

VDT Screens and

Menus

Course Workbook
Version 5.40

Fourth Generation
FitrixTM Visual Development Tool (VDT)
Screens and Menus Course Workbook
Version 5.40

Fitrix VDT Screens and Menus Course Workbook

ii

Copyright
Copyright (c) 1988-2011 Fourth Generation Software Solutions All rights reserved No part of this publication may be repro-
duced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form by any means without
the written permission of Fourth Generation Software Solutions

Software License Notice
Your license agreement with Fourth Generation Software Solutions, which is included with the product, specifies the permitted
and prohibited uses of the product Any unauthorized duplication or use of Fitrix, in whole or in part, in print, or in any other
storage and retrieval system is forbidden

Licenses and Trademarks
Fitrix is a registered trademark of Fourth Generation Software Solutions. Informix is a registered trademark of Informix Soft-
ware, Inc. UNIX is a registered trademark of AT&T.

FITRIX MANUALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, FURTHER EXPRESS OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF
THE FITRIX MANUALS IS WITH YOU SHOULD THE FITRIX MANUALS PROVE DEFECTIVE, YOU (AND NOT
FOURTH GENERATION SOFTWARE OR ANY AUTHORIZED REPRESENTATIVE OF FOURTH GENERATION
SOFTWARE) ASSUME THE ENTIRE COST OF ALL NECESSARY SERVICING, REPAIR, OR CORRECTION IN NO
EVENT WILL FOURTH GENERATION BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING ANY LOST PROF-
ITS, LOST SAVINGS, OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF
OR INABILITY TO USE SUCH FITRIX MANUALS, EVEN IF FOURTH GENERATION OR AN AUTHORIZED REP-
RESENTATIVE OF FOURTH GENERATION HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR
FOR ANY CLAIM BY ANY OTHER PARTY IN ADDITION, FOURTH GENERATION SHALL NOT BE LIABLE FOR
ANY CLAIM ARISING OUT OF THE USE OF OR INABILITY TO USE SUCH FOURTH GENERATION SOFTWARE
OR MANUALS BASED UPON STRICT LIABILITY OR FOURTH GENERATION'S NEGLIGENCE SOME STATES DO
NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION MAY NOT APPLY TO
YOU THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS AND YOU MAY ALSO HAVE OTHER RIGHTS,
WHICH VARY FROM STATE TO STATE

Fourth Generation Software Solutions Corporate: (770) 432-7623
700 Galleria Parkway, Suite 480 Fax: (770) 432-3447
Atlanta, GA 30339 E-mail: info@fitrix.com
http://www.fitrix.com

Copyright (c) 1988-2009 - Fourth Generation Software Solutions Corporation - All rights reserved.
No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system or translated

Welcome to the Fitrix, Visual Development Tool (VDT) Screen and Menu Course
Workbook. This manual is designed for use in the Fitrix VDT Training class. We hope
that you find all of this information clear and useful.

Please keep in mind that programs created by the Visual Development Tool are graphical
programs. The Visual Development Tool itself runs only in character mode.

The programs created by the Visual Development Tool are written in FourJ’s Genero
Business Development Language. This is a fourth Generation Language and is shortened
to just 4GL in this workbook.

We hope you enjoy using our products and look forward to serving you in the future!

Fitrix VDT Screens and Menus Course Workbook

iv

Table of Contents

Chapter 1 ... 1

Using a Generated Input Program .. 1

Setting Environment Variables ... 2

Using a Generated Input Program ... 3

Using Toolbars .. 3

Menu Toolbar.. 5
Standard Toolbar ... 13
Custom Toolbar .. 16
Action Toolbar .. 16

Accessing Zooms .. 19

Using AutoZooms ... 21

Using Lookups .. 21

Section Summary .. 23

Exercise 1A ... 24

Genero Desktop Client .. 24
Check Your Current Environment Variable Settings.. 24
Set Your Environment .. 25

Exercise 1 B .. 26

List the VDT Application Code Generator Training Programs .. 26
Start scr_train 5 ... 27

Exercise 1C ... 28

Start the VDT Application Code Generator .. 28
List the Generated Files .. 28
Start the Compilation Utility ... 28
List Your Program File ... 29
Start the Input Program ... 29
Exercise 1 D .. 30
Add a Record .. 30
Find a Record .. 31
Update a Record .. 32
Browse a List of Records .. 33
Quit the Input Program and Training Program. .. 33

Chapter 2 ...34

Getting Started with the VDT Form Designer ... 34

VDT Form Designer Overview .. 35

Fitrix VDT Screens and Menus Course Workbook

 v

Starting the VDT Form Designer .. 36
Using the VDT Form Designer Pull-Down Menus .. 37

Creating a Form Image ... 38

Painting the Form Image ... 39

Defining Fields ... 40

Marking, Copying, and Pasting .. 41

Using the Clipboard .. 42

Saving a Form Image .. 42

Converting Forms into Input Programs .. 43

Section Summary .. 45

Exercise 2A ... 46

Create a Practice Directory Structure .. 46

Exercise 2B ... 48

Start the VDT Form Designer ... 48

Exercise 2C ... 49

Create Your New Form ... 49
Add Field Labels ... 50
Define Input Fields ... 51
Save the Form ... 54

Exercise 2D ... 55

Generate Source Code ... 55
Compile the Code ... 55
Run Your Customer Entry Program.. 56

Exercise 2E ... 56

Mark the Phone Number Field .. 57
Cut the Phone Number Field ... 58
Paste the Phone Number Field Back into Your Form ... 58
Use the Clipboard ... 60
Save Your Changes ... 61
Run the Customer Entry Program Again .. 61

Chapter 3 ...63

Working with the Database .. 63

Displaying the Table Information Window .. 64

Changing Database Values ... 65

Saving Database Changes ... 65

Updating the Genero Schema File .. 66

Using the AutoForm Option ... 66

Fitrix VDT Screens and Menus Course Workbook

vi

Section Summary .. 68

Exercise 3 .. 69

Start the VDT Form Designer ... 69
Create a New Form ... 69
Open the Database Option .. 70
Add the credit Table .. 71
Create an AutoForm from the credit Table ... 72
Use the Clipboard ... 72
Save, Generate, and Compile .. 73
Run Your Credit Entry Program ... 73

Chapter 4 ...75

Creating Zooms ... 75

Zoom Screen Overview .. 76

Painting a Zoom Image ... 76

Attaching the Zoom Screen .. 79

Section Summary .. 81

Exercise 4A ... 82

Start the VDT Form Designer ... 82
Add the credit_code Column to the customer Table ... 82
Update the Genero Schema File.. 83
Update the Central Database Changes Directory .. 83
Add a Credit Code Field to Your Screen .. 83
Save, Generate, and Compile .. 84
Run Your Customer Entry Program.. 85

Exercise 4B ... 86

Create a Zoom Screen ... 86
Create the Column Headings .. 86
Specify Form Defaults .. 87
Attach cred_zm to the Credit Code Field .. 87
Save, Generate, and Compile .. 88
Run Your Customer Entry Program.. 89
Add the Magnifying Glass (Zoom Indicator) to the Credit Code Field .. 89

Chapter 5 ...91

Creating Lookups .. 91

Lookup Overview ... 92

Attaching a Lookup to a Field .. 93

Section Summary .. 96

Fitrix VDT Screens and Menus Course Workbook

 vii

Exercise 5A ... 97

Check the Credit Code Value ... 97
Define the Lookup .. 97
Save, Generate, and Compile .. 98
Run Your Customer Entry Program.. 99

Exercise 5B ... 100

Save, Generate, and Compile .. 101
Run Your Customer Entry Program.. 101

Chapter 6 ...103

Input Areas and Specification Files ... 103

Input Areas Overview ... 104

Creating Form Specification (*.per) Files .. 105

Section Summary .. 108

Exercise 6 .. 110

Change the Screen Type to Header/Detail .. 110
Add the Detail Section .. 111
Define the Detail Input Area ... 112
Save, Generate, and Compile .. 113
Run Your Customer Entry Program.. 113

Chapter 7 ...115

Working with the User Control Libraries .. 115

User Control Library Overview .. 115

Creating a To-Do List ... 116

Adding Freeform Notes .. 116

Adding Help Text ... 117

Setting up Hot Keys .. 118

Defining Navigation Events .. 118

Mapping Hot Keys to Navigation Events ... 120

Section Summary .. 122

Exercise 7A ... 123

Access the Navigation Menu .. 123
Enter a Navigation Command to Check Disk Space .. 123
Run check_disk ... 124
Edit check_disk ... 124

Exercise 7B ... 125

Access the Navigation Menu .. 125

Fitrix VDT Screens and Menus Course Workbook

viii

Add an Event to Call the Credit Entry Program ... 125
Use the credit_program Event... 125

Exercise 7C ... 126

Edit Hot Keys .. 126
Enter the Navigation Event Codes .. 127
Press [CTRL]-[u] to Start the Credit Info Program .. 128
Edit a Hot Key Definition ... 128

Chapter 8 ...131

Using the VDT Application Code Generator .. 131

VDT Application Code Generator Overview ... 132

Files Created During the Development Process ... 134

Understanding Library Code and Local Code .. 135

Classifying Functions ... 136

Starting the Tools from the Command Line ... 137

VDT Form Designer Command Syntax .. 137
VDT Application Code Generator Command Syntax .. 138

Section Summary .. 139

Exercise 8A ... 140

Make a Backup Directory ... 140
Remove Everything Except Your *.per Files ... 140
Generate 4GL Code .. 141
Compile the Code ... 141
Run the Customer Entry Program ... 142

Exercise 8B ... 143

List the Files .. 143
Examine midlevel.4g1 .. 143
Examine header.4gl and detail.4g1 ... 144
Examine cred_zm.4gl ... 144

Chapter 9 ...147

Creating Triggers .. 147

Trigger Overview .. 148

Understanding the Trigger Concept .. 149

Creating Triggers .. 150

Using the Form Painter to Create a Trigger .. 150

Creating Triggers by Hand.. 152

Merging Triggers into Code.. 153

Fitrix VDT Screens and Menus Course Workbook

 ix

Section Summary .. 154

Exercise 9 .. 155

Open cust.per in the Form Painter .. 155
Create a before_input Trigger ... 155
Compile the Code ... 157
Run the Customer Entry Program ... 157
Check the before_input Trigger .. 157
Examine header.4gl ... 158

Chapter 10 ...159

Managing Screen to Table Flow .. 159

Understanding Program Data Flow .. 160

Data Flow Records .. 160

Data Flow Functions ... 162

Lowlevel Functions Used by the Data Flow ... 162

I/O Triggers... 163

Referencing Input Fields in Triggers .. 164

Common Global Variables ... 165

Using the Scratch Variable ... 165

Section Summary .. 167

Exercise 10A ... 168

Add a Trigger .. 168
Compile the Code ... 170
Run the Customer Entry Program ... 170
Test the after_field Trigger ... 170

Modify the after_field Trigger .. 171

Compile and Run .. 171
Test the after_field Trigger ... 172
Remove a Trigger ... 172
Compile and Run .. 173

Exercise 10B ... 173

Test the after_field Trigger ... 173
Create Error Text .. 174
Add a Call to fg_err in Your after_field Trigger... 175
Compile, Run, and Test .. 176

Exercise 10C ... 176

Examine the Credit Code Field ... 176
Examine the cust.trg File .. 177
Merge Your New Trigger Logic ... 178

Fitrix VDT Screens and Menus Course Workbook

x

Run the Customer Entry Program ... 178
Test your after_input Logic .. 178

Chapter 11 ...181

Screen Handling and Add-on Headers .. 181

Using Different Screen Types ... 182

Main Screens ... 182
Secondary Screens .. 182
Auxiliary Screens .. 183
Linking Different Screen Types to the Main Screen .. 183

The socketManager Function .. 184

Designing Add-On Header Screens .. 184

Building Add-On Header Screens... 185
Linking in Add-On Header Screens .. 185

Section Summary .. 188

Exercise 11 A .. 189

Run scr_demo 5 .. 189
Add a Customer .. 190

Exercise 11 B .. 190

Add a Column ... 191
Add a Field .. 191
Function of an Add-On Screen ... 192
Add a New Table .. 192
Use AutoForm ... 193
Create a New Add-On Header Form... 194
Paste in the AutoForm .. 194
Generate Code ... 195
Update Genero Schema File and Database Changes .. 195
Incorporate Your reps Add-On ... 196

Chapter 12 ...197

Working with Switchboxes ... 197

Switchbox Overview ... 198

Screen-Level Switchbox ... 198
Function-Level Switchbox .. 199

How Screens Get Into Switchbox ... 200

The switchbox_items Trigger ... 201

Section Summary .. 202

Exercise 12 .. 203

Fitrix VDT Screens and Menus Course Workbook

 xi

Examine main.4gl ... 203
Add the switchbox_items Trigger ... 204

Chapter 13 ...207

Adding Window Titles .. 207

Adding Window Titles .. 209

Section Summary .. 212

Exercise 13A ... 213

Add a Text= clause the .per files .. 213
Use fglform –m <per file name> to generate a localized string source file 213
Modify the string source file, manually entering descriptive window titles 213
Create the binary string file using the fglmkstr utility .. 213
Compile and Test the Program.. 214

Chapter 14 ...215

Creating Extension Screens .. 215

Extension Screen Overview .. 216

Attaching Extension Screens to Main Screens ... 217

Section Summary .. 220

Exercise 14 .. 221

Add the Columns .. 221
Create the Extension Screen ... 221
Save and Generate ... 222
Create an after_input Trigger .. 222

Chapter 15 ...225

Version Control and Conventions ... 225

The Directory Structure .. 226

Version Control Overview .. 227

Version Control Directories .. 227
fg.newver .. 228

Building Custom Versions .. 228

Procedures to Modify Programs ... 229

Development, Training and Production Environments ... 230

Moving Modifications to Other Environments ... 231

Table Naming Conventions .. 232

Section Summary .. 234

Fitrix VDT Screens and Menus Course Workbook

xii

Exercise 15 .. 235

Create a i_cust.4gc Directory .. 235
Copy your *.per Files .. 235
Generate and Compile ... 236
Run Your Custom Version .. 236

Chapter 16 ...237

Compiling Generated Code .. 237

Compiling Generated Code... 238

The Makefile ... 240

Library Overview .. 241

Creating Custom Libraries .. 242

Using a Custom Library .. 243

Section Summary .. 244

Exercise 16A ... 245

Create a Library Directory .. 245
Create a Custom Library Function .. 245
Add a libraries Trigger .. 246
Add a before_input Trigger .. 246
Compile the Code ... 246
Run Your Customer Entry Program.. 246

Exercise 16B ... 247

Create a cred.trg Trigger File .. 247
Add a libraries Trigger .. 247
Compile the Code ... 248
Run Your Credit Entry Program ... 248

Chapter 17 ...249

Using the Featurizer .. 249

Featurizer Overview ... 250

Block Commands .. 251

Pluggable Feature Sets .. 253

Section Summary .. 254

Exercise 17A ... 255

Build an Extension (*.ext) File ... 256
Create a base.set File ... 257
Compile the Code ... 257
Run Your Customer Entry Program.. 257

Fitrix VDT Screens and Menus Course Workbook

 xiii

Exercise 17B ... 258

Unplug warning.ext ... 258
Compile the Code ... 258
Run Your Customer Entry Program.. 258

Exercise 17C ... 258

Chapter 18 ...261

Program Events and the Customer Toolbar ... 261

Program Event Overview .. 262

External and Internal Events ... 262
Local and Global Events ... 262

Program Event and Hot Key Tables ... 263

Navigation Event Reference Table ... 263
Navigation Event Detail Table .. 264
Hot Key Definitions Reference Table ... 264
Hot Key Definitions Detail Table ... 265
on_custom_action code blocks ... 265

The at_eof Trigger .. 270

Section Summary .. 271

Exercise 18A ... 272

Change a Navigation Event .. 272
Add Code for ringMenu.4gl to an Extension File ... 273
Add Code to Add Action to Custom Toolbar ... 274
Compile and Run Customer Entry Program ... 274
Update a Record .. 274

Exercise 18B ... 275

Exercise 18C ... 276

Add an at_eof Trigger ... 276

Chapter 19 ...278

Getting Started with FitrixVisual Menus .. 278

Benefits of Fitrix Visual Menus .. 279

Menu Structure ... 280

Running Visual Menus in Edit Mode ... 280

Menu Item Table - cgsmnitm .. 283
Menu Command Table - cgsmncmd ... 284
Menu Security Table – cgsmnsec ... 285
Menu item instruction commands – cgsmncmd.cmd .. 285

Fitrix VDT Screens and Menus Course Workbook

xiv

Menu Structure in cgsmnitm and cgsmncmd .. 290
Saving Customized Menu Data... 291

Section Summary .. 292

Exercise 19 .. 293

Run Your Menu Options ... 294
Save Your Custom Menu Options in $fg/data/sql.4gc.. 295

Chapter 20 ...299

Security ... 299

Security Overview .. 300

Security Programs ... 301

Determining Precedence ... 302

Overlapping Group Permissions ... 302

Running the Security Programs .. 303

Module and Program Information... 303
Adding Custom Programs to Module and Program Information .. 304

Security Events ... 305

Adding Custom Events to Security Events ... 306
Security Groups .. 307
User and Group Permissions ... 308
Setting Individual User Permissions ... 309
Setting Group Permissions .. 311
Setting Defaults Permission .. 312
Group Security Control ... 313
Fitrix Visual Menus Security .. 315

Section Summary .. 318

Exercise 20A ... 319

Start the Module Information Program ... 319
Start the User Permissions Program.. 320
Start Your Customer Entry Program ... 321

Exercise 20B ... 322

Enter Edit Mode .. 322

 Getting Started with the Form Painter 1

Chapter 1
Using a Generated Input

Program
Main topics:

• Setting Environment Variables

• Using a Generated Input Program

• Using Toolbars

• Accessing Zooms

• Using AutoZooms

• Using Lookups

Fitrix VDT Screens and Menus Course Workbook

2 Getting Started with the Form Painter

Setting Environment Variables
In order to create and run programs with Screen, you must set certain Linux environment
variables and export them. These variables are set and exported by the startup script that
is executed when you login using the click the Fitrix Icon on your desktop.

1. The $fg variable should point to the directory where your Screen product is installed. For ex-
ample, the following command sets $fg to the /fitrix/fx_dev directory:

fg=/fitrix/fx_dev ; export fg

2. The $INFORMIXDIR variable should point to your informix directory. For example, the
following command sets $ INFORMIXDIR to the /usr/informix directory:

INFORMIXDIR=/usr/informix; export INFORMIXDIR

3. The $PATH variable should include both $fgtooldir/bin and $INFORMIXDIR/bin
directories:

$fgtooldir/bin

$INFORKIXDIR/bin

4. The $DBPATH variable must include two additional $fg directories:

$fgtooldir/lib/forms

$fgtooldir/codegen/data

5. The $FGLDBPATH variable should point to where you keep the database schema files. For
example,

$FGLDBPATH=$fg/data; export $FGLDBPATH

 Fitrix VDT Screens and Menus Course Workbook

 Getting Started with the Form Painter 3

Using a Generated Input Program
Fitrix VDT Application Code Generator lets you create sophisticated input programs. The
following figure illustrates an input program built by VDT Application Code Generator.

All input programs contain a toolbar interface located at the top of the window.

Using the Top Menu and Toolbars
You use the tool bars to tell the program what commands to perform. For example, you
can tell the program to access help, add a record, delete a record, or exit a program.

There are three toolbars in the Fitrix generated programs and some may contain a fourth
toolbar. The options available on each toolbar may vary depending upon what type of in-
put program you are in and whether you are in update or view mode.

You can create

sophisticated in-

put programs

with Fitrix VDT

Application Code

Generator.

Fitrix VDT Screens and Menus Course Workbook

4 Getting Started with the Form Painter

Note

To enable/disable the text that displays beneath each icon, right click at the beginning of the tool-
bar and select enable text from this drop down list.

Note

To move the position of the toolbar, left click at the beginning of the toolbar and drag the toolbar
to the desired position on the screen. You may do this if you prefer to have the toolbars positioned
on the side or bottom of the screen rather than at the top of the screen.

 Fitrix VDT Screens and Menus Course Workbook

 Getting Started with the Form Painter 5

Top Menu
This is the top most menu on the screen and contains the following options, some of
which are not available depending upon the type of screen program you are in and
whether or not you are in update mode. If an option is unavailable for use it is grayed out.

File:

Print screen - to print the screen you must type Ctrl Alt P. You can also print the screen
by clicking on the top left corner of the screen. If you do this a drop down list displays:

Configure - there are two options:

Fonts - displays instructions on how to change your font size.

Color - if you are in a program, this option is not functional. To change your color
scheme you must be on the main system menu, click execute on the toolbar, and then
click configuration. The color configuration manager is described in more detail in the
Visual Development Tools Technical Guide.

Edit :

Fitrix VDT Screens and Menus Course Workbook

6 Getting Started with the Form Painter

Undo Typing- displays instructions on how to undo typing which is done by right click-
ing on the field and then selecting Undo Typing.

Redo Typing - displays instructions on how to undo typing which is done by right click-
ing on the field and then selecting Redo Typing.

OK - exits update mode and saves any changes you made to the data.

Cancel - exits update mode and does not save any changes you made to the data.

Cut - used to cut text. You can also press Ctrl X.

Copy - used to copy text. You can also press Ctrl C.

Paste - used to paste text. You can also press Ctrl V.

Zoom - if the cursor is in a zoom field (a zoom field is any field that has the magnifying
glass icon), selecting this options will display the zoom screen. You can also press Ctrl Z

Find Record - this option will put you in find mode so that you may search for data.

View:

Browse - displays a summary list of selected data. For example, if you do a Find and find all cus-
tomer records and then select browse, this browse screen displays:

 Fitrix VDT Screens and Menus Course Workbook

 Getting Started with the Form Painter 7

Notes - this option displays any notes that have been entered in view mode. If a record
does have notes attached to it the word Notes will display in the bottom left hand corner
of the screen.

User Defined Fields - this option displays the user defined fields that you have defined in update
mode.

Personal To Do List - this optional displays your personal to do list in view mode.

Fitrix VDT Screens and Menus Course Workbook

8 Getting Started with the Form Painter

Navigation:

Next Record - if you have selected a group of records, clicking on this option (or press-
ing N) will move you to the next record.

Previous Record - if you have selected a group of records, clicking on this option (or
pressing P) will move you to the previous record.

Next Array Row - moves the cursor down one row.

Previous Array Row - moves the cursor up one row.

Switch Between Header And Detail - moves cursor between header and detail sections
of the screen.

First Detail Row - moves to the first detail row.

Page Down Detail Row - moves the cursor down a page of rows at a time.

Page Up Detail Rows - moves the cursor up a page of rows at a time.

 Fitrix VDT Screens and Menus Course Workbook

 Getting Started with the Form Painter 9

Last Detail Row - moves to the last detail row.

Insert Detail Row - inserts a detail row if the program allows insertion of a row (F1 also
does this).

Delete Detail Row - deletes a detail row if the program allows deletion of a row (F2 also
does this).

Tools:

Hot Key Definitions - this option displays a list of hot key definitions. A hotkey is a key
that has a navigation event attached to it. An example is of pressing Ctrl N launches the
notes screen program. For more information on hotkeys and navigation events, see Chap-
ter 2 in the Fitrix Enhancement Toolkit Technical Reference.

Navigation Event - this option displays a list of navigation events. A navigation event is
a short cut that allows you to launch other programs from within a program. An example
of one is the ability to launch the Update Ship-to program when in the Update Customer
Information program.

Fitrix VDT Screens and Menus Course Workbook

10 Getting Started with the Form Painter

Feature Request - this option launches a screen program where you can enter any pro-
gram features you need. This information is then logged in the errlog file so your system
administrator can review it and make the requested changes.

Actions:

This drop down list contains the same actions as found on the action toolbar. Please see
the discussion regarding the action toolbar below.

Options:

Any programs accessible from within a program can be accessed via the Options drop
down list. A good example of this is the Customer Activity screen program that can be
accessed from the Update Customer Information program. These programs are also ac-
cessible from the Custom toolbar.

 Fitrix VDT Screens and Menus Course Workbook

 Getting Started with the Form Painter 11

Help:

Application Help- this option displays information about the program you are using and,
when in update mode, about the current field on the screen in which the cursor is located.

Fitrix VDT Screens and Menus Course Workbook

12 Getting Started with the Form Painter

Note

The text can be edited to fit your specific business rules by clicking edit, and then update on the
toolbar on this screen, or pressing U.

Technical Status - this option displays technical status of the program such as the pro-
gram name. This is useful in the event you are having problems with a program and need
to obtain the program name.

About Application Program - this option displays copyright information about the pro-
gram.

 Fitrix VDT Screens and Menus Course Workbook

 Getting Started with the Form Painter 13

About Fitrix For Genero - this options display version information and also a link to the
website for Fourth Generation.

Main Toolbar
The next toolbar on the screen is called the Main ToolBar.

Note

If you want to enable text so that each icon on this toolbar has a label, right click at the beginning
of the toolbar and then click Enable Text.

Fitrix VDT Screens and Menus Course Workbook

14 Getting Started with the Form Painter

Just like with the Menus toolbar, if the option is not available for use it is grayed out. In the example be-
low, the OK, Cancel, Cut, Copy, and Paste options are not available unless in update mode.

Quit - exits the program.

Print - displays information on how to print the screen (Ctrl Alt P).

OK - exits update mode and saves any changes you made to the data.

Cancel - exits update mode and doe not save any changes you made to the data.

Cut - used to cut text. Same functionality as Ctrl X.

Copy - used to copy text. Same functionality as Ctrl C.

Paste - used to paste text. Same functionality as Ctrl V.

Zoom - if the cursor is in a zoom field (a zoom field is any field that has the magnifying
glass icon), selecting this options will display the drill down zoom screen.

Notes - this option displays any notes that have been entered in view mode. If a record
does have notes attached to it the word Notes will display in the bottom left hand corner
of the screen.

User Defined Fields - this option displays the user defined fields that you have defined
in update mode.

 Fitrix VDT Screens and Menus Course Workbook

 Getting Started with the Form Painter 15

Personal To Do List - this option displays your personal to do list in view mode.

View Detail - allows you to navigate to the detail section of the screen in view only
mode.

Next Page - moves the cursor down a page of rows at a time.

Previous Page - moves the cursor down a page of rows at a time.

Insert Detail Row - inserts a detail row if the program allows insertion of a row (F1 also
does this).

Delete Detail Row - deletes a detail row if the program allows deletion of a row (F2 also
does this).

Help - this option displays information about the program you are using and, when in up-
date mode, about the field on the screen you are in.

Note

The text can be edited to fit your specific business rules by clicking edit, and then update on the
toolbar on this screen, or pressing U.

Technical Status - this option displays technical status of the program such as the pro-
gram name. This is useful if you are troubleshooting a program and need the program
name.

Fitrix VDT Screens and Menus Course Workbook

16 Getting Started with the Form Painter

Custom Toolbar
The Custom toolbar is an optional third toolbar on the screen. It will only be found in
programs where custom actions have been added to the main screen to launch navigation
events. Setting up this toolbar is covered later on in this class. In the example below
there are four navigation events set up in the Update Vendor Information screen program
so that you can access Vendor Pay-to information, Vendor Invoice and Payment Activity,
run an AP Aging, enter new Payment Terms, and when in update mode set the method of
delivery for Vendor Purchase Orders.

Ring Menu Toolbar
The last toolbar on the menu is the Ring Menu toolbar, and is used to search for rows in
the associated table, and navigate or work with rows. The options are selected by either
clicking on them with the mouse or pressing the first letter of the option name (Example:
F for Find).

Find - In order to view, modify, or delete a record, you must first retrieve it. Use the Find
command to retrieve one or more records.

After selecting Find from the menu, a Query-by-Example (QBE) screen displays, and
your cursor moves into the first field in the screen. A QBE screen lets you query (search)
the records in the database by entering data in a template that resembles the data-entry

 Fitrix VDT Screens and Menus Course Workbook

 Getting Started with the Form Painter 17

screen. Once you have filled in the QBE screen with the data you want to use for your
search as specified below, click OK, or press Enter, to execute the search. The system
will retrieve all of the records or transactions that match the data you entered.

There are three different ways to find:

All of the records - simply click OK, or press Enter, without entering any data into the
QBE screen. The system will retrieve all of the records for that program.

A particular record , enter a piece of information which is unique to the record you are
looking for. For example, if you are searching for a particular invoice, you might enter
the customer code, or the customer's name and the invoice number. The system will re-
trieve the record which contains this unique information.

A group of records, enter search criteria into the QBE screen. Search criteria is any in-
formation which you want the records to match. For example, if you want to find all cus-
tomers whose names begin with the letter A, enter "A*" in the business name field. You
can enter search criteria in more than one field to further limit the search if you desire.
For instance, if you want to find the employee records for all hourly employees who live
in Texas, enter the code for hourly employee in the Employee Type field and Texas in the
State field. This will retrieve all records which match both search criteria.

Using a combination of search criteria is a very powerful way to manage large amounts
of information because it allows you to retrieve only the records you want to see. If you
are executing a large query that you find is taking several minutes, you can press [ESC]
to halt the search in progress. The system will display the records that were retrieved up
to the point at which you halted the search.

If your search finds one record, that record is displayed on the screen. If your search re-
sults in more than one record, the first record is displayed. Notice that a message appears
at the bottom of the screen like 1 of n. The first number indicates the position in the stack
of the records you are viewing; n is the total number of records retrieved by the search.
Use the Next, Previous, and Browse commands (discussed below) to display the records
on the screen.

Next and Prev (Previous) - Once you have retrieved a group of records using the Find
command, use Next and Prev to page through them. Next displays the next record; Prev
displays the previous record. When you reach the last record (ie- record 10 of 10), Next
will take you to the first record. When you are on the first record, Prev will display the
last record. The record added most recently is always the last record so to quickly find the
last record added, simply use Find to retrieve all records and then select Prev. You can al-
so press N and P.

Add - Use Add to add a new record or transaction in the program you are running. A
blank data-entry screen appears with the cursor in the first data-entry field. Move through

Fitrix VDT Screens and Menus Course Workbook

18 Getting Started with the Form Painter

the fields on the screen by pressing [TAB]. For more information on entering data into
data-entry screens, see "Features Common to All Screens" Chapter 4.

Once you finish entering information, save the new record or transaction by clicking OK,
or pressing Enter. If you decide you do not want to add the record, abandon your changes
by pressing [ESC] or clicking cancel.

Update - Update is used to modify data in existing records. Once you have located the
document you wish to modify with Find and Next/Prev or Browse, use Update to modify
the record. The cursor moves to the first input field on the screen. Move through the
fields on the screen by pressing [TAB] making changes or additions to the data as re-
quired. Notice how the comment line at the bottom of the screen changes to correspond
with the field where the cursor rests. Three keystroke combinations-[CTRL]-[a], [CTRL]-
[x], and [CTRL]-[d]- are available for you to insert and delete data while you update the
record. Click OK, or Press Enter, to store your changes. Click Cancel or press [ESC] to
abandon your changes and restore the document.

Delete - Use Delete to remove records from the system. You must first use Find to re-
trieve a record in order to delete it. After selecting Delete, you are prompted to verify de-
letion of the record or transaction to avoid accidentally deleting data.

Browse - Browse lists information about several records at once. The Browse list dis-
plays a single line of information for each found record. You can scroll or page through
the list and select the desired record to be displayed on the screen. Browse is more effi-
cient than Next and Previous when you have retrieved a large number of records. Each
Browse screen is slightly different, to accommodate the information it displays, but they
all operate in the same manner.

 Fitrix VDT Screens and Menus Course Workbook

 Getting Started with the Form Painter 19

The commands on the Browse menu are:

Next and Prev - move the highlight to the next or previous record in the array. The array
is not continuous; that is, you cannot move backwards past the first record or forward
beyond the last record.

Up and Down - page backward and forward through the records one browse page at a
time using the up and down arrow icons.

Options - with the icon, you access extra options which may be available in cer-
tain programs. When you select the Options command, a drop down list displays addi-
tional options available for that particular program. Setting up additional options is cov-
ered later in this class.

Accessing Zooms
Zooms help the user enter data. When entering values in fields, the user can sometimes
Zoom into a list of valid values for that field and select one. Users invoke Zooms by
pressing [CTRL]-[z] in a field or clicking the magnifying glass icon. Not all fields have
Zooms attached to them.

Fitrix VDT Screens and Menus Course Workbook

20 Getting Started with the Form Painter

Zooms also use filters before returning values. If there are many valid values that can go
into a field, Zooms, by default, may first display a selection criteria screen. The selection
criteria screen allows users to limit which values the Zoom returns.

Zoom help users en-

ter valid values.

In this example, the

user initiates a

Zoom from the

Customer No. field.

Zooms can filter

values before they

are returned.

In this example, the

user wants to see a

list of companies

that begin with the

letter A.

 Fitrix VDT Screens and Menus Course Workbook

 Getting Started with the Form Painter 21

Using AutoZooms
You can also invoke a Zoom without pressing [CTRL]-[z] or clicking the magnifying
glass icon. If you place an asterisk in a field and press [TAB], the Zoom is performed for
you. You can combine the asterisk with letters to filter the Zoom.

Using Lookups
When a user enters a value in a field, Lookups can be defined to display related data into
adjacent fields. Lookups also ensure that the user only enters valid values into a field.

AutoZooms let you

enter selection cri-

teria directly into a

field.

In this example, the

AutoZoom returns

values that begin

with H.

Fitrix VDT Screens and Menus Course Workbook

22 Getting Started with the Form Painter

Lookups display re-

lated data into adja-

cent fields.

In this example, the

Lookup displayed

values for the Con-

tact Name, Compa-

ny Name, Address,

City/St/Zip, and Tel-

ephone fields. This

Lookup is based on

the Customer No.

field.

 Fitrix VDT Screens and Menus Course Workbook

 Getting Started with the Form Painter 23

Section Summary
� In order to create and run Input programs, you must set certain LINUX environment variables and ex-

port them. These variables are set for you via the startup script.

� Using Fitrix VDT Application Code Generator, you can create sophisticated input programs.

� The topmost portion of an input program is known as the Toolbar Area. The Toolbar area can contain as
many as 4 Toolbars – Top Menu, Main, Custom (optional or custom) and Ring Menu Toolbars.

� Input programs may use zoom screens to assist in data entry. Zooms perform data selection and valida-
tion tasks.

� You can access a Zoom by pressing [CTRL]-[z] or clicking the magnifying glass icon.

� AutoZooms let you place selection criteria directly into an input field.

� Lookups diplay related data into adjacent fields. For example, when a user enters a number into the Cus-
tomer No. field, the Contact Name, Company Name, Address, City/St./Zip, and Telephone fields get
filled automatically.

Fitrix VDT Screens and Menus Course Workbook

24 Getting Started with the Form Painter

Exercise 1A
Objective: To set up your development environment.

Genero Desktop Client
For all the exercises in this book, you should be using the Genero Desktop Client (GDC).
You do this by logging into Fitrix by clicking the Fitrix Icon on your desktop:

Once you are logged in, you are presented with the application menus. To get to the Li-

nux prompt, click the terminal screen icon on Toolbar at the top of the window.

Check Your Current Environment Variable Settings
The env command displays current environment variable settings.

• At the LINUX prompt, enter:

env

Use the env command to see what values the following environment variables contain:

fg

INFORMIXDIR

PATH

DBPATH

FGLDBPATH

To show the value in a single environment variable, you can use the echo command.

• At the LINUX prompt, type:

echo $fg

 Fitrix VDT Screens and Menus Course Workbook

 Getting Started with the Form Painter 25

Set Your Environment
Each of the environment variables shown on the previous page must point to a specific
directory, depending upon how your system is set up. Here is a rundown of the correct
variable settings:

fg
This variable should point to the directory where the
Fitrix application is installed. For example:
/fitrix/fx_dev.

fgtooldir
This variable should point to the directory where the
VDT Application Code Generator product is in-
stalled. For example, $fg=/fitrix/fx_tools.

INFORMIXDIR
This variable should point to the directory where
your Informix product is installed. For example,
$INFORMIXDIR=/usr/informix.

PATH

This variable should contain both the $fg/bin and
$INFORMIXDIR/bin directories.

DBPATH

This variable should contain $fgtool-

dir/lib/forms and $fgtooldir/codegen /data.

FGLDBPATH
This variable should point to where the generro
schema definitions are kept. For example,
/ftirix/fx_dev/data.

DBNAME
The DBNAME variable is used by the fg.screen and
fg.form development scripts. The DBNAME varia-
ble, while not required if you are using the ‘standard’
database. it is very useful if you are not. The variable
should contain the name of the database you are us-
ing for development.

Fitrix VDT Screens and Menus Course Workbook

26 Getting Started with the Form Painter

Note

The dollar sign ($) before the environment variable indicates that you want to display the value
contained within the variable.

You must issue two commands to set an environment variable. First enter the variable
name followed by an equals sign and the value the variable should contain. Second, "ex-
port" the variable. Please substitute the name of your database that your instruction gives
you below for ‘student1’ . To set the $DBNAME variable.

 At the Linux prompt, type:

 DBNAME=student1 ; export DBNAME

Use the echo command again to check the variable:

At the prompt, type:

 echo $DBNAME

You need to set the DBNAME variable to the name of your student database for all of the
exercises in this workbook.

Exercise 1 B
Objective: To become familiar with the VDT Application Code Generator demo pro-
grams.

List the VDT Application Code Generator Training
Programs

At the LINUX prompt, type:

scr_train

The following list appears:

 Fitrix VDT Screens and Menus Course Workbook

 Getting Started with the Form Painter 27

Start scr_train 5
At the LINUX prompt, type:

scr_train 5

When you start scr_train 5 , the following message appears:

In addition, your prompt changes to reflect the demo program:

Training 5 ->

The VDT training program (scr_train) gives you a fresh set of form specification (*.per),
trigger (*.trg) extension (*.ext), and feature set (*.set) files each time you run it. These
files supply the VDT Application Code Generator with instructions for building an input
program.

Note

Some VDT Training programs contain all of these files while others only contain form specifica-
tion (*.per) files. At this point, you do not have to know or understand what these files do. Just
realize that they are used by VDT Application Code Generator to create an input program.

Also realize that each time you run a training program, you receive a fresh set of files. Because of
this fact, do not be afraid to ''break'' the program. If a file is corrupted, just start over.

Once you receive the Training prompt, you can use the VDT Application Code Generator
to build and run an input program. In general, the following steps are required:

1. Run the VDT Application Code Generator to create source code.

2. Execute the fg.make command, the compilation program to compile the source code
and build a runnable program file.

3. Execute fglrun , to run the resulting program file.

Fitrix VDT Screens and Menus Course Workbook

28 Getting Started with the Form Painter

Exercise 1C
Objective: To convert the initial scr_train 5 files into a program.

Start the VDT Application Code Generator
• At the Training prompt, enter:

fg.screen

This command starts the VDT Application Code Generator, which reads the form specifi-
cation (*.per) files in the training directory and creates 4GL source code based on these
files. As the VDT Application Code Generator works, multiple lines of code scroll past
your screen.

List the Generated Files
When the VDT Application Code Generator finishes creating code, the Training prompt
reappears. You can use the 1s command to see a listing of the files the VDT Application
Code Generator creates.

• At the Screen Demo prompt, type:

1s

The following list of files appears:

As you can see the Screen Code Generator creates several source code (*.4g1) files. From
these files, the compilation utility (fg.make) builds a runnable program file.

After you use the VDT Application Code Generator to create 4GL source code, you can
use the fg.make command to compile the source code and build a runnable program file.

Start the Compilation Utility
• At the Training prompt, enter:

fg.make

 Fitrix VDT Screens and Menus Course Workbook

 Getting Started with the Form Painter 29

This command performs several tasks, most of which are described in later chapters. For
now, you should simply realize that it builds a runnable program file.

List Your Program File

When the fg.make command finishes, the Training prompt reappears. Again, you can
use the 1s command to display the files created by fg.make . You should see screen5.42r
program file.

• At the Screen Demo prompt, type:

1s

In the file listing, you should have a screen5.42r file.

Start the Input Program
Start the program:

fglrun screen5.42r

The screen 5 input program begins:

This figure shows

the main screen of

scr_train 5.

Fitrix VDT Screens and Menus Course Workbook

30 Getting Started with the Form Painter

Exercise 1 D
Objective: To become familiar with the input program functionality.

Add a Record

1. Click the Add Button on the Ring Menu Toolbar.

A screen to enter a new record is displayed and focus moves to the first field:

On some fields, the magnifying glass appears. The magnifying glass indicates that a ref-
erence table exists for the field. You can press [CTRL]-[z] to open the reference table or
click the magnifying glass. Then select a value for the field.

Fill in the input fields in the header portion of the window, pressing [TAB] to move from
field to field.

To move to the detail portion of the window, click the button or press [CTRL-
TAB]. Use the [TAB] key to move from field to field in the detail portion of the window.

Press [Enter] to store the record.

 Fitrix VDT Screens and Menus Course Workbook

 Getting Started with the Form Painter 31

Find a Record
The Find command lets you select a single record, a group of related records, or all the
available records.

2. Click the Find button on the Ring Menu Toolbar or press F.

A blank record appears and the focus moves to the first field:

3. Press [Enter].

All the records in your database table get returned. The first record appears in your main win-
dow, and a count of the total records selected displays at the bottom of the form on the status

line. You can use and buttons to scroll through the entire list.

To limit a Find to a single record or a group of related records, you can enter selection criteria in
the fields. This ability is known as Query-By-Example (QBE). For instance, to select all the
records that have order dates greater than 04/1/09:

4. Click the Find button.

Fitrix VDT Screens and Menus Course Workbook

32 Getting Started with the Form Painter

5. Click in the Order Date field and enter:

> 04/01/86

6. Press [Enter].

All the records older than 04/01/09 are returned. Again you can use Next and Prey buttons to
scroll through the list of records.

Update a Record
The Update command lets you alter the values in a record.

1. Use Find to select the record you want to update.

2. Select Update by clicking or by pressing the ‘u’ key.

Your focus moves to the first input field, Customer No.

3. Move to the field that you want to change and change its value.

4. Press [Enter] to store your change.

 Fitrix VDT Screens and Menus Course Workbook

 Getting Started with the Form Painter 33

Browse a List of Records
The Browse function lets you view a list of selected records in line-by-line format.

1. Use the Find button to select a group of records.

2. Click the Browse button from the Action Toolbar or press the ‘b’ key.

A secondary window appears showing the selected records in a line-by-line format:

3. Use buttons on the browse window toolbar to select a record. Select a record by double
clicking it or pressing [Ener].

Quit the Input Program and Training Program.

When you are finished exploring the input program, Click the Quit button on the
Main Toolbar. The Quit returns you to the Training prompt.

1. At the Training prompt, type [CTRL]-[d] or enter:

exit

2. Type [CTRL]-[d] or enter:

exit

You are returned to Fitrix visual menus.

Fitrix VDT Screens and Menus Course Workbook

34 Getting Started with the Form Painter

Chapter 2
Getting Started with the

VDT Form Designer
Main topics:

� VDT Form Designer Overview

� Starting the VDT Form Designer

� Using the VDT Form Designer Pull-Down Menus

� Creating a Form Image

� Converting Forms into Input Programs

 Fitrix VDT Screens and Menus Course Workbook

 Getting Started with the Form Painter 35

VDT Form Designer Overview
The VDT Form Designer lets you develop complete data-entry programs written in
FourJ’s Genero Business Development Language. FourJ’s Genero Business Development
Language is a fourth generation language and referred to as 4GL in the rest of this work-
book.

The VDT Form Designer is an interactive utility featuring a full screen editor, a database
administration facility, and a screen enhancement builder. The VDT Form Designer acts
as the control center for running the VDT Application Code Generator and compilation
utility. From within the VDT Form Designer you can:

• Paint a form image, which can be directly converted into an input program.

• Access the database to add, delete, and update tables and columns.

• Store form image information in ASCII files (form specification *.per files), which are
compliant with FourJ’s Perform format and easily moved to other systems.

• Create custom program events that are called from logical trigger points within the gen-
erated code.

• Copy and move any element of the form image.

• Store form image blocks on a Clipboard.

• Define data-entry areas and how they join with other data entry areas.

• Define how forms work with other forms.

• Specify the order in which input fields are processed on the form.

• Generate default form images with the AutoForm feature.

• Access other programs and tools on the system without leaving the VDT Form Designer.

Fitrix VDT Screens and Menus Course Workbook

36 Getting Started with the Form Painter

Starting the VDT Form Designer
You can start the VDT Form Designer using the fg.form command. This command has
the following syntax:

fg.form -dbname database

Where database is the name of the database you want to use.

After you type this command, the VDT Form Designer loads and displays the following
window to your screen:

You should always navigate to the directory in which you want to read and write form
specification (*.per) files, before starting the VDT Form Designer.

The VDT Form Designer consists of two sections: the pull-down menus and the Form
Editor.

The VDT Form De-

signer consists of

two sections: the

pull-down menus

and the Form Edi-

tor.

 Fitrix VDT Screens and Menus Course Workbook

 Getting Started with the Form Painter 37

Using the VDT Form Designer Pull-Down Menus
The VDT Form Designer contains five pull-down menus.

You can open a pull-down menu by highlighting it and pressing [ENTER). You can also
open a pull-down menu by typing the first character of the menu name (e.g., type F to
open the File pull-down menu). Each pull-down menu contains a number of menu op-
tions. You select a menu option by highlighting it and pressing [ENTER]

Options preceded by an exclamation point (!) are not available. Options followed by
greater-than signs (») open another menu with additional options. Options followed by an
ellipsis (...) open a subsequent window.

The VDT Form De-

signer contains

five pull-down

menus.

You can open a pull-

down menu by hig-

hlighting it and

pressing [ENTER].

You can also open a

pull-down menu by

typing the first cha-

racter of the menu

name (e.g., type F to

open the File pull-

down menu).

Fitrix VDT Screens and Menus Course Workbook

38 Getting Started with the Form Painter

Creating a Form Image
The VDT Form Designer lets you paint form images. You can use the VDT Form De-
signer to create a new form image or you can open existing form images. A form image
graphically represents how your form will look and work once it is built. You paint and
edit form images from within the Form Editor. The general steps for creating a new form
image are as follows:

1. Select New from the File pull-down menu.

2. Enter a name for the new form.

3. Select the screen type you want to use.

In all there are ten screen types you can build. Your main screen is either a header or
header/detail screen. The other screens act as secondary screens, some of which you can
connect to the main screen (see “Using Different Screen Types” on page 182).

Screen Type Function

header Writes to a single database table.

header/detail Writes to a header table and a detail table.

add-on header Writes to a peripheral table from the main screen.

add-on detail Writes to an additional scrolling detail table from
the main screen.

extension Writes to additional columns within the main
header table.

zoom Selects valid values for an input field.

browse Lists documents in a line-by-line format.

query Generates a selection prompt for use with report
programs.

view-header Allows you to view data from a peripheral header
table.

view-detail Allows you to view data from a subsequent scrol-
ling detail table.

 Fitrix VDT Screens and Menus Course Workbook

 Getting Started with the Form Painter 39

Painting the Form Image
Once you load a form into the Form Editor, you can start painting the form image. Form
images contain both text and input field definitions. The Form Editor provides several
editing keys.

Keystroke Use

[CTRL]-[a] Toggles between insert and overstrike mode.

[CTRL]-[x] Deletes a character.

[CTRL]-[d] Deletes to the end of a line.

[CTRL]-[u] Undoes an edit.

[CTRL]-[v] Marks and cuts a text block to the Clipboard (see “Using the Clip-
board” on page 42).

[CTRL]-[t] Cuts a text block and places it on the Clipboard.

[CTRL]-[p] Pastes a text block.

[F1] Inserts a blank line above current line.

[F2] Deletes current line.

[ENTER] Moves cursor to start of next line.

[HOME] Moves cursor to top left comer of form.

[Defines a new field.

] Lengthens an existing field.

[ESC] Toggles between pull-down menus and Form Editor:

[DEL] Returns to pull-down menus.

Fitrix VDT Screens and Menus Course Workbook

40 Getting Started with the Form Painter

Defining Fields
When painting the form image, you enter field labels and field attributes. You define a
field in the Form Editor by pressing the left bracket ([) key. This causes the Define Fields
window to appear.

In the Define Fields window you specify the attributes of the field. The attributes are ar-
ranged in the window so that the most important and least modified values are supplied
first.

Most important are the Table Name and Column Name fields. You can enter values into
these two fields directly or use Zoom to select from a list of available values.

The Field Type column is automatically filled in when you enter a valid column name in
the Column Name field. You cannot modify the Field Type field because it relates to the
column as defined in the database. If you specify Table Name as formonly, you are able
to specify a value in the Field Type column.

The Input Area field specifies whether the field is on the header (1) or detail (2) part of
the form.

The Entry? field is a YIN field that determines whether the field is for display purposes
only or if it accepts input from the user.

The Message field stores a descriptive line that is displayed when the user positions the
cursor in the field.

You define fields

and set field

attributes in the

Define Fields win-

dow. When you

press the left brack-

et key from within

the Form Editor, the

Define Fields win-

dow appears.

 Fitrix VDT Screens and Menus Course Workbook

 Getting Started with the Form Painter 41

In the Picture field, you can add a character pattern for displaying the data. For example,
area code and phone number fields might display use (###) ###-#### as their character
pattern.

The Display Fmt field serves as a hybrid attribute for FORMAT and DISPLAY LIKE
attributes, which are mutually exclusive. Refer to your Genero Business Development
manuals for more information on these attributes.

The Validate field is similar to Display Fmt. It covers the INCLUDE and VALIDATE
LIKE attributes. These attributes are also mutually exclusive. Again, refer to your Genero
Business Development manuals for more information on these attributes.

The Default field lets you set a default value to appear in the field. The user can change
default field values.

The Translate field lets you indicate which language you want to use to display data for
this field. If specified, translation logic is generated for this field.

The Calendar field lets you specify that you want a calendar to be accessible when enter-
ing data for a date field

The Zoom field lets you specify that a zoom window will be accessible for this data entry
field. This causes the magnifying glass to display to the right if the entry field at runtime.

The remaining fields are Y IN fields. You can experiment with these fields to see how
they affect your input field.

Marking, Copying, and Pasting
When painting your form image, you can cut and paste fields and text. Copying consists
of marking a block of text using the arrow keys and selecting the Copy option from the
Edit pull-down menu. Once copied, you can paste the text block anywhere in your form
image.

To mark and copy a text block:

1. Position the cursor at one comer of the block of text you want to cut.

2. Press [CTRL]-[v] to start the Mark feature.

3. Use the arrow keys to highlight the entire block of text you want to mark.

As you move the cursor, the text you mark appears in reverse video.

4. When you finish marking the entire block, press [CTRL]-[v] to copy the text block to the
Clipboard.

To paste a text block back onto your form image:

Fitrix VDT Screens and Menus Course Workbook

42 Getting Started with the Form Painter

1. Position the cursor on the form image where you want the block to appear.

2. Press [CTRL]-[p] to paste the block from the Clipboard to the form image.

3. Use the arrow keys to adjust where you want the block to stick.

You can move the entire text block to any location on your form image before you stick it
to the image.

4. Press [ESC] to stick the block to your form image.

In a similar fashion, you can cut a block of text from your form image. Mark the block
you want to cut as described above. Once you mark the text block, press [CTRL]-[t] to
cut it. You can also paste a cut block back onto your form image in the same manner as
described above.

Using the Clipboard
The Clipboard acts as a temporary storage place for text blocks. You can place anything
onto the Clipboard and retrieve it. All the text you cut or copy gets placed on the Clip-
board. Any text that you overwrite when you paste a block onto your form image gets
stored to the Clipboard. You can access the Clipboard from the Edit pull-down menu.

Saving a Form Image
After you paint your form image, you must save it with the Save Form option on the File
pull-down menu.

The Clipboard acts

as a temporary sto-

rage place for text

blocks.

 Fitrix VDT Screens and Menus Course Workbook

 Getting Started with the Form Painter 43

Converting Forms into Input Programs
Once you create a form image and save it, you can run the VDT Application Code
Generator and compilation utility from within the VDT Form Designer. The Run pull-
down menu contains all the options necessary to convert your form into an input
program.

In general, you can use the following Run pull-down menu options to convert your form
into an input program:

1. Generate 4GL -this option creates the 4GL source code.

2. Compile 4GL -this option compiles the 4GL code and links in library functions.

3. Run 4GL Program -this option runs the input program in the same manner a user
would see it.

Use the Save Form

option to save a

form image.

The Run pull-down

menu contains all

the options neces-

sary to convert your

form into an input

program.

Fitrix VDT Screens and Menus Course Workbook

44 Getting Started with the Form Painter

Note

You can also run the VTD Application Code Generator and compilation utility from outside the
VDT Form Designer (see “Starting the Tools from the Command Line” on page 137).

 Fitrix VDT Screens and Menus Course Workbook

 Getting Started with the Form Painter 45

Section Summary
� The VDT Form Designer is an interactive utility that lets you develop complete data-entry programs

written in 4GL.

� There are two commands that start the VDT Form Designer: fg.start and fg.form.

� The VDT Form Designer contains five pull-down menus. You can open a pull-down menu by
highlighting it and pressing [ENTER].

� The VDT Form Designer lets you paint form images. You can use the VDT Form Designer to create a
new form image or modify an existing form image.

� Once you load a form into the Form Editor, you can start painting the form image. Form images contain
both text and input field definitions.

� When painting the form image, you enter field labels and field attributes. You define a field in the Form
Editor by pressing the left bracket ([) key.

� When painting your form image, you can cut and paste fields and text. Copying consists of marking a
block of text using the arrow keys and selecting the Copy option from the Edit pull-down menu.

� The Clipboard acts as a temporary storage place for text blocks.

� After you paint your form image, you must save it with the Save Form option on the File pull-down
menu.

� Once you create a form image and save it, you can run the VTD Application Code Generator and
compilation utility from within the VDT Form Designer.

Fitrix VDT Screens and Menus Course Workbook

46 Getting Started with the Form Painter

Exercise 2A
Objective: To create a practice directory in which you will build your own input pro-
gram.

Create a Practice Directory Structure
In Exercise 1, you used the scr_train 5 to build an input program. The scr_train
command created a new shell for you to work in and placed you in the screen training
"program" directory. When you create input programs--without using the screen training
scrip--you must create your own directory structure.

VDT generated input programs use a four-tiered directory structure. The first tier is your
fitrix directory or the directory specified by the $fg variable. For example:

$fg=/fitrix/fx_dev

The second tier is the application directory followed by the module directory and finally
the program directory. The module and program directories use special naming exten-
sions: *.4gm for the module directory and *.4gs for the program directory.

 Fitrix VDT Screens and Menus Course Workbook

 Getting Started with the Form Painter 47

Before you build an input program with the VDT Form Designer, it helps to duplicate
this directory structure.

1. Move to your home directory:

cd $HOME

2. Create an application directory called labs:

mkdir labs

3. Move to your labs directory and create a module directory called aw. 4gm for Applica-
tion Workbench:

cd labs; mkdir aw.4gm

The semicolon delimits two LINUX commands.

4. Move to your aw. 4gm directory and create a program directory called i_cust.4gs:

cd aw.4gm ; mkdir i_cust.4gs

Program directories reflect the type of programs they contain. Input program directories
start with i-l which stands for input.

5. Finally, move to the i_cust.4gs directory:

cd i_cust.4gs

Once complete, you should be in the i_cust.4gs directory and have the following di-
rectory structure:

Fitrix VDT Screens and Menus Course Workbook

48 Getting Started with the Form Painter

Exercise 2B
Objective: To start and become familiar with the VDT Form Designer.

Start the VDT Form Designer
From within the i_cust.4gs directory, you can use the VDT Form Designer to build an
input program.

To start the VDT Form Designer, enter:

fg.form –dbname student1

Note

The -dbname flag specifies the database you want to use with the VDT Form Designer. If you
have been set up to use a different database, specify it in place of student1 . You may also set
the DBNAME variable to the name of the database you wish to use.

After you enter the fg.form command, the VDT Form Designer appears:

The VDT Form Designer lets you design input forms. In the next section you will build a
Customer Entry program.

 Fitrix VDT Screens and Menus Course Workbook

 Getting Started with the Form Painter 49

Exercise 2C
Objective: To use the VDT Form Designer to design a Customer Entry form.

There are several steps involved in designing a Customer Entry form. In general you
should use the following sequence:

1. Create a new form.

2. Add field labels.

3. Define which table and columns are used.

4. Save the form.

Create Your New Form
The New option on the File pull-down menu lets you create a new form. For this exer-
cise, you will make a header form called cust .

1. Select New from the File pull-down menu.

The Define a New Form box appears.

2. Enter oust into the Form Name field.

The "Select the screen type" box appears.

3. Choose header from the "Select the screen type" box.

A new form is created and the cursor is placed on the upper left comer of the form (at this
point, the form is empty).

Fitrix VDT Screens and Menus Course Workbook

50 Getting Started with the Form Painter

Add Field Labels
Once you create a new form, you can use the Form Editor to add input field labels. If you
have just created a new form, your cursor is placed within the Form Editor automatically.
The Form Editor lets you enter text and define input fields:

The [ESC] key lets you toggle between the Form Editor and the pull-down menus. You
can also move to the Form Editor by selecting Edit from the Edit pull-down menu.

The Form Editor provides a number of useful editing keys and keystrokes to help you de-
sign your input form. The following list contains a few of them:

[F1] Inserts a line.

When you create a

new form, your cur-

sor is placed within

the Form Editor

automatically.

 Fitrix VDT Screens and Menus Course Workbook

 Getting Started with the Form Painter 51

[F2] Deletes a line.

[ENTER] Moves cursor to the start of the next line.

[HOME] Moves cursor to the upper left corner.

[CTRL]-[a] Toggles between insert and overstrike mode.

[CTRL]-[x] Deletes a character.

[CTRL]-[d] Deletes to the end of a line.

[CTRL]-[U] Undoes an edit.

For this exercise, use the Form Editor to add input field labels that resemble the following
form:

After you create all the labels, you can define the actual input fields themselves.

Define Input Fields
At this point, you need to define a corresponding field for each field label on your form.
The Form Editor gives you a special key, the left bracket ([) key, for defining input fields.

Position your cursor to the right of the Customer Number field label you created.

1. Press the left bracket ([) key.

The Define Fields dialog window appears.

Fitrix VDT Screens and Menus Course Workbook

52 Getting Started with the Form Painter

Input fields are associated with columns in a database table. They accept data from the
user and insert it into a column. In this exercise, each field that you define will corres-
pond to a column in the customer table.

Note

If you see a simplified version of this window, you are in "Novice mode." For all exercises in this
training material, you must be in "Expert mode." The Edit pull-down menu contains an option that
toggles between Expert and Novice mode. When Novice Mode is showing, it means you are in
Expert mode and vice versa.

2. Enter trcustomer in the Table Name field.

3. In the Column Name field, press [CTRL]-[z].

A list of all the columns in the trcustomer table appears.

4. Highlight customer_num and press [ESC] to select it.

Data entered by the user into the Customer Number input field will go directly into this co-
lunm in the customer database.

5. Press [ENTER] to move to the Input Area field.

Notice that when you press [ENTER] the Field Type field gets filled in automatically with a
serial not null value.

6. Verify that the Input Area field contains a 1 and press [ENTER].

For now, all fields will have an Input Area of 1 (see "Input Areas Overview" on page 104).
Place a 1 in this field.

 Fitrix VDT Screens and Menus Course Workbook

 Getting Started with the Form Painter 53

7. Accept the Y value for the Entry? field and press [ENTER].

A Y value lets the user enter data into this field. An N specifies a no-entry field (i.e., a field in
which the user cannot enter data).

8. Type a message in the Message field and press [ESC].

This message will appear at the bottom of the form when the cursor is in the Customer Num-
ber field.

For now, you can leave the other fields on the Define Fields window as is. The finished win-
dow should appear as follows:

Once you save the Customer Number field definition, the field appears in the Form Edi-
tor as two brackets with a highlight between them. Notice also how the field is automati-
cally sized and the field message appears at the bottom of the screen:

Fitrix VDT Screens and Menus Course Workbook

54 Getting Started with the Form Painter

Follow the same sequence of steps to define the rest of the input fields on your form. For
the Contact Name field, define two fields (fname and Iname). When you finish, your
form should look as follows:

After you create a field definition, you might need to re-edit it at some point.

To re-edit a field definition:

1. Place your cursor in the field and press [CTRL]-[z].

A pop-up menu appears.

2. Select Field from the pop-up menu.

The Define Fields window appears.

3. Edit the field definition using the Define Fields window and press [ESC] to save your
changes.

Save the Form
When you are satisfied with your input form, save it using the Save Form option under
the File pull-down menu.

To save a form:

• Select Save Form from the File pull-down menu.

 Fitrix VDT Screens and Menus Course Workbook

 Getting Started with the Form Painter 55

The VDT Form Designer reads your form image and generates instructions in a form
specification (*.per) file. This file is used by the VDT Application Code Generator to
create source code, which is discussed next.

Exercise 2D
Objective: To use the VDT Form Designer to generate, compile, and run your Customer
Entry program.

Recall that you built a demonstration input program from the LINUX command line us-
ing fg.screen , fg.make , and fglrun . The VDT Form Designer gives you the same
ability, but you simply select these commands from the VDT Form Designer's Run pull-
down menu.

Generate Source Code

1. Select Generate 4GL from the Run pull-down menu.

A pop-up menu appears asking you which forms to generate code for.

2. Select All Forms from the pop-up menu.

A message box appears asking you if you want to only generate code for local forms.

3. Select YES on the "Local forms only" message box.

The Screen Code Generator is run and code scrolls past your screen as it creates code based
on your cust form. You might see a message indicating that your cust form is not current.
If this happens, simply select YES from the message box.

When the Screen Code Generator finishes, the following message appears:

Compile the Code
• Select Compile 4G L from the Run pull-down menu.

The VDT Form Designer calls the compilation utility and creates a program file. When
done, the following message appears:

Fitrix VDT Screens and Menus Course Workbook

56 Getting Started with the Form Painter

Run Your Customer Entry Program

1. Select Run 4GL Program from the Run pull-down menu.

The VDT Form Designer runs your Customer Entry program.

2. Use the Toolbars to "test drive" your input program. When you finish, select Exit to
return to the VDT Form Designer.

Exercise 2E
Objective: To make a slight change to your Customer Entry program and then rebuild it.

At times, you may want to make changes to your form and incorporate those changes into
your generated-input program. For example you may want to move a field label and defi-
nition to a different location. The VDT Form Designer makes this task easy.

In this exercise you will use the VDT Form Designer's Mark, Cut, and Copy options to
move the Phone Number field to a new location on the cust form. Once finished, you
will save cust and rebuild an input program from it. The resulting input program will re-
flect the change you made.

 Fitrix VDT Screens and Menus Course Workbook

 Getting Started with the Form Painter 57

Note

This exercise picks up where the Exercise 2C left off. You should be in the VDT Form Designer
and have your cust form visible in the Form Editor. If you are not at this point, use the steps in the
previous sections to catch up.

In general there are three steps to moving a portion of your form:

1. Mark the portion you want to move.

2. Cut the marked portion.

3. Paste the cut portion back onto the form in the appropriate spot.

Mark the Phone Number Field
Before you can move a portion of your cust form, you must mark it. You can mark any-
thing that appears on your form: field labels, field definitions, or both.

1. If you are not in it already, move to the Form Editor: Select the Edit option under the
Edit pull-down menu.

2. Move the cursor to the start of the Phone Number field.

3. Press [CTRL]-[v].

This keystroke places you into "Mark" mode.

4. Use the arrow keys to highlight the Phone Number field.

This is the area that you will cut.

Fitrix VDT Screens and Menus Course Workbook

58 Getting Started with the Form Painter

Cut the Phone Number Field
Once you mark (ie., highlight) the Phone Number field, you can cut it from your form
(once cut, you can paste it back into your form at any location).

• Press [CTRL]-[t].

The Phone Number field disappears.

Now you can use the Paste option to place this field below the City-State, and Postal
Code line.

Paste the Phone Number Field Back into Your Form

1. Move your cursor below the City field. If you cannot move the cursor below the City
field, you need to increase the size of your form. To increase the size of your form, you
exit Edit mode by pressing [ESC]. Choose Define Defaults option under the Define pull-
down menu. The Define the Form window appears:

 Fitrix VDT Screens and Menus Course Workbook

 Getting Started with the Form Painter 59

Move to the Lower Right Row, Col field and increase the Row to 11 to add one more line.
Press [ESC] to save your changes. Choose the Edit option from the Edit pull-down menu.
Move your cursor to below the City field.

2. Press [CTRL]-[p].

The Phone Number field reappears. You can use the arrow keys to "slide" the field
around, but for now, leave it where it is.

Note

Be sure to never paste on top of existing form objects. You must paste on a blank space or line.

Fitrix VDT Screens and Menus Course Workbook

60 Getting Started with the Form Painter

3. Press [ESC] to "stick" the field to the form.

Use the Clipboard
If you make a mistake during cutting and pasting, you can select the Clipboard option from the Edit pull-
down menu. Everything you cut gets placed on its own page in the Clipboard. You can use the Clip-
board's ring menu to scroll through all the objects you have cut and select the one you want.

When you select an object from the Clipboard, it gets pasted into your form (just like the Phone Number
field). Once again, you can reposition the object with the arrow keys before pressing [ESC] to "stick" it to
the form.

 Fitrix VDT Screens and Menus Course Workbook

 Getting Started with the Form Painter 61

Save Your Changes
Now that you have moved the Phone Number field, you can save your form and rebuild
it. Once rebuilt, the resulting input program will reflect the new location of the Phone
Number field.

1. Save your cust form with the Save Form option under the File pull-down menu.

2. Select Generate 4GL from the Run pull-down menu.

During code generation, the "Overwrite" message might appear:

This message lets you know that you are creating a "new" source code file on top of a file that
already exists in your i_cust.4gs directory. For this exercise – and in most cases for that
matter – you want to overwrite this file. Depending on the number of changes you have made,
you might see this message several times.

When it appears, simply select option one to overwrite the file.

3. Select Compile 4GL from the Run pull-down menu.

Once compiled, your program is ready for you to run.

Run the Customer Entry Program Again
Now you can see your changes in the resulting input program.

• Select Run 4GL Program from the Run pull-down menu.

The VDT Form Designer initiates your Customer Entry program.

Fitrix VDT Screens and Menus Course Workbook

62 Getting Started with the Form Painter

Notice that the Phone Number field appears in its new location. Once again, spend some
time experimenting with this program. Add a new document and see if the cursor path
through your input fields has changed.

When you are done, select Exit from the ring menu to return to the VDT Form Design-
er. Exit out of the VDT Form Designer as well (select Exit from the File pull-down menu).

 Working with the Database 63

Chapter 3
Working with the Database

Main topics:

� Displaying the Table Information Window

� Changing Database Values

� Updating Genero Schema

� Using the AutoForm option

Fitrix VDT Screens and Menus Course Workbook

64 Working with the Database

Displaying the Table Information Window
The VDT Form Designer gives you direct access to the database through the Table In-
formation window. This window lets you manage tables and columns in the database.

To initiate the Table Information window:

• Select Database from the File pull-down menu.

The Table Information window appears.

The Table Information window lets you do the following:

• Alter the structure of your database

• Add and drop database tables

• Add, modify, and drop columns from tables

Use the Database

option on the

File pull-down menu

to initiate the

Table Information

window.

 Fitrix VDT Screens and Menus Course Workbook

 Working with the Database 65

Changing Database Values
The Table Information window uses a ring menu interface. The commands in the ring
menu at the top of the window correspond to the toolbar commands you are familiar with.

You can add tables to the database and give them descriptive names. It is very important
to fill in the Unique Key field. This field identifies to an input program the columns that
uniquely identify a row.

When you use the Table Information window to alter a table (for example, you delete a
column), a pop-up window appears and displays the SQL statement that it will run on the
table.

The VDT Form Designer stores all the changes you make in a file called dbadmin.sql .
All changes are also time stamped, and this file remains in your local program directory.

Saving Database Changes
It is good practice to save all custom database changes to a central directory. The con-
vention is to save such changes to the $fg/data/sql.4gc directory. You save the following
types of changes to the $fg/data/sql.4gc directory.

• create statements for any new tables created

• alter statements for any tables altered

The Table Informa-

tion window uses a

ring menu interface.

Fitrix VDT Screens and Menus Course Workbook

66 Working with the Database

• Any rows added to system tables. These tables are discussed in later exercises.

o stxerorh/sterord (error tables)

o stxmssgr (message table)

o stxhotkd/stxnvgtd/stxactnr (hot key and event tables)

o cgsmnitm/cgsmncmd (menu items)

Updating the Genero Schema File
Once you have altered a table, added a table or dropped a table in a database, you must
update the Genero schema file for that database. The Genero schema file is used by the
Genero compiler. If you do not update the Genero schema file, you receive errors when
you compile you programs. Both the fglform and fg.make commands depend on an up-
to-date Genero schema file.

The Genero schema file must exist in the directory(s) listed in $FGLDBPATH. The con-
vention is to set FGLDBPATH=$fg/data.

You update the Genero schema file by changing directory to where they are kept
($FGLDBPATH=$fg/data). Then you run the sch.sh command on the database:

sch.sh student1

When you run sch.sh <database> a <database>.sch file is created. You must run the
sch.sh command for all the databases you are using. You will see a <database>.sch file
in the $fg/data directory for each database.

Warning: You can make a schema file (example, standard.sch) in your local program directory and
that Genero schema file takes precedent. But when you run other programs, they will not
find the updated schema file because they use the schema file in $fg/data. Remember to
update the Genero schema file in $fg/data.

Using the AutoForm Option
The Table Information window also lets you generate a default form image from a table;
in other words you can create an AutoForm. The AutoForm command is located under
the Options command on the ring menu. When you create an AutoForm, the AutoForm
image gets stored to the Clipboard. You can then quit from the Table Information win-
dow and paste the AutoForm image into your form image using the Form Painter.

To create an AutoForm:

 Fitrix VDT Screens and Menus Course Workbook

 Working with the Database 67

1. Use Find to select the table you want to generate an AutoForm from.

2. Select the Options command then AutoForm.

An AutoForm gets built and its image is stored to the Clipboard.

Once you create an AutoForm, you can go back to the VDT Form Designer and retrieve
the AutoForm from the Clipboard. Once retrieved, the AutoForm is placed into the Form
Editor, and you can edit it any way you want.

Use the AutoForm

command to gener-

ate a default image

of a table.

Fitrix VDT Screens and Menus Course Workbook

68 Working with the Database

Section Summary
� The VDT Form Designer gives you direct access to the database through the Table Information window.

This window lets you manage tables and columns in the database.

� With the Table Information window you can alter the structure of your database; add and drop database
tables; and add, modify, and drop columns from tables.

� It is good practice to save all custom database changes to a central directory ($fg/data/sql.4gc).

� Use the sch.sh <database> command to update the Genero schema files in $fg/data each time you
change the structure of a database.

� The Table Information window also lets you generate a default form image from a table; in other words,
you can create an AutoForm.

 Fitrix VDT Screens and Menus Course Workbook

 Working with the Database 69

Exercise 3
Objective: To create a credit table that holds credit codes, descriptions, and amounts.
Such a table could hold the following values:

Credit Code Credit Description Credit Amount

AAA Excellent 10,000

BBB Good 5,000

CCC Fair 1,000

DDD Poor 250

Start the VDT Form Designer

1. Move to the $HOME/labs/ aw.4gm directory:

cd $HOME/labs/aw.4gm

2. Create a new directory to hold a credit entry program.

mkdir i_cred.4gs

3. Move to the i_cred.4gs directory:

cd i_cred.4gs

4. Start the VDT Form Designer.

Create a New Form

1. From the File pull-down menu, select New.

The Define a New Form box appears.

2. Name the form credit

The Select the Screen Type box appears.

Fitrix VDT Screens and Menus Course Workbook

70 Working with the Database

3. Choose header as the screen type.

4. Type [ESC] to exit from edit mode.

Open the Database Option

1. From the File pull-down menu, select Database.

The Table Information window appears.

The Database option is a data-entry program that allows you to change the structure of your
database. You can add, delete, and alter tables by adding, deleting, and re-arranging columns,
and changing column types. You can change the structure of your database much like using
Informix dbaccess to do so.

2. Select the Find ring menu option.

Your cursor moves to the Table Name field.

3. Type trcustomer in the Table Name field.

4. Press [ESC].

Information about the customer table appears.

 Fitrix VDT Screens and Menus Course Workbook

 Working with the Database 71

Notice how the upper half of the screen (the "header") portion contains information about the
trcustomer table. The lower half of the screen (the "detail" portion) displays all of the col-
umns that make up the trcustomer table.

Add the credit Table

1. Select the Add ring menu option.

2. Add a table to hold credit information.

Name your new table credit and add a descriptive name for the table. Do not enter a Unique
Key value yet.

3. Press [TAB] to move to the detail portion of the screen and add the following columns as
detail rows:

Column Name Description Type

credit_code Credit Code Char(3)

credit_desc Credit Description Char(10)

credit_amt Credit Amount Decimal(10,2)

4. Press [TAB] to move back to the header portion of the screen and fill in the Unique Key
as credit_code.

All tables must have a unique key (i.e., a column that uniquely identifies a row).

5. Press [ESC] to store your new table.

Fitrix VDT Screens and Menus Course Workbook

72 Working with the Database

Create an AutoForm from the credit Table

1. Select the Options ring menu and then choose AutoForm.

This builds a default data-entry form based on your credit table. It then copies this form to the
Clipboard. Once on the Clipboard, you can paste it into a new form.

2. Press (ENTER].

3. Select Quit from the ring menu to return to the Form Painter.

Use the Clipboard
Instead of creating fields individually, you can copy the AutoForm you created and stored
on the Clipboard.

1. Select Clipboard from the Edit pull-down menu.

Find the AutoForm for the credit table.

2. Once you find the credit table AutoForm, choose Select.

The Select option pastes the AutoForm into the Form Editor. You can use the arrow keys to
position it.

3. Press [ESC] to stick it down.

Remove the extra heading line that came with the AutoForm.

 Fitrix VDT Screens and Menus Course Workbook

 Working with the Database 73

Save, Generate, and Compile

1. Save your newly-created form.

Use the Save Form option under the File pull-down menu.

2. Exit out of the VDT Form Designer. You must update the Genero schema used by the
Genero compiler. Choose Exit from the File pull-down menu.

3. Move to the schema directory.

cd $fg/data

4. Generate the Genero schema file (substitute your database name).

sch.sh student1

5. Save the trcredit create statement to the central database changes directory.

cd $fg/data

mkdir sql.4gc

cd sql.4gc

cp $HOME/labs/aw.4gm/i_cred.4gs/dbadmin.sql trcedit.sql

6. Restart the VDT Form Designer in your new program directory (substitute your data-
base name).

cd $HOME/labs/aw.4gm/i_cred.4gs

fg.form -dbname student1

7. Open the form you saved by selecting Open from the File pull-down menu. Select [ESC]
to exit edit mode.

8. Select Generate 4GL from the Run pull-down menu.

When it is finished, the Code Generation Successful message appears.

9. Select Compile 4GL from the Run pull-down menu.

When it is finished, the 4GL Compile Succeeded message appears.

Run Your Credit Entry Program

1. Select Run 4GL Program from the Run pull-down menu.

The Credit Entry program starts.

Fitrix VDT Screens and Menus Course Workbook

74 Working with the Database

2. Enter at least four new credit codes.

You can use the sample codes shown on page 69.

3. When finished, exit the program and the Form Painter.

 Creating Zooms 75

Chapter 4
Creating Zooms

Main topics:

� Zoom Screen Overview

� Painting a Zoom Image

� Attaching the Zoom Screen

Fitrix VDT Screens and Menus Course Workbook

76 Creating Zooms

Zoom Screen Overview
A Zoom is a data validation feature that shows the user a list of valid values for an
input field Zooms are created from zoom screen types (see ”Using Different
Screen Types” on page 182) When users initiate a Zoom, they can enter selection
criteria on the fields in the Zoom. The Zoom then takes the selection criteria and re-
turns all valid values that meet the criteria Users can select the value they want to
use from the values the Zoom returns.

Zooms make the data-entry process much more accurate and efficient. Field values
are validated before they are saved. In general, creating Zooms is a two step
process:

1. Paint and define the zoom screen image.

2. Attach the zoom screen to a field on your main input screen

Painting a Zoom Image
You define Zooms by using the VDT Form Designer to paint their image. Once
you paint the image of the zoom screen, you must also specify from which field on
your main input form the zoom screen will be activated. For example, the follow-
ing application has a zoom screen attached to the Customer No. field.

 Fitrix VDT Screens and Menus Course Workbook

 Creating Zooms 77

To define a Zoom:

1. Select New from the File pull-down menu.

2. Specify a name for the zoom screen.

It is a convention to give zoom windows a name that includes the letters zm, such as
cust_zm , stockzm , etc

3. Select zoom as the screen type.

4. Use the VDT Form Designer to paint and save the zoom image (see “Creating a
Form Image” on page 38).

Because zoom screens usually contain several rows of duplicate field definitions, use
mark, copy, and paste to speed your creation of the zoom image (see “Marking, Copy-
ing, and Pasting” on page 41)

Zoom screens are

attached to input

fields. Users initiate

this Zoom from the

Customer No. field.

Fitrix VDT Screens and Menus Course Workbook

78 Creating Zooms

After you paint and save your zoom image, you need to use the Form Defaults op-
tion on the Define pull-down menu. The Form Defaults option opens the Define the
Form window. This window lets you specify from which field the zoom screen can
be activated.

Make sure to specify a value in the Returning (zoom) field. This field specifies
where the returning value gets placed. In most cases, this is the field in which you
attach the Zoom. If you are not sure of the field, press [CTRL]-[z] while to see a
list of available fields

Zooms, such

as this one,

usually con-

tain several

rows of

duplicate

field

definitions.

After you paint and

save your zoom im-

age, you need to

use the Define the

Form window to set

your Zoom

attributes

 Fitrix VDT Screens and Menus Course Workbook

 Creating Zooms 79

Attaching the Zoom Screen
You can attach a zoom screen to the main screen of your program using the VDT
Form Designer.

To attach a zoom screen to an input field:

1. Open the form that contains the field that you want to attach the zoom screen to.

In most cases, you attach zoom screens to header or header/detail screens, but this is
not necessarily the case

2. Highlight the field you want to attach the zoom screen to.

3. Press [CTRL]-[z]

Note the irony here You activate a Form Painter Zoom in order to define a Zoom for
your input program When you press [CTRL][z] a pop-up menu appears that contains
all the items available for you to attach to the input field

4. Select Zoom... from the list.

The Define Zooms window appears

The Define

Zooms window

lets you attach

a zoom screen

to an input field

Fitrix VDT Screens and Menus Course Workbook

80 Creating Zooms

5. Fill in the Define Zooms window and press [ESC].

The Define Zooms window lets you specify how you want the zoom screen to be at-
tached.

The Define Zooms window contains several fields. Perhaps the Zoom Form ID
field is most important. In this field, you place the name of your Zoom screen. You
should make sure that the Main Zoom Table field contains the correct value. If you
want to add AutoZoom capability, specify Y in the AutoZoom field.

The Zoom Entry Filter field lets you assign a selection filter to the Zoom. The last
field, Zoom From Column, lets you specify a table and column name for the Zoom
if they differ from the column on the main screen.

Use the Define

Zooms window to

specify how you

want the Zoom to

be attached.

 Fitrix VDT Screens and Menus Course Workbook

 Creating Zooms 81

Section Summary
� A Zoom is a data validation feature that shows the user a list of valid values for an input field.

Zooms are invoked by pressing [CTRL]-[z].

� You define Zooms by using the VDT Form Designer to paint their image. Zooms are created
from zoom screen types. Once you complete painting a Zoom, you can attach it to a field on your
input program.

� To attach a zoom to an input field, you must identify which field the Zoom applies to. You can
set all the Zoom attributes in the Define Zooms window.

Fitrix VDT Screens and Menus Course Workbook

82 Creating Zooms

Exercise 4A
Objective: To add a credit field to the i_cust.4gs program.

Start the VDT Form Designer

1. Move to $HOME/labs/ aw. 4gm/i_cust. 4gs.

2. Start the VDT Form Designer.

Add the credit_code Column to the customer Table

3. Select Database from the File pull-down menu.

The Table Information window appears.

4. Select Find from the ring menu, enter trcustomer in the Table Name field, and
press [ESC].

5. Select Update and add a column named credit_code to the customer table:

6. Press [ESC].

A Verify SQL Statement box appears.

 Fitrix VDT Screens and Menus Course Workbook

 Creating Zooms 83

7. Press [ESC] again to run the alter table SQL statement.

8. Select Quit to return to the VDT Form Desinger.

9. Exit the VDT Form Designer by choosing Exit from the File pull-down.

Update the Genero Schema File

1. Move to the schema directory

cd $fg/data

2. Remake the Genero schema file. Make sure to use your database name.

sch.sh student1

Update the Central Database Changes Directory
1. Move to the central database changes directory

cd $fg/data/sql.4gc

2. Copy the local program dbadmin.sql to $fg/data/sql.4gc

cp $HOME/labs/aw.4gm/i_cust.4gs/dbadmin.sql trcustomer.sql

Add a Credit Code Field to Your Screen

1. Move to $HOME/labs/aw.4gm/i_cust.4gs

2. Start the VDT Form Designer

3. Select Open from the File pull-down menu.

Fitrix VDT Screens and Menus Course Workbook

84 Creating Zooms

The VDT Form Designer opens your cust.per file. If you have additional form spe-
cification (*.per) files in this directory, you have to select cust from a list.

4. Add a Credit Code field label in the upper half of your screen.

5. Define the Credit Code field by pressing a left bracket [after the field.

The Define Fields window appears.

6. Define the Credit Code field using the values shown below, then press [ESC] to
save the definition.

Save, Generate, and Compile

1. Select Save Form from the File pull-down menu.

2. Select Generate 4G L from the Run pull-down menu.

3. Select Compile 4G L from the Run pull-down menu.

 Fitrix VDT Screens and Menus Course Workbook

 Creating Zooms 85

Run Your Customer Entry Program

1. Select Run 4GL Program from the Run pull-down menu.

2. Use Find to select an existing customer and add a credit code for that customer.

3. When finished, quit the Customer Entry program and the VDT Form Designer.

Fitrix VDT Screens and Menus Course Workbook

86 Creating Zooms

Exercise 4B
Objective: To create a zoom screen so users can select from a reference list of cre-
dit codes.

Create a Zoom Screen

1. Start the VDT Form Designer.

1. Select New from the File pull-down menu.

The Define a New Form box appears.

2. Name the new form cred_zm.

The Select a Screen Type box appears.

3. Use the down arrow to scroll down the screen type list and select zoom as the
screen type.

Create the Column Headings

1. Create the column headings for the Zoom.

A zoom screen displays data in a row-by-row format.

4. Add field definitions using the columns in your trcredit table. (credit_code,
credit_desc, and credit_amt)

5. Use the Mark, Copy, and Paste options to add three more rows of field definitions,
see “Marking, Copying, and Pasting” on page 41.

 Fitrix VDT Screens and Menus Course Workbook

 Creating Zooms 87

6. Your finished zoom screen should look as follows:

Specify Form Defaults

1. Select Form Defaults from the Define pull-down menu.

The Form Defaults window appears.

7. Enter trcredit in the Main Table field.

Zooms typically return values to the field from which they were invoked. Since you
will be Zooming from the Credit Code field on your Customer Entry program, you
must specify from which column the data will be supplied.

8. Add credit_code in the Returning (zoom) field.

You can bypass the other fields on the window.

9. Select Save Form from the File pull-down menu.

10. Select Generate 4GL from the Run pull-down menu.

The Generate 4g1: Enter Selection box appears.

11. Select cred_zm .

Attach cred_zm to the Credit Code Field
Now you must attach cred_zm to the Credit Code field that you credit on the Cus-
tomer Entry program.

Fitrix VDT Screens and Menus Course Workbook

88 Creating Zooms

1. Select Open from the File pull-down menu and open the file that corresponds to
your Customer Entry program (cust).

12. Place your cursor in the Credit Code field and press [CTRL]-[z].

The Define Field pop-up menu appears.

13. Select Zoom... from the Define Field pop-up menu.

The Define Zooms window appears.

14. Enter cred_zm in the Zoom ID field.

15. Press [ENTER] in the Auto Zoom? field and enter trcredit in the Main Zoom
Table field.

16. Specify credit_code in the Zoom From Column field and press [ESC] to save
your zoom definition.

17. Place your cursor in the Credit Code field and press [CTRL]-[z].

The Define Field pop-up menu appears.

18. Select Field.. from the Define Field pop-up menu.

The Define Fields window appears.

19. Specify ‘Y’ in the Zoom? column.

This will cause the magnifying glass icon to display at runtime.

Save, Generate, and Compile

1. Use the Save Form option under the File pull-down menu.

20. Select Generate 4GL from the Run pull-down menu.

The Generate 4GL: Enter Selection box appears.

 Fitrix VDT Screens and Menus Course Workbook

 Creating Zooms 89

21. Select All Forms from this box.

The Local Forms Only box appears.

22. Select YES.

As the VDT Application Code Generator runs, it builds code for both your zoom
screen and your Customer Entry screen.

23. Select Compile 4GL from the Run pull-down menu.

Run Your Customer Entry Program

1. Select Run 4G L Program from the Run pull-down menu.

The Customer Entry program starts.

24. Use Find to select an existing customer and select Update.

25. From the Credit Code field, press [CTRL]-[z] and press [ENTER].

The Credit Information Zoom appears.

26. Use the cred_zm a few times. When finished, quit out of Customer Entry and the
VDT Form Designer.

The Magnifying Glass (Zoom Indicator) for the Credit
Code Field

1. When you indicate ‘Y’ on the ‘Zoom?’ prompt in the ‘Define Fields’ window,
it tells the painter to add the following highlighted lines to the .per file when
it is saved:

Fitrix VDT Screens and Menus Course Workbook

90 Creating Zooms

 Phone Number: [A7]

}

END -- GRID

END -- VBOX

END -- LAYOUT

TABLES

 trcustomer

ATTRIBUTES

A0 = trcustomer.customer_num,

 comments = " Enter a customer number.";

buttonedit A8 = trcustomer.credit_code,

 image="gn_zoomf.png", action=ac_zoom,

 comments = " Enter the Credit Code.";

A1 = trcustomer.company, comments = "";

A2 = trcustomer.fname, comments = "";

A3 = trcustomer.lname, comments = "";

A4 = trcustomer.city, comments = "";

2. When you run the program, the Credit Code column is displayed with a mag-
nifying glass to the right of the data.

 Creating Lookups 91

Chapter 5
Creating Lookups

Main topics:

• Lookup Overview

• Attaching a Lookup to a Field

Fitrix VDT Screens and Menus Course Workbook

92 Creating Lookups

Lookup Overview

A Lookup performs a cross-check between two tables. You provide the lookup with a key
value. The generator builds logic to open a cursor and fetch the key value from a refer-
ence table. If the key value does not exist in the reference table, an error is returned and
the user is placed back in the Lookup field.

Lookups can also return data from the reference table keyed by the value you pass it. For
example, if you pass a Lookup the customer number value, it can return a valid customer
number, company name, owner name, street address, and other customer information:

A Lookup validates

data and returns re-

lated data

In this example, a

Lookup is defined

on the Customer

No. field.

 Fitrix VDT Screens and Menus Course Workbook

 Creating Lookups 93

Attaching a Lookup to a Field
Like Zooms, you attach Lookups to input fields. Before you create a Lookup, you must
know which field you want to attach it to and which fields you want to return values to.

Lookups are defined with the Define Lookups window. This window lets you specify the
Lookup name, table, and join criteria. You also specify which fields on your main form
the Lookup should fill.

When the user en-

ters a customer

number, data relat-

ing to that number

fills in the adjacent

fields.

The Define Lookups

window lets you

specify the Lookup

name, table, and

join criteria.

Fitrix VDT Screens and Menus Course Workbook

94 Creating Lookups

The Lookup Name field holds the name of the Lookup. Uniquely naming Lookups lets
you define multiple Lookups on the same field.

The Lookup Table field holds the name of the looked up table. In other words, this is the
table from which values are being returned.

The Join Criteria field lets you specify the where clause of the join statement: you are
specifying where the returned value is being put. The Join Criteria field uses the follow-
ing syntax:

Table_name.column_name = $field_name

Where table_name and column_name represent the looked up table and field_name
represents the column where the value gets returned.

For example, the following join criteria instructs the Lookup to search the custom-

er_num column in the customer table and verify that the value in the customer_num
field exists:

customer.customer_num = $customer_num

The Lookup From and Into fields are optional. These fields let you specify the join crite-
ria when the column and field names differ. For instance, if the column name is de-

scription and the field name is desc , you could define the Lookup as follows:

If the fields and columns have the same name, you do not need to add them to the Loo-
kup From and Into fields. The Screen Generator builds this logic when the field names
and column names match.

To define a Lookup:

1. Using the VDT Form Designer, highlight the field that you want to attach a Lookup
to.

2. Press [CTRL]-[z] to display the Define Field menu.

This example shows

how the Lookup

From and Into fields

are used. You only

need to use these

fields when the col-

umn and field

names do not

match.

 Fitrix VDT Screens and Menus Course Workbook

 Creating Lookups 95

3. Select Lookups... from the Define Field menu.

The Define Lookups window appears. You can also access the Define Lookups window
from the. Define pull-down menu by choosing the Lookups... option.

4. Fill in the Define Lookups window and press [ESC].

When a user enters an invalid value into a field that has a Lookup attached, an error
occurs. The user is not able to leave that field until a valid value has been entered.

Fitrix VDT Screens and Menus Course Workbook

96 Creating Lookups

Section Summary
� Lookups are placed on fields in a data-entry screen to evaluate the data entered by a user.

� Lookups check a key value against a reference data table. If the key value exists, the Lookup allows the
user to continue. If the Lookup doesn't exist, an error occurs and the user is placed back in the Lookup
field.

� Another purpose of a Lookup is to return data keyed by the Lookup value. A value entered by a user can
cause a cross-referenced value to be looked up in the reference table and displayed on the input form.

 Fitrix VDT Screens and Menus Course Workbook

 Creating Lookups 97

Exercise 5A
Objective: To add a lookup on the Credit Code field. A lookup prevents users from en-
tering invalid data.

Check the Credit Code Value

1. Start the VDT Form Designer and select Run 4GL Program from the Run pull-
down menu.

2. From your Customer Entry program, use Find to select an existing customer.

3. Select Update and enter TTT in the Credit Code field.

Recall that TTT is not a record in the credit table. You only created four records in that
table (AAA, BBB, CCC, and DDD). Despite this fact, however, the program still accepts
TTT, a completely invalid value. You can use lookups to verify data in a field.

4. Quit the Customer Entry program.

5. From the VDT Form Designer, open the Customer Entry file (cust).

Define the Lookup

1. From the VDT Form Designer, place your cursor in the Credit Code field and press
[CTRL]-[z].

The Define Field pop-up menu appears.

2. Select Lookups... from the Define Field pop-up menu.

The Define Lookups window appears.

Fitrix VDT Screens and Menus Course Workbook

98 Creating Lookups

3. Enter cred_lk in the Lookup Name field.

4. Enter trcredit in the Lookup Table field.

5. Enter trcredit.credit_code = $credit_code in the Join Criteria field.

6. Press [ESC] to save your lookup.

Save, Generate, and Compile

1. Use the Save Form option under the File pull-down menu.

2. Select Generate 4GL from the Run pull-down menu.

The Generate 4gl: Enter Selection box appears.

3. Select All Forms from this box.

The Local Forms Only box appears.

4. Select YES

 Fitrix VDT Screens and Menus Course Workbook

 Creating Lookups 99

5. Select Compile 4GL from the Run pull-down menu.

Run Your Customer Entry Program

1. Select Run 4GL Program from the Run pull-down menu.

The Customer Entry program starts.

2. Find a customer and select Update.

3. Enter TTT in the Credit Code field.

An error message appears:

4. Click to return to the Credit Code field and enter a valid value (AAA).

This time the value is accepted and the cursor moves to the next field.

5. Press [ENTER] to save. Then click to return to the VDT Form Designer.

Fitrix VDT Screens and Menus Course Workbook

100 Creating Lookups

Exercise 5B
Objective: To create a Credit Desc field that is linked to the Credit Code field. When the
user specifies a Credit Code, the Credit Desc field will get filled automatically.

1. Create a new field on the Customer Entry form called Credit Desc.

In other words, create a field label and press [Ctrl-z] to define it.

On the Define Fields window, specify N in the Entry? field.

When Entry? is N, the user cannot enter / update the field.

2. Press [ESC] to save the field definition.

You should now have the following fields on you Customer Entry program:

 Fitrix VDT Screens and Menus Course Workbook

 Creating Lookups 101

Save, Generate, and Compile

1. Use the Save Form option under the File pull-down menu.

2. Select Generate 4GL from the Run pull-down menu.

The Generate 4gl: Enter Selection box appears.

3. Select All Forms from this box.

The Local Forms Only box appears.

4. Select YES.

5. Select Compile 4GL from the Run pull-down menu.

Run Your Customer Entry Program

1. Select Run 4GL Program from the Run pull-down menu.

The Customer Entry program starts.

2. Select Add to create a new customer entry.

Fitrix VDT Screens and Menus Course Workbook

102 Creating Lookups

3. In the Credit Code field, enter BBB.

Notice how the Credit Desc field is filled automatically.

4. Quit out of the Customer Entry program to return to the VDT Form Designer.

 Input Areas and Specification Files 103

Chapter 6
Input Areas and

Specification Files
Main topics:

� Input Area Overview

� Creating Form Specification (*.per) Files

Fitrix VDT Screens and Menus Course Workbook

104 Input Areas and Specification Files

Input Areas Overview
Input areas are where you specify characteristics about the header and/or detail portion of
the form. The header portion is always assigned area 1 and the detail portion is assigned
area 2.

Input Area 1 = Header

Input Area 2 = Detail

You set input area characteristics with the Define Input Areas window. You can use the
Input Areas option under the Define pull-down menu to access this window.

For a header/ detail screen, you must specify characteristics about the detail portion of the
form in order for the form to work properly. For instance, you must specify the join that
connects the header table to the detail table.

The most important field is the Join field. The Join field specifies how the header and de-
tail tables are related. Use the following syntax to define the join between the two tables:

header_table.column = detail_table.column

Where header_table.column represents the name of the header column and de-
tail_table.column represents the name of the detail column.

Another important field is the Unique Key field. This field specifies which columns uni-
quely define a row in the table.

If you do not specify the input area for the header, the VDT Form Designer puts in de-
fault values for you.

You set input area

characteristics with

the Define Input

Areas window.

This example shows

values for the detail

portion of a form

 Fitrix VDT Screens and Menus Course Workbook

 Input Areas and Specification Files 105

When you define the header input area, you cannot enter the Join field. This field is only
for detail input areas.

Creating Form Specification (*.per) Files
Every time you save a form image with the VDT Form Designer, a form specification
(*.per) file is created. It is helpful for you to become familiar with this file.

The VDT Application Code Generator uses form specification (*.per) files to produce all
the 4GL source code necessary to create an input program. In general, form specification
files contain the following sections:

Section Use

SCHEMA Specifies the database that the form is created and compiled
against.

LAYOUT Contains the image of the form. Each input field is identified
by a field tag.

TABLES Identifies the tables that are used by the form.

ATTRIBUTES Ties each field tag (in the SCREEN section) with a column in
the table. Fields can also be classified as formonly. Formonly
fields are not associated with columns of any database. They
are used to enter or show the values of program variables.
This section also contains related characteristics of the field
(e.g., comments, required logic, verification logic, and for-
matting instructions, button assignments).

INSTRUCTIONS Specifies non-default field delimiters and defines screen ar-
rays and records, such as the s record.

FXOOL Contains specific instructions that are read by the VDT Ap-
plication Code Generator. The VDT Application Code Gene-
rator builds the code logic based on what is specified in the
section.

Once you become familiar with VDT CASE Tools, you will learn how to read form spe-
cification files. You will learn how to recognize what the VDT Form Designer creates in
these files. A typical form specification file looks as follows:

SCHEMA student1

LAYOUT (TEXT=%"train.screen5.order")

VBOX nm_vbox_main (TAG="tg_vbox_main")

Fitrix VDT Screens and Menus Course Workbook

106 Input Areas and Specification Files

GRID

{

 Customer No.:[A0] Contact Name:[A1][A2]

 Company Name:[A3]

 Address:[A4][A5]

 City/St/Zip:[A6][A7] [A8] Telepho ne:[A9]

 Order Date:[AA] PO Number:[AB] Order No:[AC]

 Shipping Instructions: [AD]

}

END -- GRID

TABLE nm_table_header_detail (WIDTH=76, TAG="tg_tab le_header_detail")

{

 Item Description Manufacturer Qty . Price Extension

[AE][AF][AG][AH] [AI][AJ][AK]

[AE][AF][AG][AH] [AI][AJ][AK]

[AE][AF][AG][AH] [AI][AJ][AK]

[AE][AF][AG][AH] [AI][AJ][AK]

}

END -- TABLE

GRID

{

===========

 Order weight:[AL] Freight:[AM]

 Order Total:[AN]

}

END -- GRID

END -- VBOX

END -- LAYOUT

TABLES

 trorders

 trcustomer

 tritems

 trstock

 trmanufact

ATTRIBUTES

buttonedit A0 = trorders.customer_num,

 image="gn_zoomf.png", action=ac_zoom,

 comments = " Enter the trcustomer code.";

A1 = trcustomer.fname, noentry, comments = "";

A2 = trcustomer.lname, noentry, comments = "";

A3 = trcustomer.company, noentry, comments = "";

A4 = trcustomer.address1, noentry, comments = "";

A5 = trcustomer.address2, noentry, comments = "";

A6 = trcustomer.city, noentry, comments = "";

 Fitrix VDT Screens and Menus Course Workbook

 Input Areas and Specification Files 107

A7 = trcustomer.state, noentry, comments = "";

A8 = trcustomer.zipcode, noentry, comments = "";

A9 = trcustomer.phone, noentry, comments = "";

AA = trorders.order_date, format = "mm/dd/yy",

 comments = " Enter the order date.";

AB = trorders.po_num,

 comments = " Enter the trcustomer's purchase o rder number.";

AC = trorders.order_num, noentry, comments = "";

AD = trorders.ship_instruct,

 comments = " Enter any special shipping instru ctions to show on the in-
voice.";

AL = trorders.ship_weight,

 comments = " Enter the total shipping weight f or this order.";

AM = trorders.ship_charge,

 comments = " Enter the total shipping charge f or this order.";

AN = formonly.t_price type money, noentry, comments = "";

buttonedit AE = tritems.stock_num,

 image="gn_zoomf.png", action=ac_zoom,

 comments = " Enter the trstock number for this line item.";

AF = trstock.description, noentry, comments = "";

buttonedit AG = tritems.manu_code,

 image="gn_zoomf.png", action=ac_zoom,

 comments = " Enter the trmanufacturers code fo r this trstock number.";

buttonedit AH = trmanufact.manu_name, noentry,

 image="gn_zoomf.png", action=ac_zoom, comments = "";

AI = tritems.quantity,

 comments = " Enter the number of units sold fo r this item.";

AJ = trstock.unit_price, noentry, comments = "";

AK = tritems.total_price, noentry, comments = "";

INSTRUCTIONS

screen record s_order (trorders.customer_num, trcus tomer.fname,

 trcustomer.lname, trcustomer.company, trcustome r.address1,

 trcustomer.address2, trcustomer.city, trcustome r.state,

 trcustomer.zipcode, trcustomer.phone, trorders. order_date,

 trorders.po_num, trorders.order_num, trorders.s hip_instruct,

 trorders.ship_weight, trorders.ship_charge, for monly.t_price)

screen record s_tritems[4] (tritems.stock_num, trst ock.description,

 tritems.manu_code, trmanufact.manu_name, tritem s.quantity,

 trstock.unit_price, tritems.total_price)

delimiters " "

{

FXTOOL

Fitrix VDT Screens and Menus Course Workbook

108 Input Areas and Specification Files

defaults

 module = train

 type = header/detail

 init = order_num > 100

 attributes = white

 location = 2, 3

 ifx_lang_ver = IBM

 ifx_engine_ver = SE

input 1

 table = trorders

 key = order_num

 filter = order_date > "12/31/80"

 order = order_num

 math = t_price = sum(total_price) + ship_c harge

 lookup = name=trcustomer, key=customer_num, table=trcustomer,

 filter=customer_num = $customer_num

 zoom = key=customer_num, screen=cust_zm, t able=trcustomer

 default = order_date = today

input 2

 table = tritems

 order = item_num

 join = tritems.order_num = trorders.order_ num

 arr_max = 100

 autonum = item_num

 math = total_price = quantity * unit_price

 lookup = name=stock_num, key=stock_num, tabl e=trstock,

 into=description, filter=stock_num = $stock_n um

 lookup = name=trstock_manu, key=manu_code, t able=trstock,

 into=unit_price,

 filter=stock_num = $stock_num and manu_code = $manu_code

 lookup = name=trmanufact, key=manu_code, tab le=trmanufact,

 into=manu_name, filter=manu_code = $manu_code

 zoom = key=stock_num, screen=stockzm, tabl e=trstock,

 noautozoom

 zoom = key=manu_code, screen=stk_mnu, tabl e=trstock,

 filter=trstock.stock_num = $stock_num

}

Section Summary
� All forms you create with the VDT Form Designer contain input areas. Input areas correspond to the

header and/or detail section of a form. The most important attribute that you set is the table attribute. It
specifies which table the header portion of the form writes to and which the detail portion of the form
writes to.

 Fitrix VDT Screens and Menus Course Workbook

 Input Areas and Specification Files 109

� TheVDT Form Designer creates and Informix form specification (*.per) file. As you become familiar
with the Firtrix CASE Tools, you will learn how to read and alter form specification files.

Fitrix VDT Screens and Menus Course Workbook

110 Input Areas and Specification Files

Exercise 6
Objective: To convert the Customer Entry program from a header screen to a header /
detail screen. The detail portion will write to a detail table, which is the "many" table in a
one-to-many table relationship.

The detail portion will show data from the trorders table. At the end of this exercise,
your Customer Entry program will look as follows:

Change the Screen Type to Header/Detail
This exercise assumes you are already running the VDT Form Desoigner with your
cust.per form open. If this is not the case move to your program directory (cd

$HOME/labs/aw.4gm/i_cust.4gs), start the Form Painter, and open cust.per .

1. Select Form Defaults from the Define pull-down menu.

The Define the Form window appears. As you recall, this window specifies various characte-
ristics about your form, including the screen type (which is set in the Form Type field).

2. Change the Form Type field from header to header/detail.

This converts your form to a header/ detail screen.

3. Change the Lower Right Row field to 20.

This makes the form big enough for your detail section.

 Fitrix VDT Screens and Menus Course Workbook

 Input Areas and Specification Files 111

4. Press [ESC] to store your change and close the window.

Add the Detail Section
Now add a detail section called Order Information to your Customer Entry program.

1. Creating a detail section title:

-------------------Order Information -------------------

2. Add the following field labels below the title:

3. Place your cursor below the 0 in Order Number.

4. Press [Ctrl-z].

The Define Fields window appears. Fields in this detail section correspond to the orders ta-
ble. Remember that a detail section is considered Input Area 2.

5. Define the Order Number field using the following values.
(Note the Table Name and Input Area fields):

6. Press [ESC] to store these values and define the field.

7. Repeat these steps until you've created a complete row of detail fields.

Once you have a complete row, use the Mark, Copy, and Paste options to create three dupli-
cate rows. As you recall, detail sections, much like zooms, display data in a row-by-row for-
mat.

When you are finished you should have four detail lines with fields for the following col-
umns:

Fitrix VDT Screens and Menus Course Workbook

112 Input Areas and Specification Files

trorders.order_num

trorders.order_date

trorders.po_num

trorders.ship_charge

Your screen should look as follows:

Define the Detail Input Area
Once the image of the Customer Entry form's detail section is correct, you must define
the Input Area.

1. Select Input Areas from the Define pull-down menu.

The Input Area list box appears.

2. Select Detail from the list box.

The Define Input Area 2 box appears.

 Fitrix VDT Screens and Menus Course Workbook

 Input Areas and Specification Files 113

3. Specify trorders as the Main Table.

Based on this value, the Unique Key value is automatically filled with the order_num val-
ue.

4. In the Join field, enter:

trcustomer.customer_num = trorders.customer_num

5. For now, disregard the other fields and press [ESC].

The Define Input Area 2 window closes.

Save, Generate, and Compile

1. Use the Save Form option under the File pull-down menu.

2. Select Generate 4GL from the Run pull-down menu.

The Generate 4gl: Enter Selection box appears.

3. Select All Forms from this box.

The Local Forms Only box appears.

4. Select YES.

5. Select Compile 4GL from the Run pull-down menu.

Run Your Customer Entry Program

6. Select Run 4GL Program from the Run pull-down menu.

The Customer Entry program starts.

7. 2. Use Find to select all existing customers.

8. Use Nxt and Prv to scroll through the records.

As you scroll, notice how values from the orders table populate the detail section of the pro-
gram. As you can see, some customers have made orders while others have not.

9. Click the button to move to the Detail section. When you are through,
remain in your Customer Entry program. The next exercise starts from here.

 Working with the User Control Libraries 115

Chapter 7
Working with the User

Control Libraries
Main topics:

� Main topics:

� User Control Library Overview

� Creating a To-Do List

� Adding Freefrom Notes

� Entering Error Messages

� Adding Help Text

� Defining Navigation Events

� Mapping Hot Keys to Navigation Events

User Control Library Overview
The User Control Libraries are a part of the Enhancement Toolkit. These libraries provide
a series of features that give your users more control over generated programs created by
VDT Application Code Generator.

The User Control Libraries provide the following:

• a set of commonly-requested features that appear in programs you create with VDT Appli-
cation Code Generator..

• a set of features that makes supporting and servicing generated applications easier.

Fitrix VDT Screens and Menus Course Workbook

116 Working with the User Control Libraries

Creating a To-Do List
A To-Do List gives the user a note pad to track the tasks they need to complete. Users

can access their To-Do List by pressing [CTRL]-[t] or clicking when they are running
an input program. To-Do lists are attached to a user's login ID, so the user's To-Do List is
available from every generated input program.

Adding Freeform Notes
Freeform Notes let users place notes in a data-entry document. The user presses [CTRL]-
[n] and adds the note. The note is bound to the header portion of the input program.
When a user defines a note, the note is permanently attached, and other users can view it.

When a note is attached to a document, the Note indicator appears in the lower left por-
tion of the window.

The To-Do List fea-

ture gives users a

note pad to track

the tasks they need

to complete.

Freeform Notes let

users place notes on

a data-entry docu-

ment.

 Fitrix VDT Screens and Menus Course Workbook

 Working with the User Control Libraries 117

Adding Help Text
The VDT Application Code Generator also provides a context sensitive help system,
which both you and program users can update and modify. When users have questions
about input fields, commands, or any program control, they can press [CTRL]-[w] or

click to see help information. Users can modify the help text by clicking or
choosing Edit/Update from the menu toolbar.

The Notes indica-

tor shows a Free-

form Note is at-

tached.

Context sensitive

help gives users the

ability to access

specific help infor-

mation about input

fields, commands,

or any program con-

trol.

Fitrix VDT Screens and Menus Course Workbook

118 Working with the User Control Libraries

Setting up Hot Keys
Hot Keys let users map keys on the keyboard to specific program events including cus-
tom Navigation events (see "Defining Navigation Events" below). To access the Hot
Keys pop-up menu, users can press [CTRL]-[e] or choose Hot Key Definitions from the
Tools pull-down menu. The Hot Keys pop-up menu serves three purposes:

1. It lets users see how their keys are mapped.

2. It lets users customize their work environment and change their default Hot Key
settings.

3. It gives users the ability to assign their own Navigation events to Hot Keys.

Hot Keys are defined in the Hot Keys window. To access the Hot Keys window, users
must highlight the key they want to define on the Hot Keys menu and press [CTRL]-[z].

Defining Navigation Events
Navigation gives users the ability to define custom program events. These events can per-
form a number of useful tasks, such as suspending one program to jump to another one.
Users can define Navigation events to go with an assortment of predefined Navigation
events. When users press [CTRL]-[g], the Navigation pop-up menu appears.

Hot Keys let users

map their keyboard

to specific program

events.

 Fitrix VDT Screens and Menus Course Workbook

 Working with the User Control Libraries 119

Users can add Navigation events by selecting "Add a navigation action" from the Naviga-
tion menu.

You must name your Navigation event in the Action Code field. You also need to de-
scribe your event in the Description field. If you are entering an operating system event,
enter the operating system command in the "Operating system command" field. For ex-
ample, if this event starts another program, enter the program command in this field.

The remaining fields on the Navigation Commands window are Y/N fields. "Press EN-
TER upon return" makes the user press [ENTER] once the event terminates. The "Access
from other programs" field specifies whether this event can be run from other programs
or not. The final field, "Allow access for others" specifies if others can use this event.

To define a Navigation event:

1. Press [CTRL-g] to open the Navigation pop-up menu.

The Navigation pop-

up menu lets users

select from a list of

predefined Naviga-

tion events.

Users can use this

menu to create Na-

vigation events.

The Navigation

Commands window

lets users define

new Navigation

events.

Fitrix VDT Screens and Menus Course Workbook

120 Working with the User Control Libraries

2. Select "Add a navigation action" from the menu.

The Navigation Commands window appears.

3. Complete the Navigation Commands window and press [ENTER].

Once you define a Navigation event, it appears on your Navigation menu.

Mapping Hot Keys to Navigation Events
You can also combine the power of Hot Keys and Navigation by defining custom Hot
Keys to operate your Navigation events. You set Hot Keys to work with Navigation
events in the Hot Keys window.

The most important field is the Action Code field. This field corresponds to the Action
Code you gave the event in the Navigation Commands window (page 9). The System
Wide? field specifies if the Hot Key is available to all system users.

To map a Hot Key to a Navigation event:

This example shows

the Run Credit Info

Program event,

which is a custom

Navigation event

defined by the user.

The Hot Keys win-

dow lets you assign

Hot Keys to Naviga-

tion events.

 Fitrix VDT Screens and Menus Course Workbook

 Working with the User Control Libraries 121

1. Define your custom Navigation event.

2. Press [CTRL]-[e] to open the Hot Keys pop-up menu.

3. Highlight an undefined key and press [CTRL]-[z].

The Hot Keys window appears.

4. Complete the Hot Key window and press [Enter].

Fitrix VDT Screens and Menus Course Workbook

122 Working with the User Control Libraries

Section Summary
� The User Control Libraries are a part of Enhancement Toolkit. These libraries provide a series of fea-

tures that give your users more control over generated programs.

� A To-Do List gives users a note pad to track the tasks they need to complete.

� Freeform Notes let users place notes on a data-entry document.

� Users can use the Error Message window to check error information. In addition, users can log the er-
rors they encounter and add more information describing the error to the Error window.

� The VDT Application Code Generator also provides a context sensitive help system, which both you and
program users can update and modify.

� Hot Keys let users map their keyboard to specific program events including custom Navigation events.

� Navigation gives users the ability to define custom program events. These events perform a number of
useful tasks, such as suspending one program to jump to another one.

� You can combine the power of Hot Keys and Navigation by defining custom Hot Keys to operate your
Navigation events.

 Fitrix VDT Screens and Menus Course Workbook

 Working with the User Control Libraries 123

Exercise 7A
Objective: To place a navigation event in your Customer Entry program. You will add an
event to check the amount of disk space available on your computer.

Access the Navigation Menu
This exercise starts from your running Customer Entry program. If not done already, start
this program.

1. From anywhere within your Customer Entry program, press [CTRL]-[g].

The Navigate pop-up menu appears.

As you can see, this menu already has several navigation events already defined. You can se-
lect any of these events to see what they do.

2. Select Add a navigation event (option one) from the Navigate menu.

The Navigate Commands window appears.

Enter a Navigation Command to Check Disk Space

1. Using the Navigate Commands window, set Action Code to check_disk .

The Action Code field contains a unique name for the event you are defining. You should try
to make this name as descriptive as possible.

2. Set Description to Check Disk Space,

Fitrix VDT Screens and Menus Course Workbook

124 Working with the User Control Libraries

3. Set the Operating system command field to the LINIX command that checks your disk
space (typically the df command).

4. Enter a Y in the Press ENTER upon retum? field.

When the df command is executed, it will return to the program. Many times commands,
such as df , return too quickly. Therefore, the Press [ENTER] prompt pauses after the UNIX
command terminates so you can read its output.

5. Press [ENTER] to save check_disk .

Run check_disk

1. Invoke the Navigate menu again by pressing [CTRL]-[g].

Notice how check_disk appears as the second option on the menu.

2. Select check_disk .

The df command runs and its output is displayed to the terminal window. Once complete, the
Press [ENTER] prompt appears.

3. Press [ENTER] to return to your program.

Edit check_disk
You can always edit a navigation event.

1. Invoke the Navigate menu again (press [CTRL]-[g]).

2. Highlight the Check Disk Space option and press [CTRL]-[z].

The Navigate Commands window appears.

3. Edit check_disk or press [ENTER] to save it as is.

4. Remain in your Customer Entry program and continue to Exercise 7B.

 Fitrix VDT Screens and Menus Course Workbook

 Working with the User Control Libraries 125

Exercise 7B
Objective: To create a navigation event that runs a separate program.

Access the Navigation Menu

1. From anywhere within your Customer Entry program, press [CTRL]-[g].

The Navigate pop-up menu appears.

2. Select Add a navigation event (option one) from the Navigate menu.

The Navigate Commands window appears.

Add an Event to Call the Credit Entry Program

1. Set Action Code to credit_program .

2. Set Description to Run Credit Info Program.

3. Set Operating system command to:

cd $HOME/labs/aw.4gm/i_cred.4gs; fglrun i_cred.42r –d $DBNAME

This command changes to the i_cred.4gs directory and starts the Credit Entry program.

4. 4. Press [ENTER] to save credit_program.

Note that you do not have to set the Press [ENTER] upon return field. When you exit the Cre-
dit program, you return directly to the Customer Entry program.

Use the credit_program Event

1. Initiate the Navigate pop-up menu.

Fitrix VDT Screens and Menus Course Workbook

126 Working with the User Control Libraries

2. Select Run Credit Info Program.

The Credit Entry program, which you created in Exercise 3, starts.

3. Select Quit from the Credit Entry program's ring menu.

The Credit Entry program exits and you return to the customer Entry program.

Exercise 7C
Objective: To map a hot key to the credit_program event.

Edit Hot Keys

1. From Customer Entry, initiate the Navigate pop-up menu again (press [CTRL]-[g]).

2. Select the Edit Hot-Keys option.

 Fitrix VDT Screens and Menus Course Workbook

 Working with the User Control Libraries 127

The Hot Keys pop-up menu appears.

3. Scroll down to near the bottom of the list. Highlight [CTRL]-[u] (which is Undefined)
and press [CTRL]-[z].

The Hot Keys window appears.

Enter the Navigation Event Codes

1. Set the Action Code field to credit-program.

2. Set Show in toolbar (R=Custom; N=None) field to N. Custom Toolbars are covered lat-
ter on in this class.

3. Press [ENTER] to save the [CTRL]-[u] hot key mapping.

If you forget the Ac-

tion Code, you can

Zoom on this field.

Fitrix VDT Screens and Menus Course Workbook

128 Working with the User Control Libraries

Press [CTRL]-[u] to Start the Credit Info Program

1. From anywhere in your Customer Entry program, press [Ctrl]-[u].

The Credit Entry program starts.

2. When finished, exit the Credit Entry program and return to the Customer Entry pro-
gram.

Edit a Hot Key Definition
If you ever need to remap a hot key you can change its definition.

1. Press [CTRL]-[e] to initiate the Hot Keys pop-up menu.

The [CTRL]-[e] sequence lets you access this menu directly; you can also select Edit Hot-
Keys from the Navigate pop-up menu or choose Hot Key Button Definitions from the Tools
pull-down menu.

2. Highlight the Hot Key you want to edit. For example, highlight the [CTRL]-[u] key.

3. Press [CTRL]-[z] to bring up the Hot Keys window.

 Fitrix VDT Screens and Menus Course Workbook

 Working with the User Control Libraries 129

4. From the Hot Keys window, you can edit the Action Code value.

For this exercise, do not change the [CTRL]-[u] hot key. It is enough for you to know how to
edit the values in this window.

5. Press [ENTER] to return to the Customer Entry program.

6. Quit out of both the Customer Entry program and the VDT Form Designer.

 Using the Screen Code Generator 131

Chapter 8
Using the VDT Application

Code Generator
Main topics:

� VDT Application Code Generator Overview

� Understanding Library Code and Local Code

� Classifying Functions

� Starting the Tools from the Command Line

Fitrix VDT Screens and Menus Course Workbook

132 Using the Screen Code Generator

VDT Application Code Generator Overview
The VDT Application Code Generator functions as the back-end to the VDT Form De-
signer. You use the VDT Form Designer to create a form image and the VDT Application
Code Generator to create code based on that form image.

The VDT Application Code Generator relies on a form specification (*.per) file to create
the 4GL source code. When you save a form image with the VDT Form Designer, a *.per
file is created automatically. In a general sense, you must complete the following steps to
develop an input program:

1. Create a form image with the VDT Form Designer.

2. Save your form image in the VDT Form Designer to create a form specification (*.per)
file.

3. Invoke the VDT Application Code Generator, which reads the *.per file and creates
4GL source code based on the instructions in the specification file (see "Creating Form
Specification (*.per) Files" on page 105).

4. Use the make utility (fg.make) to compile the source code into object code and then
link it into (*.42r) pseudo code.

5. Run the input program and use its toolbars to add, update, and delete data from the da-
tabase.

 Fitrix VDT Screens and Menus Course Workbook

 Using the Screen Code Generator 133

The following figure outlines the steps you take to develop a complete input program us-
ing the VDT Application Code Generator.

Step 1: Create a form
image with the VDT
Form Designer.

Step 2: Save your
form image to create a
form specification
(*.per) file.

Step 3: Invoke the VDT
Application Code Gene-
rator to read the .per file
and create 4gl source
code.

Step 4: Use the make
utility (fg.make) to
compile the source
code into object code
and link it to a .42r
pseudo code file.

Step 5: Run the input
program and use its
commands and tool-
bars to update data in
the database.

Fitrix VDT Screens and Menus Course Workbook

134 Using the Screen Code Generator

Files Created During the Development Process
During the development process, there are several files that get created. Each file is given
a special file extension to help you identify its file type.

Tool File Type File Extension

VDT Form Designer Form Specification Files *.per

VDT Application Code Generator Compiled Form Files *.42f

VDT Application Code Generator Genero-4GL Source Code Files *.4gl

fg.make Compiled Object Files *.42m

fg.make Executable Files *.42r

For example, if you build training program 3, these files are created:

Form
Specification

Compiled
Form

Source Code Object Executable Other

browse. per browse.42f browse.4g1 browse.42m screen3.42r Makefile

cust_zm.per cust_zm.42f cust_zm.4g1 cust_zm.42m errlog

order.per order.42f detail.4g1 detail.42m filelist.42s

stk_mnu.per stk_mnu.42f globals4gl Globals.42m tags

stockzm.per stockzm.42f header.4g1 header.42m linklist

 main.4gl main.42m

 midleve1.4g1 midleve1.42m

 stk_mnu.4g1 stk_mnu.42m

 stockzm.4g1 stockzm.42m

Note

The VDT Application Code Generator also provides a code merge (fglpp) utility that creates orig-
inal (*.org) files and merges extension and trigger (*.ext and *.trg) files to create a *.4gl file (see
"Featurizer Overview" on page 250).

 Fitrix VDT Screens and Menus Course Workbook

 Using the Screen Code Generator 135

Understanding Library Code and Local Code
You can classify code into two main categories:

1. library Code

2. Local Code

Library code has the following characteristics:

• It is shared by different programs.

• It is static; the code never changes.

• It is data independent.

• It is generic.

• It is not created by the VDT Application Code Generator. Library code is hand-coded and
always available for use.

Many program features, such as the Standard Toolbar commands, are created from li-
brary code:

Local code has the following characteristics:

• It is used by only one program.

• It is designed to change over time.

• It is data dependent.

• It is specific.

• It is created by the VDT Application Code Generator.

There are several visible examples of local code as well, such as reading in a record, add-
ing a record, and saving a record.

Fitrix VDT Screens and Menus Course Workbook

136 Using the Screen Code Generator

Classifying Functions
VDT Application code is highly modular, which means that all the code is written within
functions. Most of these functions are small, less than 20 lines long. Functions have the
following characteristics:

• All code is organized into logical code blocks.

• Possible points of modification are easily identifiable.

• All functions contain comments that describe specifically what they do.

• Function code can be reused.

• Generated functions have similar names, thus establishing consistent naming conventions.

Functions are classified according to their use. Functions can be divided into three
classes:

1. Upper-level Functions

2. Low-level Functions

3. Mid-level Functions

Upper-level functions have the following attributes:

• they are data independent.

• they are generic.

• they are usually library functions.

• they are not created by the VDT Application Code Generator.

• they are typically left unchanged.

• they are usually prefixed with ring_ or gn_

Low-level functions have the following attributes:

• they are data dependent.

• they are specific.

• they are created by the VDT Application Code Generator.

 Fitrix VDT Screens and Menus Course Workbook

 Using the Screen Code Generator 137

• they are frequently changed.

• they are usually prefixed with 1lh_ _ or 1ld_

Midlevel functions have the following attributes:

• they perform housekeeping tasks, such as initializing variables, preparing cursors, and per-
forming construct statements.

• they are created by the VDT Application Code Generator.

• they are typically left unchanged.

• they are always prefixed with mlh_ _ or mld_

Starting the Tools from the Command Line
In chapter 2, you learned how to start the VDT Form Designer and run the VDT Applica-
tion Code Generator and Fitrix make utility from within the VDT Form Designer. These
programs can also be run from the LINUX command line.

Tool Command

VDT Form Designer fg.form

VDT Application Code Generator fg.screen

Make Utility fg.make

Each command also uses several command flags that you can use to alter how the com-
mand works.

VDT Form Designer Command Syntax
The VDT Form Designer uses the following command flags and syntax.

fg.form [-dbname database] [-o{O-5}] [-f] [-y]-n]

[-p file.per]

-dbname database Specifies the database on which the VDT Form Designer
operates.

-o(0-5) Specifies the level of information displayed during code
generation. To display the least amount of information
use -o0 . To display the greatest amount of information
use -o5

Fitrix VDT Screens and Menus Course Workbook

138 Using the Screen Code Generator

-f Specifies a fast generation. The -f flag and –o0 are
synonymous.

-y|-n Specifies interactive or non-interactive generation mode.
The -y flag answers yes to all code generation prompts.

-p file.per Specifies the name of the form specification file to au-
tomatically loads upon start-up.

VDT Application Code Generator Command Syntax
The VDT Application Code Generator uses the following command flags and syntax.

fg.screen [-dbname database] [-o{0-5}] [-f] [-y|-n]

[file.per…]

-dbname database Specifies the database on which the Screen Code Gene-
rator operates.

-o(0-5) Specifies the level of information displayed during code
generation. To display the least amount of information
use -o0 . To display the greatest amount of information
use -o5

-f Specifies a fast generation. The -f flag and –o0 are
synonymous.

-y|-n Specifies interactive or non-interactive generation mode.
The -y flag answers yes to all code generation prompts.

-p file.per Specifies the name(s) of the form specification file(s)
that the Screen Code Generator reads and processes.

For a description and the syntax of the fg.make script see "Compiling Generated Code"
on page 238. And for a description of code merging utility (fglpp) see "Featurizer Over-
view" on page 250.

 Fitrix VDT Screens and Menus Course Workbook

 Using the Screen Code Generator 139

Section Summary
� The VDT Application Code Generator functions as the backend to the VDT Form Designer. You use

the VDT Form Designer to create a form image and the VDT Application Code Generator to create
code based on that form image.

� During the development process, there are several files that get created. Each file is given a special file
extension to help you identify its file type.

� You can classify code into two main categories: (1) Library Code and (2) Local Code.

� VDT Application code is highly modular, which means that all the code is written within functions.
Most of these functions are small, less than 20 lines long.

� Functions are classified according to their use. Functions can be divided into three classes: (1) Upperle-
vel Functions, (2) Lowlevel Functions, and (3) Midlevel Functions.

� The VDT Form Designer, VDT Application Code Generator, and make utility can be run from the LI-
NUX command line.

Fitrix VDT Screens and Menus Course Workbook

140 Using the Screen Code Generator

Exercise 8A
Objective: To build the Customer Entry program from outside the Form Painter. You
will rebuild the entire application from the form specification (*.per) files that you
created with the VDT Form Designer.

Make a Backup Directory

1. Click the to get to the LINUX prompt if you are not already there.

2. Move to the $HOME/ labs/aw. 4gm directory:

cd $HOME/labs/aw.4gm

3. Create a i_cust .bak directory to hold a copy the files in your i_cust.4gs directory:

mkdir i_cust.bak

4. Copy all of the files in i_cust. 4gs to i_cust.bak:

cp i_cust.4gs/* i_cust.bak

5. Move to your i_cust. 4gs directory:

cd i_cust.4gs

Remove Everything Except Your *.per Files

1. Remove all the files in i_cust.4gs except those with a *.per extension:

cp *.per ../
rm*
mv ../*.per ./

This command leaves i_cust.4gs with two files: cred_zm.per and cust .per .

2. List your files to verify that only these two files remain:

ls

 Fitrix VDT Screens and Menus Course Workbook

 Using the Screen Code Generator 141

Generate 4GL Code
The cred_zm.per and cust.per files contain all the information that is needed for the
VDT Application Code Generator to re-create source code for your Customer Entry pro-
gram.

1. From the i_cust . 4gs directory, enter:

fg.screen –o0 -y *.per

The -o flag specifies the amount of screen output to display. A 0 indicates the minimum
amount of output. A 5 indicates the maximum amount. Finally the -y flag automatically an-
swers "yes" to all prompts.

The VDT Application Code Generator reads the instructions in the *.per files and creates 4GL
source code. When the VDT Application Code Generator is finished, the LINUX prompt
reappears.

2. From the UNIX prompt, list the files in i_cust.4gs:

ls

As you can see, the Screen Code Generator creates a number of files, including a Makefile
and multiple source code (*.4gl) files.

Compile the Code
After generating code, you must convert it into object code, link it to the libraries, and
build an executable. All these tasks are handled by the compilation utility, which is
known as fg.make .

1. From the i_cust.4gs directory, enter:

fg.make

The make utility runs. When it is finished, the LINUX prompt reappears.

2. List your files again:

ls

Notice that now there are object files (*.42m) and a program file (*.42r).

Fitrix VDT Screens and Menus Course Workbook

142 Using the Screen Code Generator

Run the Customer Entry Program
Once fg.make is finished, you can run the Customer Entry program again.

1. Use the following command to run the Customer Entry program. Substitute your da-
tabse name for student1 below.

fglrun i_cust.42r –d student1

The Customer Entry program starts.

2. Quit the Customer Entry program.

 Fitrix VDT Screens and Menus Course Workbook

 Using the Screen Code Generator 143

Exercise 8B
Objective: To gain a basic knowledge of the Fourjs Genero 4GL source code built by the
VDT Application Code Generator and to become familiar with Fitrix standards and code
structures.

List the Files

1. List the files in i_cust.4gs:

ls

Notice that there are several files with a *4gl extension. These are source code files.

Examine midlevel.4g1

1. Use vi to open midlevel .4g1:

vi midlevel.4g1

This file contains generated source code that handles "housekeeping" chores such as initializ-
ing variables, preparing cursors, and locking records.

Notice how all the code is contained in functions. VDT Application Code Generator source
code is extremely modular.

Each function in mid1eve1.4g1 is prefaced with ml . These characters stand for midlevel.
Both the header and detail portion of Customer Entry have midlevel functions associated with
them. For this reason, midlevel functions are further classified as m1h and m1d, which stand
for midlevel header and midlevel detail respectively.

2. Exit from midlevel. 4gl.

Fitrix VDT Screens and Menus Course Workbook

144 Using the Screen Code Generator

Examine header.4gl and detail.4g1

1. Use vi to look through both header. 4g1 and detail. 4gl.

Both files contain lowlevel functions. The header.4gl lowlevel functions handle header
section activities such as inserting, updating, deleting, and validation checking. The de-
tail.4gl lowlevel functions do much of the same, but they control the detail portion of the
screen.

Notice how each header.4gl function names are prefaced with llh and detail.4gl
functions are prefaced with lld .

3. Exit these files.

Examine cred_zm.4gl

1. Use vi to open cred_zm.4gl

This file corresponds to your Credit Information zoom screen. Notice that there are sets of
functions, prefaced by different capital letters that perform different tasks.

Preface Use
A Opens a Zoom window.

Q Queries for selection criteria.

R Reads records into the program.

O Displays records to the zoom window.

Z Closes the zoom window.

4. Exit cred_zm.4gl.

 Fitrix VDT Screens and Menus Course Workbook

 Using the Screen Code Generator 145

 Creating Triggers 147

Chapter 9
Creating Triggers

Main topics:

� Trigger Overview

� Understanding the Trigger Concept

� Creating Triggers

� Merging Triggers into Code

Fitrix VDT Screens and Menus Course Workbook

148 Creating Triggers

Trigger Overview
In most cases, you can use the Form Editor in the VDT Form Designer to accomplish
everything an input program requires. The Form Editor lets you:

• define input fields

• specify field attribute logic, such as whether the field can be entered

• attach zoom screens

• attach lookups to validate input values

On occasion, however, you must make custom enhancements to an input program that
you cannot create in the Form Editor. For example, you might want to include some of
the following enhancement types:

• after field logic

• before field logic

• after input logic

• after change in logic

• before input logic

• after row logic

• before row logic

• event handling logic

You can create all these enhancements using triggers, which are essentially code-level
modifications to an input program.

 Fitrix VDT Screens and Menus Course Workbook

 Creating Triggers 149

Understanding the Trigger Concept
Triggers are enhancements made directly to the source code generated from the VDT
Application Code Generator. A trigger is an automatic way of placing code-level en-
hancements into the source code.

Triggers are named for logical points in the code. The following list contains some com-
mon triggers:

• after_field

• before_field

• after_input

• before_input

• on_event

Triggers get placed in trigger (".trg) files. A trigger file functions much like a form speci-
fication (".per) file. Both contain instructions that the VDT Application Code Generator
reads and understands.

A single trigger file can contain more than one trigger.

Triggers do not require you to be an expert on code structure. You simply work with the
VDT Form Designer to define the logical points at which your triggers act.

Trigger (*.trg) files should have the same name as the form specification file that they re-
late to. For example, the order.trg file relates to the order.per form specification
file.

Fitrix VDT Screens and Menus Course Workbook

150 Creating Triggers

Creating Triggers
Creating triggers is a straightforward task. There are two ways you can construct triggers:

1. You can use the VDT Form Designer.

2. You can create them by hand in trigger (*.trg) files.

Perhaps the best way to write your first trigger is with the VDT Form Designer; it pro-
vides the simplest environment to learn about trigger creation.

Using the Form Painter to Create a Trigger
Before you create a trigger using the VDT Form Designer, you should create a form im-
age and form specification file (see "Creating a Form Image" on page 38).

Once you create a program from which to work, you can define a trigger.

To add a new trigger using the Form Painter:

1. Select Triggers » from the Define pull-down menu.

If your screen type contains more than one input area, the Choose a Trigger Class pop-up
menu appears.

2. Select the input area for your trigger.

The Choose a Trigger pop-up menu appears.

3. Select the trigger you want to create.

Depending on the trigger you select, subsequent pop-up menus appear. For example, if you
select the after_field trigger, the Choose a Field pop-up menu appears. After you choose
a field, the Form Painter opens the Trigger Editor.

 Fitrix VDT Screens and Menus Course Workbook

 Creating Triggers 151

4. Enter the custom 4GL logic of your trigger using the Trigger Editor.

For example, after the shipping instruction field, you might want to display shipping rate in-
formation. With the Trigger Editor, you can specify 4GL logic that displays this information.

5. Once you enter your trigger code, press [ESC] to store your trigger.

Your trigger gets saved to a trigger (*.trg) file.

6. Press [CTRL-C] to exit the Choose a Trigger box.

Use the Trigger

Editor to enter

custom 4GL logic.

Your custom

logic can simply

display a mes-

sage after a

field.

Fitrix VDT Screens and Menus Course Workbook

152 Creating Triggers

Creating Triggers by Hand
After a while, you might find it faster and more convenient to create triggers from outside
the Form Designer. That is to say, you might want to create trigger files directly using vi
or some other LINUX text editor. Creating triggers by hand can be as simple as using the
VDT Form Designer as long as you follow the correct syntax.

All triggers follow the same general syntax:

input #

trigger argument

custom 4GL logic ...

;

Where # indicates the input area number, trigger indicates the trigger command, and ar-
gument indicates any argument that the trigger accepts.

For example, the following after_input trigger displays a short message:

input 1

 after_input

CALL gn_close(“After Input”, "After input logic")

;

Some triggers accept arguments. For example, this trigger accepts a field name (compa-
ny) as a trigger command argument:

input 1

after_field company

ALL gn_close(“After Field”, "After field logic")

;

For a complete list of triggers, trigger descriptions, and syntax refer to the VDT Applica-
tion Code Generator Technical Reference.

 Fitrix VDT Screens and Menus Course Workbook

 Creating Triggers 153

Merging Triggers into Code
Once you create a trigger, you can merge it into your source code. To merge a trigger,
however, you do not need to regenerate all your code. You can simply run either the
make utility (fg.make) or the Featurizer (fglpp).

If you are using the VDT Form Designer, simply select the Compile 4GL option under
the Run pull-down menu. If you are working from the command line, type:

fg.make

or:

fglpp [4gl-File-name]

Both commands initiate the Featurizer. The Featurizer reads your trigger (*.trg) file and
places your code enhancements into the generated source code. When you run fg.make ,
the final source code (*.4gl) files contain your enhancement logic. The Featurizer saves
your original source code in files with an *.org extension. When you run the Featurizer
(fglpp) only, you can include a specific 4GL file name as an argument, or pass no argu-
ment to merge all 4GL’s.

Fitrix VDT Screens and Menus Course Workbook

154 Creating Triggers

Section Summary
� Triggers are enhancements made directly to the source code generated from the VDT Application Code

Generator. A trigger is an automatic way of placing code-level enhancements into the source code.

� You can create triggers using the VDT Form Designer or by hand.

� Triggers let you create custom modification to logical points in your program flow.

� There are a number of triggers that can be merged into 4GL source code. Triggers are saved in trigger
(*.trg) files, these files are given the same name as the form specification files they relate to. For exam-
ple the order.trg trigger file relates to the order.per form specification file.

� The Featurizer reads *.trg files and merges the enhancements into the generated source (*.4g1) code
files.

 Fitrix VDT Screens and Menus Course Workbook

 Creating Triggers 155

Exercise 9
Objective: To add a simple before_input trigger to the Customer Entry program.

Open cust.per in the Form Painter

1. Move to $HOME/labs/aw. 4gm/i_cust. 4gs directory:

cd $HOME/labs/aw.4gm/i_cust.4gs

2. Start the Form Painter.

3. Select Open from the File pull-down menu to load cust.

Create a before_input Trigger

1. Select Triggers » from the Define pull-down menu.

The Choose a Trigger Class box appears.

2. Select Input Area 1 from the Choose a Trigger Class box.

The Choose a Trigger list box appears.

3. Select before_input from the Choose a Trigger list box.

An editing window appears.

4. Complete a gn_close function call as follows:

Fitrix VDT Screens and Menus Course Workbook

156 Creating Triggers

5. Press [ESC] to save this before_input trigger.

The Choose a Trigger list box appears again.

6. Press [CTRL]-[c] to close the Choose a Trigger box.

7. Select Save Trg File from the File pull-down menu.

 Fitrix VDT Screens and Menus Course Workbook

 Creating Triggers 157

Compile the Code

1. Select Compile 4GL from the Run pull-down menu.

The compilation utility calls the Featurizer (the code merging utility). The Featurizer merges
your custom "display" logic into the generated source code.

Run the Customer Entry Program

1. Select Run 4GL Program from the Run pull-down menu.

The Customer Entry program starts.

Check the before_input Trigger

1. Select Add from the ring menu.

Your custom "display" logic appears in a dialog box with an OK button.

2. Finish adding the record.

3. Use Find to select a record and select update.

Again, your custom logic appears.

Fitrix VDT Screens and Menus Course Workbook

158 Creating Triggers

4. Quit the program and the Form Painter.

Examine header.4gl

1. Use vi to open header. 4g1.

2. Search for before_input.

Notice that your custom logic is inserted just before the input command:

 #_before_input

 # FGLPP BEGIN cust.trg (.4gs)

 CALL gn_close("Before Input","My trigger lo gic is executing now.")

 # FGLPP END before_input

 #_end

The #_ characters mark a trigger tag. In other words, these symbols define locations where
triggers can be inserted.

3. Using vi, search for other trigger tags.

This step familiarizes you with the types of triggers that are available. You will be adding cus-
tom logic to some of these locations at a later time.

4. Exit header. 4g1.

Note

When you make a change to a form (such as adding a field or field label), you must rebuild the
program by running both the VDT Application Code Generator and fg.make . If you are only
adding custom code via triggers, save the trigger file then run the fg.make . The VDT Applica-
tion Code Generator is not required

 Managing Screen to Table Flow 159

Chapter 10
Managing Screen to Table

Flow
Main topics:

� Understanding Program Data Flow

� I/O Triggers

� Referencing Input Fields

� Common Global Variables

� The Scratch Variable

Fitrix VDT Screens and Menus Course Workbook

160 Managing Screen to Table Flow

Understanding Program Data Flow
Before you start building input programs with VDT Application Code Generator, it is
helpful to understand how data is handled by programs created with the VDT Application
Code Generator. In a general sense, input programs must perform two tasks:

1. Move data entered by the program user to the database.

2. Move data stored in the database to the screen.

The Code Generator accomplishes both tasks by creating four records (p_, m_, q_,

and s_) and two "prep" functions (p_prep and m_prep).

Data Flow Records
The p _ record: This record parallels the data elements defined on the screen. The p_
record only contains those fields displayed on your input program.

The m_ record: This record parallels information in the columns of a table. The m_
record contains variables with the same names as the columns in the database table.

The q_ record: This record contains all the columns not used by the input program but
contained in the table.

The s_ record: This record contains values that get entered from or passed to the screen.

All records start with their various type (p_, m_, etc.). After the type, the record is
named with the last six characters of the table name. For example p_stomer represents
the p_ record for the tr customer table.

Four records trans-

fer data between

the program user

and the database.

 Fitrix VDT Screens and Menus Course Workbook

 Managing Screen to Table Flow 161

After the table name, the p_ record is built from all the input fields used by the input pro-
gram. The following example shows a typical p_record:

p_orders record # Record like the order screen

 customer_num like trorders.customer_num,

 fname like trcustomer.fname,

 lname like trcustomer.lname,

 company like trcustomer.company,

 address1 like trcustomer.address1,

 address2 like trcustomer.address2,

 city like trcustomer.city,

 state like trcustomer.state,

 zipcode like trcustomer.zipcode,

 phone like trcustomer.phone,

 order_date like trorders.order_date,

 po_num like trorders.po_num,

 order_num like trorders.order_num,

 ship_instruct like trorders.ship_instruct,

 ship_weight like trorders.ship_weight,

 ship_charge like trorders.ship_charge,

 t_price money(10)

 end record,

The m_ record does not use the column names like the p_ record. Instead the m_ record
uses * notation. For example, m_stomer.* represents the m_ record for the trcustomer ta-
ble. The * notation is used to allow the m_ record to accept data all at once. The follow-
ing shows two example m_ records:

m_orders record like trorders.*. # Record like the header table

m_ritems record like tritems.*, # Record like the detail table

The q_ record is defined like the p_ record, but it contains all the table columns not used by the
program as input fields. For example:

 q_orders record # Parallel order record

 row_id integer, # SQL rowid

 backlog like trorders.backlog,

 ship_date like trorders.ship_date,

 paid_date like trorders.paid_date

 #_define_1

 #_end

 end record,

The s_ record gets defined in the Instruction section of the form specification file. It reflects the
actual values displayed by the input program.

Fitrix VDT Screens and Menus Course Workbook

162 Managing Screen to Table Flow

Data Flow Functions
The p_prep function: This function transfers data from the m_ record to the p_ record.

The m_prep function: This function transfers data from the p _ record to the m_ record.

Lowlevel Functions Used by the Data Flow
Lowlevel functions control data flow (as illustrated below). The header. 4g1 and detail.
4g1 files contain the data flow functions.:

Dataflow Header Functions Detail Functions

From Database to Input Program

database to m_ record llh_read() lld_read() .

m_ record to p _ record Ilh_p_prep() lld_p _prep()

p_ record to s_ record llh_display() lld_display()

From Input Program to Database

s_ record to p_ record Ilh_input() lld_input()

p_ record to m_ record llh_m_prep() lld_m_prep()

Data flows between

the input program

and the database by

way of four records

and two “prep”

functions.

 Fitrix VDT Screens and Menus Course Workbook

 Managing Screen to Table Flow 163

From m_ Record to Database

create a new row Ilh_add() lld_add()

update a row llh_update() none

delete a row llh_delete() lld_delete()

I/O Triggers
There are several useful triggers that are involved with the p_prep and m_prep functions.
The following shows some of the triggers that insert code into the llh* and lld* functions
shown on the previous page.

Trigger Use

on_disk_read
Inserts code just after the SQL select loads the
m_record.

on_disk_add
Inserts code just after m_record variables are inserted
into the table.

on_disk_update Inserts code just after a record is updated.

on_disk_delete Inserts code just after a record is deleted.

on_disk_record_prep
Inserts code just after the m_record is loaded with
p_record values.

on_screen_record_prep
Inserts code just after the p_record is loaded with
m_record values.

Data input and dis-

play as it is asso-

ciated with lowlevel

functions

Fitrix VDT Screens and Menus Course Workbook

164 Managing Screen to Table Flow

Referencing Input Fields in Triggers
Frequently, you want to manipulate data in fields. You can do so with various triggers.
When you reference an input field, though, you must always qualify it with its p_ record
name. For example, illustrates an affect field trigger with an incorrect input field refer-
ence:

after_field company

if company is null

then

CALL gn_close(“Error”, "You must fill in the compan y
field")

end if ;

Instead, you must qualify input fields with there p_ record name. This example shows a
correctly referenced input field:

after_field company

if p_stomer.company is null

then

 CALL gn_close(“Error”, "You must fill in th e company

 end if ;

In this case, p_stomer.company is the name of the p_ record that coincides with the
company field.

The p_ record name is always found in globals.4gl. Field names are found in the glob-
als.4g1 file as well or in the form specification (*.per) file under the ATIRIBUTES sec-
tion.

To reference table columns, you must qualify the column name with its m_ record.

 Fitrix VDT Screens and Menus Course Workbook

 Managing Screen to Table Flow 165

Common Global Variables
The Code Generator always creates a common set of variables in your globa1s.4g1 file.
These variables, which can also be referenced in triggers, are very useful. You can find
these variables under the Library communications section of your globa1s.4gl file.

 ### ################

 # Library communication area 5.40.01.01

 ### ################

 # Global variables in this section should not b e changed.

 # They are used to communicate to the screen li brary functions,

 # and must be of the same type as defined in th e library.

 # Don't remove these comments. The codegenerat or keys on them.

 #

 progid char(17), # Program identificati on

 scr_id char(8), # Current screen id

 menu_item char(10), # Current menu item ru nning

 scr_funct char(20), # Current screen funct ion being run

 sql_filter char(512), # Filter portion of SQ L statement

 sql_order char(100), # Order portion of SQL statement

 input_num smallint, # Current input sectio n within screen

 p_cur smallint, # Current input array element

 s_cur smallint, # Current screen array element

 scr_fld char(40), # Current screen field

 nxt_fld char(40), # Programmatic next sc reen field

 prev_data char(80), # Data before field en try

 this_data char(80), # Data after field ent ry

 data_changed smallint, # Has the field data c hanged?

 hotkey smallint, # The hot key that has been pressed

 wnMain ui.Window, # Genero - ui.window

 fmMain ui.Form, # Genero - ui.Form

 scratch char(2047) # Scratchpad for scrib bling on and

 # communicating betwee n functions

 # End library communication area

 ### ################

Warning: Never change the definition of these variables at the program level.

Using the Scratch Variable
The scratch variable is used as a scratch pad for temporary data values. It is used
throughout generated code.

Fitrix VDT Screens and Menus Course Workbook

166 Managing Screen to Table Flow

Quite frequently, scratch is used by VDT generated code for passing character type da-
ta between functions, such as SQL statements, messages, table names and column names.

Warning: Avoid using the scratch variable because you may overwrite information needed by the
generated code.

 Fitrix VDT Screens and Menus Course Workbook

 Managing Screen to Table Flow 167

Section Summary
� Input program data gets passed through the program code by way of records. In all, there are four

records that the generator creates: the p_ record, m_ record, s_ record, and q_ record.

� The s_ record reflects the actual values displayed by the input program. The p_ record is formatted to
parallel the input program fields. The q_ record contains table values not used by the input program.
The m_ record parallels the columns in the database table.

� Two functions convert the m_ record to the p_ record and vice versa. These functions, known as
p_prep and m_prep , control the mapping between the table columns and the program input fields.

� Data movement outside the program occurs all at once. Data values are accepted into a program from
the screen en masse by the input command. Values are displayed to the screen all at once by the display
command. The same holds true for inserts and most selects.

� Several lowlevel functions control the flow of data between the database, m_ record, p_ record, and in-
put program. There are several I/O triggers that let you add custom logic to these functions.

� When you reference a column or input field in a trigger, you must preface it with its record type. For ex-
ample, the 1name field in the trcustomer table, when called in a trigger, should be referenced as
p_stomer.lname .

� There are a variety of useful variables that are always generated in the globa1s.4g1 file.

Fitrix VDT Screens and Menus Course Workbook

168 Managing Screen to Table Flow

Exercise 10A
Objective: To reference a field on the screen and perform error-checking logic on that
field.

You will reference a p_ record variable and use an after_field trigger to perform va-
lidation. The error-checking logic that you create will require the user to supply a phone
number when entering a new customer record in the Customer Entry program.

Add a Trigger
Your trigger will test for a null value in the Phone Number field.

1. Start the VDT Form Designer in your i_cust. 4gs directory.

2. Open the main Customer Entry form (cust) in the VDT Form Designer.

3. Move to the pull-down menus and select Triggers » from the Define pull-down menu.

The Choose a Trigger Class box appears.

4. Since your Phone Number field is in the header section, select Input Area 1 from the
Choose a Trigger Class box.

The Choose a Trigger list box appears. Because you want check a field for a null value, you
want to evaluate the field once the user has moved past it. You want to use an af-
ter_field trigger.

5. Select after_field from the Choose a Trigger list box.

The Choose a Field list box appears.

 Fitrix VDT Screens and Menus Course Workbook

 Managing Screen to Table Flow 169

6. Select phone from the Choose a Field list box.

The editing window appears.

7. In the editing window, add the following custom logic:

Important

Since you are referencing a field on the screen, the field name in your logic must be qualified with
its p_ record. If this is not done, a syntax error occurs.

8. Press [ESC] to save your custom logic then [CTRL]-[c] to close the Choose a Trigger list
box.

9. Select Save Trg File from the File pull-down menu. This option writes your trigger logic
into a trigger (*.trg) file.

Fitrix VDT Screens and Menus Course Workbook

170 Managing Screen to Table Flow

Compile the Code

• Select Compile 4GL from the Run pull-down menu.

The compilation utility calls the Featurizer. The Featurizer reads the trigger (*.trg) file
and merges the after_field logic into the generated source code.

Run the Customer Entry Program

• Select Run 4GL Program from the Run pull-down menu.

The Customer Entry program starts.

Test the after_field Trigger

1. Select Add from the ring menu.

The logic that you wrote in Exercise 9 appears.

2. Enter data into the fields preceding the Phone Number field.

3. Leave the Phone Number field blank and press [ENTER].

Your error message appears at the bottom of the screen and your cursor moves to the Credit
Code field.

This result is not entirely desirable. The error message works great, but you also must control
the cursor movement. As it stands, you can save a record without entering a phone number.

 Fitrix VDT Screens and Menus Course Workbook

 Managing Screen to Table Flow 171

4. Press [ENTER] to save this record and Quit to return to the VDT Form Designer.

Modify the after_field Trigger
You can use the nxt_fld global variable in your trigger to control the condition on
which the cursor can move to the next field.

1. Return to the trigger editing window:

Select From

Triggers>> The Define pull-down menu.

Input Area 1 The Choose a Trigger Class box.

After-field The Choose a Trigger list box.

Phone The Choose a Field list box.

2. Modify your trigger code to look as follows:

5. Press [ESC] to save your custom logic then [CTRL]-[c] to close the Choose a Trigger list
box.

6. Select Save Trg File from the File pull-down menu.

Compile and Run

1. Select Compile 4GL from the Run pull-down menu.

Fitrix VDT Screens and Menus Course Workbook

172 Managing Screen to Table Flow

2. Select Run 4GL Program from the Run pull-down menu.

The Customer Entry program starts.

Test the after_field Trigger

1. Select Add from the ring menu.

The before_input logic that you wrote in Exercise 9 appears.

2. Enter data into the fields preceding the Phone Number field.

3. Leave the Phone Number field blank and press [ENTER].

This time the error message appears and your cursor remains trapped in the Phone Number
field until you add a value.

4. Add a phone number, press [ENTER], and then Quit to return to the VDT Form De-
signer.

Remove a Trigger
By now you're tired of seeing the before_input logic you wrote in Exercise 9. You can
remove this logic as simply as you added it.

1. Move to the trigger editing window:

Select From

 Fitrix VDT Screens and Menus Course Workbook

 Managing Screen to Table Flow 173

Triggers>> The Define pull-down menu.

Input Area 1 The Choose a Trigger Class box.

before_input The Choose a Trigger list box.

2. Delete both lines of the before_input trigger.

You can delete a line quickly by pressing [CTRL]-[d].

3. Press [ESC] to save your deletion then [CTRL]-[c] to close the Choose a Trigger list box.

4. Select Save Trg File from the File pull-down menu.

The before_input logic is removed.

Note

The File pull-down menu also has a Delete Trg File » option. In this case you do not want to de-
lete a trigger file because both your after_field and before_input triggers were in the
same file. Use the Delete Trg File >>> option when you want to remove ALL the triggers in that
file.

Compile and Run

1. Select Compile 4GL from the Run pull~down menu.

2. Select Run 4GL Program from the Run pull~down menu.

The Customer Entry program starts.

3. Press Add to verify that the before_input logic has been removed.

4. Once you have proven this to yourself, remain in the Customer Entry program and con-
tinue to Exercise 10B.

Exercise 10B
Objective: To replace the error statement with Fitrix's fg_err function. This function
lets you write custom error messages.

Test the after_field Trigger

1. From the Customer Entry program, select Add.

Fitrix VDT Screens and Menus Course Workbook

174 Managing Screen to Table Flow

2. Enter an invalid value in the Credit Code field (TTT).

An error message appears informing you that the value is not in the list of valid data. This
message also includes the ability to see more information about the error.

3. Press [Y] to see additional error information.

An error window appears.

In this exercise, you will call a similar error window when the user leaves the Phone Number
field empty (null).

Create Error Text

1. The header portion of an error message is stored in the stxerorh table. Use dbaccess to
insert your new error message into the stxerorh table in your student database. The sql
to do this is below. Also save this sql as stxerorh.sql in the $fg/data/sql.4gc directory.

insert into stxerorh

 (language, userdef, err_module, err_program, er r_number,
err_line)

 values

 ("ENG","","aw","i_cust", 20, "You must enter a phone number.");

 Fitrix VDT Screens and Menus Course Workbook

 Managing Screen to Table Flow 175

2. The detail portion of an error message is stored in the stxerord table. Use dbaccess to
insert your new error message into the stxerord table. The sql to do this is below. Also
save this sql as stxerord.sql in the $fg/data/sql.4gc directory.

insert into stxerord

 (language, userdef, err_module, err_program, err _number, a_b,
line_no, err_text)

 values

 ("ENG","", "aw", "i_cust", 20, "a", 1,

 "The phone number field requires a phone num ber.");

insert into stxerord

 (language, userdef, err_module, err_program, err _number, a_b,
line_no, err_text)

 values

 ("ENG","", "aw", "i_cust", 20, "b", 1,

 "Enter a phone number value.");

Note:

If a stxerorh.sql or stxerord.sql file had already existed in your $fg/data/sql.4gc directory you add
to it instead of overwrite it.

Add a Call to fg_err in Your after_field Trigger

1. Return to the trigger editing window:

Select From

Triggers>> The Define pull-down menu.

Input Area 1 The Choose a Trigger Class box.

after_field The Choose a Trigger list box.

phone The Choose a Field list box.

2. Replace the error line with a call to fg_err:

Fitrix VDT Screens and Menus Course Workbook

176 Managing Screen to Table Flow

3. Return to the pull-down menus and select Save Trg File » from the File pull-down.

Compile, Run, and Test

1. Select Compile 4GL from the Run pull-down menu.

2. Select Run 4GL Program from the Run pull-down menu.

The Customer Entry program starts.

3. Leave the Phone Number field empty to see what happens.

4. Remain in the Customer Entry program and continue to Exercise 10C.

Exercise 10C
Objective: To require input in the Credit Code field.

You will build an after_input trigger that requires the user to enter a value in this field
before the record can be saved.

Examine the Credit Code Field

1. From the Customer Entry program, select Add.

2. Press [TAB] to move past the Credit Code field.

 Fitrix VDT Screens and Menus Course Workbook

 Managing Screen to Table Flow 177

3. Complete the record and press [ENTER].

Notice how the program accepts this record without a value in the Credit Code field.

4. Quit from the Customer Entry program and the VDT Form Designer.

Examine the cust.trg File

1. Use vi to open the cust . trg file.

##################

Copyright (C) 1996-2010 Fourth Generation Softwar e Solutions Corp.

Atlanta, GA

All rights reserved.

Use, modification, duplication, and/or distributi on of this

software is limited by the software license agree ment.

Sccsid: %Z% %M% %I% Delta: %G%

##################

Form Painter version: 5.30.01.01 build: 1017

input 1

 after_field phone

 if p_stomer.phone is null

 then

 CALL fg_err(20)

 LET nxt_fld = "phone"

 end if;

To this file, you will add your after_input trigger. It is important to note that you can
create triggers by hand using vi. You do not need to build them using the VDT Form De-
signer, although the VDT Form Designer makes it easier.

2. Below the last line (end if;) add the following custom logic:

after_input

if p_stomer.credit_code is null

then

CALL fg_err(21)

let nxt_fld = “credit_code"

 end if;

3. Save and exit Cust.trg.

4. Add the new error message to your student database using the following sql. Remember
to add this sql to $fg/data/sql.4gc/stxerorh.sql.

insert into stxerorh

Fitrix VDT Screens and Menus Course Workbook

178 Managing Screen to Table Flow

 (language, userdef, err_module, err_program, er r_number,
err_line)

 values

 ("ENG","","aw","i_cust",21, "You must enter a C redit Code.");

Merge Your New Trigger Logic

• At the LINUX prompt, run fg.make:

fg.make

Remember that fg.make (which is analogous to the Compile 4GL Code option under the
VDT Form Designer's Run pull-down menu) calls the Featurizer. The Featurizer is the utility
that merges trigger (*.trg) files into 4GL source code files.

Run the Customer Entry Program

1. • Run the Customer Entry program:

fglrun i_cust.42r

The Customer Entry program starts.

Test your after_input Logic

1. Select Add from the ring menu.

2. Fill in all the fields except the Credit Code field and press [ENTER].

Your error message appears and the cursor moves to the Credit Code field.

 Fitrix VDT Screens and Menus Course Workbook

 Managing Screen to Table Flow 179

You cannot save this record until you enter a value in the Credit Code field.

3. Enter a Credit Code value, save this record, and press Quit to return to the LINUX
command line.

 Screen Handling and Add-on Headers 181

Chapter 11
Screen Handling and Add-

on Headers
Main topics:

� Using Different Screen Types

� The socketManager Function

� Linking in Add-On Screens

Fitrix VDT Screens and Menus Course Workbook

182 Screen Handling and Add-on Headers

Using Different Screen Types
In chapter two, you learned about the different screen types you can build using the VDT
Form Designer. These screen types are classified into three groups:

1. Main Screens

2. Secondary Screens

3. Auxiliary Screens

Main Screens
A main window constitutes the main part of your input program. There are two main
screen types: header and header / detail screens.

header: This is a flat type. Header screens contain one input area and one main table.

header/detail: This is a flat type (header) with another scrolling (detail) section joined to
the header. Header / detail screens are suited for order forms where there is one occur-
rence for customer information and multiple line items for merchandise.

Secondary Screens
Secondary screens are not used as stand-alone data-entry screens. Instead, they are called
from the main screen. There are four secondary screen types: add-ons, extension, query,
and view.

add-on header: This is a header screen used in conjunction with another header or head-
er/ detail screen to provide an extra window of fields. This screen type generates disk
read and write functions.

add-on detail: This is a scrolling detail-only screen. This screen can be called from any
other screen to display detail information. This screen type generates disk read and write
functions.

extension: This is a special type of screen that enables you to include an extension of the
main header table or detail table. This screen type shares data with the main screen.

query: this screen is used for building an SQL query. It can replace the mlh_construct
function.

view-detail: This is a detail-only screen that allows you to view data but not alter it.

 Fitrix VDT Screens and Menus Course Workbook

 Screen Handling and Add-on Headers 183

view-header: This is a flat screen used to view header information.

Auxiliary Screens
Auxiliary screens are unlike any other screen type. These types are used in conjunction
with the main screen and are basically used to locate and select information.

browse: This is a scrolling type screen. Its main table is the same as the header section
main table. A browse screen enables you to view one row of the header table per line ra-
ther than one row per screen. Only one browse screen can be used per program.

zoom: This is a special type of screen that enables you to view and/or retrieve data from
another table (or set of tables which are "joined").

Linking Different Screen Types to the Main Screen
You can divide the input program creation process into two main tasks: painting the form
images and linking screens together. This chapter shows you how to create and link add-
on header screens.

In an earlier chapter, you learned how to link in zoom screens, and in later chapters you
will learn how to link in other secondary screens.

Linking in an add-on header screen requires you to create a special trigger file. You call
the socketManager function from within this file.

Fitrix VDT Screens and Menus Course Workbook

184 Screen Handling and Add-on Headers

The socketManager Function
The socketManager function controls which code block or flow different screen types
use. For every screen type, there exists default library code that is processed when that
screen type gets initiated. When you link secondary screens to your main screen, you
must use the socketManager function to call the library code associated with your sec-
ondary screen type.

The socketManager function syntax looks as follows:

socketManager(" screen_name", " screen_type", flow")

screen_name This argument represents the form specification (*.per) file
less the .per extension.

screen_type This argument represents the screen type. Valid screen types
include: add-on header, add-on detail, extension, query,
view header, and view detail.

flow Flow indicates a default block of library code associated
with each screen types. In most cases, the flow is default.
Extension screen types, however, require you to specify be-
tween one of three screen types: flat_ext, deep_ext, and
view.

Designing Add-On Header Screens
Add-on header screens provide input fields to an additional table. Many times, you may
want users to add data to this table during the data-entry process. While inputting orders a
user might come across an order from a new customer. When the Customer No. field is
assigned a zero, an add-on header screen appears, and the program user can enter infor-
mation about the new customer before entering that customer's order.

 Fitrix VDT Screens and Menus Course Workbook

 Screen Handling and Add-on Headers 185

.

Building Add-On Header Screens
To build an add-on header, use the VDT Form Designer to create the form image (select
add-on header as the screen type). After you define the form image, save it to a form spe-
cification (*.per) file.

Linking in Add-On Header Screens
To link in your add-on header, you must create a trigger file that contains both the sw

itchbox_items trigger and one or more initiating event triggers, such as an af-

ter_field trigger. For more on trigger files, see "Creating Triggers" on page 150.

A value of zero in

the Customer No.

field triggers an

add-on header

screen

The program user

can quickly enter in-

formation about a

new customer, in an

add-on header

screen, before re-

suming order entry.

Fitrix VDT Screens and Menus Course Workbook

186 Screen Handling and Add-on Headers

You can use either the VDT Form Designer or a text editor to create this trigger file. For
it to work correctly, you must specify four pieces of information:

1. The name of the add-on header file, less the .per extension.

2. The trigger or event that initiates the add-on header screen. For example, the add-on header
discussed on the previous page was initiated when the Customer No. field contained a value
of zero.

3. The condition in which the add-on header screen is called. You specify condition settings with
the fgStack_push function. All add-on header screens require you to set three attributes
with the fgStack_push function: mode, filter, and order by.

4. The socketManager function.

In addition, your trigger file should be named after the main screen from which the add-
on header gets called. For example, if the main screen is defined in the order.per spe-
cification file, the trigger file where you link your add-on header should be named or-

der.trg .

The following code illustrates a switchbox_items trigger and an after_field trig-
ger. Together these triggers specify all the information necessary to link in the cust.per
add-on header screen.

Using the example, you can see where each piece of information necessary to link in the
add-on header screen gets supplied.

The default section contains the switchbox_items trigger. This trigger requires two
arguments: the add-on header form specification file name (less the *.per extension) and
the screen function. (The screen function name is always an s_ followed by the form spe-
cification file name.)

switch box_items

trigger

after_field trigger

three calls to

fgStack_push

a call to sock-

et_manager

 Fitrix VDT Screens and Menus Course Workbook

 Screen Handling and Add-on Headers 187

default

switchbox_items

cust S_cust;

The input 1 section contains the trigger or event that initiates the add-on header screen.
In the example, an after_field trigger initiates the add-on header screen.

input 1

after_field customer_um

In addition, the input 1 section contains the fgStack_push function, which sets add-
on header conditions. For add-on header screens, you need to call this function three
times. Even if you do not want to set some of these conditions, you still must pass this
function three times passing null values for the conditions you do not want to set.

The first call indicates the mode that the add-on header screen starts in. An A indicates
add mode. You can also specify a “U” for update mode.

call fgStack_push("A")

The second call indicates the selection filter. If you are opening your add-on header in
update mode, you can pass it a filter indicating which records you want updated.

call fgStack_push("")

The last call relates to both update mode and the filter you specify. It constitutes an order
by clause. If your filter selects multiple records, you can order those records by the crite-
ria you specify in the third fgStack-push function call.

call fgStack_push("")

Finally, this section calls the socketManager function, which designates the correct flow
for your add-on header screen.

call socketManager("cust", "add-on header", "defaul t")

Fitrix VDT Screens and Menus Course Workbook

188 Screen Handling and Add-on Headers

Section Summary
� You build input programs based on many different screen types. Each type has its own function.

� In all there are ten screen types. These ten types can be classified into three groups: main, secondary,
and auxiliary.

� When you build input programs you must first create the form images and then link these images to-
gether using the socketManager function.

� The socketManager function controls which code block or flow different screen types use. For
every screen type, there exists default library code that is processed when that screen type gets initiated.
When you link secondary screens to your main screen, you must use the socketManager function to
call the library code associated with your secondary screen type.

� Add-on header screens provide input fields to an additional table. Many times, you may want users to
add data to this table during the data-entry process.

� To build an add-on header, use the VDT Form Designer to create the form image (select add-on header
as the screen type). After you define the form image, save it to a form specification (*.per) file.

� To link in your add-on header, you must create a trigger file that contains both the switch-
box_iterms trigger and one or more initiating event triggers, such as an after_field trigger.

 Fitrix VDT Screens and Menus Course Workbook

 Screen Handling and Add-on Headers 189

Exercise 11 A
Objective: To become familiar with add-on header screens.

Add-on header screens provide additional data-entry screens that can be incorporated into
your input programs. These screens write to tables other than the header or detail table.

Recall that in Exercise 3, you created the Credit Entry program. You later built a hot key
to initiate this program from within the Customer Entry program. Add-on header screens
provide much the same functionality, but they are further integrated into your base pro-
gram.

Run scr_demo 5
The screen demonstration five program shows a good example of an add-on header
screen.

1. At the LINUX prompt type:

scr_train 5

2. From the Training prompt compile, generate, and run:

fg.screen -o0 -y

fg.make

fglrun screen *.42r

The training 5 program starts.

Fitrix VDT Screens and Menus Course Workbook

190 Screen Handling and Add-on Headers

Add a Customer

1. Select Add and enter 0 into the Customer Number field.

An add-on header screen appears which looks similar to your Customer Entry program.

This screen lets you add another customer record to the customer table.

2. Fill in the Customer Form and press [ENTER].

You've just added a new customer on the fly. Notice how back on the Order Form, the new
customer number is returned and placed in the Customer Number field.

3. Complete the Order Form and press [ENTER] to save it

Exercise 11 B
Objective: To create and use your own add-on header screen.

This add-on header will let users enter sales representatives to a new table from within
the Customer Entry program.

To complete this exercise, you must perform the following major steps:

1. Add a column named sales_code to the customer table.

2. Add a Sales Code field to your Customer Entry program.

3. Create a new table called trsalesrep.

4. Create an add-on header screen based on the trsalesrep table.

 Fitrix VDT Screens and Menus Course Workbook

 Screen Handling and Add-on Headers 191

5. Incorporate this screen into your Customer Entry program.

Add a Column
If you haven't done so already, move to your i_cust.4gs directory.

1. Start the VDT Form Designer and select Database from the File menu.

The Database option, as you recall, lets you change the structure of your database. You can
add, delete, and alter the columns in a table.

2. Find the trcustomer table and add the sales_code column.

3. Save this addition and press Quit to return to the VDT Form Designer. Exit the VDT
Form Designer

4. Copy your database change to the central database changes directory. You can copy the
entire dbadmin.sql file because changes are added to dbadmin.sql in the local program
directory.

cp dbadmin.sql $fg/data/sql.4gc/trcustomer.sql

Add a Field

1. Return to the VDT Form Designer, open your cust form file.

2. Add the Sales Code field to your Customer Entry form.

Probably the best location for this field is just above the Order Information detail section. Use

Fitrix VDT Screens and Menus Course Workbook

192 Screen Handling and Add-on Headers

Mark, Cut, and Paste to return the Phone Number field to its original location (below the Con-
tact Name field). Then add the Sales Code field. Define this field using the following settings:

Table Name trcustomer

Column Name sales_code

Input Area 1

Entry ?: Y

Message: Enter sales code

When you're finished, your form should look as follows:

3. Select Save Form from the File pull-down to save this change.

Function of an Add-On Screen
At this point, you could rebuild your Customer Entry program and start entering a sales
person code for each customer. But this would simply be meaningless data; you could en-
ter any characters into this field, none of which would stand for anything useful.

A better approach is to build an add-on screen based on a separate table. This table can
contain information that is relevant to the sales code. You could add informative columns
to this table, such as the sales person's name and rate of commission.

Add a New Table
Once again select Database from the File pull-down menu.

 Fitrix VDT Screens and Menus Course Workbook

 Screen Handling and Add-on Headers 193

1. Select Add from the ring menu and create the following entry:

2. Press [ESC] to save this table, but remain in the Table Information window.

Note

You may receive a Warning message about the Unique Key field. If so, simply press OK to con-
tinue.

Use AutoForm
Once salesrep is built, you can use the AutoForm option to build a default data-entry
screen based on salesrep .

1. Select the Options command and then choose AutoForm.

A default entry screen is built and placed on the Clipboard in the VDT Form Designer.

2. Select Quit from the ring menu to return to the VDT Form Designer.

Fitrix VDT Screens and Menus Course Workbook

194 Screen Handling and Add-on Headers

Create a New Add-On Header Form

1. Select New from the VDT Form Designer's File pull-down menu.

2. Name the new form "reps."

3. Select add-on header as the screen type.

4. Place the following title centered on the top line of the form:

 Sales Person Add-On Window

Paste in the AutoForm
Now add the default AutoForn image.

5. After you add the title line, press [CTRL]-[pl to add the AutoForm image.

A form built from the salesrep table appears. You can use the arrow keys to position in on
your screen.

6. "Tack" the image down by pressing [ESC].

As you can see the AutoForm image also contains a title line. You can delete this extra title
line with the [F2] key.

7. Place your cursor on the first character of the extra title line and press [F2].

 Fitrix VDT Screens and Menus Course Workbook

 Screen Handling and Add-on Headers 195

8. When complete, your reps form should look as follows:

Generate Code
Once you save your reps add-on form, you can generate code for it.

• Select Generate 4GL from the Run pull-down menu.

At this point, you do not have to compile it.

Instead, use the VDT Form Designer to reopen your cust form.

Update Genero Schema File and Database Changes

1. Exit out of the VDT Form Designer. You must update the Genero schema used by the
Genero compiler.

2. Move to the schema directory.

cd $fg/data

3. Generate the Genero schema file (substitute your database name).

sch.sh student1

4. Save all database changes to the central database changes directory.

cd sql.4gc

cp $HOME/labs/aw.4gm/i_cust.4gs/dbadmin.sql trcustomer.sql

5. Restart the VDT Form Designer in your i_cust.4gs program directory (substitute your
database name).

Fitrix VDT Screens and Menus Course Workbook

196 Screen Handling and Add-on Headers

cd $HOME/labs/aw.4gm/i_cust.4gs

fg.form -dbname student1

6. Open your cust form file.

Incorporate Your reps Add-On
After reps is built, you need to attach it to your to your Customer Entry program. You at-
tach add-on screens using triggers.

For your Customer Entry program, you will build custom logic in an after_field trig-
ger. This trigger will evaluate your Sales Code field. When this field contains an xx val-
ue, it will call your add-on.

1. In your cust form (i.e., your Customer Entry screen), build the following after_field
trigger:

2. After you create this trigger, select Save Trg File from the File pull down menu.

3. Once your trigger is saved, select Compile 4GL Code from the Run pull-down menu.

Don't try to run your program yet, it won't work until you complete the next exercise,

 Working with Switchboxes 197

Chapter 12
Working with Switchboxes

Main topics:

� Switchbox Overview

� How do Screens Get Into Switchbox

� Zooms and Switchboxes

Fitrix VDT Screens and Menus Course Workbook

198 Working with Switchboxes

Switchbox Overview
VDT Application Code Generator generated code features Switchbox logic. In general
terms, a switchbox manages flow control between library functions and local functions.
There are two types of Switchboxes:

1. Screen-Level switchbox

2. Function-Level Switch box

Screen-Level Switchbox
The screen level switchbox resides in main.4g1 and passes control to the appropriate pro-
gram screen. Screen-level switchbox is controlled by the switchbox function. This func-
tion reads the value in the global scr_id variable. The scr_id variable can contain any va-
lid form specification file in your program less the .per extension. For example, your in-
put program might contain the following form specification files:

Filename Screen Type scr_id Value

browse.per browse browse

oust.per add-on header cust

oust_zm.per zoom cust_zm

order.per header / detail default

stookzm.per zoom stockzm

As you can see, your header / detail screen (or main screen) receives default as its
scr_id value. If your program contained a header screen instead of a header/detail
screen, the header screen would receive default as its scr_id .

Depending on the value in scr_id flow is passed to the function level switchbox.

 Fitrix VDT Screens and Menus Course Workbook

 Working with Switchboxes 199

Function-Level Switchbox
The function-level switchbox determines what happens next. For each form specification
file in your program (i.e., for each screen used by your program) a function-level switch-
box is generated. The function-level switchbox reads the value in the scr_funct variable.
Once this value is read, the function level switchbox uses a large case statement to deter-
mine the appropriate action.

When the VDT Application Code Generator creates each function-level switchbox, it
names the swichbox after the form specification file or scr_id that it relates to. The only
exception being header and header/ detail form specification files. These files use the
lib_screen function as their function-level switchbox.

For example, if the scr_id variable equals cust_zm , a cust.zm function is generated
in the cust_zm.4g1 file. This function contains all the possible actions that can take
place from within the cust_zm screen.

The following code illustrates an example cust_zm switchbox function.

Fitrix VDT Screens and Menus Course Workbook

200 Working with Switchboxes

As you can see from the sample code, there are several logical points within a switchbox
function. The extended case statement provides several code points that you can custom-
ize using triggers or block commands (see "Creating Triggers" on page 150 and "Block
Commands" on page 251).

How Screens Get Into Switchbox
The screen level switchbox function, which actually uses the name switchbox , deter-
mines which program screen is active and selects the correct program flow based on the
active screen. The switchbox function evaluates the value in scr_id to know which
screen and thus which series of code to process. For this reason, it is important that you
define the links between your main program screen and your secondary screens accurate-
ly. In chapter 11, you learned how to link an add-on header screen to a main screen using
an after_field trigger, the function, and the socketManager function. You must al-
so use a switchbox_items trigger. By using the switchbox_items trigger, you de-
clared your add-on header screen to the scr_id variable. In essence, you made the
switchbox function aware of your add-on header screen.

For the screen level switchbox function to work, you must make sure that all your sec-
ondary screens get linked in properly using the switchbox_items trigger.

Code to place zoom screens into the switchbox function gets generated automatically.
When the VDT Application Code Generator reads a zoom attachment (i.e., the zoom=
line in the form specification (*.per) file), it places not only the library function that in-
vokes the zoom screen, but also the entry into the switchbox function. The VDT Appli-
cation Code Generator adopts responsibility for placing all zoom support logic into code.

 Fitrix VDT Screens and Menus Course Workbook

 Working with Switchboxes 201

The main program screen (your header or header/detail) also gets placed in automatically
when you run the VDT Application Code Generator. All other screen types must be add-
ed using the switchbox_items trigger.

The switchbox_items Trigger
You make screens known to the switchbox function with the switchbox _items trig-
ger. The switchbox _items trigger uses the following syntax:

defaults

switchbox_items

screen_name screen_function_name

Here is an example of an add-on screen being placed into the switchbox function by the
switchbox _items trigger:

defaults

switchbox_items

cust S_cust ;

The above code, placed in a trigger (*.trg) file results in the following line added to
switchbox in main.4g1:

when scr_id = “cust" call S_cust()

If a request is passed to switchbox by a library function and the switchbox function does
not know the screen to pass it to, then the following error message appears:

Fitrix VDT Screens and Menus Course Workbook

202 Working with Switchboxes

Section Summary
� Numerous screens combine to constitute an input program. All programs have a main screen (called the

"default" screen) which is either a header or header/detail type screen. Other screens such as zoom
screens and add-on header screens are attached to the main screen.

� All screens that interact with an input program must be known to the switchbox function. The
switchbox function constitutes the screen-level switchbox . There is also a function-level
switchbox . Both types of switchbox functions exist in every input program.

� Library functions pass generic requests to local code via the two switchbox function levels. The first
switchbox level (the screen level) uses the switchbox function. Its job is to receive the request
from the library functions and determine which program screen to use. The switchbox function is
generated in local code and placed in the main.4gl file.

� The second switchbox level (the function level) evaluates the screen-level request and passes control
to the appropriate lowlevel function, which handles the request. The low-level function contains all the
code to process the request. When complete, program control returns to the library function.

� The second-level switchbox contains functions with a variety of names. The lib_screen function
is the second-level switchbox function for the main screen. This function handles requests including
highlighting fields and recording values.

� Since the switchbox function passes requests based on the program screen, all screens interacting
with the input program must be "known" to the switchbox function. In other words, all screens must
have logic in switchbox so that when a request is passed to the switchbox function, it knows
where to pass the request.

� The VDT Application Code Generator automatically adds the main screen and zoom screens to the
screen level switchbox in main.4gl. All other screen types must be added using the swich-
box_items trigger.

� You can use the switchbox _items trigger to make your screen known to the switchbox func-
tion. Thus, when requests to perform something to your screen are received by the switchbox func-
tion, it can direct control to the appropriate code.

 Fitrix VDT Screens and Menus Course Workbook

 Working with Switchboxes 203

Exercise 12
Objective: To create a switchbox _items trigger that "links" the Sales Person add-on
screen to the Customer Entry screen.

Examine main.4gl
Had you tried to run your Customer Entry program at the end of Exercise 11, and at-
tempted to access your new add-on screen, the following error message would have oc-
curred:

1. Exit the VDT Form Designer and use vi to open main. 4gl.

2. Search for the switchbox function.

This function contains a "flow control" case statement that is based on the scr_id vari-
able. As you can see, your reps add-on header screen is not yet a part of this statement.
Before your add-on header screen works properly, you have to create a special trigger,
known as the switchbox _items trigger. This trigger makes your add-on header screen
known to switchbox.

Fitrix VDT Screens and Menus Course Workbook

204 Working with Switchboxes

Add the switchbox_items Trigger
The switchbox _items trigger creates a "when" clause in the switchbox function.
This trigger goes in the "defaults" section of the trigger file.

3. Start the VDT Form Designer and open your cust form..

4. Select Triggers >> from the Define pull-down menu.

The Choose a Trigger Class box appears.

5. Select Default as the Trigger Class.

The Choose a Trigger list box appears.

6. Select switchbox _items trigger.

The editing window appears.

7. Add the following line then save your trigger (select Save Trg File then Save Form. from
the File pull-down menu).

The first value (in this case reps) represents the name of your add-on header screen. The
second value (S_reps) represents the name of the function that will control your screen.

8. Compile and run the Customer Entry program.

What happens when you type xx in the Sales Code field? You should see the Sales Person
add-on screen.

 Fitrix VDT Screens and Menus Course Workbook

 Working with Switchboxes 205

 Working with Program Events 207

 Chapter 13
Adding Window Titles

Main Topics:

� Adding Window Titles

� Localized Strings

 Creating Extension Screens 209

Adding Window Titles

By default window titles are not descriptive. The default title of the main window is Main
Screen. The additional windows are titled with the name of the .per file.

Below are examples of a main program window and a zoom with the default window
titles.

Fitrix VDT Screens and Menus Course Workbook

210 Creating Extension Screens

You add descriptive window titles using is a 5 step procedure.

1. Add a Text= clause to the LAYOUT keyword in the .per file.

2. Use fglform –m <per file name> to generate a localized string source file. The name
of this string source file must match the program name.

3. Modify the string source file, manually entering descriptive window titles.

4. Create the binary string file using fglmkstr.

5. Compile the program using fg.make.

1. Add TEXT=%”module.program.perfilename” to the LAYOU T keyword in .per
file.

You use vi or another text editor to add the TEXT=%”module.program.perfilename” to
the .per file. Below are examples from training program 5. Notice the format of the string
between the quotes. The format consists of 3 parts - the module name without the .4gm,
the program directory name without any extension, and the per file name without the .per
extension.

order.per:

SCHEMA student1

LAYOUT (TEXT=%"train.screen5.order")

VBOX nm_vbox_main (TAG="tg_vbox_main")

GRID

{

 Order Form

 Customer No.:[A0] Contact Name:[A1][A2]

 Company Name:[A3]

 Address:[A4][A5]

 City/St/Zip:[A6][A7] [A8] Telepho ne:[A9]

 Order Date:[AA] PO Number:[AB] Order No:[AC]

cust.per:

SCHEMA student1

LAYOUT (TEXT=%"train.screen5.cust")

VBOX nm_vbox_main (TAG="tg_vbox_main")

GRID

{

 CUSTOMER FORM

 Number :[A0]

 Fitrix VDT Screens and Menus Course Workbook

 Creating Extension Screens 211

2. Generate a localized string source file using fglform –m

You create the framework of the localized string source file using fglform –m <perfile name>.
The string source file must match the 42r file. The string source file for the screen5 training
program was made using the following commands.

In the $fg/acconting/train.4gm/screen5.4gs directory:

fglform –m order.per > screen5.str

fglform –m cust.per >> screen5.str

fglform –m cust_zm.per >> screen5.str

fglform –m stk_mnu.per >> screen5.str

fglform –m stockzm.per >> screen5.str

3. Modify the string source file, manually entering descriptive window titles.

The output of fglform –m from the above commands must be modified; adding the descriptive
window titles. Use vi to modify string source file as outlined below.

Before modification:

"train.screen5.order"="train.screen5.order"

"train.screen5.cust"="train.screen5.cust"

"train.screen5.cust_zm"="train.screen5.cust_zm"

"train.screen5.stk_mnu"="train.screen5.stk_mnu"

"train.screen5.stockzm"="train.screen5.stockzm"

After modification:

"train.screen5.order"="Order Form"

"train.screen5.cust"="Customer Form"

"train.screen5.cust_zm"="Customer Zoom"

"train.screen5.stk_mnu"="Stock/Manufacturer Zoom"

"train.screen5.stockzm"="Stock Zoom"

4. Create the binary string file using fglmkstr.

You create a binary string file using fglmkstr using the following command.

fglmkstr screen5.str

This command creates a screen5.42s. Notice how the 42s file is named according to the pro-
gram.

5. Compile the program using fg.make.

In order for the binary string file to be used the .per files must be recompiled. You can use
fg.make to recompile them or compile each one manually using fglform <per file name>.

Fitrix VDT Screens and Menus Course Workbook

212 Creating Extension Screens

Section Summary
� Localized strings can be used to add descriptive window titles

� Adding descriptive window titles is a 5 step process

1. Add a Text= clause to the LAYOUT keyword in the .per file.

2. Use fglform –m <per file name> to generate a localized string source file

3. Modify the string source file, manually entering descriptive window titles.

4. Create the binary string file using fglmkstr.

5. Compile the program using fg.make.

 Fitrix VDT Screens and Menus Course Workbook

 Creating Extension Screens 213

Exercise 13A
Objective: Use localized strings to add descriptive window titles to the Customer Entry
Program.

Add a Text= clause the .per files

1. cd $HOME/labs/aw.4gm/i_cust.4gs

2. Add the indicated text to each of the .per files using vi.

cust.per:

LAYOUT (TEXT=%"aw.i_cust.cust")

VBOX nm_vbox_main (TAG="tg_vbox_main")

GRID

cred_zm.per

LAYOUT (TEXT=%"aw.i_cust.cred_zm")

VBOX nm_vbox_main (TAG="tg_vbox_main")

TABLE nm_table_zoom (WIDTH=49, TAG="tg_table_zoom")

Use fglform –m <per file name> to generate a localized
string source file

1. Run fglform –m <per file name> on each per file redirecting output to the string source fie named
according the program name.

fglform –m cust.per > i_cust.str

fglform –m cred_zm.per >> i_cust.str

Modify the string source file, manually entering descriptive
window titles

1. Use vi to modify the i_cust.str file as indicated below.

"aw.i_cust.cust"="Customer Form"

"aw.i_cust.cred_zm"="Credit Zoom"

Create the binary string file using the fglmkstr utility

1. Run fglmkstr on the localized string file. This creates an i_cust.4gs file.

fglmkstr i_cust.str

Fitrix VDT Screens and Menus Course Workbook

214 Creating Extension Screens

Compile and Test the Program
In order for the program to use the localized strings, the changed .per files must be recompiled. The
easiest way to do this is to use fg.make.

1. run fg.make in the program directory

2. run your program to test the window titles.

 Fitrix VDT Screens and Menus Course Workbook

 Creating Extension Screens 215

Chapter 14
Creating Extension Screens

Main topics:

� Extension Screen Overview

� Attaching Extension Screens to Main Screens

Fitrix VDT Screens and Menus Course Workbook

216 Creating Extension Screens

Extension Screen Overview
Extension screens provide users with additional screens. In effect, extensions screens "ex-
tend" the main screen.

Many times, tables contain too many columns to fit on a single input screen. Because of a
limited amount of "screen real estate," it is sometimes useful to create extension screens
from the main screen. By adding extension screens you can simplify and clarify your
main screen.

In addition, extension screens can provide conditional data-entry logic. For example, one
of your input programs might contain a Payment Method field. Perhaps your company
recognizes three types of payment methods: cash, check, and charge. Depending on the
value in the Payment Method field, you can initiate different extension screens. Say for
example that the charge value initiates an extension screen that contains Card Type,
Number, and Expiration Date fields.

The following figure shows an extension screen for adding additional customer informa-
tion:

 Fitrix VDT Screens and Menus Course Workbook

 Creating Extension Screens 217

Attaching Extension Screens to Main Screens
Extension screens, like the other screen types you've learned about, are attached to the
main screen by the socketManager function. But also like the other screens, extension
screens use a syntax all their own.

You can initiate an extension screen from a program event. There are useful triggers that
work well with extension files, such as:

• after_input

• after_field

• before_field

• on_event

You can initiate extensions screens from program events and a custom toolbar. This is
covered in chapter 18.

You must complete the following basic steps to create and attach an extension screen:

1. Use the VDT Form Designer to paint the extension image and save the image to a form
specification (*.per) file (see "Creating a Form Image" on page 38).

2. Create a switchbox_items trigger to declare the extension screen to the screen-level
switchbox function (see "The switchbox_items Trigger" on page 201).

3. Create a trigger that initiates the extension screen.

4. Use socketManager to attach your extension screen.

1. Paint the Extension Screen Image

Use the VDT Form Designer to create the extension screen image for your extension
screen. When you create the screen, make sure to select extension as the screen type.
Remember, extension screens are for additional input fields that cannot fit or are not con-
tained on the main screen. Unlike add-on header screens, extension screens work off the
same table as the main screen.

Once you create the image, save it with the Save Form option under the File pull-down.
The Save Form option generates a form specifiction (*.per) for your extension screen.

2. Add the Extension Screen to the switchbox_ltems Trigger

Like other screens, you need to declare extension screens using the switchbox_items
trigger. For example, if your extension screen is named custext , your switch-

box_items trigger would look as follows:

defaults

Fitrix VDT Screens and Menus Course Workbook

218 Creating Extension Screens

switchbox_items

custext S_custext;

3. Create a Trigger to Initiate the Extension Screen

Next, create a trigger that initiates the extension screen. For example, if you want to in-
itiate your extension screen after the user moves past the Customer No. field, insert the
following lines of code:

input 1

after_field customer_num

4. Use socketManager to Attach the Extension Screen

Finally, use socketManager to attach the extension screen. Unlike the add-on header
and zoom screen types, extension screens don't require you to use the fgStack_push
function. You only need to use the socketManager function. For example, to attach the
custext extension screen to your main screen, insert:

input 1

after_field customer_num

call socketManager("custext "extension", "flat_ext");

When you attach extensions screens with socketManager , the flow parameter differs
slightly. Instead of using default as the flow parameter, extension screens use one of
three values: flat_ext , deep_ext , and view . Extension screens require multiple flow
values because you can link multiple extension screens together. The following list ex-
plains the different flow parameters available with extension screens.

flat_ext The flat_ext flow parameter determines how the program handles
an interrupt (i.e., user pressing [ESC]). If a user presses [ESC] in Ext
#1 in the first diagram below, all edits to Ext #2 and #3 are retained.

deep_ext The deep_ext flow parameter operates in the exact opposite of the
flat_ext parameter. If a user presses [ESC] in Ext #1, all edits in Ext
#2 and Ext #3 are rolled back.

view This flow only lets users view the data within extension screens.

 Fitrix VDT Screens and Menus Course Workbook

 Creating Extension Screens 219

By putting all these code pieces together and using the Featurizer to merge your trigger
file, your extension screen gets attached.

If a user pressed

[ESC] in Ext #1, all

edits to Ext #2 and

#3 are rolled back.

Fitrix VDT Screens and Menus Course Workbook

220 Creating Extension Screens

Section Summary
� Extension screens provide users with additional screens. In effect, extensions screens "extend" the main

screen.

� Extension screens provide extra space, so you can simplify and clarify the main screen. In addition, ex-
tension screens can be used as data-entry control devices.

� You can initiate an extension screen from any program event, such as a trigger, a pop-up menu, or a
mapped hot key.

� You attach extension screens with the socketManager function. The socketManager recognizes
three different flow parameters for extension screens: flat_ext , deep_ext , and view .

� Each flow parameter has a different function. The flat_ext flow is for extension screens that are in-
dependent from calling screens. The deep_ext flow is for extension screen that are dependent on call-
ing screens. The view flow is for extension screens that only display data (i.e., users can't add or update
values on a view extension screen).

 Fitrix VDT Screens and Menus Course Workbook

 Creating Extension Screens 221

Exercise 14
Objective: To create an extension screen that allows you to enter additional data into the
customer table.

You will start by adding three columns: card_no , exp_date , and card_holder . You
will then place these columns on a custext extension screen. Finally, you will incorpo-
rate this screen into your Customer Entry program with an after_input trigger.

Add the Columns

1. Using the VDT Form Designer (or dbaccess) add the following columns to the customer
table.

Column Name Description Type

card_no Card Number char(20)

exp_date Expiration Date date

card_holder Card Holder char(20)

Save these changes and return to the VDT Form Designer. Remember to update your database’s schema file
in $fg/data with sch.sh <database name>.

Create the Extension Screen

1. Use the VDT Form Designer to create a new form. Name it custext and define it as
type extension.

2. Create a title line.

 Additional Customer Fields

3. Label and define three fields, one for each of the columns you just added. Your exten-
sion screen should look as follows:

Fitrix VDT Screens and Menus Course Workbook

222 Creating Extension Screens

Save and Generate

1. Use Save Form to save your new form.

2. Invoke the VDT Application Code Generator to create 4GL code for your new form.

3. When the Generator has finished, exit the VDT Form Designer and list your files (type
1s at the LINUX prompt).

Notice that the Generator has created a new source code file for your custext.per file.
This source code file contains all the lowlevel source code to drive your custext extension
screen.

Create an after_input Trigger
You can use the after_input trigger to attach your custext extension screen to your
Customer Entry program. Several other triggers will work as well, but the after_input
trigger is a common choice.

1. Use vi to open cust. trg.

2. In the input 1 section add the following lines of code:

after_input trigger to call my custext extension screen

call socketManager("custext", "extension". "flat_ex tlt);

Note

If you already have an after_input trigger defined, which you should because you created one
in Exercise 10C you must add these lines below it. You do not, and cannot, add two identical trig-

 Fitrix VDT Screens and Menus Course Workbook

 Creating Extension Screens 223

gers (for example, two after_field customer_num triggers). You should just combine the
code under one trigger. Make sure to remove the semi-colon that terminates the first af-
ter_input trigger or a syntax error will occur.

Your complete after_input trigger should look as follows:

after_input

if p_stomer.credit_code is null

then

error "You must fill in the Credit Code field"

let nxt_fld "credit_code"

end if

 # after_input trigger to call my custext extensi on screen

call socketManager{"custext"1 "extension", «flat_ex t"};

Also add a custext line to your switehbox_items trigger.

This trigger should now include three lines. A reps line, a saleszm line; and a custext line.

switchbox_items

reps S_reps

saleszm saleszm

custext S_custext;

Save cust.trg.

Compile the code and run Customer Entry.

Select Add to create a new record.

Fill in all the fields on the header portion of the screen and click the Detail button to move to the
detail portion.

Your custext extension screen appears.

Fitrix VDT Screens and Menus Course Workbook

224 Creating Extension Screens

Complete the Additional Customer screen and quit out of your Customer Entry program.

 Version Control and Conventions 225

Chapter 15
Version Control and

Conventions
Main topics:

� The Fitrix Directory Structure

� Version Control Overview

� Building Custom Versions

� Table Naming Conventions

Fitrix VDT Screens and Menus Course Workbook

226 Version Control and Conventions

The Directory Structure
All software products utilize a four-tiered directory structure: Fitrix, application, module,
and program.

The directory contains all your programs. It is usually represented by the $fg environ-
ment variable. The application tier is rather general. It contains a set of related modules.
The module level is more specific. Every module directory is given a .4gm extension.
Within each module directory exists a set of related programs. The program tier is the
lowest tier. Each program directory contains a single input, output, or posting program.
Program directories have a .4gs extension.

The following graphic shows a sample directory structure:

$fg

accounting

ar.4gm ap.4gm gl.4gm oe.4gm

o_vendls.4gs i_invce.4gs p_invce.4gs

Application

Module

Program

 Fitrix VDT Screens and Menus Course Workbook

 Version Control and Conventions 227

Version Control Overview
Version control lets you create multiple flavors of a program without duplicating code.
Version control is useful when two or more users require different program functionality.

Version Control Directories
Version control uses custom directories that are parallel to program (*.4gs) directories. In
the custom directories, you place specification or trigger files that are unique to your cus-
tom version. By default, version control recognizes *.4gc directories as custom version
directories. You can have as many custom version directories as you want. For example,
if you want to have a custom version of the Invoice Entry program, you need to create a
custom directory.

The cust_path variable lets you specify the order in which version control works. To
merge base functionality with the new functionality you've added in i_invce.xyz, set
cust_path as follows:

cust _path = xyz:4gs ; export cust_path

The cust_path variable describes the starting point from which the merge utility should
start on the cust_path . For the above example, cust_key should be set as follows:

cust_path = xyz:4gs ; export cust_path

 ap.4gm

i_invce.4gs i_invce.xyz

Module directory

Program and Version

Control directories

Fitrix VDT Screens and Menus Course Workbook

228 Version Control and Conventions

fg.newver
The fg.newver script sets up a custom directory for you. When you run fg.newver, make
sure you set cust_key to the directory extension you are using for your custom programs.
The default is ‘4gc’. The syntax of fg.newver is:

fg.newver <base directory>

Where <base directory> is the .4gs directory without the .4gs extension.

Example: fg.newver i_cust

fg.newver does the following:

1. Creates a Makefile

2. Creates a base.ext file with start file statements for each 4gl in the .4gs directory

3. Creates a base.set file from the base.set in the .4gs directory

4. Copies over any .42f files from the .4gs directory

Building Custom Versions
You can use version control logic to build multiple versions of a base program or to build
increasingly rich enhancements to a base program. Perhaps the simplest case involves
modifying an input screen.

For example, suppose you are customizing the i_invce.42r program, which is located
in ap.4gm/i_invce.4gs directory. You know that this program is built from a series
of form specification (*.per) files, where each *.per file represents a different program
screen. If, on your custom version, you want to add an input field to the main screen, you
would need to complete the following steps:

1. Make sure you set cust_key and cust_path correctly. Use fg.newver to create and setup
your custom program directory. (i_invce.xyz).

2. Copy the main screen .per file to your custom directory.

3. Use the VDT Form Designer to add a field to the screen.

4. Run the VDT Application Code Generator (fg.screen) in the custom directory
(i_invce.xyz).

 Fitrix VDT Screens and Menus Course Workbook

 Version Control and Conventions 229

Once initiated, the Screen Code Generator takes the following steps:

1. Searches your current directory (i_invce.xyz) and reads the modified form specifi-
cation file.

2. Searches the base directory (i_invce.4gs) for additional specification files.

3. Generates the 4GL code necessary to build your custom program.

You can then run the fg.make utility in the custom directory to compile the custom
program. Once complied, you can issue the following command to run the custom ver-
sion:

fglrun *.42r –d <Database Name>

Procedures to Modify Programs
Modifying Screens:

1. Copy the .per files to be modified to your customer directory

2. Make your changes

3. Regenerate the code using fg.screen

4. Recompile using fg.make

Modifying Reports:

1. Copy the report.ifg file to be modified to your custom directory

2. Make changes to the report.ifg

3. Regenerate the code using fg.report

4. Recompile using fg.make

Making Changes to .4gl files:

1. Make changes using an .ext file in your custom directory

2. Add your .ext file to the base.set file in your custom directory

3. Merge the code and recompile using fg.make

Modifying or Adding Any Database Tables:

1. Make sure to save any alter statements and create statements in an .sql file. Add
the .sql file to $fg/data/sql.4gc. If you use a different custom directory extension,
change the .4gc extension. A good convention to follow is to use <table

Fitrix VDT Screens and Menus Course Workbook

230 Version Control and Conventions

name>.sql for the .sql file name. Making these .sql files clearly documents the
changes you made and allows you to re-use the statements when you apply the
modification to other operating environments.

2. If you add columns to an already existing table, remember to include sql state-
ments to properly initialize the new column.

Document Your Modification:

1. Copy the INFO file form the .4gs directory to your custom directory.

2. Add entries to the bottom of the INFO file for your changes. By doing this you
are also documenting the patch level of the program for which you made your
changes.

Development, Training and Production Environments
The Fitrix product comes with 3 environments:

� The Development environment “fx_dev” is a completely separate area to
allow your programmers to develop customizations to Fitrix without dis-
turbing your production software. Once a change has been developed and
tested, the new software should be installed in the production area. The De-
velopment database is called ‘standard’ and it is fully populated with sam-
ple data from a sample company when Fitrix is installed.

� The Training Environment “fx_train” is another completely separate
area to allow end users or programmers to train on the Fitrix soft-
ware.

� The Production Environment “fx_prod” contains the versions of the
programs your business will run, and the “live” database you will
use. The Production database is called “live” and it is empty when Fi-
trix is installed so that it is ready for you to begin setting up your
company’s data.

Each environment is under the main installation directory according to the following dia-
gram.

 Fitrix VDT Screens and Menus Course Workbook

 Version Control and Conventions 231

Moving Modifications to Other Environments
You ordinarily make your modifications in the development environment. After your
modification is tested in the development environment you need to move your modifica-
tion to the training and production environments.

Below is a procedure you can use to move your modification to another environment.
The instructions below are for moving a modification from the development environment
(/firtix/fx_dev) to the production environment (/fitrix/fx_prod). These instructions also
use a .4gc as the custom directory extension.

1. Verify that the target environment does not already contain a .4gc version of the
program. If the target environment does have a .4gc version of the directory, re-
name the target environment directory to a xxxx.4gc.yyyymmdd where xxxx is
the base name of the directory and yyyymmdd is the current date.

Example: mv i_invce.4gc i_invce.4gc.20101001

2. Navigate to the parent module directory in the development directory. Execute:

cp –R i_invce.4gc /fitrix/fx_prod/accounting/ar.4gm

Installation
Directory
(/fitrix)

Development
fg_dev

Training
fx_train

Production
fx_prod

accounting accounting accounting

.4gm Directories .4gm Directories .4gm Direcories

Fitrix VDT Screens and Menus Course Workbook

232 Version Control and Conventions

3. If the modification included database changes, execute the .sql file you created earli-
er against the appropriate databases for the production environment.

4. If the production environment is on a separate physical server where the Linux ver-
sion may be different than the source system, it is always a good idea to re-compile
the program on the new server (assumes you have a development license on the pro-
duction server).

Table Naming Conventions
Many accounting application tables follow a specific naming convention. The manufac-
turing application modules follow a different table naming convention. For accounting
tables, each table name is composed of eight characters, and the last six characters must
be unique. The eight-character name is divided into four sections.

The first two characters classify the table as either a application table or a Screen Code
Generator table:

st Application Table

cg Code Generator Table

The third character relates to the product, for example:

s Screen

d Database Program in VDT Form Designer

m User-Defined Menus

x Non-Product Specific

The next four characters classify the type of data, for example:

eror Error Text

help Help Text

mssg Messages

note User-Defined Notes

The last character specifies the role of the table:

r Reference (usually the same as a header)

Table names are di-

vided into four sec-

tions.

 Fitrix VDT Screens and Menus Course Workbook

 Version Control and Conventions 233

d Detail

h Header

Fitrix VDT Screens and Menus Course Workbook

234 Version Control and Conventions

Section Summary
� Fitrix uses a four-tiered directory structure. The top tier is set by the $fg variable. It points to the instal-

lation directory. The second tier is known as the application directory. It contains an entire suite of re-
lated modules. Fitrix uses accounting as application directory names.

� Beneath the application tier is the third tier or module tier. Each module directory contains a set of re-
lated input, output, and posting programs. All module directories use a "".4gm extension. For example,
you might have a set of Accounts Payable programs in a ap .4gm directory.

� The final and fourth tier is known as the program directory. Each program directory contains a single
generated program built by the VDT Application Generator or Report Generator. Fitrix program directo-
ries use a "".4gs extension.

� Version control lets you create multiple flavors of a program. Version control is useful when you want
to customize base functionality.

� Accounting tables follow a specific naming convention. Each table name is composed of eight charac-
ters and the last six characters must be unique. The eight-character name is divided into four sections.
The manufacturing application uses a different table naming convention, where names vary in length,
and are not named for an owning module, as manufacturing tables are typically used by multiple mod-
ules.

 Fitrix VDT Screens and Menus Course Workbook

 Version Control and Conventions 235

Exercise 15
Objective: To create a custom version of your Customer Entry program in a version con-
trol directory.

Version control is extremely useful when you need to customize a specific portion of
your base program. In this exercise you will modify your Customer Entry program in a
version control directory. You will end up with two versions of Customer Entry, but you
will only have one code stream.

Create a i_cust.4gc Directory
By default, Fitrix Visual Menus recognizes the *.4gc extension as a version control ex-
tension. To create a version control program, you must create a new directory parallel to
your program directory. Give this new directory the same name as your program directo-
ry, but replace the *.4gs extension with a *.4gc extension.

1. Use the cd command to move to your aw. 4gm directory.

2. Use mkdir to create a new directory. Name it i_cust.4gc .

3. Use cd again to move to i_cust.4gc .

Copy your *.per Files

1. In your i_cust.4gc directory, copy over all your form specification files (*.per) from
i_cust. 4gs:

cp ../i_cust.4gs/*.per .

2. Start the Form Painter from your i_cust .4gc directory and open your cust .per file.

3. Add a title line to read:

 Acme Inc Customer Entry Window

In most cases, you will customize more than the title line. But adding this line adequately de-
monstrates version control.

4. Save your changes and exit the Form Painter.

Fitrix VDT Screens and Menus Course Workbook

236 Version Control and Conventions

Generate and Compile

1. From i_cust.4gc, run the Screen Code Generator.

2. When the Generator finishes, use ls to view the files it created.

Notice that the Generator creates a whole new set of *.4g1 files and a Makefile.

3. Now run fg.make to link and compile the code.

Run Your Custom Version
After you generate and compile, run your version control program:

• fglrun i_cust.42r –d <database name>

Once you initiate Customer Entry, your custom version appears:

 Compiling Generated Code 237

Chapter 16
Compiling Generated Code

Main topics:

� Compiling Generated Code

� Modifying Libraries

� Understanding the Library Philosophy

� Adding a Custom Library

Fitrix VDT Screens and Menus Course Workbook

238 Compiling Generated Code

Compiling Generated Code
Compiling generated code means turning 4GL source code and triggers into a runnable
program (that is capable of being executed by the ‘fglrun’ runner). Fitrix gives you the
ability to do this for a single program or a group of programs.

You compile code using the Make Utility. This utility is run with the fg.make com-
mand. When you run fg.make , it completes the following tasks:

• Merges Custom Code: The fg.make command calls the Featurizer (fglpp) program. The
Featurizer merges custom code into your program source code (see "Featurizer Overview"
on page 250).

• Compiles Source Code and Form Specification Files: fg.make also compiles both your
source code (.*4gl) files and form specification (*.per) files.

• Links Local Function Calls to Library Functions: The fg.make command resolves library
function calls in local (i.e., source code) to their corresponding library functions.

• Produces Runnable Program File: The last task of fg.make is to construct a runnable pro-
gram file. The fg.make command creates Genero *.42r.

The final three tasks are controlled by the standard LINUX make utility, which is called
by fg.make. In general, the LINUX make utility tracks the dependencies that files have to
each other.

The LINUX make utility uses a specification file of its own. This file, called the Makefile
contains all the instructions necessary for make to work. You do not have to create the
Makefile however. It is created automatically by the VDT Application Code Generator.

For the most part, you do not need a complete understanding of the LINX make utility in
order to use it. You should simply realize that it is called from the fg.make command and
it produces a program file that you can run.

The fg.make command uses a number of command flags:

fg.make [-h][-L library] [-m{n|o|f|of}]

[-f] [-a]

-h Prints an entire list of fg.make command flags.

-L library Specifies the name of any additional libraries you want fg.make
to link in.

-mn Does everything except merge code. In other words, when you use
the -mn flag, the Featurizer is not called.

 Fitrix VDT Screens and Menus Course Workbook

 Compiling Generated Code 239

-mo Runs the Featurizer (merges code) but does not perform a compila-
tion.

-mf Overrides timestamp comparison logic and forces a custom code
merge.

-mfo Overrides timestamp comparison logic and forces a custom code
merge. This flag does not perform a compilation, however.

-f Performs a fast link. You should only use this flag in compiles
where no new calls to library functions have been added.

-a Causes all files to be compiled regardless of dependencies.

-l Link only.

Fitrix VDT Screens and Menus Course Workbook

240 Compiling Generated Code

The Makefile
It does help, though, to have a working knowledge of the Makefile . The Makefile
contains several sections. Each section supplies make with information about your pro-
gram.

As you can see, the Makefile lists the files necessary to create your program. For exam-
ple, the LIBFILES section shows all the libraries used by your program (lib.RDS,

scr.$DS, user_ctl.RDS and standard.RDS).

If cust_path is set, and additional entry is produced in the Makefile called CUST_PATH.
The CUST_PATH entry in the Makefile overrides any environment variable setting.

 Fitrix VDT Screens and Menus Course Workbook

 Compiling Generated Code 241

Library Overview
A library holds code shared by multiple programs. The code is structured into functions.
Each function performs a single task and works independently from other code. For ex-
ample, several programs require a message that reads, "Please wait." Instead of duplicat-
ing the same lines of code in each program directory, you can simply place a call to the
library function that displays the "Please wait" message.

The VDT Application Code Generator makes extensive use of libraries. These libraries
are contained in the $fglibdir/lib directory. Each library contains related functions.
For example, the standard library contains functions shared by both input and output pro-
grams, such as the "Please wait" message, which is in the pls_wait.4g1 file:

Fitrix VDT Screens and Menus Course Workbook

242 Compiling Generated Code

Creating Custom Libraries
If you have programs that share common functions that are not in the libraries, you can
create your own custom library.

Custom libraries are created at the module directory level (the *.4gs level). Just like the
libraries, custom libraries contain functions that perform specific, independent tasks.
These functions are placed in source code (*.4gl) file.

For example, to create a custom library called my1ib:

1. At the program directory level, create a mylib.4gs directory.

mkdir mylib.4gs

2. Move to mlib.4gs and create each custom function in its own source code (*.4gl) file.

3. Copy a library Makefile into mylib.4gs .

cp $fg/lib/standard.4gs/Makefile mylib.4gs

In order to compile your library code there must be a Makefile present. You can build a
Make file by hand or you can modify the one in the standard.4gs library.

4. Replace the Makefile's section with your function filenames.

For example, if mylib.4gs contains wincl.4gl, windl.4gl, and winop.4gl
The LIFILES section should read:

LIBFILES = \

$(LIB)(wincl.o) \

$(LIB)(windl.o) \

$(LIB)(winop.o)

5. Change the LIB=../standard.a line to read:

LIB= ../mylib.a

6. Finally, run fg.make in the mylib.4gs directory.

To create a custom library for an existing fitrix module to add functions and override ex-
isting functions in a lib.4gs directory, you can create a lib.4gc directory. When you use
the default .4gc extension you need not add the library to a program’s local Makefile.
But you must stick to a strict convention for the LIB line in the lib.4gc’s Makefile. You
must have the following LIB line in your lib.4gc’s Makefile:

LIB= ../lib4gc.a

 Fitrix VDT Screens and Menus Course Workbook

 Compiling Generated Code 243

Using a Custom Library
Once you create a custom library, you can use it in your programs. You must add your
custom library to the LIBFILES section of the program's Makefile . In other words, if
you call custom library functions in your program code, you must tell the LINUX rnake
utility where to look to find the custom library functions.

For example, if your program calls windl , which is in your custom mylib.4gs library,
the LIBFILES section must include mylib.a.

You can add libraries to your program's Makefile using the libraries trigger. For exam-
ple, the following libraries trigger adds the mylib library to your program's Makefile :

defaults

libraries

.. /mylib.a

This trigger changes your Makefile to look as follows:

#_libfiles library list

LIBFILES ../lib.a \

.. /mylib.a \

$(fg) /lib/scr.a \

S(fg) /lib/user_ctl.a \

$(fg) /lib/standard.a

Another trigger, the custom_libraries trigger, also lets you add libraries to your pro-
gram's Makefile . The custom_libraries trigger places your custom library above
the ../lib.a \ line in the Makefile . For example, the following cus-

tom_libraries trigger places your mylib library first on the LIBFILES list.

defaults

custom_libraries

../mylib.a

This trigger changes your Makefile to look as follows:

#_libfiles library list

LIBFILES .. /mylib.a \

.. /lib.a \

$(fg)/lib/scr.a \

$(fg)/lib/user_ctl.a \

$(fg)/lib/standard.a

Fitrix VDT Screens and Menus Course Workbook

244 Compiling Generated Code

Section Summary
� Compiling generated code means turning 4GL source code into a runnable program. The VDT Applica-

tion Code Generator gives you the ability to do this for a single program or a group of programs.

� You compile code using the Make Utility. This utility is run with the fg.make command.

� The .make command merges custom code, compiles source code and form specification files, links local
function calls to library functions, and produces a rurmable program file.

� The fg.make command uses the standard LINUX make utility, which is called by .make. In general,
the LINUX make utility tracks the dependencies that files have to each other.

� The Makefile contains several sections. Each section supplies make with information about your
program. For example, the LIBFILES section shows all the libraries used by your program.

� A library holds code shared by multiple programs. The code is structured into functions. Each function
performs a single task and works independently from other code.

� The VDT Application Code Generator makes extensive use of libraries. These libraries are contained in
the $fglibdir/lib directory.

� If you have programs the share common functions that are not in the libraries, you can create your own
custom library.

� Custom libraries are created at the module directory level (the *.4gs level). Just like the libraries, cus-
tom libraries contain functions that perform specific, independent tasks. These functions are placed in
source code (*.4gl) files.

� Once you create a custom library, you can use it in your programs. You must add your custom library,
however, to the LIBFILES section of your program's Makefile . In other words, if you call custom
library functions in your program code, you must tell the LINUX make utility where to look to find the
custom library function.

� If you create a lib.4gc at the Fitrix module directory level, you need not add the library to your pro-
gram’s Makefile. You must remember the LIB = ../lib4gc.a line in the lib.4gc’s library Makefile.

 Fitrix VDT Screens and Menus Course Workbook

 Compiling Generated Code 245

Exercise 16A
Objective: To create a custom library and add a function to it.

Create a Library Directory

1. Use the cd command to move to your aw. 4gm directory.

2. Use mkdir to create a new directory called mylib.4gs and use cd to move to that di-
rectory.

This is your custom library directory. Within this directory, you can create custom functions
for your programs.

Create a Custom Library Function

1. Use vi to open a new file called hello.4gl.

2. Add the following function to your new file:

function hello ()

 call gn_close("Hello", "Hello fitrix world.")

end function

3. Use vi to create a new Makefile that looks as follows:

4. While you are still in mylib. 4gs, run fg.make.

The fg.make script compiles your library and creates a parallel RDS version of your
library at the module directory level.

Fitrix VDT Screens and Menus Course Workbook

246 Compiling Generated Code

Add a libraries Trigger
To use your new hello() function, you must add your custom library to the Makefile
le in your i_cust.4gs directory. A special trigger, called libraries lets you do this.

1. Use cd to move to your i_cust.4gs directory.

2. Use vi to open your cust.trg trigger file.

3. Add the following code to the defaults section of cust.trg:

libraries

../mylib.a

;

This trigger adds your custom mylib library to the LIBFILES list in the program
Makefile .

4. Save and quit from cust.trg .

Add a before_input Trigger
To implement your new hello() function, you must use it from somewhere in your
program. Perhaps the simplest way to use it is with a before_input trigger.

3. Use vi to open cust.trg.

4. In the input 1 section, add the following lines of code:

before_input

call hello();

This trigger simply calls your hello() function, which is in your custom mylib li-
brary.

5. Save and quit from cust.trg.

Compile the Code

1. Run fg.make to compile the code.

Run Your Customer Entry Program

2. Run your Customer Entry program.

3. Select Add from the ring menu.

What happens? Do you see the "Hello fitrix world" message?

 Fitrix VDT Screens and Menus Course Workbook

 Compiling Generated Code 247

4. Quit from your Customer Entry program.

Exercise 16B
Objective: To call hello() from the Credit Entry program.

Custom libraries allow you to call custom functions from anywhere in your module direc-
tory. In other words, custom libraries work with all the programs in your module. You
have already used the hello() function in your Customer Entry program. Now you will
add a call to this function from your Credit Entry program.

Create a cred.trg Trigger File

1. Use cd to move to the i_cred. 4gs directory.

2. Use vi to create a cred.trg file.

3. Add the following libraries trigger to cred.trg:

defaults

libraries

../mylib.a

;

4. Save and exit cred.trg.

Add a libraries Trigger

1. Use vi to open credit.trg.

2. Just below your libraries trigger, add the following code:

input 1

before_input

call hello () ;

Fitrix VDT Screens and Menus Course Workbook

248 Compiling Generated Code

Your complete credit.trg file should look as follows:

defaults

libraries

.. /mylib.a

;

input 1

before_input

call hello();

3. Save and exit credit.trg.

Compile the Code

1. Run fg.make to compile the code.

Run Your Credit Entry Program

1. Run your Credit Entry program.

2. Select Add from the ring menu.

What happens? Do you see the "Hello fitrix world" message?

3. Quit from your Credit Entry program.

 Building a Menuing System 249

Chapter 17
Using the Featurizer

Main topics:

� Featurizer Overview

� Creating Block Commands

� Pluggable Feature Sets

� Triggers Versus Block Commands

Fitrix VDT Screens and Menus Course Workbook

250 Building a Menuing System

Featurizer Overview
The Featurlzer performs two tasks:

1. It copies *.org files, which are created by the VDT Application Code Generator, into
*.4g1 files.

2. After it creates the *.4g1 files, the Featurizer merges the custom code into the source
*.4g1 files.

Both the VDT Application Code Generator and the fg.make command run the Featuriz-
er automatically. You can also run the featurizer directly with the fglpp command.

For instance, if you want to merge custom code into header.4g1 , type:

fglpp header.4g1

You have already learned how to create custom modifications in trigger (*.trg) files. In
addition to trigger files, though, the Featurizer also reads extension files and merges them
into your source code (*.4gl) files. Extension (*.ext) files are similar to trigger files, but
extension files act on physical locations in source code. Within extension files you create
block commands.

The Featurizer cop-

ies generated *.org

files into *.4gl files.

After copying the

*.org files, the

Featurizer then

merges custom code

into source code.

 Fitrix VDT Screens and Menus Course Workbook

 Building a Menuing System 251

Block Commands
Block commands let you customize physical points within generated source code. Be-
cause block commands act on physical locations, you must address where you want your
block command to go. A code address contains three parts: filename, function name, and
block tag.

You already know about filenames and function names, but block tags are a new concept.
For example, the mlh_cursor function in the midlevel.4g1 file contains eight block
tags. You can easily identify block tags because they all begin with the same two charac-
ters (#_) followed by their block name. For example, #_define_var is the first block
tag in the mlh_cursor function:

Block tags pinpoint physical locations within generated source code. When you want to
alter source code contained in a block tag, you can use block commands. Block com-
mands use the following syntax:

start file “ filename”

This function con-

tains eight block

tags.

Fitrix VDT Screens and Menus Course Workbook

252 Building a Menuing System

 block_command function_name block_tag

For example, the following block command adds a line to the #_define_var block tag
in the mlh_cursor function:

start file "midlevel.4gl"

after block mlh_cursor define_var

 tmp_num smallint;

The start file command, on the first line, specifies the file to use (in this case it is midle-

vel.4gl).

The first argument on the second line is the name of the block command (in this case it is
after block). The second argument specifies the function name (mlh_cursor). The third
argument specifies the block tag minus the #_ characters (define_var).

The third line contains your custom code (in this case the third line defines the variable
tmp_nurn).

You may also generate new .4gl files using the following block command:

new file “filename.4gl”

The new file command is useful in libraries. You can contain all new code in extension
files using the new file command and the at_oef (at end of file) block command. For ex-
ample, you could have moved the hello() function in exercise 17A to an extension file us-
ing the following extension:

You place block commands within extension (*.ext) files, which get read by the Featuriz-
er and merged into your source code.

The Featurizer reads

your extension files

and merges them

into generated

source code.

 Fitrix VDT Screens and Menus Course Workbook

 Building a Menuing System 253

Pluggable Feature Sets
Unlike trigger files, which the Featurizer reads and merges automatically, you must dec-
lare extension files within a feature set (base.set) file. A feature set file simply con-
tains the names of the extension files you want the Featurizer to merge into your code.

Feature set files are extremely useful because they let you add custom code in a plugga-
ble fashion. For example, you may have three extension files that add custom functionali-
ty to your program (acme.ext, abc.ext, and xyz.ext). Some departments might
want the functionality added by all three extension files while others may only want the
functionality in the xyz.ext .

For your first group of departments, your base. set file would contain the name of all
three extension files minus the *.ext extensions:

acme

abc

xyz

For your second group of departments, your base.set file would only contain the name
of the xyz.ext file:

xyz

When you run the Featurizer, it looks at your base.set file to determine which extension
files to merge into your source code.

The Featurizer reads

your base.set file to

determine which

extension files to

merge.

Fitrix VDT Screens and Menus Course Workbook

254 Building a Menuing System

Section Summary
� The Featurizer performs two tasks: It copies each *.org file into a *.4g1 source code file and it merges

custom code into the *.4gl files.

� Both the VDT Application Code Generator and the fg.make command run the Featurizer automatical-
ly. You can also run the featurizer directly with the fglpp command.

� Block commands let you customize physical points within generated source code. Because block com-
mands act on physical locations, you must address where you want your block command to go. A code
address contains three parts: filename, function name, and block tag.

� You can contain new code for a 4gl in an extension file using the new file command and at_eof block
command.

� You already know about filenames and function names, but block tags are a new concept. You can easi-
ly identify block tags because they all begin with the same two characters (#_) followed by their block
name.

� When you want to alter source code contained in a block tag, you can use block commands.

� You place block commands within extension (*.ext) files, which get read by the Featurizer and merged
into your source code.

� Unlike trigger files, which the Featurizer reads and merges automatically, you must declare extension
files within a feature set (base.set) file. A feature set file simply contains the names of the extension
files you want the Featurizer to merge into your code.

 Fitrix VDT Screens and Menus Course Workbook

 Building a Menuing System 255

Exercise 17A
Objective: To use a block command to add a warning message to the Customer Entry
program when the contact field is not entered.

There are several fitrix library functions that open dialog boxes useful for messages and
warnings. A list of these functions is below.

You have already seen the gn_close dialog box in previous exercises. These functions
will not be covered in detail in this class. You will use the gn_yesno_text function for
this exercise.

• gn_yesno() - offers a Yes/No dialog box.
Example

LET yes_no=gn_yesno("Date for aging","Use Invoice D ate ?","Y")

The last argument (“Y”) to the utility is the default value when the window dis-
plays.

• gn_yesnoquit – Same as gn_yesno, but with a quit option.
• gn_close – displays a message, with an OK option.

Example

CALL gn_close(“Out of Balance”,”Document is out of Balance”)

• gn_close_text – same as gn_close, but displays multiple lines of text
• gn_yesno_text – same as gn_yesno, but displays multiple lines of text

Example

call textinit()

call textput(STR.warn_1)

call textput(STR.warn_2)

call textput(STR.warn_3)

call textput(STR.warn_4)

let prompt_response = gn_yesno_text("Message",4,"Y")

call textinit()

if upshift(prompt_response) = upshift(STR.no_val)th en

 return

end if

• gn_yesnoquit_text – sames as gn_yesnoquit, but displays multiple lines of text
• gn_progress_open, gn_progress_close – displays progress bar, and updates progress of an ex-

ecuting code stream

Fitrix VDT Screens and Menus Course Workbook

256 Building a Menuing System

Build an Extension (*.ext) File
Block commands are created and stored in extension (*.ext) files. In a general sense, ex-
tension files are a lot like trigger files. Extension files hold block commands whereas
trigger files hold triggers. The major difference is how extension files are merged into
base code. As you recall triggers get merged automatically by the VDT Application Code
Generator. For extension files, however, you must specify in a feature set file, called
base.set , which extension files to use.

1. Use vi to create a new file called warning.ext.

2. Add the following block command to warning.ext:

start file "header.4gl"

function_define llh_a_input

 dialog_response char(1) # for response to dialo g box

;

before block llh_a_input after_input

 if p_stomer.fname is null

 then

 call textinit()

 call textput("Warning: You have not entered a first “)

 call textput(“name for the contact.")

 call textput("Would you like to enter a con tact now?")

 let dialog_response = gn_yesno_text("Warnin g",3,"Y")

 call textinit()

 if upshift(dialog_response) = "Y"

 then

 let nxt_fld = "fname"

 return

 end if

 end if

;

As you can see, this code modifies header.4gl . It adds code to add a yes/no dialog box
with multiple lines of text. If the user decides to enter the contact first name they select
yes and they are returned to the Contact first name field. If they select No to not enter a
contact, the customer entry is saved without a first name for the contact.

3. Save and quit from warning.ext.

 Fitrix VDT Screens and Menus Course Workbook

 Building a Menuing System 257

Create a base.set File
In order to incorporate your new block command into base code, you must add warn-
ing.ext to the base.set file.

1. Use vi to create a new file called base.set.

2. Add the following line to the base. set file:

warning

This is all you need to add. You do not need to include the . ext file extension. If you had
more extension (*.ext) files to include, you would list them in the same way.

3. Save and quit from base.set.

Compile the Code

1. Run the compilation utility (fg .make).

Run Your Customer Entry Program

2. Start your customer entry program.

3. Try saving an entry without a contact’s first name. You following dialog box is dis-
played.

4. Experiment with entering Yes and No.

5. Quit out of your Customer Entry program.

6. Use vi to look at the llh_after_input function in header.4gl. Notice where the before
block command is putting your code. Also notice what the function_define block com-
mand does. Exit vi.

Fitrix VDT Screens and Menus Course Workbook

258 Building a Menuing System

Exercise 17B
Objective: To demonstrate the pluggable feature set concept, you will "unplug" your
warning.ext file.

Unplug warning.ext

1. Use vi to open your base. set file.

2. Place a # before the word warning:

 # warning

3. Save and quit base.set.

Compile the Code

1. Run fg.make to compile the code.

Run Your Customer Entry Program

1. Start your customer entry program.

2. Try saving an entry without a contact’s first name.

As you can see, your warning message is now gone. You can add it back by simply removing
the comment mark (#) from your base.set file.

3. Quit from your Customer Entry program.

Exercise 17C
Objective: Add a Required Field with nonull in the .per file.

Have you noticed what happens when you try to add a customer without a contact last
name? You get the error below and the program stops.

 Fitrix VDT Screens and Menus Course Workbook

 Building a Menuing System 259

This is because the trcustomer.lname column is defined as not null and you are trying to
insert a null into that column. You can automatically require a field with out a lot of cus-
tom coding by using the nonull=<field name> statement in the input section of the .per
file. You need to add the nonull=<field name> directly to the .per file with vi.

Perform the following steps to add a required field using nonull.

1. Use vi to add the nonull statement to the input 1 section of the cust.per file as indicated below.

input 1

 table = trcustomer

 key = customer_num

 filter = 1=1

 lookup = name=cred_lk, key=credit_code, tabl e=trcredit,

 filter=trcredit.credit_code = $credit_code

 zoom = key=credit_code, screen=cred_zm, ta ble=trcredit,

 from=credit_code

 nonull=lname

Note:

You can add multiple fields to nonull by separating the fields with commas like so:

 nonull=lname, phone, city, state, zipcode

2. Save cust.per and exit out of vi

3. Regenerate the i_cust.4gs program using fg.screen

4. recompile the program using fg.make

5. Run and test your changes.

Fitrix VDT Screens and Menus Course Workbook

260 Building a Menuing System

 Fitrix VDT Screens and Menus Course Workbook

 Building a Menuing System 261

Chapter 18
Program Events and the

Custom Toolbar
Main topics:

� Program Event Overview
� Program Event and Hot Key Tables
� The ON ACTION statement
� The new file command for extension files
� The Custom Toolbar
� The at_eof trigger

Fitrix VDT Screens and Menus Course Workbook

262 Building a Menuing System

Program Event Overview
Program events are either internal or external actions that you can execute from within an
input program. You can suspend your input program at any moment and run a program
event.

You can add program events to your Navigation menu, which you activate with [CTRL]-
[g]. You can also map program events to hot keys and add them to a custom toolbar.

External and Internal Events
As mentioned above, program events are classified either as external events or internal
events.

Events that contain LINUX operating system commands constitute external events.

Events that issue Genero 4gl commands are internal. Internal events can be further classi-
fied into local and global events or actions.

Local and Global Events
A local event is an internal event that is executable only on one portion of the screen. An
event that is "local to the header" can only be executed on the header portion of the
screen. Whereas "local to the detail" specifies an event that only takes place on the detail
portion of the screen.

A global event is an internal event that is executable from anywhere on the screen. A
global event can be executed on the header or detail portions of the screen, from the ring
menu, from a zoom screen, an add-on screen, etc.

 Fitrix VDT Screens and Menus Course Workbook

 Building a Menuing System 263

Program Event and Hot Key Tables
All events and hot keys that you set up are kept in reference tables in the database.

Navigation Event Reference Table
Program events are kept in the Navigation Event Reference table, which goes by the
name stxactnr .

language Holds the language variable for the event, such
as [ENG] for English.

act_key Holds the event name. When you define events,
you specify a value in an Action Code field.
Whatever value you specify gets placed in this
column.

description Holds a description of your program event.

os_command Holds the operating system command asso-
ciated with your program event (for external
events only).

press_enter Holds a YIN value. When your event completes,
you can set a prompt to appear before returning
to the input program. The "Press Enter to Con-
tinue" prompt gives you an opportunity to check

error messages if an error occurred during
event execution.

Buttontext Holds the text that appears when the mouse
pointer hovers over a button.

An internal event does not contain a value in the os_command column and it sets the
press_enter column to N.

Fitrix VDT Screens and Menus Course Workbook

264 Building a Menuing System

Navigation Event Detail Table
All the program events that you set up are also kept in the Navigation Event Detail table,
which uses the name stxnvgtd . This table specifies what program and user the event is
associated with.

act_key Holds the event name. When you de-
fine events, you specify a value in an
Action Code field. Whatever value you
specify gets placed in this column.

line_no Holds the line number value for the
program event.

nav_module Holds the module name for the event.

nav_program Holds the program name for the event.

nav_user Holds the user name for the event. This
value can be set to all or specify a sin-
gle user.

Hot Key Definitions Reference Table
The Hot Keys Reference table assigns a unique number to most control keys and function
keys. Control keys correspond with the order the letters appear in the alphabet. Function
key number start with 101. This table has two fields: key_code and key_desc . The fol-
lowing list shows some default hot key entries:

key_code key_desc

[2] [[CTRL]-[b]

[5] [CTRL]-[e]

[6] [CTRL]-[f]

[101] [F1]

[102] [F2]

[103] [F3]

 Fitrix VDT Screens and Menus Course Workbook

 Building a Menuing System 265

Hot Key Definitions Detail Table
The stxhotkd table maps program events to control or function keys. It contains the fol-
lowing columns.

hot_key Holds the numeric hot key value.

act_key Holds the event name. When you de-
fine events, you specify a value in an
Action Code field. Whatever value you
specify gets placed in this column.

hot_module Holds the module name for the hot key.

hot_program Holds the program name for the hot
key.

hot__user Holds the user name for the hot key.

hot_visable Holds R when the event is visible on
the custom toolbar, N when not visable
on the custom toolbar.

hot_bmp Holds Y if there is a custom bitmap.

hot_bmpname Holds the name of bitmap in the ‘pics’
directory under the FourJs product in-
stall directory on the workstation. Ex-
ample: C:\Program Files\FourJs\gdc-
fitrix\pics.

on_custom_action code blocks
There are on_custom_action block tags in the following 4GL stement groups:

• INPUT and INPUT ARRAY
• DISPLAY ARRAY
• MENU

 They are reserved you to add your custom events. The convention for adding custom
events or actions to programs is to add them on a custom toolbar. By adding a custom
toolbar to a program you make your custom events/actions more visible to the user. By

Fitrix VDT Screens and Menus Course Workbook

266 Building a Menuing System

sticking to conventions used throughout Fitrix, you make your programs more intuitive to
users.

The steps to add a customer toolbar are:

1. Add the event to the event tables.

2. Use the new file command in a program directory extension file to copy $fglib-
dir/lib/scr.4gs/ringMenu.4gl to the local program directory.

3. Use block commands in extension files to activate the event on the custom toolbar in local areas
(header, detail, add, update) or globally. Below are examples of each circumstance. Substitute your
event name for ‘custom_action’ below.

• Globally (at the menu outside of add, update find etc)

start file "ringMenu.4gl"

after block ringMenu_menu on_custom_action

 ON ACTION custom_action

 <code to run event here>

;

• Header Input (add and update)

start file "header.4gl"

after block llh_input on_custom_action

 ON ACTION custom_action

 <code to run event here>

;

• Header Find
start file “midlevel.4gl”

after bock llh_construct on_custom_action

 ON ACTION custom_action

 <code to run event here>

;

• Detail Display (View Detail Button)

start file “midlevel.4gl”

after block mld_scroll on_custom_action

 ON ACTION custom_action

 <code to run event here>

;

• Detail Input (Add/Update Detail Button)

start file “detail.4gl”

after block lld_input on_custom_action

 Fitrix VDT Screens and Menus Course Workbook

 Building a Menuing System 267

 ON ACTION custom_action

 <code to run event here>

;

Fitrix VDT Screens and Menus Course Workbook

268 Building a Menuing System

Below is an example of a custom toolbar.

Notice that some of the buttons are grayed out. Once you go into update mode, you see
more buttons activated. The illustration on the following page shows the same program in
updated mode. The reason that some buttons are active only during update is because of
the placement of ON ACTION code. You will learn more about this during the exercis-
es.

 Fitrix VDT Screens and Menus Course Workbook

 Building a Menuing System 269

Fitrix VDT Screens and Menus Course Workbook

270 Building a Menuing System

The at_eof Trigger
The at_eof trigger places whatever you put in it at the end of a file. It is commonly used
for putting in functions that your write or library functions that you customize. The fol-
lowing at_eof trigger illustrates a custom function:

at_eof

function IDY_funct()

CALL gn_close(“This is my function.”)

end function

my_funct

 ;

There are three common uses for the at_eof trigger:

1. Adding custom functions.

2. Modifying library functions .

Library functions exist outside your program directory. They are shared by many pro-
grams. H you modify a library functions in the library, you change how it works throughout
all your applications. It is much safer to alter library functions in your local directory using
the at_eof trigger. Even though this creates two functions with the same name, the function
in the local directory takes precedence.

3. Modifying a locally generated function.

By placing a locally generated function into your trigger file you can modify it, but the origi-
nal function still exists in source code. You must use a do_not_generate trigger to keep the
original function from generating. For example if you alter the mlh_clear function in your
trigger file, add the following do_not_ generate trigger as well.

do_not_generate

mlh_clear;

 Fitrix VDT Screens and Menus Course Workbook

 Building a Menuing System 271

Section Summary
� Events have instructions attached to them. You can execute events at any time within a program. All

events may be viewed, setup, and executed via the Navigation Menu, which you access by typing
[CTRL]-[g].

� Any event can be mapped to a hot key. Once mapped to a hot key, the user can press the hot key to ex-
ecute the event.

� External events have operating system instructions attached to them.

� Internal events have 4GL instructions attached to them.

� Local events are internal events that can only be executed on one portion of the screen (either the header
or detail).

� Global events are internal events that can be executed on any portion of the screen: header, detail, or
ring menu.

� All events are set up as rows in two tables: the Navigation Event Reference table (stxactnr) and the
Navigation Event Detail table (stxnvgtd).

� All hot key mappings are set up as rows in two tables: the Hot Key Definition Reference table
(stxkeysr) and the Hot Key Definitions Detail table (stxhotkd).

� Local events should be placed on a custom toolbar for easy user access. You add an event to the custom
toolbar in 3 steps:

1. Add the event to the event tables.

2. Use new file in a program directory extension file to copy $fglibdir/lib/scr.4gs/ringMenu.4gl to the
local program directory.

3. Use block commands in extension files to activate the event on the custom toolbar

� The at_eof trigger is used to add code at the end of a file. You can modify library functions so that
they behave a certain way just for the program you are running. You can even use the at_eof trigger
to modify a function generated in local code, but if you do, you must use the do_not_generate
trigger to prevent the original function from being created.

Fitrix VDT Screens and Menus Course Workbook

272 Building a Menuing System

Exercise 18A
Objective: To add a simple internal event to your Customer Entry program and add it to
a custom toolbar. The event created in chapter 7 is used.

Change a Navigation Event

1. Start your Customer Entry program. Press [CTRL]-[g] to bring up the Navigation
Events. Highlight credit_program and press [CTRL]-[z]. Change Button text to ‘Credit
Program’ and save your entry.

2. Press [CTRL]-[e] to display Hotkeys.

3. Scroll down to find and select [CTRL]-[u] Run Credit Info Hotkey definition. Press
[CTRL]-[z] to edit the hotkey definition.

The Hotkey Button Definition window appears. Change Show in a toolbar (R=Custom;
N=None)? field to ‘R’. Change Is there a bitmap to ‘Y’ and set Bitmap name to
‘gn_face’.

 Fitrix VDT Screens and Menus Course Workbook

 Building a Menuing System 273

Save your entry. You now have 3 rows in your database for this custom event. You need to
save these rows to the $fg/data/sql.4gc directory for future reference. The best way to or-
ganize the $fg/data/sql.4gc directory is by table name. Create the following files in
$fg/data/sql.4gc:

stxactnr.sql:

insert into stxactnr values

 ("ENG","credit_program","Run Credit Info","cd $HOME/labs/aw.4gm/i_cred.4gs;
fglrun i_cred.42r -d $DBNAME","N","Credit Program");

stxnvgtd.sql:

insert into stxnvgtd

 values ("credit_program","","aw","i_cust","");

stxhotkd.sql:

insert into stxhotkd

 values (21,"credit_program","aw","i_cust","","R","Y","gn_face");

Add Code for ringMenu.4gl to an Extension File

1. Add a new extension file to labs/aw.4gm/i_cust.4gs. Call it ringMenu.ext. The easiest
way to do this is to copy $fglibdir/lib/scr.4gs/ringMenu.4gl to ringMenu.ext (cp

$fglibdir/lib/scr.4gs/ringMenu.4gl ringMenu.ext). Then modify ringMe-
nu.ext. At the very top of the file add the following lines:

new file “ringMenu.4gl”

at_eof

At the very bottom of the file add a semicolon (;) to terminate the block.

Fitrix VDT Screens and Menus Course Workbook

274 Building a Menuing System

2. Add ringMenu to the base.set file at the bottom.

Add Code to Add Action to Custom Toolbar

3. Add a new extension file called toolbar.ext. Add the following code to toolbar.ext

start file "header.4gl"

after block llh_input on_custom_action

 ON ACTION credit_program

 let scratch = "cd ../i_cred.4gs; fglrun i_cr ed.42r -d $DBNAME"

 run scratch

;

4. Add toolbar to base.set at the bottom.

Compile and Run Customer Entry Program

1. Merge and compile the code with the fg.make utility.

2. Run your program with fglrun.

Update a Record

1. Use find to select a customer record. Notice that the Credit Program button is inactive.

 Fitrix VDT Screens and Menus Course Workbook

 Building a Menuing System 275

2. Update the customer. Notice that the Credit Program button is now active. Give it try.

3. Click the Detail Button to move to the detail portion of the window. Notice that the Cre-
dit Program button is now inactive. This is because of where you put the local event
code.

4. Exit the customer entry program.

Exercise 18B
Objective: Add a global Credit Program event to the customer entry program.

1. Edit the toolbar.ext file adding the following code.

start file "ringMenu.4gl"

after block ringMenu_menu on_custom_action

 ON ACTION credit_program

 let scratch = "cd ../i_cred.4gs; fglrun i_cr ed.42r -d $DBNAME"

 run scratch

;

2. Merge and compile the program using the fg.make utility.

3. Run Customer Entry. Find a customer and update the customer. Notice when the Cre-
dit Program button is active. When you are finished, quit from Customer Entry.

Fitrix VDT Screens and Menus Course Workbook

276 Building a Menuing System

Exercise 18C
Objective: To use the at_eof trigger to disable a ring menu option.

You will use the at_eof file trigger to add custom logic to the ok_delete function.
This function is called when the user selects the Delete ring menu command.

Under normal conditions, the ok_delete function returns true. You are going to alter
ok_delete so that it returns false.

Add an at_eof Trigger

4. Use vi to open your cust.trg file.

5. In the defaults section add the following at_eof trigger.

at_eof

 function ok_delete()

 CALL gn_close("Cannot Delete","You are u nable to delete a
record")

 return false

 end function;

6. Save your trigger and compile the code.

7. Run Customer Entry.

8. Select a record and then try to delete it.

What do you see? Your message should appear in a dialog box with an OK button.

 Fitrix VDT Screens and Menus Course Workbook

 Building a Menuing System 277

Fitrix VDT Screens and Menus Course Workbook

278 Building a Menuing System

Chapter 19
Getting Started with
FitrixVisual Menus

Main topics:

� Benefits of Fitrix VisualMenus

� Tables Used by Menus

� Menus Structure

� Starting a Menus Program

 Fitrix VDT Screens and Menus Course Workbook

 Building a Menuing System 279

Benefits of Fitrix Visual Menus
Fitrix Visual Menus provides an attractive environment for users to run programs you
create with the Fitrix CASE Tools. Fitrix Visual Menus:

• Graphical in nature

• Simple to create and modify.

• Displayable as layers of menus or as a tree structure

• Options can be selected via keyboard or mouse

• Supports concurrent execution of multiple menu options

• Menu definitions are stored in the database

Fitrix VDT Screens and Menus Course Workbook

280 Building a Menuing System

Menu Structure

Fitrix Visual Menus are hierarchical in nature and uses the file folder metaphor familiar
to Windows users. The file folder corresponds to a menu and provides a way of branch-
ing. Consider the following diagram.

Running Visual Menus in Edit Mode
Fitrix Visual Menus can be run in Classic mode and Explorer modes. Both of these mod-
es execute menu options. Fitrix Visual Menus can also be run in edit mode. Your logged
in user name must be in the ‘root’ user group in order to enter edit mode. You can use

 Fitrix VDT Screens and Menus Course Workbook

 Building a Menuing System 281

Edit mode to add, update and delete menu options. To switch to edit mode, you choose
the Edit option of the View pull down menu. You can also enter edit mode by clicking

on the button.

When you enter Edit mode, you are presented with the following dialog.

This dialog box is asking you for the menu set to use. Choose the default menu set when
modifying Fitrix ERP visual menus. Choose other and enter a 3 character menu set de-
signation if you are creating a new menu structure.

In Edit mode, to add a menu item to a menu, you right click the menu’s folder or text.
When you right click you are asked if you want to add a New Folder or a New Program.

If you choose a new folder, you get the following dialog box.

For a new folder, enter a unique accelerator key. The description is what appears on the
menu next to the accelerator key. You should follow conventions when entering the

Fitrix VDT Screens and Menus Course Workbook

282 Building a Menuing System

Folder name. The convention is “parentmenu.childmenu”. Consider the definition for
the Print Customer Information Folder/Menu in Accounts Receivable.

If you choose New Program you get the following dialog box.

Here you also need to choose character which can be entered via the keyboard to execute
the menu option. This character must be unique for each entry within a menu. You also
choose the icon that is displayed to the user, as well as the description that appears on the
menu. The text area below the Description is for the menu item instructions. The menu
item instructions determine what happens when the user chooses the option. You will
learn more about these menu item instructions later in this chapter. Below is an example
of a program definition.

 Fitrix VDT Screens and Menus Course Workbook

 Building a Menuing System 283

All menuing information is kept in reference tables in the database. When you update
menus in edit mode, you are also changing data in the database. The Fitrix Visual Menus
tables are cgsmnitm, cgsmncmd and cgsmnsec.

Menu Item Table - cgsmnitm
The cgsmnitm table contains display information about a menu item. You can consider
cgsmnitm the header table and cgsmncmd the detail table. The cgsmncmd table contains
the following columns.

ckey Custom Key. Blank (“”) if not custom.
Only populate ckey if you wish to have
an entirely custom menu.

mname Contains the menu name. The menu
name contains hierarchy information
for the menu item. Format is parent-
menu.childmenu.

opt Contains the accelerator key/keyoard
key for the menu option. For example,
the accelorator key for the menu option
‘a Update General Journal’ is ‘a’. The
opt column must be unique within a
menu.

mtype Determines the icon type for the menu
option.

FL = folder =

Fitrix VDT Screens and Menus Course Workbook

284 Building a Menuing System

SC = screen =

RP = report =

OT = other =

HD = hidden =

PR = process =

txt Holds the text displayed for the menu
item. This appears after the accelerator
key.

Menu Command Table - cgsmncmd
The cgsmncmd table contains menu item command information about a menu item. It
contains the following columns.

ckey Custom Key. Blank (“”) if not custom.
Only populate ckey if you wish to have
an entirely custom menu.

mname Contains the menu name. The menu
name contains hierarchy information
for the menu item. Convention is pa-
rentmenu.menu. This is a join column
to cgsmnitm

opt Contains the accelerator key/keyoard
key for the menu option. For example,
the accelerator key for the menu option
‘a Update General Journal’ is ‘a’. The
opt column must be unique within a
menu. This is a join column to
cgsmnitm.

ilevel Sequence to run the commands (cmd).

cmd Menu item command. Tells visual me-
nus what to do when this menu item is

 Fitrix VDT Screens and Menus Course Workbook

 Building a Menuing System 285

selected.

Menu Security Table – cgsmnsec
The cgsmnsec table contains menu item security information about a menu item. You
learn more about security in the next chapter. The cgsmnsec table contains the following
columns.

ckey Custom Key. Blank (“”) if not custom.
Only populate ckey if you wish to have
an entirely custom menu.

mname Contains the menu name. The menu
name contains hierarchy information
for the menu item. Convention is pa-
rentmenu.menu. This is a join column
to cgsmnitm

opt Contains the accelerator key/keyoard
key for the menu option. For example,
the accelerator key for the menu option
‘a Update General Journal’ is ‘a’. The
opt column must be unique within a
menu. This is a join column to
cgsmnitm.

either_id Either a group id or a user id.

allow_flag Allow execution or deny execution.

Menu item instruction commands – cgsmncmd.cmd
The cmd column of cgsmncmd contains the menu item instruction command. Menu item
instruction commands are a series of commands specific to a menu item. When the user
selects a choice off of the menu, the item instruction(s) in the respective cgsmncmd table
are executed.

Consider what happens when you choose ‘a Update General Journal’ below.

Fitrix VDT Screens and Menus Course Workbook

286 Building a Menuing System

Corresponding rows in cgsmncmd are selected by the menu item. Consider the cgsmncmd
row shown below.

ckey

mname glmenu.journal

opt a

ilevel 1

cmd :ifxscreen:gl:i_genjrn:::

The cmd column determines the commands executed.

The ifxscreen item instruction command instructs Fitrix Visual Menus to run the input
program gl.4gm/i_genjrn. The commands fields are delimited with colons. The first
field determines the instruction. The subsequent fields are different and depend on the
first field. The first field in the command above indicates that the program to execute is
an input program. The next field is the module and the third field is the program name
(without the extension). Item instruction commands and their arguments are always deli-
mited by colons.

The following list shows some commonly used item instruction commands and their
meaning:

:ifxscreen: Runs an input program.

:item: Shows menu arguments to user.

:menu: Calls up a subordinate menu.

:env: Sets a LINUX environment variable.

:pause: Displays a window to redirect report output or to continue with
menu item.

:show: Displays text to the user when they select a menu option.

 Fitrix VDT Screens and Menus Course Workbook

 Building a Menuing System 287

:ifxreport: Runs a report program.

The two most common program menu items are input programs and reports.

The command for starting an input program is ifxscreen. An example of the command
to start the Customer Information program is below.

:ifxscreen:ar:i_custr:::

Notice that the command is delimited by colons and is in all lower case. The format of
the command is:

:ifxscreen:module:program:flags:x:

An explanation of the fields in the ifxscreen command are below.

ifxscreen Indicates that an input program is to be run

module The module directory without the .4gm beneath the accounting
directory.

program Name of the program to be run with out the extension. Example,
i_custr

flags If the program should be run with any additional parameters, you
add them in the flags field. This field is optional.

x The ‘x’ field is optional. If you have an ‘x’ in the x field, if the
input program exits abnormally, subsequent menu item instruc-
tions are not executed.

There are typically several menu item instruction commands for report programs. These
are :show:, :pause:, and :ifxreport:. Below are item instructions for printing Receivable
Journal.

:show:Print Receivables Journal:

:show:Prints the A/R journal report:

:pause:p:

:ifxreport:ar:o_arjrnl::default:::

These instructions result in the following redirect output window.

Fitrix VDT Screens and Menus Course Workbook

288 Building a Menuing System

The format of the show command is: :show:text:

show Use the show command to display information to the user before
they run a report.

text This is the text to show to the user. You can have multiple show
lines for a report. Notice the text of the show command appears at
the top of the redirect output window.

The format of the pause command is: :pause:flag:

pause The pause command displays the ‘Select Printer’ window. The
window displayed is determined by the flag field.

flag p = Show the select printer window where you can redirect the
output of the report.

x = Show the continue window. Displays the show text and gives
the user the opportunity to exit. No redirection of output.

The format of the ifxreport command is:

:ifxreport:module:program:flags:destination:x:

ifxreport Indicates a report program is to be run.

module The module directory without the .4gm beneath the accounting
directory.

program Name of the program to be run with out the extension. Example,
i_custr

flags If the program should be run with any additional parameters, you

 Fitrix VDT Screens and Menus Course Workbook

 Building a Menuing System 289

add them in the flags field. This field is optional.

x The ‘x’ field is optional. If you have an ‘x’ in the x field, if the
report program exits abnormally, subsequent menu item instruc-
tions are not executed.

Fitrix VDT Screens and Menus Course Workbook

290 Building a Menuing System

Menu Structure in cgsmnitm and cgsmncmd

The table cgsmnitm table can be viewed as a header menu table and the cgsmncmd table
as the detail table. Together they determine the menu structure. The join for the 2 tables
is as follows:

cgsmnitm.mname = cgsmncmd.mname and

cgsmnitm.opt = cgsmncmd.opt and

cgsmnitm.ckey = cgsmncmd.ckey

Consider the following example. The bold items show the menu path to the Update Gen-
eral Journal program.

cgsmnitm.mname opt mtype cgsmnitm.txt cgsmncmd.cmd
mainmenu.main 1 FL Financial Management :menu:v530_fmmenu.main:
mainmenu.main 2 FL Item Management :menu:v530_immenu.main:
mainmenu.main 3 FL Sales Order Management :menu:v530_somenu.main:
mainmenu.main 4 FL Purchase Management :menu:v530_pmmenu.main:
mainmenu.main 5 FL Production Management :menu:v530_prmmenu.main:
mainmenu.main 6 FL Production Planning - Future :menu:v530_plnmenu.main:
mainmenu.main 7 FL General/Administration :menu:v530_gamenu.main:
v530_fmmenu.main 1 FL General Ledger :menu:glmenu.main:
v530_fmmenu.main 2 FL Accounts Receivable :menu:armenu.main:
v530_fmmenu.main 3 FL Accounts Payable :menu:apmenu.main:
v530_fmmenu.main 4 FL Payroll :menu:pymenu.main:
v530_fmmenu.main 5 FL Fixed Assets :menu:famenu.main:
v530_fmmenu.main 6 FL Multi-Currency :menu:mcmenu.main:
v530_fmmenu.main 7 FL Multi-Level Tax :menu:mainmenu.mtax:
glmenu.main 1 FL Ledger Journal :menu:glmenu.journal:
glmenu.main 2 FL Recurring Documents :menu:glmenu.recur:
glmenu.main 3 FL Ledger End of Period :menu:glmenu.eom:
glmenu.main 4 FL Ledger Setup :menu:glmenu.glsetup:
glmenu.journal a SC Update General Journal :ifxscreen:gl:i_genjrn:::
glmenu.journal b RP Copy Recurring Documents :show:Copy Recurring Documents:

:show:selects those recurring documents that
have been marked for copying:

:show:copies marked recurring documents to the
general journal:

 :pause:x:

:ifxreport:gl:p_stdent:filter 'stgstder.post_type =
"A" or stgstder.post_type = "Y"':default:::

glmenu.journal c RP Print General Journal Listing :show:Print General Journal Listing:

:show:selects unposted documents from the gen-
eral journal:

 :show:prints the preposting list:
 :pause:p:
 :ifxreport:gl:p_genjrn::default:::
glmenu.journal d RP Post General Journal :show:Post General Journal:

:show:selects all unposted general journal en-
tries:

 Fitrix VDT Screens and Menus Course Workbook

 Building a Menuing System 291

:show:posts selected entries to the general ledger
activity file:

 :pause:p:
 :ifxreport:gl:p_genjrn:-p:default:::
glmenu.journal e RP Create Reversing Entries :show:Create Reversing Entries:
 :show:selects all posted general journal entries:
 :show:create a reverse entry in the journal:
 :show:entry file for every document where:
 :show:EOP Reverse field is equal to Y:
 :pause:p:
 :ifxreport:gl:p_newpr2::default:::
glmenu.journal z SC Update Batch Maintenance :ifxscreen:all:i_batch:-gl::::

Saving Customized Menu Data
You must save any menu data you customize to the $fg/data/sq1.4gc directory. This
documents your changes so that you can reapply them after an update. You write the sql
as insert statements. For example, if you added customized General Journal Summary
Listing program (o_jrnsum.4gc) to the Ledger Journal menu you might have the follow-
ing sql an a vm.sql file. Notice that the ckey column is not null but set to a space.

insert into cgsmnitm (ckey,mname,opt,mtype,txt)

 values (" ","glmenu.journal","f","RP",

 "Print General Journal Summary");

insert into cgsmncmd (ckey,mname,opt,ilevel,cmd)

 values (" ","glmenu.journal","f","1",

 ":show:Print General Journal Summary:");

insert into cgsmncmd (ckey,mname,opt,ilevel,cmd)

 values (" ","glmenu.journal","f","2",

 ":show:Prints the summary page of GL entries. :");

insert into cgsmncmd (ckey,mname,opt,ilevel,cmd)

 values (" ","glmenu.journal","f","3",

 ":ifxreport:gl:o_jrnsum::default:::"");

Fitrix VDT Screens and Menus Course Workbook

292 Building a Menuing System

Section Summary
� Fitrix Visual Menus provides an attractive graphical environment for users to run programs.

� You can run Fitrix Visual Menus in edit mode to add and modify menu options.

� For each item on a menu, there are corresponding rows in the cgsmnitm and cgsmncmd tables. The join
columns to these tables are mname, opt and ckey.

� When the user selects a menu item, the corresponding item instructions in the cgsmncmd table are ex-
ecuted.

� The item instructions in the cgsmncmd table are simple instructions that tell Fitrix Visual Menus what to
do.

� The ifxscreen item instruction runs an input program.

� The :pause:p: item instruction displays the redirect report window

� The ifxreport item instruction runs a report program.

� You must save customized menu options in the $fg/data/sql.4gc directory.

 Fitrix VDT Screens and Menus Course Workbook

 Building a Menuing System 293

Exercise 19
Objective: To add a simple menuing front-end to the standard menus that starts your Cus-
tomer Entry and credit entry programs.

1. Switch to Edit mode in Fitrix Visual Menus. You can do this by clicking on the on the
toolbar.

2. Right click on the topmost folder (0 – topmenu.main)

3. Choose New Folder.

4. Enter the following and click OK to save your work.

5. You now have a new Training Programs menu option at the bottom of the main or root
menu. Right click on Training Programs and choose New Program. Fill out the Add a Pro-
gram Window as displayed below. Notice the env command below. When you set ifxpro-

ject variable, you are determining the root directory structure that Fitrix Visual Menus
uses to run programs. Usually ifxproject is set to $fg/accounting. But you have created
the labs under your home directory in $HOME/labs. Setting the ifxproject variable using
the env command temporarily sets ifxproject to $HOMe/labs for this menu option.

Fitrix VDT Screens and Menus Course Workbook

294 Building a Menuing System

6. Right click on the new Training Programs menu again and choose New Program. Fill out
the Add a Program as displayed below. Click OK to save your work.

Run Your Menu Options

1. Switch back to classic menu mode by clicking the button.

2. Select Training Programs off of the main menu.

3. Run both your menu options to make sure they work correctly.

 Fitrix VDT Screens and Menus Course Workbook

 Building a Menuing System 295

Save Your Custom Menu Options in $fg/data/sql.4gc

1. Recall that you named the new folder training.main and the option was 8 . Use dbaccess to
select see your new menu definition from the cgsmnitm and cgsmncmd tables using the mname,
opt and ckey columns using the following sql.

select * from cgsmnitm where

 mname = "mainmenu.main" and opt = "8" and ckey = " ";

select * from cgsmncmd where

 mname = "mainmenu.main" and opt = "8" and ckey = " ";

The result:

ckey

mname mainmenu.main

opt 8

mtype FL

txt Training Programs

ckey

mname mainmenu.main

opt 8

ilevel 1

cmd :menu:training.main:

2. Recall that all your new menu options have a mname = “training.main”. Use dbaccess to select
see your new menu definition from the cgsmnitm and cgsmncmd tables using the mname and
ckey columns using the following sql.

select * from cgsmnitm where

 mname = "training.main" and ckey = " ";

select * from cgsmncmd where

 mname = "training.main" and ckey = " ";

The result:

ckey

mname training.main

opt a

mtype SC

txt Customer Entry

ckey

mname training.main

opt b

mtype SC

txt Credit Code Entry

Fitrix VDT Screens and Menus Course Workbook

296 Building a Menuing System

ckey

mname training.main

opt a

ilevel 1

cmd :env:ifxproject:$HOME/labs:

ckey

mname training.main

opt a

ilevel 2

cmd :ifxscreen:aw:i_cust::x:

ckey

mname training.main

opt b

ilevel 1

cmd :env:ifxproject:$HOME/labs:

ckey

mname training.main

opt b

ilevel 2

cmd :ifxscreen:aw:i_cred::x:

3. Write sql to insert these rows into the database. Put them in a vm.sql file and save it in the
$fg/data/sql.4gc directory. Below is the sql.

insert into cgsmnitm (ckey,mname,opt,mtype,txt)

 values (" ","mainmenu.main","8","FL",

 "Training Programs");

insert into cgsmncmd (ckey,mname,opt,ilevel,cmd)

 values (" ","mainmenu.main","8","1",

 ":menu:training.main:");

insert into cgsmnitm (ckey,mname,opt,mtype,txt)

 values (" ","training.main","a","SC",

 "Customer Entry");

insert into cgsmncmd (ckey,mname,opt,ilevel,cmd)

 values (" ","training.main","a","1",

 ":env:ifxproject:$HOME/labs:");

insert into cgsmncmd (ckey,mname,opt,ilevel,cmd)

 values (" ","training.main","a","2",

 ":ifxscreen:aw:i_cust::x:");

insert into cgsmnitm (ckey,mname,opt,mtype,txt)

 values (" ","training.main","b","SC",

 "Credit Code Entry");

insert into cgsmncmd (ckey,mname,opt,ilevel,cmd)

 values (" ","training.main","b","1",

 Fitrix VDT Screens and Menus Course Workbook

 Building a Menuing System 297

 ":env:ifxproject:$HOME/labs:");

insert into cgsmncmd (ckey,mname,opt,ilevel,cmd)

 values (" ","training.main","b","2",

 ":ifxscreen:aw:i_cred::x:");

 Security 299

Chapter 20
Security

� Security Overview

� The Security Programs

� Fitrix Visual Menus security

Fitrix VDT Screens and Menus Course Workbook

300 Security

Security Overview
Security is based on a hierarchy. You design your security system around three levels of
users. In addition, applications are divided into three levels. The key to setting up a quali-
ty security system depends on your understanding of these levels and how they relate to
each other.

User Level Description

Individual User This level defines system users on a unique or individual basis.
All system users, in other words anyone able to log in to the
system, are considered individual users. You can grant individ-
ual users explicit allow or deny permission settings.

User Group This level is made up of a subset of system users. You define
and determine the types of groups and the members of each
group on your system. When you set permissions for a group,
all members of the group are given that permission.

Defaults This level is made up of all system users. It uses defaults as a
keyword that signifies a user group containing every individual
user. When you set permissions for defaults, you are setting
permissions for all users who do not receive more specific
group or individual permissions.

Application Level Description

Module A collection of input and output programs that compose a prod-
uct, such as General Ledger.

Program A single program within a module. For instance, General Ledg-
er Setup is an input program within the General Ledger module.

Event An activity or command within a program. For example, many
input programs let you Update current information. The Update
command, then, is considered an event.

 Fitrix VDT Screens and Menus Course Workbook

 Security 301

Security Programs
Security is a collection of programs that let you define security permissions for each level
of user and application. Security consists of five input programs. These programs work
interactively. In other words, information defined in one program is used to provide in-
formation for another program.

Program Name Description

Module and Program In-
formation

This program lists the modules and Information programs
on your system. By default, this information comes pre-
loaded in Security.

Security Events This program lists the events used by the modules and
programs on your system. Like modules and programs,
event information is pre-loaded.

Security Groups This program lets you define which individual users be-
long to which user group.

User & Group Permissions This program provides a complete method for identifying
users and groups on your system. In addition, it links in-
formation in the Module and Event programs with user
and group definitions, and it allows you to set explicit user
and group permissions. Most of the work you do with Se-
curity is done in this program.

Group Security Control This program provides an easy-to-use interface for setting
up group permissions on events. It does not contain all the
features and flexibility of the User & Group Permissions
program, but it is a simplistic alternative.

In later sections of this chapter, each program is described in more detail. This section
concentrates on how Security takes and uses information supplied to the Security pro-
grams and which permission settings take precedence.

Fitrix VDT Screens and Menus Course Workbook

302 Security

Determining Precedence
Security determines precedence in an inverted or "bottom up" manner. In other words, the
most specific settings (the individual user settings and the event settings) take precedence
over the more general settings.

In terms of user levels, Security searches for an allow or deny permission first on the in-
dividual level, then on the group level, and finally on the global or defaults group level

In terms of application levels, Security looks first at the event level, then the program
level, and finally the module level.

Overlapping Group Permissions
Security is designed to meet as many custom security setups as possible. For this reason,
you can place individual users into more than one user group. Sometimes, however, users
belong to groups that contain conflicting permission settings otherwise known as over-
lapping user groups. Users that belong to overlapping groups are given allow permission.

For instance a clerk might belong to a group called clerks and a group called
project_leaders . At times, clerks and project_leaders might have conflicting
permission settings. For instance, clerks might allow the Update event and
project_leaders might deny it.

Individual Group Defaults

Event Program Module

User Level Search

Order

Application Level

Search Order

 Fitrix VDT Screens and Menus Course Workbook

 Security 303

In this situation, the clerk who belongs to both groups is able to use the Update event.

Running the Security Programs
Security is a collection of five input programs. You use a11 of these programs to define
Security on each level of user and application. You access the security programs from
the Execute pull-down menu in Fitrix Visual Menus.

You choose the Security option to run the Security programs.

Module and Program Information
This input program lets you enter the modules and programs eligible to secure. All Fitrix
modules and programs come pre-loaded. You only need to use Module and Program In-
formation when you create custom programs or modules. The following figure shows the
input screen for Module and Program Information:

You can place users

into more than one

group.

If a user is in two

groups that have

conflicting security

permissions, allow

permission is

granted.

Fitrix VDT Screens and Menus Course Workbook

304 Security

Adding Custom Programs to Module and Program
Information

When you create a custom application, the Fitrix VDT Application Code Generator au-
tomatically builds logic that Security recognizes. But you must add the module and table
information for that security logic to work. This module and program information is
stored in the stxprogr table. The Module and program information program is a handy
front end for the stxprogr table.

To add a custom report to Module and Program Information (stxprogr):

1. Choose Add.

2. In the Module Name field, enter the module directory of the custom program.

For example, if your custom report is in sales.4gm , enter sales in the Module Name
field.

3. In the Program Name field, enter the program directory that contains your custom re-
port.

For example, if your custom report is in o_sales.4gs , enter o_sales in the Program
Name field.

4. Describe your custom program in the Description field.

The User Definable field is a non-entry field.

5. Press [ENTER] to store your entry.

Module and

Program

Information

Program

 Fitrix VDT Screens and Menus Course Workbook

 Security 305

Security Events
The Security Events program is similar to Module and Program Information. It too comes
pre-loaded with events used in Fitrix programs, such as add, delete, and update. As well,
Security Events lets you define custom events in custom programs. Similar to Module
and Program Information, Security Events just lets you define events that are eligible to
secure.

The Module and

Program Informa-

tion program lets

you make custom

programs “eligible”

to secure.

The Security Events

program

Fitrix VDT Screens and Menus Course Workbook

306 Security

The following shows some of the 35 events associated with Report Writer.

Adding Custom Events to Security Events
If your application contains custom events, you can add these events to the Security
Events program. Once added, you can use the User and Group Permissions program to
place individual and group permissions on your custom event.

Unlike custom programs, where Security logic gets generated automatically, you must
add a few lines of code at the start of your custom events for Security to be able to recog-
nize it.

For example, suppose you create a o_sales program. In o_sales , you create a custom
event that allows users to fax report output to company headquarters. At the start of your
custom fax event, add the following lines of code:

Inserted for program level security.

Check for permission

if not security_chk ("fax")

then

call security_msg("fax")

else

call fax(p_stomer.phone)

end if

After you add this code to your custom event, making that event eligible to secure re-
quires the following steps:

1. Select Add in the Security Events program to add your custom event.

There are 35 events

associated with the

Report Writer.

 Fitrix VDT Screens and Menus Course Workbook

 Security 307

2. In the Module Name field, enter the module directory of your custom program.

For example, if the module directory is sales.4gm , enter sales .

3. In the Program Name field, enter the program directory of your custom program.

For example, if the program directory is o_sales.4gs enter o_sales .

4. In the Event Name field, enter the name of your custom event.

For example, if the event name is fax enter fax .

5. In the Description field, enter a description of your event.

6. In the Default Setting field, enter the default permission for the event.

The User Definable field is a non-entry field.

7. Press [ENTER] to store your entry.

Note

If you want to set permissions for your event in all the programs in a module, leave the Program
Name field blank.

Security Groups
This program lets you assign individual users to groups. By creating groups of users,
from individual users who require similar system access, you can simplify your security
configuration.

Use the Security

Events program to

make custom events

securable.

Fitrix VDT Screens and Menus Course Workbook

308 Security

For example, you might want to assign your entire sales force to a group called sales.
Your definition of the sales group might look as follows:

Once you define a security group, you can set permissions for that group in the User and
Group Permissions program or in Group Security Control.

User and Group Permissions
This input program is where most of your security work gets done. It is this program that
relates the information set in Module and Program Information, Security Events, and Se-
curity Groups with actual permission settings.

The Security Groups

program lets you

define groups of us-

ers who share the

same permission

settings.

 Fitrix VDT Screens and Menus Course Workbook

 Security 309

Setting Individual User Permissions
The most basic task of the User and Group Permissions program is setting permissions
for an individual user.

To set permission for an individual user:

1. Select Add.

2. Enter values for the User Login and Last Name fields.

For example, if you are setting permissions for donw, enter donw in the User Login field and
donw's last name (for instance Williams) in the Last Name field.

The User Login and Last Name fields are the only required fields. The other fields in the
header section are optional, such as the Department and Phone fields.

3. Press to move to the detail section of the program.

In the detail section you can enter the module, program, and event you want to set permis-
sions on. You can also press [CTRL][z] to pick from a list of defined modules, programs, and
events.

For example, suppose you want to deny donw the ability to run the sales report.

The User and Group

Permissions pro-

gram.

Fitrix VDT Screens and Menus Course Workbook

310 Security

4. Once you finish entering permission data, press [ENTER] to store your entry.

Setting Permission for an Entire Module

To set permissions for an entire module, only specify the module name in the detail por-
tion of User and' Group Permissions.

For example, to deny donw access to all programs in the sales module, make the follow-
ing entry:

 Fitrix VDT Screens and Menus Course Workbook

 Security 311

In a similar sense, you can set permissions for all events in a program: specify both the
module and program and leave the Event field blank.

Setting Group Permissions
You can also set permissions for groups that you have defined in the Security Group pro-
gram (see "Security Groups" on page 307). In the same way you set permissions for indi-
vidual users, you also set permissions for groups.

To set permissions for a group:

1. From the User and Group Permssions program, choose Add.

2. Enter the group code (i.e., group name) in the User Login field and enter a description
of the group in the Last Name field.

3. Press to move to the detail portion of the program.

In the detail section you can enter the module, program, and event you want to set permis-
sions on. You can also press [CTRL][z] to pick from a list of defined modules, programs, and
events.

For example, to set permissions of the sa1es group for init (running the program)
sales.4gm/o_sales program event:

This entry denies

donw access to all

the programs in the

report module.

Fitrix VDT Screens and Menus Course Workbook

312 Security

4. Once you finish entering permission data, press [ENTER] to store your entry.

Setting Defaults Permission
The Defaults permission is a reserved permission setting. The values set for Defaults are
passed to all users and groups not otherwise defined. For instance, if the user robertc
does not belong to any groups and does not have an individual user entry, he receives the
permissions set in defaults.

To set Defaults permission:

1. Select Add in the User and Groups Permissions program.

2. Enter defaults in the User Login field and DEFAULTS in the Last Name field.

3. Press to move to the detail section of the screen.

In the detail section, enter the module, program, and event you want to set permissions on.
You can also press [CTRL]-[z] to pick from a list of defined modules, programs, and events.

4. Press [ENTER] to store your settings.

This entry sets per-

missions for the

sales group.

 Fitrix VDT Screens and Menus Course Workbook

 Security 313

Caution

The Defaults permission affects all users on the system.

Group Security Control
Group Security Control is a simplified version of the User and Group Permissions pro-
gram. With Group Security Control, common program events are already listed. Group
Security Control has a matrix type interface, which helps you assign permission settings.

This entry sets per-

missions for the ac-

count group on the

report programs.

Fitrix VDT Screens and Menus Course Workbook

314 Security

The following describes the events available in Security Control.

Event Description

Run The Run event controls the use of the listed program. When the Run
permission field is set to Y, members of the group can start the listed
program. When set to N, the group cannot start the listed program.

Add The Add event controls the ability to add or create new program
documents. When Add is set to Y, documents can be added. When
set to N, the group cannot add a document.

Upt The Upt event specifies a group's ability to update a document. A Y
in this field lets group members update a document, an N denies up-
date permission.

Del The Del event controls document deletion. Many times only specific
users are allowed delete permission. When you set the Del event to
Y, the group can delete documents. When set to N, documents can-
not be deleted.

Fnd The Fnd event controls a program's Find capabilities. When you set
the Fnd event to Y, group members can conduct Query-ByExample
searches for specific documents. When set to N, users cannot use the
Find feature.

Brw The Brw event controls the Browse capabilities. When you set Brw
to Y, the group can use the Browse command. When set to N,
browse privileges are denied.

Tab The Tab event coincides with the Tab command. When you set the
Tab field to Y, the group can use the Tab command. When set to N,
group members cannot use the Tab command.

Opt The Opt event controls access to the Options command. A Y in the
Opt field grants access to the Options command, an N denies access.

Bng The Bng event controls access to the operating system. In most cas-
es, users are able to bang out (also called shell out or escape) to the
operating system. When the Bng event is set to Y, the group can
bang out of the program. When set to N, the group cannot escape to
the operating system.

Hot The Hot event corresponds to a program's HotKeys. Inmany pro-
grams, users can define Hot Keys that serve as keyboard shortcuts to
common program commands. When you set the Hot event to Y, us-
ers can alter the default Hot Key definitions. When set to N, users

 Fitrix VDT Screens and Menus Course Workbook

 Security 315

cannot edit the default Hot Key definitions.

Nav The Nav event relates to a program's Navigate feature. In many pro-
grams, users can press [CTRL]-[g] to view the Navigate pop-up
menu. When you set the Nav event to Y, users gain the ability to use
this menu. When set to N, users cannot use the Navigate menu.

Fitrix Visual Menus Security
When you add users and groups with the User and Groups Permissions program, you are
making those users and groups available to Fitrix Visual Menus Security. With Fitrix
Visual Menus Security you can disallow execution of menu options and grey out items in
Fitrix Visual Menus.

You need not set security at the Visual Menus level but it may be more convenient if
your requirements allow you to set access at the Folder/Menu level. For example, if you
need to allow only a small group of people into the options on the Financial Management
menu, it would save time and perhaps some confusion to set permissions using the Fitrix
Visual Menus level. Setting permissions using Fitrix Visual Menus on the Financial
Management menu option would grey out the Financial Management options for those
who are not allowed and they would not be able to see the individual menu options.

Please note that if you setup new users and groups, you must exit Fitrix Visual Menus
and reenter so that the menu tables are reloaded from the database. If you do not reload
the menu data, you do not see the new users and groups in Fitrix Visual Menus.

You setup Fitrix Visual Menus security by switching to Edit mode. You can switch to

edit mode by clicking the button. Then you right click on the menu option and
choose Security. Example:

Fitrix VDT Screens and Menus Course Workbook

316 Security

The Fitrix Visual Menus Security Window appears.

You add groups and users to the Allow and Disallow lists by clicking the arrow keys. It
is logical to use one list only. For example, you use the Allow list if there are only a few
groups or users that are allowed to use a menu option. You should use the Disallow op-
tion if there are only a few groups and users you disallow to use a menu option. In addi-
tion, if your security needs allow you to set permissions at the Folder/Menu level, that is
the place to do it. Setting security at the folder/menu level can cut down on maintenance.

When you add information to Fitrix Visual Menu security, that data is stored in the
cgsmnsec table. The columns of cgsmnsec ar below.

 Fitrix VDT Screens and Menus Course Workbook

 Security 317

ckey Custom Key. Blank (“ ”) if not cus-
tom. Only populate ckey if you wish to
have an entirely custom menu.

mname Contains the menu name. The menu
name contains hierarchy information
for the menu item. Convention is pa-
rentmenu.menu. This is a join column
to cgsmnitm

opt Contains the accelerator key/keyoard
key for the menu option. For example,
the accelerator key for the menu option
‘a Update General Journal’ is ‘a’. The
opt column must be unique within a
menu. This is a join column to
cgsmnitm.

either_id Either a group id or a user id.

allow_flag A = Allow execution

D = deny execution.

Fitrix VDT Screens and Menus Course Workbook

318 Security

Section Summary
� Security is based on a hierarchy. You design your security system around three levels of users. In addi-

tion, applications are divided into three levels. The key to setting up a quality security system depends
on your understanding of these levels and how they relate to each other.

� Security is a collection of five input programs. You use all of these programs to define Security on each
level of user and application.

� The Module and Program Information program lets you enter the modules and programs eligible to se-
cure. All modules and programs come pre-loaded. You only need to use Module and Program Informa-
tion when you create custom programs or modules.

� Security Events is similar to Module and Program Information. It too comes pre-loaded with events
used in programs, such as add, delete, and update. As well, Security Events lets you define custom
events in custom programs. Similar to Module and Program Information, Security Events just lets you
define events that are eligible to secure.

� Security Groups lets you assign individual users to groups. By creating groups of users, from individual
users who require similar system access, you can simplify your security configuration.

� User and Group Permissions is where most of your security work gets done. It is the program that re-
lates the information set in Module and Program Information, Security Events, and Security Groups
with actual permission settings.

� Group Security Control is a simplified version of the User and Group Permissions program. With Group
Security Control, common program events are already listed. Group Security Control has a matrix type
interface, which helps you assign permission settings.

� Fitrix Visual Menus security can disallow or allow menu and program execution as well. Fitrix Visual
Menus security is most useful if you need to control security at the Folder/Menu level.

 Fitrix VDT Screens and Menus Course Workbook

 Security 319

Exercise 20A
Objective: To use: Security to deny yourself the ability to update records in your Cus-
tomer Entry program.

Security lets you control how a program is used and by whom. In this exercise, you will
set a security restriction on yourself. You will deny yourself access to the Update com-
mand in your Customer Entry program.

Start the Module Information Program
This program adds your Customer Entry program to a "roster" in the database. The roster
is simply a listing of all the modules and programs that are "securable" or eligible to se-
cure. The table that stores this “roster” is stxprogr .

1. From the Execute pull-down menu choose Security then Module and Program Informa-
tion.

2. Select Add and enter the following information and save it.

Fitrix VDT Screens and Menus Course Workbook

320 Security

3. Quit out of the program.

Start the User Permissions Program
User Permissions assigns different security permission values to individual users or
groups of users. You will use this program on yourself.

1. From the Execute pull-down menu choose Security then Module and User and Group
Permissions:

The User Information program appears. This program contains both a header and a detail sec-
tion. The header section contains information about the user, which in this case will be you.
The detail section contains information about the module, program, event, and permission set-
ting.

2. Select Add to create a new user record.

3. Place your user login in the User Login field.

4. Enter your first and last name in the Name fields.

5. Click to move to the detail section:

 Fitrix VDT Screens and Menus Course Workbook

 Security 321

6. Fill in the detail fields as follows and press [ENTER] to save this record:

7. Quit from User and Group Permissions.

Start Your Customer Entry Program

1. Use cd to move to your i_cust 4gs directory and start your Customer Entry program.

If you would rather, you can also start it from the Menus program you created in Exercise 19.

2. Use Find to select a record or group of records.

3. Press Update to alter the record.

A message appears denying you access to update:

4. Press OK.

Notice that you can still use the other commands, you only restricted access to the Update
command.

5. Quit from Customer Entry.

Fitrix VDT Screens and Menus Course Workbook

322 Security

Exercise 20B
Objective: To use Fitirx Visual Menus Security to deny you the access to all the menu
options on the Financial Management menu.

With Fitrix Visual Menus you can deny access to programs at the Folder/Menu level.
This security feature denies users access to entire menus. Specifically users cannot even
see the items on these menus.

Enter Edit Mode

1. Click the on the toolbar.

2. Right click on the 1- Financial Management menu. Choose Security.

3. A window similar to following window appears. Groups and Users may be different.

4. Choose your user id from the Users list by clicking on it. Click the right arrow to add it
to the Disallow list. Click OK to save your changes.

5. Exit out of Fitrix Visual Menus. You must reload the menus to update security on your
workstation. Start Fitrix Visual Menus again. If you switch to classic mode you see that

 Fitrix VDT Screens and Menus Course Workbook

 Security 323

the Financial Management menu is grayed out Try to enter the Financial Management
menu.

