FIEr X
CASE Tools

Enhancement Toolkit
Technical Reference

Version 4.11

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph
(c)(1)(ii) of the Rightsin Technical Data and Computer Software clause at DFARS252.227-7013. Fourth
Generation Software Solutions, 2814 Spring Rd., Suite 300, Atlanta, GA 30039.

Copyright

Copyright (c) 1988-2002 Fourth Generation Software Solutions Corporation. All rightsreserved. No part of this
publication may be reproduced, transmitted, transcribed, stored in aretrieval system, or translated into any
language in any form by any means without the written permission of Fourth Generation Software Solutions.

Software License Notice

Y our license agreement with Fourth Generation Software Sol utions, which isincluded with the product, specifies
the permitted and prohibited uses of the product. Any unauthorized duplication or use of Fitrix, in wholeor in
part, in print, or in any other storage and retrieval system is forbidden.

Licenses and Trademarks

Fitrix is aregistered trademark of Fourth Generation Software Solutions Corporation.
Informix is aregistered trademark of Informix Software, Inc.

UNIX isaregistered trademark of AT&T.

FITRIX MANUALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, FURTHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE ENTIRE RISK ASTO THE QUAL-
ITY AND PERFORMANCE OF THE FITRIX MANUALSISWITH YOU. SHOULD THE FITRIX MANU-
ALS PROVE DEFECTIVE, YOU (AND NOT FOURTH GENERATION SOFTWARE OR ANY
AUTHORIZED REPRESENTATIVE OF FOURTH GENERATION SOFTWARE) ASSUME THE ENTIRE
COST OF ALL NECESSARY SERVICING, REPAIR, OR CORRECTION IN NO EVENT WILL FOURTH
GENERATION BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING ANY LOST PROFITS, LOST
SAVINGS, OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE
OF OR INABILITY TO USE SUCH FITRIX MANUALS, EVEN IF FOURTH GENERATION OR AN
AUTHORIZED REPRESENTATIVE OF FOURTH GENERATION HAS BEEN ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. IN ADDITION,
FOURTH GENERATION SHALL NOT BE LIABLE FOR ANY CLAIM ARISING OUT OF THE USE OF
OR INABILITY TO USE SUCH FOURTH GENERATION SOFTWARE OR MANUALS BASED UPON
STRICT LIABILITY OR FOURTH GENERATION'S NEGLIGENCE. SOME STATES DO NOT ALLOW
THE EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION MAY NOT APPLY TO
YOU. THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS AND YOU MAY ALSO HAVE
OTHER RIGHTS, WHICH VARY FROM STATE TO STATE.

Fourth Generation Software Solutions Corporate: (770) 432-7623
2814 Spring Road, Suite 300 Fax: (770) 432-3448
Atlanta, GA 30339 E-mail: info@fitrix.com
Copyright

Copyright (c) 1988-2002 - Fourth Generation Software Solutions Corporation - All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed, stored in aretrieval system or translated.

Fitrix Enhancement Toolkit Technical Reference

Welcome to the Fitrix Enhancement Toolkit Technical Reference. This
manual is designed to be afocused step-by-step guide. We hope that
you find al of thisinformation clear and useful.

All of the screen images in this document are show with the products
using the character user interface. While the Fitrix Rapid Application
Development (RAD) Tools operate in character mode only, the soft-
ware applications created by the RAD tools offer the option of being
viewed in a graphic based Windows (or X11) mode as well as the char-
acter mode shown. Examples of graphic based product viewing modes
are shown below in Example 1 and Example 2.

Fourth Generation Software Solutions Database: sample

View |Execute Settings | Help

i enieration Software Solutio
5 s o T TE
1 2 Acco 1 1 Ledger Journal
(3 3 Acce|(~) 3 Recurring Documents
(3 4 Orde| ™ 3 | adger End of Period

1 5 Invel| ™ 4 |edger Setup
(1 6 Purd| ™ 7 multilevel Tax
03 7 Multf~ 8 Administration
(1 8 Payn|(~} g pompany Setup
o -
a Reple

Status |dle Socket sock44/132 147 160.15/20030

Example 1: Menu Graphical Windows Mode

Fitrix Enhancement Toolkit Technical Reference

Hereis another example:

' i_genim -[0fx]
0 GG B s oo g
|FEo T | | s | @ @
.
(Zoom)
————— General Journal

Zoom: [ESC] to Select, [TAB] for Menu
Key
i i

Totals-Debits [NZS0000 Credits [NSS0M00 Difference [NUNNE00M00 | "FAER<

| Enter Tedger account number to record transaction to.

Date:
Description:
EQP Reverse(Y/N): [N
Source: [CASHPY|
Account Group: |[CASHAR
user: [
-Account — Dept-Description ———————

Description

(8 rows selected)

l

v

I [

Example 2: Data Entry Graphical Windows Mode

Displaying our products in graphic mode, as shown in Example 1 and
Example 2, is customary for many Fitrix product users.

However, your viewing mode is a user preference. Changing from
character based to graphical based is a product specific procedure, so if
you wish to view some applications in character mode, and somein
graphical mode, that can be done as well.

If you have any questions about how to view your productsin graphical
mode, please consult your Installation Instructions or contact the Fitrix
helpdesk at 1(800)374-6157. Y ou can aso contact us by email:
support@fitrix.com. Please be prepared to offer your name, your com-
pany, telephone number, the product you are using, and your exact
question.

We hope you enjoy using our products and ook forward to serving you
in the future.

Thank Y ou,
Fourth Generation

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Table of Contents

Chapter 1: Introduction

Enhancement TOOIKIt OVEINVIEWc.cocveieiiiriececcce e 1-2
Enhancement TOOIKit FEALUIEScccevververeeeeeeerere et ne e 1-2
The User Control Library ... 1-2
The Developer’S TOOIDOX ...cccveieeeeeieire s enens 1-3
Enhancement Toolkit DOCUMENtationccceceevieriecciece e 1-6
Documentation Conventions Used in ThisManualcccccceevvevvvvvinnennnn, 1-6

Chapter 2: User Control Library

The NaVIigate FEAIUIEcccoiiiiiieee ettt e 2-2
The NaVIgate MENU ...cccecveieiieiieiereeeeee et e e nnens 2-3
The Navigation Commands FOrmM ... 2-3
Navigating to Another Programccceevereiereeiecese e 2-5
Deleting aNavigation EVENccocoiiieiinieiieieeeeesene e e 2-6

[[1 =Y £ 2-7
MaPPING HOL KEYS ...ttt e 2-7
Key Mapping and TEMICADccccvvereerieriereereeeeeeeereseseseesteseeseeseesenessessens 2-9
Defining Additional HOt KEYScoiiiieiiierenerere e 2-9
Key Mapping CONVENLIONScccoveierieriereeeeeseseseesiesieseeseeessesessessessenes 2-10

ONINEHEIP et bt 2-11
(00701 aTo [l 1= o T = S 2-12

(O 01191 g o = SO RR 2-14
VL= T T 0o 4 o = 2-14
UPating EFrOr TEXE ...coeeeeieiieiesiesie et 2-15
WX (o 1 g0 [= (] I A 2-15
Viewing Program SEALUScoceeiriniienieie e 2-17
(oo o 1 To =l (0] g = 2-17
COPYING EFTOr TEXL ..ottt st sn 2-19

Fitrix CASE Tools Enhancement Toolkit Technical Reference

USEr-DEfiNEd FIEIAScoeeeecece e e 2-20
Deleting User-Defined FIelds ... 2-21
== 0 €0 0T N[0 == 2-22
The Freeform NOtES ZOOMc.ccciivieiicicceceee e 2-23
Personal TODO LISt .ocvceeerecesesie e e seetee et 2-23
B 0TS 0T 1o 17 oo 1 o SRR 2-24

Chapter 3: Pull-Down Menus

PUIl-DOWN MENUS OVEIVIEBWooveiiiiiecsieesie ettt 3-2
HOW TEWOPKS <.t et st 3-3
Linking In the Pull-Down Menu SYStEMccccevvverereerenenese e seeseeaeeeens 3-6
Compiling Programs with Advanced Librariescccoovevininenenenennens 3-7
Creating aNew 4AGL RUNNEScccvvv e iieereereeesese e eenens 3-7
Creating NeW MenU [TEMS ..o e 39
Overview of the Default Mainring Menu Systemccoovvvvvvereneneeneennns 39
The Menu Items Definition FOrM ... 312
Questions About Creating New Menus and Menu Itemsccccceveeenee. 319
Creating Custom Pull-Down Menus For Specific Programsccccccceeeeeennene 3-27
The Program Menu Definition FOrMcccvve v 3-30
Defining A CUStOM MENUcc.oiiiiiiiii e 332
Defining a Custom RiNG MENUocveiveieeeeeieeceese e s 335
Linking a Custom Ring Menu (other than Mainring) into Y our Program . 3-36
Calling a Ring Menu From Within aProgramc.cceeevvverieneneereeennenn, 3-37
Questions About Defining Program-Specific Menusccccoeveeeeennene 3-38
Troubleshooting Pull-DOWN MENUScccceeerereieniesnseseseeseeseeeeseeensens 341
Moving Pull-Down Menusto a New SyStemccccoceenenenenene e 341
Menu Function Eventsin Pull-Down MenUSccococveinernenenenese e 3-43
General RiNG BEVENESoooiiiiiiee e 343
MaINMNG EVENES ...o.veeiieieeceeceee sttt er e st 3-44

Chapter 4: Program Control Library
Overview of the Program Control Libraryccccoeeveveveieiesiesiesieseseseseeeenens 4-2

ii

Fitrix CASE Tools Enhancement Toolkit Technical Reference

DYNAMIC IMENUSceeeveeeeeeieiere et se e e eeesessesse e stesae s ssesaesaeaensenneneesens 4-3
DYNamicC RiNG MENUScccoiririiriiiiniese e e 4-11
Scrolling INPUL FIEIAS ..o e 4-14
Warning WinAOWScccooeiiiiiiiiiese et 4-17
= 0] 0= 4-20
THE FitriX C LIBrary ..cccoveoeee e st 4-32
THe CfUNCLIONS ... e e 4-34

Chapter 5: Fitrix Security

HOW SECUFLY WOFKS ...ttt et 5-2
S ol Y (00 - 1 < 5-3
Determining PreCeaENCEc.coiiiririre e e 55
Overlapping Group PErMISSIONScccceuereereeenire e seeseeseese e seeeeeeeens 5-6

The SECUNitY PrOQIramMScccoiiiieeerere st 5-7
Module and Program InfOrmationcccceeeeeevereeeiesennseseseseeseeeeseeeenens 5-7
Adding Custom Programs to Module and Program Information 5-7
SECUNLY EVENLS ..ottt st s n e enenns 59
Adding Custom Events to Security EVENtScccooverenene e 5-10
SECUNLY GIOUDS ...eveveeveererieseestesieseeseeeeeesessessessessessessessessessessssessesessessessens 5-11
User and Group PErMISSIONScoeviririerierieieieeieeesese s s 5-13
Setting Individual User PErMISSIONSccoeveveeenirire e sieseeneeseeseeneenens 5-13
Setting Group PErmMiSSIONSccoeieeiererinene e 5-15
Setting DefaultsS PErMISSIONc.cccvvviiereeececese st nnens 5-16
Group SeCUrity CONEIOlcoeiiieiieieee e e 5-17

iii

Fitrix CASE Tools Enhancement Toolkit Technical Reference

iv

Introduction

This chapter introduces you to the Enhancement Toolkit and covers the following:
n Features of the Enhancement Toolkit

n Documentation conventions

1-1

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Enhancement Toolkit
Overview

Enhancement Toolkit is a collection of features you can add to programs created
with Fitrix CASE Tools: Fitrix Screen and Fitrix Report. Enhancement Toolkit
comes with precompiled libraries and programs.

Some of the features in Enhancement Toolkit are added to your programs simply by
linking in aspecial library. Other features are in the form of library functions which
can be called from your own programs.

In order for your programs to take advantage of any Enhancement Toolkit feature,
Enhancement Toolkit must be purchased for each run-time system.

Enhancement Toolkit
Features

The Enhancement Toolkit contains two categories of features. end user and devel-
oper. End-user features are found in the User Control Library, while developer fea-
tures are found in the Developer’s Toolbox.

The User Control Library

The User Control Library adds a variety of features that give the end user control
over applications created with Fitrix Screen. Y our applications can utilize many of
these features just by compiling this library with your program. The User Control
data-entry features are designed to expand the usability of your application.

Data-entry features found in the User Control Library package allow end users to:

n Navigateto any function or program inside or outside of the current pro-
gram.

n Map anumber of function keys that can perform a variety of functions.

1-2 Introduction

Fitrix CASE Tools Enhancement Toolkit Technical Reference

n Create, modify, and use help text.

n Create, modify, and use error text.

n Define up to 50 new fields per document.

n Create free-form notes to supplement any document.

n Create and maintain a personal to-do list.

The Developer’s Toolbox

The Developer’s Toolbox contains three kinds of tools: alibrary of useful C func-
tions, a security module, and a graphical application menuing system.

Program Control Library

The Program Control Library contains a variety of useful functions designed to
give the programmer even more flexibility when creating programs. The Program
Control Library features allow you to do the following:.

n Create dynamic menus.
n Create dynamic ring menus.
n Create scrolling input fields.

n Create warning windows.

Application Security

The security module lets you secure input programs created with Fitrix Screen, out-
put programs created with Fitrix Report, and any option on Fitrix Report Writer
menus. Y ou can set up security for your programs by individual, group, or default.
Y ou can restrict access to modules, programs, or events.

Pull-Down Menus

Applications generated by the Code Generator can utilize an optional pull-down
menuing system in place of the standard application ring menu. Pull-Down Menus:

Enhancement Toolkit Features 1-3

Fitrix CASE Tools Enhancement Toolkit Technical Reference

n Giveyour applications a modern appearance.

n Letyou fit more menu items on pull-down menus than you can fit on a
standard "flat" ring menu.

n Makeall User Control Library features visible to the user.

n Letyou add and subtract menu items on an program-specific basis.

n Allow you to remove menu items that have no use in a particular program.
n Allow you to turn on or off any menu item for any program.

n Makemultilingual programs easier to maintain.

n Allow you to change any menu item to familiar terminology. For example,
if your existing programs use Erase instead of Delete, you can easily
change a pull-down menu to say Erase.

The Pull-Down Menu System:

Ring Lo Docunent |

Hang Docunents ST
Document. Copy jihis Document [jiglhis Docunent Ji{iew Group [N ECEIEETINN
Similar Documents All Documents All Documents Sort Group Previous Document

Create new document(s).

Action: EEE. Update Delete Find Browse Window Option Custom Quit ‘

Jliew Detail | Bpecial Commands idditional Fields [8xit Progran |

1-4

Help

Other Programs

Escape to System

Introduction

Add. Fields (view)

To Do List Document Notes
Information Doc. Notes (view)
Acknouledgements Hot Keys

Change Functions
List Errors
Request Feature
Program Status

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Enhancement Toolkit
Documentation

The Fitrix CASE Tools Enhancement Toolkit Technical Reference contains docu-
mentation for features available with the Enhancement Toolkit. It is organized by
chapter as follows:

Chapter 1: Introduction—an overview and a brief look at the features avail-
able in the package.

Chapter 2: User Control Library—covers severa user-definable features
that enhance the generated application.

Chapter 3: Program Control Library—explains advanced functions that can
be used to customize your application.

Chapter 4: Pull-Down Menus—describes an advanced program menuing sys-
tem.

Chapter 5: Fitrix Security—explains how to use the security utility.

Documentation Conventions Used in
This Manual

Although many similar versions of UNIX and XENIX may run INFORMIX-4GL
and the Code Generator, the manual refersto this general category of operating sys-
tems with the single term UNIX.

Someinformation is difficult to convey in words, such as a series of keystrokes or a
value you supply. This manual uses several conventionsto convey information that
has special meaning. These conventions use different fonts, formats, and symbols
to help you discern commands, program code, file names, and keystrokes from
other text.

Enhancement Toolkit Documentation 1-5

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Text Format

Meaning

Example

Courier Bold

Courier Bold
Italic

Couri er

Smal | Courier

Represents command
syntax in addition to
variable and file
definitions.

Represents text you
should replace with the
appropriate value.

Represents commands;
file, directory, table, and
column names; and
computer responses.

Represents program code
or text in afile.

fg.screen

-dbname
database_name

header . 4gl
Makefil e
st xhel pd
$f g/ bin

function Il h_add()

This function inserts

Symbol Meaning Example
Represents optional

[1] command flags and fg.screen [-yes]
arguments.
Represents command

arguments that can be
repeated.

filename ...

When not part of an explicit instruction, single keyboard characters, field values,
and prompt responses are shown in uppercase. For example:

1-6 Introduction

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Choose Y or N.

Enter an A for ascending or D for descending.

Press Q to quit.

Named keys, such as Tab, are shown in uppercase and enclosed in brackets.

[TAB]
[CTRL]

[F1]

[ESC]
[ENTER]
[DEL]
[SPACEBAR]

When a series of keys should be entered at the same time, they are shown with a
hyphen connecting them. For example:

To close the menu, type [CTRL]-[d].

Some key names are not consistent from keyboard to keyboard. This manual makes
repeated mention of the [ENTER] and [DEL] keys, but both of these may be miss-
ing entirely from some keyboards. Different hardware manufacturers give different
names to keys that perform the same functions. In addition to the keyboards them-
selves, software-controlled settingsin terminal control files may also alter the inter-

pretations of keystrokes.

The table below lists keys that are named differently on different keyboards.

KEYS

COMMONLY USED VARIATIONS

ENTER

RETURN, RTRN, ¢,

ESC

STORE

DEL

BREAK, CTRL-C, CTRL-BREAK

Enhancement Toolkit Documentation 1-7

Fitrix CASE Tools Enhancement Toolkit Technical Reference

1-8 Introduction

User Control
Library

This section describes the added functionality of the User Control Library available
with the purchase of the CASE Tools Enhancement Toolkit. The added featuresin
the User Control Library give both the user and the programmer further control
over the application. This section covers:

n

n

n

The Navigate Feature
Hot Keys

Online Help

Error Text
User-Defined Fields
Freeform Notes

Personal To Do List

2-1

Fitrix CASE Tools Enhancement Toolkit Technical Reference

The Navigate Feature

The user-definable Navigate feature allows you to interrupt operation of a Code
Generator generated program at any point and "jump" or "navigate" to any other
program on the system and then return to your original position. Y ou can navigate
to the desired program through a special internal navigate menu or by defining a
function key that automatically |oads the desired program. The navigation feature
prevents you from having to quit your current program and step through a number
of menu optionsin order to make a simple change el sewhere, then make your way
back to your starting point. Y ou can define your own shortcuts from one program to
another.

The Navigate menu gives you the option of selecting from any number of thingsto
do outside of the current program. Items may include reading mail, printing a
report, loading another application, and anything else that can be done at the operat-
ing system. Y ou can also select any "event" that isinternal to the program such as
help, zoom, or view notes.

"Local" events can be added to any program. An example might be an "update cus-
tomer" event that runs the customer update program & positions you on the current
customer. Another might be a"calculator” event that calls on an internal calculator
function returning the data into the current field.

Y ou can assign all navigation eventsto special keys, which you can then execute by
the press of a button. Assigning navigation events to Hot Keys is covered on page
2-7.

Navigation is afeature built into the User Control Library. Y ou must have the
CASE Tools Enhancement Toolkit on your system in order to use the Navigation
feature.

For more information on the philosophy of our event handling logic, refer to the
Fitrix Screen Technical Reference.

The Navigate Menu

When you press [CTRL]-[g] the Navigate menu is displayed. Y ou can select an
event from the Navigate menu by moving the highlight to the desired item then
pressing [ESC] or [ENTER].

2-2 User Control Library

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Choose: [ESC] to Select. Help:
[DEL]T to Quit L[CTRLI-Lw]
(Zoom)==

Navigate: Choose an Action Item

Bdd a navigation action
Mail

Navigate (go)

On-Screen Help

Program Information Menu
Edit Hot-Keys

To Do List

Freeform Notes

(37 items)

All established Navigation events appear on the Navigate menu. The items on the
Navigation menu are ordered as follows:

1. TheAdd anavigation action option is always listed first.
2. User-defined events ordered by the action code entry on the navigation screen.

3. Hardcoded ordering of internal navigation events.

The Navigation Commands Form

The Add anavigation action event, which is the first item on the Navigate menu,
lets you add custom events to the Navigate menu. When you select Add a naviga-
tion action, the Navigation Commands form appears:

Update: [ESC] to Store. [DEL] to Cancel Help:
Enter changes into form [CTRLI-Lw]

Navigation Commands

fiction Code: NN
Description:
Operating system command:

Press ENTER upon return ? N
Access from other programs? N
Allow access for others 7 N

Enter a unique identification code.

The Navigate Feature 2-3

Fitrix CASE Tools Enhancement Toolkit Technical Reference

The fields found on the Navigation Commands form are as follows:

Action Code: This 15-character field is intended to be used as a shorthand
method of referring to the action itself. Some action codes are reserved as basic
navigation events (established during code generation).

Description: Thisfield stores adescription (up to 30 characters) of the action.
The description specified represents the action on the Navigate menu.

Operating system command: Thisfield stores the operating system command
for actions that are external to the current program. For instance, to create an event
that checks for E-mail, enter the following text into thisfield:

mai |

Thisfield isleft null for actions that are considered internal to the program. Exam-
ples of internal actions include: Zoom, Browse, User-Defined fields, Freeform
notes, and the Program Information menu.

Press [ENTER] upon return: This one-character field accepts an entry of Y or
N (Y es/No). The entry determines whether you must press the [ENTER] key upon
returning from an action. The entry in thisfield isfor external events; that is, no
entry isrequired if the event being defined isinternal. The default value for this
fieldisN.

Access from other programs: This one-character field accepts an entry of Y
or N (Yes/No). An entry of Y indicates that this action is available for use from
other programs within the application. That is, if you have an orders program as
well as a customers program within the same general application, you can use this
navigation event from either program. In short, the entry in this field determines
whether this navigation event is system-wide. The default value for thisfield is N.

Allow access for others: Thisis another one-character field that accepts an
entry of Y or N (Yes/No). It determines whether other users have accessto the nav-
igation event you define.

2-4 User Control Library

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Navigating to Another Program

Navigation allows you to interrupt a program at any point and start up a new pro-
gram without losing your place in the original program. Once you quit the second-
ary program, you are returned to your original program at the point you left. The
following steps explain how to set up a navigation event that starts another pro-
gram.

1. Press [CTRL]-[g] to display the Navigate menu.

2. Select Add a navigation action from the Navigate menu.
The Navigation Commands form appears.

3. Enter the event name in the Action Code field.

For example, if the event initiates a program called Customer, enter customer in
thisfield.

4. Enter a description for the event in the Description field.

For example, a description of the Customer program might be "Run customer
program.”

5. Enter the operating system command for the event in the Operating sys-
tem command field.

Suppose that for the Customer program example, the event runs
i _cust.4gs/*4qi.

There are two ways to use navigation to run a program:
1. Use Fitrix Menus to run the program.

If you are using Fitrix Menus and the program you want to run is defined on
amenu somewhere, you can start the program with the nz -i command.
This method is preferred because your $DBPATH gets set automatically,
and you do not have to specify whether toruna*. 4gi ora*. 4ge. Refer
to the Fitrix Screen Technical Reference for more information on using the
nez command.

2. Run the program executable directly.

The Navigate Feature 2-5

Fitrix CASE Tools Enhancement Toolkit Technical Reference

If the program you want to run is not on a menu, type something similar to
the following on the command line;

cd $fg/accounting/gl.4gm/i_genjrn.4gs;fglgo *4gi
or
cd $fg/accounting/gl.4gm/i_genjrn.4gs;*4ge

Notice that you must first change directories to the program directory.

Deleting a Navigation Event

Y ou can also delete defined navigation events.

To delete a navigation event:

1.

E o

2-6

Press [CTRL]-[g] to display the Navigate menu.
Highlight the event name from the Navigate menu.
Press [CTRL]-[z] to display the Navigate Commands form.

Press the [DEL] key and at the prompt answer Y to verify deletion.

User Control Library

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Hot Keys

As explained in the previous section, navigation events can be easily tailored to
carry out internal or external events from any place within the current application.
All established events can be executed by simply selecting them from the Navigate
menu.

The Hot Keys feature extends the power of the Navigation feature by allowing
users to assign tasks to specific keys. Instead of calling up the Navigate menu and
selecting an event, you need only pressthe key corresponding to that event. In order
to assign an event to a key, the event must be defined as a navigation event. You
can only assign Hot Keys to events appearing on the Navigation menu and set up
for your use.

Mapping Hot Keys

The Hot Key form lets you view Hot Key definitions and assign keys for defined
navigation events. From within an application, press[CTRL]-[€] to display the Hot
Key form:

Choose: [ESC] to Select.
[DEL] to Quit
(Zoom)==
Hot Keys
[F11 Undefined
[F21 Undefined
[F31 Undefined
[F41 Undefined
[F51 Undefined
[F61 Undefined
[F71 Undefined
(26 items)

The Hot Key form, also accessible through the Program Information menu, serves
as areference for the current Hot Key settings. Use the arrow keysto scroll, or [F3]
and [F4] keys to page through the current definitions.

Each row represents akey and the event with which it is currently associated. When
you highlight akey definition and press [ESC], the associated event is carried out.
For instance, if the user selects the row containing the event Freeform Notes, the
Freeform Notes form is made current on the screen. In effect, selecting a definition

Hot Keys 2-7

Fitrix CASE Tools Enhancement Toolkit Technical Reference

on thisform is the same as Navigating to the corresponding event. Clearly, itisstill
faster to simply press the key or keystroke combination with which the event is
associated.

To edit aHot Key definition, highlight the definition and press [CTRL]-[Zz]. This
action displays the Hot Keys Definition form:

Update: [ESC] to Store, [DEL] to Cancel Help:
Enter changes into form [CTRLI-Lwl
(Zoom)==

Hot Keys

Key Label = [F4]

Action Code : pTTMTRNN UNKNOUN

User Name = all

System Wide?: ¥

Enter the action key.

The following fields appear on the Hot Keys Definition form:

Key Label: Thisfield displays which key the Hot Key correspondsto. Thisisa
no-entry field.

Action Code: Thisfield stores the code representing the action to be mapped to

the key displayed in the Key Label field. The action you specify in this field must

be set up through the Navigate Commands form (see "The Navigation Commands
Form™ on page 2-3). Press [CTRL]-[Z] to see alist of valid action codes.

User Name: Thisfield stores the login name of the user for whom this Hot Key
operates. Y ou can specify "all" in thisfield to enable all usersto use this Hot Key.

System Wide: Thisisa(Yes/No) field that accepts a one character entry of either
Y or N. The entry determines whether the Hot Key is enabled for other programs
within the general application or just for the program currently being run.

As soon as the Hot Key definition is stored, the Hot Key is available for use.

2-8 User Control Library

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Key Mapping and Termcap

Generated code, code created with Fitrix Screen Code Generator or Report Code
Generator, disassociates keys from the functions they perform. The termcap setting
affects the way the terminal, and therefore, the code, recognizes and acts upon key-
board input. Depending on your termcap setting, you may not have the ability to
map particular keys to events and use them as explained in this section. For addi-
tional information on termcaps, please refer to the Fitrix Screen Technical Refer-
ence.

If the keys on your keyboard behave abnormally, make sure your termcap is set
correctly.

Defining Additional Hot Keys

If you want accessto a certain key on the keyboard that INFORMIX-4GL does not
have defined, you can assign it to an unused function key.

INFORMIX-4GL offers 36 function keys, and most keyboards do not have that
many function keys. The following steps are necessary for defining the [SHIFT]-
[F1] key on an ANSI terminal:

1. Figure out what the [SHIFT]-[F1] key sends. (ANSI example: \E[Y).

2. Pick an unused function key and define it in your termcap: (example: [F13])
(INFORMIX-4GL uses k0-k9 for [F1]-[F10], and kA-kZ for [F11]-[F36])

[F13] ====> :kC=\E[V:
3. Definethe key in the database:
insert into stxkeysr values(113, "[SH FT]-[F1]")

4. |If thefunction key that you picked is "greater than" [F15], then you need to add
this "hook" to your input statements.

on key(f18) let hotkey=118 goto event

Now the [SHIFT]-[F1] key triggersaHot Key event. Users can now assign it to any
navigation command.

Hot Keys 2-9

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Key Mapping Conventions

e [F1]-[F4] arereserved for INFORMIX-4GL (during input) and user-defined
menu functions (while in menus).

e [F5]-[F12] arereserved for the real function keys [F5]-[F12].
» [F13]-[F30] can be used to map terminal keys to function keys.

e [F31]-[F36] arereserved for Fitrix Screen functions. Among the reserved func-
tions are the following:

[F34] Hard mapped to ""B" (Back Tab)
[F35] Hard mapped to "esc" (accept)
[F36] Hard mapped to "int" (cancel)
Example of hooking up the "real" backtab key:
1. Figure out what the [BACKTAB] key sends. (ANSI example: \E[Z)

2. Hook it up to the termcap file for [F34] (reserved for backtab): (INFORMIX-
4GL uses k0-k9 for F1-F10, and kA-kZ for F11-F36)

[BACKTAB] =====> : kX=\E[Z:
Example of hooking up an aternate "interrupt”" key:
1. Figure out what the alternate key sends. (example: \E[2i)

2. Hook it up to the termcap file for [F36] (reserved for interrupt): (INFORMIX-
4GL uses k0-k9 for F1-F10, and kA-kZ for F11-F36)

<Al ternate key> =====> : kZ=\E[2i:

2-10 User Control Library

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Online Help

All data-entry applications using the User Control Library contain the basic struc-
turefor onling, field-specific help. Press[CTRL]-[w] to access the online help from

within a data-entry form. The following form appears:

Help:ll View Update Quit

Request program information

Customer: customer code

This six—character alphanumeric field stores the customer
code Tor the customer being billed. This code must have
previously been setup in the Customer Information file.

The Customer file is maintained with the Update Customer
Information option of the Customer Information Menu or the
Update Customers option of the Setup Receivables Menu.

This is a required field. You can use the Zoom function to
select the customer code you want to use in this field.

The ring menu for Help forms contains four commands: Info, View, Update, and

Quiit.

Info: This command |leads to the Program Information menu, which contains pro-

gram-specific options. The menu appears as follows:

[ESC] to Select.
[DEL] to Quit

Program Information

Hcknouledgements
Feature Requests
Program Status

(3 items)

The options found on the Program Information menu are discussed in the Fitrix

Screen Technical Reference.

View: This command allows you to scroll through the help text displayed on the
window. When you select View, the ring menu looks as follows:

Scroll: [TAB], [DEL], or [ESC] to Quit
[ARROW KEYS] to Scroll, [F3] or [F4] to Page

Online Help

2-11

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Use the keyslisted in the ring menu to scroll through the help text. Any of the keys
listed on the top row of the ring menu return control to the data-entry form from
which help was called.

Update: This command lets users update help text.

When you select Update, the ring menu looks as follows:

Update: [ESC] to Store, [DEL] to Cancel
Enter changes into form

The INFORMIX-4GL defined keys[F1] and [F2] (add arow and delete arow,
respectively) are also available for use when updating help text. The [DEL] key
cancels the edits and returns control to the Help ring menu. The [ESC] key stores
the text for future reference.

Quit: This command returns you to the program.

Copying Help Text

A handy development tool is available for setting up help text in programs within a
genera application. Existing help text (in another module or program within the
application) can be copied by pressing [CTRL]-[c] while at the Help ring menu. A
series of prompts appear to identify the particular help text you wish to copy. The
prompts begin at the module level and become more specific. The first prompt
appears as follows:

Hel p: Info View Update Quit
COPY: Enter nodule to copy from

In order to copy text you must specify the name of an existing module. For refer-
ence, the module name for any given application (generated by Fitrix Screen) is
listed on the Technical Status form. Thisform is accessible through the Program
Information menu. Alternatively, the section of the .per form specification file lists
the module name. After entering a module name and pressing [ENTER], the
prompt changes to the following:

Hel p: Info View Update Quit
COPY: Enter program nane:

2-12 User Control Library

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Enter the name of the program containing the help text to be copied. Again, the pro-
gram name for any given application can be found by checking the Program Status,
found on the Program Information menu. Thisinformation is also in the section of
the .per form specification file. After entering the program name and pressing
[ENTER], another prompt appears:

Hel p: Info View Update Quit
COPY: Enter Error nunber:

Thisisthelast prompt involved in the process of copying help text. At this point,
the module and program names have been entered. The unique help call number
(i.e., Error number) is dl that remains. Enter the number corresponding to the help
text you wish to copy into the current Help form. For example, if you wish to dupli-
cate the help text aready entered for help text number 7, enter 7 at the prompt. The
retrieved help text is then copied into the current help text file for storage.

This technique is most often used to add the text for a newly-created form from
which help iscalled. Y ou can use this technique to copy the text from one help
screen into an existing form. To do this, you must update the help text for the exist-
ing form, and then follow the copy procedure ([CTRL]-[c]) outlined above.

Online Help 2-13

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Online Error Text

If an error occurs, users have the option to save system status information, includ-
ing the line number of the program in which the error was encountered. When log-
ging an error, users are also given the ability to enter information that describes
exactly what they were doing and how the error was encountered. Error messages,
can of course, be tailored by developersto tell users what kinds of errorsto log and
exactly what information to enter. Error information is stored in asimple UNIX
text file.

Fatal errors automatically get logged. All program status information, including
error line number, is automatically logged to the error file, whether manually
logged by users or not.

When an error occurs and is displayed at the bottom of the screen, you can Zoom
on that error to get a problem/solution screen for the error. Pressing [CTRL]-[Z]
displays the following form:

Action:|| KB Update Status Log Quit
Scroll through the error text

Error: Customer Code Required.

This error occurs when:
You did not enter a customer code in the Customer field.
A Customer Code is required to link open item to proper
customer record.

Possible solutions include:
Use [CTRLI-LZ] to view into the customer file to find a
valid Customer Code.
Enter valid Customer Code.

Viewing Error Text

The explanation of an error appears on the form, including causes and possible
solutions. The Informix scrolling keys ([F3] and [F4]) are available for movement
among the lines of error text. If more text exists than is displayed, the arrow keys
allow you to scroll to view the remaining text. The [TAB] key transfers the cursor
from the "cause" section to the "solution” section of the error text.

2-14 User Control Library

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Updating Error Text

The Update command on the error detail ring menu allows the user to modify the
text for a particular error call. Error messages, causes, and solutions can be modi-
fied virtually "on the fly."

The error message itself may be modified in addition to the "cause" and "solution”
sections mentioned earlier. The cursor first appearsin the field containing the error
message title. Use the [TAB] key to switch from section to section on the error
message data-entry form.

Press [ESC] to store the modifications or [DEL] to cancel them.

Adding Error Text

The User Control Library includes a navigation event that allows you to quickly
create new error text. The actual error calls must be placed into the code, though the
text called by the error number becomes part of the SQL database. The Edit Error
Text event, which islocated on the Navigate menu, displays the following form:

Errors: [CTRL1-[z] to VYiew the Error. Help:
LCTRLI-L[n] for New, [DEL] or L[ESCI to Quit [CTRLI-[w]
Hodule Program Number Message

Br i_invce Customer Code Required.

ar i_invce Document must have detail line(s).

1
2

ar i_invce 6 ¥Yalue Must Be an "I" "C" "D" Or "F".
9

ar i_invce Due Date Must Be Later Than Invoice Date
ar i_invce 12 ¥Yalue Must Be A "Y" Or "N".

ar i_invce 13 Change "Tax"” To "N" For Manual Entry.

ar i_invce 14 MNo Modifications Allowed To This Field.
ar i_invce 15 This Field Must Be Set To A ¥Yalue.

ar i_invce 16 Warning: Date Outside Current Period.
ar i_invce 17 Enter a Y to enter gross amounts.

Thisform shows al of the errors set up for the current application. If thisisanewly
generated application, no errors appear on this form unless specified. The cursor
appears on the first row of error text detail. The Error ring menu indicates that
pressing [CTRL]-[Z] displays detail information for the error. Pressing [CTRL]-[n]
allows you to enter new error text. The arrow keys and the Informix-defined [F3]
and [F4] paging keys are available for moving among the detail rows of thisform.
The datain the Number column of the form tiesthe error text to the actual error call
found in the code.

Online Error Text 2-15

Fitrix CASE Tools Enhancement Toolkit Technical Reference

The error text ring menu also offers the option of adding new lines of error text. For
instance, after adding an error call to, say, | | h_i nput withintheheader . 4gl
file, you want to add the corresponding error text. Previously, this meant adding the
data externally, perhaps through 1SQL. Code generated by Fitrix Screen permits
this addition of information within the application itself—you can add error text for
error calls without having to exit the application.

From the Errors form, press[CTRL]-[n]. A prompt appears requesting the number
of the error call to be documented:

Enter a new error nunber for this nodul e/ program
or press [DEL] to quit:

After entering avalid error call number, the Errors Detail form appears. Thisform
is the same as the form seen when [CTRL]-[Z] is pressed:

fiction:|] XM Update Status Log Quit
Scroll through the error text

Error: Undefined

This error occurs when:

Possible solutions include:

Thering menu is also identical—all commands available through [CTRL]-[Z] are
also available through [CTRL]-[n]. The Update command allows you to enter an
error message as well as cause and solution detail. The error message appears on
the screen as the error call is carried out—it is limited to one line of information.

Text is added for the detail sections aswell. Use the [TAB] key to move from the
error message line to the detail sections.

2-16 User Control Library

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Viewing Program Status

The Status command on the error detail ring menu is used to display the current
program status. The information appears as follows:

Technical status screen

Press [ENTER] to continue:]]

Code generator version:4.02.UC1 Database name:fourgen

Program ID:ar.i_invce

Screen ID:default Field:cust_code

Error module:ar Error program:i_invce Error no.:1
Error line :Customer Code Required.

Status variable: 0

General information such as the database name and Code Generator version
appears aong with specific data regarding the error on which the cursor currently
appears. At the foot of the form the Status variable value is displayed (the value O
indicates that the program has not detected any errors).

Press [ENTER] to return to the Error Detail ring menu.

Logging Error Text

The purpose of error text isto provide additional information regarding events con-
sidered abnormal. A well-constructed application informs the user that an error has
occurred. Typically, this means displaying text to the screen at the moment the
error is encountered.

The ability to display error text is built into the code produced by Fitrix Screen. In
addition, Fitrix Screen applications provide devel opers with areference file to
which all errors can belogged. Fatal errors are automatically logged unlessthey are
quite severe (such as a core dump), in which case there is no opportunity to log
error text prior to cessation of the program. Each application logs errorsto afile
titted er r | 0g. The developer can periodically inspect theer r | og filein the
application directory to read information concerning errors.

Online Error Text 2-17

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Within the Error Detail form, the user can choose to log a particular error message
totheerr | og file. Thisis accomplished by using the Log command.

Once the Log command is selected, the user has the opportunity to add comments
to the error text being logged to the local er r | og. The following prompt appears:

Do you wish to add notes to this error? (Y/N):

If theresponseisY, aform appears for the user to fill in comments to be included
with the error text. The form resembles the following:

Update: [ESCI to Store., [DEL] to Cancel Help:
Enter changes into form LCTRLI-Lw]

(Zoom)==

Enter fAdditional Information

Enter your notes into the form provided. Press [ESC] to store or [DEL] to cancel.

Error Log Zoom

The Zoom feature is provided on this form for those wishing to view or modify
default (system-wide) message text. Any text specified at the default (Zoom) level
automatically appears as default text when a user elects to include notes for error
logging. That is, you can specify adefault "testing" message on the Zoom form,
which appears by default each time a user logs error text with notes.

All notes entered are appended to the er r | og file along with the selected error
text.

Once logging takes place (information is written out to the er r | og file), the fol-
lowing message appears at the top of the form:

Error | ogging conplete
Press [ENTER] to continue:

Logged error text and accompanying notes are not written to theer r | og file until
the user exits the current program. The logged text appearsin the file asfollows:

2-18 User Control Library

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Error status |og. Requested by: davidc
Codegen version: 3.0

Dat abase name: stores
Program ID: ar.i_order
Date: 07/17/90 Tinme: 09:38:02
Screen ID: defaul t
Screen field:

Error nodul e: ar

Error program i _order
Error nunber: 22

SQL error status: O

Date: 07/17/90 Tine: 09:38:02

Error text: This error occurs when:
Date: 07/17/90 Tine: 09:38:02
Docunent al ready exists. Duplicate not allowed.
Date: 07/17/90 Tine: 09:38:02

Possi bl e sol utions include:

Date: 07/17/90 Tine: 09:38:02

You can only update this record.
Date: 07/17/90 Tine: 09:38:02

End of status |og

The duplicate Date/Time lines can be disregarded. INFORMIX-4GL automatically
writesthemtotheer r | og file.

Thelast command on the Zoom form for particular error text linesis Quit. The Quit
command returns control to the basic error message form.

Copying Error Text

Error text can be copied from any module/program. The copy technique isthe same
asthe one used to copy help text. Seethe earlier section on " Copying Help Text" on
page 2-12.

User-Defined Fields

Applications generated with Fitrix Screen allow usersto define additional fields on
the fly with a special User-Defined Fields form. When users need to enter data that
isnot provided in current data-entry screen, they can define afield to hold that
information with the User-Defined Fields form. In the future, the system adminis-
trator or programmer can determine whether such datais worth saving and integrat-
ing into a"regular" data entry screen.

User-Defined Fields 2-19

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Apart from those fields originally made part of the data-entry screen, up to 50 addi-
tional fields can be created and updated on User-Defined Fields form.

User-defined fields are uniquely defined for particular documents. There can be
one User-Defined Fields form for each data-entry form. Once afield is defined on
the User-Defined Fields form, that form is displayed automatically every timethe
main document is updated or a new document is added. Also, once defined, a User-
Defined Field becomes arequired field.

Default Hot Key access to user-defined fields is set up through [CTRL]-[f]. The
User-Defined Fields form can also be accessed through the Navigate menu.
Depending on the value given to theaut o_udf variable, the User-Defined Fields
form can appear automatically whenever the user stores a document (presses the
[ESC] key).

The User-Defined Fields form appears as follows:

Update: L[ESC] to Store. [DEL] to Cancel Help:
Enter changes into form [CTRLI-Lw]
Line Data Field MName Contents
1 Contract Number 23313
2 Req. Number 455
3 |
4
5
6
7
8
Table: strinvce Key: Temp Key: 1535
Enter the data into this field.

Line: This column displaysthe number of each row within the User-Defined Fields
form. Each row constitutes afield. There are 50 fields available for use on this
form.

Data Field Name: This 20-character column stores the label for each individual
field. To modify the field labels on the User-Defined Fields form, press[TAB] or
[CTRL]-[f].

Contents: This column stores up to 30 characters and matches up with the field
label found on the same row to the left.

2-20 User Control Library

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Note

To enter into the Data Field Name field, you must press[TAB] or [CTRL]-[f]
from the Contentsfield.

Table: Thisfield stores the name that forms part of the key by which the data.on
the User-Defined Fields form istied to a particular document.

Key: Thisfield stores the second part of the unique key that ties the data on this
form to a particular data-entry document.

User-defined field datais maintained through the st xadd! r and st xaddl d
tables. For more information on tables used by the Code Generator, refer to the
Fitrix Screen Technical Reference.

Deleting User-Defined Fields

Although any user can create user-defined fields, only programmers can remove
them. User-defined fields can be removed by deleting columns from the st xad-
dl d and st xaddl r tablesusing ISQL. The following shows example syntax
reguired to delete user-defined fields:

del ete from stxaddl d

wher e
stxaddl d. fil ename = "mai n_t abl e_nanme" and
stxaddl d.line_no = "line_nunber"

del ete from stxaddlr

wher e
stxaddl r.fil ename = "nmin_tabl e_nanme" and
stxaddlr.line_no = "line_nunt

User-Defined Fields 2-21

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Freeform Notes

With the CASE Tools Enhancement Toolkit, you gain the ability to attach general-
purpose notes to documents displayed in your generated program.

The Freeform Notes feature is accessed by pressing [CTRL]-[n] when a document
is selected.

The Freeform Notes form appears as follows:

Update: [ESC] to Store, [DEL] to Cancel Help:
Enter changes into form [CTRLI-Lwl
(Zoom)==

Freeform Notes

This is a note about the current document .]

Data-entry documents that have notes attached to them display the prompt (Notes)
on the upper-right portion of the form. By simply looking at the form, users can
determine whether Freeform Notes have been added for the current document.

Note

If you get the "feature not attached” error, you have not defined a unique "key"
for your form. The unique key iswhat is used to tie secondary data such as Free-
form Notes to the main table. Y ou must go back and add a unique key to your
.per form. This can be done on the Define Input Areaform in the Form Painter.

The text of the Freeform Notes entered for documents within the data-entry appli-
cation are stored in rows of the st xnot ed table.

The Freeform Notes feature can only be used with header tables.

2-22 User Control Library

Fitrix CASE Tools Enhancement Toolkit Technical Reference

The Freeform Notes Zoom

The Freeform Notes form includes the Zoom feature, which displays the Default
Freeform Notes form.

The software engineer or system administrator can use the Default Freeform Notes
form to establish notes (text applicable to all documents) for initial display on
forms. Default notes appear if the user accesses notes for a document that did not
previously contain notes. In other words, if the user calls up notes (presses[CTRL]-
[n]) for adocument that previously had no notes entered, the text specified on the
Default Freeform Notes form appears. The user may keep these notes, edit them, or
add to them.

Personal To Do List

A common part of the data-entry processis the creation of new ideas and tasks. Itis
common for application usersto think of tasksto carry out in the future, or to recall
things that should be taken care of. While these users remain within the application,
such ideas and reminders can be forgotten. Applications typically do not provide
users a place for recording and reviewing personal ideas and tasks.

Applications generated with Fitrix Screen provide each user with a Personal To Do
list. Thislist is part of the application, stored within an application table. Users can
maintain and track thislist by pressing a key, without exiting the application. The
Personal To Do list operates aimost identically to the Freeform Notes feature. But,
rather than being form specific, the To Do list is user specific.

Personal To Do List 2-23

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Accessthe To Do list feature by pressing [CTRL]-[t]. The Persona To Do form
appears as follows:

Update: [ESC] to Store, [DEL] to Cancel Help:
Enter changes into form [CTRLI-Lwl
(Zoom)==

Personal To Do

1. call mom

b pick up Johnny ot school |~

Note that datais entered into this form in the same way it is entered on the related
data-entry form.

The To Do Zoom

The Persona To Do form includes the Zoom feature, which leads to the Default To
Do list.

The software engineer or system administrator can use the Default To Do list to
establish tasks and reminders (applicable to all users) for initial display on forms.
Default information appears when the user accessesthe To Do list for thefirst time,
or when there is no information currently saved on the Personal To Do list form. In
simple terms, if the user accesses the Personal To Do list form, it displaysall text
previously entered onto this form by the user. If no information was previously
entered, the Personal To Do list form displays the information established on the
Default To Do list. The user may keep these notes, edit them, or add to them.

Thetext of the Personal To Do list is stored in rows of the st xt odod table along
with the user ID.

2-24 User Control Library

Pull-Down Menus

This chapter explains how you can create pull-down menus for your application.
This chapter covers:

n Pull-down menus

3-1

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Pull-Down Menus Overview

The Pull-Down Menus allow you to use specia ring and pull-down menus that cre-
ate a much more complete and flexible data-entry environment than standard
menus generated with the Fitrix Screen Code Generator. Pull-Down Menus allow
you to use a"generic" custom menu (Mainring) which provides a number of
improvements over the standard generated menus, or you can define your own spe-
cialized ring menus and pull-down menus for your individual programs. For exam-
ple, the Add command on the generic custom menu calls a pull-down menu. This
pull-down contains menu items that allow you to perform several different types of
add. The generated version of the add command performs one task: it puts you into
ablank form which you use to add a new document to your table.

Pull-Down Menus alow you to:

» Create menus by entering information into the database through a data-entry
form.

» Define every aspect of menu operation by filling in screen forms.

» Create menusthat offer users more options from the ring menu.

» Define how you want function keys to work when a given menu is displayed.
e Have menu items turn themselves off and on as appropriate.

» Define how you want the menus held open when items are sel ected.

» Create hidden menu items that respond to user keystrokes, but which don't
highlight a menu item on the screen.

» Makeevery menu item multi-lingual so that no changes to code are required to
support different languages.

* Usea"Browse" menu that allows you to use arrow keys and function keysto
move through and select items from alist.

» Createring or pull-down menu items unique to your program.

Pull-Down Menus come as a part of the Enhancement Toolkit, and programs utiliz-
ing it require the purchase of the Enhancement Toolkit for each installation. The
Enhancement Toolkit need not be purchased separately if generated programs are
being installed in conjunction with any Fitrix Accounting module.

3-2 Pull-Down Menus

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Limitations:
« Upto five ring menus per application program.
e Upto 10 pull-down menus per application program.

e Upto 20 display, 20 hidden items, and 20 function keys per menu.

How It Works

Pull-Down Menus are database-driven. When you run programs using this system,
menu functions go into the database to get the menu items to display for the menu
the application calls. The menus use the database definition of a menu item to
decide how it should behave and what functionsit should call when the user selects
it.

Menu items are defined by entering a description of them into the database. Two
new data-entry forms are accessed from the Form Painter to allow you to define
these menus. The Menu Items Definition form allows you to define generic menu
itemsthemselves. The second form, the Program Menu Definition form, allowsyou
to make a custom version of amenu for a particular program. This second program
allowsyou to eliminate certain commands from a standard menu, (for example, tak-
ing away the "Add" functionality) and to change the behavior of the standard
menus (for example, allowing the "Update" command to update the current docu-
ment instead of accessing the Update pull-down menu).

In defining generic menu items, you can define any number of different ring menus
or pull-down menus. Each of these menus can call up to 20 different displayed
menu items. Each menu item can be defined in up to 100 different languages. Up to
200 customized menu items can be defined for each program.

The way each menu item works is completely described in the database. This
includes information aboult:

« whether the menu item is displayed, hidden, or in reference to a function key.

« whether or not to use this menu item based on the type of form (for example,
this allows you to show some items on a header/detail form, but not a header

only).

How It Works 3-3

Fitrix CASE Tools Enhancement Toolkit Technical Reference

« when to turn the menu off (the user can seeit, but not select it) and on (user can
see and select it).

Menu items can call other ring menus, pull-down menus, or "events' that are linked
to program functions. Eventsidentify specific functions to accessin either the
menu function library or in your local code. The built-in events are those that dupli-
cate existing and new file management commands, but any number of local events
can also be defined.

The Pull-Down Menus come with alarge number of menu items pre-defined. These
include all the file management command items originally accessed by the standard
ring menu system, and also alarge number of new commands including all of the
User Control Library commands, such as Navigate and Hot Keys. This means that
many new functions can now be accessed through the ring and pull-down menu
system in a generated application without any additional programming on the part
of the developer. (Of course, User Control commands can still be accessed through
control keys.) Among the new file management commands are "group" commands
that allow usersto add, update or delete entire groups of documents at once.

The default menu for all programs that use this system is called Mainring. This
means that if you compile a program using the new Pull-Down Menus without
specifying in the code to call another menu or defining an application specific
menu, the application program calls the Mainring menu and its related pull-down
menus. The pull-down menus accessed through Mainring offer accessto all avail-
able file management commands. These pull-down menus descend from the ring
commands on the initial ring menu when a command is selected from it.

34 Pull-Down Menus

Fitrix CASE Tools Enhancement Toolkit Technical Reference

The standard pull-down menu (Mainring) and related pull-downs:

Ring e Docunent |

e List]

Many Documents
Document Copy jihis Document J|iihis Docunent [iileu Group | LI
Similar Documents A1l Documents ALl Documents Sort Group Previous Document

fAction: EEEI Update Delete Find Browse MWindow Option Custom Quit
Create new document(s).

lliew Detail | Npecial Commands liidditional Fields 3xit Progranm |

Other Programs

Add. Fields (view)

To Do List Document Notes
Information Doc. Motes (view)
Acknouledgements Hot Keys

Escape to System Change Functions
Help List Errors

Request Feature
Program Status

Also included in the system is another menu called "Old_ring," which works, with
afew improvements, just like the standard ring menu system. Finally, thereisalso a
"Brw_ring" that allows usersto use al the old browse commands. When using the
"Brw_ring," however, you also are able to use the arrow keys and other function
keys to move through and select items from abrowse list. Thisis possible because
you can define the way function keys work using this new menuing system.

Asaready mentioned, it is not necessary to use or allow accessto all of these menu
items from any particular application. Without defining anew menu, you can create
an application specific version of a standard menuing system such as Mainring.
Using the Program Menu Definition data-entry form, you can select which menu
items you want to appear in your menuing system. Y ou use this program to load a
starting ring menu and its related pull-downs. Y ou can then delete or change the
function of menu items as needed in that application. This makesit possible, for
instance, to eliminate unneeded menu items or change menu items so that they call
certain events directly instead of going through pull-down menus.

How It Works 3-5

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Linking In the Pull-Down
Menu System

This section explains what you need to do to take advantage of the Pull-Down
Menus. In order for your programs to utilize the Pull-Down Menus the following
setup steps must be taken.

To create a program using the new menus, you must:
1. Install the Form Painter and its libraries.
2. (Re)Compile programs using the advanced libraries.

Installation of the new version of the Form Painter is covered in your installation
instructions, provided separately.

To compile the advanced libraries into new or existing programs, use a special ver-
sion of our make utility.

To run the new programs, you must:
1. Instal the Enhancement Toolkit on the target machine.
2. Create acustom 4GL runner on the target machine.

The Enhancement Toolkit comes as part of the Fitrix Screen development environ-
ment. This step is only required if you are installing the resulting program on
machines other than your development platform. The Enhancement Toolkit is plat-
form specific and must be purchased for the type of hardware the programs are
going to run on.

The runner isthe Informix program that knows how to run an INFORMIX-4GL
program. Since the Pull-Down Menus require functions not normally part of the
INFORMIX-4GL language, those functions must be linked into the runner before
they can be used. Our organization provides special utilitiesto automate this runner
creation.

3-6 Pull-Down Menus

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Compiling Programs with Advanced
Libraries

No specia programming needs to be done within the program to replace the origi-
nal one-dimensional ring menus with the new ring/pull-down menu system. After
compiling with the advanced libraries, your programs instantly have direct menu
access to a host of powerful new add, update, delete, and find options. Y our pro-
grams also receive the new, more intuitive Browse ring menu. And finally, they get
direct menu access to all of the powerful User Control Commands, which allow
users to customize their program and access a variety of other tools that make
working on a computer system easier.

Tolink in the new libraries, run an f g. make passing the library namescr . adv
in your local directory. Thisaddsthe scr adv librariesto thelist of librariesin
your local Makefi | e.

Example:

fg.make -L scr.adv

Creating a New 4GL Runner

When using our C functions, which include Pull-Down Menus, and RDS code, you
have to run the finished programs with amodified runner f gl go and modified

f gl db. Thereisan Informix utility named cf gl db and cf gl go that uses

f gi usr. c to create these custom runners.

The creation of acustom 4GL runner requires you to link in the special C functions
that these new menus require to allow users to point and pick menu items. These C
functions come precompiled as part of the User Control Libraries, but you must
link them into your program. This does not have to be done on a program by pro-
gram basis. It is done only once when using the RDS (Rapid Development System)
when you build a special 4gl go program that runs the generated applications.

The$fglibdir/lib/c_lib.4gs directory isinstalled with the Enhancement
Toolkit. This directory contains the following files: mkr unner s, README,
fgiusr.c,andc_*. o. Thesefiles are needed in order for the client to create
their custom f gl go and f gl db executables.

Linking In the Pull-Down Menu System 3-7

Fitrix CASE Tools Enhancement Toolkit Technical Reference

To create a custom runner simply change directoriesto $f gl i b-
dir/lib/c_Ilib.4gs andtype:

mkrunners

Itisimportant that $f g/ bi n comes before $| NFORM XDI R/ bi n in the environ-
ment variable $PATH setting. Again, these custom runners are only created if you
develop or run programs under RDS.

Note

A common cause for the failure of cf gl go isthat no C development system is
installed.

Note

Due to the many variations of both the C compiler and the linker between all the
UNIX platforms, our organization does not support any problems you may incur
using these custom runners.

3-8 Pull-Down Menus

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Creating New Menu ltems

Pull-Down Menus let you customize the default ring menu, modify default pull-
down menu items, or create your own entirely new menus and menu items. Y ou can
also specify different menus for different programs.

Y ou access the program for doing this from the Form Painter using the Ring Menu
Items option on the Define pull-down. This option calls up the Menu Item Defini-
tion form, which allows you to define new menus, menu items, and the way they
work.

The Ring Menu Items option displays the Menu Items Definition form:

fiction: Add Update Delete Find [IYNEIN Window Option Custom Quit
Page through selected documents.

User Control Menu Items

Menu Name : add_menu

Item Description : Add One Document

Item Order ID : 10

Ttem Style :

Event Called : addone

Event Type : F

Hold After Select: N

Event Class : add

Requires— Detail Section: N Rowid: N Cursor Item: N Cursor Total: N
Language--Item Label-—-——--— Help Line (Ring Items Only)-—--—-—-——-——————————-

ENG Single Document

(57 of 105)

Overview of the Default Mainring Menu
System

The Menu Items Definition program itself uses the default Mainring menu system,
which uses all of the pre-defined menu items. This Mainring menu is the default
menu created simply by linking in the advanced libraries. Thisring menu can be
used by all your programs by linking in the libraries. The commandsin the ring
menu all call pull-down menu items. By browsing through the commands and sub-
menus on this menu bar, you can familiarize yourself with the functionality of the
Pull-Down Menus.

Creating New Menu Items 39

Fitrix CASE Tools Enhancement Toolkit Technical Reference

You can aso look at the commands (menu item descriptions) that create this menu
since thisis the program in which those commands are defined. To look at these
commands as they are defined in the database table, use the Find command to dis-
play the Find pull-down and sel ect the New Group option. (Thistype of selectionis
referred to as Find/New Group later in this documentation to indicate aring menu
command selection followed by a pull-down menu option selection.)

Standard (Mainring) Ring Menu Items

If you type Mainring into the Menu Name field of the Menu Items Definition form
after executing the Find/New Group command and press [ESC], the system dis-
playsthe first of the menu items related to the Mainring menu. To look at all the
menu items on this list, use the Browse/See List options.

Browse: S48 Prev Up Down Top Bottom Select Goto Quit
Hove to next document.

Menu Name Description Item Order Style Event Type
Mainring o n
Mainring Add Records 10 D add_menu P
Mainring Update Records 20 D upd_menu P
Mainring Delete Records 30 D del_menu P
Mainring Find a Group 40 D fnd_menu P
Mainring Browse the List 50 D brw_menu P
Mainring Change Screen Window 60 D tab_menu P
Mainring Option Menu 70 D opt_menu P
Mainring Custom Menu 80 D cst_menu P
Hainring Quit Program 90 D quitmenu P
Mainring Next Document (Hid) 200 H next_one F
Mainring Prev Document (hid) 210 H prev_one F
Mainring Exit Program (hid) 220 H findquit F
Mainring X-it Program (hid) 230 H findquit F
Mainring User Escape (hid) 240 H sys_esc F
Mainring Up Key Previous 1010 F prev_one F
Mainring Down Key Next 1020 F next_one F

(1 of 19

Thislist shows us a good selection of the various itemsin the Mainring menu pull-
downs. In the columns of the form, we first see the name of the menu, then a
description of the item, the Order/ID of the item, then the style of theitem: D for
display, H for hidden, and F for function keys. The Event that the menu item calls.
These strings refer to either the ring menu, pull-down menu, or functional event
names. The Type column refers to the type of event: P for pull-downs and F for
functions.

On this menu, we see one special item, the Menu title, which isidentified by an
order of 0. Thisitem is unique to ring menus and defines the string that appears
before the first selectable item on the menu (such as Action: or Browse:).

3-10 Pull-Down Menus

Fitrix CASE Tools Enhancement Toolkit Technical Reference

There are nine selectable items that display for the Mainring. All of these items call
pull-down menus. The order in which they display isindicated by the Order col-
umn. This column shows increments of ten, but that is only to facilitate adding
future menu items at some other time. There are five hidden items, al of which call
function events. Here, the order is unimportant and the order number simply serves
asaunique ID. There are also two function key items (plus two others we don't see)
all of which aso call functional events. With these two, the order is aso unimpor-
tant.

When amenu item is selected by the user, it can do one of two things: call another
menu or call afunctional event. When it calls another ring or pull-down menu, the
menuing program looks for aring or pull-down menu that uses the event name.
When amenu item is selected that calls a functional event, the program places the
name of that event into the global variable scr at ch and searches for it first inter-
nally, in the menuing program, then in a special function in the local program.

Asyou can see, several items can call the same event. For example, the Next Docu-
ment item, which in English isinvoked by pressing N for next, callsthe

next _one event. So does pressing the "Down Key" or down arrow function key.
Both of these keystrokes have the exact same effect.

Typicaly, displayed menu items each call different events, but hidden and function
keys call events found el sewhere in the menuing system. They can be thought of as
short cutsto certain user actions. For example, the Next and Prev commands no
longer display on the Mainring menu (as they do on the standard ring menu created
by the Code Generator, but they do display on thebr w_nenu.

With the Pull-Down Menus, there is even a special built-in function (called f i nd-
event), which allows you to programmatically highlight a given menu item based
upon the event it calls. Thisisthe function used by the event f i ndqui t to high-
light the quit command when other exiting keystrokes are used.

Creating New Menu Items 3-11

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Standard (Mainring) Pull-Down Menu ltems

To see how the items that make up a pull-down menu differ from aring menu, exe-
cute another Find to get all of the items that make up the Add pull-down menu.
Enter "add_menu" in the Menu Name field on the Find selection criteriaform.

Browse: X8 Prev Up Doun Top Bottom Select Goto Quit
Move to next document.

Menu Name Description Ttem Order Style Event Type
D
add_menu Add Many Documents 20 D addmany F
add_menu Copy One Document 30 D copyone F
add_menu Continous Copy 40 D copymany F
add_menu Move To Left Menu 1010 F movemenu F
add_menu Move to Right Menu 1020 F movemenu F

The Add pull-down is called when you use the Add command on the Mainring. As
you can see, it isasimple menu. Thisis more or less typical of a pull-down menu.
Thereisno"0" item, because pull-downs don't have atitleline. Thefirst four items
are dl display-style items. They are followed by two function key items. All of
these items call functional events.

The Menu Items Definition Form

Thisform is displayed by selecting the Ring Menu Items option on the Define pull-
down. To create new menu items to display on either ring or pull-down menus, use
the Menu Items Definition form. This form gives you access to the various menu
items that have been defined in the system. This program allows you to tell the
menus program about new menu items you want to appear on existing menus or on

3-12 Pull-Down Menus

Fitrix CASE Tools Enhancement Toolkit Technical Reference

new ones and how those menu items work. This is done by simply entering the fif-
teen characteristics that define a menu item and how it works. The following is the
Menu Items Definition form:

fiction: [JEEN Update Delete Find Browse Window Option Custom Quit
Create new document(s).

Menu MName
Item Order ID
Ttem Style
Event Called
Event Type

Event Class

ENG Doun

Ttem Description : Down One Page

Hold After Select: N

Requires— Detail Section: N Rowid: N Cursor Item: Y Cursor Total: Y
Language--Item Label-—-——--— Help Line (Ring Items Only)-—--—-—-——-——————————-

Menu Items Definition
: Bru_ring

D
: brusedun

brouse

Move doun one page.

5 of 105)

Menu Item Functionality Characteristics

Thefirst nine of these characteristics determine how the menu items present them-
selves and how they run when selected.

Note

Some fields accept avalue of S. This meansthat the value in that particular field
can be determined programmatically. Y ou determine what the value isin afield
for aparticular program by running the Program Menu Definition form, finding
the program, then changing the value of the field for that program.

Menu Name: This character field contains the name of the menu the item being
defined appears on. Each menu item belongs to a specific ring or pull-down menu.

Menus must be defined independently from defining menu items. Menus are
defined in much the same way that you define a menu item. To define a menu, you
need to fill out the Menu Items Definition form, and enter "P" or "R" in the Event

Typefield.

Creating New Menu Items 3-13

Fitrix CASE Tools Enhancement Toolkit Technical Reference

For example, entering "add_menu" in this field assigns this menu item to the Add
pull-down menu.

Item Description: Thisfield contains a description of the menu item. This
description isfor your information and hel ps you keep track of your menu items. It
is especially helpful when browsing your menu items. The description entered in
thisfield appears on the Browse form called from the Menu Items Definition form.
This description doesn’t affect how the menu item runs and does not display any-
where but in the User Control Menu programs.

For display and hidden items, it isagood ideato keep the beginning of the Descrip-
tion similar to the entry in the Item Label field. Another convention isto refer to
hidden items with a (hid) in parentheses. For function key items, it isagood ideato
say "Key" in their description.

For example, the Add pull-down menu has amenu item called " Single Document."”
The Item Description created for that menu item is " Add One Document.”

Item Order ID: This numeric field isaunique identifier that, together with the
Menu Name, creates aunique ID for the menu item. For displayed menu items, this
characteristic also determines the sequential position of this menu item asit isdis-
played. Lower numbered items appear first in the menu.

If you think you might be adding items at a future date, leaving alot of numeric
"gpace" between items saves you alot of tedious renumbering in the future. The
convention is counting by tens. Convention also suggests starting Hidden Items at
200 and function keys at 1000.

For example, the Add One Document standard menu item has an Item Order of 10,
while the Add Many Documents menu item has an Item Order of 20. This means
that the Add One Document item appears on the Add pull-down menu before the
Add Many Documents item.

Item Style: There are four possible "Styles’ of items:
« D (display): items that are seen on the menu,

» H (hidden): items that work as keystrokes but are not displayed on the menu
itself,

» F (function key): items that define how function keys are handled within the
menu, and

3-14 Pull-Down Menus

Fitrix CASE Tools Enhancement Toolkit Technical Reference

e S (special item): items that only appear in some programs and not others.

For example, the Add/Single Document menu item hasaD in thisfield, which
means that item is displayed on a menu.

Event Called: Thisisthe action that takes place when the menu item is selected
by the user. Events can be of three different types (see the Event Type field) but
each event isidentified by a name. Different menu items on different menus can
call the exact same event.

When the event isaring or pull-down menu, the Event Called is the name of that
menu. When the event is afunction, it is the function name (a string of characters
associated with the code for that event).

For example, afunction key (the down arrow), a hidden menu item (the Next com-
mand on the Mainring menu), and the Next Document item (on the Brw_menu
pull-down), all call the same "next_one" event that displays the next record on the
form.

Event Type: There are three different types of events amenu can call. They can
call aring menu, a pull-down menu or afunction. This field determines what kind
of event the item being defined is. This one character field accepts the following:

¢ R (ring menu)
e P (pull-down menu)
e F (function)

The Add/Single Document menu item is an F for function, while the Add pull-
down menu is defined as P for pull-down.

Hold After Select: This characteristic defines how the menu behaves after a user
selects an item. I1ts meaning depends on the type of event involved. It isused to cre-
ate browse-type rings that don't use the [ENTER] key internally, or hot pull-down
menus that allow items to be selected without pressing [ENTER]. It can hold apull-
down menu open after an item on it has been selected and finished running.

Thisfield acceptsa’Y or N. The effect of this characteristic depends on the event
type being called by the menu item.

Creating New Menu Items 3-15

Fitrix CASE Tools Enhancement Toolkit Technical Reference

When the menu item calls aring menu event, aY or N determines the difference
between a"main" ring menu and a"browse" ring menu. Y is used with main ring
menus, and N is used with browse menus. In the main ring menu, the [ENTER] key
can be used to select an item on the ring menu, and the user returns to the ring after
selecting an item with an [ENTER]. In a"browse" menu, the [ENTER] key is used
to select an item from the browse list and after doing so, the ring menu is put away.
Hold After Select is defined by the event calling the ring menu, not by the itemson
the ring menu. It can also be defined when calling thegen_rmenu() function from
within a program.

When the menu item calls a pull-down menu event, the Hold After Select charac-
teristic indicates whether or not the menu is*"hot," i.e., whether or not pressing the
[ENTER] key isrequired to select an item from the menu. For pull-downs that don't
hold after select (Hold After Select ="N"), typing the first character of any item on
that menu causes the menu item to execute. Thisis ahot menu and the standard
way pull-down menu events are called. For pull-downs that do hold after select
(Hold After Select ="Y"), typing the character highlights the item on that menu,
but you must press [ENTER] to select it. Once more, the Hold After Select charac-
teristic is defined by the event calling the menu, not by the items on the menu. It
too can be set within a program if the menu isn't called by another menu.

When amenu item calls a function event from a pull-down menu only, the Hold
After Select characteristic determines what happens to the pull-down menu after
the menu item has been selected and run. These menu items can either hold the
pull-down after being selected from it (Hold After Select ="Y") or put away the
pull-down after selecting afunctional item (Hold After Select ="N"). Thedefaultis
to put away the pull-down after selecting an item. Y ou use the former when you are
expecting another item to be selected from the same pull-down menu after execut-
ing a function. For more information on events refer to "Menu Function Eventsin
Pull-Down Menus' on page 3-42.

Event Class: Determines the contents of thenenu_i t em globa variable
passed to the application program. The event class allows programs to behave dif-
ferently in different modes. For example, they might act one way when adding a
new record but differently when updating a record. Since pull-down menus allow
many different types of add and update commands, the Event Class allows existing
programs to behave properly by setting the "menu_item" as a class rather than as a
specific event. Thisfield isonly used with functional events.

For example, for browse events you would enter "browse," for add events you
would enter "add."

3-16 Pull-Down Menus

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Requires Detail Section: Determines whether or not this menu item is used
with a header-only form. If no detail section is present, certain menu items are not
used. For example, in O d_r i ng, the Tab menu item does not display if no detail
section is present on the form. Y ou can define generic menus that can be applied to
either header-only or header/detail forms with the appropriate menu items selected
at run time. The Requires Detail Section characteristic eliminates the need to create
unique menus for every specific program.

The Requires Detail Section field acceptsaY, N, or S. An Salows you to control
this option programmatically. Refer to page 3-21 for more information on control-
ling this option programmatically.

Menu Item Activation Characteristics

The next three items determine how menu items are turned off and on as the pro-
gram runs. Deactivated menu items appear on the menu, but they are preceded by
an "!" and cannot be selected by the user. They indicate that a menu item is cur-
rently unavailable, and that conditions in the program must change before it can be
used. Theseitems are:

Requires Rowid: Turns off and on (activates and deactivates) the menu item
depending on the presence of a current row id. In programs generated with Fitrix
Screen, acurrent row id is present whenever any document datais displayed on the
current form. So, for example, if there was no current document, a command such
as the Update command would be turned off because without a current document,
there is nothing to update.

The Requires Rowid field acceptsa Y, N, or S. An Salows you to control this
option programmatically.

Requires Cursor Item: This characteristic turns off and on the menu item
depending on whether or not there is a document position in the cursor or group of
selected documents. Some of the group commands, such as group delete, start with
the current document in the selected group of documents and continue to the end of
that group. To have a group of selected documents, you must first use the Find
command to select a group to work with.

Thisfield acceptsa Y, N, or S. An Salows you to control this option programmat-
ically. Refer to page 3-21 for more information on controlling this option program-
matically.

Creating New Menu Items 3-17

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Requires Cursor Total: This characteristic turns off and on the menu item
depending on whether or not there is a group of documents selected. Like the Cur-
sor Item, thistype of activation applies to group commands that act on a group of
documents at one time.

Thisfield acceptsaY, N, or S. An S alows you to control this option programmat-
ically. Refer to page 3-21 for more information on controlling this option program-
matically.

Menu Item Translation Characteristics

The last three characteristics of a menu item determine what languages are dis-
played. For each single menu item, there can be up to 100 different languages into
which the item can be translated.

Language: Thisis athree-character code that indicates which language the
related information is translated.

For example, you could use "ENG" for English.

Item Label: Thisfield contains the text that is displayed on the menu. The text in
thisfield should be in the language indicated in the Language field.

Thisfield stores up to 20 characters.

Help Line: Thisfield appliesto ring menus only. This text field contains the help
message that appears beneath the item in aring menu. It describes the menu option.

For example, if you were defining an Add ring menu item, you would enter " Create
new document(s)" into thisfield.

Questions About Creating New Menus
and Menu Iltems

The following are answers to commonly asked questions about creating pull-down
menus and pull-down menu items.

How do | define a ring menu?
There are seven steps to defining aring menu:

3-18 Pull-Down Menus

Fitrix CASE Tools Enhancement Toolkit Technical Reference

On the Menu Item Definition Form, enter a unique name for the menu.

By convention, ring menu names begin with a capital letter so they appear
before pull-down menus and end with the word "ring."

Enter the "0" in the Item Order ID field.

Thefirst item on aring menu MUST have an ID of "0." Thisitem istheinitial
"label" for the menu that precedes the menu items themselves.

Enter "D" in the Item Style field.
Enter the Language code.
Enter the prompt that appears on the ring menu in the Item Label field.

For example, the standard Mainring ring menu displays the word "Action:"
before the menu items.

Define the ring menu items.

Typically "Display" items are entered first. Then hidden items and finally func-
tion keys. These items can call other ring menus, pull-down menus, any of the
"function events" built into the menuing system, or any other function event in
thelocal menu_ext r a function defined. For more information on events,
refer to "Menu Function Eventsin Pull-Down Menus' on page 3-42. Thelabels
for menu items, whenever possible, should begin with unique letters. Thisis
especially important when the ring is called with the "Hold After Select" char-
acteristic set to "N" (browse-type menus).

Define any other ring, pull-down menus, or menu_extra functions called
by the ring menus.

How do | define a Pull-Down Menu?
There are three steps:

1.

Enter a unique name for the menu.

By convention, pull-down menus begin with lowercase | etters and end with the
word "menu.”

Define the menu items that appear on the pull-down menu.

Creating New Menu Items 3-19

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Pull-down menus are limited to "Display" and "Function Key" types. These
items can call other ring menus, pull-downs or function events. Most typically
they call function events either in the built in library or in the local

menu_ext r a function. A pull-down that calls another pull-down menu will
be overlaid by the new menu. The labels for menu items, whenever possible,
should begin with unique letters, especially when the "Hold After Select” char-
acteristicisset to "N."

For more information on events, refer to "Menu Function Eventsin Pull-Down
Menus' on page 3-42.

3. Define any other ring, pull-down menus, or menu_extra functions called
by the ring menus.

How do | make a pull-down menu stay open so | can
return to it instead of the prior ring menu?

Define the menu items on that menu with the Hold After Select characteristic set to
"Y." On any given menu, some items can hold the menu, while others can automat-
ically put it away. Typically, thisfeature is used when you expect the user to select
another item from the same menu after selecting thisitem.

What is a "hot" menu?

A "hot" menu means that the menu item is executed immediately when you press
the letter beginning the menu name (Item Label). Ring menus are always hot. Pull-
down menus are set to hot when the "Hold After Select” characteristicis set to "N."

If a menu contains more than one item that begins
with the same letter, can users select them by typing
the beginning letter?

In ring menus, the answer is no. In pull-down menus, items can be selected (with-
out execution) by typing the first character of the label if the "Hold After Select”
characteristicis set to "Y." This highlights the first occurrence of a menu item that
begins with that character. Pressing the same | etter again selects the next menu item
that begins with that |etter.

3-20 Pull-Down Menus

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Can | activate or deactivate menu items from within
the 4GL program?

Y es. Before any menu is displayed, it checksto see if the menu items are active or
not. "Normal" activation depends upon the "Y" or "N" and the Requires Rowid,
Cursor Item, or Cursor Total characteristics. However, you can also enter "'S" into
any of these fields. If you do, the program calls the local function

menu_deact i ve passing the menu event name, and the numbers 1, 2, or 3
depending upon which of the activation fields (1 = rowid, 2 = cursor item, 3 = cur-
sor total) that the "S" appearsin. This allows you to test each menu item against up
to threelocal conditions. If themenu_deact i ve function returnsatrue,”" the
item is activated. If it returns afalse, it deactivates the item.

Can | control whether or not a menu item is used from
within a 4GL program?

Y es. Before any menu is loaded into the display array, it checks to seeif the menu
item should be used or not. "Normal" loading depends upon the"Y" or "N" in the
Requires Detail characteristic. A "Y" value here means that the item only loadsif a
"detail" section is present. However, you can also enter "S" into the field for this
characteristic. If you do, the program callsthe local function menu_chkput pass-
ing to it the name of the menu, the menu type, the event name, and the screen type.
If this function returns a"true," theitem is put onto the menu.

Can | use the prog_ctl ringput and other ring
functions in programs using Pull-Down Menus to
control those menus?

Y es, but mostly No. Pull-Down Menus use an advanced version of thepr og_ct |
ring menu library. If you usethe scr adv library to compile your program, it must
usethescr adv library versionof I i b_ri ng. 4gl to run Pull-Down Menus.

Currently these functions, such asr i ngput , ri ngpos, andri ngpi ck, are
named in the same manner as those original functions and work largely in the same
way as documented. However, these libraries are evolving fairly rapidly and,
because of their marriage with the database, using these functions directly will
almost certainly result in ring menu emulsification. Also in the next release, these
function are planned to be completely rewritten to speed their operation and con-
serve program size. At this point, new function names are used.

Creating New Menu Items 3-21

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Can | use the prog_ctl menuput and other menu
functions in programs using Pull-Down Menus?

Y es. The pull-down menus are based on this menuing system, but their functions
have been completely rewritten and renamed to speed the menus and conserve
memory size. Thel i b_menu and menu_wi n filesin prog_ct | function are
completely separate fromthel i b_pul | pul | _wi n fileinscr adv.

How do you set up pull-down menus so that the right
and left arrow keys open the pull-down to the right or
left of the current one?

A specia function event called noverrenu is contained in the Menu Control
library. Simply set your right and left arrows as function key items on the menu and
have them call the event "movement" with type "F" for function.

How do | define function keys to work a certain way
within a menu?

Function keys are treated just like any other menu item. They, of course, require an
Informix termcap that properly interprets the keys you want to use and thiscan be a
problem with some specia keys such as "Page Up" or "Insert," but the arrow,
[ENTER], [ESC], and [DEL] keys are amost always supported.

The only differences between a Function key item and any other are the "Item
Style" whichis set to "F" for function keys, and the definition of the menu item's
"trandlation" characteristics.

For function keys, the "language” is always set to "ALL." The "labels" are limited
to the character strings returned by the menuing systemintothescr _f unct glo-
bal variable. These strings include:

o |eft - for the left arrow
* right - for theright arrow
* up- for theup arrow

e down - for the down arrow

e page_up - for the page_up key

3-22 Pull-Down Menus

Fitrix CASE Tools Enhancement Toolkit Technical Reference

e page_down - for the page_down key
e accept - for the [ENTER] key

e cancel - for the "break" key

e escape - for the [ESC] key

* home - for the home key

Warnings about Function Keys:

[ESC] the "accept" key: Y ou may encounter problems in attempting to redefine the
"accept” key. Functions are checked before display and hidden items are processed.
However, unless defined otherwise (specifically in the case of ring menus with
Hold After Accept set to "N™), most menu selections al so generate an "accept"
valueinscr _funct . If you have special function key "accept" processing, no
other processing takes place.

[DEL] the "delete" key: In pull-down menus that are set to "hold," that is, where
any menu item on them is defined with "Hold After Select” setto"Y," the only way
you can "put away" these menusis to use the delete key. If you redefine "del ete"
within these menus, your user is unable to close them once opened.

How do | add new items to existing menus?
There arefive steps:

1. Call up the program to create new menu items.
2. Find all existing items on that menu.

3. For display-type items, decide in what position on that menus you want the
new menu item to appear.

The easiest way isto add new menu items after existing ones, but sometimes
this may not be desirable.

4. 1If there is no "hole" in the existing numbering scheme in the position you
want the menu item, you must renumber the "higher-ordered' menu
items to make a hole.

Creating New Menu Items 3-23

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Y ou do this by changing the items with alarger number in the Order/ID field
first: changing the 10 to 11, the 9 to a 10, the 8 to a9 and so on. Y ou must do
thisin order not to create duplicate menu items. The system does not allow
duplicates, even temporarily.

5. Add your new menu item using an Order/ID number that positions the
item where you want it.

How do | create new function events for new menu
items to call?

New function events (as opposed to events that call new ring or pull-down menus)
are defined in the local function called menu_ext r a. This function contains
events for any ring or pull-down menu. It doesn't matter if the event is connected
with a displayed, hidden, or function key menu item. An empty function of this
nameis used by the menu libraries if you do not define such afunction yourself
locally.

Note

The event called isnot the label that users see on the screen. The displayed label
can change based on the language variable. The event name is an eight-character
string defined along with the menu item.

Thislocal "menu_extra" function should only contain a single CASE statement.
This CASE statement tests for the event name in the global "scratch” variable. It
then does the processing you need with that CASE statement or, more often,
"points" to other functions within your program that do the processing. When a
menu item is selected from either aring or pull-down menu, the name of the event
called by the menu item is placed in the scratch variable. If that event is not found
intheinternal event library of the menu program itself, it calls the "menu_extra"
function. The "menu_extra" function should then continue testing the contents of
the scratch variable and call the functions needed for those events.

For example, say you wanted to add menu items that called the events "special 1"
and "specia2." You first go through the steps for adding menu items and, in the
Event Namefield, type "specia 1" or "special2." Be careful to pick unique, new
event names that aren't used internally. In the Event Typefield, enter an "F" to tell
the system these were functions.

3-24 Pull-Down Menus

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Then add a menu_extrafunction to your local code. This function looks like:

FUNCTI ON nmenu_extra()
CASE
WHEN scratch = "special 1"
call functionl()
WHEN scratch = "speci al 2"
call function2()
END CASE

Thefunctions referenced as "function1" and "function2" can be called anything you
want. Any number of such functions or any other 4GL commands are invoked after
the WHEN clause matching the event is called by the menu item. When users select
one of your new menu items, they are passed to the right functions within your pro-
gram by this CASE statement. For more information on events, refer to "Menu
Function Eventsin Pull-Down Menus' on page 3-42.

What if my ring menu is wider than the data entry form
on which the menu appears?

The displayed ring menu is truncated to fit in the width of your current window. If
there are more menu items than can fit in a given window, an ellipse(...) appearsto
indicate more menu items are off the form. Users can move through the ring menus
to see the other items using the [SPACE BAR] or right and left arrow keys. Menu
items do not have to appear on the form in order to be selected by a single key-
stroke. If the user types the menu item keystroke, the command is executed and the
part of the ring menu containing the last selected item is displayed.

What if my pull-down menu is longer than my current
form?

Pull-down menus create their own overlapping window, so the size of the current
formisirrelevant to their display.

Can | know from within other functions what the last
menu item selected was?

Yes. Thisisthe function of the "Event Class' characteristic of every menu item.
This characteristic sets the value of the global variable nenu_i t em When the
menu item is picked, the scratch variable is assigned the Event Name and at the
sametime, themenu_i t emvariableis assigned the Event Class value. So each

Creating New Menu Items 3-25

Fitrix CASE Tools Enhancement Toolkit Technical Reference

menu selection sets not one, but two different global variables that your programs
can use. Of these two, however, the scratch variable is the most temporary since
many different functions within the program affect its contents. However, the
nmenu_i t emvariableis expected to be changed only by the selection of another
menu_i t em Though obviously you can change it anytime you want within the
flow of your program, the minute you do so, you lose your ability to know some-
thing about the last menu item called.

The Event Class usually is not unique to amenu item, but instead, defines a group
or "class' of menu items that are functionally equivalent within the program. The
most common use for this characteristic in pre-defined menusisto make new menu
functions backwardly compatible with our original menuing system. In that system,
when you selected the "Add" menu item, the menu_i t emvariable was set to
"add." However, in the new menus, there are many different commands that add
new documents. To tell existing programs that all of these different functions are
adding records, all of them set the "Menu Class' to "add."

Creating Custom Pull-Down
Menus For Specific
Programs

Y ou can create custom versions of menus for specific programs. By selecting the
Program Menu option on the Define pull-down, you can eliminate items that are
not needed on a specific menu or change the way the menu functions. This displays
the Program Menu Definition form. The Program Menu Definition program itself is
both an example of Pull-Down Menus and a method by which you create them.

3-26 Pull-Down Menus

Fitrix CASE Tools Enhancement Toolkit Technical Reference

When you access this program, the following form is displayed.

Action:lUpdate [EHEN!'Brouse !Window Option Custom Quit
Select or reorder a group of documents.

Program Menu Definition
Module Name :

Program Name:

Screen 1D : Get Ring:

Module Menu Item Link

(No Documents Selected)

Menu Name Item ID Ttem Description Style Event Type E D R C T

Asyou can see from looking at the menu line on the top of the screen, thering
menu here is very different than the standard Mainring menu. Thisring menuisa
variation created especially for this program because many of the options offered

on the full Mainring are simply not appropriate to this menu.

Note

Whenever you customize any menu in aprogram, you must customize a/l menus
in the program. This can be especially a problem with Browse menus, which

aren't directly connected to the originating ring menu.

Creating Custom Pull-Down Menus For Specific Programs

Fitrix CASE Tools Enhancement Toolkit Technical Reference

We can look at the menu items with which this special menu was created if we use
the Find command to get the pre-defined menu items used by this menu. Y ou can
do this by entering "progmenu” on the Program Name line and "screen” on the
Screen ID line. Pressing [ESC] displays the following screen.

fiction: Update [ENEN Brouse Window Option Custom Quit
Select or reorder a group of documents.

Program Menu Definition
Module Name : screen

Program Mame: progmenu

Screen ID I screen Get Ring:

Module Menu Item Link

Menu Mame Item ID Item Description Style Event Type E D R C T
Mainring 20 Update Records D updone F N N Y N N
Mainring 40 Find a Group D newgrp F N N N N N
Mainring 50 Brouwse the List D brumenu P N N N N Y
Mainring 60 Change Screen Window D tab_menu P N Y ¥ N N
Mainring 70 Option Menu D opt_menu P N N N N N
Mainring 80 Custom Menu D cstmenu P N N N N N
Mainring 90 Quit Program D quitmenu P N N N N N
Mainring 200 MNext Document ¢(hid) H next_.one F N N N Y Y
Mainring 210 Prev Document ¢(hid) H prevone F N N N Y Y
Mainring 220 Exit Program C(hid) H findquit F Y N N N N
Mainring 230 X-it Program C(hid) H findquit F N N N N N
Mainring 240 User Escape (hid) H sysesc F N N N N N
1 of 1)

Menus can be customized for specific programs simply by adding or deleting menu
items found in the detail section of thisform. Notice that only certain Mainring
commands are displayed in the detail section for thisform. The Add(10) and Delete
(30) standard ring menu items from the Mainring menu have been eliminated for
the progmenu program. To do this, delete the lines that contain those commands.
These changes are made because there is not a need to add records in the header
section of this particular program. The module, program, and screen information is
created by the Form Painter when you define the screen form. The "Delete" com-
mand is also missing.

Note

Make sure that you do not delete all of the commandsin the ring menu. At least
ONE ring menu command must be active when the program first loads.

3-28 Pull-Down Menus

Fitrix CASE Tools Enhancement Toolkit Technical Reference

The functions of certain commands have also been changed for this program. For
example, the Update and Find commands normally call pull-down menus
(upd_nenu and f nd_nenu respectively), but here their related events call func-
tions. When the user selects"Update," they are automatically put into update on the
current record. When they select "Find," they are put into ablank form for entering
selection criteria. We have made these commands simpler for this particular form
because the user is never working with large groups of documents. Group updates
or re-sorts don't make any sense in this environment.

Other commands on the Program Menu Definition form have also been shortened.
Theitemsthat begin withbr w_menu andcst _nenu have been changed from the
standard menu. These are lines from the Browse Menu and custom pull-downs. For
example, since thereis no "Browse" screen for this program, thereisno View List
option. However, thereisa Next and Previous Document option. Similarly, thereis
no "User Defined Fields' in the custom menu because it simply doesn't make any
sense in this environment. Adding and Viewing Notes still remain because it does
make sense to have these functions with this program.

The Program Menu Definition Form

The Program Menu Definition form allows you to customize your menus and menu
items for each program in your application.

Action:lUpdate [ENEN!'Brouse !Window Option Custom Quit
Select or reorder a group of documents.

Program Menu Definition
Module Name :

Program Name:

Screen 1D : Get Ring:

Module Menu Item Link
Menu Name Item ID Ttem Description Style Event Type E D R C T

(No Documents Selected)

Creating Custom Pull-Down Menus For Specific Programs 3-29

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Module Name: Thisfield contains the name of the module directory of the pro-
gram whose menus you want to modify.

Program Name: Thisfield contains the name of the program directory of the pro-
gram whose menus you want to modify.

Screen ID: Thisfield contains the name of the program whose menus you wish to
modify. The screen ID is the name of the screen form without any filename exten-
sion.

Get Ring: Thisfield contains the name of the menu you wish to modify.

Therest of the items on the Program Menu Definition form all deal with individual
menu items. Each of these characteristics are defined on the Menu Item Definition
form. They are displayed here so that you may change these characteristicson a
program by program basis. For more detailed descriptions of these fields, refer to
the Menu Item Definition form section.

Menu Name: Thisfield contains the name of the menu that the menu item belongs
to.

Item ID: Thisfield contains the Item ID of the menu item.
Item Description: Thisfield contains the description of the menu.

Style: Thisfield contains the style of the menu item. A menu item can have the
following styles: (D)isplay, (H)idden, (F)unction, (S)pecial.

Event: Thisfield contains the action that takes place when the menu item is
selected.

Type: The event can be a (R)ing menu, (P)ull-down, or (F)unction.

E: ((ENTER] key required) Thisfield allows you to determine if you want the
menu item to Hold After Select. Main ring menus generally have Y in thisfield,
while Browse ring menus have an N.

D: (detail required) Thisisthe Requires Detail field. Here you determine if your
menu item can be used only if the screen form has a detail section. Y ou can enter a
Y,N,orS.

R: (rowid required) Thisisthe Requires Rowid field. If you want the menu item to
be deactivated when there is no current document enter aY. You may enter Y, N,
or Sinthisfield.

3-30 Pull-Down Menus

Fitrix CASE Tools Enhancement Toolkit Technical Reference

C: (cursor item required) Thisisthe Requires Cursor Item field. Enter aY in this
field if you want the menu item to be deactivated only when there is no current
group of documents found by the Find command.

T: (total cursorsrequired) Thisisthe Requires Cursor Total field. If you want the
menu item to be deactivated when there are no documents selected at all, enter aY.
N and S are also valid entries.

Defining A Custom Menu

There are only seven steps in creating a custom menu for a program. This process
assumes that you have used the Form Painter to create screen formsin the program.

Creating Custom Pull-Down Menus For Specific Programs 3-31

Fitrix CASE Tools Enhancement Toolkit Technical Reference

1. Run the Program Menu Definition form.
2. Find the program who’s menus need to be customized.

Typically, for main ring menus thisis the main form that starts the program.
For browserings, it is the browse form. Execute Find, enter the module, pro-
gram, and screen name to select that form.

3. Update the Program Menu Definition form.

When you select the Update command from the command line, you are placed
inthe"Get Ring:" field. Thisfield contains the name of the ring menu you want
to customize for this program. Y ou then press [ENTER]. When you press
[TAB] or [ESC] to get down to the detail area, the detail section of the form
will befilled in with the menu items defined for that ring menu.

Note

Y ou only need to typein the ring name in the Get Ring field the first time you
bring in a set of ring menu items. After that, you can update items by simply
going onto the next step and pressing [TAB]. If you call in another ring menu, it
writes over any other additions or changes you have made to this array.

4. Press [TAB] to move down into the detail array.

At this point, the items for the ring menu you have specified in the Get Ring
field and any dependent menus appear. Y ou can now move through them to see
all of theitems as defined in the Menu Items Reference table.

5. Delete or Insert new lines.

To eliminate any unwanted menu items for this particular program (module,
program, screen ID), simply use the Informix Delete Line key (F2 in most
Informix termcaps). Y ou can also Insert lines, by pressing the Insert Line key
(F1 in most Informix termcaps) to open a space in the array and use the Zoom
command to look directly at the Menu Items Reference file and pick items from
it to bring into the array. Thisis most useful when you delete an item you want
or when you want to customize a menu not directly connected to the starting
ring menu. Y ou can bring in items from that menu into the current form, one
item at atime.

3-32 Pull-Down Menus

Fitrix CASE Tools Enhancement Toolkit Technical Reference

6. Change any menu characteristics.

Any characteristic can be changed except for the description, which always
shows the original name of the menu item. However, you must make sure if
you change the Menu Name and Order Itemsthat there is an Item in the Menu
Items Referencefile for that specific Name and Order. If not, no language char-
acteristics can be linked with your menu item. In general, you should only
change characteristics to the right of the Description and use the Name and
Order fields for Zooming. Most typically, change the event names and types
called by menu items and perhaps their activation characteristics.

Note

Y ou cannot change the order to reshuffle menu items. The Order islinked to the
Menu Items Reference file and must point at the related item. It doesn't have to
work in the same way, but it uses the language characteristics of that item.

7. Change any "Special" menu items.

Items defined with an "S" do not appear when programs are run unless their
styleis changed to [D]isplay, [H]idden, or [F]unction key. These items exist in
the Menu Items Reference file so you can change them here.

8. Make sure all menus are referenced.

If the first ring menu is custom, all menus called in the program must appear in
this custom detail table. If the menu isn't linked directly to the main ring, you
can use Zoom to bring in its menu items one at atime, or, more efficiently, go
to another screen in the program and call in the other ring menu. This last
method is used for Browse screens. If you are using a Browse menu, you have a
browse form, so select that form with the Find command and then type

Br w_rrenu in the Get Ring field. This displays all the browse menu items.

Menu items do not have to appear with the specific screen in which they are
used. Any secondary screens (such as Add-Ons) can be used to create these sec-
ondary menu additions to the program.

Make sure you test all menus after defining them.

Creating Custom Pull-Down Menus For Specific Programs 3-33

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Defining a Custom Ring Menu

Y ou can create your own unique ring menus to run within programs if you desire.
However, we should note that the best programs are those that have consistently
named menu items in a dependable order. It may be possible to create a new menu
for every program, but it isn't necessarily agood idea.

To define a completely new ring menu, do the following:

1.

Define the ring menu items using the Menu Items Definition form.

Give your ring menu aunigque, new name. Y ou can use itemsthat call functions
on other ring menus and which use identical language labels. What makes a
ring unique is the name you give it. What makes each item unique is the
Order/ID number.

Define any unique pull-down menus by defining the items on them.
A unique ring menu can call existing pull-downs.

For example, you could create new ring that had its own "Custom"” item on it
which accesses the User Control functions by calling the"cst_menu" pull-down
menu asits event. Only if the pull-down menu is new, would you have to create
new items defined by anew name.

After all items are defined, add the put_scrlib function in your
before init trigger.

The format would be:
call put_scrlib("ringname", " new ring name")

where "new_ring_name" is the name you have assigned to your custom ring
menu. This menu is then used to start the program instead of the default ring
menul.

3-34 Pull-Down Menus

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Linking a Custom Ring Menu (other
than Mainring) into Your Program

If you create a custom ring menu, you need to take a couple of stepsto link your
menu into your program. If you just want to use the standard Mainring menu, then
you do not have to do anything other than linking in the custom library.

To use any ring menu other than "Mainring,” (the program default) you must add a
bef ore_i ni t trigger that stores the name of the ring menu using the
put _scrl i b function and the scrlib key namer i ngnarre.

For example, if you want the program to use the ring menu "Oldring," which basi-
cally worksjust like the original ring menu generated by Fitrix Screen, add the fol-
lowing lineto your bef ore_i ni t trigger.

call put_scrlib("ringnanme", "ddring")

This storesthe value "Oldring" under the key r i ngnane. When the generated pro-
gramruns, it usestheget _scr | i b function to get the name of the ring menu to
begin the program with.

Only if you don't store any valuein "ringname" does the program use Mainring by
default.

Note

If the ring menu specified in your call totheput _scr | i b function hasn't been
defined in the Menu Items Definition form, the program failswhen it triesto
open that form.

Calling a Ring Menu From Within a
Program

Y ou can also call different menus programmatically from within a program by
usingthegen_nenu() function. Thisalowsyou to, for example, display anew
screen from within a program and add its own unique ring menu to it. Thisfunction
displays either ring menus or pull-down menus depending upon the menu_t ype

flag.

Creating Custom Pull-Down Menus For Specific Programs 3-35

Fitrix CASE Tools Enhancement Toolkit Technical Reference

To do this, al you haveto dois put the call tothegen_menu() function inthe
trigger that occurs at the point you want the menu to appear. It isalso agood ideato
store the name of the menu you are calling using

put _scrlib("menunane”, your nane), but thisis not necessary for the
menu to work. It is, however, helpful for people expecting to find the name of the
current menu in that variable.

The syntax of thegen_nenu() functionis:
call gen_nenu(ringnane, enter_flag, nenu_type).

ringname: avariable or string that contains the name of the ring menu you want to
cal.

enter_flag: is"Y" or "N" or avariable containing one of those values. Thisvalue
is the same as you would use on the "Hold Upon Select” value in defining a call to
aring menu item. A ring menu that acts like the main ring menu is defined with a
"Y." A ring menu that doesn't recognize the [ENTER] key like the Browse menu is
defined with an "N" in this position. A pull-down menu with a"Y" waitsfor you to
press [ENTER] to select an item. A pull-down with an "N" is hot.

menu_type: is"R" or "P" for aring menu or a pull-down. This determines how
the menu displays. There is no basic difference in the way menu items are con-
structed for these two different menus. Y ou can, theoretically, display any menu as
aring menu or a pull-down depending on which menu_type flag you use. However,
aring menu does work better if you have a"O" item to show the "name" of thering
menu before the items you select and label "help" text that displays a help message
under the ring menu item asit is displayed.

3-36 Pull-Down Menus

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Example:
call gen_nmenu("Mainring","Y","R")

Thiscall displaysthe default main ring menu at the point in the program it is called.
The called menu returns control to your base program only when the new menu is
exited.

Example:
call gen_rmenu("Brw_ring","N',"R")

This call displays the browse menu. This makes senseif you first open a browse-
type screen form.

Example:
call gen_nenu("add_nenu","N',"P")

This displays the add_menu. The menu is "hot,” that is, the items on it could be
selected simply by pressing their first letter.

Note

Menu items that normally "hold" their menu so that they return to it after they
are selected do not do o if called directly with thegen_nenu() function. All
menu items simply execute. Right and left arrows that usually bring up adjoining
menus will also not work if they "pop-up” from a menu. They rely upon the con-
text of acalling ring menu to tell them what "left" and "right" means.

Questions About Defining Program-
Specific Menus

Can | delete menu items | don't need for a specific
program?

Y es, thisis one of the most common ways of modifying menus on an program-spe-
cific basis. To delete menu items, you follow four steps:

Creating Custom Pull-Down Menus For Specific Programs 3-37

Fitrix CASE Tools Enhancement Toolkit Technical Reference

1. Go to the Program Menu Definition form.
Use the Find command to find the screensin the program you are working with.

2. Update the main screen and type the starting ring menu name into the Get
Ring field.

Thisring menu gets al the pull-down menus that it calls.
3. Press TAB to edit the detail lines of the various menus.

4. Move to the menu item you wish to eliminate and press the Informix delete
key. This is usually F2.

Can | change the way a given menu item functions on
a program-specific basis?

Yes. Any characteristic of a menu item except the menu item description and the
language characteristics can be changed on a program by program basis.

The most common use for this featureis changing the events that a menu item calls.
For example, if the various "update" options on the update pull-down menu aren't
relevant, you can change the "Update" command on the Mainring menu to call the
upd_one function directly instead of first calling the update pull-down.

To change amenu item function for a specific program, you follow four steps:

1. Go to the Program Menu Definition form. Use the Find command to find
the screens in the program you are working with.

2. Update the main screen, typing the starting ring menu name into the Get
Menu field.

Thisring menu gets al the pull-down menus that it calls.
3. Press TAB to edit the detail lines of the various menus.

4. Move to the menu item you wish to change using the arrow key. Use the
[ENTER] key to move to the field you wish to change.

If you are changing the Event Name, remember to also change the Event Type
to match.

3-38 Pull-Down Menus

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Can | create a new menu item for the local program
alone?
Yes. Thisisdonein two steps:

1. First, you must define your new item in an existing menu using the Menu
Items Definition form.

Y ou do this the same way you add any new menu item, but instead of coding
that Menu Style with an "D,""H," or "F" (display, hidden, function key), you
codeit withan"S" indicating a"specia” menu item. Menu items coded with an
"S" do not affect any program calling the generic menu. Using any other code
when adding a menu item causes the new item to appear in al programs using
the generic menu. For "S" styleitems, it isagood ideato reference the program
itisfor in your item description.

2. Load the menu into the Program Menu Definition form and change the
"S" to a usable style, that is, a "D,""H," or "F" depending on the type of
menu item you want it to be.

If you are adding many new items or making radical changes, it may be easier
to create an entirely new set of menu items for your program giving them new
menu names. This can be done by copying any existing menu items. Using "S"
style items only makes sense when only afew items are different.

Do | have to define all menu items in the generic file
before making them program-specific?

Y es. The Menu Name and Menu Order/ID used in the program for defining pro-
gram-specific menus must refer to an existing item in the general Menu Itemstable.
Thisis necessary because only the Menu Items table has the language characteris-
tics that are needed to allow all menu itemsto function. Y ou can change any other
menu characteristics while creating program-specific menus except the menu item
description and these language characteristics.

Can | use two different versions of the same menu
within a program?
Not in thisrelease. Each menu can only be used in one version. If you need two dif-

ferent versions of the same menu, you first have to copy the existing version using a
new menu name in Menu Item Definition program.

Creating Custom Pull-Down Menus For Specific Programs 3-39

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Troubleshooting Pull-Down Menus

When the menu item is selected it just blinks and doesn't do anything.

Pull-Down Menus are not finding the event called by the menu. This could be
caused by a misspelling of the event name, or by mistyping an event.

Moving Pull-Down Menus to
a New System

Assuming that you have developed your code and program on one system and are
moving it to another, you need to understand the various components of the system
and how they work together.

First, programs using Pull-Down Menus require the User Control Libraries. The
User Control Libraries include the database structure and the code needed to drive
different aspects of this system.

The Enhancement Toolkit includes the basic data for driving standard forms of
menus such as Mainring, Brw_ring, Old_ring and the various pull-down menus, but
if you create new menu items or program-specific versions of these menus, you
must move the database descriptions of these items from your machineto the user’s
machine.

Thisisdone fairly simply using INFORMIX-1SQL and the "load" and "unload"
commands. The "unload" command saves an ASCII version of the menu data from
the database into a small file. The "load" command can then load that information
into the UCL table at the user's site. Y ou would use the "Query-Language” option
in 1SQL and select the database before entering the following commands.

The commands for saving the complete "Menu Items' file from your development
systemis:

unl oad to "cgncmmdr.unl" select * from cgncomdr
unl oad to "cgntmmdd. unl " select * from cgncmmdd

The command for saving any program-specific menus are:

unl oad to "cgmenud.unl" select * from cgmenud

3-40 Pull-Down Menus

Fitrix CASE Tools Enhancement Toolkit Technical Reference

These commands create three files called cgncrmdr . unl , cgncmdd. unl ,
and cgnmrenud. unl , which are then moved to the user’s machine.

To load these files on the user’ s machine you first have to delete any existing data
in the local user’s version of these files. To do this, enter:

1
1
1

del ete fromcgncrmdr where 1
del ete fromcgncirmdd where 1
del ete from cgmenud where 1

Then load the new data for these files using the following;:

| oad from cgncomdr.unl; insert into cgncndnr
| oad fromcgncomdd. unl; insert into cgntcnmdd
| oad from cgmmenud. unl; insert into cgmenud

This completes the loading of the new filesinto the user’s machine.

If you want, unload just part of the data from the file, for example, unload just a
specific program’ s program menu from cgmenud using the following:

unl oad to "cgmenud. unl" select * from cgmenud where prog = "ny_progrant

Here, "my_program" is the name of the program for which you have defined a vari-
ation on an existing ring menu. Y ou then don't have to delete any information in the
user’s system. All you have to do isload the new information using:

| oad from cgnmmenud. unl insert into cgmenud

Note

Be sure that anytime you define new commands, you unload both the cgnt-
mmdr table and the cgncnmdd table. The first table contains the definition of
the menu item itself. The second contains the "language” characteristics of the
item. Both are required for a new menu item to work.

Moving Pull-Down Menus to a New System 3-41

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Menu Function Events in
Pull-Down Menus

The following "events' are encapsulated in the menuing system itself. The names
of these events are what is entered into the "Event Name" field when defining a
menu item for the Event Type "F," for "function” (as opposed to an event whichisa
menu of one kind or another). Any function event not appearing in thislist but
appearing in amenu item must be defined in the local function menu_extra() .

General Ring Events

movemenu: Thisevent is used only from an open pull-down menu. It closes the
current pull-down menu and moves to the ring command next to it. If that ring com-
mand calls a pull-down, then that pull-down displays. This event istypically used
only for right and left arrow keys.

findquit: Thisevent finds the "quit" or "exit" item on the current ring menu and
calsit. It isused primarily by "break" function keys. This event works by finding
the menu item that calls the "quitmenu" or "prg_quit" events.

findwind: This event finds the "window" command on the ring menu. It is used
primarily by the "tab" function key.

Mainring Events

addone: Thisevent calsthe functions that allow the addition of a single docu-
ment on the current form. Thisisthe equivalent of the original menus"Add" com-
mand. In Mainring, it is called by the "Add/Single Document" option.

addmany: This event calls the functions that allow the addition of many docu-
ments on the current form. Thisis the equivalent of the original menus"Add" com-
mand called over and over again. In Mainring, it is called by the "Add/Many
Documents' option.

copyone: This event makes a copy of the current document and puts you into the
update mode on that document. It requires a"current rowid" to function. Used by
the "Add/Document Copy" option in Mainring.

3-42 Pull-Down Menus

Fitrix CASE Tools Enhancement Toolkit Technical Reference

copymany: This event makes a copy of the current document and puts the user in
update mode. When the user finishes update, a copy of that most recent version of
the document is created and the user is put into update mode on that. In Mainring, it
iscalled by the"Add/Similar Documents" option. This event requires a current row
id in order to function.

upd_one: This event updates the current document on the screen. It requires a
current row id. Thisevent iscalled in Mainring by "Update/This Document"
option.

upd_all: Thisputsall currently selected documents into update mode. It is called
by the "Update/All Documents" option in Mainring.

del_one: This event deletes the current document. It is called by the "Delete/This
Document" in Mainring.

del_all: Thisevent goes to each currently selected document and asks if you want
to deleteit. Thisfunction is called by the "Delete/All Documents' option in Main-
ring.

new_grp: This event takes the user into a search criteriaform (Query-By-Exam-
ple). It calsthe functions called by the origina "Find" command.

sort_grp: Thisevent alowsthe user to use the form to specify which data element
to sort on. It is called by the "Find/Sort Group" option in Mainring.

brw_list: This event displays the browse window. It is the equivalent of the origi-
nal "Browse" command.

next_one: This event displays the next document in the current group. It isthe
equivalent of the origina "Next" command. It is now called by several different
commands, including the down arrow function key from Mainring.

prev_one: This event displays the previous document in the current group. It is
the equivalent of the original "Prev" command. It isnow called by several different
commands, including the up arrow function key from Mainring.

view_det: This event moves the cursor to the detail section of the current docu-
ment and allows the user to scroll through it without being in the update mode. It is
the equivalent of the old "Tab" command.

spec_cmd: This event calls the Option menu and displaysit. It is the equivalent
of the original "Option" command.

Menu Function Events in Pull-Down Menus 3-43

Fitrix CASE Tools Enhancement Toolkit Technical Reference

oth_prgm: This event calls the user defined escapes. It is called by the
"Optiong/Other Programs" option from Mainring. Previoudly this function was
available only as a User Control function key.

todolist: This event calsthe user-definable to-do list. It is called by the
"Options/To Do List" option from Mainring. Previously this function was available
only as a User Control function key.

prg_info: This event calls information about the program. It is called by the
"Optiong/Information™ option from Mainring. Previoudly this function was avail-
able only as a User Control function key.

prg_ack: Thisevent callsthe program acknowledgement screen. It iscalled by the
"Options/Acknowledgements” option from Mainring. Previously this function was
available only as a User Control function key.

sys_esc: Thisevent calsthe operating system prompt. It is called by the
"Optiong/Escape to System" option from Mainring. Previously this function was
available only as a User Control function key.

prg_hlp: This event calls the program help. It is called by the "Options/Hel p"
option from Mainring. Previously this function was available only as a User
Control function key.

add_flds: This event calls the user-definable fields function. It is called by "Cus-
tom/Additional Fields" option in Mainring. It was previously available only asa
User Control function key.

see_flds This event calls the viewing of user-definable fields function. It is called
by "Custom/Add. Fields (View)" option in Mainring. It was previously available
only as a User Control function key.

edt_note: This event cals the user-definable notes function. It is called by "Cus-
tom/Document Notes' option in Mainring. It was previously available only asa
User Control function key.

see_note: Thisevent callsthe viewing of user-definable notes function. It is
called by "Custom/Doc. Notes (view)" option in Mainring. It was previously avail-
able only as a User Control function key.

hot_keys: This event calls user-definable function keys. It is called by "Cus-
tom/Hot Keys' option in Mainring. It was previously available only as a User Con-
trol function key.

3-44 Pull-Down Menus

Fitrix CASE Tools Enhancement Toolkit Technical Reference

chg_func: Thisevent calls the user-definable functions. It is called by "Cus-
tom/Change Functions' option in Mainring. It was previously available only as a
User Control function key.

list_err: Thisevent callsthe error list for the current program. It is called by "Cus-
tom/List Errors' option in Mainring. It was previously available only as a User
Control function key.

req_feat: This event calls the feature request form. It iscalled by
"Custom/Request Feature" option in Mainring. It was previously available only asa
User Control function key.

prg_stat: Thisevent calls the program status form. It is called by "Custom/Pro-
gram Status' option in Mainring. It was previously available only asaUser Control
function key.

prg_quit: Thisevent exits from the current program. It is called by "Quit/Exit
Program" option in Mainring.

Menu Function Events in Pull-Down Menus 3-45

Fitrix CASE Tools Enhancement Toolkit Technical Reference

3-46 Pull-Down Menus

Program Control
Library

This chapter describes the functions available in the Program Control Library. The
Program Control Library isincluded with the purchase of the Enhancement Tool-
kit. The Program Control Library contains avariety of useful functions designed to
give you even more flexibility when creating programs. The Program Control
Library consist of the following features.

n

n

n

Dynamic menus
Dynamic ring menus
Scrolling input fields
Warning windows

Application’s C Library

4-1

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Overview of the Program
Control Library

The Program Control Library contains function setsthat aid you in building a
friendly user interface. In general, these functions extend the features provided by
the INFORMIX-4GL programming language. Usually the interface style and func-
tionality presented by these tools requires callsto the C library, which contains a set
of C language functions designed to allow for ready interaction with UNIX from an
Informix program.

To utilize the Program Control Library, you need to add the library to your list of
libraries in the Makefile of the program that calls any of these functions. The
$fglibdir/lib/prog_ctl. alibrary should comejust before $f gl i b-
dir/1ib/standard. ainthelist of librariesin the Makefile.

The CASE Tools Enhancement Toolkit needs to be present on any system that uses
these Program Control Library functions. This means that if you incorporate these
functionsin your applications your customers must have CASE Tools Enhancement
Toolkit or the Code Generator on their system.

The function sets in the Program Control Library include:

Dynamic Menus: Thisfunction set is contained in two source files:

i b_rmenu. 4gl and menu_wi n. 4gl . Dynamic menus gives you the ability to
build menus on the fly without knowing in advance how big the menu window
should be or how many options are on the menu. The menu is automatically sized
for optimal display size and page distribution. Y ou can provide guidelines for the
sizing/display optimizer to follow to size menus according to known parameters
(these are followed unless they are unrealistic for the size and number of the menu
items). Y ou can optionally allow the user to select several menu items at once or
only asingle menu item. There are additional options that allow you to supply
menu header lines, Zoom capability from the menu, stacking menus, plus more.
The dynamic menus function set is designed much likethet ext edi t () function
set in the standard Fitrix Screen Informix library. It can be used as a replacement
for "display array" in many instances.

4-2 Program Control Library

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Dynamic Ring Menus: Thisfunction setiscontainedinl i b_ri ng. 4gl . The
dynamic ring menus function set is designed just like the dynamic menu function
set but provides a similar capability for building dynamic, paged ring menus. This
function set provides a specialized subset of the dynamic menu set. The dynamic
ring menus can be used to replace the informix "menu"” instruction.

Scrolling Input Fields: Thisfunction is contained in the 4GL sourcefile
fg_getfld. 4gl .Itprovidesafunction that allows you to collect input in a
"reverse" attribute field at any place in the current window. The primary function
alows for input of data beyond the size of the displayed field length by scrolling
the field automatically as the user typesin data. Y ou must specify the current win-
dow position, the relative position of the input field, the size of field, the maximum
length of the data that can be entered, and any beginning value for that data. Y ou
get back the new data and a special code indicating what key was used to exit the
scrolling field.

Warning Windows: This function set allows you to pop up a dialog box with a
short message of your design sized and centered in the screen. There are two inter-
face styles: one provides the user with a Y ES/NO/CANCEL response option, the
other isasimple OK prompt for any key to continue. This function set is designed
much like the dynamic menu set in the way it isinvoked.

Dynamic Menus

This suite of menu routinesis used to build, display, and select from menusthat can
be dynamically maintained. Typically the dynamic menu is built with a series of
callstomenuput () , which adds a menu item to the menu for each call. Next
menupi ck() iscalled returning the selected itemin scr at ch and the index of
the item selected (0 if [DEL] was pressed or an error was encountered). The menu
automatically closes once a selection is made unless you make a call to nenu-

hol d() beforecalling menupi ck() . If you choose not to automatically put the
menu away you must do so manually by calling the function nenucl ose() .

Once amenu is open (displayed), any successive calls to any menu function other
thanmenupi ck(), nenusget(), nenuget(), nenunext(), or
menuact i ve() start onthe next available menu (up to 10 menus can be open at a
time).

Overview of the Program Control Library 4-3

Fitrix CASE Tools Enhancement Toolkit Technical Reference

An alternate way of building amenu isby letting scr at ch equal an SQL state-
ment and calling menusel () , which makes the database selection, and then call-
ing menuput () for each row found.

Y ou can allow Zooms from the menu in which case the current item is returned in
scrat ch,andscr_funct issetto"zoom". If Zoom is set for amenu you must
check for scr _funct = "zooni onasuccessful return to identify a Zoom
selection from others. Usually a Zoom menu should also be a"hold" menu. Be sure
to call menuhol d() .

You canretrieve alist of al the menu itemsin a menu with the function
nmenuget (), which starts by returning menu item onein scr at ch and then
returns each menu item for each call. Y ou may only get items from a"held" menu
since nenuget () only works on the current menu.

Y ou can define the help text that should be made available from the menu by set-
ting the help module, program, and number explicitly with acall to menuhel p() .
If you do not call menuhelp then you must process help locally. When [CTRL]-[w]
ispressed the menupi ck() function for the menu returns with the current menu
item number and the value of scr _f unct is"help." The menu window is not
closed. If you wish to use the default help for amenu, call nenuhel p() witha
null module argument.

By calling the function menunmany() , you mark the menu as a menu from which
multiple items may be selected before exiting. Pressing [ENTER] selects and unse-
lects items. Once done [ESC] brings up asimple "Done Selecting?' prompt. "Y es"
exits the menu with the current selections while "No" and "Cancel" alow you to
continue selecting.

Toretrieve alist of selected itemsyou may call nrenusget (), which returns each
item in succession that was selected (inscr at ch) and returns the menu item num-
ber aslong as there was another item to return. Once there are no selected items | eft
to return it returns zero. The second return value reflects the order in which the
menu items were selected.

Menu items can be activated and deactivated in order to allow or prevent selection
of the menu item. The default is active. You call the function menuacti ve(),
which requires an argument to specify the item to activate/deactivate and an argu-
ment to specify to activate or deactivate. By passing a null item argument the last
item put onto the menu is operated on.

4-4 Program Control Library

Fitrix CASE Tools Enhancement Toolkit Technical Reference

To build the header strings for the menu, you call the function menuhead() . The
menuhead() function requiresthree arguments. Thefirst isthe header string. The
second ishow it must be positioned on the menu. That is, either centered ("center"),
right justified ("right"), left justified ("left" - the default), or as a pattern (" pattern™).
A pattern type heading takes the first character of the heading and repeatsit for the
width of the menu. The last argument is the heading attribute, which can be "high"
for reverse, "dim" for blue, or "normal" for white. (A call to mrenupi ck() witha
non-null header string automatically calls menuhead() for the header plusa
dashed line.)

Y ou can specify the default row/column position (over the built in default) by call-
ing menupos() . If you need to be sure the window is at |east a certain width you
can also specify them n_wi dt h for the window with the menupos() call.

For special pull-down type menus you can call menuwr ap() toturnleft and right
wrap off. Inthiscasescr _f unct issetto "right" or "left" and the menu returns
with no item selected.

Y ou can make a menu window current by calling menucur r ent () . Also, any
call tonmenupi ck() aways makesthe menu window current in order to allow the
controlling application to switch between application windows without problem.

Each menu is divided into columns and sized for optimal display.

In order to make a menu item the current cursor position on the menu before enter-
ing the menu you can use acall to menunext () specifying the menu item that
should be active.

To only display the first page of a menu without prompting for selection you can
call menuvi ew() . You must use menucl ose() to close this menu.

Function Notes
¢ The maximum size menu item is 40 characters.
¢ The maximum number of menu itemsis 500.

¢ The maximum number of nested menusis 10.

e The maximum number of heading lines per menu is 10.

Overview of the Program Control Library 4-5

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Summary of Dynamic Menu Functions

menuput () — add amenu item to the menu

Arguments: nenu_i t em— text to appear for the menu item.

Returns: none.

Notes: If the menu item is NULL, an item line of dashesis automatically put
in place of the text. The dashed line is not selectable as a menu item. If the
menu item is SPACES, ablank lineis used as a non-selectable menu item. If
the menu itemis"(seescr at ch)" then the contents of scr at ch are used for
the menu item. A new menu is opened if the current one is already open.

menuhead ("header_str", "type", "attribute") — add aheader
line for the menu.

4-6

Arguments: header st r — header text string. t ype — left, right, center,
pattern. at t r i but e — high, dim, normal.

Returns: none.

Notes: If themenuitemis"(seescr at ch),” then the contents of scr at ch
are used for the menu item. A new menu is opened if the current one is already
open.

Program Control Library

Fitrix CASE Tools Enhancement Toolkit Technical Reference

menusel () — add itemsto the menu from an SQL query.
Arguments: none. Expects an SQL query inscr at ch.
Returns: num i t ens — number of items put onto the menu.

Notes: nenusel () expectsan SQL query that is prepared and opened as a
cursor putting each element into the menu and returning the number of ele-
ments put into the menu. A new menu is opened if the current oneis already
open.

menupick (["header_str"]) — select an item from the menu.
Arguments: header st r — optiona header text.

Returns: i t em_num— theitem number selected plus the item selected in
scratch.

Notes: If header _str isNULL then no automatic header is used (already
set with menuhead() , or no header desired). If no header lines have been
defined, and a header string is supplied to menupi ck() then adefault header
is built automatically with one or two linesto display ESC/DEL/ENTER func-
tion messages followed by aline of "=" characters. If the header lineis sup-
plied, it is added to the existing header (default of programmer defined),
centered, and followed by a single dashed line. The selected menu item number
isreturned (0 if no selection) and the menu item text for that item isreturned in
scr at ch. Thisfunction does not start a new menu.

menuhold () — prevent the menu from closing once a selection is made.
Arguments: none
Returns: none

Notes: Only hold the menu if a selection has been made. Pressing [DEL] to
exit without selection always closes the menu. A new menu is opened if the
current one is aready open.

Overview of the Program Control Library 4-7

Fitrix CASE Tools Enhancement Toolkit Technical Reference

menuclose () — close an open menu.

Arguments: none
Returns: none

Notes: Closes whatever is the current menu and its window.

menuhelp (help module, help program, help number) — setthe
help module, program, and number for the menu

Arguments: hel p_nodul e — help text "module” key to use for the menu.
hel p_pr ogr am— help text "program” key to use. hel p_nunber — help
text "number" key to use.

Returns: none

Notes: The module, program, and number are the keys for context sensitive
help ([CTRL]-[w]) from the current menu. It starts a new menu if the current
oneis aready open. The menu returns for local help processing if menu-

hel p() isnot caled. A null module argument causes the default help for the
menu to be used.

menuget () — get thelist of items on the menu.

4-8

Arguments: none
Returns: true/false — true if next elementisinscr at ch.

Notes: Starting at one returns the next menu iteminscr at ch until al ele-
ments have been returned. The true/fal se return value indicates whether it is
done returning elements. The counter used by menuget () isre-initialized to
one upon areturn from menupi ck() . Thisfunction does not start a new
menu.

Program Control Library

Fitrix CASE Tools Enhancement Toolkit Technical Reference

menusget () — get the list of selected items on the menu.
Arguments: none

Returns: i t em nunber — the menu item returned (O if none).
order _nunber — therelative order number of the element.

Notes: Starting at one returns the next selected menu itemin scr at ch until
all selected elements have been returned. The first returned value gives the
menu item returned (O if done), the second return value returns the relative
order that the item was selected. The selected items are re-marked as unsel ected
once they have been returned by nenusget () . The counter used by nenus-
get () isre-initialized to 1 upon areturn from menupi ck() . Thisfunction
does not start a new menu.

menuzoom () — set aflag to allow Zooms from this menu.
Arguments: none
Returns: none
Notes: Starts anew menu if the current oneis already open.

menupos (start_row, start col, menu_width)— set the default
window coordinates.

Arguments: st art _r ow— the desired upper row position of the menu.
start _col —thedesired left column position. menu_wi dt h — the desired
menu width.

Returns: none

Notes: The starting row, column, and width are only used if amenu with those
dimensions s possible given the number of items on the menu. A new menuis
opened if the current one is already open.

menumany () — set the menu to allow for selection of multiple items.
Arguments: none
Returns: none

Notes: A new menu isopened if the current oneis already open.

Overview of the Program Control Library 4-9

Fitrix CASE Tools Enhancement Toolkit Technical Reference

menuactive ([menu_item], act_level)— activateor deactivate amenu
item.

Arguments: nenu_i t em— optional menu item to activate (if null activate
current item.) act _| evel — activationlevel (-1 = non-active, -2 = non-item,
0 = active, > 0 = selected order).

Returns: none

Notes: If the menu item argument is null then the activation statusis applied to
the current menu item (for instance, immediately following a call to nenu-

put ()).

Activation status: -2 never selectable, -1 not currently selectable, O currently
selectable, >0 selected (valueis relative selection order). This option does not
start a new menu.

menuwrap () — turn on or off the left/right movement.
Arguments: none
Returns: none

Notes: Left and right movement does not wrap, instead it returns with
scr_funct setto"left" or "right." It starts a new menu if the current oneis
already open.

menucurrent () — make the menu window current.
Arguments: none
Returns: none

Notes: Makes the current menu window the active window (can be used to
redisplay the current menu if covered by some other window). This function
does not start a new menu.

menunext (item num) — preset the current menu item.
Arguments: i t em_num— menu item number to make active.
Returns: none

Notes: Automatically pages the menu if the requested menu item is not on the
current page. This function does not start a new menu.

4-10 Program Control Library

Fitrix CASE Tools Enhancement Toolkit Technical Reference

menuview () — You must use nenucl ose() to closethis menu when done. A
new menu is opened if the current one is already open.

Dynamic Ring Menus

This suite of ring menu routines is used to build, display, and select from ring
menus that can be dynamically maintained. Typically, the ring menu is built with a
seriesof callstor i ngput () , which adds aring menu command to the ring menu
for each call. Nextr i ngpi ck() iscalled to display the ring menu and prompt for
the command selection returning the selected ring menu command inscr at ch
and the index of the command selected (O if [DEL] was pressed or an error was
encountered). r i ngpi ck() iscalled each time the program prompts for a com-
mand selection from the ring menu. Up and down arrow keys are also returned
from the ring menu to allow for flow control.

Basically the dynamic ring menu function set is designed to imitate the dynamic
menu function set described above. Most of the function calls are structured the
same, and the general methods for building and invoking the menus are the same.
The ring menus are more limited in size and scope being a specialized horizontal
type of menu. At most, 20 ring menu commands can be used.

Once aring menu is opened (displayed), any successive callsto any menu function
other thanri ngpi ck(),ringnext (),orringcurrent () start onthe next
available ring menu (up to 10 ring menus can be open at atime).

Y ou can define the help text that should be made available from the ring menu by
setting the help module, program, and number explicitly with acall tor i ng-

hel p() .

Y ou can specify the default row/column position (over the built in default) by call-
ingri ngpos() . If you need to be sure the window is a certain width you can also
specify the width for the window with ther i ngpos() call.

Y ou can make a menu window current by callingri ngcur rent () . Also, any
cal tori ngpi ck() aways makesthe menu window current in order to allow the
controlling application to switch between application windows without problem.

Overview of the Program Control Library — 4-11

Fitrix CASE Tools Enhancement Toolkit Technical Reference

In order to make aring menu command the current cursor position on the ring menu
before entering the menu, you can useacall tor i ngnext () specifyingthering
menu command that should be active. The menu is paged as needed to display the
requested command.

If all ring menu commands cannot be displayed on the screen at once, then they are
paged right and left with ellipses to indicate that the menu extends in that direction
as appropriate.

The ring menu always compresses the space between ring menu items to make
them fit on asingle menu "page.” It leaves as much as three spaces (the default)
between itemsif all can fit and adjusts down to one space in an attempt to make the
items all fit. In cases when all items fit on a single menu page, you can still reduce
the spacing between itemsto less than three. To do thiscall ri ngspace() with
the desired spacing. Y our requested spacing always gets overridden to make the
menu items fit.

Summary of functions

Function Notes:

e The maximum size ring menu command is 20 characters.

* The maximum number of ring menu commandsitemsis 20.
e The maximum number of nested ring menusis 10.

ringput(ring item, ring message) — add acommand to thering
menu

Arguments: ri ng_i t em—command name. r i ng_nessage—action
message to appear on prompt line.

Returns: none

Notes: If the ring menu command item is"(see scr at ch)" then the contents
of scr at ch are used for the command. If the action message is "(see

scrat ch)" then the contents of scr at ch are used for the action message.
This function starts a new ring menu if the current one is open.

4-12 Program Control Library

Fitrix CASE Tools Enhancement Toolkit Technical Reference

ringnext (ring item) — preset the current active ring menu command.
Arguments: ri ng_i t em—ring menu command number to make active.

Returns: none

Notes: Automatically pages the menu if the requested menu item is not on the
current page. This does not start a new menu.

ringpick ([ring name]) — activate the ring menu for command selection.
Arguments: ri ng_nanme—optional ring menu name.

Returns: cnd_nunber —the ring menu command number selected plus the
command selected inscr at ch.

Notes: If ri ng_name isNULL then no ring menu title is used. The selected
ring menu command number is returned (0 if no selection) and the command
nameisreturned in scr at ch. This does not start a new menu.

ringhelp (help module, help program, help number) — key the
help text for the ring menu.

Arguments: hel p_nodul e—help text "module" key to use for the menu.

hel p_pr ogr am—help text "program"” key to use. hel p_numnber —help
text "number" key to use.

Returns: none

Notes: The module, program, and number are the keys for context-sensitive

help (|CTRL]-[w]) from the current menu. This starts anew menu if the current
oneis already open.

ringclose () — closethe current ring menu.
Arguments: none
Returns: none

Notes: Closes whatever is the current menu and its window.

Overview of the Program Control Library ~ 4-13

Fitrix CASE Tools Enhancement Toolkit Technical Reference

ringpos (start_row, start_col, menu_width) — positionand size
the ring menu (defaults).

Arguments: st ar t _r ow—the desired upper row position of the menu.
start _col —thedesired left column position. menu_wi dt h—the desired
menu width.

Returns: none

Notes: The starting row, column, and width are only used if aring menu with
those dimensions s possible given the number of items on the menu, the length
of the ring menu commands, and the ring menu name (usually no problem).
This starts anew menu if the current oneis already open.

ringcurrent () — make the ring menu window current.
Arguments: none
Returns: none

Notes: ri ngcur r ent makes the current ring menu window the active win-
dow (can be used to redisplay the current menu if covered by some other win-
dow). This function does not start a new menu.

ringspace (space_cnt) — sets adefault spacing for the ring menu items.
Arguments: space_cnt —desired spaces between items (1, 2, or 3).
Returns: none

Notes: Requests a default spacing for the ring menu items. This function does
not start a new menu.

Scrolling Input Fields

The scrolling field function is used to allow for dataentry in adisplay space smaller
than the length of data that can be entered. For example, if you have a small screen
where there is only room for adatainput field of 20 characters but where the data
can be 30 characters, you can use the scrolling field to allow the user to view and
update all 30 characters of data. The largest data field that can be input is 250 char-
acters.

4-14 Program Control Library

Fitrix CASE Tools Enhancement Toolkit Technical Reference

To run the function you can passit aninitia string value for the field (optional).

Y ou must specify the row and column starting position of the field relative to the
window in which the scrolling field is used. Y ou must also specify the position of
the window on the terminal screen (the coordinates used with theopen_w ndow
instruction). Although one set of coordinates would be possible, it makes the pro-
gram less maintainable if your window size and position changes as you enhance
and change your program. Y ou also must specify the size of the scrolling field dis-
play space and the length of the character string to be entered.

When called, the scrolling field editor takes over until an exit action istaken. The
field is displayed in reverse attribute. Within the scrolling field editor, you can
move left and right with the arrow keys without erasing data. Pressing [SPACE]
and [BACK SPACE] also move you right and left but erase data as you go. When
you pass either end of the field with movement keys, you automatically leave the
field (the function returns). While in the field you can delete to the end of the line
by pressing [CTRL]-[d], you can insert a blank character at the current cursor loca-
tion by pressing [CTRL]-[a], you can delete the current character with [CTRL]-[X],
and you can move forward or backward aword at atime by pressing [TAB] or
[BACKTAB]. [HOME] and [END] keys (when setup correctly in your termcap)
take you to the beginning of the field and end of the text respectively. All other
keys cause you to exit the scrolling field (function returns).

When the function returns, it returns the code number of the key stroke pressed
when the field was exited. It also returns the new datain the field. If you exited the
field with [DEL] to cancel, the field contents are restored to the initial data passed
to the function.

In general the scrolling field is used by calling it in before field logic in an "input"
statement. Y ou must use adummy field rather than the real data for the "input
from" since the input logic truncates the data to the display size.

We recommend displaying the real datain the dummy field used in the input state-
ment truncated with ellipsesif it all won't fit in the display space.

Since only before field logic is being used, the normal comment line at the bottom
of the screen does not appear so you manually display the comment string before
thecall tof g_getfiel d(). Youshouldthen redisplay null after the call to
clean up the comment line.

Overview of the Program Control Library — 4-15

Fitrix CASE Tools Enhancement Toolkit Technical Reference

The after field logic for ascrolling field should be placed after the

fg getfield() calinthebeforefield section. Scrolling fields are skipped with
anext field statement after the beforefield, f g_get fi el d() cal, and after field
logicisrun (You don't want to enter the dummy field after exiting the scrolling
field).

Function Notes:
» Attributereverseis always used for the field.

» The maximum length of the input datais 250.

Scrolling Fields in Input Arrays

Scrolling fields can be used with "input array." However, up and down arrows can-
not take you to the previous or next row (cannot readily move up and down
between rows with programmatic logic in before field).

An example of ascrolling field in an input array can be found on page 4-29.

Summary of functions

fg _getfield(fld buffer, row _pos, col pos, row_offset,
col offset, fld _length, data_length)— scrolling field input func-
tion.

Arguments: f | d_buf f er —initial contents of the field.
r ow_pos—row position relative to the window.
col _pos—column position relative to the window.
r ow_of f set —window’s row position.
col _of f set —window’s column position.
f 1 d_I engt h—display length of the field.
dat a_| engt h—length of datato input into the field.

Returns: r et _code—return key stroke code. f | d_buf f er —contents of
the field upon exit.

4-16 Program Control Library

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Notes: All function keys and control keys exit except [TAB], [BACKTAB],
insert character, delete character, delete to end of line, delete line, home, and
end. Special return values include:

Value Key

13 [ENTER] (*"M)

135 [ESC]

136 [DEL]

137 up arrow

138 down arrow

139 left arrow

140 right arrow

<=26 corresponding control key [*A - ~Z]
>=101 corresponding function key [F1 - F33]

Only [DEL] cancels changes to the field. If row or column coordinates are ille-
gal, function terminates with afatal error.

Warning Windows

The set of functions used for dynamic warning and error message boxes are struc-
tured very much like the dynamic menus and dynamic ring menus. Usually you call
war nput () for each line of warning text you want to display in the window then
call war nhel p() to key the context sensitive help for the warning window.
Finally you call either war nbox () for asimple confirmation type warning win-
dow or call war nyn() for awarning window which requiresa’Y ES/NO/CAN-
CEL choice.

Y ou can store the warning messagesin st xer or d and automatically load them by
usingwar nr ead() orwar nr d() instead of manually building the warning win-
dow text withwar nput () .

Overview of the Program Control Library — 4-17

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Warning windows cannot be nested. Each call to either war nbox() or
war nyn() resetsthe warning window text arraysto be reloaded for the next set of
messages.

These warning message windows can be used in programs that may need to be run
in a non-interactive mode such as scheduled reports. If the global aut o_answer
isset withacal toput _scrli b(),thenitsvaueisused as the default response
to the warning prompts.

Summary of functions
Function Notes:

e Maximum 10 lines of 60 characters of warning text.

* No nested warning windows.

warnput (warn_text) — put aline of text into the warning message box.
Arguments: war n_t ext —warning text line.
Returns: none

Notes: If thewarning text is"(seescr at ch)" then the contents of scr at ch
are used for the text.

warnread (err_module, err program, err number) — read warn-
ing text from error table (st xer or d).

Arguments: er r _nodul e—error module key for warning text.
err _pr ogr am—error program key for warning text. er r _nunber —error
number key for warning text.

Returns: trueffalse true if some text found, otherwise false.

Notes: Prepares a selection cursor on st xer or d using the keys and uses
war nput () to add thetext to the warning box. Returnstrueif at least one text
line was read.

warnrd (err_number) — sameaswar nr ead() only doesn’t need module or
program.

Arguments: er r _nunber —error number key for warning text.

4-18 Program Control Library

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Returns: true/false true if some text found, otherwise false.

Notes: usesprogid to determineer r _nodul e and er r _pr ogr amand calls
war nr ead() .

warnhelp (help module, help program, help number) — specify
the help key for the warning box ("W).

Arguments: hel p_nodul e—help module key for warning text.
hel p_pr ogr am—help program key for warning text. hel p_nunber —help
number key for warning text.

Returns: none

Notes: Module, program, and number determine key for context sensitive help
from the warning box ("W).

warnbox () — runwar nbox with "OK" asthe only menu option.
Arguments: none
Returns: none

Notes: Any key returns — use for warning message display only uses
aut o_answer for automatic response for use with non-interactive programs

(reports).
warnyn () — run warnbox with YES/INO/CANCEL as the menu options.
Arguments: none

Returns: trueffalse, YES(true), NO/CANCEL (false) (int_flag set if CAN-
CEL).

Notes: Returnstrue or false — true if YES selected, false if NO or CANCEL
wasselected. i nt _f | ag isset if CANCEL is selected. [DEL] isthe same as
CANCEL. Thisfunction usesaut o_answer for automatic response for use
with non-interactive programs (reports).

Overview of the Program Control Library ~ 4-19

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Examples

The examples below are simplified versions of actual code and use variables not
defined in the provided code and have extralogic removed to improve readability.
The examples show all of the logical flow required to run and maintain the various
interface items.

Dynamic Ring Menu

This example builds a simple ring menu with four options, it presetsthe active item
beforeeach call tor i ngpi ck() (inthe actual code the menu item often changes
during the processing of aring menu command selection).

Build the ring nenu
call ringput(str.report_cnd, str.rpt_nssg)
call ringput(str.define_cnd, str.dfn_nssg)
call ringput(str.help_cnd, str.hlp_nssg)
call ringput(str.quit_cnd, str.qut_nssg)
Set nmenu position and hel p context
call ringhel p("report”, "nainmenu", 1)
call ringpos(2, 3, 76)
let cur_item=1
Menu | oop
while true
Make sure the current itemis set
call ringnext(cur_item
Call the ring nenu
if ringpick(str.action) then end if
Process the chosen item
case
when scratch = str.report_cnd
let cur_item=1
if not report_nenu() then exit while end if
when scratch = str.define_cnd
let cur_item= 2
if not data_nmenu() then exit while end if
when scratch = str. hel p_cnd
let cur_item= 3
if not hlp_nmenu() then exit while end if
when scratch = str.quit_cnd
let cur_item= 4
if not quit_nenu() then exit while end if
ot herw se
let cur_item=1
end case
end while

4-20 Program Control Library

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Dynamic Menu—Pull Down Type

This example builds a small pull-down type menu, sets the activation on certain
menu items, prompts for a selection, and processes the selected action including left

and right flow control.

Overview of the Program Control Library — 4-21

Fitrix CASE Tools Enhancement Toolkit Technical Reference

1t this pulldown is not active active load it
if menu_item!= "mreport"
then

Set up the report pull down

cal |l menuput (str.r_new) # New Report

call menuput (str.r_l oad) # Pick a Report
cal |l menuput("") Hommm e
call menuput(str.r_report) # Report Definition
cal |l menuput (str.r_choose) # Choose Col ums
call menuput(str.r_arrange) # Arrange Col ums
cal |l menuput(str.r_totals) # Total s/ Subtotal s
call menuput(str.r_format) # View t he Report
cal |l menuput("") Hommm e
call menuput(str.r_sort) # Data Sel ection
call menuput(str.r_print) # Print the Report
call menuput("") A LR
cal |l menuput (str.r_save) # Save the Report
call menuput(str.r_exit) # Exit Program

Set up the menu contro
call menuhol d()
cal |l menuw ap(fal se)
call menupos(4, x_report + 1, 20)
cal |l menuhel p("report”, "main.report", 1)
end if
Activate/de-activate nenuitens
Data context required
if mrept.tabname is nul
then
cal |l menuactive(str.r_report, -1)
call menuactive(str.r_choose, -1)
el se
call menuactive(str.r_report, 0)
cal |l menuactive(str.r_choose, 0)
end if
At | east one colum nust be selected
if fld_cnt =0
then
call menuactive(str.r_arrange, -1)
call menuactive(str.r_print, -1)
el se
cal |l menuactive(str.r_arrange, 0)
call menuactive(str.r_print, 0)
end if
Set program context variables
let menu_item= "mreport"
Open the report pulldown nenu
if menupick("") then end if
Process the report nenu sel ection

case
when scr_funct = "right"
call menucl ose("")
let scr_funct = "mdata"
when scr_funct = "left"

4-22 Program Control Library

Fitrix CASE Tools Enhancement Toolkit Technical Reference

call menucl ose("")
let scr_funct = "maquit"
when scr_funct = "cancel"
call menucl ose("")
let menu_item = "mai nnenu"
let scr_funct = nul
when scr_funct = "accept"
case
New report
when scratch = str.r_new
Define a new report
call rept_flowtrue)
Pick a report
when scratch = str.r_| oad
call load_rpt()
Report description
when scratch = str.r_report
call rept_flowfalse)
Choose col ums
when scratch = str.r_choose
call flds_flow(true)
when scratch = str.r_arrange
call flds_flowfalse)
View the report
when scratch = str.r_format
call viewrpt()
Save the current report
when scratch = str.r_save
call rpt_save(mrept.rptnanme, true) returning tnp_rpt
Define subtotal data
when scratch = str.r_totals
call subt_flow)
Define sort and selection criteria
when scratch = str.r_sort
call ssel _flow()
Print the report
when scratch = str.r_print
call print_rpt(tnp_rpt, tnp_sel)
Pronpt to confirmexit
when scratch = str.r_exit

if ok_2exit()
t hen
return fal se
end if
end case

End of pullmenu actions

Return to this menu item

let scr_funct = "mreport" # Return to command |ine
end case
End of pullmenu action

Overview of the Program Control Library ~ 4-23

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Nested Dynamic Menus

This example builds three nested menus. Thefirst isused just to display (not select)
areport column, thefirst "rea” menu is aspecial comparison operator menu
depending on the type of the column to be compared (help is keyed depending on
the menu built), the last is a boolean operator window to continue the comparison
sentence.

Open the wi ndow di splaying the col um nane
call menuput (fl dnane)
cal | menupos(row_pos, col_pos, 0)
call menuview)
Build the operator nenu
case
when tnp_type = "char"

call menuput (str.c_begins) # Begins Wth
cal |l menuput (str.c_natches) # Matches
call menuput (str.c_equal s) # Equal s
cal |l menuput(str.c_list) # Is in List
call menuput (str.c_between) # Between
cal |l menuput (str.c_contains) # Contains
call menuput (str.c_ends) # Ends Wth
call menuput("") A T T
call menuput (str.c_notequal) # Doesn’t Equal
cal | menuput (str.c_notmatch) # Doesn’t Match
call menuput(str.c_notlist) # 1s Not in List
cal |l menuhel p(“report”, "selector", 3)

when tnp_type = "date"
cal |l menuput (str.d_equal s) # Equal s
call menuput(str.d_after) # After
cal |l menuput (str.d_before) # Before
call menuput (str.d_between) # Between
call menuput(str.d_list) # Is in List
call menuput("") A R
cal |l menuput (str.d_notequal) # Doesn’t Equal
call menuput (str.d_not btwn) # Not Between
cal |l menuput (str.d_notlist) # 1s Not in List
call menuhel p("report”, "selector", 4)

ot herw se
call menuput (str.o_equal s) # Equal s
cal |l menuput (str.o_between) # Between
call menuput (str.o_grtrthan) # Greater Than
cal |l menuput (str.o_| essthan) # Less Than
call menuput (str.o_gtequal) # Greater or Equal
call menuput (str.o_|tequal) # Less or Equal
call menuput(str.o_list) # Is in List
cal |l menuput("") Hommmmm e
call menuput (str.o_notequal) # Doesn’t Equal
cal |l menuput(str.o_notlist) # 1s Not in List
call menuhel p("report”, "selector", 5)

end case

4-24 Program Control Library

Fitrix CASE Tools Enhancement Toolkit Technical Reference

let y = row pos + 3
let x = col_pos + tnp_len + 3
call menupos(row_pos, x, 0)
call menuhol d()
Loop until done to conmbine multiple selection with and/or
while true
Pick fromthe nenu
let n = menupick("")
Process the conparison selection

ifn>0
then
case
when scratch = str.c_begins
call lib_pronpt(str.c_begin2_pnt,str.c_beginl_pnt,y,x,"")
when scratch = str.c_matches
call lib_pronpt(str.c_match2_pnt,str.c_nmatchl_pnt,y,x,"")

when scratch = str.c_equals or
scratch = str.d_equals or
scratch = str.o_equal s
call fld_pronpt(maintab, str.equal1l_pnt,
str.equal 2_pnt, y, x, tnp_type)
when scratch = str.c_notequal or
scratch = str.d_notequal or
scratch = str.o_notequal
call fld_pronpt(maintab, str.notequal 1_pnt,
str.notequal 2_pnt, y, X, tnp_type)
when scratch = str.c_list or
scratch = str.d_list or
scratch = str.o_list
call lib_list(str.listl pnt, str.list2_pnt, O, O, "")
when scratch = str.c_notlist or
scratch = str.d_notlist or
scratch = str.o_notlist

call lib_list(str.notlistl pnt,str.notlist2_pnt,0,0,"")
when scratch = str.c_contains
call lib_pronpt(str.c_cont2_pnt,str.c_contl _pnt,y,x,"")
when scratch = str.c_ends
call lib_pronpt(str.c_end2_pnt, str.c_endl_pnt, y, x, "")
when scratch = str.c_notmatch
call lib_pronpt(str.c_nonth2_pnt,str.c_nonthl_pnt,y,x,"")

when scratch = str.d_after or
scratch = str.o_gtequal
call fld_pronpt(maintab, str.o_gteql_pnt,
str.o_gteq2_pnt, y, X, tnp_type)
when scratch = str.d_before or
scratch = str.o_|tequal
call fld_pronpt(maintab, str.o_lteql_pnt,
str.o_lteqg2_pnt, y, X, tnp_type)
when scratch = str.d_between or
scratch = str.o_between or
scratch = str.c_between
call lib_btwn(str.btwnl_pnt, str.btwn2_pnt, 0, 0, "")
returning tnp_datl, tnp_dat2

Overview of the Program Control Library — 4-25

Fitrix CASE Tools Enhancement Toolkit Technical Reference

when scratch = str.d_notbtwn
when scratch = str.o_grtrthan
call fld_pronpt(maintab, str.o_grtrl_pnt, str.o_grtr2_pnt
y, X, tnp_type)
when scratch = str.o_| essthan
call fld_pronpt(maintab, str.o_|lessl_pnt, str.o_|less2_pnt
y, X, tnp_type)
ot herw se continue while

end case

Build and call the and/or/done nenu
cal |l menuput (str.x_and) # And
call menuput (str.x_or) # O
cal |l menuput("") #o----
call menuput (str.x_done) # Done
cal |l menupos(row_pos, x + 3, 0)

call menuhel p("report”, "selector", 6)

let n = menupick("")

Process a cancel request

if n=0then let scratch = str.x_done end if
Process for and/or or done

case
when scratch = str.x_and
let and_or = "and"
when scratch = str.x_or
let and_or = "or"

when scratch str.x_done
cal |l menucl ose("") # conparison operator w ndow
exit while
end case
end if
end while
Done
call menucl ose("") # col utmm nane di spl ay wi ndow

Zoomable Dynamic Menu With Parallel Reference
Array

This example builds a menu of tables selected from the query inscr at ch. The
menu uses either table names or table descriptions depending on anane_t ype
flag. The table system names are kept in aparallel list using an array
(tab_array).

Load the table nenu
prepare tab_query from scratch
declare tab_cur cursor for tab_query
foreach tab_cur into tabnanme, tab_desc
if name_type = "table"
then
cal | menuput (tabnane)
let tab_array[n] = tab_desc

4-26 Program Control Library

Fitrix CASE Tools Enhancement Toolkit Technical Reference

el se
call menuput (tab_desc)
let tab_array[n] = tabnane
end if
end foreach
Finish setting up the nmenu

cal | menuhol d()
call menuzoon()
call menuhel p("rpt_lib", "table_pick", 2)

Loop for selection
while true
I nvoke the menu
let n = nenupick(str.tab_choose)
if n>0 then
if scr_funct
then
call menuput (tab_array[n])
call menuhel p("rpt_lib", "table_pick",
if menupick("") then end if
continue while

= "zoont

end if
if name_type = "table"
then
| et tabname = scratch
let tab_desc = tab_array[n]
el se
|l et tab_desc = scratch
| et tabname = tab_array[n]
end if
el se
l et tabname = null
let tab_desc = null
end if
exit while
end while

Automatic Dynamic Menu

3)

Thisexample uses nenusel () to build amenu of al of the columnsin agiven

table.

Build the colum sel ection sentence

let scratch = "select col name from systabl es,
"where systabl es.tabnane = '",
"’ and syscolums.tabid =

Load the colum nmenu

let n = nenusel ()

call menuhel p("rpt_lib",

I nvoke the picker

if menupick(str.col _choose)

then

systabl es. tabi d"

"col _pick", 2)

Overview of the Program Control Library

syscol ums ",
tab_nane cli pped,

4-27

Fitrix CASE Tools Enhancement Toolkit Technical Reference

return true
el se

return fal se
end if

Multiple Selection Menu With Zoom and Internal
Header Lines

This example builds a menu of columns from several different tables. Each group
of columns has the table description as an unsel ectable header within the menu.
Thismenu allows the user to select multiple columns at once and the retrieves them
using menusget () . The"rea" table and column name for each menu item is kept
inaparalel array.

First put the prinmary table heading

call tdesc_| kup(tabnanme) returning tnp_nanme, tnp_desc
let tnp_str = upshift(tnp_desc)

cal |l menuput (tnp_str)

call menuactive("", -2)
Set the parallel array starting index
let n =1

Build the colum nmenu for the primary table
open col _nam cur using tabnanme
foreach col _namcur into tnp_nanme, tnp_desc, tnp_ord
Store the col um
let n=n+1
| et nanes[n].col nane = tnp_nane
| et nanes[n].tabnane = tabnane
Put the colum description on the nmenu
cal | menuput (tnp_desc)
end foreach
Add all colums fromrelated tables
foreach rel _tab_cur into tnp_tab, tnp_desc
Put the table name into the menu as a header
call menuput(" ")
let tnp_str = upshift(tnp_desc)
call menuput (tnp_str)
cal |l menuactive("", -2)
Adjust the index for the non-active nmenu lines
let n=n+ 2
Build the colum menu for the related table
open col _nam cur using tnp_tab
foreach col _namcur into tnp_name, tnp_type, tnp_desc, tnp_ord
Store the colum
let n=n+1
| et nanes[n].col nane = tnp_nane
l et nanes[n].tabnane = tnp_tab
Put the columm description on the nmenu
call menuput (tnp_desc)
end foreach

4-28 Program Control Library

Fitrix CASE Tools Enhancement Toolkit Technical Reference

end foreach
Set up the colum picking nmenu
cal | menuhol d()
call menuzoon()
call menumany()
call menuhel p("report", "fld_pick", 2)
Call the menu and get the selected itens
while true
Call the nenu
let n = menupi ck(head)
if n=0then return false end if

Check for a "zoonmt and build a new nenu of all indirectly
related tables then columm pickers for the selected table
if scr_funct = "zoont

then

call rel _flds(grpnane, tabnane)
continue while
end if
Get the selected itens
while true
Get the next item
call menusget() returning n, tnp_ord
Check to see if we are done
if n=0then exit while end if
Insert the item
let tnp_desc = scratch
insert into tnp_flds values (nanmes[n].tabnane,
nanes[n] . col name, tnp_desc, tnp_ord)
end while
Exit when done
if n=0then exit while end if
end while
Clean up
call menucl ose("")

Scrolling Field

With an input array you need to make the dummy field part of the p_ array and
storethe "red" datainthe q_ array. You can use this strategy in both header and
detail inputs. Y ou can define the field on the screen as aformonly field, rely upon
theq_ record having the "real" field, and implement the logic to always use the real
fieldfor thef g_get fi el d() input and copy that input (properly truncated with
ellipses) tothe p_ record element after thef g_get fi el d() call. Hereisan
example that works in both "input" and "input array."

Overview of the Program Control Library — 4-29

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Triggers:
input 1

on_screen_record_prep
Prepare the scrolling fields
call fg_elipse(q_weptr.rpt_headl, 65)
returning p_weptr.tnp_headl

before_field tnp_headl
Scrolling field
call 1ib_before("tnp_headl")
call str_display(str.entr_headl, 76, 22, 1, "white")
call fg_getfield(g_weptr.rpt_headl, 10, 11, 2, 3, 65, 256)
returning hotkey, g_wreptr.rpt_headl
call fg_elipse(q_weptr.rpt_headl, 65)
returning p_weptr.tnp_headl
display "" at 22, 1

call lib_after()
Process other events
if hotkey > 0
then
let nxt_fld = "event"
UP or LEFT

if hotkey = 137 or hotkey = 139
then let nxt_fld = "rpt_desc"

end if

DOWN, RIGHT, or ENTER

if hotkey = 138 or hotkey = 140 or hotkey = 13
then let nxt_fld = "tnp_head2"

end if

end if;

Thefollowing takes place in the input statement or input array with applicable vari-
able changes in the code below:

input p_weptr.* without defaults froms_weptr.*
applied triggers:

#_before_field tnp_headl
Scrolling field
call 1ib_before("tnp_headl")
call str_display(str.entr_headl, 76, 22, 1, "white")
call fg_getfield(g_weptr.rpt_headl, 10, 11, 2, 3, 65, 256)
returning hotkey, g_wreptr.rpt_headl
call fg_elipse(q_weptr.rpt_headl, 65)
returning p_weptr.tnp_headl
display "" at 22, 1
call lib_after()
Process other events
if hotkey > 0

4-30 Program Control Library

Fitrix CASE Tools Enhancement Toolkit Technical Reference

then
let nxt_fld = "event"
UP or LEFT
if hotkey = 137 or hotkey = 139
then let nxt_fld = "rpt_desc"
end if
DOWN, RIGHT, or ENTER
if hotkey = 138 or hotkey = 140 or hotkey = 13
then let nxt_fld = "tnp_head2"
end if
end if
#_end

#_on_screen_record_prep
Prepare the scrolling fields
call fg_elipse(g_weptr.rpt_headl, 65)
returning p_weptr.tnp_headl

The only special issue to be aware of with using scrolling fieldsin input array is
that an exit from the scrolling field with an up arrow or with adown arrow cannot
be used to move you to the previous or next row since thereis no Informix facility
to allow for thiskind of programmatic control (for instance no next row or prev row
commands). The same applies to page up and page down ([F4] and [F3]) since you
are collecting the input keystroke and cannot programmatically translate the
reguested item (page up or page down) to the required behavior.

Warning Box With Simple Ok (Verify) Option

This example sets the help for the warning box, loads the warning text and callsthe
war nbox() function.

Check for no tables selected
if n=20
then
call warnhel p("report","tabl e_pi ck", 10)
call warnput (str.no_tables)
call warnbox()
return
end if

Warning Box With Yes/No/Cancel Selections

This example promptsto save or undo changes. Y ES throws away the changes, NO
keeps the changes, and CANCEL returns you to the input loop.

after input
if int_flag
then

Overview of the Program Control Library — 4-31

Fitrix CASE Tools Enhancement Toolkit Technical Reference

call warnhel p("report", "save_chng", 10)
call warnput(str.cancel)
if not warnyn() and not int_flag
then
let scr_funct = "accept”
el se
if int_flag
then

let int_flag =0
next field fldnane

end if
let scr_funct = "cancel"
end if
end if
exit input

The Fitrix C Library

The Fitrix C Library has been incorporated as a part of the CASE Tools Enhance-
ment Toolkit, and the functions documented below are only available if you have
purchased and installed the CASE Tools Enhancement Toolkit.

Installation of the CASE Tools Enhancement Toolkit creates the directory
$fglibdir/lib/c_lib.4gs,andthefileswithin thisdirectory are mkr un-
ner s, READVE, and f gi usr. c. Thesefilesare needed in order for the client to
create their custom f gl go and f gl db executables. When using C functions and
RDS code, you have to run the finished programs with the modified runner f gl go
and modified f gl db. Thereisan Informix utility named cf gl db and cf gl go
that usesf gi usr . c to create these custom runners. All the user hasto do isgo
into$fglibdir/lib/c_lib.4gs,andruntheshell script mkr unners. This
creates these two custom runners and moves them to $f g/ bi n. It isimportant that
$f g/ bi n comes before $| NFORM XDI R/ bi n in the environment variable
$PATH setting. Again, these custom runners would only need to be created if you
develop or run programs under RDS.

A common cause for the failure of cf gl go isthat no C development system is
installed. The surest way to build this custom runner is with the C development sys-
tem installed. However, the C development system is not required. The custom

f gl go runner can bebuilt using|l d. Theuse of | d variesfrom one platform to the
next, and the nkr unner s script tried the most common method for running | d to
build the custom f gl go. The exact command used is:

4-32 Program Control Library

Fitrix CASE Tools Enhancement Toolkit Technical Reference

1d /lib/crt0.o0 fgiusr.o c_*.o $GOLIBES -o fgldb -lc

Theuse of | d may vary from system to system. Y our system manual may describe
in more detail how thel d command should be built in the manual entriesfor | d or
cc. You may need some help from your system administrator. Unfortunately our
organization cannot provide support for the creation of the custom runner. We
attempt to provide alist of al known variations for the proper | d command as part
of this documentation.

Known variations for thel d command:
RS/6000 AlX 3.2 Users:

1d -H512 -T512 -bhalt:4 /lib/crt0.o fgiusr.o c_*.o
$GOLIBES -o fgldb -1lc

Note

On RS/6000s, it may be necessary to link in the BSD library in order for
nmkr unner s tofindthefti me() function. Y ou can do this by specifying
linker flag:

-1 bsd

Or you can append this flag to either of the/ bi n/ cc or/ bi n/ | d commands
with the same affect.

Thef gi usr . ¢ sourcefile, which isused by Informix utilitiescf gl db and

cf gl go to create the custom runners, has been included for you to modify if you
wish to also include your own C functions along with these provided with Fitrix
Screen.

Note

Due to the many variations of both the C compiler and the linker between all the
UNIX platforms, we do not support any problems you may incur using these
custom runners. We are only offering to you, free of cost, the ability to usethe C
functions that we currently use in Fitrix Screen.

The Fitrix C Library 4-33

Fitrix CASE Tools Enhancement Toolkit Technical Reference

The C functions

c_getkey () isaC function designed to be called from an INFORMIX-AGL pro-
gram. The function reads and identifies a keystroke entered from the keyboard rely-
ing on the Informix functionsr get key() and nvcur () . It accepts row and
column coordinates as its two arguments. The row and column coordinates are rela-
tiveto the current INFORMI X-4GL window and give the cursor position where the
function reads a keystroke. If the row equals zero then the cursor is not positioned.
The function returns a special code used to identify the keystroke and a one charac-
ter string valueif the keystroke was a printing character. These are the return codes:

character 0

control keys “A through ~Z 1-26 respectively
function keys F1 through F36 101-136 respectively
escape 135

interrupt 136

up arrow 137

down arrow 138

left arrow 139

right arrow 140

backspace 141

page down 142

page up 143

insert character 146

del ete character 147

horme key 148

insert line 150

delete line 151

unknown key 152

usage: call c_getkey(y, x) returning key_code, key_string

c_readfile () isaC function designed to be called from an INFORMIX-4GL
program. It accepts a path name as its only argument and returns a status flag and
string read from the given file. The status flag has the value "true" if the read was
successful and "false” if the read failed. If the file cannot be opened, "failed” (-1) is
returned. Successive reads to the same file can be used to read the file sequentially.
In order to start over reading afile from the beginning, you must first close the file
for reading and then call c_r eadfi | e() again. The easiest way to accomplish
thisisby calling c_r eadf i | e() with ablank path_name argument.

usage: call c_readfile(path_nane) returning stat_flag, string

c_command () isaC function designed to be called from an INFORMIX-4AGL
program. It accepts an OS command as its only argument and returns astatusflag, a
command status flag, and string read from the output of the OS command. The sta-

4-34 Program Control Library

Fitrix CASE Tools Enhancement Toolkit Technical Reference

tus flag has the value one if the command executed successfully and some output
was read; it has the value one if the command executed successfully but thereis no
output; otherwise it is minus one if the OS command could not be executed or
exited with anon-zero exit status. The command status flag gives the exit status of
the command when there is no output to read. The statusflag is -1 under the follow-
ing circumstances: achdi r () to therequested directory failed (cmd_status = 0),
the command was not executable (cmd_status = 0), or the command exited with a
non_zero exit status (cmd_status = the exit value ignoring signal exit values). Suc-
cessive calls with the same command does not re-execute the command until all
output has been read at which point azerost at _f | ag would be returned (unless
the command exits non-zero).

usage: call c_conmmand(os_comand) returning stat_flag,cnd_flag,string

Note: There should beacall c_command("") placed after every
c_conmand() usage. If the buffer has to be retained during a period of (run)
time, for instance, in awhile loop, then make sure thereisnor un cnd being exe-
cuted during that period. A r un cnd messes up the buffer if it's not empty, which
causes the program to hang.

c_statfile () isaC function designed to be called from an INFORMIX-4GL
program. It accepts a path name as its only argument and returns the size of thefile,
the last modification time as an integer, and a string with "rwx" permissions (if one
isdenied it has"-" instead or the |etter value).

usage: call c_statfile(path_nane) returning f_size, mtinme, permstr

c_getenv () isaC function designed to be called from an INFORMIX-4GL pro-
gram. It takes an environment variable name as an argument and returns a string
containing the value.

usage: call c_getenv(variabl e_nanme) returning value_str

c_putenv () isaC function designed to be called from an INFORMIX-4GL pro-
gram. It takes an environment variable name and value as arguments and enters the
new value into the environment. If the new value is empty it removes the variable
from the table atogether. It returns true if successful and falseif it fails.

usage: call c_putenv(variabl e_name, value_str) returning true/false

The Fitrix C Library ~ 4-35

Fitrix CASE Tools Enhancement Toolkit Technical Reference

c_time () isaC function designed to be called from an INFORMIX-4GL pro-
gram. It returns the current system time as an integer that can be used to compare
with the modification times on filesreturned by ¢_statfi | e() or with other
integer timesreturned by c_ti ne().

usage: call c_time() returning current_tine

c_writeout () isaC function designed to be called from an INFORMIX-4GL
program. It accepts a path name, a string to output, and an append (a), write (w), or
close (c) mode flag and returns a status flag. If the fileisanew file thefileis
opened for "append” or "write" depending on the mode flag argument. If the mode
argument is"c" for close, then the current opened file (if any) is closed and the
function immediately returns. The status flag may have the value -1 if the file for
output could not be opened. Otherwise the status flag has the value 1. Successive

writes to the same file can be used to write more than one line to thefile.

Note

When you are finished writing afile you should call c_wr i t eout () witha
"c" mode flag to flush the output buffer to the file and close the open file. An
immediate call toc_wri t eout () with adifferent file name serves the same
purpose.

usage: call c_witeout(path, str, node) returning stat_flag

4-36 Program Control Library

Fitrix Security

Y ou can think of security interms of levels. Fitrix Security defines three levels for
both system users and our applications. By using a hierarchical structure, Fitrix
Security establishes a permissions precedence. Once you understand the hierarchy
and the logic behind Fitrix Security, you can design a security plan appropriate for
your users and system components.

This section covers the following topics:
n How Security Works

n The Security Programs

5-1

Fitrix CASE Tools Enhancement Toolkit Technical Reference

How Security Works

As mentioned before, Security isbased on a hierarchy. Y ou design your security
system around three levels of users. In addition, our applications are divided into
three levels. The key to setting up a quality security system depends on your under-
standing of these levels and how they relate to each other.

User Level Description

Individual User This level defines system users on a unique or individual
basis. All system users, in other words anyone able to
log in to the system, are considered individual users.
You can grant individual users explicit allow or deny per-
mission settings.

User Group This level is made up of a subset of system users. You
define and determine the types of groups and the mem-
bers of each group on your system. When you set per-
missions for a group, all members of the group are given
that permission.

Defaults This level is made up of all system users. It uses
defaults as a keyword that signifies a user group con-
taining every individual user. When you set permissions
for defaults, you are setting permissions for all users
who do not receive more specific group or individual
permissions.

Application Level Description

Module A collection of input and output programs that com-
pose an application product, such as General Led-
ger.

Program A single program within a module. For instance,

General Ledger Setup is an input program within the
General Ledger module.

5-2 Fitrix Security

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Application Level Description

Event An activity or command within a program. For exam-
ple, many input programs let you Update current
information. The Update command, then, is consid-
ered an event.

Security Programs

Fitrix Security isa collection of programs that |et you define security permissions
for each level of user and application. Security consists of five input programs.
These programs work interactively. In other words, information defined in one pro-
gram is used to provide information for another program.

Program Name
Module and Program Information

To run, type fg.modules.

Security Events

To run, type fg.events.

Security Groups

To run, type fg.groups.

User & Group Permissions

To run, type fg.users

Description

This program lists the Fitrix modules
and programs on your system. By
default, this information comes pre-
loaded in Security.

This program lists the events used by
the modules and programs on your
system. Like modules and programs,
event information is pre-loaded.

This program lets you define which
individual users belong to which user

group.

This program provides a complete
method for identifying the users and
groups on your system. In addition, it
links information in the Module, and
Event programs with user and group
definitions, and it allows you to set
explicit user and group permissions.
Most of the work you do with Security
is done in this program.

How Security Works 5-3

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Program Name Description

Group Security Control This program provides an easy-to-
use interface for setting up group per-
missions on common events. It does
not contain all the features and flexi-
bility of the User & Group Permis-
sions program, but it is a simplistic
alternative.

To run, type fg.gcontrol.

In later sections of this Guide, each program is described in more detail. This sec-
tion concentrates on how Security takes and uses information supplied to the Secu-
rity programs and which permission settings take precedence.

5-4 Fitrix Security

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Determining Precedence

Security determines precedence in an inverted or "bottom up" manner. In other
words, the most specific settings (theindividual user settings and the event settings)
take precedence over the more general settings.

In terms of user levels, Fitrix Security searches for an allow or deny permission
first on the individual level, then on the group level, and finally on the global or
defaults group level.

User Level Search Order

Cravweca) | I} i}

In terms of application levels, Security looks first at the event level, then the pro-
gram level, and finally the module level.

Application Level Search Order

) G) Gy

How Security Works 5-5

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Overlapping Group Permissions

Security is designed to meet as many custom security setups as possible. For this
reason, you can place individual usersinto more than one user group. Sometimes,
however, users belong to groups that contain conflicting permission settings other-
wise known as overlapping user groups. Users that belong to overlapping groups
are given allow permission.

For instance a clerk might belong to agroup called cl er ks and agroup called
proj ect | eaders.Attimes, cl er ks and pr oj ect _| eader s might have
conflicting permission settings. For instance, cl er ks might allow the Update
event and pr oj ect _| eader s might deny it.

n

Clerks
Allow Update

Project_leaders
Deny Update

In this situation, the clerk who belongs to both groups is able to use the Update
event.

5-6 Fitrix Security

Fitrix CASE Tools Enhancement Toolkit Technical Reference

The Security Programs

Asmentioned earlier, Fitrix Security isa collection of fiveinput programs. Y ou use
all of these programs to define Security on each level of user and application.

Module and Program Information

Thisinput program lets you enter the modules and programs eligible to secure. All
Fitrix modules and programs come pre-loaded. Y ou only need to use Module and
Program Information when you create custom programs or modules. The following
figure shows the input screen for Module and Program Information:

Action:|] IGEEN Update Delete Find Brouwse MNxt Prv Options Quit
Create a new document

Module and Program Information

Hodule Name : report

Program Name Dowriter Description : Report Writer

User Definable : N

A of 1)

Adding Custom Programs to Module and Program
Information

When you create a custom application, the Report Code Generator automatically
builds logic that Security recognizes. For example, if you create a custom report,
you can add that report to Module and Program Information.

The Security Programs 5-7

Fitrix CASE Tools Enhancement Toolkit Technical Reference

To add a custom report to Module and Program Information:
1. Select Add from the ring menu.

2. In the Module Name field, enter the module directory of the custom pro-
gram.

For example, if your custom report isin sal es. 4gm enter sal es in the
Module Name field.

3. In the Program Name field, enter the program directory that contains
your custom report.

For example, if your customreportisinql_sal es. 4gs, enterql_sal es in
the Program Name field.

4. Enter a description for your custom report in the Description field.

The User Definable field is anon-entry field. At thistime, you can leave this
field blank.

5. Press [ESC] to store your entry.

Action:|] IEEEN Update Delete Find Brouwse MNxt Prv Options Quit
Create a new document

Module and Program Information

Hodule Name : sales
Program Name : ql_sales Description : Quarter One Sales

User Definable :

(New Document)

5-8 Fitrix Security

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Security Events

Thisinput program is similar to Module and Program Information. It too comes
pre-loaded with events used in our programs, such as add, delete, and update. As
well, Security Events lets you define custom events in custom programs. Similar to
Module and Program Information, Security Events just lets you define events that
are eligible to secure.

Action:]| IEEEN Update Delete Find Browse MNxt Prv Options Quit
Create a new document

Security Events

Module Name Program Name Event Name
Description :
Default Setting : User Definable :

(No Documents Selected)

The following shows some of the 35 events associated with Report Writer.

fiction: Add Update Delete Find Browse HNxt Prv Options Quit
Select a group of documents
Browse:|] I(EZSM Prev Up Doun Top Bottom Select Goto Quit
Move to next document
Module Program Event Description
lacknouwledge Ncknowledgment
report writer arrange_columns Arrange Columns
report writer choose_columns Choose Columns
report writer col_sel_help Column Selection Help
report writer context_help Context Help
report writer data_desc_help Data Description Help
report writer data_groups Data Groups
report writer data_selection Data Selection
report writer data_sets_help Data Set Help
report writer del_data_group Delete a data Group
(1 of 35)
(1 of 35)

The Security Programs 5-9

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Adding Custom Events to Security Events

If your application contains custom events, you can add these events to the Security
Events program. Once added, you can use the User and Group Permissions pro-
gram to place individual and group permissions on your custom event.

Unlike custom programs, where Security logic gets generated automatically, you
must add a few lines of code at the start of your custom events for Security to be
ableto recognize it.

For example, supposeyou createaql_sal es program.Ingl_sal es, you create
acustom event that allows users to fax report output to company headquarters. At
the start of your custom fax event, add the following lines of code:

Inserted for programlevel security.
Check for perm ssion
if not security_chk("fax")
then
call security_msg("fax")
exit progran(100)
end if

After you add this code to your custom event, making that event eligible to secure
requires the following steps:

1. Select Add from the ring menu.

2. In the Module Name field, enter the module directory of your custom pro-
gram.

For example, if the module directory issal es. 4gm enter sal es.

3. In the Program Name field, enter the program directory of your custom
program.

For example, if the program directory isql_sal es. 4gs, enter q1_sal es.
4. In the Event Name field, enter the name of your custom event.

For example, if the event nameisf ax, enter f ax.
5. 1In the Description field, enter a description of your event.
6. In the Default Setting field, enter the default permission for the event.

The User Definable field is anon-entry field.

5-10 Fitrix Security

Fitrix CASE Tools Enhancement Toolkit Technical Reference

7. Press [ESC] to store your entry.

Delete Find Brouse

Action[] Update

Create a new document

Nxt Prv

Options Quit

Security Events

Default Setting : N User Definable :

Hodule MName Program Name Event Name
sales ql_sales fax
Description : SENDS FAX TO HEADQUARTERS

¥

A of 1)

Note

If you want to set permissions for your event in all the programsin a module,

|eave the Program Name field blank.

Security Groups

This program lets you assign individual users to groups. By creating groups of
users, from individual s users who require similar system access, you can simplify

your security configuration.

The Security Programs 5-11

Fitrix CASE Tools Enhancement Toolkit Technical Reference

For example, you might want to assign your entire sales force to agroup called
sal es. Your definition of the sal es group might look as follows:

Add: LESC] to Store. [DEL] to Cancel. LTAB] Next Mindow Help:
Enter changes into form LCTRLI-Lw]
(Zoom)==

Security Groups
Group Code : sales

Description : SALES PERSONNEL

— User Login —— User Login —— User Login ——— User Login —— User Login —
donu 1ynnf jamesp thomasr ralpho

Enter the user login.

Once you define a security group, you can set permissions for that group in the
User and Group Permissions program or in Group Security Control.

5-12 Fitrix Security

Fitrix CASE Tools Enhancement Toolkit Technical Reference

User and Group Permissions

Thisinput program is where most of your security work gets done. It is this pro-
gram that relates the information set in Module and Program Information, Security
Events, and Security Groups with actual permission settings.

Action:|| IEEEN Update Delete Find Browse MNxt Prv Tab Options Quit
Create a new document

User & Group Permissions

User Login Last Name First Name M/T
Company: Department :
Manager : Phone:
Module - Program - Event ——————————— Description ——————————————— fllow

(No Documents Selected)

Setting Individual User Permissions

The most basic task of the User and Group Permissions program is setting permis-
sionsfor an individual user.

To set permission for an individual user:
1. Select Add from the ring menu.
2. Enter values for the User Login and Last Name fields.

For example, if you are setting permissions for donw, enter donwin the User
Login field and donw s last name (for instance Williams) in the Last Name
field.

The User Login and Last Name fields are the only required fields. The other
fields in the header section are optional, such as the Department and Phone
fields.

The Security Programs 5-13

Fitrix CASE Tools Enhancement Toolkit Technical Reference

3. Press [TAB] to move to the detail section of the program.

In the detail section you can enter the module, program, and event you want to
set permissions on. Y ou can aso press[CTRL]-[Z] to pick from alist of defined

modules, programs, and events.

For example, suppose you want to deny donw the ability to delete reports:

Create a new document

Action:]] IGEEN Update Delete Find Browse Nxt Prv Tab Options

User & Group Permissions

User Login Last Name First Name
donunh WILLIAMS
Company: Department :
Manager: Phone:
Module - Program - Event ———————————— Description ———————————————
report writer del_report Delete a Report

(New Document)

4. Once you finish entering permission data, press [ESC] to store your entry.

Setting Permission for an Entire Module

To set permissions for an entire module, only specify the module name in the detail

portion of User and Group Permissions.

5-14 Fitrix Security

Fitrix CASE Tools Enhancement Toolkit Technical Reference

For example, to deny donw accessto all programs in the report module, make the
following entry:

fiction:| Add [[EEXN Delete Find Browse MNxt Prv Tab Options Quit
Change this document

User & Group Permissions

User Login Last MName First Name M/I
donu WILLIAKS

Company: Department :

Manager: Phone:

Module - Program - Event --————--————— Description ————————————————— Allow
report finy security events N

(New Document)

In asimilar sense, you can set permissions for all eventsin aprogram: specify both
the module and program and leave the Event field blank.

Setting Group Permissions

Y ou can also set permissions for groups that you have defined in the Security
Group program (see " Security Groups' on page 5-11). In the same way you set per-
missions for individual users, you also set permissions for groups.

To set permissions for a group:
1. Select Add from the ring menu.

2. Enter the group code (i.e., group name) in the User Login field and enter a
description of the group in the Last Name field.

3. Press [TAB] to move to the detail portion of the program.

In the detail section you can enter the module, program, and event you want to
set permissions on. You can aso press[CTRL]-[Z] to pick from alist of defined
modules, programs, and events.

The Security Programs 5-15

Fitrix CASE Tools Enhancement Toolkit Technical Reference

For example, to set permissions of thesal es group for the del ete report event:

Add: LESC] to Store. [DEL] to Cancel. LTAB] Next Mindow Help:
Enter changes into form LCTRLI-Lw]
User & Group Permissions

User Login Last Mame First Name M/I
sales SALES PERSONNEL

Company: Department :

Manager: Phone :

Module - Program - Event ——————————— Description ———————————————— Allou
report writer del_report Delete a Report N |

Enter a (Y)es to allow or (N)o to not allou event.

4. Once you finish entering permission data, press [ESC] to store your entry.

Setting Defaults Permission

The Defaults permission is areserved permission setting. The values set for
Defaults are passed to all users and groups not otherwise defined. For instance, if
the user r ober t ¢ does not belong to any groups and does not have an individual
user entry, he receives the permissions set in defaults.

To set Defaults permission:
1. Select Add from the ring menu.

2. Enter defaults in the User Login field and DEFAULTS in the Last Name
field.

3. Press [TAB] to move to the detail section of the screen.

In the detail section, enter the module, program, and event you want to set per-
missions on. Y ou can also press [CTRL]-[Z] to pick from alist of defined mod-
ules, programs, and events.

5-16 Fitrix Security

Fitrix CASE Tools Enhancement Toolkit Technical Reference

4. Once you complete setting defaults permissions, press [ESC] to store your

settings.

Note

Caution: The Defaults permission affects all users on the system. Y ou should

set Defaults permissions during a period of light system use.

Group Security Control

Group Security Control isasimplified version of the User and Group Permissions

program. With Group Security Control, the most common program events are

aready listed. Group Security Control gives you a graphical matrix with which to
assign permission settings for a defined group on a defined module.

For example, the following entry showsthe permissionsfor theaccount group on

the report module;

Update: [ESC] to Store, [DEL] to Cancel, [TAB] Next Window
Enter changes into form

Help:

LCTRLI-Lw]

Group : account
Module : report

Program

Group Security Control

ACCOUNTANTS GROUP
Report Module

Run fidd Upt Del Fnd Brw Tab Opt Bng Hot Nav

Report Image Loader
Report Image Maker
Report Runner
Report Hriter

Y
N

- - E
—_ ==
ZEZ<E

Y
Y
Y
Y

= =< =
—_ ==

Y

N
N
N
N

N N
N N
N N
N N

EZZZ

Enter permission for adding or editing Navigation events.

The Security Programs

5-17

Fitrix CASE Tools Enhancement Toolkit Technical Reference

The following describes the events available in Security Control.

Event Description

Run The Run event controls the use of the listed program.
When the Run permission field is set to Y, members of the
group can start the listed program. When set to N, the
group cannot start the listed program.

Add The Add event controls the ability to add or create new
program documents. When Add is set to Y, documents can
be added. When set to N, the group cannot add a docu-
ment.

Upt The Upt event specifies a group’s ability to update a docu-
ment. A Y in this field lets group members update a docu-
ment, an N denies update permission.

Del The Del event controls document deletion. Many times
only specific users are allowed delete permission. When
you set the Del event to Y, the group can delete docu-
ments. When set to N, documents cannot be deleted.

Fnd The Fnd event controls a program'’s Find capabilities.
When you set the Fnd event to Y, group members can
conduct Query-By-Example searches for specific docu-
ments. When set to N, users cannot use the Find feature.

Brw The Brw event controls the Browse capabilities. When you
set Brw to Y, the group can use the Browse command.
When set to N, browse privileges are denied.

Tab The Tab event coincides with the Tab command. When
you set the Tab field to Y, the group can use the Tab com-
mand. When set to N, group members cannot use the Tab
command.

Opt The Opt event controls access to the Options command. A
Y in the Opt field grants access to the Options command,
an N denies access.

5-18 Fitrix Security

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Event

Bng

Hot

Nav

Description

The Bng event controls access to the operating system. In
most cases, users are able to bang out (also called shell
out or escape) to the operating system. When the Bng
event is set to Y, the group can bang out of the program.
When set to N, the group cannot escape to the operating
system.

The Hot event corresponds to a program’s Hot Keys. In
many programs, users can define Hot Keys that serve as
keyboard shortcuts to common program commands. When
you set the Hot event to Y, users can alter the default Hot
Key definitions. When set to N, users cannot edit the
default Hot Key definitions.

The Nav event relates to a program’s Navigate feature. In
many Fitrix programs, users can press [CTRL]-[g] to view
the Navigate pop-up menu. When you set the Nav event to
Y, users gain the ability to use this menu. When set to N,
users cannot use the Navigate menu.

The Security Programs 5-19

Fitrix CASE Tools Enhancement Toolkit Technical Reference

5-20 Fitrix Security

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Index

Numerics

4GL Runner 3-7

A

Access from other programs field
Navigation Commands form 2-5
Action Code field
Hot Keysform 2-8
Navigation Commands form 2-4
add_flds 3-46
addmany 3-44
addone 3-44
advanced libraries
compiling 3-7
Allow access for othersfield
Navigation Commands form 2-5

B

brw_list 3-45

C

Cfield

Program Menu Definition form 3-32
C functions 4-34
C Library 4-32
¢_command function 4-35
c_getenv function 4-36
c_getkey function 4-34
c_lib.4gs4-32
¢_putenv function 4-36
c_readfile function 4-35
c_statfile function 4-35
¢_time function 4-36
¢_writeout function 4-36
cfgldb 3-7
cfglgo 3-7

chg_func 3-46

compiling programs with advanced libraries 3-7

Contents field
User-Defined Fields form 2-21
conventions
key mapping 2-10
copy
error text 2-19
help text 2-12
copymany 3-44
copyone 3-44
custom menus 3-27
defining 3-32
custom ring menu
defining 3-35
linking into your program 3-36

D

D field
Program Menu Definition form 3-31
Data Field Namefield
User-Defined Fields form 2-21
default Pull-Down Menu 3-9
default ring menu
customizing 3-9
define
hot keys 2-9
defining keys
termcap 2-9
del_all 3-44
del_one 3-44
Description field
Navigation Commands form 2-4
different keyboards 1-8
documentation
overview 1-6
Dynamic Menu
example 4-26
Pull-Down Type example 4-21
Dynamic Menu example
automatic menu 4-27
Dynamic Menus 4-3
overview 4-2
Dynamic Ring Menu
example 4-20
Dynamic Ring Menus 4-11

Index-1

Fitrix CASE Tools Enhancement Toolkit Technical Reference

overview 4-3

E

E field

Program Menu Definition form 3-31
edt_note 3-46
errlog

error message Zoom 2-18
error calls

adding error text 2-15
error log message

Zoom 2-18
error text

adding 2-15

copying 2-19

logging 2-17

on-line 2-14, 2-15

updating 2-15

viewing 2-14
errors detail form 2-16
Event Called field

Menu Items Definition form 3-15
Event Classfield

Menu Items Definition form 3-16
Event field

Program Menu Definition form 3-31
Event Typefield

Menu Items Definition form 3-15
events

menu functions 3-43

navigation 2-2

F

fg.make

compiling adv libraries 3-7
fg_getfield function 4-16
fgiusr.c 3-7
fields

user-defined 2-20
findevent function

highlighting a menu item 3-11
findquit 3-43
findwind 3-43
form

Index-2

errors detail 2-16
personal to do 2-24
To Do Zoom 2-24
user-defined fields 2-20
4GL Runner 3-7
freeform notes 2-22
Zoom 2-23
Freeform Notes form 2-22
function event 3-16
function key
defining as hot key 2-9

G

gen_menu function

syntax 3-37
Get Ring field

Program Menu Definition form 3-31
Group Security Control 5-17

H

help
commands 2-11
help command
Info 2-11
Quit 2-12
Update 2-12
View 2-11
Help Linefield
Menu Items Definition form 3-18
help text
copying 2-12
on-line 2-11
highlighting a menu item
findevent 3-11
Hold After Select field
Menu Items Definition form 3-15
hot key
mapping 2-7
hot keys
adding 2-9
mapping 2-7
termcap factors 2-9
Hot Keys form 2-7
hot menu

Fitrix CASE Tools Enhancement Toolkit Technical Reference

description 3-21
hot_keys 3-46

Info

help command 2-11
Item Description field

Menu Items Definition form 3-14

Program Menu Definition form 3-31
Item ID field

Program Menu Definition form 3-31
Item Label field

Menu Items Definition form 3-18
Item Order ID field 3-14
Item Style field

Menu Items Definition form 3-14

K

Key field
User-Defined Fields form 2-21
Key Label field
Hot Keys form 2-8
key mapping 2-7
conventions 2-10
termcap 2-9
keyboard variations 1-8

L

Language field

Menu Items Definition form 3-18
Linefield

User-Defined Fields form 2-21
list

to do 2-23
list_err 3-46
log

error message Zoom 2-18
logging

error text 2-17

Mainring
description 3-9
diagram of 3-5
standard menu items 3-10
standard pull-down menus 3-12
Mainring Events 3-44
mapping
conventions 2-10
hot keys 2-7
menu
hot 3-21
Menu Function Eventsin Pull-Down Menus 3-43
menu item
functionality characteristics 3-13
Menu Item Activation Characteristics 3-17
Menu Item Trandlation Characteristics 3-18
menu items
creating 3-9
Menu Items Definition form 3-12, 3-13, 3-14
example 3-13
Menu Name field 3-13
Program Menu Definition form 3-31
menu_extra 3-24
menu_item variable 3-26
menuactive function 4-10
menuclose function 4-8
menucurrent function 4-10
menuget function 4-8
menuhead function 4-6
menuhelp function 4-8
menuhold function 4-7
menumany function 4-9
menunext function 4-10
menupick function 4-7
menupos function 4-9
menusel function 4-7
menusget function 4-9
menuview function 4-11
menuwrap function 4-10
menuzoom function 4-9
mkrunner script 3-8
Module and Program Information 5-7
Module Name field
Program Menu Definition form 3-31
movemenu 3-22, 3-43

Index-3

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Multiple Selection Menu
example 4-28
multi-tasking 2-2

N

navigate
feature 2-2
Navigate menu 2-3
navigation
running another program 2-5
Navigation Commands form 2-3
navigation event
deleting 2-6
Nested Dynamic Menus
example 4-24
new_grp 3-44
next_one 3-45
notes
freeform 2-22

O

Old_ring
ring menu 3-5
on-line
error text 2-14, 2-15
help text 2-11
Operating system command field
Navigation Commands form 2-4
oth_prgm 3-45
Overlapping Group Permissions 5-6

P

personal to do form 2-24

personal to do list 2-23

Press [ENTER] upon return field
Navigation Commands form 2-4

prev_one 3-45

prg_ack 3-45

prg_hlp 3-45

prg_info 3-45

prg_quit 3-46

prg_stat 3-46

prog_ctl menuput 3-22

Index-4

prog_ctl ringput

using with Pull-Down Menus 3-22
Program Control Library 4-1
Program Menu Definition form 3-27
Program Menu option 3-27
Program Namefield

Program Menu Definition form 3-31
program status

viewing 2-17
Pull-Down Menu

how to define 3-20
pull-down menu

how to hold open 3-20
pull-down menu event 3-16
Pull-Down Menus

adding new items to existing menus 3-24

compiling into your programs 3-7
controlling by a4GL program 3-21

creating custom menus for specific programs

3-27

creating new function events 3-24
creating new menu items 3-9
defining aring menu 3-19
defining custom menus 3-32
defining function keys 3-22
diagram 3-5
holding open a pull down menu 3-20
how it works 3-3
linking 3-6
moving to anew system 3-41
pull-down menus and arrow keys 3-22
guestions 3-19
running on the target machine 3-6
size of pull-down menu 3-26
using 3-6

pull-down menus
standard (Mainring) 3-12

Q

Quit
help command 2-12

R

Rfield

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Program Menu Definition form 3-32
req feat 3-46
Requires Cursor Item field
Menu Items Definition form 3-18
Requires Cursor Total field
Menu Items Definition form 3-18
Requires Detail Section field
Menu Items Definition form 3-17
Requires Rowid field
Menu Items Definition form 3-17
ring events 3-43
ring menu
calling within a program 3-37
defining a custom ring menu 3-35
help 2-11
how to define 3-19
linking custom menus 3-36
ring menu event 3-16
Ring Menu Items option 3-9
ringclose function 4-13
ringcurrent function 4-14
ringhelp function 4-13
ringnext function 4-13
ringpick function 4-13
ringpos function 4-14
ringput function 4-12
ringspace function 4-14
runner
creating for Pull-Down Menus 3-7

S

scr_funct 3-23
Screen ID field
Menu Definition form 3-31
Scrolling Field
example 4-29
Scrolling Input Fields 4-14
overview 4-3
Security 5-1
adding custom work 5-7, 5-10
description of 5-1
determining precedence 5-5
how it works 5-2
module and program information 5-7
overlapping group permissions 5-6
programs of 5-7

security events 5-9
security groups 5-11
setting for defaults 5-16
setting for groups 5-15
setting for individuals 5-13
user and group permissions 5-13
Security Events 5-9
Security Groups 5-11
see flds 3-46
see note 3-46
sort_grp 3-44
spec_cmd 3-45
standard Pull-Down Menus 3-10
status
program 2-17
Stylefield
Program Menu Definition form 3-31
sys esc 3-45
System Widefield
Hot Keysform 2-8

T

T field
Program Menu Definition form 3-32
Tablefield
User-Defined Fields form 2-21
termcap
defining keys 2-9
hot key mapping 2-9
key mapping 2-9
text
adding error text 2-15
ToDo
Zoom 2-24
todolist 2-23
todolist event 3-45
Typefield
Program Menu Definition form 3-31

U

upd_all 3-44
upd_one 3-44
Update
help command 2-12

Index-5

Fitrix CASE Tools Enhancement Toolkit Technical Reference

User and Group Permissions 5-13
User Control Library 2-1
User Control Menus

using prog_ctl ringput 3-22
User Namefield

Hot Keysform 2-8
user-defined

error text 2-15

fields 2-20
User-Defined Fields

deleting 2-21
user-defined fields form 2-20

\'

View

help command 2-11
view_det 3-45
viewing

program status 2-17

w

warnbox function 4-19
warnhelp function 4-19
Warning Box

example 4-31
Warning Windows 4-17

overview 4-3
warnput function 4-18
warnrd function 4-19
warnread function 4-18
warnyn function 4-19

VA

Zoom
error log message 2-18
freeform notes 2-23
To Do 2-24

Index-6

	Title
	Introduction
	Table Of Contents
	1 Introduction
	2 User Controle Library
	3 Pull-Down Menus
	4 Program Control Library
	5 Fitrix Security
	Index

