENT_VARIABLE>
</EXECUTION>
<EXECUTION Id="params" AllowUrlParameters="TRUE">
 <PATH>/home/examples/BuiltIn/Arguments</PATH>
</EXECUTION>

TIMEOUT

The TIMEOUT element sets the timeouts for the application. You can reference a
predefined WEB_APPLICATION_TIMEOUT_COMPONENT to inherit the timeout settings of that
component by including the Using attribute, specifying the unique identifier for that
timeout component, and/or you can set individual timeout elements specific to the
application.

Settings defined locally within the TIMEOUT element override settings defined in included
timeout components.

Possible timeout elements include:

• Zero or one USER_AGENT element.
• Zero or one REQUEST_RESULT element.
• Zero or one DVM_AVAILABLE element.

Genero Application Server

256

For more information on setting timeout values, refer to Application Timeouts.

Usage Examples:

<TIMEOUT Using="cpn.wa.timeout.set1" />
<TIMEOUT>
 <USER_AGENT>300</USER_AGENT>
 <REQUEST_RESULT>240</REQUEST_RESULT>
 <DVM_AVAILABLE>10</DVM_AVAILABLE>
</TIMEOUT>

PICTURE

The PICTURE element specifies the picture parameters required by this Web application.
It takes an attribute Using, where you can reference a predefined
WEB_APPLICATION_PICTURE_COMPONENT (to inherit the picture parameters of that
component), or you can specify the path to the image directory by including a PATH
element.

Usage Example:

<PICTURE Using="cpn.picture" />
<PICTURE>
 <PATH>$(connector.uri)/iiug/images</PATH>
</PICTURE>

For more information on specifying a picture component or a path, see Web Application
Picture Component - Configuration Reference.

OUTPUT

The OUTPUT element specifies the output parameters for a Web application, listing all
maps required to make the defined Web application usable with different browsers/Front
Ends.

It takes an optional attribute Rule, to assist with automatic discovery of the User Agent.
For more information, refer to Automatic Discovery of User Agent.

The OUTPUT element can contain the following child element (described below):

• Zero or more MAP elements.

GAS Configuration Reference

257

MAP

The MAP element is a combination of a rendering mechanism and a theme. It takes an
required attribute Id, which specifies the unique identifier for this component. The Id can
be any value, but it is based on the result the user gets from adua.xrd. Common values
are: DUA_WML11, DUA_HTML32, DUA_HTML40, DUA_DHTMLIE55, DUA_CHTML10
and DUA_FORMSML11. The list can be extended by custom choices.

It may also specify an optional attribute Allowed, which specifies whether this map will
be used in this context or not. Possible values are TRUE (allowed) or FALSE (not
allowed). For example, this can be used to forbid some application to use WML if they
were not designed to.

The MAP element can contain the following child elements (described below):

• Zero or one RENDERING element.
• Zero or one THEME elements.

RENDERING / OUTPUT DRIVER

The RENDERING element defines the rendering to be applied to this Web application. It
takes an optional attribute Using, in which the unique identifier of a predefined
WEB_APPLICATION_RENDERING_COMPONENT element can be specified.

The RENDERING element may contain an OUTPUT_DRIVER child element, specifying the
output driver to be used. If an output driver is defined here, it overrides any output driver
settings inherited via the Usage attribute and its specified rendering component.

Usage Examples:

<RENDERING Using="cpn.rendering.wa" />
<RENDERING>
 <OUTPUT_DRIVER>JFE36</OUTPUT_DRIVER>
</RENDERING>

For more information on output drivers and rendering components, refer to Application
Rendering.

Genero Application Server

258

THEME / TEMPLATE

The THEME elment defines the theme to be applied to the application. It takes an optional
attribute Using, in which the unique identifier of a predefined
WEB_APPLICATION_THEME_COMPONENT element can be specified.

The THEME element may contain TEMPLATE child elements, specifying the template(s) to
be used. You can specify multiple theme elements within an application, as different
themes can be called by different windows and/or forms. If a template defined in this
THEME element has the same unique identifier as a template inherited via a
WEB_APPLICATION_THEME_COMPONENT setting, the local THEME element is used. In
other words, templates defined explicitly for the application override any templates
defined in the WEB_APPLICATION_THEME_COMPONENT that have the same template
identifier.

Usage Examples:

<THEME Using="cpn.theme.default.gwc" />
<THEME Using="cpn.theme.default.gwc">
 <TEMPLATE Id="_default">/templatedir/deftemp.html</TEMPLATE>
</THEME>

For more information on defining templates and theme components, refer to Defining a
Theme Component.

GAS Configuration Reference

259

Service List - Configuration Reference
For a Web service application to be serviced by the Genero Application Server, you
must provide the details for that application in either the Genero Application Server
configuration file or in an external application server configuration file. This section of the
documentation outlines the rules for writing the XML that defines an application; for
information about the general process of defining applications and groups, refer to the
Adding a Web Service Application section of this manual.

SERVICE_LIST

The SERVICE_LIST element provides a list of groups and Web services applications (for
those Web services applications defined within the Genero Application Server
configuration file). It takes an attribute MaxLicenseConsumption, which takes an
integer specifying the maximum number of licenses that can be consumed by all Web
Services specified in the list of services contained within the SERVICE_LIST tags.

Syntax:

<SERVICE_LIST MaxLicenseConsumption="numLicenses">
 [<GROUP ...> [...]]
 [<APPLICATION ...> [...]]
</SERVICE_LIST>

Notes:

The SERVICE_LIST element may contain the following child elements (described below):

1. Zero or more GROUP elements (optional).
2. Zero or more APPLICATION elements (optional).

Example:

<CONFIGURATION>
 <APPLICATION SERVER>
 ...
 <SERVICE_LIST MaxLicenseConsumption="10">
 ...
 </SERVICE_LIST>
 </APPLICATION_SERVER>
</CONFIGURATION>

WARNING! You must include the SERVICE_LIST element, even if the Genero
Application Server does not have any Web Services to define. In this situation, you
simply specify an empty SERVICE_LIST element.

Genero Application Server

260

GROUP

The GROUP element allows you to specify a directory where external Web service
application configuration files are located. Once a GROUP has been declared, an
administrator can add an external Web service application configuration file into the
specified directory, and the Genero Application Server will be able to locate and use that
file without having to be restarted.

It takes an attribute Id, which specifies the unique identifier for this group. When calling
an application defined by an external application configuration file, you must provide the
group Id and the name of the external Web service application configuration file name
(without the extension), which is typically the name of the Web service application.

Syntax:

<GROUP Id="groupName"> path </GROUP>

Notes:

1. groupName is a string that uniquely identifies the group.
2. path is the directory path where the external Web service application

configuration files are to be placed.

Usage Example:

 <GROUP id="mygroup">/home/myuser/config</GROUP>

APPLICATION

An APPLICATION element defines an application. For each Web Service you wish to
make accessible through the Genero Application Server, you must create an
APPLICATION element. The APPLICATION element can have up to four attributes
defined:

• Id (required for Web services applications defined within the Genero Application
Server configuration file; optional for applications defined in an external
application configuration file) - A string to uniquely identify this Web service
application configuration element. The Id specified is compared to the application
name in the request.

• Parent - A string that identifies the parent application, or the application from
which this application will inherit its default configuration/settings.

• MaxLicenseConsumption - A non-negative Integer specifying the maximum
license consumption.

GAS Configuration Reference

261

• Abstract - Defines whether this application configuration element is an abstract
application. It expects a boolean string; the valid values for this type are "TRUE"
and "FALSE". An Abstract application can not instantiate Virtual Machines.
Abstract configurations are used purely in the scope of future inheritance of the
configuration for other Web services applications. Abstract applications can only
be defined in the application server configuration file, they cannot be defined in
an external application configuration file.

Note: With the release of Genero 2.0, Web services are named applications as they host
several Web services in one DVM.

When you define a Web service application, you can specify the following elements
(described below):

• Zero or more RESOURCE elements (optional).
• Zero or one EXECUTION element (optional).
• Zero or more TIMEOUT elements (optional).

Example:

<APPLICATION Id="webapp" Parent="abswebapp">
 <EXECUTION>
 <PATH>$(res.path.fgldir.demo)</PATH>
 <MODULE>webapp.42r</MODULE>
 </EXECUTION>
 <TIMEOUT> </TIMEOUT>
</APPLICATION>

RESOURCE

The RESOURCE element defines a resource available for this application. For more
information on defining resources, refer to the Resources section in this manual.

EXECUTION

The EXECUTION element sets the runtime environment for the application by specifying
the parameters for executing a Web application. You can reference a predefined
SERVICE_APPLICATION_EXECUTION_COMPONENT to inherit the runtime environment
settings of that component by including the Using attribute, specifying the unique
identifier for that execution component, and/or you can set individual execution elements
specific to the application.

Genero Application Server

262

Settings defined locally within the EXECUTION element override settings defined in
included execution components.

Possible execution elements include:

• Zero or more ENVIRONMENT_VARIABLE elements.
• Zero or one PATH element.
• Zero or one DVM element.
• Zero or one MODULE element.
• Zero or one AUTHENTICATION element.
• Zero or one POOL element.

For more information on defining execution elements, refer to Setting the Execution
Environment.

Usage Examples:

<EXECUTION Using="cpn.ws.execution.local" />
<EXECUTION Using="cpn.ws.execution.local">
 <ENVIRONMENT_VARIABLE Id="FGLGUI>1</ENVIRONMENT_VARIABLE>
</EXECUTION>

TIMEOUT

The TIMEOUT element sets the timeouts for the Web services application. You can
reference a predefined SERVICE_APPLICATION_TIMEOUT_COMPONENT to inherit the
timeout settings of that component by including the Using attribute, specifying the
unique identifier for that timeout component, and/or you can set individual timeout
elements specific to the application.

Settings defined locally within the TIMEOUT element override those settings defined in a
referenced SERVICE_APPLICATION_TIMEOUT_COMPONENT.

Possible timeout elements include:

• Zero or one DVM_AVAILABLE element.
• Zero or one DVM_FREE element.
• Zero or one REQUEST_QUEUE element.
• Zero or one REQUEST_RESULT element.

For more information on setting timeout parameters, refer to Application Timeouts.

Usage Examples:

<TIMEOUT Using="cpn.ws.timeout.set1" />

GAS Configuration Reference

263

<TIMEOUT>
 <DVM_AVAILABLE>10</DVM_AVAILABLE>
 <DVM_FREE>10</DVM_FREE>
 <REQUEST_QUEUE>10</REQUEST_QUEUE>
 <REQUEST_RESULT>240</REQUEST_RESULT>
</TIMEOUT>

265

Template Language Reference for the Snippet-
Based Rendering Engine
Genero Web Client provides a template language to create dynamic templates. The
template instructions, expressions, and paths allowed in the template file is linked to the
rendering engine that processes the template. This reference is for those templates that
will be rendered by the snippet-based rendering engine, the default rendering engine
(starting with Genero Web Client 2.10). See Application Rendering for a discussion on
application rendering and rendering options.

Topics

Due to the amount of information provided, each topic is covered on a separate page in
the online version of this manual.

Template instructions and the GWC namespace

Genero Web Client instruction specify the kind of operations you can
perform. This section presents the syntax for the Genero Web Client
namespace and lists valid template instructions and valid syntax, and
identifies the weight (processing priority) of each template instruction.

Template expressions

Genero Web Client template expressions are elements Genero Web
Client template instructions can manipulate.

Template paths

Genero Web Client template paths provide access to Genero Web Client
objects, such as the application server, Web server, and Genero
application elements.

Template functions

Genero Web Client provides a snippet developer toolbox through a set of
functions, suchs as logical iteration, number formatting, type conversion,
snippet specific functions, and so on.

Genero Application Server

266

Template Instructions
Topics

• Genero Web Client namespace
• Template Instructions

Genero Web Client Namespace

A Genero Web Client template instruction is prefixed by "gwc". The Genero Web Client
processes the template instruction and generates new HTML code.

Syntax

<tag gwc:instruction="expression" ... >
...
</tag>

Notes

1. tag is an HTML tag
2. instruction is any template instruction
3. expression is a template expression

Template Instructions

Element Instructions

 GWC
Template
Instruction

Description

 gwc:snippet-
root Delimit a snippet.

Attribute Instructions

 GWC Template
Instruction Description

 gwc:define Define a variable to be used in the current tag or the children
tags.

 gwc:condition Test the condition.

GWC Template Language Reference

267

 gwc:repeat Repeat the children tags.
 gwc:replace Replace the entire tag.
 gwc:attributes Dynamically change an attribute of the current HTML tag.
 gwc:content Replace the text between the tags.

 gwc:omit-tag Suppress the surrounding tag after instructions in the children
tags have been processed.

 gwc:marks Associate custom data to the element

With Genero Web Client instructions, as with XML, you can write attributes in any order.
The processing of instructions, however, is interpreted in the order listed above, from the
highest priority to the lowest. For example, once gwc:replace has been executed, there
is no material to achieve the gwc:content processing.

snippet-root instruction

Replace the XHMTL DIV element by the rendering of the component. Snippet-root
instructions are typically found in snippet XHTML files. See Application Rendering for
more information on snippet files.

Syntax

<gwc:snippet-root>
 ...
</gwc:snippet-root>

Example

<gwc:snippet-root>
 <input type="text" readonly="readonly" class="gField gEdit"
 gwc:marks="
 field [CID];
 currentFieldStyle [CID,'gCurrentField'];
 modifiable isModifiable?[CID]:null;
 "
 gwc:attributes="
 class _tpl_+(isModifiable ? '':' gDisabled')+(color?'
gColor_'+color:'')+(hidden!=2?'':' gHidden');
 value value;
 size width;
 maxLength maxLength || null;
 title comment;
 "
 />
</gwc:snippet-root>

This defines the rendering of an Edit field.

Genero Application Server

268

define instruction

The define instruction declares a local variable that can be used in the HTML tag (the
current element) and in its child elements. This variable is undefined outside of the
current element.

Syntax

<tag gwc:define="var expression [; ...]" ...>
...
</tag>

Notes

1. var is the variable name
2. expression is a template expression

Example

<div gwc:define="i menu">

i is set to the current item of a menu.

condition instruction

If the expression is TRUE, render the element. If the expression is FALSE, remove the
tag and its children.

Syntax

<tag gwc:condition="expression" ...>
...
</tag>

Notes

1. expression is a template expression
2. When using expressions in a gwc:condition instruction, verification is done on

the value of the expression. The condition is true if the following test is true:

 Expression
Value Type Test

Boolean Expression value is true.

GWC Template Language Reference

269

Numeric Expression value is not 0. (zero)
String String is not empty or "0". (zero)
Template path with
identified node

The identified element exists (i.e.
formfield[edt1]).

Template path with
value

The value is not empty if it is a string, or 0 if it
is a numeric or boolean value (i.e.
formfield[edt1]/id).

repeat instruction

For a specified collection, iterate through the collection and repeat the element, once per
item in the collection.

Syntax

<tag gwc:repeat="elt eltList">
 statements
</tag>

Notes

1. eltList is the list of elements to loop on (the collection of elements)
2. elt is an element of eltList
3. statements are statements repeated for each element elt in the collection eltList
4. See repeat template paths for special template paths used with a gwc:repeat

instruction

Example

<div gwc:repeat="item menu/actions">
 <a href="..." gwc:condition="item/text"
 gwc:define="text item/text"
 gwc:attributes="href string:${document/URL}?${item/id}"
 gwc:content="text">Input
</div>

Displays the text of each action of a menu as an HTML link.

Repeat instruction template paths

The following table lists special template paths for use with a gwc:repeat instruction.
For more information on template paths, see Template Paths for the Snippet-Based
Rendering Engine.

Genero Application Server

270

 Template Path Type Component AUI object
 repeat object
 repeat/elt object

 Template Path Type Description Attribute
Type

 repeat/elt/length attribute
Get the length of the repeat
sequence (the number of
elements in the sequence).

number

 repeat/elt/index attribute
Get the index of the current
element in the sequence, starting
with 0 (zero).

number

 repeat/elt/first attribute
Test if the current repeat element
is the first element of the
sequence

boolean

 repeat/elt/last attribute
Test if the current repeat element
is the last element of the
sequence

boolean

 repeat/elt/even attribute
Test if the current repeat element
is an even element of the
sequence

boolean

 repeat/elt/odd attribute
Test if the current repeat element
is an odd element of the
sequence

boolean

Notes

1. elt is a repeat instruction element.

replace instruction

Replace the HTML tag (current element and its children) with the value of a template
expression.

Syntax

<tag gwc:replace="expression" ...>
...
</tag>

Notes

GWC Template Language Reference

271

1. expression can be any template expression

Example

<div gwc:replace="window"></div>

The DIV tag is replaced by the application window.

attributes instruction

This instruction dynamically sets a value to an attribute of the current tag. If the attribute
does not exist, it will be created. If it exists, its value will be changed.

Syntax

<tag gwc:attributes="att expression [; ...] " ...>
...
</tag>

Notes

1. att is the attribute name
2. expression is the attribute value. Notice there is no equal sign (=) between the

attribute name and the value being assigned to it.

Example

<form action="..." method="post" gwc:attributes="action document/URL ;
method string:get">

The action attribute is set to the document URL and the method attribute to get.

content instruction

Replace the element content (between the HTML tags) with the value of a template
expression.

Syntax

<tag gwc:content="expression" ...>
...
</tag>

Genero Application Server

272

Notes

1. expression can be any template expression

Example

<div id="gForm-div" gwc:content="form" />

The content of the div tag is set to the generated code of the current form.

omit-tag instruction

If the expression evaluates to TRUE, replace the element by its content. If the
expression is FALSE, remove the element.

Syntax

<tag gwc:omit-tag="expression"...>
...
</tag>

Notes

1. expression is any valid expression

Example

<div gwc:content="formfield[edt1]/value" gwc:omit-tag="true"></div>

This displays the value of the form field "edt1" and removes the DIV tag.

marks instruction

Associates data with the current element, in order to be used by JavaScript on the client
side.

Syntax

<tag gwc:marks="mkp expression [; ...] " ...>
 ...
</tag>

GWC Template Language Reference

273

Notes

1. mkp is the mark-up element name
2. expr is any valid expression

Example

<gwc:snippet-root>
 <input type="text" readonly="readonly" class="gField gEdit"
 gwc:marks="
 field [CID];
 currentFieldStyle [CID,'gCurrentField'];
 modifiable isModifiable?[CID]:null;
 "
 gwc:attributes="
 class _tpl_+(isModifiable ? '':' gDisabled')+(color?'
gColor_'+color:'')+(hidden!=2?'':' gHidden');
 value value;
 size width;
 maxLength maxLength || null;
 title comment;
 "
 />
</gwc:snippet-root>

This defines the rendering of an Edit field.

Genero Application Server

274

Template Expressions
Topics

• expressions syntax

expressions syntax

Template expressions respect a defined syntax.

Syntax

expression is:

{ conditional_expression
 | unary_op expression
 | expression op expression
 | expression_as_string in expression_as_string
 | [argument_list]
 | (expression)
 | fct (argument_list)
 | template_path
 | numeric
 | boolean
 | string
 | null
 | undefined
}

where conditional_expression is:

boolean_expression ? if_true : if_false

where unary_op is:

{ ! | + | - }

where op is:

{ arithmetic_op | boolean_op | comparison_op }

where arithmetic_op is:

{ * | / | % | + | - }

where comparison_op is:

{ < | <= | > | >= | == | != }

GWC Template Language Reference

275

where boolean_op is:

{ && | || }

where boolean is:

{ TRUE | FALSE }

where string is:

' string '

where argument_list is a list of expressions separated by comas:

{ [expression [, ...]] }

argument_list can be empty.

Notes

1. conditional_expression returns a value according to the result of a condition
expression

boolean_expression ? if_true : if_false

2. If the boolean_expression results in true, the conditional_expression returns the
if_true expression, otherwise if_false is returned.

orientation=='horizontal'?'':' gRadioGroupVertical' # produces
an empty string if orientation equals
 #
horizontal, otherwise returns gRadioGroupVertical

3. expression_as_string is a string
4. [argument_list] defines an array

[1, 2, 'a', 'b'] # defines an array with 4 elements

5. (expression) defines a priority in the processing of the expressions.

(a + b) * c # means expression 'a + b' will be
processed before the result is multiplied by c

6. fct is any valid function name
7. string is a string value
8. numeric is a numeric value
9. expression_as_string is any template expression resulting in a string value
10. template_path is any valid template path

Genero Application Server

276

11. null expression removes a corresponding attribute

title comment || null; # if comment attribute is not an empty
string
 # then set comment value to title
otherwise
 # remove the html attribute title

12. undefined is the value returned by a template path when the path is not available.
It is used to make the difference between a template path that would return an
empty string and a path that does not exist in the current context.

13. The + operator can be used with string values to concatenate two strings. Other
operators will not work unless string values evaluate to numeric expressions:

'This expression ' + 'works'
'12' - '34' # works
'12' - 'ab' # doesn't work

14. The boolean operators && and || behave like their JavaScript equivalent. The
following table gives the result of the expression:

expr_A op expr_B

 Operator expr_A is TRUE* expr_B is FALSE*
 && expr_B false
 || expr_A expr_B

16. *Evaluation is done like the test made by the gwc:condition instruction

1 > 0 && 'expr_A is true' # produces expr_A is true
1 < 0 && 'expr_A is false' # produces 0
1 < 0 || 'expr_A is false' # produces expr_A is false

17. As the && operator's priority is greater than the || operator's priority, you can
combine these operators to have an if … then … else … statement :

condition_expr && expr_if_true || expr_if_false

true && 'bill' || 'bob' # produces bill
false && 'bill' || 'bob' # produces bob

19. The in operator is used to look for a string value in a string value list. Elements
of the list are separated by a space character

'bill' in 'bob bill john' # produces true

GWC Template Language Reference

277

Template Functions
Template functions are defining an utility toolbox for snippet developers.

• Conversion Functions
• Logical Functions
• Number Functions
• String Functions
• Front End Protocol Functions
• Other Functions

Conversion Functions

• bool()
• number()
• string()
• object()

bool()

The bool() function converts an expression to a boolean.

Syntax

bool(expr)

Notes

1. expr is the expression to convert.

number()

The number() function converts an expression to a number.

Syntax

number(expr)

Genero Application Server

278

Notes

1. expr is the expression to convert.

string()

The string() function converts an expression to a string.

Syntax

string(expr)

Notes

1. expr is the expression to convert.

object()

The object() function inserts XML code.

Syntax

object(expr)

Notes

1. expr is a string interpreted as an XML snippet. expr can be the XML code
between the gwc:snippet-root tags. All the template instructions in this string is
interpreted against the current context. Any parsing error detected is written in
the log files, assuming the TEMPLATE category is set.

Example

<p gwc:replace="object(value) />

This insert the value of a field as XHTML code in the html page.

GWC Template Language Reference

279

Logical Functions

• for()
• switch()

for()

The for() function creates a numeric sequence.

Syntax

bool(expr1, expr2, [expr3])

Notes

1. Return a numeric sequence from number(expr1) to number(expr2) with a step
of number(expr3) [1 by default].

Example

<div gwc:repeat="i for(0, 20, 2)" gwc:content="i" />

switch()

The switch() function compares an expression to different values, and return a result
dependant on which value it equals to.

Syntax

switch(expr1, array1, array2, [expr2])

Notes

1. If expr1 is in array1 at position x, return value inside array2 at position x, if any.
In other cases return expr2, if any.

Example

Genero Application Server

280

<div gwc:content="switch(number(i), [1, 2, 3, 4], ['this is one',
'this is two', 'this is three', 'this is four'], 'Don\'t know that
number...')" />

Number Functions

• min()
• max()
• round()
• fill()
• precision()
• abs()
• sin()
• cos()
• tan()

min()

The min() function returns the minimum between two numbers.

Syntax

min(expr1, expr2)

Notes

1. Return the minimum between number(expr1) and number(expr2).

max()

The max() function returns the maximum between two numbers.

Syntax

max(expr1, expr2)

Notes

GWC Template Language Reference

281

1. Return the maximum between number(expr1) and number(expr2).

round()

The round() function returns the rounded value of a number.

Syntax

round(expr)

Notes

1. Return the rounded value of number(expr).

fill()

The fill() function formats a number by filling its string representation.

Syntax

fill(expr1, expr2, [expr3, [expr4]])

Notes

1. Return string(number(expr1)) filled with string(expr3) [" " by default] to
reach number(expr2) width.
Fill is done according on bool(expr4) [true by default]: true means filling to left,
false filling to right.

precision()

The precision() function sets precision when displaying a number.

Syntax

precision(expr1, expr2)

Genero Application Server

282

Notes

1. Set precision of number(expr1) decimal part to number(expr2).

abs()

The abs() function calculates the absolute value.

Syntax

abs(expr)

Notes

1. Calculates the absolute value of number(expr).

sin()

The sin() function calculates the sine of an angle.

Syntax

sin(expr)

Notes

1. Calculates the sine of number(expr).
2. number(expr) is the angle in degrees.

cos()

The cos() function calculates the cosine of an angle.

Syntax

cos(expr)

GWC Template Language Reference

283

Notes

1. Calculates the cosine of number(expr).
2. number(expr) is the angle in degrees.

tan()

The tan() function calculates the tangent of an angle.

Syntax

tan(expr)

Notes

1. Calculates the tangent of number(expr).
2. number(expr) is the angle in degrees.

String Functions

• escapeJS()
• translate()
• split()
• length()
• substring()
• contains()
• indexOf()
• replace()
• filterAmpersand()

escapeJS()

The excapeJS() function escapes JavaScript-sensitive characters.

Syntax

Genero Application Server

284

escapeJS(expr)

Notes

1. Return string(expr) with ["'", "\", "\n", "\r"] characters escaped with a "\".

translate()

The translate() function translates a string.

Syntax

translate(expr1, expr2, expr3)

Notes

1. Return string(expr1) with occurrences of string in string(expr2) replaced by
the string at the corresponding position in string(expr3). Use expression with
square brackets [] to replace a list of strings. Use quotes to replace character by
character.

Examples

<div gwc:attributes="class translate(style, ' -/\#.=+()[]',
'____________')"/>
To replace character by character.

<div gwc:attributes="class translate(style, ['\\r\\n','\\n','\\r'],
'
')"/>
To replace each strings in the array expr2 by the string expr3.

split()

The split() function splits a string using a delimiter.

Syntax

split(expr1, expr2)

Notes

GWC Template Language Reference

285

1. Return string(expr1) split into an array of substrings according to
string(expr2) delimiter.

Example

<option gwc:attributes="selected valueChecked in split(value , '|') ?
'selected' : null"/>

length()

The length() function returns string length.

Syntax

length(expr)

Notes

1. Return string(expr) length.

substring()

The substring() function returns a substring of a string.

Syntax

substring(expr1, expr2, [expr3])

Notes

1. Return string(expr1) substring from number(expr2) position to
number(expr3) position [end of string(expr1) by default].

contains()

The contains() function returns true if a string contains a substring.

Genero Application Server

286

Syntax

contains(expr1, expr2)

Notes

1. Return true if string(expr2) is a substring of string(expr1).

indexOf()

The indexOf() function returns the position of a substring in a string.

Sytnax

indexOf(expr1, expr2)

Notes

1. Return position of subtring string(expr2) in string(expr1) [return -1 if
string(expr2) is not found in string(expr1)].

replace()

The replace() function replaces a specified part of a string with another string.

Syntax

replace(expr1, expr2, expr3)

Notes

1. Replace any location of string(expr2) in string(expr1) by string(expr3).

GWC Template Language Reference

287

filterAmpersand()

The filterAmpersand() function filters the ampersand (&) on a given string. Double
ampersand (&&) are replaced by a simple one.

Syntax

filterAmpersand(expr)

Notes

1. This function is useful to filter labels containing GDC accelerators as defined in in
the Genero Business Language documentation.

Example

will produce ...

Save & exit

Front End Protocol Functions

• makeScrollOffsetIDID()
• makePageSizeIDID()
• makeRowSelectionIDID()
• makeTableNoSortValue()
• makeColumnSortIDID()
• makeValueIDID()
• makeFocusXDID()
• makeFocusIDID()
• makeKeyXDID()
• makeKeyIDID()
• makeProcessingXDID()
• combEvents()
• makeSessionVarIDID()

makeScrollOffsetIDID()

The makeScrollOffsetIDID() function builds offset action.

Genero Application Server

288

Syntax

 makeScrollOffsetIDID(expr1, expr2)

Notes

1. expr1 is the table id.
2. expr2 is a value for the offset.

Example

<input type="submit" gwc:attributes="name makeScrollOffsetIDID(ID,
repeat/p/index);... />
produces
<input type="submit" name="o88/50"... />

makePageSizeIDID()

The makePageSizeIDID() function builds page size action.

Syntax

makePageSizeIDID(expr1, expr2)

Notes

1. expr1 is the table id.
2. expr2 is a size value.

Example

<input type="submit" gwc:attributes="name makePageSizeIDID(ID,
'50');... />
produces
<input type="submit" name="s88/50"... />

makeRowSelectionIDID()

The makeRowSelectionIDID() function builds inclusive row selection action.

GWC Template Language Reference

289

Syntax

 makeRowSelectionIDID(expr1, expr2)

Notes

1. expr1 is the table id or the selectorID for a matrix.
2. expr2 is the row index.

Example

<input type="submit" gwc:attributes="name makeRowSelectionIDID(r/ID,
repeat/r/index);... />
or
<input type="submit" gwc:attributes="name
makeRowSelectionIDID(selectorID, selectorIndex);... />
produces
<input type="submit" name="r89/50"... />

makeTableNoSortValue()

The makeTableNoSortValue() function builds a reset value for table sort.

Syntax

 makeTableNoSortValue()

makeColumnSortIDID()

The makeColumnSortIDID() function builds a column sort action in inclusive format

Syntax

 makeColumnSortIDID(expr1,expr2)

Notes

1. expr1 is the table id, for example the template path table/ID.
2. expr2 is the sort value, for example the template path table/ID or the template

function makeTableNoSortValue.

Genero Application Server

290

makeValueIDID()

The makeValueIDID() function builds a value in inclusive format

Syntax

 makeValueIDID(expr1,expr2)

Notes

1. expr1 is the object id.
2. expr2 is the value of the field.

Example

<input type="submit" gwc:attributes="name makeValueIDID(ID, value)"
.../>
produces
<input type="submit" name="v89/tata"... />

makeFocusXDID()

The makeFocusXDID() function gives the focus to an item.

Syntax

makeFocusXDID()

Notes

1. the syntax is control-name=control-value where control-name is
makeFocusXDID() and control-value is the field id.

Example

<input type="radio" gwc:attributes="name makeFocusXDID(); value ID;...
/>
produces
<input type="radio" name="f" value="89"... />

GWC Template Language Reference

291

makeFocusIDID()

The makeFocusIDID() function gives the focus to an item.

Syntax

makeFocusIDID(expr)

Notes

1. expr is the field id.

Example

<input type="submit" gwc:attributes="name makeFocusIDID(ID);"... />
produces
<input type="submit" name="f/89"... />

makeKeyXDID()

The makeKeyXDID() function sends a key.

Syntax

makeKeyXDID(expr)

Notes

1. the syntax is control-name=control-value where control-name is
makeKeyXDID() and control-value is the key.

Example

<input type="radio" gwc:attributes="name makeKeyXDID(); value 'tab';...
/>
produces
<input type="radio" name="f" value="tab".. />

Genero Application Server

292

makeKeyIDID()

The makeKeyIDID() function sends a key.

Syntax

makeKeyIDID(expr)

Notes

1. expr is the the key.

Example

<input type="submit" gwc:attributes="name makeKeyIDID('tab');"... />
produces
<input type="submit" name="f/tab"... />

makeProcessingXDID()

The makeProcessingXDID() function sends an action to get the page in process.

Syntax

makeKeyIDID()

Example

<input type="submit" gwc:attributes="name makeProcessingXDID();"... />
produces
<input type="radio" name="t" value=""... />

combEvents()

The combEvents() function combines multiple actions.

Syntax

combEvents(expr1, [expr2, ...])

Notes

GWC Template Language Reference

293

1. Combine multiple action string(expr1), string(expr2),... into a single action.

makeSessionVarIDID()

The makeSessionVarIDID() function builds a session variable.

Syntax

makeSessionVarIDID(expr1,expr2)

Notes

1. expr1 is the session variable name
2. expr2 is the session variable value.
3. setting a variable to a empty string is equivalent to deleting the variable.

Example

<input type="hidden" gwc:attributes="name
makeSessionVarIDID('var1','value1')" />

Other Functions

• XPath()
• XPathConfig()
• ImageURI()
• includeSnippet()
• check()
• noOp()
• colorToRGB()

XPath()

The XPath() function returns xpath evaluation on current AUI tree context.
The result can only be a string not a node.

Genero Application Server

294

Syntax

xpath(expr)

Notes

1. Return evaluation of xpath string(expr) result on current AUI tree context.

Example

This gives the name of the first window.

<div gwc:repeat="i for(1,application/ui/windows/length)" gwc:omit-
tag="true">
 <span gwc:condition="xpath('//Window[' + i + ']/Form/@name')"
gwc:content="' :: ' + (xpath('//Window[' + i + ']/Form/@text') ||
xpath('//Window[' + i + ']/@text') || xpath('//Window[' + i +
']/Form/@name')) " />
 <span gwc:condition="!xpath('//Window[' + i + ']/Form/@name')"
gwc:content="':: ' + xpath('//Window[' + i + ']/@name')" />
</div>

This gives the list of windows.

XPathConfig()

The XPathConfig() function returns xpath evaluation on current application
configuration.

Syntax

xpathConfig(expr)

Notes

1. Return evaluation of xpath string(expr) result on current application
configuration.

Example

<input id="gKeepaliveValue" gwc:attributes="value
XPathConfig('/APPLICATION/TIMEOUT/USER_AGENT/text()')" />

GWC Template Language Reference

295

ImageURI()

The ImageURI() function builds the URI to the default image location.

Syntax

imageURI(expr)

Notes

1. Return URI to string(expr) default image location.

Example

includeSnippet()

The IncludeSnippet() function includes a snippet.

Syntax

includeSnippet(expr)

Notes

1. Include snippet with id string(expr).

Example

<div gwc:condition="application/state/ended"
gwc:content="includeSnippet('EndingPage')" />

check()

The check() function checks the validity of an expression.

Syntax

Genero Application Server

296

check(expr)

Notes

1. expr is the expression to be checked.

noOp()

The noOp() function evaluates an expression and returns true.

Syntax

noOp(expr)

Notes

1. expr is the expression to be validated.

colorToRGB()

The colorToRGB() function gets the RGB value of a Genero predefined color name.

Syntax

colorToRGB(expr)

Notes

1. expr is the name of a Genero color name.
2. If expr is not a predefined Genero color name, expr is returned.

GWC Template Language Reference

297

Template Paths Overview
With template paths, you can access most elements in your application, as well as
information about the Application Server.

• What is a Template Path?
• Template Paths detail

What is a Template Path?

A template path is an element that returns a typed value. Types can be one of the
following:

Object

An object is an element that will handle some fields. Fields are sub-paths handling typed
values as described here. Fields can be accessed using a relative path fieldName, or
using the object relative or absolute path with the / operator : objectPath/fieldName.

Selectable Object

Some objects are selectable; an identifier is added to the path, making it possible to
select one of the object instances according to a selector. The path will then look like
:objectPath[expression]; expression is a selector identifying an object instance. The
selector meaning will be unique for each Selectable Object.
When the object is referenced without using the selector, the default object instance is
used. The default object instance's meaning will be unique for each Selectable Object.

Component

A component is an object that will be also associated with a snippet. This type of value
could be used in an instruction asking for rendering (gwc:replace or gwc:content) as a
call to the snippet corresponding to this component. This type of value could also be
used in gwc:condition to test the existence or non-existence for this component.
A component is an object and will have some sub paths.
The snippet identifier used to render the component will be unique for each Component

Collection

A collection is a list of items. The type of the items will be unique, and will be one of the
types listed.
A collection will be scanned using the gwc:repeat instruction.
Each collection also has an additional field length, to retrieve the number of items in the
collection : collectionPath/length.

Genero Application Server

298

Attribute

An attribute is a literal value typed as a STRING, BOOLEAN, or NUMBER.

Template Paths Details

The template paths provided for your use are documented according to the associated
object. See the following topics for details about the various template paths:

• The Server hierarchy
• The Document hierarchy
• The Application hierarchy

GWC Template Language Reference

299

Template Paths - Server hierarchy
• The Server hierarchy

o /server
• The Document hierarchy
• The Application hierarchy

The Server object

Path: server

The server is a unique object that represents the GWC rendering engine instance.

Fields Type Description

 server/version Attribute
(string) Returns the version of the server.

 server/development Attribute
(boolean)

Indicate if the server is in development mode (not
in production). Templates and snippets are
reloaded automatically in development mode.

 server/production Attribute
(boolean)

Indicate if the server is in production mode (not in
development). Templates and snippets are not
reloaded automatically in production mode.

Example

<title gwc:content="(application/ui ? application/ui/text : '') + ' - '
+ server/version">Application name</title>

This displays the GWC engine version in the browser title bar.

Genero Application Server

300

Template Paths - Document hierarchy
• The Server hierarchy
• The Document hierarchy

o /document
 /document/request

• The Application hierarchy

The Document object

Path: document

The document is a unique object that represents the HTML document that is currently
rendered.

Fields Type Description

document/url Attribute
(string)

Specifies the URL of the next document to get.
Used to set the action attribute of a form HTML
tag.

document/dialog Attribute
(string)

Describes the JavaScript structure handling 4GL
dialog structure used by smart JavaScript
framework.

document/components Attribute
(string)

A string describing a JavaScript structure used by
smart JavaScript framework.

document/marks Attribute
(string)

A string describing a JavaScript structure used by
smart JavaScript framework.

document/errors Attribute
(string)

A string containing all errors handled by the
Rendering Engine during the current page
computation (snippet parsing, expression parsing,
expression evaluation, and so on).

document/uploadUrl Attribute
(string)

A URL to send the files to upload.
Example: Usage in a FORM tag in snippet
FileUpload.xhtml for Set1.

<form method="post"
enctype="multipart/form-data" ...
gwc:attributes="action document/UploadUrl
..." >

document/blobUrl Attribute
(string)

A URL to retrieve documents from the DVM.
Example: Display a link to download a report.

<a gwc:attributes="href document/blobUrl +
'/report.pdf'">Click to download report

GWC Template Language Reference

301

document/auiUrl Attribute
(string)

A URL to retrieve the Abstract User Interface tree.
Example: Display the AUI tree in a new window

<a gwc:attributes="href document/auiUrl"
target="_blank">gtree

document/request Object A request object handling the request sent by the
Web browser.

The Request object

Path: document/request

The request is a unique sub-object of the document that represents the HTTP request
that provokes this document rendering.

Fields Type Description

document/request/
header[header-
name]

Selectable
attribute
(string)

A string containing the selected header
value.
Example : An element to render only on
Firefox

<div gwc:condition="contains(document/
request/header['user-agent'],
'gecko')>You use Firefox</div>

document/request/
headers

Collection
of header
objects

A collection of all headers handled in the
request.

The Header object

The header objects are scanned through the document/request/headers collection.

Fields Type Description

name Attribute
(string) A string containing the header name.

value Attribute
(string) A string containing the header value.

Genero Application Server

302

Example

<div gwc:repeat="h document/request/headers">
 <b gwc:content="h/name"/>=<i gwc:content="h/value" />
</div>

Displays debug information.

GWC Template Language Reference

303

Template Paths - Application hierarchy
• The Server hierarchy
• The Document hierarchy
• The Application hierarchy

o /application
 /application/state

 /application/state/processing
 /application/state/ended

 /application/state/ended/error
 /application/meta

 /application/meta/launch
 /application/meta/filetransfer
 /application/meta/variable[...]

 /application/ui
 /application/ui/startmenu
 /application/ui/topmenu
 /application/ui/toolbar
 /application/ui/stylelist
 /application/ui/window[..]
 /application/ui/topMostNormalWindow

 /application/interrupt

The Application object

Path: application

Snippet ID: Application

Corresponding AUI Tree element: AUI Root Element

The Application is a unique object that represents the 4GL application currently running
and used to rendered the current document.

This object value is rendered thru the Application snippet when invoked in a gwc:replace
or gwc:content instruction.

Fields Type Description

application/CID Attribute
(string) The corresponding component identifier.

application/type Attribute
(string) Type of the component.

application/connectorUri Attribute
(string) Connector part of the URI

Genero Application Server

304

application/state Object An ApplicationState object handling the state
of the application.

application/meta Object
An ApplicationMetaInformation object
handling miscellaneous information from the
application depending to its state.

application/ui Object
A UserInterface object handling the
application abstract user interface
description.

application/interrupt Object An Interrupt object handling the interruption
of the application.

The ApplicationState object

Path: application/state

The ApplicationState is a unique sub-object from the Application object that represents
the application state.

With the introduction of the snippet-based rendering engine, the main template can be
used to surface the application regardless of its state, eliminating the need for individual
template files for each application state. A change in the application state (interactive,
processing, and so on) will be handled in the main template using the application state
paths listed below.

Fields Type Description

application/state/interactive Attribute
(boolean) DVM state interactive or not.

application/state/processing Object A Processing object describing the
processing state if any.

application/state/ended Object An Ended object describing the
ended state if any.

The Processing object

Path: application/state/processing

GWC Template Language Reference

305

The Processing is a unique sub-object from ApplicationState object that represents the
application processing state.

Fields Type Description

application/state/processing/transactionPending Attribute
(boolean)

True if the
application
server is still
processing the
request.

The Ended object

Path: application/state/ended

The Ended is a unique sub-object from ApplicationState object that represents the
application ended state.

Fields Type Description

application/state/ended/normal Attribute
(boolean)

True if the application has properly
ended.

application/state/ended/timeout Attribute
(boolean)

True if the application has not been
launch within DVM_AVAILABLE
timeout.

application/state/ended/error Object
An EndedError object describing
the application error that provokes
the application end.

The EndedError object

Path: application/state/ended/error

The EndedError is a unique sub-object from Ended object that represents the
application error that provokes the application end.

Fields Type Description

application/state/ended/error/message Attribute
(string)

Message displayed when the
application stopped with an
error.

Genero Application Server

306

The ApplicationMetaInformation object

Path: application/meta

The ApplicationMetaInformation is a unique sub-object from Application object that
represents the application meta information.

Information related to the application and independent of the application state [file
transfer, launch] are called meta-information. This type of information can be used
through the meta-information paths listed below.

Fields Type Description

application/meta/launch Object
An ApplicationLaunch object
describing the sub-application
currently launched.

application/meta/filetransfer Object
A FileTransfer object describing the
files transfers sessions currently
active.

application/meta/variables
Collection
of
Variable
objects

A list of session variables.

The ApplicationLaunch object

Path: application/meta/launch

The ApplicationLaunch is a unique sub-object from ApplicationMetaInformation object
that represents the sub application currently launched.

When a new application is launched, Information from the new application are retrieved
with the paths below.

Fields Type Description

application/meta/launch/url Attribute
(string) URL of the new application launched.

GWC Template Language Reference

307

The FileTransfer object

Path: application/meta/filetransfer

The FileTransfer is a unique sub-object from ApplicationMetaInformation object that
handles files available through the File Transfer.

Fields Type Description

application/meta/filetransfer/files
Collection
of File
objects

The list of all files in
the application. Used
in a repeat instruction
to loop on each file in
the list.

application/meta/filetransfer/currentfiles
Collection
of File
objects

The list of the current
files in the application
[i.e. files transferred
since previous action].
Used in a repeat
instruction to loop on
each file in the list.

The File object

The File object is a handled by the files and currentfiles collections from FileTransfers
object. It describes one transfered file.

Fields Type Description

url Attribute
(string)

URL to retrieve the file from the GAS file transfer
directory.

name Attribute
(string) Name of the file.

size Attribute
(number) Size of the file in byte.

isCurrent Attribute
(boolean) True if the file is part of the current file transfer process.

Genero Application Server

308

The Variable object

Path: application/meta/variable[name]

Session variables are held by a collection. As a result, there is a collection path
application/meta/variables to iterate through the full collection of variables, as well
as a selector path to access variables by name.

Fields Type Description

application/meta/variable/XDID Attribute
(string)

Name of the session variable
for JavaScript usage.

application/meta/variable/name Attribute
(string) Name of the session variable.

application/meta/variable/value Attribute
(string) Value of the session variable.

application/meta/variable/readOnly Attribute
(boolean)

True if the session variable is
read-only.

Example

<h3>List of current session variables</h3>
 <div gwc:omit-tag="true" gwc:repeat="var application/meta/variables">
 <p>

 </p>
</div>

For more details about session variables usage, see the chapter Session Variables and
Cookies.

The UserInterface object

Path: application/ui

Snippet ID: UserInterface

Corresponding AUI Tree element: UserInterface

The UserInterface is a unique sub-object from Application object that represents the
application abstract User Interface description.

GWC Template Language Reference

309

This object value is rendered thru the UserInterface snippet when invoked in a
gwc:replace or gwc:content instruction.

Fields Type Description

application/ui/CID Attribute
(string)

The corresponding component
identifier

application/ui/text Attribute
(string) UserInterface text node value.

application/ui/dbDate Attribute
(string) Application date format.

application/ui/intermediateTrigger Attribute
(string)

Indicates if the intermediate
trigger should be executed.
This corresponds to the
Dialog.fieldOrder entry in the
fglprofile.

application/ui/error Attribute
(string) Error message

application/ui/startmenu Object
A StartMenu object describing
the StartMenu component
attached to the application.

application/ui/topmenu Object
A TopMenu object describing
the TopMenu component
attached to the application.

application/ui/toolbar Object
A Toolbar object describing the
Toolbar component attached to
the application.

application/ui/styleList Object A StyleList object describing
the application styles.

application/ui/windows
Collection
of
Window
objects

The list of windows owned by
the application.
Used in a repeat instruction to
loop on each window in the list.

application/ui/window[window-name] Object

This selectable path will return
the Window object of the
application with this given
name. If no selection is
explicitely done. This path will
return the Window object
describing the current active
window for this application.

application/ui/modalWindows
Collection
of
Window
objects

The list of modal windows
owned by the application.
N.B. this is a sub-list of the
application/ui/windows one.

Genero Application Server

310

Used in a repeat instruction to
loop on each window in the list.

application/ui/topMostNormaWindow Object

A Window object which
describes the most recent
window with a non-modal (aka
normal) style.

The StyleList object

Path: application/ui/styleList

Snippet ID: StyleList

Corresponding AUI Tree element: StyleList

The StyleList is a unique sub-object from UserInterface object that represents the
application styles (see 4ST files in BDL manual).

This object value is rendered thru the StyleList snippet when invoked in a gwc:replace or
gwc:content instruction.
To access sub-element of the StyleList object there is currently no paths. You have
either to use xpath() function or XSLT snippets.

Fields Type Description

application/ui/styleList/CID Attribute
(string)

The corresponding component
identifier.

application/ui/styleList/type Attribute
(string) Type of the component.

application/ui/styleList/name Attribute
(string) Style name.

The Interrupt object

Path: application/interrupt

Snippet ID: LocalAction

GWC Template Language Reference

311

Corresponding AUI Tree element: UIDS2/LocalAction

Fields Type Description

application/interrupt/CID Attribute
(string)

The corresponding component
identifier

application/interrupt/type Attribute
(string) Type of the component.

application/interrupt/DID
Deprecated !

Attribute
(string)

The corresponding dialog identifier.
This path is deprecated use XDID
instead.

application/interrupt/XDID Attribute
(string)

Dialog identifier in exclusive format.
Example:
<input type="radio"
gwc:attributes="name
application/interrupt/XDID;
value '';... />
produces
<input type="radio" name="x"
value=""... />
In inclusive format, no value is
needed.
Example:
<input type="submit"
gwc:attributes="name
application/interrupt/XDID;"...
/>
produces
<input type="submit"
name="x"... />

application/interrupt/name Attribute
(string) The interrupt identifier.

application/interrupt/text Attribute
(string) The displayed text.

application/interrupt/image Attribute
(string) The associated image.

application/interrupt/comment Attribute
(string) The associated comment.

application/interrupt/isActive Attribute
(boolean) True if the Interrupt is enabled.

Genero Application Server

312

Template Paths - StartMenu hierarchy
• The Server hierarchy
• The Document hierarchy
• The Application hierarchy

o /application
 /application/ui

 /application/ui/startmenu

The StartMenu object

Path: application/ui/startmenu

Snippet ID: StartMenu

Corresponding AUI Tree element: StartMenu

The StartMenu is a unique sub-object from the UserInterface object that represents the
application Start Menu if any.

This object value is rendered thru the StartMenu snippet when invoked in a gwc:replace
or gwc:content instruction.

Fields (Attributes) Type Description

application/ui/startmenu/CID Attribute
(string)

The corresponding
component identifier.

application/ui/startmenu/type Attribute
(string) Type of the component.

application/ui/startmenu/name Attribute
(string) StartMenu identifier.

application/ui/startmenu/text Attribute
(string) StartMenu title.

application/ui/startmenu/hidden Attribute
(number)

Corresponds to the HIDDEN
attribute in 4GL.

application/ui/startmenu/items
Collection of
StartMenuItem
objects

The list of all items in the
StartMenu.
Used in a repeat instruction to
loop on each file in the list.

GWC Template Language Reference

313

The StartMenuItem objects

StartMenuItem objects are in fact one of the following type :

• a StartMenuCommand object ;
• a StartMenuGroup object ;
• a StartMenuSeparator object ;

The StartMenuCommand object

Path: no absolute path available

Snippet ID: StartMenuCommand

Corresponding AUI Tree element: StartMenuCommand

The StartMenuCommand is an object implementing a StartMenuItem object that
represents a StartMenu command.

This object value is rendered thru the StartMenuCommand snippet when invoked in a
gwc:replace or gwc:content instruction.

Fields
(Attributes) Type Description

CID Attribute
(string) The corresponding component identifier.

type Attribute
(string) Type of the component.

id Attribute
(string) Command identifier.

DID
Deprecated
!

Attribute
(string)

Dialog identifier.
This path is deprecated use IDID or XDID instead.

IDID Attribute
(string)

Dialog identifier in inclusive format..
For example:
<input type="submit" gwc:attributes="name
IDID;".. />
Produces:
<input type="submit" name="m/89"... />

XDID Attribute
(string)

Dialog identifier in exclusive format.
For example:
<input type="radio" gwc:attributes="name XDID;
value ID;... />

Genero Application Server

314

Produces:
<input type="radio" name="m" value="89"... />

name Attribute
(string) StartMenu command identifier.

text Attribute
(string) Text to be displayed for this command.

image Attribute
(string) The associated image

disabled Attribute
(boolean) True if the command is disabled

isActive Attribute
(boolean) True if the command is active

exec Attribute
(string) Command line to be executed.

waiting Attribute
(boolean) True if the command is started without waiting.

hidden Attribute
(number) Corresponds to the HIDDEN attribute in 4GL.

The StartMenuGroup object

Path: no absolute path available

Snippet ID: StartMenuGroup

Corresponding AUI Tree element: StartMenuGroup

The StartMenuGroup is an object implementing a StartMenuItem object that represents
a group of StartMenu items.

This object value is rendered thru the StartMenuGroup snippet when invoked in a
gwc:replace or gwc:content instruction.

Fields
(Attributes) Type Description

CID Attribute
(string) The corresponding component identifier.

type Attribute
(string) Type of the component.

GWC Template Language Reference

315

name Attribute
(string) StartMenu identifier.

text Attribute
(string) Text displayed for the StartMenu group.

image Attribute
(string) Image display for this StartMenu group.

disabled Attribute
(boolean) True if the group is not active.

hidden Attribute
(number) Corresponds to the HIDDEN attribute in 4GL.

items
Collection of
StartMenuItem
objects

The list of all items in the StartMenu group.
Used in a repeat instruction to loop on each file in the
list.

The StartMenuSeparator object

Path: no absolute path available

Snippet ID: StartMenuSeparator

Corresponding AUI Tree element: StartMenuSeparator

The StartMenuSeparator is an object implementing a StartMenuItem object that
represents a separator.

This object value is rendered thru the StartMenuSeparator snippet when invoked in a
gwc:replace or gwc:content instruction.

Fields
(Attributes) Type Description

CID Attribute
(string) The corresponding component identifier.

type Attribute
(string) Type of the component.

Genero Application Server

316

Template Paths - TopMenu hierarchy
• The Server hierarchy
• The Document hierarchy
• The Application hierarchy

o /application
 /application/ui

 /application/ui/topmenu

The TopMenu object

Path: application/ui/topmenu or application/ui/window/form/topmenu

Snippet ID: TopMenu

Corresponding AUI Tree element: TopMenu

The TopMenu is a unique sub-object from the UserInterface or Form object that
represents the application or window top menu if any.

This object value is rendered thru the TopMenu snippet when invoked in a gwc:replace
or gwc:content instruction.

Fields
(Attributes) Type Description

CID Attribute
(string) The corresponding component identifier.

type Attribute
(string) Object type.

name Attribute
(string) TopMenu identifier.

hidden Attribute
(number) Corresponds to the HIDDEN attribute in 4GL.

tag Attribute
(string) Corresponds to the attribute TAG value.

items
Collection of
TopMenuItem
objects

The list of all items in the top menu.
Used in a repeat instruction to loop on each file in the
list.

GWC Template Language Reference

317

The TopMenuItem objects

TopMenuItem objects are in fact one of the following type :

• a TopMenuCommand object ;
• a TopMenuGroup object ;
• a TopMenuSeparator object ;

The TopMenuCommand object

Path: no absolute path available

Snippet ID: TopMenuCommand

Corresponding AUI Tree element: TopMenuCommand

The TopMenuCommand is an object implementing a TopMenuItem object that
represents a TopMenu command.

This object value is rendered thru the TopMenuCommand snippet when invoked in a
gwc:replace or gwc:content instruction.

Fields
(Attributes) Type Description

CID Attribute
(string) The corresponding component identifier.

type Attribute
(string) Object type.

id Attribute
(string) Object identifier.

DID
Deprecated
!

Attribute
(string)

Dialog identifier.
This path is deprecated use IDID or XDID instead.

IDID Attribute
(string) Dialog identifier with inclusive format.

XDID Attribute
(string) Dialog identifier with exclusive format.

name Attribute
(string) TopMenu command identifier.

text Attribute
(string) Text displayed for this command.

Genero Application Server

318

comment Attribute
(string) Comment displayed for this command.

image Attribute
(string) The associated image.

isActive Attribute
(boolean) True if the command is active.

hidden Attribute
(number) Corresponds to the HIDDEN attribute in 4GL.

tag Attribute
(string) Corresponds to the attribute TAG value.

The TopMenuGroup object

Path: no absolute path available

Snippet ID: TopMenuGroup

Corresponding AUI Tree element: TopMenuGroup

The TopMenuGroup is an object implementing a TopMenuItem object that represents a
group of TopMenu items.

This object value is rendered thru the TopMenuGroup snippet when invoked in a
gwc:replace or gwc:content instruction.

Fields
(Attributes) Type Description

CID Attribute
(string) The corresponding component identifier.

type Attribute
(string) Object type.

name Attribute
(string) TopMenu group identifier.

text Attribute
(string) Text displayed for the TopMenu group.

comment Attribute
(string) Comment displayed fot the TopMenu group.

image Attribute
(string) Image associated to the TopMenu group

GWC Template Language Reference

319

isActive Attribute
(boolean) True of the TopMenu group is active.

hidden Attribute
(number) Corresponds to the HIDDEN attribute in 4GL.

tag Attribute
(string) Corresponds to the attribute TAG value.

items
Collection of
TopMenuItem
objects

The list of all items in the TopMenu group.
Used in a repeat instruction to loop on each file in the
list.

The TopMenuSeparator object

Path: no absolute path available

Snippet ID: TopMenuSeparator

Corresponding AUI Tree element: TopMenuSeparator

The TopMenuSeparator is an object implementing a TopMenuItem object that
represents a separator.

This object value is rendered thru the TopMenuSeparator snippet when invoked in a
gwc:replace or gwc:content instruction.

Fields
(Attributes) Type Description

CID Attribute
(string) The corresponding component identifier.

type Attribute
(string) Object type.

Genero Application Server

320

Template Paths - Toolbar hierarchy
• The Server hierarchy
• The Document hierarchy
• The Application hierarchy

o /application
 /application/ui

 /application/ui/toolbar

The Toolbar object

Path: application/ui/toolbar or application/ui/window/form/toolbar

Snippet ID: Toolbar

Corresponding AUI Tree element: Toolbar

The Toolbar is a unique sub-object from the UserInterface or Form object that
represents the application or window tools bar if any.

This object value is rendered thru the Toolbar snippet when invoked in a gwc:replace or
gwc:content instruction.

Fields
(Attributes) Type Description

CID Attribute
(string) The corresponding component identifier.

type Attribute
(string) Object type.

name Attribute
(string) ToolBar identifier.

hidden Attribute
(number) Corresponds to the HIDDEN attribute in 4GL.

tag Attribute
(string) Corresponds to the attribute TAG value.

buttonTextHidden Attribute
(number)

Set to 1 if the texts associated to the ToolBar items
are not displayed.

items
Collection
of
ToolbarItem
objects

The list of all items in the top menu.
Used in a repeat instruction to loop on each file in
the list.

GWC Template Language Reference

321

The ToolbarItem objects

ToolbarItem objects are in fact one of the following type :

• a ToolbarCommand object ;
• a ToolbarSeparator object ;

The ToolbarCommand object

Path: no absolute path available

Snippet ID: ToolbarItem

Corresponding AUI Tree element: ToolbarItem

The ToolbarCommand is an object implementing a ToolbarItem object that represents
a Toolbar command.

This object value is rendered thru the ToolbarItem snippet when invoked in a
gwc:replace or gwc:content instruction.

Fields
(Attributes) Type Description

CID Attribute
(string) The corresponding component identifier.

type Attribute
(string) Object type.

id Attribute
(string) Object identifier.

DID Deprecated ! Attribute
(string)

Dialog identifier.
This path is deprecated use IDID or XDID instead.

IDID Attribute
(string) Dialog identifier with inclusive format.

XDID Attribute
(string) Dialog identifier with exclusive format.

name Attribute
(string) ToolBar command identifier.

text Attribute
(string) Text displayed for this command.

comment Attribute Comment displayed for this command.

Genero Application Server

322

(string)

image Attribute
(string) Image associated to this command.

isActive Attribute
(boolean) True if the command is active.

hidden Attribute
(number) Corresponds to the HIDDEN attribute in 4GL..

tag Attribute
(string) Corresponds to the attribute TAG value.

buttonTextHidden Attribute
(number)

Set to 1 if text associated to the command should not
be displayed.

The ToolbarSeparator object

Path: no absolute path available

Snippet ID: ToolbarSeparator

Corresponding AUI Tree element: ToolbarSeparator

The ToolbarSeparator is an object implementing a ToolbarItem object that represents a
separator.

This object value is rendered thru the ToolbarSeparator snippet when invoked in a
gwc:replace or gwc:content instruction.

Fields
(Attributes) Type Description

CID Attribute
(string) The corresponding component identifier.

type Attribute
(string) Type of the component.

GWC Template Language Reference

323

Template Paths - Window hierarchy
• The Server hierarchy
• The Document hierarchy
• The Application hierarchy
• /application

o /application/ui
 /application/ui/window

 /application/ui/window/menu
 /application/ui/window/dialog
 /application/ui/window/form

 /application/ui/window/form/toolbar
 /application/ui/window/form/topmenu

 /application/ui/window/localaction
 /application/ui/window/idle

The Window object

Path: application/ui/window or application/ui/topMostNormalWindow or also
relative paths according to sequences.

Snippet ID: Window

Corresponding AUI Tree element: Window

The Window is a sub-object of UserInterface object that represents one of the
application window/frame.

This object value is rendered thru the Window snippet when invoked in a gwc:replace or
gwc:content instruction.

Fields (Attributes) Type Description

CID Attribute
(string) The corresponding component identifier.

type Attribute
(string) Object type (see ... for more details)

name Attribute
(string) Window identifier.

message Attribute
(string) Window message.

style[attribute-
name]

Attribute
(string)

This selectable path will return the given
attribute value inherited for this window.
See Customizing with Genero Presentation
Styles for more details.

Genero Application Server

324

localActions
Collection
of
LocalAction
Objects

localActions/length Attribute
(number) Number of items in the collection.

class Attribute
(string) Corresponds to attribute STYLE value.

menu Object
A Menu object handling the menu of the
application if any.
N.B. dialog and menu are mutually exclusive.

dialog Object
A Dialog object handling the dialog description
of the application if any.
N.B. dialog and menu are mutually exclusive.

form Object A Form object handling the layout description of
the application.

The Menu object

Path: window/menu

Snippet ID: Menu

Corresponding AUI Tree element: Menu

The Menu is a unique sub-object of Window object that represent the main menu of the
application. This object will only exist if the current window is handling a MENU statement.
In all other cases including DIALOG statements, the window is handling a Dialog object

This object value is rendered thru the Menu snippet when invoked in a gwc:replace or
gwc:content instruction.

Fields
(Attributes) Type Description

CID Attribute
(string) The corresponding component identifier.

type Attribute
(string) Object type (see ... for more details)

idle Object A Idle object when the ON IDLE instruction is used.
text Attribute Menu title.

GWC Template Language Reference

325

(string)
style[
attribute-name
]

Attribute
(string)

This selectable path will return the given attribute value
inherited for this window.
See Genero Presentation Styles for more details.

class Attribute
(string) Corresponds to the attribute STYLE value.

image Attribute
(string) Image associated to the Menu.

comment Attribute
(string) Comment associated to the Menu.

actions
Collection
of Action
objects

The list of all actions available
Used in a repeat instruction to loop on each window in
the list.

visibleActions
Collection
of Action
objects

The list of actions available that do not have an explicit
Action View (as TopMenu commands or Toolbar
commands for instance). N.B. this is a sub-list of the
actions one.

Used in a repeat instruction to loop on each actions in
the list.

The Dialog object

Path: window/dialog

Snippet ID: Dialog

Corresponding AUI Tree element: Dialog

The Dialog is a unique sub-object of Window object that represent this window
interaction. This object will only exist if the current window is handling another
statements than MENU.

This object value is rendered thru the Dialog snippet when invoked in a gwc:replace or
gwc:content instruction.

Fields (Attributes) Type Description

CID Attribute
(string) The corresponding component identifier.

type Attribute Object type.

Genero Application Server

326

(string)

idle Object A Idle object when the ON IDLE instruction
is used.

style[attribute-name] Attribute
(string)

This selectable path will return the given
attribute value inherited for this window.
See Genero Presentation Styles for more
details.

standAloneMatrixDetected Attribute
(boolean)

True if the dialog contains a matrix and is in
interactive mode (display array or input
array).

pageSize Attribute
(number) Number of rows displayed by the matrix.

size Attribute
(number) Number of rows in the matrix.

currentRow Attribute
(number) The matrix current row.

offset Attribute
(string) The matrix offset.

actions
Collection
of Action
objects

The list of all actions available
Used in a repeat instruction to loop on each
window in the list.

visibleActions
Collection
of Action
objects

The list of actions available that do not
have an explicit Action View (as TopMenu
commands or Buttons for instance. N.B.
this is a sub-list of the actions one.

Used in a repeat instruction to loop on each
window in the list.

The Form object

Path: window/form

Snippet ID: Form

Corresponding AUI Tree element: Form

The Form is a unique sub-object of Window object that represent the form embed in this
window if any.

GWC Template Language Reference

327

This object value is rendered thru the Form snippet when invoked in a gwc:replace or
gwc:content instruction.

Fields
(Attributes) Type Description

CID Attribute
(string) The corresponding component identifier.

type Attribute
(string) Type of the component.

name Attribute
(string) Form identifier.

text Attribute
(string) Form title.

style[
attribute-
name]

Attribute
(string)

This selectable path will return the given attribute value
inherited for this window.
See Genero Presentation Styles for more details.

topmenu Object TopMenu of the Form.
toolbar Object Toolbar of the Form.
item Object A LayoutContainer object handling the layout of the form.

minHeight Attribute
(number) Corresponds to the 4GL attribute MINHEIGHT.

minWidth Attribute
(number) Corresponds to the 4GL attribute MIWIDTH.

The Action object

Path: actions are accessed relatively thru Collection iteration

Snippet ID: Action or MenuAction

Corresponding AUI Tree element: Action

The Action is a sub-object of Menu or Dialog object that represent the form embed in
this window if any.

This object value is rendered thru the Action (if issue from or Dialog object) or
MenuAction (if issue from or Menu object) snippet when invoked in a gwc:replace or
gwc:content instruction.

Genero Application Server

328

Fields
(Attributes) Type Description

CID Attribute
(string) The corresponding component identifier.

type Attribute
(string) Type of the component.

id Attribute
(string) Object identifier.

DID
Deprecated !

Attribute
(string)

Dialog identifier.
This path is deprecated use IDID or XDID instead.

IDID Attribute
(string) Dialog identifier with inclusive format.

XDID Attribute
(string) Dialog identifier with exclusive format.

name Attribute
(string) Action identifier

text Attribute
(string) Text displayed for this action.

image Attribute
(string) Image associated to the action.

comment Attribute
(string) Comment displayed for this action.

isActive Attribute
(boolean) True if the action is active.

hidden Attribute
(number) Corresponds to the HIDDEN attribute in 4GL.

defaultView Attribute
(string) The action defaulView value.

hasCustomView Attribute
(boolean)

True if the action has another view (for example in
ToolBar or TopMenu)

hasFocus Attribute
(boolean) True if the action has the focus.

The LocalAction object

Path: application/ui/window/localAction

Snippet ID: LocalAction

GWC Template Language Reference

329

Corresponding AUI Tree element:
UIDS2/UserInterface/Window/LocalActionList/LocalAction

Local Actions are actions handled by the Front End only. For more details on the list
of Local Actions see the Genero BDL manual, chapter "Interaction Model". There are
some Local Actions not handled by GWC: editcopy, editcut, editpaste.

Fields
(Attributes) Type Description

CID Attribute
(string) The corresponding component identifier.

type Attribute
(string) Type of the component.

id Attribute
(string) Object identifier.

DID
Deprecated !

Attribute
(string)

Dialog identifier.
This path is deprecated use IDID or XDID instead.

IDID Attribute
(string) Dialog identifier with inclusive format.

XDID Attribute
(string) Dialog identifier with exclusive format.

name Attribute
(string) Action identifier

text Attribute
(string) Text displayed for this action.

image Attribute
(string) Image associated to the action.

comment Attribute
(string) Comment displayed for this action.

isActive Attribute
(boolean) True if the action is active.

hidden Attribute
(number) Corresponds to the HIDDEN attribute in 4GL.

defaultView Attribute
(string) The action defaulView value.

hasCustomView Attribute
(boolean)

True if the action has another view (for example in
ToolBar or TopMenu)

Genero Application Server

330

The Idle object

Path: dialog/idle or menu/idle

Snippet ID:

Corresponding AUI Tree element:

Fields Type Description

DID Deprecated ! Attribute
(string)

Dialog identifier.
This path is deprecated use XDID instead.

XDID Attribute
(string)

Dialog identifier in exclusive format.
Example:
<input type="radio" gwc:attributes="name
makeIdleXDID(); value '';... />
produces
<input type="radio" name="i" value=""... />
In inclusive format, no value is needed.
Example:
<input type="submit" gwc:attributes="name
makeIdleXDID();"... />
produces
<input type="submit" name="i"... />

GWC Template Language Reference

331

Template Paths - Layout hierarchies
• The Server hierarchy
• The Document hierarchy
• The Application hierarchy
• /application

o /application/ui
 /application/ui/window

 /application/ui/window/menu
 /application/ui/window/dialog
 /application/ui/window/form

 /application/ui/window/form/grid
 /application/ui/window/form/grid/gridlayo

ut
 /application/ui/window/form/scrollgrid

 /application/ui/window/form/grid/gridlayo
ut

 /application/ui/window/form/group[...]
 /application/ui/window/form/folder[...]
 /application/ui/window/form/vbox[...]
 /application/ui/window/form/hbox[...]
 /application/ui/window/form/table[...]
 /application/ui/window/form/table[...]/action

The LayoutContainer objects

LayoutContainer objects are in fact one of the following type :

• a Grid object ;
• a ScrollGrid object ;
• a Group object ;
• a Folder object ;
• a VBox or HBox object ;
• a Table object ;

These objects are selectable objects. They can be accessed using paths like
objectPath[id], where id is the object name.

Example

application/ui/window/form/grid['grid1']
application/ui/window/form/scrollgrid['sg1']
application/ui/window/form/group['grp1']
application/ui/window/form/folder['fd1']
application/ui/window/form/vbox['vb1']
application/ui/window/form/hbox['hb1']
application/ui/window/form/table['table1']

Genero Application Server

332

The Grid object

Path: application/ui/window/form/grid[name] or relative paths according to
sequences.

Snippet ID: Grid

Corresponding AUI Tree element: Grid

The Grid is a LayoutContainer.

This object value is rendered thru the Grid snippet when invoked in a gwc:replace or
gwc:content instruction.

Fields
(Attributes) Type Description

CID Attribute
(string) The corresponding component identifier.

type Attribute
(string) Type of the component.

name Attribute
(string) Grid identifier.

hidden Attribute
(number) Corresponds to the HIDDEN attribute in 4GL.

tag Attribute
(string) Corresponds to the attribute TAG value.

style[
attribute-
name]

Attribute
(string)

This selectable path will return the given attribute value
inherited for this window.
See Customizing with Genero Presentation Styles for
more details.

class Attribute
(string) Corresponds to the attribute STYLE value.

layout Object A GridLayout object describing the layout for this given
grid.

GWC Template Language Reference

333

The ScrollGrid object

Path: application/ui/window/form/scrollgrid[name] or relative paths according
to sequences.

Snippet ID: ScrollGrid

Corresponding AUI Tree element: ScrollGrid

The ScrollGrid is a LayoutContainer.

This object value is rendered thru the ScrollGrid snippet when invoked in a gwc:replace
or gwc:content instruction.

Fields
(Attributes) Type Description

CID Attribute
(string) The corresponding component identifier.

type Attribute
(string) Type of the component.

name Attribute
(string) ScrollGrid identifier.

hidden Attribute
(number) Corresponds to the HIDDEN attribute in 4GL.

tag Attribute
(string) Corresponds to the attribute TAG value.

style[
attribute-
name]

Attribute
(string)

This selectable path will return the given attribute value
inherited for this window.
See Customizing with Genero Presentation Styles for
more details.

class Attribute
(string) Corresponds to the attribute STYLE value.

offset Attribute
(number) ScrollGrid offset

size Attribute
(number) Size of the associated array.

pageSize Attribute
(number) Number of rows displayed by the scrollGrid.

isScrollable Attribute
(boolean) True if you can scroll in the array.

pages
Collection
of untyped
object

A collection of untyped object to be able to iterate on the
ScrollGrid pages.

Genero Application Server

334

layout Object A GridLayout object describing the layout for this given
grid.

The GridLayout object

Path: grid/layout or scrollgrid/layout

Snippet ID: GridLayout

The GridLayout is a sub-oject of Grid or ScrollGrid describing the grid layout.

This object value is rendered thru the GridLayout snippet when invoked in a gwc:replace
or gwc:content instruction.

Fields
(Attributes) Type Description

CID Attribute (string) The corresponding component identifier.
type Attribute (string) Type of the component.
GID Attribute (string) GridLayout identifier
data Attribute (string) Data to handle the layout design for JavaScript.
width Attribute (number) GridLayout width.
height Attribute (number) GridLayout height.

marginLeft Attribute (number)
Width of the smallest empty cell on the left
hand side of the grid. If one line of the grid
begins with a occupied cell, the margin is 0.

marginRight Attribute (number)
Width of the smallest empty cell on the right
hand side of the grid. If one line of the grid ends
with a occupied cell, the margin is 0.

lines
Collection of
GridLayoutLine
objects

A collection of grid lines.

tableLines
Collection of
GridLayoutTableLine
objects

A collection of grid table lines. Enable the
layout of a grid content to be fully based on a
HTML table. Compared to the lines collection,
the rowspan attribute of a TD element can be
directly mapped to the cell's height attribute.

GWC Template Language Reference

335

The GridLayoutLine object

Path: relative paths according to sequences.

The GridLayoutLine is a sub-object of GridLayout describing one grid line.

Fields
(Attributes) Type Description

cells
Collection of
GridLayoutCell
objects

List of cells containg a widget.

allcells
Collection of
GridLayoutCell
objects

List of all cells having a widget or not.

The GridLayoutTableLine object

Path: relative paths according to sequences.

The GridLayoutTableLine is a sub-object of GridLayout describing one grid line.

Fields
(Attributes) Type Description

cells
Collection of
GridLayoutCell
objects

List of cells.

The GridLayoutCell object

Path: relative paths according to sequences.

The GridLayoutCell is a sub-object of GridLayoutLine describing one grid cell.

Fields
(Attributes) Type Description

GID Attribute
(string)

isEmpty Attribute
(boolean) True if the cell does not contain a widget.

x Attribute The cell x coordinate in the Grid.

Genero Application Server

336

(number)

y Attribute
(number) The cell y coordinate in the Grid.

width Attribute
(number) The cell width.

height Attribute
(number) The cell height.

item Object A LayoutContainer object or a GridElem object filling this
grid cell.

The Group object

Path: application/ui/window/form/group[name] or relative paths according to
sequences.

Snippet ID: Group

Corresponding AUI Tree element: Group

The Group is a LayoutContainer.

This object value is rendered thru the Group snippet when invoked in a gwc:replace or
gwc:content instruction.

Fields
(Attributes) Type Description

CID Attribute
(string) The corresponding component identifier.

type Attribute
(string) Type of the component.

name Attribute
(string) Group identifier.

hidden Attribute
(number) Corresponds to the HIDDEN attribute in 4GL.

tag Attribute
(string) Corresponds to the TAG attribute value.

style[
attribute-
name]

Attribute
(string)

This selectable path will return the given attribute value
inherited for this window.
See Customizing with Genero Presentation Styles for
more details.

GWC Template Language Reference

337

class Attribute
(string) Corresponds to the STYLE attribute value.

item Object A LayoutContainer object describing the content of the
group.

The Folder object

Path: application/ui/window/form/folder[name] or relative paths according to
sequences.

Snippet ID: Folder

Corresponding AUI Tree element: Folder

The Folder is a LayoutContainer.

This object value is rendered thru the Folder snippet when invoked in a gwc:replace or
gwc:content instruction.

Fields
(Attributes) Type Description

CID Attribute
(string) The corresponding component identifier.

type Attribute
(string) Type of the component.

name Attribute
(string) Folder identifier

text Attribute
(string) Folder title.

hidden Attribute
(number) Corresponds to the HIDDEN attribute in 4GL.

tag Attribute
(string) Corresponds to the TAG attribute value.

style[
attribute-
name]

Attribute
(string)

This selectable path will return the given attribute value
inherited for this window.
See Customizing with Genero Presentation Styles for
more details.

class Attribute
(string) Corresponds to the STYLE attribute value.

pages A collection The list of all pages in this folder.

Genero Application Server

338

of
FolderPage
object

page[page-
name] Object

This selectable path will return the FolderPage object of
the folder with this given name. If no selection is
explicitely done. This path will return the current
FolderPage object.

The FolderPage object

Path: relative paths according to sequences.

The FolderPage is a sub-object of Folder describing one folder page.

Fields
(Attributes) Type Description

CID Attribute
(string) The corresponding component identifier.

type Attribute
(string) Object type.

id Attribute
(string) Object identifier.

IDID Attribute
(string)

Dialog identifier in inlcusive format.
For example:
<input type="submit" gwc:attributes="name
p/IDID;"... />
produces:
<input type="submit" name="p88/89"... />

XDID Attribute
(string)

Dialog identifier in exclusive format.
For example:
<input type="radio" gwc:attributes="name p/XDID;
value p/ID;... />
produces:
<input type="radio" name="p88" value="89".. />

name Attribute
(string) FolderPage identifier

text Attribute
(string) Folder page title.

hidden Attribute
(number) Corresponds to the HIDDEN attribute in 4GL.

tag Attribute Corresponds to the TAG attribute value.

GWC Template Language Reference

339

(string)

style[
attribute-
name]

Attribute
(string)

This selectable path will return the given attribute value
inherited for this window.
See Customizing with Genero Presentation Styles for
more details.

class Attribute
(string) Corresponds to the STYLE attribute value.

image Attribute
(string) Corresponds to the IMAGE attribute value.

comment Attribute
(string) Corresponds to the COMMENT attribute value.

isCurrent Attribute
(boolean) True if the FolderPage is selected.

hasAction Attribute
(boolean) True if the FolderPage has an associated Action.

body Object A LayoutContainer object describing this page content.

The Box object

Path: application/ui/window/form/vbox[name] or
application/ui/window/form/hbox[name] or relative paths according to sequences.

Snippet ID: VBox or HBox

Corresponding AUI Tree element: VBox or HBox

The Box is a LayoutContainer.

This object value is rendered thru the VBox or HBox snippet when invoked in a
gwc:replace or gwc:content instruction.

Fields
(Attributes) Type Description

CID Attribute (string) The corresponding component identifier.
type Attribute (string) Type of the component.
name Attribute (string) LayoutContainer identifier.

hidden Attribute
(number) Corresponds to the HIDDEN attribute in 4GL.

tag Attribute (string) Corresponds to the TAG attribute value.

Genero Application Server

340

style[
attribute-
name]

Attribute (string)

This selectable path will return the given attribute
value inherited for this window.
See Customizing with Genero Presentation Styles
for more details.

class Attribute (string) Corresponds to the STYLE attribute value.

items
Collection of
LayoutContainer
objects

A list of the layout element to render vertically or
horizontally.

The Table object

Path: application/ui/window/form/table[name] or relative paths according to
sequences.

Snippet ID: Table

Corresponding AUI Tree element: Table

The Table is a LayoutContainer.

This object value is rendered thru the Table snippet when invoked in a gwc:replace or
gwc:content instruction.

Fields
(Attributes) Type Description

CID Attribute
(string) The corresponding component identifier.

type Attribute
(string) Type of the component.

id Attribute
(string) Table identifier.

name Attribute
(string) Table name.

offset Attribute
(number) Table offset.

scrollOffsetXDID Attribute
(string)

Offset of the Table in exclusive format. See the
function makeScrollOffsetIDID to use the inclusive
format.
Syntax:
control-name=control-value
where control-name is scrollOffsetXDID and
control-value is an offset value.

GWC Template Language Reference

341

Example:
<input type="radio" gwc:attributes="name
pageSizeXDID; value '50';... />
produces
<input type="radio" name="s88" value="50"...
/>

pageSize Attribute
(number) Number of rows displayed by the Table.

pageSizeXDID Attribute
(string)

Number of rows displayed by the Table in exclusive
format. See the function makePageSizeIDID to use
the inclusive format.
Syntax:
control-name=control-value
where control-name is pageSizeXDID and control-
value is a size value.
Example:
<input type="radio" gwc:attributes="name
pageSizeXDID; value '50';... />
produces
<input type="radio" name="s88" value="50"...
/>

size Attribute
(number) Number of rows in the underlying array.

isSelectable Attribute
(boolean)

True if you can select a row of the Table (for
example in a display)

isScrollable Attribute
(boolean)

True if you can scroll the Table rows (for example in
a input).

isSortable Attribute
(boolean)

True if the attribute UNSORTABLECOLUMNS si set
to false.

isModifiable Attribute
(boolean)

True if you can type in the table (for example in an
input).

sortType Attribute
(string)

Value is "asc" if the sorting is ascendant. Value is
"desc" if the sorting is descendant.

currentRow Attribute
(number) Index of the selected line.

style[
attribute-name]

Attribute
(string)

This selectable path will return the given attribute
value inherited for this window.
See Customizing with Genero Presentation Styles
for more details.

class Attribute
(string) Corresponds to the STYLE attribute value.

columns
Collection
of Table
Column
objects

A list of the columns in this table.

Genero Application Server

342

rows
Collection
of Table
Row
objects

A list of the rows in this table.

action Object
A TableAction object describing the action
associated with the double-click user action for this
table.

The Table Column object

Path: relative paths according to sequences.

Corresponding AUI Tree element: TableColumn

The TableColumn is a sub-object from the Table describing one column header.

Fields
(Attributes) Type Description

DID Deprecated
!

Attribute
(String)

Dialog identifier.
This path is deprecated use IDID or XDID instead.

IDID Attribute
(string)

Dialog identifier in inclusive format.
For example:
<input type="submit" gwc:attributes="name
c/IDID;"... />
where c is the column object
produces:
<input type="submit" name="c88/89"... />

XDID Attribute
(string)

Dialog identifier in exclusive format.
For example:
<input type="radio" gwc:attributes="name
c/XDID; value c/ID;... />
where c is the column object
produces:
<input type="radio" name="c88" value="89"... />

columnSortXDID Attribute
(string)

Dialog identifier in exclusive format. See also function
makeTableNoSortValue.

text Attribute
(string) Column title.

name Attribute
(string) Column identifier.

isModifiable Attribute
(boolean) True if the columns is in input mode.

isSortable Attribute
(boolean) True is the attribute UNSORTABLE is set to false.

isSorted Attribute True if the Column is already sorted.

GWC Template Language Reference

343

(boolean)

hidden Attribute
(number) Corresponds to the HIDDEN attribute in 4GL.

tag Attribute
(string) Corresponds to the TAG attribute value.

The Table Row object

Path: relative paths according to sequences.

Corresponding AUI Tree element: TableColumn/ValueList

The TableRow is a sub-object from the Table describing one row content.

Fields
(Attributes) Type Description

DID
Deprecated
!

Attribute
(string)

Dialog identifier.
This path is deprecated use XDID path or
makeRowSelectionDID function instead.

XDID Attribute
(string)

Dialog identifier in exclusive format. To use the inclusive
format see the function makeRowSelectionIDID.

Syntax:
control-name=control-value
where the control-name is the row id and control-
value is the row index.
Example:
<input type="radio" gwc:attributes="name r/XDID;
value repeat/r/index;... />
produces
<input type="radio" name="r89" value="50"... />

id Attribute
(string) Row identifier.

isCurrent Attribute
(boolean) True if the row is selected.

cells
Collection
of Table
Cell objects

A list of the cells in this table row.

The Table Cell object

Path: relative paths according to sequences.

Corresponding AUI Tree element: TableColumn/ValueList/Value

Genero Application Server

344

The TableCell is a sub-object from the TableRow describing one cell content.

Fields
(Attributes) Type Description

hidden Attribute
(number) True if the Cell is not visible.

item Object A Widget object describing the widget filling this cell.

column Object A Table Column object describing the column of the
current cell.

The TableAction object

Path: table/action

Snippet ID: TableAction

Corresponding AUI Tree element:

The TableAction is a sub-object of Table object that represent the action to activate
when the user double-click on a table row.

This object value is rendered thru the TableAction snippet when invoked in a
gwc:replace or gwc:content instruction.

Fields
(Attributes) Type Description

CID Attribute
(string) The corresponding component identifier.

type Attribute
(string) Object type (see ... for more details)

DID
Deprecated
!

Attribute
(string)

Dialog identifier.
This path is deprecated use XDID path or
makeValueIDID function instead.

name Attribute
(string) Action name.

text Attribute
(string) Text displayed for the Action.

image Attribute
(string) Image assoiated to the Action.

comment Attribute
(string) Comment for the Action.

GWC Template Language Reference

345

isActive Attribute
(boolean) True if the Action is active.

hidden Attribute
(number) Corresponds to the HIDDEN attribute in 4GL.

tag Attribute
(string) Value of the TAG attribute.

Genero Application Server

346

Template Paths - Widgets hierarchies
• The Server hierarchy
• The Document hierarchy
• The Application hierarchy
• /application

o /application/ui
 /application/ui/window

 /application/ui/window/menu
 /application/ui/window/dialog
 /application/ui/window/form

 /application/ui/window/form/staticlabel[...]
 /application/ui/window/form/staticimage[...]
 /application/ui/window/form/hline
 /application/ui/window/form/button[...]
 /application/ui/window/form/hboxtag[...]
 /application/ui/window/form/formfield[...]

 /application/ui/window/form/formfield[...]/
label[...]

 /application/ui/window/form/formfield[...]/
image[...]

 /application/ui/window/form/formfield[...]/
edit[...]

 /application/ui/window/form/formfield[...]/
buttonedit[...]

 /application/ui/window/form/formfield[...]/
textedit[...]

 /application/ui/window/form/formfield[...]/
slider[...]

 /application/ui/window/form/formfield[...]/
combobox[...]

 /application/ui/window/form/formfield[...]/
radiogroup[...]

 /application/ui/window/form/formfield[...]/
checkbox[...]

 /application/ui/window/form/formfield[...]/
timeedit[...]

 /application/ui/window/form/formfield[...]/
spinedit[...]

 /application/ui/window/form/formfield[...]/
progessbar[...]

 /application/ui/window/form/formfield[...]/
canvas[...]

GWC Template Language Reference

347

The Grid Elements objects

Grid Elements objects are in fact one of the following type :

• a StaticLabel object ;
• a StaticImage object ;
• a FormField object ;
• a HLine object ;
• a Button object ;
• a HBoxTag object ;
• a HBoxTagCell object ;

Formfield is a selectable object. It can be accessed using a path like objectPath[id],
where id is the Formfield name.

Example

application/ui/window/form/formfield['formonly.r1']

The Widgets objects

Widgets objects are in fact one of the following type :

• a Label object ;
• a Image object ;
• a Edit object ;
• a ButtonEdit object ;
• a TextEdit object ;
• a DateEdit object ;
• a Slider object ;
• a ComboBox object ;
• a RadioGroup object ;
• a CheckBox object ;
• a TimeEdit object ;
• a SpinEdit object ;
• a ProgressBar object ;
• a Canvas object;

Genero Application Server

348

The StaticLabel object

Path: application/ui/window/form/staticLabel[name] or relative paths according
to sequences.

Snippet ID: StaticLabel

Corresponding AUI Tree element: Label

Fields
(Attributes) Type Description

CID Attribute
(number) Component identifier.

type Attribute
(string) Object type (see ... for more details)

name Attribute
(string) StaticLabel name.

text Attribute
(string) Correspond to the TEXT attribute in 4GL.

comment Attribute
(string) Corresponds to the COMMENT attribute in 4GL.

justify Attribute
(string) Corresponds to the JUSTIFY attribute in 4GL.

hidden Attribute
(number) Corresponds to the HIDDEN attribute in 4GL.

tag Attribute
(string) Corresponds to the TAG attribute in 4GL.

class Attribute
(string) Corresponds to the STYLE attribute in 4GL.

style[
attribute-
name]

Attribute
(string)

This selectable path will return the given attribute value
inherited for this window.
See Genero Presentation Styles for more details.

The StaticImage object

Path: application/ui/window/form/staticLabel[name] or relative paths according
to sequences.

Snippet ID: StaticImage

GWC Template Language Reference

349

Corresponding AUI Tree element: Image

Fields
(Attributes) Type Description

CID Attribute
(number) Component identifier.

type Attribute
(string) Object type (see ... for more details)

name Attribute
(string) StaticLabel identifier

image Attribute
(string) Correspond to the IMAGE attribute in 4GL.

width Attribute
(number) Corresponds to the WIDTH attribute in 4GL.

height Attribute
(number) Corresponds to the HEIGHT attribute in 4GL.

stretch Attribute
(string) Corresponds to the STRETCH attribute in 4GL.

autoscale Attribute
(string) Corresponds to the AUTOSCALE attribute in 4GL.

hidden Attribute
(number) Corresponds to the HIDDEN attribute in 4GL.

tag Attribute
(string) Corresponds to the TAG attribute in 4GL.

class Attribute
(string) Corresponds to the STYLE attribute in 4GL.

style[
attribute-
name]

Attribute
(string)

This selectable path will return the given attribute value
inherited for this window.
See Genero Presentation Styles for more details.

The FormField object

Path: application/ui/window/form/formfield[name] or relative paths according to
sequences.

Snippet ID: FormField

Corresponding AUI Tree element: FormField

Genero Application Server

350

Fields
(Attributes) Type Description

CID Attribute
(number) Component identifier.

type Attribute
(string) Type of the component.

selectorID Attribute
(string) Id of the FormField in matrix.

selectorDID
Deprecated !

Attribute
(string)

Dialog identifier.
This function is deprecated use selectorXDID instead.

selectorXDID Attribute
(string)

Dialog identifier in exclusive format. See the function
makeRowSelectionIDID to use the inclusive format.
Syntax:
control-name=control-value
where control-name is selectorXDID and control-
value is the row index.
Example:
<input type="radio" gwc:attributes="name
selectorXDID; value selectorIndex;... />
produces
<input type="radio" name="r89" value="50"... />

isSelected Attribute
(boolean) True if the FormField is selected.

selectorIndex Attribute
(number) Index of FormField in a matrix.

isFirstColumn Attribute
(boolean) True if the FormField is in the first column.

item Object The FormField Widget.

The HLine object

Path: grid/hline

Snippet ID: HLine

Corresponding AUI Tree element: HLine

Fields
(Attributes) Type Description

CID Attribute
(number) Component identifier.

type Attribute
(string) Object type (see ... for more details)

GWC Template Language Reference

351

The Button object

Path: relative paths according to sequences.

Snippet ID: Button

Corresponding AUI Tree element: Button

Fields
(Attributes) Type Description

CID Attribute
(number) Component identifier.

type Attribute
(string) Object type (see ... for more details)

name Attribute
(string) StaticLabel identifier

text Attribute
(string) Text displayed for the Button.

comment Attribute
(string) Comment displayed for the Button.

image Attribute
(string) Correspond to the IMAGE attribute in 4GL.

isActive Attribute
(boolean) True if the Button is active.

hasFocus Attribute
(boolean) True if the Button has focus.

hidden Attribute
(number) Corresponds to the HIDDEN attribute in 4GL.

tag Attribute
(string) Corresponds to the TAG attribute in 4GL.

class Attribute
(string) Corresponds to the STYLE attribute in 4GL.

style[
attribute-
name]

Attribute
(string)

This selectable path will return the given attribute value
inherited for this window.
See Genero Presentation Styles for more details.

Genero Application Server

352

The HBoxTag object

Path: relative paths according to sequences.

Fields
(Attributes) Type Description

CID Attribute
(number) Component identifier.

type Attribute
(string) Object type (see ... for more details).

layoutData Attribute
(string)

width Attribute
(number)

hidden Attribute
(number) Corresponds to the HIDDEN attribute in 4GL.

spacerWidth Attribute
(number) Width of the spacers.

cells
Collection of
HBoxTagCell
objects

List of HBoxTagCell that contains an object.

allCells
Collection of
HBoxTagCell
objects

List of all HBoxTagCell objects even empty cells.

The HBoxTagCell object

Path: grid/hline

Snippet ID: HLine

Corresponding AUI Tree element: HLine

Fields
(Attributes) Type Description

CID Attribute
(number) Component identifier.

type Attribute
(string) Object type (see ... for more details)

GWC Template Language Reference

353

item Object Can be any GridElement object.

isEmpty Attribute
(boolean) True if the HBoxTagCell is empty.

The Common fields

Path: formfield/objet/field

Fields (Attributes) Type Description

CID Attribute
(number) Component identifier.

DID Deprecated ! Attribute
(integer)

Dialog identifier.
This path is deprecated use XDID path or
makeValueIDID function instead.

XDID Attribute
(string)

Dialog identifier in exclusive format. To use the
inclusive format see the function makeValueIDID.
Example:
<input type="radio" gwc:attributes="name
XDID; value value"... />
produces:
<input type="radio" name="v89"
value="tata"... />

id Attribute
(integer) Object identifier.

type Attribute
(string) Object type.

name Attribute
(string) The Widget name.

comment Attribute
(string)

Corresponds to the COMMENT attribute of the
Widget.

hidden Attribute
(number) Corresponds to the HIDDEN attribute in 4GL.

tag Attribute
(string) Corresponds to the TAG attribute of the Widget.

class Attribute
(string) Corresponds to the STYLE attribute of the Widget.

style[attribute-
name]

Attribute
(string)

This selectable path will return the given attribute
value inherited for this window.
See Genero Presentation Styles for more details.

Genero Application Server

354

value Attribute
(string)

Corresponds to the VALUE attribute in the AUI
tree. See also makeValueIDID to build a value in
inclusive format.

isModifiable Attribute
(boolean)

True if you can enter a value for the widget (for
example in input mode).

hasFocus Attribute
(boolean) True id the Widget has the focus.

noEntry Attribute
(number) Corresponds to the NOENTRY attribute in 4GL.

notNull Attribute
(number) Corresponds to the NOT NULL attribute in 4GL.

isRequired Attribute
(boolean) True if the REQUIRED attribute is set in 4GL.

isQuery Attribute
(boolean) Corresponds to the QUERYEDITABLE in 4GL.

isSelectable Attribute
(boolean) True if the Widget can be selected.

width Attribute
(number) Corresponds to the WIDTH attribute in 4GL.

queryCleanerValue Attribute
(string)

tabIndex Attribute
(number) Corresponds to the TABINDEX attribute in 4GL.

The Label object

Path: formfield/label

Snippet ID: Label

Corresponding AUI Tree element: FormField/Label

Fields
(Attributes) Type Description

isNumeric Attribute
(boolean) True if the label value represents a number.

justify Attribute
(string) Corresponds to the JUSTIFY attribute in 4GL.

Common attributes for this object are available in the Common Fields section.

GWC Template Language Reference

355

The Image object

Path: relative paths according to sequences.

Snippet ID: Image

Corresponding AUI Tree element: formfield/image

Fields
(Attributes) Type Description

image Attribute
(string) Correspond to the IMAGE attribute in 4GL.

height Attribute
(number) Corresponds to the HEIGHT attribute in 4GL.

stretch Attribute
(string) Corresponds to the STRETCH attribute in 4GL.

autoscale Attribute
(string) Corresponds to the AUTOSCALE attribute in 4GL.

sizePolicy Attribute(string) Corresponds to the SIZEPOLICY attribute in 4GL.

Common attributes for this object are available in the Common Fields section.

The Edit object

Path: relative paths according to sequences.

Snippet ID: Edit

Corresponding AUI Tree element: formfield/edit

Fields
(Attributes) Type Description

maxLength Attribute
(number) Size of the field.

isPassword Attribute
(boolean) True if the INVISIBLE attribut is present.

isNumeric Attribute
(boolean) True if the field value is a number.

Genero Application Server

356

justify Attribute
(string) Corresponds to the JUSTIFY attribute in 4GL.

picture Attribute
(string) Corresponds to the PICTURE attribute in 4GL.

shift Attribute
(string)

Value is "up" if UPSHIFT attribute is present. Value is
"down" if DOWNSHIFT attribute is present.

century Attribute
(string) Corresponds to the CENTURY attribute in 4GL.

include Attribute
(string) Corresponds to the INCLUDE attribute in 4GL.

verify Attribute
(string) Corresponds to the VERIFY attribute in 4GL.

autonext Attribute
(string) Corresponds to the AUTONEXT attribute in 4GL.

Common attributes for this object are available in the Common Fields section.

The ButtonEdit object

Path: relative paths according to sequences.

Snippet ID: ButtonEdit

Corresponding AUI Tree element: formfield/buttonedit

The ButtonEdit has the same fields than the Edit widget.

Fields
(Attributes) Type Description

edit Object Use the Edit.xhtml snippet to render the edit part of the
ButtonEdit.

button Object

List of fields for the Button object of ButtonEdit object.

Fields
(Attributes) Type Description

CID Attribute
(number) Component identifier.

GWC Template Language Reference

357

DID
Deprecated
!

Attribute
(number)

Dialog identifier.
This path is deprecated use XDID path or
makeValueIDID function instead.

type Attribute
(string) Object type (see ... for more details)

name Attribute
(string) Button identifier.

comment Attribute
(string) Corresponds to the COMMENT attribute in 4GL.

hidden Attribute
(number) Corresponds to the HIDDEN attribute in 4GL.

tag Attribute
(string) Corresponds to the TAG attribute in 4GL.

class Attribute
(string) Corresponds to the STYLE attribute in 4GL.

style[
attribute-
name]

Attribute
(string)

This selectable path will return the given attribute value
inherited for this window.
See Genero Presentation Styles for more details.

image Attribute
(string) Corresponds to the IMAGE attribute in 4GL.

Common attributes for this object are available in the Common Fields section.

The TextEdit object

Path: relative paths according to sequences.

Snippet ID: TextEdit

Corresponding AUI Tree element: formfield/textedit

Fields
(Attributes) Type Description

maxLength Attribute
(number) Size of the field.

height Attribute
(number) Corresponds to the number of lines displayed.

isNumeric Attribute
(boolean) True if the field value is a number.

Genero Application Server

358

stretch Attribute
(string) Corresponds to the STRETCH attribute in 4GL.

scrollbars Attribute
(string) Corresponds to the SCROLLBARS attribute in 4GL.

shift Attribute
(string)

Value is "up" if UPSHIFT attribute is present. Value is
"down" if DOWNSHIFT attribute is present.

wantReturn Attribute
(boolean)

True if the WANTNORETURNS attribute in 4GL is not
set.

wantTabs Attribute
(string) Corresponds to the WANTTABS attribute in 4GL.

Common attributes for this object are available in the Common Fields section.

The DateEdit object

Path: relative paths according to sequences.

Snippet ID: DateEdit

Corresponding AUI Tree element: formfield/dateedit

Fields
(Attributes) Type Description

maxLength Attribute
(number) Size of the field.

justify Attribute
(string) Corresponds to the JUSTIFY attribute in 4GL.

picture Attribute
(string) Corresponds to the PICTURE attribute in 4GL.

format Attribute
(string) Corresponds to the FORMAT attribute in 4GL.

century Attribute
(string) Corresponds to the CENTURY attribute in 4GL.

include Attribute
(string) Corresponds to the INCLUDE attribute in 4GL.

verify Attribute
(string) Corresponds to the VERIFY attribute in 4GL.

autonext Attribute
(string) Corresponds to the AUTONEXT attribute in 4GL.

Common attributes for this object are available in the Common Fields section.

GWC Template Language Reference

359

The Slider object

Path: relative paths according to sequences.

Snippet ID: Slider

Corresponding AUI Tree element: FormField/Slider

Fields
(Attributes) Type Description

orientation Attribute
(string) Corresponds to the ORIENTATION attribute in 4GL.

step Attribute
(number) Corresponds to the STEP attribute in 4GL.

valueMin Attribute
(number) Corresponds to the VALUEMIN attribute in 4GL.

valueMax Attribute
(number) Corresponds to the VALUEMAX attribute in 4GL.

Common attributes for this object are available in the Common Fields section.

The ComboBox object

Path: relative paths according to sequences.

Snippet ID: ComboBox

Corresponding AUI Tree element: FormField/ComboBox

Fields
(Attributes) Type Description

valueText Attribute
(string) Value of the ComboBox object.

queryEditable Attribute
(boolean)

Corresponds to the QUERYEDITABLE attribute in
4GL.

hasEmptyItem Attribute
(boolean) True if the NOT NULL in 4GL is not set.

items
Collection
of
ChoiceItem
objects

A list of choices.

Genero Application Server

360

shift Attribute
(string) Corresponds to the SHIFT attribute in 4GL.

Common attributes for this object are available in the Common Fields section.

The RadioGroup object

Path: relative paths according to sequences.

Snippet ID: RadioGroup

Corresponding AUI Tree element: FormField/RadioGroup

Fields
(Attributes) Type Description

items
Collection
of
ChoiceItem
objects

A list of choices.

orientation Attribute
(string) Corresponds to the ORIENTATION attribute in 4GL.

hasEmptyItem Attribute
(boolean) True if the NOT NULL in 4GL is not set.

Common attributes for this object are available in the Common Fields section.

The ChoiceItem object

Path: relative paths according to sequences.

Fields
(Attributes) Type Description

text Attribute
(string) Displayed text for the item.

name Attribute
(string) Item identifier.

Common attributes for this object are available in the Common Fields section.

GWC Template Language Reference

361

The CheckBox object

Path: relative paths according to sequences.

Snippet ID: CheckBox

Corresponding AUI Tree element: FormField/CheckBox

Fields
(Attributes) Type Description

text Attribute
(string) Corresponds to the TEXT attribute in 4GL.

valueChecked Attribute
(string) Corresponds to the VALUECHECKED attribute in 4GL.

valueUnchecked Attribute
(string)

Corresponds to the VALUEUNCHECKED attribute in
4GL.

Common attributes for this object are available in the Common Fields section.

The TimeEdit object

Path: relative paths according to sequences.

Snippet ID: TimeEdit

Corresponding AUI Tree element: FormField/TimeEdit

The TimeEdit object has all the attributes listed in the Common Fields.

Common attributes for this object are available in the Common Fields section.

The SpinEdit object

Path: relative paths according to sequences.

Snippet ID: SpinEdit

Corresponding AUI Tree element: FormField/SpinEdit

Fields
(Attributes) Type Description

step Attribute
(number) Corresponds to the STEP attribute in 4GL.

Genero Application Server

362

Common attributes for this object are available in the Common Fields section.

The ProgressBar object

Path: relative paths according to sequences.

Snippet ID: ProgressBar

Corresponding AUI Tree element: FormField/ProgressBar

Fields
(Attributes) Type Description

valueMin Attribute
(number) Corresponds to the VALUEMIN attribute in 4GL.

valueMax Attribute
(number) Corresponds to the VALUEMAX attribute in 4GL.

Common attributes for this object are available in the Common Fields section.

The Canvas object

Path: relative paths according to sequences.

Snippet ID: Canvas

Corresponding AUI Tree element: FormField/Canvas

This object also have common items, see Common fields for more details

Fields
(Attributes) Type Description

height Attribute
(number) Corresponds to the height of the canvas.

items
Collection
of
CanvasItem
objects

A list of CanvasItem which type could be: CanvasArc,
CanvasCircle, CanvasLine, CanvasOval,
CanvasPolygon, CanvasRectangle, CanvasText

items has a length attibute that indicates the number of CanvasItems in the list.

GWC Template Language Reference

363

The CanvasItem object

Path: relative paths according to sequences.

A CanvasItem is of type: CanvasArc, CanvasCircle, CanvasLine, CanvasOval,
CanvasPolygon, CanvasRectangle, CanvasText. The type also defines the Snipet ID.

Fields
(Attributes) Type Description

CID Attribute
(number) Component identifier.

type Attribute
(string) Type of the component.

name Attribute
(string) Name of the object.

comment Attribute
(string) Corresponds to the COMMENT attribute in 4GL.

tag Attribute
(string) Corresponds to the TAG attribute in 4GL.

startX Attribute
(integer)

Corresponds to the startX attribute of a Canvas
element in 4GL.

startY Attribute
(integer)

Corresponds to the startY attribute of a Canvas
element in 4GL.

endX Attribute
(integer)

Corresponds to the endX attribute of a Canvas
element in 4GL.

endY Attribute
(integer)

Corresponds to the endY attribute of a Canvas
element in 4GL.

xyList Attribute
(string)

Corresponds to the xyList attribute of a Canvas
element in 4GL.

startDegrees
CanvasArc and
CanvasCircle
Only !

Attribute
(integer)

Corresponds to the startDegrees attribute of a Canvas
element in 4GL.

extentDegrees
CanvasArc and
CanvasCircle
Only !

Attribute
(integer)

Corresponds to the extenDegrees attribute of a
Canvas element in 4GL.

diameter
CanvasArc and
CanvasCircle
Only !

Attribute
(integer)

Corresponds to the diameter attribute of a Canvas
element in 4GL.

text
CanvasText Only
!

Attribute
(string)

Corresponds to the text attribute of a Canvas element
in 4GL.

anchor Attribute Corresponds to the anchor attribute of a Canvas

Genero Application Server

364

CanvasText Only
!

(string) element in 4GL.

acceleratorKey1 Attribute
(string)

Corresponds to the acceleratorKey1 attribute of a
Canvas element in 4GL.

acceleratorKey3 Attribute
(string)

Corresponds to the acceleratorKey3 attribute of a
Canvas element in 4GL.

fillColor Attribute
(string)

Corresponds to the fillColor attribute of a Canvas
element in 4GL.

For more details about elements attributes, please refer to the Genero Business
Development Language documentation on Canvas.

365

Migrating from GAS 2.10.x or GWC 2.10.x
This section discusses tasks that you must complete when migrating from Genero 2.10.x
to a later version.

Topics

• Application configuration
• Template and snippets
• Deprecated functions and paths

Application configuration

Add noNamespaceSchemaLocation attribute in external application
configuration file

All external application configuration files must be updated by adding the
noNamespaceSchemaLocation attribute, as described below:

The original Edit.xcf:

01 <?xml version="1.0" encoding="UTF-8"?>
02 <APPLICATION Parent="defaultgwc">
03 <EXECUTION>
04 <PATH>$(res.path.fgldir.demo)/Widgets</PATH>
05 </EXECUTION>
06 </APPLICATION>

The new Edit.xcf:

01 <?xml version="1.0" encoding="UTF-8"?>
02 <APPLICATION Parent="defaultgwc"
03 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
04
xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/2.11/cfextwa.x
sd">
05 <EXECUTION>
06 <PATH>$(res.path.fgldir.demo)/Widgets</PATH>
07 </EXECUTION>
08 </APPLICATION>

If this attribute is missing, the corresponding application will fail to start, and the following
message will be written to the log file:

Can't find 'noNamespaceSchemaLocation' attribute in external
application file '/home/f4gl/gwc/app/Edit.xcf'.

366

Output drivers for Internet Explorer

Specific output drivers DUA_AJAX_HTML and DUA_PAGE_HTML have been added to
support certain features (such as the Canvas widget) on Internet Explorer. As a result,
all customized snippets specified for DUA_AJAX will also need to be specified for
DUA_AJAX_HTML.

The original CardStep1.xcf:

01 <?xml version="1.0" encoding="UTF-8"?>
02 <APPLICATION Parent="defaultgwc"
03 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
04
xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/2.11/cfextwa.x
sd">
05 <EXECUTION>
06 <PATH>$(res.path.demo.app)/card/src</PATH>
07 <MODULE>card.42r</MODULE>
08 </EXECUTION>
09 <OUTPUT>
10 <MAP Id="DUA_AJAX">
11 <THEME>
12 <SNIPPET Id="Image"
Style="Picture">$(res.path.demo.app)/card/tpl/set1/Image.xhtml</SNIPPET
>
13 </THEME>
14 </MAP>
15 </OUTPUT>
16 </APPLICATION>

The new CardStep1.xcf:

01 <?xml version="1.0" encoding="UTF-8"?>
02 <APPLICATION Parent="defaultgwc"
03 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
04
xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/2.11/cfextwa.x
sd">
05 <EXECUTION>
06 <PATH>$(res.path.demo.app)/card/src</PATH>
07 <MODULE>card.42r</MODULE>
08 </EXECUTION>
09 <OUTPUT>
10 <MAP Id="DUA_AJAX">
11 <THEME>
12 <SNIPPET Id="Image"
Style="Picture">$(res.path.demo.app)/card/tpl/set1/Image.xhtml</SNIPPET
>
13 </THEME>
14 </MAP>
15 <MAP Id="DUA_AJAX_HTML">
16 <THEME>

Migration

367

17 <SNIPPET Id="Image"
Style="Picture">$(res.path.demo.app)/card/tpl/set1/Image.xhtml</SNIPPET
>
18 </THEME>
19 </MAP>
20 </OUTPUT>
21 </APPLICATION>

Likewise, all customized snippets specified for DUA_PAGE will also need to be specified
for DUA_PAGE_HTML.

To change output drivers default behaviours see chapter Automatic Discovery of User
Agent.

URL parameters

By default, parameters in the URL are not taken into account. They are not transmitted
to the DVM. Only the parameters defined in the configuration files are transmitted.
To use URL parameters, in the EXECUTION tag, you have to set AllowUrlParameters
to TRUE.
Caution, parameters are transmitted to the DVM in this order: configured parameters in
PARAMETERS tag followed by the URL parameters.

Template and snippets

Main template

$FGLASDIR/tpl/set1/main.xhtml has changed, mainly concerning the JavaScript part. If
you have customized this template file, it is recommended that you use the new
main.xhtml and add your modifications to it.

Style management

Styles management has changed for all the widgets. Template paths
style['allInlines4ST'] and style['allClasses4ST'] have been added. They are shortcuts to
the styles management. For more information, see the chapter on Genero Presentation
Styles

368

Deprecated functions and paths

Some functions have been renamed due to enhancements on the Front End protocol.
The default logging includes the DEPRECATED category that displays warnings. If any
deprecated functions are used, this kind of warning is logged:

[TASK=1808 VM=1860 WA=115128484 TEMPLATE] Event(Time='7.481526',
Type='Using deprecated function') /
function(Name='makescrollpagesizedid')

Deprecated template paths

• DID becomes IDID

Deprecated template functions

• makeCompoundRowSelectionDID becomes makeRowSelectionIDID
• makeScrollPageSizeDID becomes makePageSizeIDID
• makeScrollOffsetDID becomes makeScrollOffsetIDID

Migration

369

Migrating to GWC 2.10

If you have been working with the Genero Web Client prior to the release of GWC 2.10,
you will have already done some configuration and possibly customization to deliver
your Genero applications as Web applications using the initial built-in rendering engine.
While that rendering engine will continue to render your applications, all new
development and advances will be focused on the snippet-based rendering engine
introduced with GWC 2.10. It is recommended that you utilize this new rendering
engine.

Topics

• How to use the legacy built-in rendering engine
• What you should do before migrating to the snippet-based rendering engine

How to use the legacy built-in rendering engine

To deploy your application using the legacy built-in rendering engine, you need to
ensure the OUTPUT_DRIVER is set to GWC.

To run a specific application with the legacy built-in rendering engine when the
application is mapped to run with AJAX mode, you would modify the application's
configuration file to use the GWC output driver instead of the GWC2 output driver.

In the following discussion, an application's configuration is updated, causing the
application to be rendered using the legacy built-in rendering engine.

The original Edit.xcf:

01 <?xml version="1.0" encoding="UTF-8"?>
02 <APPLICATION Parent="defaultgwc">
03 <EXECUTION>
04 <PATH>$(res.path.fgldir.demo)/Widgets</PATH>
05 </EXECUTION>
06 </APPLICATION>

Notes:

1. The rendering and theme components are not explicitly defined in this application
configuration. This application therefore inherits the rendering and theme
components of the 'defaultgwc' parent application. (Line 02)

Examine the configuration for the parent application 'defaultgwc', and you see that both
the rendering and theme components are set to use GWC2 output driver and snippet-
based themes.

370

From the as.xcf (the GAS configuration file provided in GWC installation package):

01 ...
02 <!--This is the default application for GWC-->
03 <APPLICATION Id="defaultgwc" Parent="defaultwa" Abstract="TRUE">
04 <TIMEOUT Using="cpn.gwc.timeout.set1"/>
05 <PICTURE Using="cpn.gwc.picture"/>
06 <OUTPUT Rule="UseGWC">
07 <MAP Id="DUA_Symbol-WC" Allowed="TRUE">
08 <RENDERING Using="cpn.rendering.xslt"/>
09 <THEME Using="cpn.theme.default.gwc">
10 <TEMPLATE Id="_default">$(res.theme.symbol-
wc.stylesheet)</TEMPLATE>
11 </THEME>
12 </MAP>
13 <MAP Id="DUA_GWC" Allowed="TRUE">
14 <RENDERING Using="cpn.rendering.gwc"/>
15 <THEME Using="cpn.theme.default.gwc"/>
16 </MAP>
17 <MAP Id="DUA_AJAX" Allowed="TRUE">
18 <RENDERING Using="cpn.rendering.gwc2" />
19 <THEME Using="cpn.theme.ajax.gwc" />
20 </MAP>
21 <MAP Id="DUA_PAGE" Allowed="TRUE">
22 <RENDERING Using="cpn.rendering.gwc2" />
23 <THEME Using="cpn.theme.page.gwc" />
24 </MAP>
25 <MAP Id="DUA_PDA" Allowed="TRUE">
26 <RENDERING Using="cpn.rendering.gwc2" />
27 <THEME Using="cpn.theme.pda.gwc" />
28 </MAP>
29 </OUTPUT>
30 </APPLICATION>
31 ...

Notes:

1. This application is defined as an abstract application. This means its purpose or
role is to provide a baseline of configuration settings to be inherited by other
applications. (Line 03)

2. In the MAP element, the rendering and theme for the AJAX mode is explicitly
specified for this abstract application. (Lines 17 - 20)

3. For the AJAX mode, the rendering component references the GWC2 rendering
component. (Line 18)

4. For the AJAX mode, the theme specifies the snippet-based theme for AJAX
mode. (Line 19)

Modify the application's configuration to explicitly specify the legacy built-in rendering
engine, overriding the GWC2 and snippet-based theme settings inherited from the
'defaultgwc' application.

Modified Edit.xcf:

01 <?xml version="1.0" encoding="UTF-8"?>

Migration

371

02 <APPLICATION Parent="defaultgwc">
03 <EXECUTION>
04 <PATH>$(res.path.fgldir.demo)/Widgets</PATH>
05 </EXECUTION>
06 <OUTPUT Rule="UseGWC">
07 <MAP Id="DUA_AJAX" Allowed="TRUE">
08 <RENDERING Using="cpn.rendering.gwc"/>
09 <THEME Using="cpn.theme.default.gwc"/>
10 </MAP>
11 </OUTPUT>
12 </APPLICATION>

Notes:

1. An OUTPUT element is added. You need an OUTPUT element to contain a MAP
element. (Lines 06 - 11)

2. In the MAP element, the rendering and theme for the AJAX mode is explicitly
specified for this application. (Lines 07 - 10)

3. For the AJAX mode, the rendering component references the GWC rendering
component (Line 08)

4. For the AJAX mode, the theme specifies the default theme, designed to work
with the built-in rendering engine. (Line 09)

Migrating to the snippet-based rendering engine

To take full advantage of the snippet-based rendering engine, you must follow the
procedures outlined in this manual, regardless of whether or not you have previously
deployed your application using the pre-2.10 GWC.

If you have previously deployed the application with the pre-2.10 GWC, ensure you
revisit the following:

• Customization now includes presentation styles and snippet sets; previous
customization of the template files are no longer valid with the snippet-based
rendering engine. Customization previously implemented using JavaScript will
now likely be implemented using HTML.

• The limitations of the GWC prior to 2.10 included lack of accelerator key support,
StartMenus, ProgressBars, ON IDLE, StatusBars, and Genero Presentation
Styles. You may have modified your application to work around these limitations.

372

Migrating to Genero Application Server 2.00
Topics

• fglxslp migration tool
• fglxmlp XML preprocessor

fglxslp

When migrating from Genero Application Server (GAS) 1.3x to 2.00, it is necessary to
update your GAS configuration file to conform to the XML specifications of GAS 2.00. A
migration tool, fglxslp, has been added to assist you in this migration.

Usage:

$FGLASDIR/bin/fglxslp $FGLASDIR/etc/gasxcf1xxto200.xsl
$FGLASDIR/etc/as-132.xcf > $FGLASDIR/etc/myas.xcf

Notes:

• fglxslp is the migration tool.
• gasxcf1xxto200.xsl is the XSL style sheet that describes the GAS 2.00 XML

configuration file
• as-132.xcf is the configuration file to migrate (GAS 1.3x).
• myas.xcf is the result (new configuration file for GAS 2.00).

fglxmlp

The XML Preprocessor can be used as part of the BDL development process. It fetches
data in a XML resource file to “fill” the content of a source file that contains the dollar tag
expression.

Usage:

$FGLASDIR/bin/fglxmlp -i src1.4gx -o src1.4gl -r resource.xrf

Notes:

• src1.4gx is the file to be processed through the XML Preprocessor.
• src1.4gl is the output file.
• resource.xrf is the XML resource file containing the definition of a complex 4GL

record.

Migration

373

Using the XML Preprocessor

In this example, two source files will be "expanded" through the XML resource file. The
resource file contains the definition of a complex 4GL record. The extension of files to be
processed through the XML Preprocessor is .4gx. The extension for the resource file is
.xrf (XML Resource File).

 fglxmlp -i src1.4gx -o src1.4gl -r resource.xrf
 fglxmlp -i src2.4gx -o src2.4gl -r resource.xrf

The resulting.4gl files are compiled and link as usual:

 fglcomp -c src1.4gl
 fglcomp -c src2.4gl
 fgllink -o project.42r src1.42m src2.42m

Files used in the example

src1.4gx :

01 FUNCTION useRecord (myRecord)
02 DEFINE myRecord $(record)
...
06 END FUNCTION

resource.xrf :

01 <?xml version="1.0" ?>
02
03 <RESOURCE_FILE>
04 <RESOURCE_LIST>
05 <RESOURCE Name="record"><![CDATA[
06 RECORD
07 nb_columns INTEGER,
08 nb_lines INTEGER,
09 name CHAR (8)
10 END RECORD
11]]></RESOURCE>
12 </RESOURCE_LIST>
13 </RESOURCE_FILE>

The output file src1.4gl :

01 FUNCTION useRecord (myRecord)
02 DEFINE myRecord
03 RECORD
04 nb_columns INTEGER
05 nb_lines INTEGER,
06 name CHAR (8)
07 END RECORD
...
15 END FUNCTION

	Genero Application Server
	Table of Contents
	General
	Genero Application Server Overview
	GAS Deployment Architecture
	GAS Startup and Command Options
	Glossary and Acronyms

	Installation and Configuration
	Installation
	Quick Start - Adding New Applications
	Configuration of the Genero Application Server
	Automatic Discovery of User Agent (adua.xrd)
	Using the Debugger
	Validating Configuration (XCF) Files
	Licensing

	Basic Concepts
	The Application URI
	Aliases
	Authentication and the Genero Application Server
	Internationalization and GAS

	GAS Connector (Web Server)
	Configuring the GAS Connector
	Connector Configuration Reference

	GDCAX/GJC
	Adding a GDCAX or GJC Application
	How Templates Work for the GDCAX or GJC

	Web Services
	Adding a Web Service Application
	Hot Restart of Genero Web Services

	GWC Basics
	What is the Genero Web Client?
	Adding Applications
	How Browser-Based Themes, Templates, and Snippet Sets work for the GWC
	How the GWC uses Web Technologies (to deliver an application)
	Genero Web Client Application Directory Structure
	Session Variables and Cookies
	File Transfer within the GWC

	Customize the UI for the GWC
	Understanding the Snippet-Based Rendering Engine
	User Interface Customization Options
	Customize the User Interface with Genero Presentation Styles
	Customize the User Interface with Cascading Style Sheets (CSS)
	Template CSS Reference
	Customize the User Interface with Templates and Snippets
	Customize the User Interface with JavaScript
	Front End Protocol

	GWC How-to
	Tutorial - Working with the GWC
	How to Create a Breadcrumb Trail
	How to Vary the Widget Display based on a Field Attribute
	How to Relate Styles, Classes, and Selectors
	How to Display a Label as a Hyperlink

	GAS Configuration Reference
	GAS Configuration File Overview
	Resource List - Configuration Reference
	Component List - Configuration Reference
	Application Execution Component - Configuration Reference
	Application Timeout Component - Configuration Reference
	Web Application Picture Component - Configuration Reference
	Application List Reference (Defining Applications)
	Service List - Configuration Reference

	GWC Template Language Reference
	Template Language Reference for the Snippet-Based Rendering Engine
	Template Instructions
	Template Expressions
	Template Functions
	Template Paths Overview
	Template Paths - Server hierarchy
	Template Paths - Document hierarchy
	Template Paths - Application hierarchy
	Template Paths - StartMenu hierarchy
	Template Paths - TopMenu hierarchy
	Template Paths - Toolbar hierarchy
	Template Paths - Window hierarchy
	Template Paths - Layout hierarchies
	Template Paths - Widgets hierarchies

	Migration
	Migrating from GAS 2.10.x or GWC 2.10.x
	Migrating to GWC 2.10
	Migrating to Genero Application Server 2.00

