FItrix..
CASE Tools

4.12 New Features

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph
(c)(1)(ii) of the Rightsin Technical Data and Computer Software clause at DFARS252.227-7013. Fourth
Generation Software Solutions, 2814 Spring Rd., Suite 300, Atlanta, GA 30039.

Copyright

Copyright (c) 1988-2002 Fourth Generation Software Solutions Corporation. All rightsreserved. No part of this
publication may be reproduced, transmitted, transcribed, stored in aretrieval system, or translated into any
language in any form by any means without the written permission of Fourth Generation Software Solutions.

Software License Notice

Y our license agreement with Fourth Generation Software Sol utions, which isincluded with the product, specifies
the permitted and prohibited uses of the product. Any unauthorized duplication or use of Fitrix, in wholeor in
part, in print, or in any other storage and retrieval system is forbidden.

Licenses and Trademarks

Fitrix is aregistered trademark of Fourth Generation Software Solutions Corporation.
Informix is aregistered trademark of Informix Software, Inc.

UNIX isaregistered trademark of AT&T.

FITRIX MANUALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, FURTHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE ENTIRE RISK ASTO THE QUAL-
ITY AND PERFORMANCE OF THE FITRIX MANUALSISWITH YOU. SHOULD THE FITRIX MANU-
ALS PROVE DEFECTIVE, YOU (AND NOT FOURTH GENERATION SOFTWARE OR ANY
AUTHORIZED REPRESENTATIVE OF FOURTH GENERATION SOFTWARE) ASSUME THE ENTIRE
COST OF ALL NECESSARY SERVICING, REPAIR, OR CORRECTION IN NO EVENT WILL FOURTH
GENERATION BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING ANY LOST PROFITS, LOST
SAVINGS, OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE
OF OR INABILITY TO USE SUCH FITRIX MANUALS, EVEN IF FOURTH GENERATION OR AN
AUTHORIZED REPRESENTATIVE OF FOURTH GENERATION HAS BEEN ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. IN ADDITION,
FOURTH GENERATION SHALL NOT BE LIABLE FOR ANY CLAIM ARISING OUT OF THE USE OF
OR INABILITY TO USE SUCH FOURTH GENERATION SOFTWARE OR MANUALS BASED UPON
STRICT LIABILITY OR FOURTH GENERATION'S NEGLIGENCE. SOME STATES DO NOT ALLOW
THE EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION MAY NOT APPLY TO
YOU. THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS AND YOU MAY ALSO HAVE
OTHER RIGHTS, WHICH VARY FROM STATE TO STATE.

Fourth Generation Software Solutions Corporate: (770) 432-7623
2814 Spring Road, Suite 300 Fax: (770) 432-3448
Atlanta, GA 30339 E-mail: info@fitrix.com
Copyright

Copyright (c) 1988-2002 - Fourth Generation Software Solutions Corporation - All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed, stored in aretrieval system or translated.

Fitrix Case Tools New Features 4.12

Welcome to the Fitrix Case Tools New Features 4.12. This manual is
designed to be a focused step-by-step guide. We hope that you find all
of thisinformation clear and useful.

All of the screen images in this document are show with the products
using the character user interface. While the Fitrix Rapid Application
Development (RAD) Tools operate in character mode only, the soft-
ware applications created by the RAD tools offer the option of being
viewed in a graphic based Windows (or X11) mode as well as the char-
acter mode shown. Examples of graphic based product viewing modes
are shown below in Example 1 and Example 2.

Fourth Generation Software Solutions Database: sample

View |Execute Settings | Help

e on Software Solutio
iene General Ledger
1 2 Acco| ™y 3 Ledger Journal

(3 3 Acce|(~) 3 Recurring Documents
(3 4 Orde| ™ 3 | adger End of Period

1 5 Invel| ™ 4 |edger Setup
1 6 Purd 1 7 Multilevel Tax W
03 7 Multf~ 8 Administration
ayr e
o -
a Reple

Status |dle Socket sock44/132 147 160.15/20030

Example 1: Menu Graphical Windows Mode

Fitrix Case Tools New Features 4.12

Hereis another example:

' i_genim -[0fx]
0 GG B s oo g
|FEo T | | s | @ @
.
(Zoom)
General Journal

Zoom: [ESC] to Select, [TAB] for Menu
Key
i i

Totals-Debits [NZS0000 Credits [NSS0M00 Difference [NUNNE00M00 | "FAER<

| Enter Tedger account number to record transaction to.

Date:
Description:
EQP Reverse(Y/N): [N
Source: [CASHPY|
Account Group: |[CASHAR
user: [
-Account — Dept-Description ———————

Description

(8 rows selected)

l

v

I [

Example 2: Data Entry Graphical Windows Mode

Displaying our products in graphic mode, as shown in Example 1 and
Example 2, is customary for many Fitrix product users. However, your
viewing mode is a user preference. Changing from character based to
graphical based is a product specific procedure, so if you wish to view
some applications in character mode, and some in graphical mode, that
can be done as well.

If you have any questions about how to view your productsin graphical
mode, please consult your Installation Instructions or contact the Fitrix
helpdesk at 1(800)374-6157. Y ou can aso contact us by email:
support@fitrix.com. Please be prepared to offer your name, your com-
pany, telephone number, the product you are using, and your exact
question.

We hope you enjoy using our products and ook forward to serving you
in the future.

Thank Y ou,
Fourth Generation

Fitrix Case Tools New Features 4.12

Table of Contents

NeW FEature SUMIMAIIEScccvcceeiieiee e teete e eee et seesre s sresraesaeenee s viii
Part One; Fitrix CASE T0ooIS New FEaLUrESccceveeeereeeeereee s viii
Part Two: Fitrix Screen New FEatUrEScccevivieciiciececee e viii
Part Three: Fitrix Report New FEaIUIrESccvvevereeerene e seeseeseeeseeeenens iX

Documentation CONVENLIONSccceeeieiieeiieneeiesteeee e e see s ae st ae e e s e sreenns Xi

Part 1:Fitrix CASE Tools New Features

Chapter 1: CASE Tools Demo

OVEIVIBIV .ttt st sttt s st b ettt 1-2
Starting the DemMONSLIAtiONccccoeiiiiriere e e e 1-4
The Menus Command Bar ... 1-4
THE DEMO MENU ..ottt e 1-5
RUNNING the MENUS DEMOccccveiieieieeeeeeeese et sre s 1-6
RUNNING & SCrEEN DEIMOoveiiiiiieiee et e e 1-9
RUNNING the Programcccccvviiieiiseeseeeeesese s 1-10
Building the Program ... 1-11
RUNNING @ REPOIM DEMOocvviviieiieiesieeceeee et sre s snens 1-16
RUNNING the Program ... 1-17
Building the Programcccceevieinvinesereeeesese s 1-18

Part 2:Screen New Features

Chapter 2: Float Format

OVEIVIBIW ..ttt n e nn s 2-2
Setting Up @ Fl0at FOrMALooceiiiiiieeese e e e 2-4
Float Format FUNCLIONAIILYccveeierieieciceeeeeeeee et s 2-5

ROUNAING .ttt e e 2-5

Fitrix Case Tools New Features 4.12

ACCEPLADIE VAIUES ..ottt
Applying Float FOrmatSto SCIrEENSccceereririerierierieeeere st
Thefloat_fMELINE ..o e eneas
FIOBE FOrMEt LOGIC ..ottt st
Applying Float FOrmatSto REPOMSccvveveeieiereeeeesese e
Thefloat_fMELINE ..o e enea

Chapter 3: Translating Y/N Fields

ApplYINg Y/N LOGIC IO SCrEENS ...c..eiuiiiieriereeeeireeesie et
UsiNg the FOrM PaiNtErccccoveieeeeeeeeise s e e nnens
USING @TEXE EQITOroeieeeiieeecere ettt e

Applying Y/N LOgiCt0 REPOIScevveveereriereceeeeeeese st

Chapter 4: Screen Hooking Logic

The SOCKEL_ItEMS TGOS ...eoeeeeeerierie ettt
A QUICK REVIBIW ...ttt sttt sttt st st eaae st enn e b enns
Adding the socket_ItemMS THQOENccocvrereriieriee e

Part 3:Report New Features

Chapter 5: Report Scheduling

Report SCheduling OVEINVIEWc..ccvceriierece et
IMPIEMENTALTION ... e e e
Three NeW FUNCLIONS ..o
Incorporating SEleCtion Criteriaccoivereierieieeeeese s
Scheduling EXAMPIEooveicice e
Scheduling Codeinthe Library ...
FLOW CONET Ol o
SEUD FUNCHION . e
Generated Code in MIdIEVELAGLcvoveeeeeeeeeec e s

ii

Fitrix Case Tools New Features 4.12

L0 IS 1o 5-7
M PUL _F i T B s 58
L0 e = A 1 = 59

Chapter 6: Column Aliasing

OVEIVIBI ..ottt ettt s te s st e e e s tesaee s teeae e beeaeesteeaeesreeneesaeentesreensess 6-2
Setting Up @ COlUMN ALIES ..o 6-3

ThEAlIASLINE oo e e e 6-3
Changing the Column FOIMAaLcccoeeeieriene e 6-5

Chapter 7: Concurrency

OVEIVIBIW .ttt et st ettt st st s b et bbbt 7-2
Implementing CONCUITENCYcoveiveruereeieeeeeeeieeies et see et e e e e ene e 7-5
Setting up the report.ifg File ... 7-5
CONCUITENCY ..t steeie sttt sttt sttt sae st e et e e sbeeeesbeesbesb e e b e sneennesneanas 7-8
Handling CONCUITENCY ETTOISocoviveiieieiereeneeeeeese s stese st e e seeaeaeneeneenens 7-10
Example One: Displaying aWarning Messageccoceveererierieneeneenenenn 7-10
Example Two: Writing A Message to the Reportccccevvvevevececenenn, 7-13
COUE EXAMPIES ...ttt sttt e ne e eneas 7-16
L0TL0 (== | 7-16
TOWIBVELAGL ... et 7-20
0o 1= A-2
Creating an ACCESS LOG FIlE ...cuoiuiiiie s A-2
Relocating the errlog Fileoovceie e A-3
Generator ACCESS VariablEScooiiiiiiiee e s A-5
S o] =TT TS o] o A-6
Hiding RING MeNU OPLiONScccoiiieieieeeeeeeeierer et s A-8
Building aLibrary Z0Om SCrEENcccvcveereereeeriseseseseseseeseeeseeessessesneseens A-10

iii

Fitrix Case Tools New Features 4.12

iv

Preface

This manual provides information and insight concerning the new features and
functionality of the 4.12 Fitrix CASE Tools. Besides maintenance fixes and other
enhancements, amajority of the work that went into this release stemmed from our
organization’s goal to create complete, robust, and language independent code.
You will also find that alot of work has been done to the Fitrix Report Code Gener-
ator. Among the more salient improvements, you can now implement scheduling
and concurrency logic to your report programs.

This chapter contains the following topics:
n New Feature Summaries

n Documentation Conventions

Fitrix Case Tools New Features 4.12

New Feature Summaries

This manual is broken into three parts. The first part discusses new features that
apply to the Fitrix CASE Tools as awhole. The second part describes new features
for the Fitrix Screen product, which includes the Fitrix Screen Code Generator and
the Form Painter. The third and final part covers Fitrix Report new features. The
following paragraphs highlight these features and serve as a good introduction to
the rest of this manual.

Part One: Fitrix CASE Tools New Features

The biggest change to the Fitrix CASE Tools as awhole involves new demonstra-
tion programs and a new demonstration interface. Using the Application Develop-
ment Manager (AppDev), you can step through the process of building both Fitrix
Screen and Fitrix Report programs. These programs demonstrate several new fea-
tures, including report scheduling and column aliasing.

In addition, new directories containing executable program files have been set up
S0 you can skip the build phase and launch each demonstration program directly.

Part Two: Fitrix Screen New Features

The biggest improvements to the Fitrix Screen products include new float format-
ting package, Y/N field trandation logic, and a new trigger command. Both the
float formatting package and the Y/N trandlation logic also apply to Fitrix Report
programs.

The Float Format Package

Using the Float Formatting package, you can define formats for the way decimal
fields are displayed to the screen. The float formatting package also includes round-
ing logic and it performs "acceptable values' checking (in other words, it will
accept anumber of different symbols and convert them to display a single default
symboal).

Some of the symbols you can define include the thousand separator, decimal sepa-
rator, front minus, and back minus.

viii

Fitrix Case Tools New Features 4.12

Y/N Field Translation Logic

Because field trandation work can be along and laborious task, this new logic
givesyou the ability to translate Y/N fieldsvirtually all at once. This new logic sets
up asingle definition for Y/N fields in the database. Instead of defining each Y/N
field individually, you simply add aline to your form specification (*.per) file that
appliesthe Y/N translation definition to the field of your choice.

The socket_items Trigger

Each time you hook in a screen to your screen or report programs, a certain amount
of overhead comes along with it. Thesocket _i t ens trigger isintended to limit
the number of functionsthat are linked in with each screen. Y ou use the

socket _i t ens trigger in conjunction with theswi t chbox_i t ens trigger.

For example, if you want to add a query screen to areport program, you can use
boththeswi t chbox_i t ens trigger and thesocket _i t ens trigger. You can
supply the query screen name and function nameto swi t chbox_i t ens and the
keyword "query" to socket _i t ens. These two triggers might appear in an
extension (*.ext) file asfollows:

swi t chbox_i t ems
query S_query;

socket _itens
query;

Thesocket it ens trigger dramatically reduces the size of the resulting pro-
gram. In some cases this reduction is upwards of 80K.

Part Three: Fitrix Report New Features

Perhaps the Fitrix Report Code Generator received the most attention sincethe 4.11
release. A lot of work has been done to increase the abilities of the Fitrix Report
Code Generator including the addition of scheduling logic, concurrency logic, and
column aliasing. In addition, the Fitrix Report Code Generator also supports some
of the same new features as the Fitrix Screen Code Generator. These features
include the float formatting package and Y/N Trandation logic, all of which are are
covered in the Screen part.

New Feature Summaries ix

Fitrix Case Tools New Features 4.12

Report Scheduling

Using Scheduling logic, you can set atime for report execution. This ability lets
you postpone the processing of large reports until night when system resources are
more plentiful. Besides setting the time, Scheduling logic also lets you save selec-
tion criteriain the database until the report is run. By saving the selection criteria,
you can set both the time of execution and the appropriate selection criterialong
before the report actually runs.

Concurrency Logic

Concurrency gives you the ability to check each row in the header table for data
integrity prior to processing the corresponding detail lines for that row. This ability
helps assure that data doesn’t change during report processing. In addition to
checking for dataintegrity, concurrency also provides default locations in the code
for you to handle data conflicts and lets you set up your own data integrity logic.

Column Aliasing

With column aliasing, you can now use columns that have the same name but con-
tain different datain the same report program. Quite often different tables may con-
tain columns with the same name. In previous releases of the Fitrix Report Code
Generator, these columns could not be used on the same report. With the addition
of column aliasing, you can assign an alias to one of the columns and use it in con-
junction with the other column.

Fitrix Case Tools New Features 4.12

Documentation Conventions

Some information is difficult to convey in text, such as a series of keystrokes or a
value you supply. This Technical Reference uses severa conventions to convey
information that has special meaning. These conventions use different fonts, for-
mats, and symbols to help you discern commands, program code, filenames, and
keystrokes from other text.

Text Format

Courier Bold

Courier Bold
Italic

Couri er

Smal | Couri er

Symbol
[1]

{1

Meaning

Represents command syntax
in addition to variable and
file definitions.

Represents text you should
replace with the appropriate
value.

Represents commands; code;
file, directory, table, and col-
umn names; and system
responses.

Represents program code or
text in afile.

Meaning

Represents optional com-
mand flags or arguments.

Represents a mandatory
choice of options.

Delimits choices.

Represents command argu-
ments that can be repeated.

Example

fg.writer

-r report name

report.ifg
Makefil e
st andard
rtmargin

out put
top margin
bot t om nar gi n
left margin
right margin 7
page | ength 6

O~NWwWww

Example

fg.report [-f]

{one| two| three}

-yl-n

filename. ..

Documentation Conventions xi

Fitrix Case Tools New Features 4.12

When not part of an explicit instruction, single keyboard characters, field values,
and prompt responses are shown in uppercase. For example;

Choose Y or N.
Enter an A for ascending or D for descending.
Press Q to quit.

Named keys are shown in uppercase and enclosed in brackets, for instance:

[TAB]
[F1]
[ESC]
[ENTER]

When a series of keys should be entered at the same time, they are shown with a
hyphen connecting them. For example:

To close the menu, press[CTRL]-[d].

Some keys differ from keyboard to keyboard. This manual mentions the [ENTER]
and [DEL] keys, but both may be missing from your keyboard. Hardware manufac-
turers give different names to keys that perform the same function.

Keys Common Variations
[ENTER] RETURN, RTRN, ¢,

[ESC] STORE

[DEL] BREAK, CTRL C, CTRL BREAK

Although many similar versions of UNIX and XENIX can run INFORMIX-4GL
and the Fitrix Report Code Generator, this manual refersto all of them with the sin-
gleterm of UNIX.

xii

Part One

Fitrix CASE Tools
New Features

Fitrix Case Tools New Features 4.12

CASE Tools Demo

As part of the 4.12 Fitrix CASE Tools, several new demonstration programs have
been added. These programs give you valuable insight into our organization’s
devel opment techniques and common program construction. In addition to the new
demonstration programs, anew interface for accessing and building these programs
was also added. Thisinterface, which is built from Fitrix Menus, serves the two fol-
lowing purposes: It gives you an easy-to-use method for initiating the demonstra-
tion programs, and it serves as ademo in and of itself.

This chapter covers the following topics:
n Overview
n Starting the Demonstration
n Running the Fitrix Menus Demo
n Running aFitrix Screen Demo

n Running a Fitrix Report Demo

Fitrix Case Tools New Features 4.12

Overview

The 4.12 Fitrix CASE Tools include a completely integrated and flexible group of
demonstration programs. These programs not only show you typical Fitrix Menus,
Screen, and Report functionality, but they also give you the opportunity to look
under the hood and see how these different types of programs work.

Demonstration programs provide the following benefits:

e They introduce new users to basic Fitrix techniques and development stan-
dards.

e They provide experienced users with examples of new and improved features.
» They help our developers simulate conditions that may be causing problems.

For example, if you are anew user and you want to see how a simple header screen
looks and functions, you can check out screen demonstration one.

Or, being an experienced user, you may want to see how to use the Report Code
Generator’s new aliasing abilities. No problem, you can simply fire off report dem-
onstration three.

Besides helping to answer your questions and show off new functionality, demon-
stration programs are handy debugging tools. They give our developers acommon
link between your system and our own. If, for example, you think thereis a prob-
lem in the way one of your generated programs is working, you can let us know,
and—more than likely—we can attempt to duplicate the problem using one of the
demonstration programs.

The graphic on the following page describes each demonstration program. Follow-
ing the graphic, the rest of this section introduces you to the demonstration inter-
face and shows you how to build and run the different demonstration programs.

1-2 CASE Tools Demo

Fitrix Case Tools New Features 4.12

GSE Tools Demonstration Programj

Menus Demo ' Screen Demos Report Demos '
Header Only Plain Report

One Group

Header/Detall

Zoom, Lookup,

Report

Multi-Group
Report
Aliasing

Add-On Header

Query Screen
& Scheduling

Featurizer

Extension

Screen

Add-On Detail

View Header

& Detail

Kaniji

Overview 1-3

Fitrix Case Tools New Features 4.12

Starting the Demonstration

To begin working with the new 4.12 Fitrix CASE Tools Demonstration, enter the
following command at the UNIX prompt:

fg.demo

The following screen appears:

Mail Help Quit

Enter selection: []

n — Menus

B - Screen
C - Report

This screen contains both the standard Fitrix Menus command bar and the <Y OUR
COMPANY NAME>CASE TOOLS DEMOS menu. The command bar has four
options: Select, Mail, Help, and Quit.

The Menus Command Bar

Select initiates the highlighted menu item.
Mail starts an E-mail session.
Help opens awindow containing help information.

Quit exits the demo.

1-4 CASE Tools Demo

Fitrix Case Tools New Features 4.12

To move the highlight between options on the command bar, use the [SPACE-
BAR]. Once an option is highlighted, press [ENTER].

The Demo Menu

The <YOUR COMPANY NAME>CASE TOOLS DEMOS menu contains three
menu choices; one for each Fitrix CASE Tools product line. To initiate amenu
choice, type the alphanumeric character(s) that represents the choice or highlight it
and pick Select from the command bar. Y ou can move between menu choices with
the arrow keys.

To close a submenu, press [DEL].

For each menu choice there is a submenu containing the various demonstration pro-
grams. For example, if you type B to select the Screen menu choice, the following
submenu appears:

Mail Help Quit

Enter selection: |

A - Menus B - SCREEN DEMOS
B - screen

C - Report Header-only

Header /Detail

Header/Detail w/zoom, lookup, math
Header/Detail with Add-0On Header
Featurizer with Add-On Header
Header/Detail w/Extension Screens
Header with Add-On Detail

Header w/Yiew-Detail, Yiew-Header

=

WO~ O U1 LN

<
I

Kanji Language Header/Detail demo

Starting the Demonstration 1-5

Fitrix Case Tools New Features 4.12

Running the Menus Demo

Thefirst choice on the <Y OUR COMPANY NAME> CASE TOOLS DEMOS
menu is the Menus demo. The Fitrix Menus product only has one demonstration
program, excluding the f g. deno program itself. When you type A or highlight it
and choose Select from the command bar, the following submenu appears:

Mail Help Quit

Enter selection:

A - Menus 1 - Menus Items Demo
B - Screen

c - Report

This submenu contains Menus Items Demo. To start it, type 1. Aswith all the dem-
onstration programs, an information screen appears prior to running the demo. This
information screen describes the purpose of the demonstration and provides some
simple instructions for using the demo:

You have selected "Menus Items Demo”.

You are running Menus now. This option loads a submenu which
demonstrates some of the individual Menus "item" commands.

1-6 CASE Tools Demo

Fitrix Case Tools New Features 4.12

Read the information screen and then press [ENTER] to continue. The demonstra-
tion Menu program appears.

Demonstration Menu

sm — Zsubmenu: pc — ipc:

it - citem: fm - :form:

lg - :log: xm — Iaddmenu:
nd - tneeds: pw — :Ipassuword:
sw — Ishou: rl - :replace:
ps — ‘pause: rpt - fifxreport:
sy — Isystem: brpt - fifxreport:
in — finput: scr — Iifxscreen:
pr — fprint: fax - fax rpt

if - fif: lang - language
setup — printer

This program describes some of the most common menu item instructions and
shows you how these instructions work. For example, the showinstruction dis-
plays aline of text to the user. When you highlight and select thesw - show
option, the following screen appears.

You have selected "sw - :shouw:”.
This menu selection does the following:

- shows you how :show: works

When you continue the screen will clear and the message

"This is a SHOWLINE!" will appear.

The instruction line is:
sshow:cls:::::This is a SHOWLINE!:

When you press[ENTER] to continue, theitem instruction is carried out so you can
see how it works. This demonstration program is very useful if you forget the syn-
tax or how a particular item instruction works.

Running the Menus Demo 1-7

Fitrix Case Tools New Features 4.12

Running a Screen Demo

The second choice on the <Y OUR COMPANY NAME>CASE TOOLS DEMOS
menu opens the SCREEN DEMOS menu. This menu contains nine screen demon-
stration programs:

B - SCREEN DEMOS

- Header-only

— Header/Detail

— Header/Detail w/zoom, lookup, math
— Header/Detail with Add-On Header
Featurizer with Add-On Header
Header/Detail w/Extension Screens
Header with Add-0On Detail

Header w/View-Detail, View-Header

=

DWW

k=4
I

Kanji Language Header/Detail demo

Note

It may look at first asif there are 10 screen demonstrations, but screen demo four
has been purposefully left off the menu. Screen demo four isintended to be used
primarily with the Form Painter.

Each screen demonstration shows a unique functionality. To run the Kanji screen
demonstration you must have the multibyte version of the Fitrix CASE Tools, and
hardware, O/S, and Informix that supports Kanji.

When you select a screen demonstration program, you have two choices:

1 - Header-only

b - Build Program

1. You can run the generated and compiled program directly.

2. You can build the program from its form specification (*.per); and, if present,
trigger (*.trg) and extension (*.ext) files.

1-8 CASE Tools Demo

Fitrix Case Tools New Features 4.12

Running the Program

If you choose to run the program, an information screen appears that describes what
the demonstration covers. After reading the information screen, press [ENTER] to
continue and run the program. For example, if you run screen demonstration one,

the following program appears:

fAiction:|| IEEEM Update Delete Find Browse Nxt Prv Options Quit

Create a new document

CUSTOMER FORM

Number
Ouner Name
Company
Address

1]
]
]
]
1 State:[L 1 Zipcode:L 1
]

City
Telephone

Il N N]

(No Documents Selected)

Y ou may encounter a case where the actual executable has yet to be created. If this

occurs, you are given the choice to create it:

It appears that the "Run” version of Screen Demo 1 has not been
created yet.

Unlike the "Build” (or “screen") versions of the programs, which

are repeatedly recreated, regenerated, and recompiled, the "Run"

versions are created only once. These may then be run to see the
working functionality before using the "Build” option to go view

the code. and run the generation, and compilation processes.

Ready to create Screen Demo 1.

Running a Screen Demo

1-9

Fitrix Case Tools New Features 4.12

When you press [ENTER] to continue, the following line appears:

Enter [RETURN] for Dermp 1, or [A] to prepare ALL Screen Denps:

This prompt gives you the option of building only the selected program or building
all screen programs at once. Note that you should only encounter this circumstance
once. After the executableis built, you will not have to build it again each time you
select Run Program. Whichever option you select, the proper executable(s) is pre-
pared.

Building the Program

If you choose to build the program, two information screens appear. The first
screen describes the demonstration program. When you finish reading the first
screen, press [ENTER] to continue. The second screen describes the Application
Development Manager (AppDev). AppDev isthe development tool of choice for
building input programs. After you finish reading the second information screen,
press [ENTER] to load AppDev.

For example, if you choose to build screen demo one, the following AppDev win-
dow appears:

System Options View Hindow Help Quit

APPLICATION: codegen DATABASE : standard
MODULE : demo

PROGRAM : screen?

TYPE: Input Program

YERSION: Base Yersion (4gs)

brouse Form Specification

custfrm Form Specification

1-2 of 2

1-10 CASE Tools Demo

Fitrix Case Tools New Features 4.12

Note

If you do not have AppDev, aspecial demo shell opensin the demonstration
directory and a complete set of specification filesis created for you. From this
shell you can build the screen program manually.

If you are unfamiliar with AppDev, you may want to consult your Application
Development Manager User Reference. Consulting the AppDev manual, however,
isnot necessarily required; there are afew basic AppDev functions that make build-
ing programs simple, such as the following:

e Opening aform specification file
* Running the Screen Code Generator
e Compiling the code

* Running the program

Opening a Form Specification File

Opening aform specification file is not required if you only want to build the pro-
gram. It is useful, however, if you want to alter the program’ s default behavior. If
you simply want to build the program, skip to "Running the Fitrix Screen Code
Generator” on page 1-12.

Asyou can see from the graphic on the previous page, AppDev displays form spec-
ification files in the lower portion of the AppDev window. In screen demo one,
there are two files, br owse and cust frm

To open aform specification file:

1. Select the Open option from the File menu.
A submenu appears.

2. Select Form Specification from the submenu.

A second submenu appears asking you which form specification file you want
to open.

3. Select the Form Specification file you want to open.

Running a Screen Demo 1-11

Fitrix Case Tools New Features 4.12

For example, if you are running screen demo one, choose cust f r m Onceyou
select the form specification file, AppDev runs the Form Painter using the file
you specified.

Running the Fitrix Screen Code Generator

The Fitrix Screen Code Generator builds 4GL code based off of instructionsin
form specification files. Since the screen demonstration programs start out with
form specification files, you can run theFitrix Screen Code Generator directly.

To run the Fitrix Screen Code Generator:
1. Select Generate from the File menu.

A submenu appears asking you if you want to generate code for the entire pro-
gram or for one form specification file.

Input Program

Single Form

2. Select Input Program from the submenu.

A second submenu appears asking you which method of generation to use.

Choose a Command

Quick Generation

No Output
Standard Generation

3. Select Quick Generation.

This choice runs the Fitrix Screen Code Generator and creates all of the 4GL
code necessary to compile the program.

Compiling the Code

After you run the Fitrix Screen Code Generator, several more program files appear
in lower portion of the AppDev window. To convert these files into an input pro-
gram, you must run the compiler and link in the necessary library functions.

1-12 CASE Tools Demo

Fitrix Case Tools New Features 4.12

To compile the code:
1. Select Compile from the File menu.

A submenu appears asking you what type of compile to perform.

Module B
Program >
Form Specification >
Source File

2. Select Program from the submenu.

A second submenu appears requesting you to choose the compile mode.

Choose a Command

Use Existing Link List
Rebuild Only

Merge Only

No Merge

3. Select Full Compile from the second submenu.

This choice runs the compilation utility and builds a program file.

Running the Program
After compiling code, you can run the generated program.

To run the generated program:

1. Select Run from the File menu.

Running a Screen Demo 1-13

Fitrix Case Tools New Features 4.12

A submenu appears asking you if you want to run the program directly or
through the Informix Debugger.

Choose a Command

Run Debugger

2. Select Run Program from the submenu.

This choice runs the generated program. For example, if you built screen demo
one, the following program appears:

fiction:|] IEEEM Update Delete Find Browse Nxt Prv Options Quit

Create a new document

CUSTOMER FORM

Number
Ouner Name
Company
Address

City : State: Zipcode:
Telephone :

(No Documents Selected)

1-14 CASE Tools Demo

Fitrix Case Tools New Features 4.12

Running a Report Demo

The third choice on the <Y OUR COMPANY NAME>CASE TOOLS DEMOS
menu opens the REPORT DEMOS menu. This menu contains five report demon-
stration programs.

1 - Plain Report {(no grouping)

2 - Report with one group
3 - Multiple group report. aliasing
4 - Linked Query screen, Scheduling

5 - Concurrency report

Each report demonstration shows a unique functionality. In fact, several of the
report demonstration programs show new 4.12 Fitrix Report features, such as
scheduling, aliasing, and concurrency.

When you select areport demonstration program, you have the following two
choices:

1 - Header-only

b — Build Program

1. You can run the generated and compiled program directly.

2. You can build the program from itsimage (*.ifg) file and, if present, extension
(*.ext) files.

Running a Report Demo 1-15

Fitrix Case Tools New Features 4.12

Running the Program

If you choose to run the program, an information screen appears that describes what
the demonstration covers. After reading the information screen, press [ENTER] to
continue and run the program. For example, if you run report demonstration one,
the following program appears:

NE Prev Goto Top Bottom Right Left Scroll Quit
Report Demo 1
05/19/94 Customer Listing Page:
Customer No Order No Order Date Description TItem No Mfct Price
101 1002 06/01/86 baseball bat 3 HSK $240.00
101 1002 06/01/86 football 4 HSK $960.00
104 1003 10/12/86 tennis racquet 5 ANZ $99.00
104 1003 10/12/86 volleyball net 9 ANZ $20.00
104 1001 01/20/86 baseball gloves 1 HRO $250.00
104 1003 10/12/86 volleyball 8 ANZ $840.00
104 1013 09/01/86 tennis ball 6 SMT $36.00
104 1011 03/23/86 tennis racquet 5 ANZ $99.00
104 1013 09/01/86 volleyball net 9 ANZ $40.00
104 1013 09/01/86 tennis ball 6 ANZ $48.00
104 1013 09/01/86 tennis racquet 5 ANZ $19.80
106 1014 05/01/86 football 4 HRO $480.00
106 1014 05/01/86 football 4 HSK $960.00
1004 04/12/86 baseball gloves 1 HSK $800.00

fusr/tmp/ifx99019 (30%) lines 1 to 20 of 66 columns 1 to 77 of 80

Y ou may encounter a case where the actual executable has yet to be created. If this
occurs, you are given the choice to createit.

It appears that the "Run" version of Report Demo 1 has not been
created yet.

Unlike the "Build” {(or "report"”) versions of the programs, which

are repeatedly recreated, regenerated, and recompiled. the “"Run”

versions are created only once. These may then be run to see the
working functionality before using the "Build” option to go view

the code. and run the generation, and compilation processes.

Ready to create Report Demo 1.

1-16 CASE Tools Demo

Fitrix Case Tools New Features 4.12

When you press [ENTER] to continue, the following line appears:

Enter [RETURN] for Denp 1, or [A] to prepare ALL Report Denops:

This prompt gives you the option of building only the selected program or building
all report programs at once. Note that you should only encounter this circumstance
once. After the executable is built, you will not have to build it again each time you
select Run Program. Whichever option you select, the proper executable(s) is pre-
pared.

Building the Program

If you choose to build the program, two information screens appear. The first
screen describes the demonstration program. When you finish reading the first
screen, press [ENTER] to continue. The second screen describes the Application
Development Manager (AppDev). AppDev is the development tool of choice for
building report programs. After you finish reading the second information screen,
press[ENTER] to load AppDev.

For example, if you choose to build report demo one, the following AppDev win-
dow appears:

System Options View Hindow Help Quit

APPLICATION: codegen DATABASE : standard
MODULE : demo

PROGRAM : reportl

TYPE: Misc Program

YERSION: Base Yersion (dgs)

report.ifg Report Image

1-1 of 1

Running a Report Demo 1-17

Fitrix Case Tools New Features 4.12

If you are unfamiliar with AppDev, you may want to consult your Application
Development Manager User Reference. Consulting the AppDev manual, however,
is not necessarily required; there are afew basic AppDev functions that make build-
ing programs simple, such as the following:

» Opening areport specification file
* Running the Report Code Generator
» Compiling the code

* Running the program

Opening a Report Specification File

Opening areport specification fileis not required if you only want to build the pro-
gram. It is useful, however, if you want to alter the program’ s default behavior. If
you simply want to build the program, skip to "Running the Fitrix Report Code
Generator" on page 1-19.

AppDev displays report specification filesin the lower portion of the AppDev win-
dow. In report demo one, as with all report programs, there is a single report speci-
ficationfile:report.ifqg.

To open areport specification file:
1. Select the Open option from the File menu.
A submenu appears.
2. Select Report Specification from the submenu.

A second submenu appears asking you whether you want to run the Report
Writer or edit the report specification file directly.

Note

You cannot openr eport . i f g filescontained in report demo programs with
the Fitrix Report Writer. The Fitrix Report Writer can only work with a subset of
reports that the Fitrix Report Code Generator is capable of handling.

3. Select Edit Format file.

1-18 CASE Tools Demo

Fitrix Case Tools New Features 4.12

After selecting Edit Format, ther eport . i f g file opensand you can edit it by
hand.

Running the Fitrix Report Code Generator

The Fitrix Report Code Generator builds 4GL code based off of instructionsin the
report specification file. Since the report demonstration programs start out with an
existing report specification file, you can run the Fitrix Report Code Generator
directly.

To run the Fitrix Report Code Generator:
1. Select Generate from the File menu.

The Fitrix Report Code Generator runs and multiple lines of code scroll across
the screen.

2. When the Generator finishes, press [ENTER] to return to AppDev.

Compiling the Code

After you run the Fitrix Report Code Generator, several more program files appear
in the lower portion of the AppDev window. To convert these filesinto a report
program, you must run the compiler and link in the necessary library functions.

To compile the code:
1. Select Compile from the File menu.

A submenu appears asking you what type of compile to perform.

Hodule >
Program >
Form Specification >
Source File

2. Select Program from the submenu.

Running a Report Demo 1-19

Fitrix Case Tools New Features 4.12

A second submenu appears requesting you to choose the compile mode.

Choose a Command

Use Existing Link List
Rebuild Only

Merge Only

No Merge

3. Select Full Compile from the second submenu.

This choice runs the compilation utility and builds a program file.

Running the Program
After compiling code, you can run the generated program.

To run the generated program:
1. Select Run from the File menu.

A submenu appears asking you if you want to run the program directly or
through the Informix Debugger.

Choose a Command

Run Debugger

2. Select Run Program from the submenu.
The report runs and writes the report output into an *.out file.

3. To see the results of the report, press [TAB] to move the highlight to App-
Dev’s file window.

4. Highlight the *.out file and press [ENTER].

AppDev automatically displays the report in the default pager for your system.

1-20 CASE Tools Demo

Fitrix Case Tools New Features 4.12

For example, if you built report demo one, the following report appears:

e xt} Prev Goto Top Bottom Right Left Scroll Quit
Report Demo 1

05/20/94 Customer Listing Page:

Customer No Order No Order Date Description Item No Mfct Price
101 1002 06/01/86 baseball bat 3 HSK $240.00
101 1002 06/01/86 football 4 HSK $960.00
104 1003 10/12/86 tennis racquet 5 ANZ $99.00
104 1003 10/12/86 volleyball net 9 ANZ $20.00
104 1001 01/20/86 baseball gloves 1 HRO $250.00
104 1003 10/12/86 volleyball 8 ANZ $840.00
104 1013 09/01/86 tennis ball 6 SHMT $36.00
104 1011 03/23/86 tennis racquet 5 ANZ $99.00
104 1013 09/01/86 volleyball net 9 ANZ $40.00
104 1013 09/01/86 tennis ball 6 ANZ $48.00
104 1013 09/01/86 tennis racquet 5 ANZ $19.80
106 1014 05/01/86 football 4 HRO $480.00
106 1014 05/01/86 football 4 HSK $960.00
106 1004 04/12/86 baseball gloves 1 HSK $800.00

reportl.out (30%) lines 1 to 20 of 66 columns 1 to 77 of 80

Running a Report Demo 1-21

Fitrix Case Tools New Features 4.12

1-22 CASE Tools Demo

Part Two

Screen New
Features

Fitrix Case Tools New Features 4.12

Float Format

With the float format package you can customize the way floating point values
appear on your Fitrix Screen and Report programs. This package extends the func-
tionality of Informix’s DBFORMAT variable. Using it, you can specify awide range
of attributes to tailor the way floating point values appear, such as a front and back
symbol; athousand separator; a decimal separator; and a positive and negative indi-
cator. The float format package also lets you specify a precision value, which auto-
matically rounds your floating point values.

This chapter covers the following topics:
n Overview
n Setting up aFloat Format
n Float Format Functionality
n Applying Float Formats to Fitrix Screens

n Applying Float Formats to Fitrix Reports

Fitrix Case Tools New Features 4.12

Overview

Because floating point values are displayed differently from country to country,
you may want to vary the way afloating point value looks in the applications you
are developing. With the float format package, you can set up anumber of float for-
mat definitions. For example, the following table shows formats for common mon-
etary values:

Country Positive Format Negative Format
USA $1,234.56 -$1,234.56

Italy L1.234 -L1.234

Norway krl.234,56 kr1.234,56-

Portugal 1,234$56 -1,234$56

All float format definitions are stored in the cgxf f nt r table. Thistable contains
the following columns:

Column Name Type Description
float_format_code char(10) Holds afloat format key value.
userdef char(1) HoldsaY valueif row is user defined.

If aY ispresent, row gets preserved
when dbmergeisrun.

description char(30) Contains a short format description.

precision smallint Indicates how many places follow the
decimal symbol. When necessary, float
format rounds a value to match the
specified precision.

thousand_separator char(7) Contains the thousand-separator sym-
bol(s).
decimal_separator char(7) Holds decimal -separator symbol(s).

2-2 Float Format

Fitrix Case Tools New Features 4.12

Column Name Type Description

front_symbol char(7) Contains the symbol that gets placed in
front of the decimal value. Many times
thisisthe monetary value symbol, such
asadollar sign.

front_minus char(7) Contains the front minus symbol(s).

front_plus char(7) Contains the front plus symbol(s).

back symbol char(7) Contains the back symbol(s).

back plus char(7) Contains the back plus symbol(s).

back _minus char(7) Contains the back minus symbol(s).

For example, to create the four monetary values shown previously, use the follow-

ing float format definitions:

S

o = | 5

o & 8

[*] © | ©

3} o E _ _

! Q9 0,) @

(3] c ml [}] e} = K] s

£ SO o E|E|Y E| 2 £

= w“ | |B |0l e _ S | = = S, 3| .=
g L c 2 5| & 8 o EI el & 2 EI
< ! T 6|54 Eld S o«
3 © 0| »w| ol o9 S|S0l 0|0

o W 0| | @ 2|29 m & | ®
(O] - S| T | Q% T |« |« |« | 2 0| 0
USA USA 2 |, $ |-
Italy ITL 0 L |-
Norway NOR 2 , kr -
Portugal PRT 21, |$ -

Overview 2-3

Fitrix Case Tools New Features 4.12

Setting up a Float Format

To add anew float format definition, you must add arow to the cgxf f mt r table.
For example, you may want to make another version of the USA float format. Per-
haps you want your new definition to use an left parenthesisasaf r ont _m nus
value and aright parenthesisasaback_m nus vaue.

- $1,234.56 ($1,234.56)

Current Negative Format Desired Negative Format

To create this definition, add the following float format valuestothecgxffntr
table:

S

() = | 5
o s |8
[*] © ©
© 2 & | — -
© [| [<}] e = Ke) =1
£ S e v |9 E £ 5 E § £
[— - o c — > — = > - ——
L e |2 5 & | ®) EI RO EI

S
! T G55 ¢ E LY L«
© o | » | |0 |9 | & S| S |0 |0 |©
o | o = & | © O © 0 |® | &8 |®©
= > T o - T (= y— (= o] 0 Kol
USANEW 2 |, $ | ()

For more information on adding rows to atable, refer to your Informix documenta-
tion set.

2-4 Float Format

Fitrix Case Tools New Features 4.12

Float Format Functionality

Besides simply formatting the way floating point values appear on your programs,
the float format package also rounds floating point values (similar to the way Infor-
mix rounds floating point values) and provides some "acceptable value" logic.

Rounding

When you define afloat format, you can set a precision value. By setting the preci-
sion value, you determine how many decimal places should follow afloat field.

If you set the precision value to two, al float fields will evaluate to the hundredths
position. Likewise, if precision is set to three, floating point values will evaluate to
the thousands position.

1,234.56 1,234.567

Precision set to two Precision set to three

If auser, however, enters afloating point value with more digits trailing the deci-
mal than the precision value allows for, the float format package rounds the value
to match the precision setting.

Float Format Functionality 2-5

Fitrix Case Tools New Features 4.12

Example

Consider afield that has been defined to use a custom float format containing a pre-
cision value of two. When a program user enters a 1,234.567 in the field, the float
format package roundsthe valueto 1,234.57.

Given a precision
value of two, when the
user enters...

1,234.567

...the following value
is displayed.

1,234.57

Notes

2-6

Thefloat format package is particularly valuable for fields representing col-
umns defined as decimal with no scale (decimal (12)). These are floating deci-
mals, but Informix screen 1/0O commands treat them as if they had a scale of 2
(decimal (12,2)). This inconsistency results in misleading screen displays and
apparent rounding errors in the screen display of calculations. The float format
package guarantees that what you see iswhat you want to see, and what you see
iswhat you get.

If you use the float format package with fixed decimal columns, make sure that
the precision value you set matches the scale for that column. For example a
decimal(12,2) column should use afloat format definition that has precision set
to two.

Float Format

Fitrix Case Tools New Features 4.12

Acceptable Values

Frequently, you may want to allow program users to enter several different charac-
tersthat evaluate to asingle display character. Thistype of logic isvery commonin
fields representing date columns. The user can enter 01-01-1994 and the value will
be displayed as 01/01/94. In this case, the dash (-) character is interpreted properly
and converted to aslash (/).

The float format package lets you do much of the same with float fields. This abil-
ity is known as "acceptable values." In other words, you can create formats that
don’'t impose a strict syntax for the user to remember.

Consider another example. Quite often, negative values are displayed in parenthe-

ses. Your user, however, may enter negative values with a minus symbol. Y ou can
set up the float format package to recognize a minus and display it as aleft paren-

thesis.

When the user
enters...

-1,234.56

...the following value
is displayed.

(1,234.56)

Refer back tothecgxf f nt r table on page 2-4. Notice that several columns are of
type char(7), such as the front_minus column. All of the char(7) type columns can
contain acceptable value characters except for the front_symbol and back symbol

columns.

Float Format Functionality 2-7

Fitrix Case Tools New Features 4.12

Example

If you want the front_minus to accept both a minus sign and a left parenthesis,
define the front_minus and back_minus columns as follows:

Column Name Value Description

front_minus (- Puts negative values into parentheses,
but accepts both a minus sign and a left
parenthesis.

back _minus) Puts aright parenthesis on the end of a
negative number.

When the user enters a negative value preceded by aminus sign, thevalueis
accepted and reformatted to display within parentheses.

Notes

* You can specify up to seven acceptable values for the following columns:

thousand_separator
decimal_separator
front_minus
front_plus

back _minus

back plus

* You cannot use the same character in more than one definition. For example,
you cannot have a comma (,) as both a decimal_separator and a
thousand_separator.

» Ineach of these columns, only the first symbol is displayed. All the other sym-
bols become the "acceptable value" symboals.

2-8 Float Format

Fitrix Case Tools New Features 4.12

Applying Float Formats to Screens

Once you define afloat format, you can specify the field(s) it appliesto. This spec-
ification takes place within your form specification (*.per) file.

The float_fmt Line

Y ou can apply afloat format definition to any float or decimal field. To do so, you
must add thef | oat _f nt lineto your *.per file.

Syntax

Thefl oat _f it lineisplaced in either theinput 1 or input 2 section of a.per file.
You can passthef | oat _f or mat _code valuefromthecgxf f nt r tableorap_
record value. Use the following syntax:

float fmt = field=field, format key="float format code"

float fmt = field=field, format key=p variable

Example

Thisexample, appliedtoscr _deno 3, customizestheuni t _pri ce field to use
| TL, the Italian float format definition.

input 2

table = itens

join = itens. order_num = orders. order_num

or der = item.num

arr_max = 100

aut onum = item num

nmat h = total _price = quantity * unit_price

| ookup = name=stock_num key=stock_num tabl e=st ock,
filter=stock_num = $stock_num into=description

| ookup = name=st ock_manu, key=manu_code, tabl e=stock,
filter=stock_num = $stock_num and manu_code = $manu_code,
into=unit_price

| ookup = key=manu_code, tabl e=manufact, filter=manu_code = $manu_code

zoom = key=stock_num screen=stockzm tabl e=stock, noautozoom

zoom = key=manu_code, screen=stk_mu, table=

filter=stock.stock_num = $stock_num Float Format Line
float_fm = field=unit_price, format_key="1I

Applying Float Formats to Screens 2-9

Fitrix Case Tools New Features 4.12

The resulting program looks as follows:

Create a new document

fiction:|| IEEEN Update Delete Find Browse Nxt Prv Tab Options Quit

City/St/2ip:

Order Date: 01/20/86

Shipping Instructions:

Reduwood City

(Notes)
Order Form
Customer No.: 104 Contact Mame: Anthony Higgins
Company Mame: Play Balll
Address: East Shopping Cntr. 422 Bay Road

CA 94026 Telephone: 415-368-1100

uses the ITL float format.

Notice the unit_price field. It now fer Qt

94t 510611

ISR TUSKy

1 of 16)

PO Number: B77836 Order No: 1001
y. Price Extension
+—p 1450.00 $450.00
1 L19.80 $19.80
1 L36.00 $36.00
1 L960.00 $960.00

Order weight: 20.44 Freight: $-123.00
Order Total: $1942.80

In most cases, you would want to convert every decimal field to reflect the same
float format definition. In this example, however, only one field usesthe ITL (Ital-
ian) definition. The other fields receive the default definition, which is defined by

the DBFORIVAT variable.

Notes

Although the float format package expands your ability to create language indepen-
dent code, there are afew caveats you should consider:

* You cannot use the Form Painter to apply float format definitionsto fields. Y ou
must use atext editor and add each f | oat _f nt line by hand. The Form
Painter, however, preservesf | oat _f nt lines. So if you have modify a .per
file to include float format logic, you can still open and update that file using

the Form Painter.

» If you have created math logic based on ap_ record value, you must change
your code so that this math logic is performed in the q_ record.

» If you have the same decimal field on a header screen and a browse screen, you
must add af | oat _f nmt line to both *.per files.

2-10 Float Format

Fitrix Case Tools New Features 4.12

e If you use aninvalid float format definition, decimal fields are formatted
according to the DBFORMAT variable, which has a default precision of 2.

Float Format Logic

For every f | oat _f nt lineyou add, the Fitrix Screen Code Generator creates
multiple lines of decimal format logic. Thislogic is added to the *.4gl file that cor-
responds with the .per file.

Example

Building on the previous example, the Fitrix Screen Code Generator creates the fol-
lowing code for theuni t _pri ce field. Thiscodeis added to the
I1d _display() functionindet ai | . 49l :

float_formatonly - Format the decinal
#_fl _code_unit_price
let fl_code = "ITL"
#_fl_length_unit_price
let fl_length = 10
#_fl_attr_unit_price
let fl_attr =""
#_fl _float_unit_price
call fm_only(
g_itens[m+ n].unit_price, fl_code, fl_length, fl_attr)
returning p_itens[m+ n].unit_price

display p_itenms[m+ n].* to s_itens[n].* attribute(red)

Asyou can see, the Fitrix Screen Code Generator surrounds the float format logic
with several block tags. These tags give you a point in the code where you can add
your own custom logic via extension (*.ext) and trigger (*.trg) files.

Applying Float Formats to Screens 2-11

Fitrix Case Tools New Features 4.12

Applying Float Formats to Reports

Y ou can apply afloat format to a Fitrix Report program much like you do to a
Fitrix Screen program. When used with reports, the float format logic customizes
the way a column appears on your report output. For each column you want to
apply afloat format to, you must createaf | oat _fnt lineinthereport.ifg
file.

The float_fmt Line

To format areport column, you placethef | oat _f nmt linein the select section of
ther eport. i f gfile Thislineinstructs the Fitrix Report Generator to apply the
float format definition you specify to the report column.

Syntax

Thef | oat _f nt lineisplaced in the select section of ther eport . i f g file. You
can either passitthef | oat _f or mat _code value fromthe cgxf f nt r table.
Thef | oat _f nmt line usesthe following syntax:

float_fmt = field=table.column, format key="float format code"

Example

Thisexample appliesthe ITL float format tothei t ens. t ot al _pri ce column.

sel ect
namre = Deno Sel ect
tables = custoner, orders, itens, stock
join = stock.manu_code = itens. manu_code and stock. stock_num = itens. stoc

k_num and orders. cust omer _num = cust onmer . cust oner _num and it ens. order_num = orde
rs.order_num
order = custoner.custonmer_num ITL Float
float_fnt = field=itens.total.price, format_key="I| TL"¢——

Format Line

end

2-12 Float Format

Fitrix Case Tools New Features 4.12

After adding thef | oat _f nt line, you can build your report program. When you
run it, the float format that you specified will appear on your report. In this exam-
ple thet ot al _pri ce columnisusing the ITL float format definition:

Next Prev Goto Top Bottom Hight Left Scroll Quit
Customer Listing Page: 1
101
er No Order No Order Date Description Item Mo Mfct Price
101 1002 06/01/86 football 4 HSK L960.00
101 1002 06/01/86 baseball bat 3 HSK L240.00
Subtotals for 101
L1,200.00
104
er No Order No Order Date Description Item No Mfct Price
104 1001 01/20/86 tennis ball 6 SMT L36.00
104 1001 01/20/86 basketball 7 HRO L600.00
104 1001 01/20/86 tennis racquet 5 ANZ 1L19.80
104 1001 01/20/86 baseball gloves 1 SMT L450.00
104 1001 01/20/86 football 4 HSK L960.00
104 1003 10/12/86 tennis racquet 5 ANZ 1L99.00

report.out (15%) lines 1 to 21 of 132 columns 9 to 85 of 85

Asyou can see, float format logic for report programs doesn’t align the formatted
column correctly. To fix this, you can add af or mat _| engt h indicator to the
float format lineinyour r eport . i f g file

sel ect
nane = Deno Sel ect
tabl es = custoner, orders, itens, stock
join = stock.manu_code = itens. manu_code and stock| Format . stoc

rs. order_num
order = custoner. customer_num
float _fm = field=itens.total.price, format_|ength=12, fornat_key="ITL"

k_num and orders. cust oner_num = cust oner . cust omar_nuy Length Value orde

end

Applying Float Formats to Reports 2-13

Fitrix Case Tools New Features 4.12

When you set thef or mat _| engt h value to the appropriate length, the formatted
columnisaligned correctly.

Next Prev Goto Top Bottom [Night] Left Scroll Quit
Customer Listing Page: 1
101
er No Order No Order Date Description TItem No Mfct Price
101 1002 06/01/86 football 4 HSK L960.00
101 1002 06/01/86 baseball bat 3 HSK L240.00
Subtotals for 101
L1.200.00
104
er No Order No Order Date Description Item No Mfct Price
104 1001 01/20/86 tennis ball 6 SHMT L36.00
104 1001 01/20/86 basketball 7 HRO L600.00
104 1001 01/20/86 tennis racquet 5 ANZ L19.80
104 1001 01/20/86 baseball gloves 1 SHMT L450.00
104 1001 01/20/86 football 4 HSK L960.00
104 1003 10/12/86 tennis racquet 5 ANZ L99.00

report.out (15%) lines 1 to 21 of 132 columns 9 to 85 of 85

2-14 Float Format

Translating Y/N
Fields

A powerful feature of the Fitrix CASE Tools s the ability to create programs that
can be trandlated into other languages. With the 4.12 Fitrix Screen Code Generator,
you can streamline your effortsto create translatable programs.

This section covers the following topics:
n Overview
n Applying Y/N Logic to Screens
n Applying Y/N Logic to Reports

Fitrix Case Tools New Features 4.12

Overview

Creating transl atable programs can take some time. A big part of the process
involves populating the st x| angr table with rows of translation strings. Many
timesthese strings are very similar, asin the case of Y/N fields. Most Y/N fieldsare
the same size and accept the same values.

In the past, to make a Y/N field trand atable, you had to create two rows in the
st x| angr table: onerow for the Y value and one row for the N value. If your
application had 10 Y/N fields, you had to create 20 rows. The 4.12 Fitrix Screen
Code Generator simplifies this task. Instead of defining each Y/N field individu-
ally, you can define them all at once.

Consider the following form, which contains five Y/N fields:

Action:|] IGEEN Update Delete Find Browse MNxt Prv Options Quit
Create a new document

Customer Information

Cust No.:
Name ¢ Luduwig

101
Pauli

Credit Analysis

Card Name: YISA
Bank Name: USA National

Card No.: 111111
Date: 01/31/1994

Gold Card Member? :
Extended Limit Member? :
Quick Cash Memeber?
Buy Safe Member?

ATH Nccess Member?

F Y

A of 4

With the 4.11 Fitrix Screen Generator, thest x| angr table would look asfollows:

ENG credit_card.
ENG credit_card.
ENG credit_card.
ENG credit_card.
ENG credit_card.
ENG credit_card.
ENG credit_card.

3-2

gol d_card| ALL| NI N
gol d_card| ALL| Y] Y|
ext_limt]ALL| NI N|
ext_limt]ALL|Y]Y]
qui ck_cash| ALL| N[N|
qui ck_cash| ALL| Y] Y|
buy_safe| ALLIN N|

Translating Y/N Fields

Fitrix Case Tools New Features 4.12

ENG credit_card. buy_safe| ALL| Y] V]
ENG credit_card. atm access| ALL| N N|
ENG credit_card. at m access| ALL| Y] Y]

With the new 4.12 Fitrix Screen Code Generator, only two rows are required.

ENG YES. NO ALL| Y] V]
ENG YES. NO ALL| N| N|

Besides making fields easier to trandlate, this new logic also automatically validates
your Y/N fields. For example, if the user placesa O in the field instead of a Y, the
program reports an error.

Update: [ESC] to Store, [DEL] to Cancel Help:
Enter changes into form LCTRLI-Lw]

Customer Information

Cust MNo.: 101
Name : Ludwig Pauli
Credit finalysis
Card Mame: YISA Card No.: 111111
Bank Mame: USA National Date: 01/31/1994

Gold Card Member?
Extended Limit Member? :
Quick Cash Memeber?
Buy Safe Member?

ATH Nccess Member?

Z =< =< Z=

bl Error: VYalue Is Not in the List of Yalid Data. -——=

Continue: [ENTER]. View error information: [Y1. |

Overview 3-3

Fitrix Case Tools New Features 4.12

Applying Y/N Logic to Screens

Y ou can apply the new Y/N logic using the Form Painter or directly to your *.per
file with atext editor.

Using the Form Painter

The most automatic way to apply this new functionality is using the Form Painter.
Begin by starting the Form Painter and loading your form. Next, select the Y/N
field you want to use and press [CTRL]-[Z].

In the Define Field window, place YES_NOin the Tranglate field:

Update: [ESC] to Store, [DEL] to Cancel Help:
Enter changes into form [CTRLI-Lwl

Define Fields

Table Name : credit_card Input firea : 1
Column Mame: gold_card Entry ? Y
Field Type : char(1) Autonext ¢ = N
Message H Downshift ?: N
Picture H Upshift ? N
Display Fmt: Verify ? N
Validate : Required 2 = N
Default H Skip ? N

Translate : [[EN

Enter translation context if field is translated. (usu. ALL)

Save your form, regenerate 4GL, and remake your program.

Note

Although you place YES NOin the Trandlate field, it isnot really atrandation
context. This value acts as a switch and uses the ALL translation context.

34 Translating Y/N Fields

Fitrix Case Tools New Features 4.12

Using a Text Editor

Open your *.per fileusing vi or some other text editor. In the appropriate section (in
this caseinput 1), insert the following line:

i nput 1
translate = field name YES_NO

For example, if you want to translate the gol d_car d field, your input 1 section
would look as follows:

input 1
table = credit_card
key = card_nunber
filter =1=1
| ookup = name=cust | k, key=custoner_num tabl e=cust oner,

i nt o=f name, i nt o=l nane,
filter=custoner.custoner_num = $cust oner_num

zoom = key=cust oner _num screen=custzm tabl e=cust oner,
f romecust omer _num

translate = gol d_card YES NO

Asyou can see, the tranglate line contains the field name and the YES_NO switch.

If you have multiple Y/N fields, you should add one translate line for each field:

input 1
table = credit_card
key = card_nunber
filter =1=1
| ookup = name=cust | k, key=custoner_num tabl e=cust oner,

i nt o=f name, i nt o=l nane,
filter=custoner.custoner_num = $cust oner_num

zoom = key=cust oner _num screen=custzm tabl e=cust oner,
f romecust omer _num

translate = gol d_card YES NO

translate = ext_limt YES NO

transl ate = qui ck_cash YES_NO

translate = buy_safe YES NO

transl ate = atmaccess YES_NO

Applying Y/N Logic to Screens 3-5

Fitrix Case Tools New Features 4.12

Applying Y/N Logic to Reports

You can aso apply Y/N logic to reports. For example, you may have a one charac-
ter column in your database that contains either Y values or N values. By setting up
two new st x| angr records, you can change the way these values appear on your
reports.

Syntax

Totransdate a Y/N report column, you must add a new section to your
report.ifgfilecalled language. This section uses the following syntax:

| anguage
translate = table.colum YES_NO
end

Typically, the language section followsthe sel ect section within the
report.ifgfile If youwanted to translate multiple fields, the syntax is as fol-
lows:

| anguage
translate = tabl e.col um YES_NO
translate = table.colum2 YES_NO
end
Example

Suppose you want a Y/N column to appear initsItalian equivalent on areport. You
could define the following recordsin st x| angr :

| 1 TL| YES. NO ALL| Y] S|
| 1 TL| YES. NO ALL| N| N|

Inyour report.ifgfile set up anew language section:
| anguage

translate = stock.in_stock YES _NO
end

Generate and compile your report, then at runtime, specify:

fglgo *4gi -1 ITL

3-6 Translating Y/N Fields

Fitrix Case Tools New Features 4.12

Y our report runsand you see“S's” in place of “Y's” inthein_stock column.

NEZ Prev Goto Top Bottom Scroll Quit
05/12/19 Orders Listing Page: 1
Cust MNo: 101 All Sports Supplies

NoticetheY in

Item No.

Price Extension In Stock

report.out (13%) lines 6 to 26 of 198

. 9 4 $96.0., 00 5960 00) S
the In StOCk fleld p1/19 3 $240.00 $240.00 S
$1200.00
Cust MNo: 104 Play Ball!
Order No. Date Item No. Price Qty. Extension In Stock
1001 01/20/19 8 $36.00 1 $36.00 S

columns 1 to 77 of 77

When you run fglgo *4gi without the -1 ITL language flag:

Next Prev Goto Top Bottom Bcroll] Quit
05/12/19 Orders Listing Page: 1
Cust No: 101 All Sports Supplies
NOtI ce the Y | n Item No. Price Qty. Extension In Stock
. b1 219 4 $960., 00 1 $960., 009 Y
the In Stock field {7715 3 $240.00 1 $240.00 Y
$1200.00
Cust No: 104 Play Balll
Order No. Date Item No. Price Qty. Extension In Stock
1001 01/20/19 5 $36.00 1 $36.00 ¥

report.out (13%) lines 6 to 26 of 198

columns 1 to 77 of 77

Applying Y/N Logic to Reports 3-7

Fitrix Case Tools New Features 4.12

3-8 Translating Y/N Fields

Screen Hooking
Logic

The 4.11 version of the Fitrix CASE Tools provided a new function to handle
screen switching logic. Thisfunction, called socket Manager () , established a
new method for hooking different screen types to Fitrix Screen and Report pro-
grams.

Thesocket Manager () function created a standard method for hooking screens
into an input program. However calling socket Manager () inareport program
pulled in anumber of unnecessary functions. To reducethis overhead, anew library
file called skt Swt ch. 4gl and anew trigger called socket _i t enrs were cre-
ated.

This chapter covers the following topics:
n Overview

n Thesocket itens Trigger

Fitrix Case Tools New Features 4.12

Overview

To understand the need for anew function and trigger, consider the case of asimple
report program that includes a query screen. Before the report is run, the query
screen appears allowing usersto enter selection criteria for the report.

A query screen is hooked to areport program viathe socket Manager () func-
tion. This function links in all of the screen handling logic necessary to run the
guery screen. Thesocket Manager () function, however, does not stop there. It
also pullsin screen handling logic for other screen types, none of which are being
used in the report program. A simple report program can end up being much larger
than necessary.

4.11 Report Program 4.12 Report Program

4 filelistRDS |3 s filelistRDS |5
° 145 lines ° ° 72 lines °
E * 4gi : E * 4gi 2
S 293K < S 213K S

Using new screen-hooking logic, you can reduce the
size of your programs.

To simplify the amount of code linked in by the socket Manager () function,
socket Manager () 's screen switching mechanism was extracted and placed in
thenew skt Swt ch. 4gl file. The functionsin thisfile evaluate the screen type,
which you specify using the new socket _i t ens trigger. Once the screen typeis
known, only the appropriate functions for that screen type are linked in.

4-2 Screen Hooking Logic

Fitrix Case Tools New Features 4.12

The socket_items Trigger

If you want, you can look at how the functionsin skt Swt ch. 4gl work using the
Informix debugger or some other method. Thisfileislocated in

$f g/ li b/ scr. 4gs. For the most part, however, you can ignore what goes on
"behind the scenes." Most important to you is understanding how to incorporate the
new screen-hooking logic into your programs.

A Quick Review

If you are unfamiliar with hooking in screens to your programs, you might want to
consult the 4.11 Screen Technical Reference. For those who are familiar with this
process, aquick review isin order.

In all, the Fitrix Screen Code Generator recognizes nine different screen types.
These screen types consist of main screens, known as header and header/detail
screens. For each program, you create a single main screen. In addition to main
screens, there are secondary screens that you hook to your main screen. These sec-
ondary screens include zoom, browse, add-on header, add-on detail, extension,
view header, and view detail.

Of al the secondary screens, browse screens are hooked in automatically and zoom
screens and hooked in via the Form Painter. All other screen types, however, must
be manually hooked to your program via an extension or trigger file. In general,
you use the following steps to build and hook in secondary screens:

1. Build the screen image using either the Form Painter or atext editor to create
the form specification (*.per) file.

2. Specify the program condition that initiates the secondary screen and create
4GL logic in an extension or trigger file that evaluates for this condition.

3. When the above condition is met, place acall to the socket Manager ()
function specifying the screen name, type, and flow.

4. Add the screen and function namesto the swi t chbox_i t ens trigger in
either the default section of your trigger file or apply it to mai n. 4gl inthe
extension file.

The socket items Trigger 4-3

Fitrix Case Tools New Features 4.12

Adding the socket_items Trigger

Thesocket _i t errs trigger specifies the screen type of the screen you are hook-
ing in. For every screen identified intheswi t chbox_i t ens trigger, you should
create acorrespondingsocket _i t ens trigger. Both are placed in the default sec-
tion of atrigger file or, if more appropriate, they can be applied tomai n. 4gl inan
extension file.

Thesocket _it ens trigger cannot be used alone; it must accompany the
swi t chbox_i t ens trigger:

Syntax

Use the following syntax to add thesocket _i t ens trigger to atrigger or exten-
sionfile:

default

switchbox items
scr_name function
[scr_name function...];

socket_items
scr_type
[scr_type...]1:;

Use the following syntax if you usesocket it ens inan extension file:
start file "main.4gl"

switchbox items
scr_name function
[scr_name function...];

socket_items
scr_type
[scr_type...];

Example

Consider again the simple report program mentioned previously. If you are familiar
with the Fitrix CASE Tools demonstration programs, you may also want to start
rpt_demo 4.

4-4 Screen Hooking Logic

Fitrix Case Tools New Features 4.12

Thisisasimple report program built from the customer table, which is part of your
demonstration data. Prior to running, this report program displays a query screen

that lets you build the selection criteria for the report:

Find: [ESC] to Find, [DEL] to Cancel

Enter selection criteria into form

Customer Number: []

Company MName:

This query screen is hooked by the following extension file:

swi t chbox_i t enms
query S_query;

socket _itens
query;

start file "Makefile"
libraries
$(fg)/liblscr.a;

start file "mdlevel.4gl"
function define m _filter

msnal lint,

n smallint;
o
call the query function and get the filter clause back.
o
after block m _filter sel _filter

while true
cal | socket Manager ("query", "query", "default")

let n = fgStack_pop()

n = 0 neans was hit - nothing returned
if n=0

then

The socket items Trigger

4-5

Fitrix Case Tools New Features 4.12

let int_flag = true
call ct_int_exit()
#if we return fromct_int_exit, that neans the user wanted to continue
continue while

el se
let sel _filter = sel _filter clipped, " and ("
for m=1ton

let sel _filter = sel _filter clipped, fgStack_pop()

end for
let sel _filter = sel _filter clipped, ")"
exit while

end if

end while ;

Note that the name of the screen in this case is query. So query is both the screen
name and screen type.

Once you add thisextension fileto thebase. set fileandrunf g. make to merge
and compile the code, screen handling logic is linked into your program.

Notes

Although thesocket it ens trigger eliminates a number of unnecessary func-
tion calls, it isnot arequired trigger asistheswi t chbox_i t ens trigger. You
can continue to hook in screens using the 4.11 method. If you do decide to use the
socket it ens trigger, keep the following itemsin mind.

4-6

Inall, thesocket _itens trigger recognizes nine different item types:

zoom
query

add-on header
add-on detail
extension

view header
view detail
single_function
custom

Thesi ngl e_functi on item, lets you pass a function to the switchbox.

The custom item lets you build custom screen types and link in your own
screen handling logic.

The Form Painter also supportsthesocket i t ens trigger.

Screen Hooking Logic

Part Three

Report New
Features

Fitrix Case Tools New Features 4.12

Report Scheduling

Scheduling allows you to preset a desired runtime, and thus can be used to free sys-
tem resources during peak hours.

This section covers the following topics:
n Overview
n Implementation
n Scheduling Codein the Library

n Generated Codeinmi dl evel . 4gl

Fitrix Case Tools New Features 4.12

Report Scheduling Overview

Scheduling is atool that allows you to predetermine when report output will be
generated. The normal process for generating ar eport . out fileisasfollows:
createar eport . i f g file, generate code, compile code, and run. With schedul-

ing, you can delay program execution by specifying adesired runtime.

The scheduling process is shown in the following diagram:

Input and C

ollect .
storage Run Query A Store in
phasg report »| screen [—* ﬁﬁ't‘éfigo“ —| database
Retrieval p

reset ,

and output | Schedule > Retrieve Run
phase P report —> gggl']rpse —| criteria || report

Report scheduling is most useful when report generation would be a burden to your
system. Since some reports may be highly system-intensive, a better time for report
generation may be after peak hours. Report scheduling is the tool by which to

accomplish this.

5-2 Report Scheduling

Fitrix Case Tools New Features 4.12

Implementation

To implement the scheduling feature, simply enter the word "schedul€" in your
report.i f gfile. Youmay typeschedul e anywhereinthefile, providedit's
only placed between other sections. The following piece of code from a sample
report.if g file showshow this may be done:

attributes
A0 = today wusing "MV DD YY"
Al = constant "Custoner Listing"
A2 = pageno using "<<<<<"
A3 = custoner.custonmer_num
A4 = custoner.custoner_num
AA = itens.total _price, subt=Y
A6 = orders. order_num
A7 = orders. order_date using "MJ DD YY"
A8 = stock.description
A9 = stock. stock_num
A = stock. manu_code
AB = custoner.custonmer_num
AC = sun(itens.total _price)
AD = sun(itens.total _price)
end
——3p | schedul e
sel ect
nore = itens. order_num
nore = itens.itemnum
nane = Deno Sel ect

Three New Functions

When scheduling isimplemented, the Report Generator will create three new func-
tionsinthem dl evel . 4gl file

function ml_schedule()

The function M _schedul e hastwo primary responsibilities: it gathers and
stores selection criteria for the report, and later retrieves the stored criteria and
prepares the report.

Implementation 5-3

Fitrix Case Tools New Features 4.12

First M _schedul e gathers selection criteriaby callingthem _filter
function (discussed in next section), also located in mi dl evel . 4gl . Then
m _schedul e callsthem _put _filter functionto storethiscriteriainto
thest xfi |l tr table. At thispoint, program execution stops. This concludes
the storage phase.

When it istime to retrieve selection criteria back fromthest xfi | t r table,
m _schedul e callsthefunctionm _get filter toaccomplish thistask.
Once criteria has been retrieved, the report is ready to run and output is gener-
ated.

function ml_put_filter (job_id)

Storesthe selection criteriainto thest xf i | t r table. Thisway, selection crite-
ria can be used again when the program isrun at alater time.

function ml_get_ filter (job_id)

Retrieves selection filter information stored in st xf i | t r when thereport is
running in background mode.

Incorporating Selection Criteria

Selection criteria screens are often used for the manual input of criteria at runtime.
In reports that do not have some type of query screen, selection criteriaisfound in
m _filter,which containsthefilter criteriaprovided by ther eport . i f g file
at the time that code was generated. Any code that calls a criteria screen should be
placed within this function.

For information on using scheduling with Menus, refer to the Menus User Refer-
ence.

Scheduling Example

After generating code and compiling, you will need to store selection filter infor-

mation to st xfi | t r. Typethe following line at the UNIX prompt to accomplish
this:

fglgo /path/filename.4gi -s job_id code

5-4 Report Scheduling

Fitrix Case Tools New Features 4.12

The -s flag specifies that selection filter information will be storedinst xfiltr,
and program execution doesn’t occur at thistime. Y ou may select any job_id_code
you wish, provided that it is less than 16 charactersin length. Remember the
job_id_code, as you will need to use it again when passing the - b flag to execute
the program.

When it istime to run your report, selection filter information must be retrieved
back from st xfi | tr. Todothis, try using the UNIX echo and at commands:

echo "fglgo /path/filename.4gi -b job_id code" | at time

When the scheduled report is run at the chosen time, the - b flag is passed along
with the samejob_id code that was used during the storage phase of the report. The
result will be program execution, and your newly generated report.out file (if

you’ ve chosen this as your destination).

Preset
runtime
occurs...

and the
program is
executed.

Company Name AA Athletics

415-743-3611

111
Frances

Keyes
Company Name Sports Center ‘Hm”
Phone 408-277-7245

Implementation 5-5

Fitrix Case Tools New Features 4.12

Scheduling Code in the Library

In the report library, scheduling code gets called from flow control.

flow_control

Thefl ow_control function, in$fg/lib/report.4gs/flow. 4gl,isas
follows:

if ct.sel _filter is null

then
if not m _schedul e()
then
call m_filter()
end if
end if

If scheduling has been added to your program, the generated M _schedul e
returns a value of true. If scheduling has not been added to your program, then a
stub function (discussed next) linksinto your program and avalue of falseis
returned. Thiscausesthecall tom _fi | t er to get executed and the program runs
as it would without scheduling being implemented.

stub function

In$f g/ lib/stubs. 4gs/ m _sched. 4gl , astub function has been added for
m _schedul e

returning fal se

This is a stub function for m _schedule(). It will always return
false. It will cause nml _filter() to be called in the normal way
for those report prograns that do not use the new Generated Report
Schedul ing provided by the locally generated m _schedul e().
#

#_define_var - Define local variables

#_ret - Returning value

return false

end function

m _schedul e()

5-6 Report Scheduling

Fitrix Case Tools New Features 4.12

Generated Code in midlevel.4gl

As explained in the Three New Functions section, three functions have been added
tothem dl evel . 4gl file. Each function and itsincluded codeis listed below.

ml_schedule

function m _schedul e()

#_define_var - Define local variables

define
#_local _var - Local variables
sel _flag smallint, # (bool ean) Running in ’'select only node?
bg_flag smallint, # (bool ean) Running in the background?

job_id like stxfiltr.unique_id

#_init - Initialize
let sel _flag = fal se
let bg_flag = fal se

set_select - Set job_id if running in select only node
let job_id = get_argunent ("-s")

#_check_for_node - Not null job_id neans running in select only node
if job_idis not null
then
set_sel _flag - Set sel _flag for select only node run
let sel _flag = true
el se
#_set _background - Set job_id if running in background
let job_id = get_argunent("-b")

#_check_background - Not null job_id nmeans running in background
if job_id is not null
then
set_bg_flag - Set bg_flag for background run
let bg_flag = true
end if

end if

#_check_l oad - Load the data fromthe stxfiltr table or fromthe
input screen depending on if we're running in the background.
if bg_flag
then

get_filter - Load filter data fromstxfiltr table

Generated Code in midlevel.4gl 5-7

Fitrix Case Tools New Features 4.12

call m _get_filter(job_id)

no_error_pronpt - Set no error pronpting for background run
call err_hand_pronpt_of f()
el se
else_load - Call ni_filter() to build selection filter
call m_filter()
end if

#_check_save - Save the selection criteria to the sel _filter or
to the disk if running in select only node.
if sel_flag
then
put_filter - Save filter data in stxfiltr table
call m _put_filter(job_id)

exit_program- Exit programafter saving filter data
call exit_progran(0)
end if

#_ret - Returning val ue
return true

end function
m _schedul e()

ml_put_filter

function m _put_filter(job_id)

This function saves the selection criteria out to the stxfiltr
table for running the programat a later tine.
#

#_define_var - Define local variables
define
#_l ocal _var - Local variables
job_id like stxfiltr.unique_id,
tnpStr char(200), # Working string
filt_len smallint, # Length of selection filter (sel_filter)
n smal lint # Wor ki ng nunber

#init - Initialize
let filt_len = length(sel _filter)

#_cleanup - Delete any existing data in stxfiltr
delete fromstxfiltr where stxfiltr.unique_id = job_id

save_data - Store selection filter data into stxfiltr
for n=1to filt_len step 200

5-8 Report Scheduling

Fitrix Case Tools New Features 4.12

set_data - Gab 200 characters of filter at a tine
let tnpStr = sel _filter[n, n+199]

#_insert_data - Insert data into table
insert into stxfiltr values (job_id, n, tnpStr)
end for

end function
m_put_filter()

ml_get_filter

function m _get _filter(job_id)

This function |loads selection filter information stored in stxfiltr
when the report is run in background node.

#

#_define_var - Define |ocal variables
define
#_local _var - Local variables
job_id like stxfiltr.unique_id,
tmpStr char (200), # Working string
n snal lint # Ceneric nunber

#_init - Initialize

build_curs - Build the cursor on the filter table

let tnmpStr =
"select ",
"seq_no, ",
"sel _filter ",

"fromstxfiltr ",

"where stxfiltr.unique_id = ? ",

"order by seq_no "
prep_curs - Prepare the string for execution
prepare filt_prep fromtnpStr

#_declare_curs - Declare cursor fromthe string
decl are sel _curs cursor for filt_prep

open_curs - Qpen cursor for retrieving data fromstxfiltr
open sel _curs using job_id

read_data - Read the rows fromthe filter table
while true

#_fetch - Fetch the data

fetch next sel_curs inton, tnpStr

_notfound - No nore rows found
if sqlca.sqlcode = NOTFOUND then exit while end if

Generated Code in midlevel.4gl 5-9

Fitrix Case Tools New Features 4.12

build_filter - Build selection filter with retrieved data
let sel _filter[n,n+199] = tnpStr
end while

close_curs - dose the cursor
#_cleanup - Delete stxfiltr rows
delete fromstxfiltr where stxfiltr.unique_id = job_id

end function
m _get_filter()

5-10 Report Scheduling

Column Aliasing

Previous versions of the Fitrix Report Code Generator required you to use unique
column names in your report specification (*.ifg) files. Using the 4.12 Fitrix Report
Code Generator, unique column names are no longer necessary. If you want to use
two columns from different tables that have the same name, you can give one col-
umn aunique aiasinthereport.ifgfile

This chapter covers the following topics:
n Overview
n Setting up a Column Alias

n Changing the Column Format

Fitrix Case Tools New Features 4.12

Overview

Y ou may encounter a situation in which you want to build areport from two differ-
ent columns that have the same name but contain different data. Or you may want
to use the same column twice and on the second use assign a different "using" for-
mat. By employing column aliasing, you can do both.

Column aliasing simply lets you assign an alias to a column name. For example,
you may have two tables (call them table A and table B) that both contain a column
named quantity. In order to show this column from both tables, you must assign an
aliasto one of them.

Two tables with

columns that tableA.quantity tableB.quantity

have the same

name. @ @

One column

is aliased in tableA.quantity tableB.quantity alias qtyB
the report.ifg

file. @ @

The Report .

Code Generator rpt.quantity rpt.qtyB

builds unique

record values. Q

Both columns
are used in
the report.

0000000000000000000000
0000000000000000000000

6-2 Column Aliasing

Fitrix Case Tools New Features 4.12

Setting up a Column Alias

You can assign acolumn aliasto any columninyour report. i f g file. When
you create an alias, the alias name is used in the appropriate usg, r pt , cur s, or
curs_next record instead of the actual column name.

The alias Line

To apply an adlias to a column you must specify an aliasinther eport . i f g file.
In the attributes section of thisfile, you can follow a column definition with the
alias keyword and the alias name you want to use.

Syntax
When setting up an alias, use the following syntax:

table.column alias alias_name

Example

Suppose you have areport that shows the quantity of your stock at three different
stores. The attributes section of ther eport . i f g file may look as follows:

attributes

= today

constant "Orders"”
pageno using "<<<<<"
orders. cust oner _num usi ng " <<<<<<<<<<<"
orders. order_date

st ock. st ock_num

st ock. description
stock. unit_price
storeA quantity
storeB. quantity
storeC quantity

BHEEEISEBRRB
L L | 1 | | A VA [A T |

end

Asyou can see, there are three tables that have a quantity column. For at least two
of these tables, you must assign an dias. In this case, you might want to assign an
aliasto all three to make the resulting code easier to read. For example, you might
want the following aliases: qtyA, gtyB, and qtyC.

The resulting attributes section should look as follows:

Setting up a Column Alias 6-3

Fitrix Case Tools New Features 4.12

attributes

= t oday

constant "Orders"

pageno using "<<<<<"
orders. cust omer _num usi ng " <<<<<<<<<<<”
orders. order_date

st ock. st ock_num

st ock. description

stock. unit_price

storeA quantity alias qtyA
storeB.quantity alias qtyB
storeC. quantity alias qtyC

BEEBXIEEBRRE

end
And theresulting r pt record definitionin gl obal s. 4gl should look asfollows:

rpt record
custoner _num | i ke orders. cust oner_num
order _date |ike orders. order_date,
stock_num |i ke stock. st ock_num
description |ike stock.description,
unit_price like stock.unit_price,
gtyA like storeA quantity,
qtyB like storeB. quantity,
gtyC like storeC quantity

end record,

Notes
Keep the following issues in mind when you create a column alias.

» Alias names follow the same naming conventions as column names. For exam-
ple, alias names should not exceed 18 characters.

* You cannot create an alias for aformonly field.

» If you need to refer to the aliased column in a different part of the
report.ifgfile you should use the actual table and column name. For
example, if you want to sum an aliased column, the attribute definition should
read:

storeA quantity alias qtyA
storeB.quantity alias qtyB
storeC. quantity alias qtyC
sun(st oreA quantity)

AA
AB
AC
AD

6-4 Column Aliasing

Fitrix Case Tools New Features 4.12

Changing the Column Format

Besides showing values for columns with the same name, you can apply Column
Aliasing in another manner. Suppose you want to show the same column in sepa-
rate locations on your report. In one location you want to format the column flush
left and in the second location you want to use the default formatting. Y ou can use
column aliasing to accomplish this task.

Note

The example shown below isfrom report demonstration three. If you want to see
this scenario played out, typer pt _deno 3. Examinether eport.if g file
then run the Fitrix Report Code Generator and f g. make. Finally, run the report
thenview ther eport . out fileusingf g. pager or atext editor.

Thefollowing lines show theat t ri but es sectionof areport.ifgfile
Notice how the cust oner . cust oner _numand the or der . or der _numcol-
umns are listed twice. On thefirst listing, an alias is used to format the columns
flush left. On the second listing, no using string is applied.

attributes

today using "MV DD YY"

constant "Custoner Listing"

pageno using "<<<<<"

cust oner. cust oner _num al i as custoner_al i as usi ng " <<<<<"
cust oner . cust omer _num

orders.order_numalias order_alias using "<<<<<"
orders. order _num

cust oner. conpany upshi ft

orders. order_date using "M DI YY"

st ock. description

sun(itens.total _price)

sun(itens.total _price)

sun(itens.total _price)

st ock. manu_code

st ock. st ock_num

itens.total _price

constant "Report Deno 3"

REBET”REBEEIUBEBERESE

end

Changing the Column Format 6-5

Fitrix Case Tools New Features 4.12

When thisr eport . i f g fileisbuilt and the report is run, the resulting report
looks as follows:

Next] Prev Goto Top Bottom Right Left Scroll Quit

Report Demo 3
05/18/94 Customer Listing Page:

Company: ALL SPORTS SUPPLIES Cust No: 101

Order No: 1002

Customer No Order No Order Date Description Item No Mfct Price
101 1002 06/01/86 football 4 HSK $960.00
101 1002 06/01/86 baseball bat 3 HSK $240.00
Subtotals for Order No: 1002 $1200.00
Subtotals for Customer No: 101 $1200.00

report3.out (4%) lines 1 to 29 of 594 columns 1 to 77 of 80

Notice how the Customer No and Order No columns are flush left in some places
(using the alias format) and flush right in other places (using the default format).

6-6 Column Aliasing

Concurrency

Concurrency checks stored data for integrity before processing that datainto a
report. With concurrency, report program users can be sure that the data selected
for processing the report is as current and accurate as possible.

This section covers the following topics:
n Overview
n Implementing Concurrency
n Handling Concurrency Errors

n Code Examples

Fitrix Case Tools New Features 4.12

Overview

If you work with large report programs (ones that take several hours to complete),
you know how data can change while the report is running. For example, during
report processing, a user might delete data that appears on the report. Concurrency
addresses this problem. With concurrency, you gain the ability to check each
header row of adocument before the data is printed. If the row isvalid, the datais
printed and the program processes the next row. If thereis an error, the program
sets aflag that you can handle programmatically.

In order to perform each check, concurrency builds and sorts atemporary table
prior to processing the report. Thistemporary tableis base on the key column of the
header table. The key column uniquely identifies each row of the header table.
Next, using rowid, concurrency sequentially locks each row in the header table and
compares the current value with the temporary table value. Consider the following
graphic showing asimple case:

Header Table Temporary Table
Containing Report Values Containing Key Values
:101:Ludwig:Paul:94086: 6% :101:
:102:Carole:Sadler: : :102:
102:Carole:Sadler:94117 52 102
1103:Philip:Currie:94303: 4?2 1103:
:104:Anthony:Higgins:94026: ﬁ% :104:
:105:Raymond:Vector:94022: 4%2 :105:
:106:George:Watson:94063: ﬁ% :106:
:107:Charles:Ream:94304: %> :107:
@

7-2 Concurrency

Fitrix Case Tools New Features 4.12

Although a key column value is required, you can also instruct concurrency to
check additional column values. For example, posting programs often evaluate an
ok _to_post column before posting a document. The following graphic expands
on the previous one by showing a concurrency report that evaluates both key and
non-key column values:

Customer Table Temporary Table
Containing Report Values Containing Key and Non-
Key Values
:101:Ludwig:Paul:94086:Y: % :101:Y:
:102:Carole:Sadler:94117:Y: @ :102:Y:
:103:Philip:Currie:94303:Y: % :103:Y:
:104:Anthony:Higgins:94026:Y: % :104:Y:
:105:Raymond:Vector:94022:Y: % :105:Y:
:106:George:Watson:94063:Y: é«> :106:Y:
:107:Charles:Ream:94304:Y: @ :107:Y:

During concurrency’ s locking and comparison logic, three errors can occur:

1. Thedocument may be locked, meaning someoneis altering the document at the
time of processing.

2. The document may be missing, meaning it was deleted.

3. The document may contain avalue that has changed.

Overview 7-3

Fitrix Case Tools New Features 4.12

Consider the same example again. This time, however, notice how the ok_to_post
non-key value for Customer 102 has changed.

Customer Table Temporary Table
Containing Report Values Containing Key and Non-
Key Values
:101:Ludwig:Paul:94086:Y: 52 :101:Y:
:102:Carole:Sadler:94117:N: 52 :102:Y:
:103:Philip:Currie:94303:Y: 52 :103:Y:

When a concurrency error occurs, aflag, known asthe bypassflag, isset. Itisup to
you to determine how you want to handle the error. For example, if the bypass flag
is set to indicate a value has changed, you may want to print a note on the report.

Within the concurrency code, there are different points with which you can merge
your own error handling logic (refer to "Handling Concurrency Errors' on page 7-
10 for more information).

The following steps summarize how concurrency logic works:
1. Select the key column(s) of the report into atemporary table.
2. Sort the rowsin the temporary table using the order-by column.
3. Userowid to lock the first row of the header table.
If the row isin transaction or missing, set the bypass flag.

4. Check for dataintegrity between the header table and the temporary table using
both key and non-key columns (if specified).

If the data does not match, set the bypass flag.
5. Process the detail lines for the header row.

6. Repeat the process for the next row in the header table.

7-4 Concurrency

Fitrix Case Tools New Features 4.12

Implementing Concurrency

Applying concurrency to areport program is a two-part process:
1. Setupthereport.ifgfile

Tosetupthereport.if g file youmust ater thesel ect sectionand add a
new section called concur rency.

2. Create custom code to handle concurrency errors.

Once the report program detects a concurrency error, it must know how to pro-
cess the error. Because each user handles errors differently, you must create
and merge your own custom logic to process them.

Setting up the report.ifg File

Ther eport . if g filecontainsall of the instructions necessary to build a report.
Because concurrency is anew feature, you must add a few more lines of instruc-
tionstother eport . i f g file. Theselinesinstruct the Fitrix Report Code Genera-
tor on how to build the 4GL code necessary to employ concurrency. As mentioned
above, toset upther eport . i f g fileyou must add two new lines to the select
section and create a new concurrency section. If you are not familiar with
report.ifgfiles, consult your Report Code Generator Technical Reference.

Select

If you have experience creatingr eport . i f g files, you already are aware of the
sel ect section. This section contains information about how to build the report
such astable names, joins, and filters. A standard sel ect section uses the follow-
ing syntax:

sel ect
nore = tabl e. col um

[more = tabl e. col um]

table = table_nane [, table_name, ...]
join = table.colum = table.colum [...]

filter = sel _criteria

order = table.colum [, table.colum, ...]

end

Implementing Concurrency 7-5

Fitrix Case Tools New Features 4.12

Eachlineinthesel ect section providesadifferent instruction to the Report Code
Generator:

select: Designatesthissectioninther eport . i f g file. Thesel ect line must
always appear first.

more: Specifiesacolumn that isrequired for processing but does not appear on the
report. Each column must have its own nor e line. For example, if your report con-
tains three columns that are required for processing but do not appear on the report,
you must create three separate nor e lines.

A common exampleistheok _t o_post column again. This column must be ref-
erenced to check for a posting flag, but it does not need to appear on the final
report.

tables: Specifies the tables used in the report. Unlike the nor e ling, thet abl es
line does not have to be unique. Y ou can reference multiple tables on the same line.

join: Specifies the columns that join the tables on the report.
order: Specifies the order that columns are fetched and processed.
end: Designates the conclusion of thesel ect section.

Hereisatypical sel ect section for asimple report:

sel ect

nmore = items.itemnum
tables = custoner, orders, itens, stock
join = stock.nnanu_code = itens. manu_code and stock.stock_num = itemns. stoc
k_num and or ders. cust omer_num = cust oner. cust omer _num and it ens. order _num = orde
rs.order_num

filter = custoner.custoner_num> 104

or der = cust oner. cust omer _num orders. order_numitens.itemnum
end

When you implement concurrency instructions, the sel ect section changes a bit
and several lines have a dightly different meaning. Perhaps the biggest change
involves separating out header table information from detail table information.
With concurrency, only header table information goesin thesel ect section.
Detail tableinformation is contained inthe new concur r ency section (described
later).

A select section that contains concurrency instructions uses the following syntax:

sel ect

7-6 Concurrency

Fitrix Case Tools New Features 4.12

nore = table.colum

[nore = table. col um]

table = table_nanme [, table_nane, ...]

join = table.colum = table.colum [...]
filter = sel _criteria

order = table.colum [, table.colum, ...]
notfound = table.colum [, table.colum, ...]

[save = table.colum [, table.colum, ...]]

end

Whilethesel ect , nor e, and end lines mean the same, thet abl e, j oi n,
filter,andorder linestakeon adightly new meaning. In addition, two new
lines (not f ound and save) are added:

tables: Specifies the header table and reference tables used by the header table.
Y ou now specify detail tablesintheconcur r ency section.

join: Specifies joins between the header table and the tables referenced by the
header table. Again, you now specify joinsinvolving detail tablesinthe concur -
rency section.

order: Specifies the order header columns are fetched and processed.

notfound: Specifies the key column. In order to apply concurrency you must
specify akey column that uniquely identifies each row in the header table. The
not f ound line holds this value.

save: Specifies non-key columns that are selected to the temporary table. Unlike
thenot f ound ling, thesave lineisoptional.

The following code showsasel ect section modified to accommodate concur-
rency:

sel ect
nor e = itens.itemnum
tables = customer
filter = cust omer. cust oner _num > 104
or der = cust oner. cust ormer _num
not found = cust oner. cust omer _num
save = cust oner. conpany
end

In the case of this example, thej oi n lineis not necessary because there are no ref-
erence tables used by the header table (cust oner). The only joinsthat exist are
between detail tables, and these joins are specified inthe concur r ency section.
Also look at thenot f ound and save lines. These lines contain the header table
values that are selected into the temporary table before the report is processed.

Implementing Concurrency 7-7

Fitrix Case Tools New Features 4.12

Concurrency

Unlikethesel ect section, which you may have been familiar with previously,
theconcur r ency section isanew section as of the 4.12 Fitrix Report Code Gen-
erator. This section passes instructions to the Generator concerning the detail table.
A standard concur r ency section uses the following syntax:

concurrency

cur sor detail _curs

tabl es = tabl e_nane

filter = table.colum = ?

filler = table.colum

join = table.colum = table.colum [...]
or der = table.colum [, table.colum, ...]

end

concurrency: Designates this sectioninyour r eport . i f g file. Theconcur -
rency line must appear first.

cursor: Names the detail cursor. For now, the detail cursor must always be set to
detai |l _curs. Thisisarequired line.

tables: Specifies both the detail table and the reference tables that are used by the
detail table.

filter: Specifieswhich columnsto fetch from the detail table(s). The question mark
(?) is used because this value changes as key header values change. The question
mark represents a dynamic and changing value.

filler: Specifies the value of the header column passed to the question mark (?) in
thefilter line

join: Specifies the joins between the detail tables and the tables referenced by the
detail tables.

order: Specifies the order in which detail rows are fetched and processed.

Building on the previous example, theconcur r ency section takes on the follow-
ing values:

concurrency
cur sor
tabl es
filter
filler

detail _curs

orders, items, stock
orders. cust oner _num = ?
cust oner . cust omer _num

7-8 Concurrency

Fitrix Case Tools New Features 4.12

join = stock.manu_code = i tens. manu_code and stock. stock_num = itens. st ock_num
and itens. order_num = orders. order_num

or der = orders.order_num itens.itemnum
end

Y ou should note, however, that the 4.12 Fitrix Report Code Generator can read a
syntax for thefilter and join lines. Instead of building the join clause entirely on one
line, you can now break it up across several lines, for example consider the above
concurrency section again:

concurrency

cursor detail _curs

tables = orders, itens, stock
filter = orders. custoner_num= ?
filler = customer. custoner_num
join = stock.nmanu_code = itens. manu_code and
join = stock.stock_num = itens. st ock_num and
join = itens.order_num = orders.order_num
or der = orders.order_num itens.itemnum
end

Notice how two j oi n lines have been added to make the join statement easier to
read. Also notice how the "and" clauses remain between each join. In reality, you
are not changing any of the information within the join line, you are simply format-
ting thisinformation in amore readable manner. This same syntax appliesto along
filter linesaswell.

Perhaps the most confusing linesin theconcur r ency sectionarethefil t er
andfill er lines. Theselineswork together. Thefi | t er line specifiesthe
many side of the one-to-many relationship and thef i | | er line specifiesthe one
side. The question mark acts as a dynamic value; it takes on the value of the each
header row, which is specified inthef i | | er line.

When you finish adding concurrency instructionsto your r eport . i f g file, you
must determine how to handle concurrency errors and the bypass flag. The next
section covers handling concurrency errors and provides a few error-handling
examples.

Implementing Concurrency 7-9

Fitrix Case Tools New Features 4.12

Handling Concurrency Errors

Properly setting up your r epor t . i f g fileisonly part of employing concurrency.
Y ou still need to create custom logic to handle concurrency errors. A concurrency
error is defined as any condition that sets the bypass flag. Typically, there are three
such conditions:

1

2.
3.

The document may be locked, meaning someone is altering the document at the
time of processing.

The document may be missing, meaning it was deleted.

The document may contain a value that has changed.

Y ou can also create your own custom logic to handle additional conditions.

The next three examples illustrate some common ways to handle each type of con-
currency error mentioned above.

Example One: Displaying a Warning Message

During the concurrency locking logic, a condition may arise where a selected docu-
ment is already "in transaction” (i.e., the document is locked because a system user
isupdating it). One way to handle this condition is to display a warning message to
the screen. Besides the warning message, however, you also have to reinitialize the

r pt record values so that the final report does not show data from this document.

The following extension file shows how to call awarning message and reset the
r pt record values. Thisextension fileisbuilt for r pt _deno 5.

Note

Thewar nbox function used in this example is part of thepr og_ct | library,
which comes with the Enhancement Toolkit. Thislibrary contains compiled C
functions. If you are developing in an INFORMIX-RDS environment, you need
to run mkr unner s. This script creates a custom pseudo-code runner (consult
your Enhancement Toolkit documentation).

7-10 Concurrency

Fitrix Case Tools New Features 4.12

start file "Makefile"

libraries
$fg/lib/prog_ctl.a

start file "globals. 4gl

define
tnpStr char (40)

start file "l ow evel . 4gl

after block b_g_custoner_num doc_| ocked_error
let tnmpStr="ALERT: ",
curs. cust oner _num usi ng " ###",
" I N TRANSACTI ON'
call warnput (tnpStr)
cal | warnbox()

after block on_detail on_bypass
let rpt.order_date = null
let rpt.description = null
let rpt.order_num= null
l et rpt.manu_code = null
let rpt.itemnum= null
let rpt.stock_num = null
let rpt.total _price = null

after block b_g_custoner_numinit_bypass
let tnpStr = null

Thefirst block statement in this extension file simply addsthe pr og_ct | library
to the Makef i | e. The second block statement defines avariable. The third state-
ment builds the message text and callsthe war nbox () andwar nput () func-
tions. The fourth block statement sets the detail table valuesin ther pt record to
nul | and the fifth block statement sets the temporary message variableto nul | .

Handling Concurrency Errors 7-11

Fitrix Case Tools New Features 4.12

When you use thislogic withr pt _denp 5, amessage similar to the following
one appears when adocument is in transaction:

ALERT: 104 IN TRANSACTION

Processing Element

4 of 18

Line number: ¢

Output to: report5.out

In this case, the document with cust omer _num = 104 is being updated.
Besides showing this message, the detail lines associated with 104 are excluded
from the report:

Next Prev Goto Top Bottom Right Left Bcroll] Quit

Report Demo 5

05727794 Customer Listing Page:

Company: Play Ball! Cust No: 104

Customer No Order No Order Date Description TItem No Mfct Price
104

Subtotals for Customer No:104

reportb.out (18%) lines 199 to 218 of 1188 columns 1 to 77 of 80

7-12 Concurrency

Fitrix Case Tools New Features 4.12

Example Two: Writing A Message to the Report

Instead of the warning box, some report users would rather see a note on the report
itself when a concurrency error occurs. In this example, if adocument has been
deleted or is currently being updated, a note appears on the report.

Add a formonly Field

To create aline for the note, aformonly field isadded to ther eport . i f g file.
Thisfield is placed on arow by itself with adynamic print symbol at the end of the
line. The following code showstheon every r owsection of ther eport.ifg
file. The E1 tag signifies the formonly field. The [* symbolsinstruct the report to
only print this line when avalue exists for it.

on every row

{

[B3 |l =73 [A7 [A8 -I'I\n. L [AA [-k
[E1 <«— Formonly Field Dynamic Print [+

}

The formonly field is defined as a character field. When an error occurs, an error
message will be written to the formonly field. The following code shows the
attri but es section of ther eport . i f g file. Notice attribute E1. This attribute
defines the formonly field.

attributes

= today using "MV DD YY"

constant "CQustoner Listing"

pageno using "<<<<<"

cust oner. cust omer _num usi ng " <<<<<"
cust oner . cust orrer _num

orders. order _num

cust oner . conpany

orders. order_date using "M DI YY"
st ock. description

sun(itens.total _price)
sun(itens.total _price)

st ock. manu_code

st ock. st ock_num

itens.total _price

constant "Report Deno 5" -
formonly. error type char(4Q—| Formonly Field

FREB>EEEZITITBEBES
L L 1 1 ¥ ¥ L ¥ | VB | A VR |

Handling Concurrency Errors 7-13

Fitrix Case Tools New Features 4.12

Create an Extension File

Onceyou have altered ther epor t . i f g file, you must create an extension (*.ext)
file. The extension file contains custom logic to handle the error and write the mes-
sage to the formonly field. The following code shows an example extension file
that can be used with report demonstration 5.

start file "globals.4gl"

define
tmpStr char (40)

start file "low evel.4gl"

bef ore bl ock b_g_custoner_numi nit_bypass
let rpt.error = null;

after block b_g_custoner_num doc_| ocked_error
let tnpStr="ALERT: ", curs.custoner_numusing "###", " | N TRANSACTI O\
let rpt.error = tnpStr

after block b_g_custoner_num doc_del eted_error
let tnpStr="ALERT: ", curs.custonmer_numusing "###", " HAS BEEN DELETED'
let rpt.error = tnpStr

’

after block on_detail on_bypass

let rpt.order_date = null
let rpt.description = null
let rpt.order_num= null

let rpt.nmanu_code = null

let rpt.itemnum= null

let rpt.stock_num= null

let rpt.total _price = null

’

after block b_g_custoner_numinit_bypass
let tnpStr = null

7-14 Concurrency

Fitrix Case Tools New Features 4.12

Generate and Compile

After you alter ther eport . i f g fileand create the above extension file, you must
generate (f g. r epor t) and compile (f g. make) the report program. When the
program runs and encounters a concurrency error, the following message appears:

NEZ Prev Goto Top Bottom Right Left Scroll Quit

Report Demo 5

05727794 Customer Listing Page:

Company: Play Ball! Cust No: 104

Customer No Order No Order Date Description Item No Mfct Price
104

ALERT: 104 IN TRANSACTION

Subtotals for Customer No:104

reportb.out (25%) lines 199 to 218 of 870 columns 1 to 77 of 80

In this case, the message indicates that document 104 is in transaction.

Handling Concurrency Errors 7-15

Fitrix Case Tools New Features 4.12

Code Examples

Thefollowing codeistaken fromthemi dl evel . 4gl andl ow evel . 4gl files
in report demonstration five. Callout boxes have been added to show you good
locations to merge your own custom logic and the purpose of different functions

throughout the code.

midlevel.4gl

function m _join()

#

#_define_var - Define local variables

#_err - Trap fatal errors

whenever error call error_handl er

#_sel _join - Set the join criteria
let sel _join =
"o1=1" <

<«

end function
m _join()

Thisline setsthe join criteria. In
this case, no specific join has been
defined, so the default issimply "
1=1".

function ml _filter()

#

#_define_var - Define local variableq
sel _filter - Set the filter criteri
let sel _filter =

"=l 4

end function
#m _filter()

Thisline setsthefilter criteria In
this case, no specific filter has been
defined, so the default issimply "
1=1".

function m _order()

#

#_define_var - Define local variables

7-16 Concurrency

Fitrix Case Tools New Features 4.12

#_sel _order - Set the order criteria

let sel _order = - i
customer_nunt < Thisline sets the specifies the order

in which header table rows are pro-

end function cessed. In this case,

nm _order()

cust oner _numis used.

function m _getcount()

#_define_var - Define local variables

define
#_local _var - Local variables
syn_no snal lint, # Synonym nunber
n snmallint, # Synonym count er
sel _stnt char (4096) # Sel
. o . o This select statement builds the
create_tenp - Oreate the tenp tabl g
e ™ temporary table. The columns are
customer. rowi d h_row, taken from the or der , not -
custoner . conpany, f ound, and save linesin the
cust oner . cust oner _num report .ifdqfile
from p ' g i
cust oner

where customer.rowid = 0
into tenp curs_tenp with no | og

#_insert_tenp - Select data into tenp table
let sel _stnt =

"insert into curs_tenp ", <4——— Thisinsert statement populates the
select °, o temporary table with data from the
custoner.row d, ",
"cust oner. conpany, ", aCtuaI header table
"cust orrer . cust oner _num ",
"from",
"custoner "

#_chk_translation - logic for translated fields
if is_translated is not null
then
for syn_.no =1 to numtrans - 1
#_bui l d_synon - build synonyns
let sel _stnt =
sel _stnt clipped, ", stxlangr t", syn_no using "<<"
end for
wite_last - wite |last synonym
let sel _stm =
sel _stnt clipped, ", stxlangr t", numtrans using "<<"
end if

_cont _getcount - Continue building getcount select

Code Examples 7-17

Fitrix Case Tools New Features 4.12

let sel _stm = sel_stnt clipped, " ",
"where ",
"(", sel_join clipped, ") and ",
"(", sel_filter clipped, ")"

#_set_ct_sel _stnmt - Set the ct.sel_stnt variable for
di splay during error handling
let ct.sel_stm = sel_stnt clipped

#_count _cursor - Prepare and execute the cursor

#_prep_curs - Prepare the string for execution
prepare get_count fromsel _stnt

execute_curs - Execute the string
execut e get_count

#_set_row count - Set nunber of row to process
let ct.numrows = sqlca.sqlerrd[3]

end function
m _get count ()

function m _define_cur()

#

#_define_var - Define local variables

define
#_l ocal _var - Local variables
syn_no snal lint, # synonym count er
n smallint, # synonym count er
sel _stnt char (4096) # Sel ection statenent

fetch_tenp - Fetch data fromthe tenp table

let sel_stnt = | L i

"select ", Thislinebuildsther pt _cur sor
“h_row ", to fetch data from the temporary
"conpany, ",
"cust oner_num", table.

"from",

"curs_tenp"

#_chk_translation - logic for translated fields

if is_translated is not null

then

for syn_no =1 to numtrans - 1
build_synon - build synonyns
let sel _stnt =
sel _stmt clipped,
end for
wite_last - wite |ast synonym

, stxlangr t", syn_no using "<<"

7-18 Concurrency

Fitrix Case Tools New Features 4.12

let sel _stm =

sel _stnt clipped, ", stxlangr t", numtrans using "<<"
end if

#_include_order - Include any valid ¢ If anorder by column has been
if sel_order is not null <— ecified. itis lied here

then P ! ap)

let sel _stm = sel _stnm clipped,

" order by ", sel_order clipped

end if

#_set_ct_sel _stm - Set the ct.sel_stnt variable for
di splay during error handling
let ct.sel_stnt = sel_stnt clipped

#_rpt_cursor - Prepare and execute the cursor

prep_curs - Prepare the string for execution
prepare get_curs fromsel _stnt

_declare_curs - Declare cursor fromthe string
decl are rpt_cursor cursor with hold for get_curs

read_data - Read the data
open rpt_cursor

end function
m _define_cur()

function ni_fetch()

#

#_define_var - Define local variables
fetch_cursor Flow control calsthe
fetch rpt_cursor < m _fetch() functionto get next
T ien 1t row from the temp. table. These
curs_next. h_row, rows are put into thecur s_next
curs_next . conpany, record.
curs_next . cust oner _num

end function
m _fetch()

Code Examples 7-19

Fitrix Case Tools New Features 4.12

lowlevel.4gl

gl obal s "gl obal s. 4gl "

#_local _static - Local (static) variable definition

define

#_msc_static - Msc static variabley Sgyesthe columnsto check for

l'ine_display smallint, # bool

sv_old record 4 4 oo Changed values. These are the col-
#_sv_ol d_col umms - col ums used f umnsfrom the not f ound and
cust omer_num char (18), save linesin the *.ifg file.
conpany char (18)

end record,

l'ine_no_pos snallint, # position to print count at

lineStrDi s char(60) # string used in printing count

function before_group(group_key)

#

#_define_var - Define local variables

define
#_l ocal _var - Local variables
group_key char (20) # group identification

#_err - Trap fatal errors
whenever error call error_handl er

first_row - Check for first row

if group_key = "first_row

then
call _first_row- Call function for processing
call b_g_ first_row()

end if

end function
bef ore_group()

function b_g_first_row()

#

#_define_var - Define local variables

define
#_l ocal _var - Local variables
sel _stnt char (4096) # Sel ection statement

#_err - Trap fatal errors
whenever error call error_handl er

7-20 Concurrency

Fitrix Case Tools New Features 4.12

#_b_first_row - Before first row processing
#_after_first_row - After first row processing
#_i ni t _messages

#_line_nunber - String for displaying |ine nunber
let lineStrDs = fg_nessage("standard", "concurr”, 1)

set_line_display - True if ok to display |ine count

if downshift(ct.destin) != "screen" and ct.quiet =1
then

let line display = true <4—— Whenline_displayissetto
el se e

let line display = fal se true, recor_d number |s_d|splayed to
end if screen duri Nng processing.
display the "line nunber" |ine, cent

nunber is displayed with up to eight characters, but this will
center based on the assunption of two characters.
#_chk_l i ne_di spl ay
if line_display
then
76 is window width. "3" is "space & line_no". ".5" is
fudge that starts it in the right spot regardless if
the result is odd or even.
#_set_line_no_pos
let line_no_pos =
(76 /1 2) - ((length(lineStrDis) +3) / 2) +.5
display_nssg - Display |ine nunber nessage
display lineStrDis at 14, |ine_no_pos

now set line_no_pos to the actual print position

of the line nunber.

#_set_line_no_pos

let line_no_pos = line_no_pos + length(lineStrDs) + 1
end if

4 build Build th _ This statement builds the
- t
—oul fmaincurs - B € M eursor | peader cursor from the header
let sel _stm = <
"select ", table.

"cust orer . cust omer _num ",
"cust omer . conpany ",

"from",
"cust omer ", Locks header rows report is pro-

"where ", e .
"oustomer.rowid = 2 . cessing so valuesin both header and

"for update” <4—— | detail linesdoes not change during
processing.

_prep_main_curs - Prepare the main d
prepare s_main_curs fromsel _stnt

Code Examples 7-21

Fitrix Case Tools New Features 4.12

#_declare_main_curs - Declare the main cursor
declare mai n_curs cursor for s_main_curs

#_build_detail _curs - Build the detail cursor
let sel _stm = <

"sel ect ", After header row islocked, detail
"orders. order_date, ", cursor is built.
"stock. description, ",
"orders.order_num ",

"st ock. manu_code, ",
"itens.itemnum ",
"stock. stock_num ",
"itenms.total _price ",
"from",
"orders, itens, stock ",
"where ",
"(orders. custonmer_num = ?) and (stock.nmanu_code
"= items. manu_code and stock. stock_num = itens.stock_num",
"and itens. order_num = orders. order_num ",
"order by ",
"orders.order_num itens.item nunt

prep_detail _curs - Prepare the detail cursor
prepare s_detail_curs fromsel _stm

#_decl are_detail _curs - Declare the detail cursor
decl are detail _curs cursor for s_detail _curs

prepare_others - Build & prepare other statenents

end function
b_g_first_row()

For this report, this function isthe

function b_g_custoner_num() ¢——

#

lowest level before group.

#_define_var - Define local variables

#_err - Trap fatal errors
whenever error call error_handl er

#_init_bypass Initialize bypass flag ¢&—— The bypaSSﬂag isini-
et rpt_. bypass_doc = fal se tialized to false. This

flag isevaluated before

#_check_line_nunber - Display |ine nunber if true proc ng detail rows.
if line_display
then
#_clear_line_nunber - dear line nunber displd
display "0 " at 14, line_no_pos
end if

7-22 Concurrency

Fitrix Case Tools New Features 4.12

_save_custoner_num - save origi nal
l et sv_ol d. cust omer_num = curs. cust oner _|

#_save_conpany - save original data for conpan
| et sv_ol d.conpany = curs. conpany

#_| ock_header = retrieve header infor and lock th

begin work and fetch the header.
begi n wor k

#_open_mai n_curs - Qpen the main cursor
open nai n_curs using curs. h_row

#_error_continue - Continue if error on fetch
whenever error continue

data for custgeme—oum

These lines save the
origina datato temp.
table for comparison.

This | ocks the header row

#_fetch - Fetch next row frommain_curs
fetch main_curs into «
#_fetch_colums - Colums cursor fetched i
curs. cust oner _num
curs. conpany

#_error_handl er - Reset after fetch to handl er
whenever error call error_handl er

Fetches original datafrom
header table.

_check_for_errors - Check for retrie
case
#_doc_| ocked
when sql ca. sgl code < 0 €¢———
#_doc_| ocked_do - Row is |ocked
let rpt.bypass_doc = true
et rpt.custoner_num = sv_ol d. cust ormer_nu

Checksto seeif document is
locked. If it islocked, the bypass
flagis set to true.

l et rpt.conpany = sv_ol d. conpany
#_doc_| ocked_error - Error handling ¢——]

#_doc_| ocked_ret - Return,
return

can’t do anythi

#_doc_del et ed

when sql ca. sql code = notfound ¢——
or curs.custonmer_num!= sv_ol d. cust oner_num

#_doc_del eted_do - Row has been del et ed
l et rpt.bypass_doc = true
l et rpt.custoner_num = sv_ol d. cust oner _num

This block iswhere you
insert custom error han-
dling logic for locked doc-
ument errors.

Checksto seeif docu-
ment is still current.

l et rpt.conpany = sv_ol d. conpany

#_doc_del eted_error - Error handling

#_doc_del eted_ret - Return,
return

can't do anyt

This block iswhere you
insert custom error han-
dling logic for in case doc-
ument is missing.

7-23

Code Examples

Fitrix Case Tools New Features 4.12

other_when - Tag for additional

when statenents

end case

T~

b_customer_num - Before group processing

_conpany - Before group processing for conpar|
let rpt.conpany = curs.conpany

#_custoner _num - Before group processing for g
l et rpt.custoner_num = curs.custoner_num

a_custonmer_num - Post before group processin

end function

This block iswhere you
insert custom logic to eval-
uate other error conditions.
For example, if youwant to
evaluate a posting flag or
some other table value.

b_g_cust onmer _nun()

function on_detail () <«

#

This function fetches each
detail row from the detail
table.

Checks bypass flag
before processing.

#_define_var - Define local variables
define
#_l ocal _var - Local variables
det ai | Row snal | i nt # Detail line count
#_init - Initialize
let detail Row = 0
check_bypass_doc - |Is bypass_doc set to true
if rpt.bypass_doc «¢
then
#_on_bypass - Do this on bypass
exit_bypass - Exit because we are bypassing doc
return
end if
open_detail _curs - Open the detail cursor
open detail _curs using
curs. cust omer _num
initial _fetch - Do the initial fetch
fetch detail _curs into
curs. order_date,
curs. description,
curs. order_num
curs. manu_code,
curs.itemnum
curs. stock_num
curs.total _price
check_no_detail - Are there any detail rows
7-24 Concurrency

Fitrix Case Tools New Features 4.12

i f sql ca.sqgl code = notfound
then
on_no_detail -
#_exit_no_detail -
return

end if

Do this for no detail
Exit because there is no

#_process_detail - Process the detail

while true

#_i ncrement _count - Increnent the detail
l et detail Row = detail Row + 1

detail

row count

#_check_display - Display row count if true .
if line display < Process and display
then each row.

display_row - Display the row count
di spl ay detail Row usi ng "<<<<<<<<"
at 14, line_no_pos
end if

#_process_row - Do row processi ng
call on_every_row()

fetch_detail Fetch nore detail
fetch detail _curs into

curs. order_date,

curs. description,

curs. order_num

curs. manu_code,

curs.itemnum

curs. stock_num

curs.total _price

rows

#_check_no_nore_rows - Do if there are no nore row

if sqgl ca.sql code = notfound

then
#_on_no_nore_rows -
exit_no_nmore_rows - Exit.
exit while

end if

Do this for no nore

#_call_m _output - Call
call ni_output ()

for each row except

end while

rows

No nore rows

| ast

end function
on_detail ()

o
<«

function on_every_row()

This function does all of
the assignments to the rpt
record for the detail rows.

Code Examples 7-25

Fitrix Case Tools New Features 4.12

This function prepares the report record fromthe
cursor record and other data.

#

#_define_var - Define local variables

#_err - Trap fatal errors
whenever error call error_handl er

#_before_every row - Before on every row assignnents

#_itemnum- On every row processing for itemnum
let rpt.itemnum= curs.itemnum

#_order_date - On every row processing for order_date
let rpt.order_date = curs.order_date

#_order_num- On every row processing for order_num
let rpt.order_num= curs. order_num

description - On every row processing for description
let rpt.description = curs.description

#_total _price - On every row processing for total _price
let rpt.total _price = curs.total _price

#_stock_num- On every row processing for stock_num
let rpt.stock_num = curs. stock_num

#_manu_code - On every row processing for nmanu_code
l et rpt.manu_code = curs. manu_code

#_after_every_row - After on every row assignnents

end function
on_every_row()

function a_g_custoner_nun()

Does after-group process-

#

ey, 1NQ TOr group by column.

#_define_var - Define local variables

#_err - Trap fatal errors
whenever error call error_handl er

b_custonmer_num - After group processing for

#_customer_num - After group processing for custonmer_num
l et rpt.custoner_num = curs. custoner_num

7-26 Concurrency

Fitrix Case Tools New Features 4.12

_a_customer_num - After group processing for

wrap_up_work - Commit or rollback work
call wap_up_work()

end function
a_g_cust onmer _numn()

function after_group(group_key)

#

#_define_var - Define local variables
define
#_local _var - Local variables

group_key char (20) # group identification
#_last_row - Check for |ast row
if group_key = "last_row
then

#_call _last_row - Call function for processing

call a_g_last_row()
end if

end function
after_group()

function a_g_last_row()
#
#_define_var - Define local variables

#_err - Trap fatal errors
whenever error call error_handl er

b last_row - Before last row processing
a_last_row - After last row processing

end function
a_g_last_row)

Final after group logic.

function wap_up_work() <«

Does a commit or rollback

Commit or rollback the work for the docunent.

#

#_define_var - Define local variables

work depending on bypass
flag.

Code Examples 7-27

Fitrix Case Tools New Features 4.12

before_work - Before commt/rollback processing

check_bypass_doc - Rol | back work if true
if rpt.bypass_doc
then
#_do_rol | back - Rol | back work
rol | back work
el se
#_do_commi t
conm t wor k
end if

after_work - After commt/rollback processing

end function
wrap_up_wor k()

7-28 Concurrency

Improvements and
Notes

Besides the features already mentioned, there are a few improvements and other
notes you should be aware of. In this chapter, you can find information on a new
access log file, you can see how to change where errlog files are created, and you
can learn the new method for hiding ring menu options. In addition, a new flag has
been added to the Fitrix Screen Code Generator. This flag prevents the Generator
from creating aMakef i | e, which can be useful when you are building a custom
library containing zoom screens.

This chapter covers the following topics:

n

n

n

Log Files

Generator Access Variables
Set Explain Support

Hiding Ring Menu Options

Building a Library Zoom Screen

Fitrix Case Tools New Features 4.12

Log Files

With the 4.12 Fitrix CASE Tooals, you can create a new access log file and change
the default behavior of the errlog file. These abilities were brought about by the
introduction of three new library filesin st andar d. 4gs:

* logStart. 4gl
e setAcc. 4ql
e setErr. 4gl

Thel ogSt art . 4gl filecontainsanew function calledl ogSt art () . Thisnew
function has replaced the traditional call tost artl og("errl og") in

mai n. 4gl . Thel ogSt art () function accepts two arguments. The first speci-
fies an environment variable pointing to the access log file. The second argument
specifies an environment variable pointing to theer r | og file.

When an argument is passed to the | ogSt ar t () function, program flow sends
that argument through | ogSt art . 4gl and then to the appropriate set *. 4gl
file.

Theset Acc. 4gl andset Err. 4gl fileseach contain asingle function that
handles access log and errlog creation. These functions were set apart in their own
file so you can modify and move them to a custom library more easily.

Creating an Access Log File

An access log file stores the time, name, and user login each time a program isrun.
For exampl e the following lines show you sample output for an access log file cre-
ated by screen demo five:

Date: 06/ 02/ 94 Time: 12:52:49
Program I D: deno. screen5 Login: brianh
Program Started

Y ou can use one of three methods to create an access log file:
1. Youcan passthe-accessl| og flag on the command line. For example:

fglgo screen5.4gi -accesslog ./logfile

A-2 Improvements and Notes

Fitrix Case Tools New Features 4.12

Thisexample createsan accesslogfilecalled| ogfi | e inthescr een5. 4gs
program directory.

Y ou can pass an environment variable to thel ogSt art () function. The vari-
able you pass must point to a specific file in the filesystem.

For example, you can create the following environment variable:
progAcs=$fg/logfile ; export progAcs

Then merge an extension file to replace thel ogSt art () function:

replace block main start_error_|og
call logStart("progAcs", "")

You can set accessl og, aglobal environment variable, to point to a specific
filein the filesystem:

accessl og=%$fg/l ogfile ; export accesslog

The command line flag takes precedence over the other two methods and the exten-
sion file method takes precedence over the global variable method.

Relocating the errlog File

Along with the ability to create an access log file, you can change where the pro-
gram errlog fileis created. By default, an errlog fileis created in the local program
directory. This default behavior hasn’'t changed but now you can override this
behavior and create an errlog file anywhere on the filesystem. Like the access log
file, there are three ways to create an errlog file:

1. Youcanpassthe-err| og flag on the command line. For example:

fglgo screen5.4qgi -errlog $fg/errlog

This example creates an errlog file in the FourGen directory ($f g).

2. You can pass an environment variableto thel ogSt art () function. The vari-

able you pass must point to a specific file in the filesystem.

Log Files A-3

Fitrix Case Tools New Features 4.12

For example, you can create the following environment variable:
progErr=$fg/errors/errlog ; export progErr

Then merge an extension file to replace thel ogSt art () function:

repl ace bl ock main start_error_| og
call logStart("", "progErr")

3. Youcanseterrl og, agloba environment variable, to point to a specific file
in the filesystem:
errlog=$fg/errors/errlog ; export errlog

The command line flag takes precedence over the other two methods and the exten-
sion file method takes precedence over the global variable method.

Y ou can givethe errlog file any name you want. For example, you can set the errlog
environment variable in the following manner:

errlog=$fg/errors/progerrs ; export errlog

Thisexample builds afile named pr oger r s. Whenever aprogram fails, error text
iswritten to thisfile and not the local errlog file.

A-4 Improvements and Notes

Fitrix Case Tools New Features 4.12

Generator Access Variables

Similar to the access log and error log capabilities discussed earlier in this chapter,
you can also set up access log and error log files for both the Screen and Report
generators.

By setting up an access log file for these programs, you can see when the <Y our
Company Name> devel opment tools were used to generate new applications or to
regenerate existing applications. By setting up an error log file, you can keep track
of al the errors that occur during program generation in asingle file.

To implement an access log or error log file associated with the Fitrix Report Gen-
erator, set ther pt genaccess andr pt gener r | og variablesto point to a spe-
cific fileinyour filesystem, for example:

rptgenaccess=$fg/rptacclog ; export rptgenaccess
rptgenerrlog=$fg/rpterrlog ; export rptgenerrlog

To implement an access log or error log file associated with the Fitrix Screen Gen-
erator, set thescr genaccess and scr gener r | og variablesto point to a spe-
cific fileinyour filesystem, for instance:

scrgenaccess=$fg/scracclog ; export rptgenaccess
scrgenerrlog=$fg/screrrlog ; export rptgenerrlog

Generator Access Variables A-5

Fitrix Case Tools New Features 4.12

Set Explain Support

Informix database engines have a method for reporting the decisions made by the
engine query optimizer. The optimizer isthe intelligence in the engine that inter-
prets requests and determines the best method for carrying them out. Its decisions
are based on the existence of indexes, the number of rowsin the various tables, and
even the distribution of values, in the 6.0 and later releases.

When your program issuesset expl ai n on, the engine optimizer writesits
guery planto afile called sqexpl ai n. out , in your current directory. Or, if you
areusing I-Star, it writes thisfile in your home directory on the machine where
your database server actually resides. This query plan includes the order of table
access, how filters are applied, and what if any indexes are used in processing the
query. It lets you know if any temporary tables will be created to handle order by
sorting.

Y ou can now make use of set expl ai n in generated programs without having
to recompile your programs. All you must dois passthe - expl ai n flag at the
command line when you run a program. For example:

fglgo report.4gi -explain
- Or -
report.4ge -explain

Thei ni t () functioninthest andar d library checksfor the- expl ai n flag. If
thisflagis present, theset expl ai n on command isissued, and afile called
sgexpl ai n. out fileiscreated in the program directory. By using the set
expl ai n statement, you can gain insight on how the database is being accessed
and whether changing indexes may improve the decisions of the optimizer.

For example, if your queries seem to be taking longer than necessary, you may
choose to change your indexing method. In acomplex query, it may be difficult for
you to know the order of actions taken by the optimizer, which in turn makesit dif-
ficult for you to determine what indexes should be added or dropped.

Y ou might find you can prevent the creation of atemporary table by modifying
your order by clause to use indexed columns, or, conversely, by creating an index
to match your order by.

A-6 Improvements and Notes

Fitrix Case Tools New Features 4.12

You can make use of theset expl ai n statement from within the debugger by
typing:

run -explain

at the debugger prompt.

Set Explain Support A-7

Fitrix Case Tools New Features 4.12

Hiding Ring Menu Options

A problem introduced in the 4.11 Fitrix CASE Tools release disabled one aspect of
the Select Commands option in the Form Painter. The 4.12 Fitrix CASE Tools fix
this problem and improve on the previous functionality.

If you want to hide aring menu option for a generated input program, you can load
the corresponding form specification (*.per) file into the Form Painter. Then select
the Define menu and choose Select Commands followed by WithOut Pulldowns:

File Edit Run Help
=======(standard| Form Defaults...
**************** Input Areas... rm
Customer No.:[Cursor Path L 1 1
Company Name:[Triggers >>
Address:L 1
CitysSt/Zip:L 1
IField... Hith Pulldouns *Add
Order Date:[IMath... xUpdate 1
ILookups. lelete |
Shipping Instru| !Zoom... #Find
#Browse ~ [-——————-
Item Descriptio| Program Menu... Qty| #Tab tension
L 1IC Ring Menu Items... 1 L #Next]
L 1IC Copyright Text 1 L #Prev]
L 1IC 1 L Option]
[I I I 10]
Order weight:[] Freight:L]
Order Total:L]

Menu options preceded by an asterisk appear on the generated program. Those
lacking an asterisk are removed from the program. Y ou can hide/remove an option
by selecting it to add/remove the asterisk.

For each menu option you hide, an extralineiswritten to mai n. 4gl . For exam-
ple, if you remove the Delete and Option, mai n. 4gl contains the following lines:

#_hide - H de options on the main ringMenu

call ringMenu_setOpt("H DE", "Delete")
call ringMenu_set Opt("H DE", "Option")

A-8 Improvements and Notes

Fitrix Case Tools New Features 4.12

These lines represent new functionality that has been added to the upper level
library main ring menu function. The first argument tells whether to hide or show
the menu option. The second argument is the actual option. The available options
for the second argument include:

 Add

e Update
e Deélete
e Find

* Browse
¢ Next

* Prev

« Tab

e Option
e Quit

If you want to avoid using the Form Painter, you can hide any menu option using
theaf t er i nit trigger. For example, to hide Delete and Option in screen demo
five, you can create and merge the following or der . t r g trigger file:
defaul ts
after_init

call ringMenu_set Opt("H DE", "Delete")
call ringMenu_setOpt("H DE', "Option");

Hiding Ring Menu Options A-9

Fitrix Case Tools New Features 4.12

Building a Library Zoom Screen

Quite commonly, zoom screens are used by more than one program, so a good loca-
tion to place zoom screensisin acustom library where they may be accessed by
multiple programs.

Placing zoom screensin alibrary is not much different than building them in the
program directory. Hereis a general outline of the steps you should follow when
you are building alibrary of zoom screens:

1. Create the form specification (*.per) file for the zoom screen.

Y ou can create the specification file using the Form Painter or by hand with a
text editor. If you use the Form Painter, don't forget to specify areturning value
for the zoom screen.

2. Buildacustom library Makef i | e.

A library Makef i | e differs slightly from a program Makef i | e. The follow-
ing library Makef i | e contains one zoom screen (cust _zn):

Makefile for an Inform x function library
TYPE = library

LI BFI LES = $(LIB)(cust_zm o)

FORMS = cust_zmfrm

LIB=../lib_zma

@cho "nake: Cannot use nake. Use fg.make to conpile.”

3. Oncethe*.per fileand Makef i | e arebuilt, run the Screen Code Generator to
compile the form and create code for the zoom screen, type:

fg.screen -M

Because the Fitrix Screen Code Generator automatically creates a program
Makef i | e, youwant to passthe - Mflag when you run this command. The- M
flag is anew flag that prevents the Generator from creating aMakef i | e and
thus overwriting the custom library Makef i | e.

A-10 Improvements and Notes

Fitrix Case Tools New Features 4.12

4. Build and merge an extension (*.ext) file to set the form path.

An extension fileis necessary so programs can locate your zoom screen. Here
is an example extension (*.ext) file for thecust _zmzoom screen:

start file "cust_zm4gl"
repl ace bl ock Acust_zm form path
with form"../lib_zm 4gs/cust_znl';

5. Createabase. set filetocall your extensionfileand runf g. nake to merge
and compile the code.

Depending on your development system, you may want to run f g. make
twice. Thefirst time you runit, passthe - F flag to build a compiled *.alibrary
file. The second time you run it, passthe - Rflag to build the * .RDS library
directory.

Once you have completed the above steps, the library is built and ready to be used.
To hook the zoom screen into one of your programs, however, you must remember
tolink inthe library itself (with alibraries trigger). Y ou also need to remember to
attach the zoom screen to a calling field using either the Form Painter or by adding
the zoom line to the program’s main form specification file. For example, the fol-
lowing zoom linelinksin the library cust _zmzoom screen:

zoom = key=cust oner _num screen=cust_zm tabl e=cust oner

Building a Library Zoom Screen A-11

Fitrix Case Tools New Features 4.12

A-12 Improvements and Notes

Fitrix Case Tools New Features 4.12

Index

A

Acceptable Values 2-7
AccessLog File A-2
Aliasing, Column 6-2

C

Column Aliasing
column formats 6-5
overview 6-2
setting up 6-3

Column Formats 6-5

Concurrency
code examples 7-16
handling errors 7-10
implementing 7-5
lowlevel.4gl 7-20
midlevel .4gl 7-16
overview 7-2
setting up 7-5

D

Demonstration Programs
benefits 1-2
command bar 1-4
main menu 1-5
menus demo 1-6
overview 1-2
report demo 1-16
screen demo 1-9
starting 1-4

E

errlog File A-3

F

fg.screen-M A-10

Float Format
acceptable values 2-7
applying to report programs 2-12
applying to screen programs 2-9
cgxffmtr table description 2-2
definitions 2-3
functionality 2-5
generated code 2-11
overview 2-2
rounding 2-5
sample monetary values 2-2
setting up 2-4

Formatting Columns 6-5

G

Generator Access Variables A-5

H

Hooking in Screens
review 4-3
socket_itemstrigger 4-3

L

Langauge Translation
applying to report programs 3-6
Language Translation
applying to screen programs 3-4
overview 3-2
stxlangr table 3-2
y/nfield logic 3-4
Library Containing Zoom Screens A-10
Library Makefile A-10
Log Files
accesslog A-2
errlog A-3

Menu, Hiding Options A-6

Index-1

Fitrix Case Tools New Features 4.12

Menus Demo 1-6 opening aform specification file 1-12
ml_get_filter Function 5-9 running 1-9
ml_put_filter Function 5-8 running the screen code generator 1-13
ml_schedule Function 5-7 starting a program 1-10

Screen Hooking Logic
N overview 4-2

Screens, Zoom Library A-10
scrgenaccess Variable A-5
scrgenerrlog Variable A-5
Set Expain Statement A-6

No Makefile Flag A-10

R socket_items Trigger
adding 4-4
Report Column Aliasing 6-2 description 4-3
Report Concurrency syntax 4-4
code examples 7-16 socketManager() Function 4-2
handling errors 7-10 sockter_items Trigger
implementing 7-5 example 4-4
lowlevel.4gl 7-20
midlevel.4gl 7-16
overview 7-2 Y
setting up 7-5 Y/N Field Logic 3-4
Report Demo
building aprogram 1-18
compiling the code 1-20 Z
running 1-16
running the report code generator 1-20 Zoom Screens, Library of A-10

starting aprogram 1-17
Report Scheduling

example 5-4

implementing 5-3

incorporating selection criteria 5-4

library code 5-6

midlevel 4gl 5-7

new functions 5-3

overview 5-2
Ring Menu, Hiding Options A-6
Rounding Floating Point Values 2-5
rptgenaccess Variable A-5
rptgenerrlog Variable A-5

S

Sample Monetary Values 2-2
Scheduling, Report 5-2
Screen Demo
building aprogram 1-11
compiling code 1-14

Index-2

	Title
	Introduction
	Table Of Contents
	Preface
	Part One: Fitrix Case Tools New Features
	1 Case Tools Demo

	Part Two: Screen New Features
	2 Float Format
	3 Translating Y/N Fields
	4 Screen Hooking Logic

	Part Tree: Report New Features
	5 Report Scheduling
	6 Comn Aliasing
	7 Concurency

	Appendix A: Improvements and Notes
	index

