
.

FitrixTM

CASE Tools
4.12 New Features

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS252.227-7013. Fourth
Generation Software Solutions, 2814 Spring Rd., Suite 300, Atlanta, GA 30039.

Copyright

Copyright (c) 1988-2002 Fourth Generation Software Solutions Corporation. All rights reserved. No part of this
publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any
language in any form by any means without the written permission of Fourth Generation Software Solutions.

Software License Notice

Your license agreement with Fourth Generation Software Solutions, which is included with the product, specifies
the permitted and prohibited uses of the product. Any unauthorized duplication or use of Fitrix, in whole or in
part, in print, or in any other storage and retrieval system is forbidden.

Licenses and Trademarks

Fitrix is a registered trademark of Fourth Generation Software Solutions Corporation.
Informix is a registered trademark of Informix Software, Inc.

UNIX is a registered trademark of AT&T.

FITRIX MANUALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, FURTHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE ENTIRE RISK AS TO THE QUAL-
ITY AND PERFORMANCE OF THE FITRIX MANUALS IS WITH YOU. SHOULD THE FITRIX MANU-
ALS PROVE DEFECTIVE, YOU (AND NOT FOURTH GENERATION SOFTWARE OR ANY
AUTHORIZED REPRESENTATIVE OF FOURTH GENERATION SOFTWARE) ASSUME THE ENTIRE
COST OF ALL NECESSARY SERVICING, REPAIR, OR CORRECTION IN NO EVENT WILL FOURTH
GENERATION BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING ANY LOST PROFITS, LOST
SAVINGS, OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE
OF OR INABILITY TO USE SUCH FITRIX MANUALS, EVEN IF FOURTH GENERATION OR AN
AUTHORIZED REPRESENTATIVE OF FOURTH GENERATION HAS BEEN ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. IN ADDITION,
FOURTH GENERATION SHALL NOT BE LIABLE FOR ANY CLAIM ARISING OUT OF THE USE OF
OR INABILITY TO USE SUCH FOURTH GENERATION SOFTWARE OR MANUALS BASED UPON
STRICT LIABILITY OR FOURTH GENERATION'S NEGLIGENCE. SOME STATES DO NOT ALLOW
THE EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION MAY NOT APPLY TO
YOU. THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS AND YOU MAY ALSO HAVE
OTHER RIGHTS, WHICH VARY FROM STATE TO STATE.

Fourth Generation Software Solutions Corporate: (770) 432-7623
2814 Spring Road, Suite 300 Fax: (770) 432-3448
Atlanta, GA 30339 E-mail: info@fitrix.com

Copyright

Copyright (c) 1988-2002 - Fourth Generation Software Solutions Corporation - All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system or translated.

Fitrix Case Tools New Features 4.12

Welcome to the Fitrix Case Tools New Features 4.12. This manual is
designed to be a focused step-by-step guide. We hope that you find all
of this information clear and useful.
All of the screen images in this document are show with the products
using the character user interface. While the Fitrix Rapid Application
Development (RAD) Tools operate in character mode only, the soft-
ware applications created by the RAD tools offer the option of being
viewed in a graphic based Windows (or X11) mode as well as the char-
acter mode shown. Examples of graphic based product viewing modes
are shown below in Example 1 and Example 2.

Example 1: Menu Graphical Windows Mode

Fitrix Case Tools New Features 4.12

Here is another example:

Example 2: Data Entry Graphical Windows Mode

Displaying our products in graphic mode, as shown in Example 1 and
Example 2, is customary for many Fitrix product users. However, your
viewing mode is a user preference. Changing from character based to
graphical based is a product specific procedure, so if you wish to view
some applications in character mode, and some in graphical mode, that
can be done as well.
If you have any questions about how to view your products in graphical
mode, please consult your Installation Instructions or contact the Fitrix
helpdesk at 1(800)374-6157. You can also contact us by email:
support@fitrix.com. Please be prepared to offer your name, your com-
pany, telephone number, the product you are using, and your exact
question.
We hope you enjoy using our products and look forward to serving you
in the future.

Thank You,
Fourth Generation

Fitrix Case Tools New Features 4.12

i

Table of Contents
New Feature Summaries ... viii

Part One: Fitrix CASE Tools New Features .. viii

Part Two: Fitrix Screen New Features .. viii

Part Three: Fitrix Report New Features ... ix

Documentation Conventions .. xi

Part 1:Fitrix CASE Tools New Features

Chapter 1: CASE Tools Demo
Overview ... 1-2

Starting the Demonstration ... 1-4

The Menus Command Bar ... 1-4

The Demo Menu .. 1-5

Running the Menus Demo .. 1-6

Running a Screen Demo ... 1-9

Running the Program ... 1-10

Building the Program ... 1-11

Running a Report Demo ... 1-16

Running the Program ... 1-17

Building the Program ... 1-18

Part 2:Screen New Features

Chapter 2: Float Format
Overview ... 2-2

Setting up a Float Format .. 2-4

Float Format Functionality ... 2-5

Rounding ... 2-5

Fitrix Case Tools New Features 4.12

ii

Acceptable Values ... 2-7

Applying Float Formats to Screens ... 2-9

The float_fmt Line ... 2-9

Float Format Logic .. 2-11

Applying Float Formats to Reports ... 2-12

The float_fmt Line ... 2-12

Chapter 3: Translating Y/N Fields
Overview ... 3-2

Applying Y/N Logic to Screens .. 3-4

Using the Form Painter .. 3-4

Using a Text Editor .. 3-5

Applying Y/N Logic to Reports .. 3-6

Chapter 4: Screen Hooking Logic
Overview ... 4-2

The socket_items Trigger .. 4-3

A Quick Review ... 4-3

Adding the socket_items Trigger ... 4-4

Part 3:Report New Features

Chapter 5: Report Scheduling
Report Scheduling Overview .. 5-2

Implementation ... 5-3

Three New Functions ... 5-3

Incorporating Selection Criteria ... 5-4

Scheduling Example .. 5-4

Scheduling Code in the Library .. 5-6

flow_control ... 5-6

stub function .. 5-6

Generated Code in midlevel.4gl .. 5-7

Fitrix Case Tools New Features 4.12

iii

ml_schedule ... 5-7

ml_put_filter .. 5-8

ml_get_filter .. 5-9

Chapter 6: Column Aliasing
Overview ... 6-2

Setting up a Column Alias .. 6-3

The alias Line .. 6-3

Changing the Column Format ... 6-5

Chapter 7: Concurrency
Overview ... 7-2

Implementing Concurrency .. 7-5

Setting up the report.ifg File .. 7-5

Concurrency ... 7-8

Handling Concurrency Errors ... 7-10

Example One: Displaying a Warning Message ... 7-10

Example Two: Writing A Message to the Report 7-13

Code Examples ... 7-16

midlevel.4gl ... 7-16

lowlevel.4gl ... 7-20

Log Files ... A-2

Creating an Access Log File .. A-2

Relocating the errlog File .. A-3

Generator Access Variables .. A-5

Set Explain Support .. A-6

Hiding Ring Menu Options ... A-8

Building a Library Zoom Screen .. A-10

Fitrix Case Tools New Features 4.12

iv

Preface

This manual provides information and insight concerning the new features and
functionality of the 4.12 Fitrix CASE Tools. Besides maintenance fixes and other
enhancements, a majority of the work that went into this release stemmed from our
organization’s goal to create complete, robust, and language independent code.
You will also find that a lot of work has been done to the Fitrix Report Code Gener-
ator. Among the more salient improvements, you can now implement scheduling
and concurrency logic to your report programs.

This chapter contains the following topics:

n New Feature Summaries

n Documentation Conventions

Fitrix Case Tools New Features 4.12

viii

New Feature Summaries

This manual is broken into three parts. The first part discusses new features that
apply to the Fitrix CASE Tools as a whole. The second part describes new features
for the Fitrix Screen product, which includes the Fitrix Screen Code Generator and
the Form Painter. The third and final part covers Fitrix Report new features. The
following paragraphs highlight these features and serve as a good introduction to
the rest of this manual.

Part One: Fitrix CASE Tools New Features

The biggest change to the Fitrix CASE Tools as a whole involves new demonstra-
tion programs and a new demonstration interface. Using the Application Develop-
ment Manager (AppDev), you can step through the process of building both Fitrix
Screen and Fitrix Report programs. These programs demonstrate several new fea-
tures, including report scheduling and column aliasing.

In addition, new directories containing executable program files have been set up
so you can skip the build phase and launch each demonstration program directly.

Part Two: Fitrix Screen New Features

The biggest improvements to the Fitrix Screen products include new float format-
ting package, Y/N field translation logic, and a new trigger command. Both the
float formatting package and the Y/N translation logic also apply to Fitrix Report
programs.

The Float Format Package

Using the Float Formatting package, you can define formats for the way decimal
fields are displayed to the screen. The float formatting package also includes round-
ing logic and it performs "acceptable values" checking (in other words, it will
accept a number of different symbols and convert them to display a single default
symbol).

Some of the symbols you can define include the thousand separator, decimal sepa-
rator, front minus, and back minus.

Fitrix Case Tools New Features 4.12

New Feature Summaries ix

Y/N Field Translation Logic

Because field translation work can be a long and laborious task, this new logic
gives you the ability to translate Y/N fields virtually all at once. This new logic sets
up a single definition for Y/N fields in the database. Instead of defining each Y/N
field individually, you simply add a line to your form specification (*.per) file that
applies the Y/N translation definition to the field of your choice.

The socket_items Trigger

Each time you hook in a screen to your screen or report programs, a certain amount
of overhead comes along with it. The socket_items trigger is intended to limit
the number of functions that are linked in with each screen. You use the
socket_items trigger in conjunction with the switchbox_items trigger.

For example, if you want to add a query screen to a report program, you can use
both the switchbox_items trigger and the socket_items trigger. You can
supply the query screen name and function name to switchbox_items and the
keyword "query" to socket_items. These two triggers might appear in an
extension (*.ext) file as follows:

#---
add the switchbox and socket items to main
#---
switchbox_items
 query S_query;
socket_items
 query;

The socket_items trigger dramatically reduces the size of the resulting pro-
gram. In some cases this reduction is upwards of 80K.

Part Three: Fitrix Report New Features

Perhaps the Fitrix Report Code Generator received the most attention since the 4.11
release. A lot of work has been done to increase the abilities of the Fitrix Report
Code Generator including the addition of scheduling logic, concurrency logic, and
column aliasing. In addition, the Fitrix Report Code Generator also supports some
of the same new features as the Fitrix Screen Code Generator. These features
include the float formatting package and Y/N Translation logic, all of which are are
covered in the Screen part.

Fitrix Case Tools New Features 4.12

x

Report Scheduling

Using Scheduling logic, you can set a time for report execution. This ability lets
you postpone the processing of large reports until night when system resources are
more plentiful. Besides setting the time, Scheduling logic also lets you save selec-
tion criteria in the database until the report is run. By saving the selection criteria,
you can set both the time of execution and the appropriate selection criteria long
before the report actually runs.

Concurrency Logic

Concurrency gives you the ability to check each row in the header table for data
integrity prior to processing the corresponding detail lines for that row. This ability
helps assure that data doesn’t change during report processing. In addition to
checking for data integrity, concurrency also provides default locations in the code
for you to handle data conflicts and lets you set up your own data integrity logic.

Column Aliasing

With column aliasing, you can now use columns that have the same name but con-
tain different data in the same report program. Quite often different tables may con-
tain columns with the same name. In previous releases of the Fitrix Report Code
Generator, these columns could not be used on the same report. With the addition
of column aliasing, you can assign an alias to one of the columns and use it in con-
junction with the other column.

Fitrix Case Tools New Features 4.12

Documentation Conventions xi

Documentation Conventions

Some information is difficult to convey in text, such as a series of keystrokes or a
value you supply. This Technical Reference uses several conventions to convey
information that has special meaning. These conventions use different fonts, for-
mats, and symbols to help you discern commands, program code, filenames, and
keystrokes from other text.

Text Format Meaning Example

Courier Bold Represents command syntax
in addition to variable and
file definitions.

fg.writer

Courier Bold
Italic

Represents text you should
replace with the appropriate
value.

-r report_name

Courier Represents commands; code;
file, directory, table, and col-
umn names; and system
responses.

report.ifg
Makefile
standard
rtmargin

Small Courier Represents program code or
text in a file.

output
 top margin 3
 bottom margin 3
 left margin 3
 right margin 77
 page length 66

Symbol Meaning Example

[] Represents optional com-
mand flags or arguments.

fg.report [-f]

{ } Represents a mandatory
choice of options.

{one|two|three}

| Delimits choices. -y|-n

... Represents command argu-
ments that can be repeated.

filename...

Fitrix Case Tools New Features 4.12

xii

When not part of an explicit instruction, single keyboard characters, field values,
and prompt responses are shown in uppercase. For example:

Choose Y or N.
Enter an A for ascending or D for descending.
Press Q to quit.

Named keys are shown in uppercase and enclosed in brackets, for instance:

[TAB]
[F1]
[ESC]
[ENTER]

When a series of keys should be entered at the same time, they are shown with a
hyphen connecting them. For example:

To close the menu, press [CTRL]-[d].

Some keys differ from keyboard to keyboard. This manual mentions the [ENTER]
and [DEL] keys, but both may be missing from your keyboard. Hardware manufac-
turers give different names to keys that perform the same function.

Although many similar versions of UNIX and XENIX can run INFORMIX-4GL
and the Fitrix Report Code Generator, this manual refers to all of them with the sin-
gle term of UNIX.

Keys Common Variations

[ENTER] RETURN, RTRN, ↵
[ESC] STORE

[DEL] BREAK, CTRL C, CTRL BREAK

Part One

Fitrix CASE Tools
New Features

Fitrix Case Tools New Features 4.12

1
CASE Tools Demo

As part of the 4.12 Fitrix CASE Tools, several new demonstration programs have
been added. These programs give you valuable insight into our organization’s
development techniques and common program construction. In addition to the new
demonstration programs, a new interface for accessing and building these programs
was also added. This interface, which is built from Fitrix Menus, serves the two fol-
lowing purposes: It gives you an easy-to-use method for initiating the demonstra-
tion programs, and it serves as a demo in and of itself.

This chapter covers the following topics:

n Overview

n Starting the Demonstration

n Running the Fitrix Menus Demo

n Running a Fitrix Screen Demo

n Running a Fitrix Report Demo

Fitrix Case Tools New Features 4.12

1-2 CASE Tools Demo

Overview

The 4.12 Fitrix CASE Tools include a completely integrated and flexible group of
demonstration programs. These programs not only show you typical Fitrix Menus,
Screen, and Report functionality, but they also give you the opportunity to look
under the hood and see how these different types of programs work.

Demonstration programs provide the following benefits:

• They introduce new users to basic Fitrix techniques and development stan-
dards.

• They provide experienced users with examples of new and improved features.

• They help our developers simulate conditions that may be causing problems.

For example, if you are a new user and you want to see how a simple header screen
looks and functions, you can check out screen demonstration one.

Or, being an experienced user, you may want to see how to use the Report Code
Generator’s new aliasing abilities. No problem, you can simply fire off report dem-
onstration three.

Besides helping to answer your questions and show off new functionality, demon-
stration programs are handy debugging tools. They give our developers a common
link between your system and our own. If, for example, you think there is a prob-
lem in the way one of your generated programs is working, you can let us know,
and—more than likely—we can attempt to duplicate the problem using one of the
demonstration programs.

The graphic on the following page describes each demonstration program. Follow-
ing the graphic, the rest of this section introduces you to the demonstration inter-
face and shows you how to build and run the different demonstration programs.

Fitrix Case Tools New Features 4.12

Overview 1-3

CASE Tools Demonstration ProgramCASE Tools Demonstration Program

Menus DemoMenus Demo Menus DemoScreen Demos Menus DemoReport Demos

Item DemoItem Demo Item DemoHeader Only

Item DemoHeader/Detail

Item DemoAdd-On Header

Item DemoFeaturizer

Item DemoAdd-On Detail

Item DemoKanji

Item DemoPlain Report

One Group
Report

One Group
Report

One Group
Report

Zoom, Lookup,
& Math

One Group
Report

Extension
Screen

One Group
Report

View Header
& Detail

One Group
Report

Query Screen
& Scheduling

Multi-Group
Report
Aliasing

Multi-Group
Report
Aliasing

Fitrix Case Tools New Features 4.12

1-4 CASE Tools Demo

Starting the Demonstration

To begin working with the new 4.12 Fitrix CASE Tools Demonstration, enter the
following command at the UNIX prompt:

fg.demo

The following screen appears:

This screen contains both the standard Fitrix Menus command bar and the <YOUR
COMPANY NAME>CASE TOOLS DEMOS menu. The command bar has four
options: Select, Mail, Help, and Quit.

The Menus Command Bar

Select initiates the highlighted menu item.

Mail starts an E-mail session.

Help opens a window containing help information.

Quit exits the demo.

Menus
Screen
Report

Fitrix Case Tools New Features 4.12

Starting the Demonstration 1-5

To move the highlight between options on the command bar, use the [SPACE-
BAR]. Once an option is highlighted, press [ENTER].

The Demo Menu

The <YOUR COMPANY NAME>CASE TOOLS DEMOS menu contains three
menu choices; one for each Fitrix CASE Tools product line. To initiate a menu
choice, type the alphanumeric character(s) that represents the choice or highlight it
and pick Select from the command bar. You can move between menu choices with
the arrow keys.

To close a submenu, press [DEL].

For each menu choice there is a submenu containing the various demonstration pro-
grams. For example, if you type B to select the Screen menu choice, the following
submenu appears:

Menus
Screen
Report

Fitrix Case Tools New Features 4.12

1-6 CASE Tools Demo

Running the Menus Demo

The first choice on the <YOUR COMPANY NAME> CASE TOOLS DEMOS
menu is the Menus demo. The Fitrix Menus product only has one demonstration
program, excluding the fg.demo program itself. When you type A or highlight it
and choose Select from the command bar, the following submenu appears:

This submenu contains Menus Items Demo. To start it, type 1. As with all the dem-
onstration programs, an information screen appears prior to running the demo. This
information screen describes the purpose of the demonstration and provides some
simple instructions for using the demo:

Menus
Screen
Report

You are running Menus now. This option loads a submenu which
demonstrates some of the individual Menus "item" commands.

Fitrix Case Tools New Features 4.12

Running the Menus Demo 1-7

Read the information screen and then press [ENTER] to continue. The demonstra-
tion Menu program appears:

This program describes some of the most common menu item instructions and
shows you how these instructions work. For example, the show instruction dis-
plays a line of text to the user. When you highlight and select the sw - show
option, the following screen appears:

When you press [ENTER] to continue, the item instruction is carried out so you can
see how it works. This demonstration program is very useful if you forget the syn-
tax or how a particular item instruction works.

Fitrix Case Tools New Features 4.12

1-8 CASE Tools Demo

Running a Screen Demo

The second choice on the <YOUR COMPANY NAME>CASE TOOLS DEMOS
menu opens the SCREEN DEMOS menu. This menu contains nine screen demon-
stration programs:

Note

It may look at first as if there are 10 screen demonstrations, but screen demo four
has been purposefully left off the menu. Screen demo four is intended to be used
primarily with the Form Painter.

Each screen demonstration shows a unique functionality. To run the Kanji screen
demonstration you must have the multibyte version of the Fitrix CASE Tools, and
hardware, O/S, and Informix that supports Kanji.

When you select a screen demonstration program, you have two choices:

1. You can run the generated and compiled program directly.

2. You can build the program from its form specification (*.per); and, if present,
trigger (*.trg) and extension (*.ext) files.

Fitrix Case Tools New Features 4.12

Running a Screen Demo 1-9

Running the Program

If you choose to run the program, an information screen appears that describes what
the demonstration covers. After reading the information screen, press [ENTER] to
continue and run the program. For example, if you run screen demonstration one,
the following program appears:

You may encounter a case where the actual executable has yet to be created. If this
occurs, you are given the choice to create it:

Fitrix Case Tools New Features 4.12

1-10 CASE Tools Demo

When you press [ENTER] to continue, the following line appears:

This prompt gives you the option of building only the selected program or building
all screen programs at once. Note that you should only encounter this circumstance
once. After the executable is built, you will not have to build it again each time you
select Run Program. Whichever option you select, the proper executable(s) is pre-
pared.

Building the Program

If you choose to build the program, two information screens appear. The first
screen describes the demonstration program. When you finish reading the first
screen, press [ENTER] to continue. The second screen describes the Application
Development Manager (AppDev). AppDev is the development tool of choice for
building input programs. After you finish reading the second information screen,
press [ENTER] to load AppDev.

For example, if you choose to build screen demo one, the following AppDev win-
dow appears:

Enter [RETURN] for Demo 1, or [A] to prepare ALL Screen Demos:

Fitrix Case Tools New Features 4.12

Running a Screen Demo 1-11

Note

If you do not have AppDev, a special demo shell opens in the demonstration
directory and a complete set of specification files is created for you. From this
shell you can build the screen program manually.

If you are unfamiliar with AppDev, you may want to consult your Application
Development Manager User Reference. Consulting the AppDev manual, however,
is not necessarily required; there are a few basic AppDev functions that make build-
ing programs simple, such as the following:

• Opening a form specification file

• Running the Screen Code Generator

• Compiling the code

• Running the program

Opening a Form Specification File

Opening a form specification file is not required if you only want to build the pro-
gram. It is useful, however, if you want to alter the program’s default behavior. If
you simply want to build the program, skip to "Running the Fitrix Screen Code
Generator" on page 1-12.

As you can see from the graphic on the previous page, AppDev displays form spec-
ification files in the lower portion of the AppDev window. In screen demo one,
there are two files, browse and custfrm.

To open a form specification file:

1. Select the Open option from the File menu.

A submenu appears.

2. Select Form Specification from the submenu.

A second submenu appears asking you which form specification file you want
to open.

3. Select the Form Specification file you want to open.

Fitrix Case Tools New Features 4.12

1-12 CASE Tools Demo

For example, if you are running screen demo one, choose custfrm. Once you
select the form specification file, AppDev runs the Form Painter using the file
you specified.

Running the Fitrix Screen Code Generator

The Fitrix Screen Code Generator builds 4GL code based off of instructions in
form specification files. Since the screen demonstration programs start out with
form specification files, you can run theFitrix Screen Code Generator directly.

To run the Fitrix Screen Code Generator:

1. Select Generate from the File menu.

A submenu appears asking you if you want to generate code for the entire pro-
gram or for one form specification file.

2. Select Input Program from the submenu.

A second submenu appears asking you which method of generation to use.

3. Select Quick Generation.

This choice runs the Fitrix Screen Code Generator and creates all of the 4GL
code necessary to compile the program.

Compiling the Code

After you run the Fitrix Screen Code Generator, several more program files appear
in lower portion of the AppDev window. To convert these files into an input pro-
gram, you must run the compiler and link in the necessary library functions.

Fitrix Case Tools New Features 4.12

Running a Screen Demo 1-13

To compile the code:

1. Select Compile from the File menu.

A submenu appears asking you what type of compile to perform.

2. Select Program from the submenu.

A second submenu appears requesting you to choose the compile mode.

3. Select Full Compile from the second submenu.

This choice runs the compilation utility and builds a program file.

Running the Program

After compiling code, you can run the generated program.

To run the generated program:

1. Select Run from the File menu.

Fitrix Case Tools New Features 4.12

1-14 CASE Tools Demo

A submenu appears asking you if you want to run the program directly or
through the Informix Debugger.

2. Select Run Program from the submenu.

This choice runs the generated program. For example, if you built screen demo
one, the following program appears:

Fitrix Case Tools New Features 4.12

Running a Report Demo 1-15

Running a Report Demo

The third choice on the <YOUR COMPANY NAME>CASE TOOLS DEMOS
menu opens the REPORT DEMOS menu. This menu contains five report demon-
stration programs.

Each report demonstration shows a unique functionality. In fact, several of the
report demonstration programs show new 4.12 Fitrix Report features, such as
scheduling, aliasing, and concurrency.

When you select a report demonstration program, you have the following two
choices:

1. You can run the generated and compiled program directly.

2. You can build the program from its image (*.ifg) file and, if present, extension
(*.ext) files.

Fitrix Case Tools New Features 4.12

1-16 CASE Tools Demo

Running the Program

If you choose to run the program, an information screen appears that describes what
the demonstration covers. After reading the information screen, press [ENTER] to
continue and run the program. For example, if you run report demonstration one,
the following program appears:

You may encounter a case where the actual executable has yet to be created. If this
occurs, you are given the choice to create it.

Fitrix Case Tools New Features 4.12

Running a Report Demo 1-17

When you press [ENTER] to continue, the following line appears:

This prompt gives you the option of building only the selected program or building
all report programs at once. Note that you should only encounter this circumstance
once. After the executable is built, you will not have to build it again each time you
select Run Program. Whichever option you select, the proper executable(s) is pre-
pared.

Building the Program

If you choose to build the program, two information screens appear. The first
screen describes the demonstration program. When you finish reading the first
screen, press [ENTER] to continue. The second screen describes the Application
Development Manager (AppDev). AppDev is the development tool of choice for
building report programs. After you finish reading the second information screen,
press [ENTER] to load AppDev.

For example, if you choose to build report demo one, the following AppDev win-
dow appears:

Enter [RETURN] for Demo 1, or [A] to prepare ALL Report Demos:

Fitrix Case Tools New Features 4.12

1-18 CASE Tools Demo

If you are unfamiliar with AppDev, you may want to consult your Application
Development Manager User Reference. Consulting the AppDev manual, however,
is not necessarily required; there are a few basic AppDev functions that make build-
ing programs simple, such as the following:

• Opening a report specification file

• Running the Report Code Generator

• Compiling the code

• Running the program

Opening a Report Specification File

Opening a report specification file is not required if you only want to build the pro-
gram. It is useful, however, if you want to alter the program’s default behavior. If
you simply want to build the program, skip to "Running the Fitrix Report Code
Generator" on page 1-19.

AppDev displays report specification files in the lower portion of the AppDev win-
dow. In report demo one, as with all report programs, there is a single report speci-
fication file: report.ifg.

To open a report specification file:

1. Select the Open option from the File menu.

A submenu appears.

2. Select Report Specification from the submenu.

A second submenu appears asking you whether you want to run the Report
Writer or edit the report specification file directly.

Note

You cannot open report.ifg files contained in report demo programs with
the Fitrix Report Writer. The Fitrix Report Writer can only work with a subset of
reports that the Fitrix Report Code Generator is capable of handling.

3. Select Edit Format file.

Fitrix Case Tools New Features 4.12

Running a Report Demo 1-19

After selecting Edit Format, the report.ifg file opens and you can edit it by
hand.

Running the Fitrix Report Code Generator

The Fitrix Report Code Generator builds 4GL code based off of instructions in the
report specification file. Since the report demonstration programs start out with an
existing report specification file, you can run the Fitrix Report Code Generator
directly.

To run the Fitrix Report Code Generator:

1. Select Generate from the File menu.

The Fitrix Report Code Generator runs and multiple lines of code scroll across
the screen.

2. When the Generator finishes, press [ENTER] to return to AppDev.

Compiling the Code

After you run the Fitrix Report Code Generator, several more program files appear
in the lower portion of the AppDev window. To convert these files into a report
program, you must run the compiler and link in the necessary library functions.

To compile the code:

1. Select Compile from the File menu.

A submenu appears asking you what type of compile to perform.

2. Select Program from the submenu.

Fitrix Case Tools New Features 4.12

1-20 CASE Tools Demo

A second submenu appears requesting you to choose the compile mode.

3. Select Full Compile from the second submenu.

This choice runs the compilation utility and builds a program file.

Running the Program

After compiling code, you can run the generated program.

To run the generated program:

1. Select Run from the File menu.

A submenu appears asking you if you want to run the program directly or
through the Informix Debugger.

2. Select Run Program from the submenu.

The report runs and writes the report output into an *.out file.

3. To see the results of the report, press [TAB] to move the highlight to App-
Dev’s file window.

4. Highlight the *.out file and press [ENTER].

AppDev automatically displays the report in the default pager for your system.

Fitrix Case Tools New Features 4.12

Running a Report Demo 1-21

For example, if you built report demo one, the following report appears:

Fitrix Case Tools New Features 4.12

1-22 CASE Tools Demo

Part Two

Screen New
Features

Fitrix Case Tools New Features 4.12

2
Float Format

With the float format package you can customize the way floating point values
appear on your Fitrix Screen and Report programs. This package extends the func-
tionality of Informix’s DBFORMAT variable. Using it, you can specify a wide range
of attributes to tailor the way floating point values appear, such as a front and back
symbol; a thousand separator; a decimal separator; and a positive and negative indi-
cator. The float format package also lets you specify a precision value, which auto-
matically rounds your floating point values.

This chapter covers the following topics:

n Overview

n Setting up a Float Format

n Float Format Functionality

n Applying Float Formats to Fitrix Screens

n Applying Float Formats to Fitrix Reports

Fitrix Case Tools New Features 4.12

2-2 Float Format

Overview

Because floating point values are displayed differently from country to country,
you may want to vary the way a floating point value looks in the applications you
are developing. With the float format package, you can set up a number of float for-
mat definitions. For example, the following table shows formats for common mon-
etary values:

All float format definitions are stored in the cgxffmtr table. This table contains
the following columns:

Country Positive Format Negative Format

USA $1,234.56 -$1,234.56

Italy L1.234 -L1.234

Norway kr1.234,56 kr1.234,56-

Portugal 1,234$56 -1,234$56

Column Name Type Description

float_format_code char(10) Holds a float format key value.

userdef char(1) Holds a Y value if row is user defined.
If a Y is present, row gets preserved
when dbmerge is run.

description char(30) Contains a short format description.

precision smallint Indicates how many places follow the
decimal symbol. When necessary, float
format rounds a value to match the
specified precision.

thousand_separator char(7) Contains the thousand-separator sym-
bol(s).

decimal_separator char(7) Holds decimal-separator symbol(s).

Fitrix Case Tools New Features 4.12

Overview 2-3

For example, to create the four monetary values shown previously, use the follow-
ing float format definitions:

front_symbol char(7) Contains the symbol that gets placed in
front of the decimal value. Many times
this is the monetary value symbol, such
as a dollar sign.

front_minus char(7) Contains the front minus symbol(s).

front_plus char(7) Contains the front plus symbol(s).

back_symbol char(7) Contains the back symbol(s).

back_plus char(7) Contains the back plus symbol(s).

back_minus char(7) Contains the back minus symbol(s).

C
o

u
n

tr
y

fl
o

a
t_

fo
rm

a
t_

c
o

d
e

u
s

e
rd

e
f

d
e

s
c

ri
p

ti
o

n

p
re

c
is

io
n

th
o

u
s

an
d

_
s

e
p

a
ra

to
r

d
e

c
im

a
l_

s
e

p
a

ra
to

r

fr
o

n
t_

s
ym

b
o

l

fr
o

n
t_

m
in

u
s

fr
o

n
t_

p
lu

s

b
a

c
k

_
s

y
m

b
o

l

b
a

c
k

_
p

lu
s

b
a

c
k

_
m

in
u

s

USA USA 2 , . $ -

Italy ITL 0 . L -

Norway NOR 2 . , kr -

Portugal PRT 2 , $ -

Column Name Type Description

Fitrix Case Tools New Features 4.12

2-4 Float Format

Setting up a Float Format

To add a new float format definition, you must add a row to the cgxffmtr table.
For example, you may want to make another version of the USA float format. Per-
haps you want your new definition to use an left parenthesis as a front_minus
value and a right parenthesis as a back_minus value.

To create this definition, add the following float format values to the cgxffmtr
table:

For more information on adding rows to a table, refer to your Informix documenta-
tion set.

fl
o

a
t_

fo
rm

at
_

c
o

d
e

u
s

e
rd

e
f

d
e

s
c

ri
p

ti
o

n

p
re

c
is

io
n

th
o

u
s

a
n

d
_

s
e

p
a

ra
to

r

d
e

c
im

al
_

s
e

p
ar

a
to

r

fr
o

n
t_

s
y

m
b

o
l

fr
o

n
t_

m
in

u
s

fr
o

n
t_

p
lu

s

b
a

c
k

_
sy

m
b

o
l

b
a

c
k

_
p

lu
s

b
a

c
k

_
m

in
u

s

USANEW 2 , . $ ()

- $1,234.56 ($1,234.56)

Current Negative Format Desired Negative Format

Fitrix Case Tools New Features 4.12

Float Format Functionality 2-5

Float Format Functionality

Besides simply formatting the way floating point values appear on your programs,
the float format package also rounds floating point values (similar to the way Infor-
mix rounds floating point values) and provides some "acceptable value" logic.

Rounding

When you define a float format, you can set a precision value. By setting the preci-
sion value, you determine how many decimal places should follow a float field.

If you set the precision value to two, all float fields will evaluate to the hundredths
position. Likewise, if precision is set to three, floating point values will evaluate to
the thousands position.

If a user, however, enters a floating point value with more digits trailing the deci-
mal than the precision value allows for, the float format package rounds the value
to match the precision setting.

1,234.56 1,234.567

Precision set to two Precision set to three

Fitrix Case Tools New Features 4.12

2-6 Float Format

Example

Consider a field that has been defined to use a custom float format containing a pre-
cision value of two. When a program user enters a 1,234.567 in the field, the float
format package rounds the value to 1,234.57.

Notes

• The float format package is particularly valuable for fields representing col-
umns defined as decimal with no scale (decimal(12)). These are floating deci-
mals, but Informix screen I/O commands treat them as if they had a scale of 2
(decimal(12,2)). This inconsistency results in misleading screen displays and
apparent rounding errors in the screen display of calculations. The float format
package guarantees that what you see is what you want to see, and what you see
is what you get.

• If you use the float format package with fixed decimal columns, make sure that
the precision value you set matches the scale for that column. For example a
decimal(12,2) column should use a float format definition that has precision set
to two.

1,234.567

Given a precision
value of two, when the
user enters...

...the following value
is displayed.

1,234.57

Fitrix Case Tools New Features 4.12

Float Format Functionality 2-7

Acceptable Values

Frequently, you may want to allow program users to enter several different charac-
ters that evaluate to a single display character. This type of logic is very common in
fields representing date columns. The user can enter 01-01-1994 and the value will
be displayed as 01/01/94. In this case, the dash (-) character is interpreted properly
and converted to a slash (/).

The float format package lets you do much of the same with float fields. This abil-
ity is known as "acceptable values." In other words, you can create formats that
don’t impose a strict syntax for the user to remember.

Consider another example. Quite often, negative values are displayed in parenthe-
ses. Your user, however, may enter negative values with a minus symbol. You can
set up the float format package to recognize a minus and display it as a left paren-
thesis.

Refer back to the cgxffmtr table on page 2-4. Notice that several columns are of
type char(7), such as the front_minus column. All of the char(7) type columns can
contain acceptable value characters except for the front_symbol and back_symbol
columns.

-1,234.56

When the user
enters...

...the following value
is displayed.

(1,234.56)

Fitrix Case Tools New Features 4.12

2-8 Float Format

Example

If you want the front_minus to accept both a minus sign and a left parenthesis,
define the front_minus and back_minus columns as follows:

When the user enters a negative value preceded by a minus sign, the value is
accepted and reformatted to display within parentheses.

Notes

• You can specify up to seven acceptable values for the following columns:

thousand_separator
decimal_separator
front_minus
front_plus
back_minus
back_plus

• You cannot use the same character in more than one definition. For example,
you cannot have a comma (,) as both a decimal_separator and a
thousand_separator.

• In each of these columns, only the first symbol is displayed. All the other sym-
bols become the "acceptable value" symbols.

Column Name Value Description

front_minus (- Puts negative values into parentheses,
but accepts both a minus sign and a left
parenthesis.

back_minus) Puts a right parenthesis on the end of a
negative number.

Fitrix Case Tools New Features 4.12

Applying Float Formats to Screens 2-9

Applying Float Formats to Screens

Once you define a float format, you can specify the field(s) it applies to. This spec-
ification takes place within your form specification (*.per) file.

The float_fmt Line

You can apply a float format definition to any float or decimal field. To do so, you
must add the float_fmt line to your *.per file.

Syntax

The float_fmt line is placed in either the input 1 or input 2 section of a .per file.
You can pass the float_format_code value from the cgxffmtr table or a p_
record value. Use the following syntax:

float_fmt = field=field, format_key="float_format_code"

float_fmt = field=field, format_key=p_variable

Example

This example, applied to scr_demo 3, customizes the unit_price field to use
ITL, the Italian float format definition.

input 2
 table = items
 join = items.order_num = orders.order_num
 order = item_num
 arr_max = 100
 autonum = item_num
 math = total_price = quantity * unit_price
 lookup = name=stock_num, key=stock_num, table=stock,
 filter=stock_num = $stock_num, into=description
 lookup = name=stock_manu, key=manu_code, table=stock,
 filter=stock_num = $stock_num and manu_code = $manu_code,
 into=unit_price
 lookup = key=manu_code, table=manufact, filter=manu_code = $manu_code
 zoom = key=stock_num, screen=stockzm, table=stock, noautozoom
 zoom = key=manu_code, screen=stk_mnu, table=stock,
 filter=stock.stock_num = $stock_num
 float_fmt = field=unit_price, format_key="ITL"

Float Format Line

Fitrix Case Tools New Features 4.12

2-10 Float Format

The resulting program looks as follows:

In most cases, you would want to convert every decimal field to reflect the same
float format definition. In this example, however, only one field uses the ITL (Ital-
ian) definition. The other fields receive the default definition, which is defined by
the DBFORMAT variable.

Notes

Although the float format package expands your ability to create language indepen-
dent code, there are a few caveats you should consider:

• You cannot use the Form Painter to apply float format definitions to fields. You
must use a text editor and add each float_fmt line by hand. The Form
Painter, however, preserves float_fmt lines. So if you have modify a .per
file to include float format logic, you can still open and update that file using
the Form Painter.

• If you have created math logic based on a p_ record value, you must change
your code so that this math logic is performed in the q_ record.

• If you have the same decimal field on a header screen and a browse screen, you
must add a float_fmt line to both *.per files.

Notice the unit_price field.
It now uses the ITL float format.

Notice the unit_price field. It now
uses the ITL float format.

Fitrix Case Tools New Features 4.12

Applying Float Formats to Screens 2-11

• If you use an invalid float format definition, decimal fields are formatted
according to the DBFORMAT variable, which has a default precision of 2.

Float Format Logic

For every float_fmt line you add, the Fitrix Screen Code Generator creates
multiple lines of decimal format logic. This logic is added to the *.4gl file that cor-
responds with the .per file.

Example

Building on the previous example, the Fitrix Screen Code Generator creates the fol-
lowing code for the unit_price field. This code is added to the
lld_display() function in detail.4gl:

As you can see, the Fitrix Screen Code Generator surrounds the float format logic
with several block tags. These tags give you a point in the code where you can add
your own custom logic via extension (*.ext) and trigger (*.trg) files.

#_float_formatonly - Format the decimal
 #_fl_code_unit_price
 let fl_code = "ITL"
 #_fl_length_unit_price
 let fl_length = 10
 #_fl_attr_unit_price
 let fl_attr = ""
 #_fl_float_unit_price
 call fmt_only(
 q_items[m + n].unit_price, fl_code, fl_length, fl_attr)
 returning p_items[m + n].unit_price

 display p_items[m + n].* to s_items[n].* attribute(red)

Fitrix Case Tools New Features 4.12

2-12 Float Format

Applying Float Formats to Reports

You can apply a float format to a Fitrix Report program much like you do to a
Fitrix Screen program. When used with reports, the float format logic customizes
the way a column appears on your report output. For each column you want to
apply a float format to, you must create a float_fmt line in the report.ifg
file.

The float_fmt Line

To format a report column, you place the float_fmt line in the select section of
the report.ifg file. This line instructs the Fitrix Report Generator to apply the
float format definition you specify to the report column.

Syntax

The float_fmt line is placed in the select section of the report.ifg file. You
can either pass it the float_format_code value from the cgxffmtr table.
The float_fmt line uses the following syntax:

float_fmt = field=table.column, format_key="float_format_code"

Example

This example applies the ITL float format to the items.total_price column.

select
 name = Demo Select
 tables = customer, orders, items, stock
 join = stock.manu_code = items.manu_code and stock.stock_num = items.stoc
k_num and orders.customer_num = customer.customer_num and items.order_num = orde
rs.order_num
 order = customer.customer_num
 float_fmt = field=items.total.price, format_key="ITL"

end

ITL Float
Format Line

Fitrix Case Tools New Features 4.12

Applying Float Formats to Reports 2-13

After adding the float_fmt line, you can build your report program. When you
run it, the float format that you specified will appear on your report. In this exam-
ple, the total_price column is using the ITL float format definition:

As you can see, float format logic for report programs doesn’t align the formatted
column correctly. To fix this, you can add a format_length indicator to the
float format line in your report.ifg file.

select
 name = Demo Select
 tables = customer, orders, items, stock
 join = stock.manu_code = items.manu_code and stock.stock_num = items.stoc
k_num and orders.customer_num = customer.customer_num and items.order_num = orde
rs.order_num
 order = customer.customer_num
 float_fmt = field=items.total.price, format_length=12, format_key="ITL"

end

Format
Length Value

Fitrix Case Tools New Features 4.12

2-14 Float Format

When you set the format_length value to the appropriate length, the formatted
column is aligned correctly.

3
Translating Y/N
Fields

A powerful feature of the Fitrix CASE Tools is the ability to create programs that
can be translated into other languages. With the 4.12 Fitrix Screen Code Generator,
you can streamline your efforts to create translatable programs.

This section covers the following topics:

n Overview

n Applying Y/N Logic to Screens

n Applying Y/N Logic to Reports

Fitrix Case Tools New Features 4.12

3-2 Translating Y/N Fields

Overview

Creating translatable programs can take some time. A big part of the process
involves populating the stxlangr table with rows of translation strings. Many
times these strings are very similar, as in the case of Y/N fields. Most Y/N fields are
the same size and accept the same values.

In the past, to make a Y/N field translatable, you had to create two rows in the
stxlangr table: one row for the Y value and one row for the N value. If your
application had 10 Y/N fields, you had to create 20 rows. The 4.12 Fitrix Screen
Code Generator simplifies this task. Instead of defining each Y/N field individu-
ally, you can define them all at once.

Consider the following form, which contains five Y/N fields:

With the 4.11 Fitrix Screen Generator, the stxlangr table would look as follows:

ENG|credit_card.gold_card|ALL|N|N|
ENG|credit_card.gold_card|ALL|Y|Y|
ENG|credit_card.ext_limit|ALL|N|N|
ENG|credit_card.ext_limit|ALL|Y|Y|
ENG|credit_card.quick_cash|ALL|N|N|
ENG|credit_card.quick_cash|ALL|Y|Y|
ENG|credit_card.buy_safe|ALL|N|N|

Fitrix Case Tools New Features 4.12

Overview 3-3

ENG|credit_card.buy_safe|ALL|Y|Y|
ENG|credit_card.atm_access|ALL|N|N|
ENG|credit_card.atm_access|ALL|Y|Y|

With the new 4.12 Fitrix Screen Code Generator, only two rows are required.

ENG|YES.NO|ALL|Y|Y|
ENG|YES.NO|ALL|N|N|

Besides making fields easier to translate, this new logic also automatically validates
your Y/N fields. For example, if the user places a O in the field instead of a Y, the
program reports an error.

Fitrix Case Tools New Features 4.12

3-4 Translating Y/N Fields

Applying Y/N Logic to Screens

You can apply the new Y/N logic using the Form Painter or directly to your *.per
file with a text editor.

Using the Form Painter

The most automatic way to apply this new functionality is using the Form Painter.
Begin by starting the Form Painter and loading your form. Next, select the Y/N
field you want to use and press [CTRL]-[z].

In the Define Field window, place YES_NO in the Translate field:

Save your form, regenerate 4GL, and remake your program.

Note

Although you place YES_NO in the Translate field, it is not really a translation
context. This value acts as a switch and uses the ALL translation context.

Fitrix Case Tools New Features 4.12

Applying Y/N Logic to Screens 3-5

Using a Text Editor

Open your *.per file using vi or some other text editor. In the appropriate section (in
this case input 1), insert the following line:

input 1
...
translate = field_name YES_NO

For example, if you want to translate the gold_card field, your input 1 section
would look as follows:

input 1
 table = credit_card
 key = card_number
 filter = 1=1
 lookup = name=custlk, key=customer_num, table=customer,
 into=fname, into=lname,
 filter=customer.customer_num = $customer_num
 zoom = key=customer_num, screen=custzm, table=customer,
 from=customer_num
 translate = gold_card YES_NO

As you can see, the translate line contains the field name and the YES_NO switch.

If you have multiple Y/N fields, you should add one translate line for each field:

input 1
 table = credit_card
 key = card_number
 filter = 1=1
 lookup = name=custlk, key=customer_num, table=customer,
 into=fname, into=lname,
 filter=customer.customer_num = $customer_num
 zoom = key=customer_num, screen=custzm, table=customer,
 from=customer_num
 translate = gold_card YES_NO
 translate = ext_limit YES_NO
 translate = quick_cash YES_NO
 translate = buy_safe YES_NO
 translate = atm_access YES_NO

Fitrix Case Tools New Features 4.12

3-6 Translating Y/N Fields

Applying Y/N Logic to Reports

You can also apply Y/N logic to reports. For example, you may have a one charac-
ter column in your database that contains either Y values or N values. By setting up
two new stxlangr records, you can change the way these values appear on your
reports.

Syntax

To translate a Y/N report column, you must add a new section to your
report.ifg file called language. This section uses the following syntax:

language
translate = table.column YES_NO

end

Typically, the language section follows the select section within the
report.ifg file. If you wanted to translate multiple fields, the syntax is as fol-
lows:

language
translate = table.column YES_NO
translate = table.column2 YES_NO
...

end

Example

Suppose you want a Y/N column to appear in its Italian equivalent on a report. You
could define the following records in stxlangr:

|ITL|YES.NO|ALL|Y|S|
|ITL|YES.NO|ALL|N|N|

In your report.ifg file, set up a new language section:

language
translate = stock.in_stock YES_NO

end

Generate and compile your report, then at runtime, specify:

fglgo *4gi -l ITL

Fitrix Case Tools New Features 4.12

Applying Y/N Logic to Reports 3-7

Your report runs and you see “S’s” in place of “Y’s” in the in_stock column.

When you run fglgo *4gi without the -l ITL language flag:

Notice the S in the
In Stock field

Notice the Y in
the In Stock field

Notice the S in the
In Stock field
Notice the Y in
the In Stock field

Fitrix Case Tools New Features 4.12

3-8 Translating Y/N Fields

4
Screen Hooking
Logic

The 4.11 version of the Fitrix CASE Tools provided a new function to handle
screen switching logic. This function, called socketManager(), established a
new method for hooking different screen types to Fitrix Screen and Report pro-
grams.

The socketManager() function created a standard method for hooking screens
into an input program. However calling socketManager() in a report program
pulled in a number of unnecessary functions. To reduce this overhead, a new library
file called sktSwtch.4gl and a new trigger called socket_items were cre-
ated.

This chapter covers the following topics:

n Overview

n The socket_items Trigger

Fitrix Case Tools New Features 4.12

4-2 Screen Hooking Logic

Overview

To understand the need for a new function and trigger, consider the case of a simple
report program that includes a query screen. Before the report is run, the query
screen appears allowing users to enter selection criteria for the report.

A query screen is hooked to a report program via the socketManager() func-
tion. This function links in all of the screen handling logic necessary to run the
query screen. The socketManager() function, however, does not stop there. It
also pulls in screen handling logic for other screen types, none of which are being
used in the report program. A simple report program can end up being much larger
than necessary.

To simplify the amount of code linked in by the socketManager() function,
socketManager()’s screen switching mechanism was extracted and placed in
the new sktSwtch.4gl file. The functions in this file evaluate the screen type,
which you specify using the new socket_items trigger. Once the screen type is
known, only the appropriate functions for that screen type are linked in.

Using new screen-hooking logic, you can reduce the
size of your programs.

filelist.RDS

72 lines

*.4gi

213K

filelist.RDS

145 lines

*.4gi

293K

4.11 Report Program 4.12 Report Program

Fitrix Case Tools New Features 4.12

The socket_items Trigger 4-3

The socket_items Trigger

If you want, you can look at how the functions in sktSwtch.4gl work using the
Informix debugger or some other method. This file is located in
$fg/lib/scr.4gs. For the most part, however, you can ignore what goes on
"behind the scenes." Most important to you is understanding how to incorporate the
new screen-hooking logic into your programs.

A Quick Review

If you are unfamiliar with hooking in screens to your programs, you might want to
consult the 4.11 Screen Technical Reference. For those who are familiar with this
process, a quick review is in order.

In all, the Fitrix Screen Code Generator recognizes nine different screen types.
These screen types consist of main screens, known as header and header/detail
screens. For each program, you create a single main screen. In addition to main
screens, there are secondary screens that you hook to your main screen. These sec-
ondary screens include zoom, browse, add-on header, add-on detail, extension,
view header, and view detail.

Of all the secondary screens, browse screens are hooked in automatically and zoom
screens and hooked in via the Form Painter. All other screen types, however, must
be manually hooked to your program via an extension or trigger file. In general,
you use the following steps to build and hook in secondary screens:

1. Build the screen image using either the Form Painter or a text editor to create
the form specification (*.per) file.

2. Specify the program condition that initiates the secondary screen and create
4GL logic in an extension or trigger file that evaluates for this condition.

3. When the above condition is met, place a call to the socketManager()
function specifying the screen name, type, and flow.

4. Add the screen and function names to the switchbox_items trigger in
either the default section of your trigger file or apply it to main.4gl in the
extension file.

Fitrix Case Tools New Features 4.12

4-4 Screen Hooking Logic

Adding the socket_items Trigger

The socket_items trigger specifies the screen type of the screen you are hook-
ing in. For every screen identified in the switchbox_items trigger, you should
create a corresponding socket_items trigger. Both are placed in the default sec-
tion of a trigger file or, if more appropriate, they can be applied to main.4gl in an
extension file.

The socket_items trigger cannot be used alone; it must accompany the
switchbox_items trigger:

Syntax

Use the following syntax to add the socket_items trigger to a trigger or exten-
sion file:

default

switchbox_items
scr_name function
[scr_name function...];

socket_items
scr_type
[scr_type...];

Use the following syntax if you use socket_items in an extension file:

start file "main.4gl"

switchbox_items
scr_name function
[scr_name function...];

socket_items
scr_type
[scr_type...];

Example

Consider again the simple report program mentioned previously. If you are familiar
with the Fitrix CASE Tools demonstration programs, you may also want to start
rpt_demo 4.

Fitrix Case Tools New Features 4.12

The socket_items Trigger 4-5

This is a simple report program built from the customer table, which is part of your
demonstration data. Prior to running, this report program displays a query screen
that lets you build the selection criteria for the report:

This query screen is hooked by the following extension file:

#---
add the switchbox and socket items to main
#---
switchbox_items
 query S_query;
socket_items
 query;

#---
add the scr library to the Makefile
#---
start file "Makefile"
 libraries
 $(fg)/lib/scr.a;

#---
add some working counter variables to midlevel.
#---
start file "midlevel.4gl"
 function define ml_filter
 m smallint,
 n smallint;

#---
call the query function and get the filter clause back.
#---
after block ml_filter sel_filter
 while true

call socketManager("query", "query", "default")
 let n = fgStack_pop()

n = 0 means was hit - nothing returned
if n = 0
then

Fitrix Case Tools New Features 4.12

4-6 Screen Hooking Logic

 let int_flag = true
call ct_int_exit()
if we return from ct_int_exit, that means the user wanted to continue
continue while

else
let sel_filter = sel_filter clipped, " and ("
for m = 1 to n

let sel_filter = sel_filter clipped, fgStack_pop()
end for
let sel_filter = sel_filter clipped, ")"
exit while

end if
end while ;

Note that the name of the screen in this case is query. So query is both the screen
name and screen type.

Once you add this extension file to the base.set file and run fg.make to merge
and compile the code, screen handling logic is linked into your program.

Notes

Although the socket_items trigger eliminates a number of unnecessary func-
tion calls, it is not a required trigger as is the switchbox_items trigger. You
can continue to hook in screens using the 4.11 method. If you do decide to use the
socket_items trigger, keep the following items in mind.

• In all, the socket_items trigger recognizes nine different item types:

zoom
query
add-on header
add-on detail
extension
view header
view detail
single_function
custom

• The single_function item, lets you pass a function to the switchbox.

• The custom item lets you build custom screen types and link in your own
screen handling logic.

• The Form Painter also supports the socket_items trigger.

Part Three

Report New
Features

Fitrix Case Tools New Features 4.12

5
Report Scheduling

Scheduling allows you to preset a desired runtime, and thus can be used to free sys-
tem resources during peak hours.

This section covers the following topics:

n Overview

n Implementation

n Scheduling Code in the Library

n Generated Code in midlevel.4gl

Fitrix Case Tools New Features 4.12

5-2 Report Scheduling

Report Scheduling Overview

Scheduling is a tool that allows you to predetermine when report output will be
generated. The normal process for generating a report.out file is as follows:
create a report.ifg file, generate code, compile code, and run. With schedul-
ing, you can delay program execution by specifying a desired runtime.

The scheduling process is shown in the following diagram:

Report scheduling is most useful when report generation would be a burden to your
system. Since some reports may be highly system-intensive, a better time for report
generation may be after peak hours. Report scheduling is the tool by which to
accomplish this.

Store inRun Collect

RetrievePreset Schedule Run

selection
criteria database

Query
screen

report criteriaruntime
occurs

Stop

Input and
storage
phase

Retrieval
and output
phase report

report

Fitrix Case Tools New Features 4.12

Implementation 5-3

Implementation

To implement the scheduling feature, simply enter the word "schedule" in your
report.ifg file. You may type schedule anywhere in the file, provided it’s
only placed between other sections. The following piece of code from a sample
report.ifg file shows how this may be done:

Three New Functions

When scheduling is implemented, the Report Generator will create three new func-
tions in the midlevel.4gl file:

function ml_schedule()

The function ml_schedule has two primary responsibilities: it gathers and
stores selection criteria for the report, and later retrieves the stored criteria and
prepares the report.

attributes
 A0 = today using "MM/DD/YY"
 A1 = constant "Customer Listing"
 A2 = pageno using "<<<<<"
 A3 = customer.customer_num
 A4 = customer.customer_num
 AA = items.total_price, subt=Y
 A6 = orders.order_num
 A7 = orders.order_date using "MM/DD/YY"
 A8 = stock.description
 A9 = stock.stock_num
 A = stock.manu_code
 AB = customer.customer_num
 AC = sum(items.total_price)
 AD = sum(items.total_price)
end

schedule

select
 more = items.order_num
 more = items.item_num
 name = Demo Select
 ...

Fitrix Case Tools New Features 4.12

5-4 Report Scheduling

First ml_schedule gathers selection criteria by calling the ml_filter
function (discussed in next section), also located in midlevel.4gl. Then
ml_schedule calls the ml_put_filter function to store this criteria into
the stxfiltr table. At this point, program execution stops. This concludes
the storage phase.

When it is time to retrieve selection criteria back from the stxfiltr table,
ml_schedule calls the function ml_get_filter to accomplish this task.
Once criteria has been retrieved, the report is ready to run and output is gener-
ated.

function ml_put_filter(job_id)

Stores the selection criteria into the stxfiltr table. This way, selection crite-
ria can be used again when the program is run at a later time.

function ml_get_filter(job_id)

Retrieves selection filter information stored in stxfiltr when the report is
running in background mode.

Incorporating Selection Criteria

Selection criteria screens are often used for the manual input of criteria at runtime.
In reports that do not have some type of query screen, selection criteria is found in
ml_filter, which contains the filter criteria provided by the report.ifg file
at the time that code was generated. Any code that calls a criteria screen should be
placed within this function.

For information on using scheduling with Menus, refer to the Menus User Refer-
ence.

Scheduling Example

After generating code and compiling, you will need to store selection filter infor-
mation to stxfiltr. Type the following line at the UNIX prompt to accomplish
this:

fglgo /path/filename.4gi -s job_id_code

Fitrix Case Tools New Features 4.12

Implementation 5-5

The -s flag specifies that selection filter information will be stored in stxfiltr,
and program execution doesn’t occur at this time. You may select any job_id_code
you wish, provided that it is less than 16 characters in length. Remember the
job_id_code, as you will need to use it again when passing the -b flag to execute
the program.

When it is time to run your report, selection filter information must be retrieved
back from stxfiltr. To do this, try using the UNIX echo and at commands:

echo "fglgo /path/filename.4gi -b job_id_code" | at time

When the scheduled report is run at the chosen time, the -b flag is passed along
with the same job_id_code that was used during the storage phase of the report. The
result will be program execution, and your newly generated report.out file (if
you’ve chosen this as your destination).

and the
program is
executed.

Preset
runtime
occurs...

Fitrix Case Tools New Features 4.12

5-6 Report Scheduling

Scheduling Code in the Library

In the report library, scheduling code gets called from flow control.

flow_control

The flow_control function, in $fg/lib/report.4gs/flow.4gl, is as
follows:

if ct.sel_filter is null
then
 if not ml_schedule()
 then
 call ml_filter()
 end if
end if

If scheduling has been added to your program, the generated ml_schedule
returns a value of true. If scheduling has not been added to your program, then a
stub function (discussed next) links into your program and a value of false is
returned. This causes the call to ml_filter to get executed and the program runs
as it would without scheduling being implemented.

stub function

In $fg/lib/stubs.4gs/ml_sched.4gl, a stub function has been added for
ml_schedule

##
function ml_schedule()
returning false
##
This is a stub function for ml_schedule(). It will always return
false. It will cause ml_filter() to be called in the normal way
for those report programs that do not use the new Generated Report
Scheduling provided by the locally generated ml_schedule().
#
 #_define_var - Define local variables
 #_ret - Returning value
 return false
end function
ml_schedule()

Fitrix Case Tools New Features 4.12

Generated Code in midlevel.4gl 5-7

Generated Code in midlevel.4gl

As explained in the Three New Functions section, three functions have been added
to the midlevel.4gl file. Each function and its included code is listed below.

ml_schedule

##
function ml_schedule()
##

 #_define_var - Define local variables
 define
 #_local_var - Local variables
 sel_flag smallint, # (boolean) Running in ’select only’ mode?
 bg_flag smallint, # (boolean) Running in the background?
 job_id like stxfiltr.unique_id

 #_init - Initialize
 let sel_flag = false
 let bg_flag = false

 #_set_select - Set job_id if running in select only mode
 let job_id = get_argument("-s")

 #_check_for_mode - Not null job_id means running in select only mode
 if job_id is not null
 then
 #_set_sel_flag - Set sel_flag for select only mode run
 let sel_flag = true
 else
 #_set_background - Set job_id if running in background
 let job_id = get_argument("-b")

 #_check_background - Not null job_id means running in background
 if job_id is not null
 then
 #_set_bg_flag - Set bg_flag for background run
 let bg_flag = true
 end if

 end if

 #_check_load - Load the data from the stxfiltr table or from the
 # input screen depending on if we’re running in the background.
 if bg_flag
 then
 #_get_filter - Load filter data from stxfiltr table

Fitrix Case Tools New Features 4.12

5-8 Report Scheduling

 call ml_get_filter(job_id)

 #_no_error_prompt - Set no error prompting for background run
 call err_hand_prompt_off()
 else
 #_else_load - Call ml_filter() to build selection filter
 call ml_filter()
 end if

 #_check_save - Save the selection criteria to the sel_filter or
 # to the disk if running in select only mode.
 if sel_flag
 then
 #_put_filter - Save filter data in stxfiltr table
 call ml_put_filter(job_id)

 #_exit_program - Exit program after saving filter data
 call exit_program(0)
 end if

 #_ret - Returning value
 return true

end function
ml_schedule()

ml_put_filter

##
function ml_put_filter(job_id)
##
This function saves the selection criteria out to the stxfiltr
table for running the program at a later time.
#

 #_define_var - Define local variables
 define
 #_local_var - Local variables
 job_id like stxfiltr.unique_id,
 tmpStr char(200), # Working string
 filt_len smallint, # Length of selection filter (sel_filter)
 n smallint # Working number

 #_init - Initialize
 let filt_len = length(sel_filter)

 #_cleanup - Delete any existing data in stxfiltr
 delete from stxfiltr where stxfiltr.unique_id = job_id

 #_save_data - Store selection filter data into stxfiltr
 for n = 1 to filt_len step 200

Fitrix Case Tools New Features 4.12

Generated Code in midlevel.4gl 5-9

 #_set_data - Grab 200 characters of filter at a time
 let tmpStr = sel_filter[n, n+199]

 #_insert_data - Insert data into table
 insert into stxfiltr values (job_id, n, tmpStr)
 end for

end function
ml_put_filter()

ml_get_filter

##
function ml_get_filter(job_id)
##
This function loads selection filter information stored in stxfiltr
when the report is run in background mode.
#

#_define_var - Define local variables
 define
 #_local_var - Local variables
 job_id like stxfiltr.unique_id,
 tmpStr char(200), # Working string
 n smallint # Generic number

 #_init - Initialize

 #_build_curs - Build the cursor on the filter table
 let tmpStr =
 "select ",
 "seq_no, ",
 "sel_filter ",
 "from stxfiltr ",
 "where stxfiltr.unique_id = ? ",
 "order by seq_no "

#_prep_curs - Prepare the string for execution
 prepare filt_prep from tmpStr

 #_declare_curs - Declare cursor from the string
 declare sel_curs cursor for filt_prep

 #_open_curs - Open cursor for retrieving data from stxfiltr
 open sel_curs using job_id

 #_read_data - Read the rows from the filter table
 while true
 #_fetch - Fetch the data
 fetch next sel_curs into n, tmpStr

 #_notfound - No more rows found
 if sqlca.sqlcode = NOTFOUND then exit while end if

Fitrix Case Tools New Features 4.12

5-10 Report Scheduling

 #_build_filter - Build selection filter with retrieved data
 let sel_filter[n,n+199] = tmpStr
 end while

 #_close_curs - Close the cursor
 #_cleanup - Delete stxfiltr rows
 delete from stxfiltr where stxfiltr.unique_id = job_id

end function
ml_get_filter()

6
Column Aliasing

Previous versions of the Fitrix Report Code Generator required you to use unique
column names in your report specification (*.ifg) files. Using the 4.12 Fitrix Report
Code Generator, unique column names are no longer necessary. If you want to use
two columns from different tables that have the same name, you can give one col-
umn a unique alias in the report.ifg file.

This chapter covers the following topics:

n Overview

n Setting up a Column Alias

n Changing the Column Format

Fitrix Case Tools New Features 4.12

6-2 Column Aliasing

Overview

You may encounter a situation in which you want to build a report from two differ-
ent columns that have the same name but contain different data. Or you may want
to use the same column twice and on the second use assign a different "using" for-
mat. By employing column aliasing, you can do both.

Column aliasing simply lets you assign an alias to a column name. For example,
you may have two tables (call them table A and table B) that both contain a column
named quantity. In order to show this column from both tables, you must assign an
alias to one of them.

tableA.quantity tableB.quantity

tableB.quantity alias qtyB

rpt.qtyB

tableA.quantity

rpt.quantity

Two tables with
columns that
have the same
name.

One column
is aliased in
the report.ifg
file.

The Report
Code Generator
builds unique
record values.

Both columns
are used in
the report.

Fitrix Case Tools New Features 4.12

Setting up a Column Alias 6-3

Setting up a Column Alias

You can assign a column alias to any column in your report.ifg file. When
you create an alias, the alias name is used in the appropriate usg, rpt, curs, or
curs_next record instead of the actual column name.

The alias Line

To apply an alias to a column you must specify an alias in the report.ifg file.
In the attributes section of this file, you can follow a column definition with the
alias keyword and the alias name you want to use.

Syntax

When setting up an alias, use the following syntax:

table.column alias alias_name

Example

Suppose you have a report that shows the quantity of your stock at three different
stores. The attributes section of the report.ifg file may look as follows:

attributes
 A0 = today
 A1 = constant "Orders"
 A2 = pageno using "<<<<<"
 A3 = orders.customer_num using "<<<<<<<<<<<"
 A5 = orders.order_date
 A6 = stock.stock_num
 A7 = stock.description
 A8 = stock.unit_price
 AA = storeA.quantity
 AB = storeB.quantity
 AC = storeC.quantity
end

As you can see, there are three tables that have a quantity column. For at least two
of these tables, you must assign an alias. In this case, you might want to assign an
alias to all three to make the resulting code easier to read. For example, you might
want the following aliases: qtyA, qtyB, and qtyC.

The resulting attributes section should look as follows:

Fitrix Case Tools New Features 4.12

6-4 Column Aliasing

attributes
 A0 = today
 A1 = constant "Orders"
 A2 = pageno using "<<<<<"
 A3 = orders.customer_num using "<<<<<<<<<<<"
 A5 = orders.order_date
 A6 = stock.stock_num
 A7 = stock.description
 A8 = stock.unit_price
 AA = storeA.quantity alias qtyA
 AB = storeB.quantity alias qtyB
 AC = storeC.quantity alias qtyC
end

And the resulting rpt record definition in globals.4gl should look as follows:

rpt record
customer_num like orders.customer_num,
order_date like orders.order_date,
stock_num like stock.stock_num,
description like stock.description,
unit_price like stock.unit_price,
qtyA like storeA.quantity,
qtyB like storeB.quantity,
qtyC like storeC.quantity

end record,

Notes

Keep the following issues in mind when you create a column alias.

• Alias names follow the same naming conventions as column names. For exam-
ple, alias names should not exceed 18 characters.

• You cannot create an alias for a formonly field.

• If you need to refer to the aliased column in a different part of the
report.ifg file, you should use the actual table and column name. For
example, if you want to sum an aliased column, the attribute definition should
read:

 AA = storeA.quantity alias qtyA
 AB = storeB.quantity alias qtyB
 AC = storeC.quantity alias qtyC

AD = sum(storeA.quantity)

Fitrix Case Tools New Features 4.12

Changing the Column Format 6-5

Changing the Column Format

Besides showing values for columns with the same name, you can apply Column
Aliasing in another manner. Suppose you want to show the same column in sepa-
rate locations on your report. In one location you want to format the column flush
left and in the second location you want to use the default formatting. You can use
column aliasing to accomplish this task.

Note

The example shown below is from report demonstration three. If you want to see
this scenario played out, type rpt_demo 3. Examine the report.ifg file
then run the Fitrix Report Code Generator and fg.make. Finally, run the report
then view the report.out file using fg.pager or a text editor.

The following lines show the attributes section of a report.ifg file.
Notice how the customer.customer_num and the order.order_num col-
umns are listed twice. On the first listing, an alias is used to format the columns
flush left. On the second listing, no using string is applied.

attributes
 A0 = today using "MM/DD/YY"
 A1 = constant "Customer Listing"
 A2 = pageno using "<<<<<"
 A3 = customer.customer_num alias customer_alias using "<<<<<"
 B3 = customer.customer_num
 A6 = orders.order_num alias order_alias using "<<<<<"
 B6 = orders.order_num
 B7 = customer.company upshift
 A7 = orders.order_date using "MM/DD/YY"
 A8 = stock.description
 AC = sum(items.total_price)
 AD = sum(items.total_price)
 AE = sum(items.total_price)
 A = stock.manu_code
 A9 = stock.stock_num
 AA = items.total_price
 C1 = constant "Report Demo 3"
end

Fitrix Case Tools New Features 4.12

6-6 Column Aliasing

When this report.ifg file is built and the report is run, the resulting report
looks as follows:

Notice how the Customer No and Order No columns are flush left in some places
(using the alias format) and flush right in other places (using the default format).

7
Concurrency

Concurrency checks stored data for integrity before processing that data into a
report. With concurrency, report program users can be sure that the data selected
for processing the report is as current and accurate as possible.

This section covers the following topics:

n Overview

n Implementing Concurrency

n Handling Concurrency Errors

n Code Examples

Fitrix Case Tools New Features 4.12

7-2 Concurrency

Overview

If you work with large report programs (ones that take several hours to complete),
you know how data can change while the report is running. For example, during
report processing, a user might delete data that appears on the report. Concurrency
addresses this problem. With concurrency, you gain the ability to check each
header row of a document before the data is printed. If the row is valid, the data is
printed and the program processes the next row. If there is an error, the program
sets a flag that you can handle programmatically.

In order to perform each check, concurrency builds and sorts a temporary table
prior to processing the report. This temporary table is base on the key column of the
header table. The key column uniquely identifies each row of the header table.
Next, using rowid, concurrency sequentially locks each row in the header table and
compares the current value with the temporary table value. Consider the following
graphic showing a simple case:

Header Table
Containing Report Values

Temporary Table
Containing Key Values

:101:Ludwig:Paul:94086: :101:

:102:Carole:Sadler:94117:

:103:Philip:Currie:94303:

:104:Anthony:Higgins:94026:

:105:Raymond:Vector:94022:

:106:George:Watson:94063:

:107:Charles:Ream:94304:

:102:

:103:

:104:

:105:

:106:

:107:

Fitrix Case Tools New Features 4.12

Overview 7-3

Although a key column value is required, you can also instruct concurrency to
check additional column values. For example, posting programs often evaluate an
ok_to_post column before posting a document. The following graphic expands
on the previous one by showing a concurrency report that evaluates both key and
non-key column values:

During concurrency’s locking and comparison logic, three errors can occur:

1. The document may be locked, meaning someone is altering the document at the
time of processing.

2. The document may be missing, meaning it was deleted.

3. The document may contain a value that has changed.

Customer Table
Containing Report Values

Temporary Table
Containing Key and Non-

Key Values

:101:Ludwig:Paul:94086:Y: :101:Y:

:102:Carole:Sadler:94117:Y:

:103:Philip:Currie:94303:Y:

:104:Anthony:Higgins:94026:Y:

:105:Raymond:Vector:94022:Y:

:106:George:Watson:94063:Y:

:107:Charles:Ream:94304:Y:

:102:Y:

:103:Y:

:104:Y:

:105:Y:

:106:Y:

:107:Y:

Fitrix Case Tools New Features 4.12

7-4 Concurrency

Consider the same example again. This time, however, notice how the ok_to_post
non-key value for Customer 102 has changed.

When a concurrency error occurs, a flag, known as the bypass flag, is set. It is up to
you to determine how you want to handle the error. For example, if the bypass flag
is set to indicate a value has changed, you may want to print a note on the report.

Within the concurrency code, there are different points with which you can merge
your own error handling logic (refer to "Handling Concurrency Errors" on page 7-
10 for more information).

The following steps summarize how concurrency logic works:

1. Select the key column(s) of the report into a temporary table.

2. Sort the rows in the temporary table using the order-by column.

3. Use rowid to lock the first row of the header table.

If the row is in transaction or missing, set the bypass flag.

4. Check for data integrity between the header table and the temporary table using
both key and non-key columns (if specified).

If the data does not match, set the bypass flag.

5. Process the detail lines for the header row.

6. Repeat the process for the next row in the header table.

Customer Table
Containing Report Values

Temporary Table
Containing Key and Non-

Key Values

:101:Ludwig:Paul:94086:Y: :101:Y:

:102:Carole:Sadler:94117:N:

:103:Philip:Currie:94303:Y:

:102:Y:

:103:Y:

Fitrix Case Tools New Features 4.12

Implementing Concurrency 7-5

Implementing Concurrency

Applying concurrency to a report program is a two-part process:

1. Set up the report.ifg file.

To set up the report.ifg file, you must alter the select section and add a
new section called concurrency.

2. Create custom code to handle concurrency errors.

Once the report program detects a concurrency error, it must know how to pro-
cess the error. Because each user handles errors differently, you must create
and merge your own custom logic to process them.

Setting up the report.ifg File

The report.ifg file contains all of the instructions necessary to build a report.
Because concurrency is a new feature, you must add a few more lines of instruc-
tions to the report.ifg file. These lines instruct the Fitrix Report Code Genera-
tor on how to build the 4GL code necessary to employ concurrency. As mentioned
above, to set up the report.ifg file you must add two new lines to the select
section and create a new concurrency section. If you are not familiar with
report.ifg files, consult your Report Code Generator Technical Reference.

Select

If you have experience creating report.ifg files, you already are aware of the
select section. This section contains information about how to build the report
such as table names, joins, and filters. A standard select section uses the follow-
ing syntax:

select
 more = table.column
[more = table.column]
table = table_name [, table_name, ...]
join = table.column = table.column [...]

filter = sel_criteria
order = table.column [, table.column, ...]

end

Fitrix Case Tools New Features 4.12

7-6 Concurrency

Each line in the select section provides a different instruction to the Report Code
Generator:

select: Designates this section in the report.ifg file. The select line must
always appear first.

more: Specifies a column that is required for processing but does not appear on the
report. Each column must have its own more line. For example, if your report con-
tains three columns that are required for processing but do not appear on the report,
you must create three separate more lines.

A common example is the ok_to_post column again. This column must be ref-
erenced to check for a posting flag, but it does not need to appear on the final
report.

tables: Specifies the tables used in the report. Unlike the more line, the tables
line does not have to be unique. You can reference multiple tables on the same line.

join: Specifies the columns that join the tables on the report.

order: Specifies the order that columns are fetched and processed.

end: Designates the conclusion of the select section.

Here is a typical select section for a simple report:

select
 more = items.item_num
 tables = customer, orders, items, stock
 join = stock.manu_code = items.manu_code and stock.stock_num = items.stoc
k_num and orders.customer_num = customer.customer_num and items.order_num = orde
rs.order_num
 filter = customer.customer_num > 104
 order = customer.customer_num,orders.order_num,items.item_num
end

When you implement concurrency instructions, the select section changes a bit
and several lines have a slightly different meaning. Perhaps the biggest change
involves separating out header table information from detail table information.
With concurrency, only header table information goes in the select section.
Detail table information is contained in the new concurrency section (described
later).

A select section that contains concurrency instructions uses the following syntax:

select

Fitrix Case Tools New Features 4.12

Implementing Concurrency 7-7

 more = table.column
[more = table.column]
table = table_name [, table_name, ...]
join = table.column = table.column [...]

filter = sel_criteria
order = table.column [, table.column, ...]

notfound = table.column [, table.column, ...]
 [save = table.column [, table.column, ...]]
end

While the select, more, and end lines mean the same, the table, join,
filter, and order lines take on a slightly new meaning. In addition, two new
lines (notfound and save) are added:

tables: Specifies the header table and reference tables used by the header table.
You now specify detail tables in the concurrency section.

join: Specifies joins between the header table and the tables referenced by the
header table. Again, you now specify joins involving detail tables in the concur-
rency section.

order: Specifies the order header columns are fetched and processed.

notfound: Specifies the key column. In order to apply concurrency you must
specify a key column that uniquely identifies each row in the header table. The
notfound line holds this value.

save: Specifies non-key columns that are selected to the temporary table. Unlike
the notfound line, the save line is optional.

The following code shows a select section modified to accommodate concur-
rency:

select
 more = items.item_num
 tables = customer
 filter = customer.customer_num > 104
 order = customer.customer_num
 notfound = customer.customer_num
 save = customer.company
end

In the case of this example, the join line is not necessary because there are no ref-
erence tables used by the header table (customer). The only joins that exist are
between detail tables, and these joins are specified in the concurrency section.
Also look at the notfound and save lines. These lines contain the header table
values that are selected into the temporary table before the report is processed.

Fitrix Case Tools New Features 4.12

7-8 Concurrency

Concurrency

Unlike the select section, which you may have been familiar with previously,
the concurrency section is a new section as of the 4.12 Fitrix Report Code Gen-
erator. This section passes instructions to the Generator concerning the detail table.
A standard concurrency section uses the following syntax:

concurrency
 cursor = detail_curs
 tables = table_name
 filter = table.column = ?
 filler = table.column
 join = table.column = table.column [...]
 order = table.column [, table.column, ...]
end

concurrency: Designates this section in your report.ifg file. The concur-
rency line must appear first.

cursor: Names the detail cursor. For now, the detail cursor must always be set to
detail_curs. This is a required line.

tables: Specifies both the detail table and the reference tables that are used by the
detail table.

filter: Specifies which columns to fetch from the detail table(s). The question mark
(?) is used because this value changes as key header values change. The question
mark represents a dynamic and changing value.

filler: Specifies the value of the header column passed to the question mark (?) in
the filter line.

join: Specifies the joins between the detail tables and the tables referenced by the
detail tables.

order: Specifies the order in which detail rows are fetched and processed.

Building on the previous example, the concurrency section takes on the follow-
ing values:

concurrency
 cursor = detail_curs
 tables = orders, items, stock
 filter = orders.customer_num = ?
 filler = customer.customer_num

Fitrix Case Tools New Features 4.12

Implementing Concurrency 7-9

 join = stock.manu_code = items.manu_code and stock.stock_num = items.stock_num
and items.order_num = orders.order_num
 order = orders.order_num, items.item_num
end

You should note, however, that the 4.12 Fitrix Report Code Generator can read a
syntax for the filter and join lines. Instead of building the join clause entirely on one
line, you can now break it up across several lines, for example consider the above
concurrency section again:

concurrency
 cursor = detail_curs
 tables = orders, items, stock
 filter = orders.customer_num = ?
 filler = customer.customer_num
 join = stock.manu_code = items.manu_code and
 join = stock.stock_num = items.stock_num and
 join = items.order_num = orders.order_num
 order = orders.order_num, items.item_num
end

Notice how two join lines have been added to make the join statement easier to
read. Also notice how the "and" clauses remain between each join. In reality, you
are not changing any of the information within the join line, you are simply format-
ting this information in a more readable manner. This same syntax applies to a long
filter lines as well.

Perhaps the most confusing lines in the concurrency section are the filter
and filler lines. These lines work together. The filter line specifies the
many side of the one-to-many relationship and the filler line specifies the one
side. The question mark acts as a dynamic value; it takes on the value of the each
header row, which is specified in the filler line.

When you finish adding concurrency instructions to your report.ifg file, you
must determine how to handle concurrency errors and the bypass flag. The next
section covers handling concurrency errors and provides a few error-handling
examples.

Fitrix Case Tools New Features 4.12

7-10 Concurrency

Handling Concurrency Errors

Properly setting up your report.ifg file is only part of employing concurrency.
You still need to create custom logic to handle concurrency errors. A concurrency
error is defined as any condition that sets the bypass flag. Typically, there are three
such conditions:

1. The document may be locked, meaning someone is altering the document at the
time of processing.

2. The document may be missing, meaning it was deleted.

3. The document may contain a value that has changed.

You can also create your own custom logic to handle additional conditions.

The next three examples illustrate some common ways to handle each type of con-
currency error mentioned above.

Example One: Displaying a Warning Message

During the concurrency locking logic, a condition may arise where a selected docu-
ment is already "in transaction" (i.e., the document is locked because a system user
is updating it). One way to handle this condition is to display a warning message to
the screen. Besides the warning message, however, you also have to reinitialize the
rpt record values so that the final report does not show data from this document.

The following extension file shows how to call a warning message and reset the
rpt record values. This extension file is built for rpt_demo 5.

Note

The warnbox function used in this example is part of the prog_ctl library,
which comes with the Enhancement Toolkit. This library contains compiled C
functions. If you are developing in an INFORMIX-RDS environment, you need
to run mkrunners. This script creates a custom pseudo-code runner (consult
your Enhancement Toolkit documentation).

##

Fitrix Case Tools New Features 4.12

Handling Concurrency Errors 7-11

start file "Makefile"
##
 libraries
 $fg/lib/prog_ctl.a
;

##
start file "globals.4gl"
##

define
 tmpStr char(40)
;

##
start file "lowlevel.4gl"
##

after block b_g_customer_num doc_locked_error
 let tmpStr="ALERT: ",
 curs.customer_num using "###",
 " IN TRANSACTION"
 call warnput(tmpStr)
 call warnbox()
;

after block on_detail on_bypass
 let rpt.order_date = null
 let rpt.description = null
 let rpt.order_num = null
 let rpt.manu_code = null
 let rpt.item_num = null
 let rpt.stock_num = null
 let rpt.total_price = null
;

after block b_g_customer_num init_bypass
 let tmpStr = null
;

The first block statement in this extension file simply adds the prog_ctl library
to the Makefile. The second block statement defines a variable. The third state-
ment builds the message text and calls the warnbox() and warnput() func-
tions. The fourth block statement sets the detail table values in the rpt record to
null and the fifth block statement sets the temporary message variable to null.

Fitrix Case Tools New Features 4.12

7-12 Concurrency

When you use this logic with rpt_demo 5, a message similar to the following
one appears when a document is in transaction:

In this case, the document with customer_num = 104 is being updated.
Besides showing this message, the detail lines associated with 104 are excluded
from the report:

Fitrix Case Tools New Features 4.12

Handling Concurrency Errors 7-13

Example Two: Writing A Message to the Report

Instead of the warning box, some report users would rather see a note on the report
itself when a concurrency error occurs. In this example, if a document has been
deleted or is currently being updated, a note appears on the report.

Add a formonly Field

To create a line for the note, a formonly field is added to the report.ifg file.
This field is placed on a row by itself with a dynamic print symbol at the end of the
line. The following code shows the on every row section of the report.ifg
file. The E1 tag signifies the formonly field. The [* symbols instruct the report to
only print this line when a value exists for it.

on every row
{
 [B3 [B6 [A7 [A8 [A9 [A [AA [*
 [E1 [*
}

The formonly field is defined as a character field. When an error occurs, an error
message will be written to the formonly field. The following code shows the
attributes section of the report.ifg file. Notice attribute E1. This attribute
defines the formonly field.

attributes
 A0 = today using "MM/DD/YY"
 A1 = constant "Customer Listing"
 A2 = pageno using "<<<<<"
 A3 = customer.customer_num using "<<<<<"
 B3 = customer.customer_num
 B6 = orders.order_num
 B7 = customer.company
 A7 = orders.order_date using "MM/DD/YY"
 A8 = stock.description
 AC = sum(items.total_price)
 AD = sum(items.total_price)
 A = stock.manu_code
 A9 = stock.stock_num
 AA = items.total_price
 C1 = constant "Report Demo 5"
 E1 = formonly.error type char(40)

This line sets the Formonly Field This line sets Dynamic Print

This line sets the Formonly Field

Fitrix Case Tools New Features 4.12

7-14 Concurrency

Create an Extension File

Once you have altered the report.ifg file, you must create an extension (*.ext)
file. The extension file contains custom logic to handle the error and write the mes-
sage to the formonly field. The following code shows an example extension file
that can be used with report demonstration 5.

##
start file "globals.4gl"
##

define
 tmpStr char(40)
;

##
start file "lowlevel.4gl"
##

before block b_g_customer_num init_bypass
 let rpt.error = null;

after block b_g_customer_num doc_locked_error
 let tmpStr="ALERT: ", curs.customer_num using "###", " IN TRANSACTION"
 let rpt.error = tmpStr
;

after block b_g_customer_num doc_deleted_error
 let tmpStr="ALERT: ", curs.customer_num using "###", " HAS BEEN DELETED"
 let rpt.error = tmpStr
;

after block on_detail on_bypass
 let rpt.order_date = null
 let rpt.description = null
 let rpt.order_num = null
 let rpt.manu_code = null
 let rpt.item_num = null
 let rpt.stock_num = null
 let rpt.total_price = null
;

after block b_g_customer_num init_bypass
 let tmpStr = null
;

Fitrix Case Tools New Features 4.12

Handling Concurrency Errors 7-15

Generate and Compile

After you alter the report.ifg file and create the above extension file, you must
generate (fg.report) and compile (fg.make) the report program. When the
program runs and encounters a concurrency error, the following message appears:

In this case, the message indicates that document 104 is in transaction.

Fitrix Case Tools New Features 4.12

7-16 Concurrency

Code Examples

The following code is taken from the midlevel.4gl and lowlevel.4gl files
in report demonstration five. Callout boxes have been added to show you good
locations to merge your own custom logic and the purpose of different functions
throughout the code.

midlevel.4gl

##
function ml_join()
##
#

 #_define_var - Define local variables

 #_err - Trap fatal errors
 whenever error call error_handler

 #_sel_join - Set the join criteria
 let sel_join =
 " 1=1"

end function
ml_join()

##
function ml_filter()
##
#

 #_define_var - Define local variables

 #_sel_filter - Set the filter criteria
 let sel_filter =
 " 1=1"

end function
ml_filter()

##
function ml_order()
##
#

 #_define_var - Define local variables

This line sets the join criteria. In
this case, no specific join has been
defined, so the default is simply "
1=1".

This line sets the join criteria. In
this case, no specific join has been
defined, so the default is simply "
1=1".

This line sets the join criteria. In
this case, no specific join has been
defined, so the default is simply "
1=1".

This line sets the filter criteria. In
this case, no specific filter has been
defined, so the default is simply "
1=1".

Fitrix Case Tools New Features 4.12

Code Examples 7-17

 #_sel_order - Set the order criteria
 let sel_order =
 " customer_num"

end function
ml_order()

##
function ml_getcount()
##
#

 #_define_var - Define local variables
 define
 #_local_var - Local variables
 syn_no smallint, # Synonym number
 n smallint, # Synonym counter
 sel_stmt char(4096) # Selection statement

 #_create_temp - Create the temp table for header rows
 select
 customer.rowid h_row,
 customer.company,
 customer.customer_num
 from
 customer
 where customer.rowid = 0
 into temp curs_temp with no log

 #_insert_temp - Select data into temp table
 let sel_stmt =
 "insert into curs_temp ",
 "select ",
 "customer.rowid, ",
 "customer.company, ",
 "customer.customer_num ",
 "from ",
 "customer "

 #_chk_translation - logic for translated fields
 if is_translated is not null
 then
 for syn_no = 1 to num_trans - 1
 #_build_synon - build synonyms
 let sel_stmt =
 sel_stmt clipped, ", stxlangr t", syn_no using "<<"
 end for
 #_write_last - write last synonym
 let sel_stmt =
 sel_stmt clipped, ", stxlangr t", num_trans using "<<"
 end if

 #_cont_getcount - Continue building getcount select

This line sets the join criteria. In
this case, no specific join has been
defined, so the default is simply "
1=1".

This line sets the specifies the order
in which header table rows are pro-
cessed. In this case,
customer_num is used.

This line sets the join criteria. In
this case, no specific join has been
defined, so the default is simply "
1=1".

This select statement builds the
temporary table. The columns are
taken from the order, not-
found, and save lines in the
report.ifg file.

This line sets the join criteria. In
this case, no specific join has been
defined, so the default is simply "
1=1".

This insert statement populates the
temporary table with data from the
actual header table.

Fitrix Case Tools New Features 4.12

7-18 Concurrency

 let sel_stmt = sel_stmt clipped," ",
 "where ",
 "(", sel_join clipped, ") and ",
 "(", sel_filter clipped, ")"

 #_set_ct_sel_stmt - Set the ct.sel_stmt variable for
 # display during error handling
 let ct.sel_stmt = sel_stmt clipped

 #_count_cursor - Prepare and execute the cursor

 #_prep_curs - Prepare the string for execution
 prepare get_count from sel_stmt

 #_execute_curs - Execute the string
 execute get_count

 #_set_row_count - Set number of row to process
 let ct.num_rows = sqlca.sqlerrd[3]

end function
ml_getcount()

##
function ml_define_cur()
##
#

 #_define_var - Define local variables
 define
 #_local_var - Local variables
 syn_no smallint, # synonym counter
 n smallint, # synonym counter
 sel_stmt char(4096) # Selection statement

 #_fetch_temp - Fetch data from the temp table
 let sel_stmt =
 "select ",
 "h_row, ",
 "company, ",
 "customer_num ",
 "from ",
 "curs_temp"

 #_chk_translation - logic for translated fields
 if is_translated is not null
 then
 for syn_no = 1 to num_trans - 1
 #_build_synon - build synonyms
 let sel_stmt =
 sel_stmt clipped, ", stxlangr t", syn_no using "<<"
 end for
 #_write_last - write last synonym

This line sets the join criteria. In
this case, no specific join has been
defined, so the default is simply "

This line builds the rpt_cursor
to fetch data from the temporary
table.

Fitrix Case Tools New Features 4.12

Code Examples 7-19

 let sel_stmt =

 sel_stmt clipped, ", stxlangr t", num_trans using "<<"
 end if

 #_include_order - Include any valid order criteria
 if sel_order is not null
 then
 let sel_stmt = sel_stmt clipped,
 " order by ", sel_order clipped
 end if

 #_set_ct_sel_stmt - Set the ct.sel_stmt variable for
 # display during error handling
 let ct.sel_stmt = sel_stmt clipped

 #_rpt_cursor - Prepare and execute the cursor

 #_prep_curs - Prepare the string for execution
 prepare get_curs from sel_stmt

 #_declare_curs - Declare cursor from the string
 declare rpt_cursor cursor with hold for get_curs

 #_read_data - Read the data
 open rpt_cursor

end function
ml_define_cur()

##
function ml_fetch()
##
#

 #_define_var - Define local variables

 #_fetch_cursor
 fetch rpt_cursor
 into
 #_fetch_list
 curs_next.h_row,
 curs_next.company,
 curs_next.customer_num

end function
ml_fetch()

This line sets the join criteria. In
this case, no specific join has been
defined, so the default is simply "

If an order by column has been
specified, it is applied here.

This line sets the join criteria. In
this case, no specific join has been
defined, so the default is simply "
1=1".

Flow control calls the
ml_fetch() function to get next
row from the temp. table. These
rows are put into the curs_next
record.

Fitrix Case Tools New Features 4.12

7-20 Concurrency

lowlevel.4gl

globals "globals.4gl"

#_local_static - Local (static) variable definition
define
 #_misc_static - Misc static variables
 line_display smallint, # boolean: display line count
 sv_old record # columns to be check if changed
 #_sv_old_columns - columns used for comparison
 customer_num char(18),
 company char(18)
 end record,
 line_no_pos smallint, # position to print count at
 lineStrDis char(60) # string used in printing count

##
function before_group(group_key)
##
#

 #_define_var - Define local variables
 define
 #_local_var - Local variables
 group_key char(20) # group identification

 #_err - Trap fatal errors
 whenever error call error_handler

 #_first_row - Check for first row
 if group_key = "first_row"
 then
 #_call_first_row - Call function for processing
 call b_g_first_row()
 end if

end function
before_group()

##
function b_g_first_row()
##
#

 #_define_var - Define local variables
 define
 #_local_var - Local variables
 sel_stmt char(4096) # Selection statement

 #_err - Trap fatal errors
 whenever error call error_handler

This line sets the join criteria. In
this case, no specific join has been
defined, so the default is simply "
1=1".

Saves the columns to check for
changed values. These are the col-
umns from the notfound and
save lines in the *.ifg file.

Fitrix Case Tools New Features 4.12

Code Examples 7-21

 #_b_first_row - Before first row processing

 #_after_first_row - After first row processing

 #_init_messages

 #_line_number - String for displaying line number
 let lineStrDis = fg_message("standard","concurr",1)

 #_set_line_display - True if ok to display line count
 if downshift(ct.destin) != "screen" and ct.quiet = 1
 then
 let line_display = true
 else
 let line_display = false
 end if

 # display the "line number" line, centered. note: the actual
 # number is displayed with up to eight characters, but this will
 # center based on the assumption of two characters.
 #_chk_line_display
 if line_display
 then
 # 76 is window width. "3" is "space & line_no". ".5" is
 # fudge that starts it in the right spot regardless if
 # the result is odd or even.
 #_set_line_no_pos
 let line_no_pos =
 (76 / 2) - ((length(lineStrDis) + 3) / 2) + .5
 #_display_mssg - Display line number message
 display lineStrDis at 14, line_no_pos

 # now set line_no_pos to the actual print position
 # of the line number.
 #_set_line_no_pos
 let line_no_pos = line_no_pos + length(lineStrDis) + 1
 end if

 #_build_main_curs - Build the main cursor
 let sel_stmt =
 "select ",
 "customer.customer_num, ",
 "customer.company ",
 "from ",
 "customer ",
 "where ",
 "customer.rowid = ? ",
 "for update"

 #_prep_main_curs - Prepare the main cursor
 prepare s_main_curs from sel_stmt

This line sets the join criteria. In
this case, no specific join has been
defined, so the default is simply "

When line_display is set to
true, record number is displayed to
screen during processing.

This line sets the join criteria.
In this case, no specific join
has been defined, so the

This statement builds the
header cursor from the header
table.

This line sets the join criteria. In
this case, no specific join has been
defined, so the default is simply "
1=1".

Locks header rows report is pro-
cessing so values in both header and
detail lines does not change during
processing.

Fitrix Case Tools New Features 4.12

7-22 Concurrency

 #_declare_main_curs - Declare the main cursor
 declare main_curs cursor for s_main_curs

 #_build_detail_curs - Build the detail cursor
 let sel_stmt =
 "select ",
 "orders.order_date, ",
 "stock.description, ",
 "orders.order_num, ",
 "stock.manu_code, ",
 "items.item_num, ",
 "stock.stock_num, ",
 "items.total_price ",
 "from ",
 "orders, items, stock ",
 "where ",
 "(orders.customer_num = ?) and (stock.manu_code ",
 "= items.manu_code and stock.stock_num = items.stock_num ",
 "and items.order_num = orders.order_num) ",
 "order by ",
 "orders.order_num, items.item_num"

 #_prep_detail_curs - Prepare the detail cursor
 prepare s_detail_curs from sel_stmt

 #_declare_detail_curs - Declare the detail cursor
 declare detail_curs cursor for s_detail_curs

 #_prepare_others - Build & prepare other statements

end function
b_g_first_row()

##
function b_g_customer_num()
##
#

 #_define_var - Define local variables

 #_err - Trap fatal errors
 whenever error call error_handler

 #_init_bypass - Initialize bypass flag
 let rpt.bypass_doc = false

 #_check_line_number - Display line number if true
 if line_display
 then
 #_clear_line_number - Clear line number display
 display "0 " at 14, line_no_pos
 end if

This line sets the join criteria. In
this case, no specific join has been
defined, so the default is simply "

After header row is locked, detail
cursor is built.

This line sets the join criteria. In
this case, no specific join has been
defined, so the default is simply "

For this report, this function is the
lowest level before group.

This line sets the join
criteria. In this case, no
specific join has been
defined, so the default is
simply " 1=1".

The bypass flag is ini-
tialized to false. This
flag is evaluated before
processing detail rows.

Fitrix Case Tools New Features 4.12

Code Examples 7-23

 #_save_customer_num - save original data for customer_num
 let sv_old.customer_num = curs.customer_num

 #_save_company - save original data for company
 let sv_old.company = curs.company

 #_lock_header = retrieve header infor and lock the row

 # begin work and fetch the header. This locks the header row.
 begin work

 #_open_main_curs - Open the main cursor
 open main_curs using curs.h_row

 #_error_continue - Continue if error on fetch
 whenever error continue

 #_fetch - Fetch next row from main_curs
 fetch main_curs into
 #_fetch_columns - Columns cursor fetched into
 curs.customer_num,
 curs.company

 #_error_handler - Reset after fetch to handler
 whenever error call error_handler

 #_check_for_errors - Check for retrieval error conditions
 case
 #_doc_locked
 when sqlca.sqlcode < 0
 #_doc_locked_do - Row is locked
 let rpt.bypass_doc = true
 let rpt.customer_num = sv_old.customer_num
 let rpt.company = sv_old.company

 #_doc_locked_error - Error handling

 #_doc_locked_ret - Return, can’t do anything
 return

 #_doc_deleted
 when sqlca.sqlcode = notfound
 or curs.customer_num != sv_old.customer_num
 #_doc_deleted_do - Row has been deleted
 let rpt.bypass_doc = true
 let rpt.customer_num = sv_old.customer_num
 let rpt.company = sv_old.company

 #_doc_deleted_error - Error handling

 #_doc_deleted_ret - Return, can’t do anything
 return

This line sets the join
criteria. In this case, no
specific join has been
defined, so the default is

These lines save the
original data to temp.
table for comparison.

This line sets the join crite-
ria. In this case, no specific
join has been defined, so the

Fetches original data from
header table.

This line sets the join criteria. In
this case, no specific join has been
defined, so the default is simply "

Checks to see if document is
locked. If it is locked, the bypass
flag is set to true.

This line sets the join crite-
ria. In this case, no specific
join has been defined, so
the default is simply " 1=1".

This block is where you
insert custom error han-
dling logic for locked doc-
ument errors.

This line sets the join
criteria. In this case, no

Checks to see if docu-
ment is still current.

This line sets the join crite-
ria. In this case, no specific
join has been defined, so
the default is simply " 1=1".

This block is where you
insert custom error han-
dling logic for in case doc-
ument is missing.

Fitrix Case Tools New Features 4.12

7-24 Concurrency

 #_other_when - Tag for additional when statements

 end case

 #_b_customer_num - Before group processing

 #_company - Before group processing for company
 let rpt.company = curs.company

 #_customer_num - Before group processing for customer_num
 let rpt.customer_num = curs.customer_num

 #_a_customer_num - Post before group processing

end function
b_g_customer_num()

##
function on_detail()
##
#

 #_define_var - Define local variables
 define
 #_local_var - Local variables
 detailRow smallint # Detail line count

 #_init - Initialize
 let detailRow = 0

 #_check_bypass_doc - Is bypass_doc set to true
 if rpt.bypass_doc
 then
 #_on_bypass - Do this on bypass
 #_exit_bypass - Exit because we are bypassing doc
 return
 end if

 #_open_detail_curs - Open the detail cursor
 open detail_curs using
 curs.customer_num

 #_initial_fetch - Do the initial fetch
 fetch detail_curs into
 curs.order_date,
 curs.description,
 curs.order_num,
 curs.manu_code,
 curs.item_num,
 curs.stock_num,
 curs.total_price

 #_check_no_detail - Are there any detail rows

This line sets the join crite-
ria. In this case, no specific
join has been defined, so
the default is simply " 1=1".

This block is where you
insert custom logic to eval-
uate other error conditions.
For example, if you want to
evaluate a posting flag or
some other table value.

This line sets the join crite-
ria. In this case, no specific
join has been defined, so

This function fetches each
detail row from the detail
table.

This line sets the join cri-
teria. In this case, no spe-
Checks bypass flag
before processing.

Fitrix Case Tools New Features 4.12

Code Examples 7-25

 if sqlca.sqlcode = notfound
 then
 #_on_no_detail - Do this for no detail
 #_exit_no_detail - Exit because there is no detail
 return
 end if

 #_process_detail - Process the detail
 while true

 #_increment_count - Increment the detail row count
 let detailRow = detailRow + 1

 #_check_display - Display row count if true
 if line_display
 then
 #_display_row - Display the row count
 display detailRow using "<<<<<<<<"
 at 14, line_no_pos
 end if

 #_process_row - Do row processing
 call on_every_row()

 #_fetch_detail - Fetch more detail rows
 fetch detail_curs into
 curs.order_date,
 curs.description,
 curs.order_num,
 curs.manu_code,
 curs.item_num,
 curs.stock_num,
 curs.total_price

 #_check_no_more_rows - Do if there are no more row
 if sqlca.sqlcode = notfound
 then
 #_on_no_more_rows - Do this for no more rows
 #_exit_no_more_rows - Exit. No more rows
 exit while
 end if

 #_call_ml_output - Call for each row except last
 call ml_output()

 end while

end function
on_detail()

##
function on_every_row()
##

This line sets the join
criteria. In this case, no
specific join has been

Process and display
each row.

This line sets the join crite-
ria. In this case, no specific
join has been defined, so the
default is simply " 1=1".

This function does all of
the assignments to the rpt
record for the detail rows.

Fitrix Case Tools New Features 4.12

7-26 Concurrency

This function prepares the report record from the
cursor record and other data.
#

 #_define_var - Define local variables

 #_err - Trap fatal errors
 whenever error call error_handler

 #_before_every_row - Before on every row assignments

 #_item_num - On every row processing for item_num
 let rpt.item_num = curs.item_num

 #_order_date - On every row processing for order_date
 let rpt.order_date = curs.order_date

 #_order_num - On every row processing for order_num
 let rpt.order_num = curs.order_num

 #_description - On every row processing for description
 let rpt.description = curs.description

 #_total_price - On every row processing for total_price
 let rpt.total_price = curs.total_price

 #_stock_num - On every row processing for stock_num
 let rpt.stock_num = curs.stock_num

 #_manu_code - On every row processing for manu_code
 let rpt.manu_code = curs.manu_code

 #_after_every_row - After on every row assignments

end function
on_every_row()

##
function a_g_customer_num()
##
#

 #_define_var - Define local variables

 #_err - Trap fatal errors
 whenever error call error_handler

 #_b_customer_num - After group processing for

 #_customer_num - After group processing for customer_num
 let rpt.customer_num = curs.customer_num

This line sets the join crite-
ria. In this case, no specific
join has been defined, so the

Does after-group process-
ing for group by column.

Fitrix Case Tools New Features 4.12

Code Examples 7-27

 #_a_customer_num - After group processing for

 #_wrap_up_work - Commit or rollback work
 call wrap_up_work()

end function
a_g_customer_num()

##
function after_group(group_key)
##
#

 #_define_var - Define local variables
 define
 #_local_var - Local variables
 group_key char(20) # group identification

 #_last_row - Check for last row
 if group_key = "last_row"
 then
 #_call_last_row - Call function for processing
 call a_g_last_row()
 end if

end function
after_group()

##
function a_g_last_row()
##
#

 #_define_var - Define local variables

 #_err - Trap fatal errors
 whenever error call error_handler

 #_b_last_row - Before last row processing

 #_a_last_row - After last row processing

end function
a_g_last_row()

##
function wrap_up_work()
##
Commit or rollback the work for the document.
#

 #_define_var - Define local variables

This line sets the join crite-
ria. In this case, no specific
join has been defined, so the
default is simply " 1=1".

Final after group logic.
Does a commit or rollback
work depending on bypass
flag.

Fitrix Case Tools New Features 4.12

7-28 Concurrency

 #_before_work - Before commit/rollback processing

 #_check_bypass_doc - Rollback work if true
 if rpt.bypass_doc
 then
 #_do_rollback - Rollback work
 rollback work
 else
 #_do_commit
 commit work
 end if

 #_after_work - After commit/rollback processing

end function
wrap_up_work()

A
Improvements and
Notes

Besides the features already mentioned, there are a few improvements and other
notes you should be aware of. In this chapter, you can find information on a new
access log file, you can see how to change where errlog files are created, and you
can learn the new method for hiding ring menu options. In addition, a new flag has
been added to the Fitrix Screen Code Generator. This flag prevents the Generator
from creating a Makefile, which can be useful when you are building a custom
library containing zoom screens.

This chapter covers the following topics:

n Log Files

n Generator Access Variables

n Set Explain Support

n Hiding Ring Menu Options

n Building a Library Zoom Screen

Fitrix Case Tools New Features 4.12

A-2 Improvements and Notes

Log Files

With the 4.12 Fitrix CASE Tools, you can create a new access log file and change
the default behavior of the errlog file. These abilities were brought about by the
introduction of three new library files in standard.4gs:

• logStart.4gl

• setAcc.4gl

• setErr.4gl

The logStart.4gl file contains a new function called logStart(). This new
function has replaced the traditional call to startlog("errlog") in
main.4gl. The logStart() function accepts two arguments. The first speci-
fies an environment variable pointing to the access log file. The second argument
specifies an environment variable pointing to the errlog file.

When an argument is passed to the logStart() function, program flow sends
that argument through logStart.4gl and then to the appropriate set*.4gl
file.

The setAcc.4gl and setErr.4gl files each contain a single function that
handles access log and errlog creation. These functions were set apart in their own
file so you can modify and move them to a custom library more easily.

Creating an Access Log File

An access log file stores the time, name, and user login each time a program is run.
For example the following lines show you sample output for an access log file cre-
ated by screen demo five:

Date: 06/02/94 Time: 12:52:49
Program ID: demo.screen5 Login: brianh
Program Started

You can use one of three methods to create an access log file:

1. You can pass the -accesslog flag on the command line. For example:

fglgo screen5.4gi -accesslog ./logfile

Fitrix Case Tools New Features 4.12

Log Files A-3

This example creates an access log file called logfile in the screen5.4gs
program directory.

2. You can pass an environment variable to the logStart() function. The vari-
able you pass must point to a specific file in the filesystem.

For example, you can create the following environment variable:

progAcs=$fg/logfile ; export progAcs

Then merge an extension file to replace the logStart() function:

#--
start file "main.4gl"
#--

replace block main start_error_log
 call logStart("progAcs", "")
;

3. You can set accesslog, a global environment variable, to point to a specific
file in the filesystem:

accesslog=$fg/logfile ; export accesslog

The command line flag takes precedence over the other two methods and the exten-
sion file method takes precedence over the global variable method.

Relocating the errlog File

Along with the ability to create an access log file, you can change where the pro-
gram errlog file is created. By default, an errlog file is created in the local program
directory. This default behavior hasn’t changed but now you can override this
behavior and create an errlog file anywhere on the filesystem. Like the access log
file, there are three ways to create an errlog file:

1. You can pass the -errlog flag on the command line. For example:

fglgo screen5.4gi -errlog $fg/errlog

This example creates an errlog file in the FourGen directory ($fg).

2. You can pass an environment variable to the logStart() function. The vari-
able you pass must point to a specific file in the filesystem.

Fitrix Case Tools New Features 4.12

A-4 Improvements and Notes

For example, you can create the following environment variable:

progErr=$fg/errors/errlog ; export progErr

Then merge an extension file to replace the logStart() function:

#--
start file "main.4gl"
#--

replace block main start_error_log
 call logStart("", "progErr")
;

3. You can set errlog, a global environment variable, to point to a specific file
in the filesystem:

errlog=$fg/errors/errlog ; export errlog

The command line flag takes precedence over the other two methods and the exten-
sion file method takes precedence over the global variable method.

You can give the errlog file any name you want. For example, you can set the errlog
environment variable in the following manner:

errlog=$fg/errors/progerrs ; export errlog

This example builds a file named progerrs. Whenever a program fails, error text
is written to this file and not the local errlog file.

Fitrix Case Tools New Features 4.12

Generator Access Variables A-5

Generator Access Variables

Similar to the access log and error log capabilities discussed earlier in this chapter,
you can also set up access log and error log files for both the Screen and Report
generators.

By setting up an access log file for these programs, you can see when the <Your
Company Name> development tools were used to generate new applications or to
regenerate existing applications. By setting up an error log file, you can keep track
of all the errors that occur during program generation in a single file.

To implement an access log or error log file associated with the Fitrix Report Gen-
erator, set the rptgenaccess and rptgenerrlog variables to point to a spe-
cific file in your filesystem, for example:

rptgenaccess=$fg/rptacclog ; export rptgenaccess
rptgenerrlog=$fg/rpterrlog ; export rptgenerrlog

To implement an access log or error log file associated with the Fitrix Screen Gen-
erator, set the scrgenaccess and scrgenerrlog variables to point to a spe-
cific file in your filesystem, for instance:

scrgenaccess=$fg/scracclog ; export rptgenaccess
scrgenerrlog=$fg/screrrlog ; export rptgenerrlog

Fitrix Case Tools New Features 4.12

A-6 Improvements and Notes

Set Explain Support

Informix database engines have a method for reporting the decisions made by the
engine query optimizer. The optimizer is the intelligence in the engine that inter-
prets requests and determines the best method for carrying them out. Its decisions
are based on the existence of indexes, the number of rows in the various tables, and
even the distribution of values, in the 6.0 and later releases.

When your program issues set explain on, the engine optimizer writes its
query plan to a file called sqexplain.out, in your current directory. Or, if you
are using I-Star, it writes this file in your home directory on the machine where
your database server actually resides. This query plan includes the order of table
access, how filters are applied, and what if any indexes are used in processing the
query. It lets you know if any temporary tables will be created to handle order by
sorting.

You can now make use of set explain in generated programs without having
to recompile your programs. All you must do is pass the -explain flag at the
command line when you run a program. For example:

fglgo report.4gi -explain

- or -

report.4ge -explain

The init() function in the standard library checks for the -explain flag. If
this flag is present, the set explain on command is issued, and a file called
sqexplain.out file is created in the program directory. By using the set
explain statement, you can gain insight on how the database is being accessed
and whether changing indexes may improve the decisions of the optimizer.

For example, if your queries seem to be taking longer than necessary, you may
choose to change your indexing method. In a complex query, it may be difficult for
you to know the order of actions taken by the optimizer, which in turn makes it dif-
ficult for you to determine what indexes should be added or dropped.

You might find you can prevent the creation of a temporary table by modifying
your order by clause to use indexed columns, or, conversely, by creating an index
to match your order by.

Fitrix Case Tools New Features 4.12

Set Explain Support A-7

You can make use of the set explain statement from within the debugger by
typing:

run -explain

at the debugger prompt.

Fitrix Case Tools New Features 4.12

A-8 Improvements and Notes

Hiding Ring Menu Options

A problem introduced in the 4.11 Fitrix CASE Tools release disabled one aspect of
the Select Commands option in the Form Painter. The 4.12 Fitrix CASE Tools fix
this problem and improve on the previous functionality.

If you want to hide a ring menu option for a generated input program, you can load
the corresponding form specification (*.per) file into the Form Painter. Then select
the Define menu and choose Select Commands followed by WithOut Pulldowns:

Menu options preceded by an asterisk appear on the generated program. Those
lacking an asterisk are removed from the program. You can hide/remove an option
by selecting it to add/remove the asterisk.

For each menu option you hide, an extra line is written to main.4gl. For exam-
ple, if you remove the Delete and Option, main.4gl contains the following lines:

#_hide - Hide options on the main ringMenu
call ringMenu_setOpt("HIDE", "Delete")
call ringMenu_setOpt("HIDE", "Option")

Fitrix Case Tools New Features 4.12

Hiding Ring Menu Options A-9

These lines represent new functionality that has been added to the upper level
library main ring menu function. The first argument tells whether to hide or show
the menu option. The second argument is the actual option. The available options
for the second argument include:

• Add

• Update

• Delete

• Find

• Browse

• Next

• Prev

• Tab

• Option

• Quit

If you want to avoid using the Form Painter, you can hide any menu option using
the after_init trigger. For example, to hide Delete and Option in screen demo
five, you can create and merge the following order.trg trigger file:

defaults
 after_init
 call ringMenu_setOpt("HIDE", "Delete")
 call ringMenu_setOpt("HIDE", "Option");

Fitrix Case Tools New Features 4.12

A-10 Improvements and Notes

Building a Library Zoom Screen

Quite commonly, zoom screens are used by more than one program, so a good loca-
tion to place zoom screens is in a custom library where they may be accessed by
multiple programs.

Placing zoom screens in a library is not much different than building them in the
program directory. Here is a general outline of the steps you should follow when
you are building a library of zoom screens:

1. Create the form specification (*.per) file for the zoom screen.

You can create the specification file using the Form Painter or by hand with a
text editor. If you use the Form Painter, don’t forget to specify a returning value
for the zoom screen.

2. Build a custom library Makefile.

A library Makefile differs slightly from a program Makefile. The follow-
ing library Makefile contains one zoom screen (cust_zm):

Makefile for an Informix function library

TYPE = library

LIBFILES = $(LIB)(cust_zm.o)

FORMS = cust_zm.frm

LIB=../lib_zm.a

#---

all:
 @echo "make: Cannot use make. Use fg.make to compile."

3. Once the *.per file and Makefile are built, run the Screen Code Generator to
compile the form and create code for the zoom screen, type:

fg.screen -M

Because the Fitrix Screen Code Generator automatically creates a program
Makefile, you want to pass the -M flag when you run this command. The -M
flag is a new flag that prevents the Generator from creating a Makefile and
thus overwriting the custom library Makefile.

Fitrix Case Tools New Features 4.12

Building a Library Zoom Screen A-11

4. Build and merge an extension (*.ext) file to set the form path.

An extension file is necessary so programs can locate your zoom screen. Here
is an example extension (*.ext) file for the cust_zm zoom screen:

start file "cust_zm.4gl"
 replace block Acust_zm form_path
 with form "../lib_zm.4gs/cust_zm";

5. Create a base.set file to call your extension file and run fg.make to merge
and compile the code.

Depending on your development system, you may want to run fg.make
twice. The first time you run it, pass the -F flag to build a compiled *.a library
file. The second time you run it, pass the -R flag to build the *.RDS library
directory.

Once you have completed the above steps, the library is built and ready to be used.
To hook the zoom screen into one of your programs, however, you must remember
to link in the library itself (with a libraries trigger). You also need to remember to
attach the zoom screen to a calling field using either the Form Painter or by adding
the zoom line to the program’s main form specification file. For example, the fol-
lowing zoom line links in the library cust_zm zoom screen:

zoom = key=customer_num, screen=cust_zm, table=customer

Fitrix Case Tools New Features 4.12

A-12 Improvements and Notes

4/23/96Index-1

Fitrix Case Tools New Features 4.12

Index
A
Acceptable Values 2-7
Access Log File A-2
Aliasing, Column 6-2

C
Column Aliasing

column formats 6-5
overview 6-2
setting up 6-3

Column Formats 6-5
Concurrency

code examples 7-16
handling errors 7-10
implementing 7-5
lowlevel.4gl 7-20
midlevel.4gl 7-16
overview 7-2
setting up 7-5

D
Demonstration Programs

benefits 1-2
command bar 1-4
main menu 1-5
menus demo 1-6
overview 1-2
report demo 1-16
screen demo 1-9
starting 1-4

E
errlog File A-3

F
fg.screen -M A-10
Float Format

acceptable values 2-7
applying to report programs 2-12
applying to screen programs 2-9
cgxffmtr table description 2-2
definitions 2-3
functionality 2-5
generated code 2-11
overview 2-2
rounding 2-5
sample monetary values 2-2
setting up 2-4

Formatting Columns 6-5

G
Generator Access Variables A-5

H
Hooking in Screens

review 4-3
socket_items trigger 4-3

L
Langauge Translation

applying to report programs 3-6
Language Translation

applying to screen programs 3-4
overview 3-2
stxlangr table 3-2
y/n field logic 3-4

Library Containing Zoom Screens A-10
Library Makefile A-10
Log Files

access log A-2
errlog A-3

M
Menu, Hiding Options A-6

Index-2

Fitrix Case Tools New Features 4.12

Menus Demo 1-6
ml_get_filter Function 5-9
ml_put_filter Function 5-8
ml_schedule Function 5-7

N
No Makefile Flag A-10

R
Report Column Aliasing 6-2
Report Concurrency

code examples 7-16
handling errors 7-10
implementing 7-5
lowlevel.4gl 7-20
midlevel.4gl 7-16
overview 7-2
setting up 7-5

Report Demo
building a program 1-18
compiling the code 1-20
running 1-16
running the report code generator 1-20
starting a program 1-17

Report Scheduling
example 5-4
implementing 5-3
incorporating selection criteria 5-4
library code 5-6
midlevel.4gl 5-7
new functions 5-3
overview 5-2

Ring Menu, Hiding Options A-6
Rounding Floating Point Values 2-5
rptgenaccess Variable A-5
rptgenerrlog Variable A-5

S
Sample Monetary Values 2-2
Scheduling, Report 5-2
Screen Demo

building a program 1-11
compiling code 1-14

opening a form specification file 1-12
running 1-9
running the screen code generator 1-13
starting a program 1-10

Screen Hooking Logic
overview 4-2

Screens, Zoom Library A-10
scrgenaccess Variable A-5
scrgenerrlog Variable A-5
Set Expain Statement A-6
socket_items Trigger

adding 4-4
description 4-3
syntax 4-4

socketManager() Function 4-2
sockter_items Trigger

example 4-4

Y
Y/N Field Logic 3-4

Z
Zoom Screens, Library of A-10

	Title
	Introduction
	Table Of Contents
	Preface
	Part One: Fitrix Case Tools New Features
	1 Case Tools Demo

	Part Two: Screen New Features
	2 Float Format
	3 Translating Y/N Fields
	4 Screen Hooking Logic

	Part Tree: Report New Features
	5 Report Scheduling
	6 Comn Aliasing
	7 Concurency

	Appendix A: Improvements and Notes
	index

