FItriX..
Screen

Technical Reference

Version 4.11

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph
(c)(1)(ii) of the Rightsin Technical Data and Computer Software clause at DFARS252.227-7013. Fourth
Generation Software Solutions, 2814 Spring Rd., Suite 300, Atlanta, GA 30039.

Copyright

Copyright (c) 1988-2002 Fourth Generation Software Solutions Corporation. All rightsreserved. No part of this
publication may be reproduced, transmitted, transcribed, stored in aretrieval system, or translated into any
language in any form by any means without the written permission of Fourth Generation Software Solutions.

Software License Notice

Y our license agreement with Fourth Generation Software Sol utions, which isincluded with the product, specifies
the permitted and prohibited uses of the product. Any unauthorized duplication or use of Fitrix, in wholeor in
part, in print, or in any other storage and retrieval system is forbidden.

Licenses and Trademarks

Fitrix is aregistered trademark of Fourth Generation Software Solutions Corporation.
Informix is aregistered trademark of Informix Software, Inc.

UNIX isaregistered trademark of AT&T.

FITRIX MANUALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, FURTHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE ENTIRE RISK ASTO THE QUAL-
ITY AND PERFORMANCE OF THE FITRIX MANUALSISWITH YOU. SHOULD THE FITRIX MANU-
ALS PROVE DEFECTIVE, YOU (AND NOT FOURTH GENERATION SOFTWARE OR ANY
AUTHORIZED REPRESENTATIVE OF FOURTH GENERATION SOFTWARE) ASSUME THE ENTIRE
COST OF ALL NECESSARY SERVICING, REPAIR, OR CORRECTION IN NO EVENT WILL FOURTH
GENERATION BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING ANY LOST PROFITS, LOST
SAVINGS, OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE
OF OR INABILITY TO USE SUCH FITRIX MANUALS, EVEN IF FOURTH GENERATION OR AN
AUTHORIZED REPRESENTATIVE OF FOURTH GENERATION HAS BEEN ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. IN ADDITION,
FOURTH GENERATION SHALL NOT BE LIABLE FOR ANY CLAIM ARISING OUT OF THE USE OF
OR INABILITY TO USE SUCH FOURTH GENERATION SOFTWARE OR MANUALS BASED UPON
STRICT LIABILITY OR FOURTH GENERATION'S NEGLIGENCE. SOME STATES DO NOT ALLOW
THE EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION MAY NOT APPLY TO
YOU. THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS AND YOU MAY ALSO HAVE
OTHER RIGHTS, WHICH VARY FROM STATE TO STATE.

Fourth Generation Software Solutions Corporate: (770) 432-7623
2814 Spring Road, Suite 300 Fax: (770) 432-3448
Atlanta, GA 30339 E-mail: info@fitrix.com
Copyright

Copyright (c) 1988-2002 - Fourth Generation Software Solutions Corporation - All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed, stored in aretrieval system or translated.

Fitrix Screen Technical Reference

Welcome to the Fitrix Screen Technical Reference. This manual is
designed to be a focused step-by-step guide. We hope that you find all
of thisinformation clear and useful.

All of the screen images in this document are show with the products
using the character user interface. While the Fitrix Rapid Application
Development (RAD) Tools operate in character mode only, the soft-
ware applications created by the RAD tools offer the option of being
viewed in a graphic based Windows (or X11) mode as well as the char-
acter mode shown. Examples of graphic based product viewing modes
are shown below in Example 1 and Example 2.

Fourth Generation Software Solutions Database: sample

View |Execute Settings | Help

i enieration Software Solutio
5 s o T TE
1 2 Acco 1 1 Ledger Journal
(3 3 Acce|(~) 3 Recurring Documents
(3 4 Orde| ™ 3 | adger End of Period

1 5 Invel| ™ 4 |edger Setup
(1 6 Purd| ™ 7 multilevel Tax
03 7 Multf~ 8 Administration
(1 8 Payn|(~} g pompany Setup
o -
a Reple

Status |dle Socket sock44/132 147 160.15/20030

Example 1: Menu Graphical Windows Mode

Fitrix Screen Technical Reference

Hereis another example:

' i_genim -[0fx]
0 GG B s oo g
|FEo T | | s | @ @
.
(Zoom)
General Journal

Zoom: [ESC] to Select, [TAB] for Menu
Key
i i

Totals-Debits [NZS0000 Credits [NSS0M00 Difference [NUNNE00M00 | "FAER<

| Enter Tedger account number to record transaction to.

Date:
Description:
EQP Reverse(Y/N): [N
Source: [CASHPY|
Account Group: |[CASHAR
user: [
-Account — Dept-Description ———————

Description

(8 rows selected)

l

v

I [

Example 2: Data Entry Graphical Windows Mode

Displaying our products in graphic mode, as shown in Example 1 and
Example 2, is customary for many Fitrix product users. However, your
viewing mode is a user preference. Changing from character based to
graphical based is a product specific procedure, so if you wish to view
some applications in character mode, and some in graphical mode, that
can be done as well.

If you have any questions about how to view your productsin graphical
mode, please consult your Installation Instructions or contact the Fitrix
helpdesk at 1(800)374-6157. Y ou can aso contact us by email:
support@fitrix.com. Please be prepared to offer your name, your com-
pany, telephone number, the product you are using, and your exact
question.

We hope you enjoy using our products and ook forward to serving you
in the future.

Thank Y ou,
Fourth Generation

Fitrix Screen Technical Reference

Table of Contents

Part 1: Introduction to Fitrix Screen

Chapter 1: Introduction

TEChNICAl MENES ..voiciiecie e et 1-2
(@Y= Y U PS 1-3
The FOrM PaiNLEr ..o 1-5
THe COOE GENEIALOTeveieieeieie ettt st e e eneas 1-8
THE FEALUNZEN ...ovieiieee bbb 1-10
Fitrix Screen DOCUMENEELiONcoveiveieieieeeeiceie et 1-11
Documentation Conventions Used in ThisManual ..o 1-13
Chapter 2: Getting Started
Installation and Preparation ... s 2-2
Installing in Different ($f g) DIreCtOrescocvevverrinnineeees e 2-2
Installation DIireCtory STUCLUMEooeooviieeeeeerere e 2-3
Overview of the DIireCtory StrUCIUIEccovvveevevesese e seesee e 2-4
EXECULADIE FIIES ... e 2-5
Library SOUrCE FIIEScvceiieieice et enen 2-6
MEKEFITE FIIES ...cviieeieciee et et 2-7
INSEEI FIES .. 2-8
Datahase FilEScoueieeeeeee e e e 2-9
DEMO FIIES ..t 2-10
Setting Up YOUr ENVIFONMENTcc.ooiiiiiiieieeeeeesiene e e 2-12
Tables Required to Run the Code GENEratorcoevvvvevereereeieereneseenens 2-13
Tables Required to Run a Generated Programc.cccceeveveneienccnienienen. 2-14
Standard Database Must Exist in $DBPATH ..o 2-14

Fitrix Screen Technical Reference

Recommended Application Directory StrUCLUrecccvvvevevenenereeseeeeeenens 2-15
Directory HI€rarChy ..o 2-15
Directory and File Naming CONVENtiONScccceevveveeesiereseeneneeneeseeennes 2-16

Maintaining Backwards Compatibility—The Options Flesccccoeeeerennene 2-19
The Featurizer Options File (f gl pp. 0Pt) covceeeecevevve e 2-19
The Code Generator Options File (Screen. 0pt) .cvcvvevveevvrereereeiennnns 2-21
Modifying the Options FileS LOCAYcccooveieeierirereienee e 2-23

RUNNing the FOrM PaiNtercccvveieiereeeeeeee e 2-25

INVoKing the Code GENEIaLOrocooeerierieieeeerere st 2-27

Usingthef g. st art Startup SCriptccccoeeeeeeeieniesere e 2-29

Regeneration of SOUrCE COUEcoviienieiieieereeeee e 2-31

Chapter 3: The Data-Entry Interface

The Basic Fitrix Screen Generated Interfaceccccvvveeveviecc v, 32
The DatarENtry RiNG MENUc.coveieieeicese e eeeneens 3-3
The Add COmMMAENGcccooieiieiiciee e e e saeene 34
The Update Commandcceeereereeerireseseseseeseeeesee e ere s seesseseeseeneesens 34
The Delete ComMMaNdccccveiiiiieiiceere e 35
The Find Commandccceveeriiienese e enens 35
The Browse COMMANdcccecuieiiiiieieceese ettt sre e sre e 3-8
The Next Commandccccvvirerereeeereee s s e e enens 311
The Prev Commandccooceeiieiieiececie ettt st s 311
The Tab CommMandccviviiiiiirie e s eneas 312
The Options ComMMANcccooeiiiiiie e 312
The QUIt COMMEANGceeiviirieiecreeeee et b e 3-13
Detail Ling COMMANGScccceviiiieiiiiiesie et cee ettt 3-13
S VL aTe 0N I - T 314
LI (ST o 4 1 T4 1 o S 314
The Find Command (ZOOM)cccooerueiereeeeesese e e e eeenens 315
The Sort Command (ZOO0M)couereeererierenerese e eeeeaens 315
The Tab Command (ZOOM)c.coeveeeeieieee s enens 3-16
The Quit ComMMANd (ZOOM) ...c.uoiuieeieieeee et e eaeas 3-16

ii

Fitrix Screen Technical Reference

The AULOZOOM FEALUMEcevveiieeirieerieesie et 3-16
INtroduction 10 LOOKUPScc.oiuiiiirieieieeieeeee et 317
Program INfOrmation MENUccceceviereeeriee e e e snens 3-19

Viewing Program Acknowledgementsccceorereieneneseeneeeescene e 3-19

Entering FEature REQUESESocvvvvviieviereceeeeeee et 3-20

Program SEEIUSccoereeiireereise e esee s eee s e st seeneessesnesseesnees 321

NAVIGALE MENU ...t et 3-22

HOL KEYSIMENU ..ottt e e 3-23
Default Screen AtHDULES ..o 3-24

ALITDULE CONVENLIONS ...ttt 3-24

Part 2: The Form Painter

Chapter 4: Form Painter Basics

FOrmM PaiNter MENUScouiiiiiriecnieesiee sttt 4-2
The File PUl-DOWN MENUcccviiiieiiciee et 4-4
The Edit PU-DOWN MENUcoveiiiieiirieierieicreeenieesieesieesie e 4-5
The Define PUIl-DOWN MENUcc.cciiiieiicee ettt 4-5
The RUN PU-DOWN MENUcviiiiieiirieicneicseeeseeesie et 4-6
The Help PUll-DOWN IMENUccoiuiiiiiiieeeee et e 4-6
Using Form Painter ONliNE HEIP ..oovvvvieveccceeeeceee e 4-7

Form Painter TOPIC HEIP ..c.coeiiiiiee e 4-7

Context-Sensitive HEIP TEXT ...cvcveivecc e 4-9

Chapter 5: Managing Forms

Creating @NEW FOMMNovoecceeeeeeese et sr e nae e e eneens 5-2
OPENING FOMM ..t 53
Database vs. Disk Copies of @FOrmccccoevvivvevvreriereeeeese s 5-4
.per FOrm REQUIFEMENLSccoiiriiriiriiniesie et e 55

iii

Fitrix Screen Technical Reference

Troubleshooting a Non-Generated .per Filecooooeveveeeeeccene e 55
SAVING A FOMMN .ot bbb e b 5-6
Saving aForm Under aNew NamMEccoceveveeveeenese e eenens 57
AULOMEBLIC SAVE ...ttt ettt bbb e 5-8
Saving an INCOMPIELE FOIMocviviiiere e e enens 5-8
L0101 T 010 I 1 0 1 10 SRR 5-9
DElEtiNg @ FOMMN ...t e e 5-10
Recovering aDeleted Filecoovvviiiiiiseeeceeees s 5-10
Establishing Software Acknowledgementsccccoereririnienieniene s 511
Printing @FOMMNooececice et 5-13

Chapter 6: Editing Forms

ThE FOrM EQITOFceiieiieeeeiere e 6-2
The Form Painter Edit COMMEANGSccooiririierieieeereeesese e 6-2
Undoing the Previous EQItccccceeeienese et 6-4
Centering Text 0N the FOMM ... e 6-5
Working with the Cliphoardccccvevininerercee e 6-5
Using the Clipboard ... 6-5
Using the Paste ComMmMandccoovvevieririninneneenesesese e se e s 6-9
Marking TEXt BIOCKScoceriririirieie sttt e 6-9
Cutting TeXt BIOCKSocueviireiericsesereeer et e 6-11
Copying Text to the Cliphoardccccoeririenienense e 6-11
Creating DEtail ATTAYS ...c.ocvveieeese ettt e 6-12
Copying Between INPUL AFEEScoevueiereeieeeeereeie st 6-12

Chapter 7: Form Definition

NoOVice and EXPErt MOOESccoiereeerereniesiese e e 7-2
Defining FOrmM DEfAUILScocvieverecceee et 7-4
Defining the INPUL ATEAoiuiii et e 7-7
Switching BEtWEeN INPUL ATESSccvevveeeeeeeeeere st 7-10
Defining the Input Areain Novice MOdecccooeeveeiinienieniencnceee 7-10
(= T o g Vo = oL 7-11

iv

Fitrix Screen Technical Reference

Defining Fields in EXPErt MOGEccovveveereeieire e 7-13
Defining Fieldsin NOVICE MOGEcoevviiiiiiiieieeerreee e 7-17
Modifying Existing Field Definitionscccoovevvevesenieveseeeeeeee e 7-18
Creating BLOB FIeldsccooiiiiiierrencre e 7-18
Defining the CUrsor Pathcccvveiireeeeeccc e 7-20
Defining Math for FIEldScccoviveierecceeeces e 7-22
DEfiNiNG LOOKUPDSeoueruietiriiriiriiniesieseeseees e i it e sbe st s seese e e e e ssessesaeseens 7-23
The Define LOOKUPS FOMMcouvivirieiie ettt 7-23
Creating a Data Retrieval LOOKUPcccooeeerereriniene e 7-25
Creating a Data Validation LOOKUPccccevveeeeresise e 7-26
Deleting LOOKUPScvieeirereeieeiesie sttt e 7-27
Defining MUltiple LOOKUPScoviieiierieierieeeesese s 7-27
LOOKUP DEPENTENCIESooveieiiiiiieiee ettt 7-27
Examples of LOOKUP USBQEc.cocvvvirieieeeceee e 7-28
Thel 00KUP() FUNCHON ..o s 7-29
D= 1T a1 g o = 74 oo o 7-30
The Define Z00mM FOMM ..o 7-30
(@<] g o 1= 174 oo 1 4 1 7-32
DElEtiNg @ Z00M ...ttt e e e 7-33
D 1T ol g o T I o o = ¢ 7-33
Editing the TIQOEN .. c.eooeeeieie e 7-36
Saving the Trigger FIle ...t 7-36
Deleting the Trigger File ... 7-36
Recovering aDeleted Trigger Fileoovveeeeeeceee e 7-37
Selecting Commands for the Ring MenU ... 7-37
The Program Menu OPtioNcccccereriereereeeeiesesese s s se e sse e s 7-40
The Ring Menu ItemMS OPLiONccooiiiriirieriereereeerere e e 7-40
Short Cutsto Define OPLIONSccveveiiiirese e snens 7-41
Defining Copyright TEXEcoeiiiiieriereeeeeree et 7-42
Chapter 8: The Run Menu
RUN PUT-DOWN IMBNU ...ttt s 8-2

Fitrix Screen Technical Reference

Compiling the SCreeN FOMMocuicececcceee e e 8-3
GENErating AGL COUEooveeeeeieeeerere ettt bbb et eneas 8-4
Compiling Generated SOUrCE COOEcovvvivrerirererereeee e seeeenens 8-5
Running a Compiled Program ... 8-6
Navigation in the FOrm PaiNterccccceevererieresese e 8-6

Hooking a Navigation Event to Your Applicationcc.cccovevvvvvnereereenenn. 8-7
HOE KBYS ettt ettt e e e s nne e e 8-8

Chapter 9: Database Administration

Using the Database AAmINistration SYSLem ..o 9-2
Using the AULOFOIrM FEBEUMEc.cecveeeeeee et 9-6
Using the Database Administration RECOIdeYccoereirierienienene e 9-8
Defining Column Level HEIP TEXE ..c.vcveeeeeececesese e 9-9

Part 3: The Code Generator

Chapter 10: Creating Screen Forms

Stepsto an APPIICALION ...ocvecveieieieeereeceee e 10-2
FOIM TYPES .ottt st e e b e b an e 10-4
0TI D= o o 10-6
FOrM LIMITBHIONS ...ttt se 10-7
HEBOES SCIEENS ..ottt st 10-8
Header/Detail SCrEENScocviiriere ettt e 10-10
Example Header/Detail FOrMccccovvveveiereeeeeee e seesee e seeeenens 10-11
Thesocket Manager () FUNCLION ..o 10-15
The single function SCreen TYPE .ovvvvvcvereeeeeeeere e 10-15
EXIENSION SCIEENSoouiitiiieiie ittt ettt sttt e se b 10-17
Example EXtension SCreen FOrMcovevveereeeeeeese e e seeseeeseeeenens 10-18
Creating EXtENSION SCIEENSooviiierieieeeereee ettt 10-19

vi

Fitrix Screen Technical Reference

Creating Zooms from EXteNSion SCreensccccceeveeeeveevenenienesesesensenns 10-20
Extension Screen Upper-Level Library FUNctionsccccooveniienne 10-22
EXtension SCreen FUNCLIONS ..o 10-23
Extension Screen Limitationscocooeeereieniereseereeeses e 10-25
Extension Screen DemONSIrationccceveereereeneeneesieeseeeseeeseenes 10-25
Add-On HEadEr SCrEENSc.oovevivieirieerieere e s 10-28
Sample Add-On Header FOIM ... 10-29
AsSIgNiNg aKey FIEld ..o 10-30
Calling the Add-0n Header ..o 10-30
Creating an Add-On Header SCreenccvevvvveevenesiesieseseneeseeeeeeeenens 10-32
Creating Zooms from Add-On Header SCreenscooeeeeeveeceeencnennens 10-33
Add-On Header TIIQOENS ..veverereeeeereeeeesesestesieseeseeste e ses e seeseeseesenns 10-33
The Add-On Header DemONStrationcoccoeeerereneesenee s 10-35
Transaction Processing Using Add-On Header Screensc.ccocvvveeenee. 10-35
Add-On Header FUNCLIONSocciiiireriiise e 10-36
Add-ON DEtail SCrEENSceeveeeiereeieieee e e 10-40
Example Add-On Detail FOrMccooiiiiiiinieeeeeeeseeeeere e 10-41
Characteristics of an Add-On Detail .per FOrmcccoeveveveeieereniennnnnns 10-42
Creating an Add-On Detail SCreenocooeeerereieeieerereeesese e 10-43
The Add-On Detail DemOonStrationc.coeveereeneeniereneeseeesienesieens 10-46
Generic Detail WIILE ...t 10-48
Query By EXampPle SCrEENSccovveveeerere et 10-48
Creating 8 QUENY SCIEENccererireeierierieste e seese e e e e e sresbesee e 10-49
ViIEW-HEAEr SCrEENScviveeirieiriee et et 10-50
VIeW-Detail SCrEENSc.coiiiiiieiree e 10-50
BIOWSE SCrEENS ...ttt s e 10-51
EXample BrOWSE FOMMcocoiiiiiiieieniesie e 10-51
ZOOIM SCIEENS ...veviterrereeseseseeeesesiesseesessessesaeabesbesress e s e see e e e ese et enesresbesnearennes 10-54
Calling 8 Z00M SCIEENoouiiuiiieiiriesie et 10-55
Creating @ ZOOM SCrEENcecvvereeesiestesiesteseseeseesseseeseeeesesessessessessessens 10-55
EXample ZO0M FOMM ... e 10-57
0 o)1 ¢ I T o 10-59

vii

Fitrix Screen Technical Reference

Creating a Permanent Zoom Filtercocvvvveveverecceeeeesese e 10-62
The AULOZOOM FEALUIEcccviiieeieeeeete ettt 10-64

Chapter 11: Source Code

Source Code LOGiC OVEINVIEWcc.ccuereereeeeeseeeeeieseseesie e seesees e seeseseeesseenessens 11-2
The BasiC COUE DESIQNcccoeeiirerieeienie st 11-3
COUE SETUCKUE ..ttt sttt st seene e 11-6
Program Directory SOUrCe COOEccerereeerieriererere e 11-7
Library SOUrCE COUEccceruerierieieiriesieseeseeee s e se et eeeneenes 11-8
COode DESIGN LEVELS ..ot 11-10
Code Generator Variablescoevverrinninsenee s 11-12
D= = o Lo SRR 11-17
The DataVariableS ... s 11-17
Data Flow Through Variables ... 11-20
Triggersin DaaFlOW ... 11-22
Program FIOWc.oooeee e s 11-24
The Main Program and thei ni t () FUNCtionccccevevvvveverecveennene, 11-27
Theswi t chboX () FUNCHONcocooiiiieeee e 11-28
Screen Level SWItChDOX ..o 11-28
Function Level SWItChDOXccccoiiiiiiineieeeeeere e 11-31
The Vararg Family of FUNCLIONScccoccvviieeecccere e 11-35
Examplesof put _vararg() andget _vararg() ..o 11-39

Chapter 12: Customizing Your Base Program With

Triggers

Using Triggersto Modify Your Applicationc..cccooveneneneneneneeieeeeeeen 12-2

LI Lo o L= = 12-4

Trigger File LiImIitationsccoooiiiiiiiiesese et s 12-8

UsiNg Triggersin .&Xt FIlESocovvvvereesece e 12-8

LI Ao o L= £ USSR 12-8
TEFINE .ot 12-9
SAIC AEFINE oo 12-11

viii

Fitrix Screen Technical Reference

fUNCLION_dEFINE .oveeeece e s 12-13
Lo T YL 0| TSP U U PT PSP 12-14
[IDFBITES .t 12-18
CUSLOM_ITBariES ..ot 12-19
SWILChDOX _ItEMS ...eeveiccce e ne 12-20
o= 1011 11 A 12-21
= (= G S 12-22
BE_EOF e 12-23
0O _NOL_QENEIALEoveeieeieee ettt sb e snn 12-26
(o oIS (== o (= w0l o [N (= o U 12-30
(o gl o (1S TG (= ¢'o (o [o] (= o USRS 12-31
(o g T o (1S G = o [12-32
Lo T o (1S S0 (= 1= (= S 12-33
Lo T o (1= TG [o 12-34
ON_AISK_UPAELE ...ttt sn 12-35
(o= o (3 1o V| 12-36
DEFOrE FIEld ..o s 12-37
AFEr_FIEA i e 12-38
after_Change 1N ..o 12-39
= 0= 0] o | 12-40
Lo 1c L0 LT 115" o (S 12-41
AFEEN TNSEIT oo e e 12-42
Lo1c T0) (=T (0., 12-43
0= 0 S 12-44
DEFOrE AElELE ... s 12-45
L= 0 1= = (R 12-46
CUuStom .AGI.OFG FIIES ... 12-47
SaMPIE THQIEIS FIl wooieiecieeeeee e 12-48

Chapter 13: The Featurizer and Blocks

e U A= @< A/ 1= 13-2

Featurizer TErMINOIOQYcoceeerererierieieieeeeesiese e 13-5

ix

Fitrix Screen Technical Reference

INVOKING the FEAEUNIZENceeeeeeee et 13-8
Invoking From the f g. make ULility ... 13-8
Invoking From the Code GENEratorcccvvevvevereseeneseseeseeesee e 13-8
Invoking From the Form Painter ... 13-9
Executing the Featurizer DIreCtlycocvveveveereeerere e 13-9

The Difference Between Triggers and BIOCKSccccevereieeieeienienieseseseneens 13-10
When to USEBIOCKSc.oiuiieieeecee e 13-15
Block COmMmMands OVENVIEWc.ccceveeerieirieeniee et 13-16
Using Block Commandsto Manipulate Codec.cooereneneieieienicnnens 13-17
Block Command Files (.ext fil€S)ccvvvverereeeeire s 13-20
Specifying Which .ext Filesto Merge (base. set files)coceveenene. 13-21
Specifying Filesfor BlockstoWork (start file) .vvcevevceenenee, 13-21
Block Command LOGICcoveeeerererienierie e 13-23
Block Command StAtEMENLScoeveeerieerieeree e 13-24
Block Identification & GroUpiNgccoeeeereereereeienere e eenens 13-27
Custom Block 1d (Tags) Conventionsccccevevereereereeieeesieseseseseenes 13-31

Pluggable Features and FEature SEtSccccoorerierenene e 13-32
Pluggable Features (.eXt FIlES)cccovvivvirerereeeeeese e 13-32
Feature Set (base. Set) FIleS ..o 13-36

Pre-merged Generated Files (.org FileS) ...cccvevveeceieve v 13-37
The Code Generator and .Org FileSccovriiiniiinere e 13-37
The Featurizer and .org FilE€Soovvveiceececere e 13-37

General FIow of the FEatUNZErooiiieiieeeeee e 13-38

FIlename EXIENSIONScccvvieiirieirieesie st 13-41

Featurizer Environment VariableScoooieoiiinee e 13-42

Featurizer LIMItatioNS ..o 13-44

Featurizer TroubleShooting TIPScoveeeereereeiererere et 13-46

Block Manipulation EXamMPIEScceeeeereereeeeeeeceee et 13-48

Chapter 14: Compiling and Running Your
Programs
Compiling Generated COOEccerereirieieieeeeeer e e 14-2

Fitrix Screen Technical Reference

Differences Between RDS and 4GL Compilationccccceveveveeveeerenennn 14-3
Using f g. make to Compile Your Programccceovevenereienienieneniens 14-5
Speeding Application COMPIliNGccccoeveererieriere e 14-9
THE MEKEFIE ..ottt 14-12
Modifying the LIBFILES Macro to Use Custom Librariesc.......... 14-14
Linking in Librarieswith $cust _pat h ..., 14-17
Compiling LIDIariescccooeiiriiiiesese et 14-18
Compiling Your Entire AppliCationcccceevveveniesevnrereseeseeeeeeeeeens 14-21
Compiling aMOTUIEcoooririiee e 14-22
Application and Module Compilation with $cust _pat hccc...... 14-23
RUNNING Y OUF PrOgramscoeeieoieieeieireee ettt 14-24
Invoking Compiled Programscccceererereereneneeneesesesseseseesse e sseseeses 14-24
Executing Programs When Using Version Controlccccoeeeeeenennene 14-27

Chapter 15: Advanced Features

Event Handling LOGICcoeieruiriiiiie ettt s 15-2
Types of Event Handling LOQICccvvvvvvvrieriereceecse e 15-2
BVENE FIOW ..ot e 15-3
(@00 1 aTo [l o Tor= I Y= o] £ 15-6
Coding Global EVENLScocoriiiiiiie et 15-8
The EVENt TADIESoovoeieiee e 15-9
Creating an Event that CallS aProgramcocoeeeeeeneininienienenenenens 15-14
Moving Eventsto Y our Customer’s SyStemcccceeeveervereneseseeseenennns 15-15
Record-level Validation ... 15-16
How to Assign Default Hot Key Settingscoveeveeveeecencecc e 15-16

Creating and Using Custom Librariesc.ccocooereneneneieieienesene e 15-18
Creating a CuStom Libraryccocvcevievinvinenereseseeseeseeeseseseseseesee e 15-19
Thel i Drari €S THOOEr .. e 15-20

Customizing Library FUNCLIONScccocviirieiniesese e see e 15-21

Creating AppliCation HEIP ..o 15-23
The Fitrix Screen Online HElP Systemoocvvvveverevcceceeeeee e 15-24
How to Create Help Text for Your Applications............ccocvevinencnenine 15-27

xi

Fitrix Screen Technical Reference

Creating Help Text Through Unload fil€s.ccocvevvivnivvevnrcerereceee, 15-30
Creating BLOBS ...t 15-32
Custom 4GL Functions and BLOBScccovirrennieneieneeieneeee s 15-34
Sample BLOB APPHICALIONcoiueiiriiinierie e e 15-34
Creating SKip FIeld LOGIC .vcvvvveieeeeereeeeeeeee et 15-37
Cursor Handling PhilOSOPhYccccoveeeiecireee e 15-38
Creating a Generic Text PICker/EdItor ... 15-39
Error Handling Functions(fg_err andlib_error) .vcvcevevcceenene. 15-45
Using a Custom Error Message with Verification LOOKUPSccc..... 15-46
Creating @ POSt-PrOCESSOrccceiueriereereeeeieeee e 15-47
Thel i b_nmessage FUNCHON ... 15-48
Modifying | 1 b _MBSSAQE ocivveirerereeeee e 15-50
Shell Escapes and UNITX Commandsccoeeererenenenieneseesiesie e 15-53
Preventing Shell ESCAPESccoviirerierereeeeeeee e sie e see e aeneeeenens 15-53

Chapter 16: Version Control

INtroduction t0 Version CONIOlccovvrrireerernrereerenee e 16-2
Required DIreCtory SITUCLUIESc.eoiiiereeieeeeeeeieees e 16-5
Version Control and the Code GENEIaorcvereerrrrrereresreee e 16-7
Preventing Code Generation on a Base .per FOrmccccoevereneereecenene. 16-9
The Featurizer and Version CONLrolccvovvrerrerenrenereenesseeseseseeeresenenns 16-10
Trigger and Block Command Priorityccocereinininieninne e 16-11
Specifying Which .ext FIleStoO Mergeoooovvvveveveceeeeceeese e 16-11
Changing the Version Control Search Path ($cust _pat h) 16-12
The Makefile's CUSTPATHVariable ..o 16-14
Specia Trigger PrOCESSINGcccoereriiiriere e 16-15

Using Non-Generated .4gl files With Version Control (f g_f uncs. 4gl) 16-
18

Invoking Programs That Use Version Controlccooeveverenenenesinnencennens 16-19
Modifying $DBPATHcoviieiirrceerr e 16-19
Usingfg. go andf g. db ..o 16-20

Running Programs wWith FitriX MEeNUSccccceoeieeerienienese e seesesee e 16-21

xii

Fitrix Screen Technical Reference

The Relationship Between $cust _key and $cust _pat h 16-22
Version Control SUMIMENYcccceerererinene e sese e ee e see e 16-23
Practical EXAMPIEScccoovviiie ettt 16-24
Adding aNew Trigger to Your Base Programccccceeeeeneenenienesenn. 16-25
Customizing Y our Base Program with BIOcKScccccevevinivinnininnns 16-26
Pulling a Custom .4gl (f g_f uncs. 4gl) FileInto a Custom Directory 16-28
How to Modify a.per in @aBase DIreCtoryccoeeeeeieriencncnenesenee 16-30

A Complex Example Involving .trgs, .exts, custom.4gls, and .per Modifications
16-32

Using Version Control with Three DireCtoriesccccooevreerenenenenienn 16-35
16-36
Advanced Example: Multiple Modifications using Multiple Directories 16-37

Chapter 17: Language Translation

About Language Trangation ... e 17-2
Creating Language Independent Programscccceeeeeeeriesieseneneneeseseseseneens 17-3
ULTHEY IMEBINU <.t et 17-7
Trandating Values Used in Data Entryccccceevveevevvseve v 17-7
Trandating Values and Database Stringsccocceeeeeveeienenienienenene e 17-12
Trandating the Error Message Headercocvvvvevevecvececeee e, 17-12
Trandating Error Message Detailcoooveieiiienencseeeesenee e 17-14
Trandating HElP TEXE ...ccvviieecceeeecer e 17-16
Message Translationc.cceeceiiiire e e e 17-18

Chapter 18: Helpful Techniques

Creating Field Level Help That isUniqueto the Programccocceeeeenennns 18-2
(07" g To = 700V o T 18-3
Centering @WINCOWccoeiiiiieeeetese et snn 18-4
Calling Screen Applications from a Screen Applicationccccoceveveevereeninnnnns 18-5
Capturing the USEr' SINAIMEcoeiiiiie et e 18-6
Disabling the "Add a Navigation" Menu Optioncccoeeveeeerereseesereneeneenens 18-6
Disabling the F1 and F2 Keysin a Screen Detail Sectioncccoeceenicncnnns 18-9

xiii

Fitrix Screen Technical Reference

Using Triggersto Disable FUNCLION KEYSccoveveerirerese e 18-10
Creating a Verification Prompt for Deletionsc.ccoovieiiiineneneneeieneeene 18-10
Immediate Zoom Without Pressing [CTRL]-[Z] ..ocveoveevverrvenereseesieeereeeenens 18-12
Adding Cursor Scrolling in Detail/Add-on Detail Screensoccoeeeveeeenene 18-12

Part 4: Appendixes

Appendix A: Fitrix Screen Utilities

The Demo SCript (SCI_AEMD) cviveeeeeeeeeeere e enens A-2
Adding st or es Demo Tablesto a Database (mkdenD)cccocevverencrnnenn. A-4
Creating a Demonstration Database (f g. denodb) ... A-4
L ocating Functiong/Displaying Function DesCriptionscccceeveenvenereneenne. A-5

I LI LU 1Y/ A-5

Displaying Functions Within Programscccceereinininininienenene e A-7
Viewing Database Table Layouts (i MBP) ..vccvveviereveerernereereeeeese s esee e A-9
Adding Code Generator Tables (Imkt abl €S) ... A-10
Adding Tables Required by Fitrix Security (MKSE@CUI i) .ooevvevevevcvveevniniene A-10
Adding Upper Level Library Tables (mkl i D) ..o A-11
Settingupthe Shell (f g. setshel) i, A-11
Cleaning Your Database (f g. del frin) .o, A-11

Appendix B: The .per Specification File

The .per SPeCifiCation File ... s B-2
DATABASE SECHON ..ot B-3
SCREEN SECHOMN ...vuiiiiiiiiierisieiene sttt st s ss b B-3
TABLES SECHON ..ot B-4
ATTRIBUTES SECLIONvcviieiieieeririeieie ettt B-5

0 010] 0 AV = oL B-6
INSTRUCTIONS SECHON ...ttt B-6

Xiv

Fitrix Screen Technical Reference

INSTRUCTIONS Section—Pointsto ObServeccocvevvenniennennenens B-7
FOURGEN SECLION ...o.vcviieeiiieiisieiesieistees et sae st saesesassessesessesessssessansssensesenes B-8
EfAUITS SECLION ...voveeiiieie e B-10
INPUE SECLION ..ttt bbb et be b nn B-12
Preventing Code Generation 0N a.per FOIMccccccvvrevienenenieseseeseeseeseeeenens B-25
Converting INFORMIX-SQL Perform Filescccoeveeereerieeesese e B-26

Appendix C: Program Migration
Moving Applications to Other SYStEMScccceeeerieresiere e e C-2

Appendix D: Fitrix Screen Tables
S (U TT= o I o= D-2
Code GeNErator TADIESccceveeiecieeceee e st D-5

Appendix E: Control Key Defaults
Control K&y DEFAUILScveveeeeeeeeeeiere sttt E-2
Engine/AGL CompatibDilityccooeieieiieeeeeeee s E-4

Appendix F: Reserved Terms and Style Guide

RESEIVEA TEIMIS ...ttt e b e et e e e F-2
Table Naming CONVENLIONScccccevrieriererrieeeneeeeesesesres e seeseesse e seeseesaesesseesens F-3
SCreen FOIM StYIE GUITEoceiieiriee et e F-4

Appendix G: Termcaps

TermMiNAl OPLIONS ..ottt bbb e e e e e eneas G-2
Writing TErmMCap ENLHESocveeiecece et s eneas G-6
The TerMCAP FIlE ..o e G-6
The TErMCAP ENTY ...veveeceeeeeeeeeeee ettt e e e enens G-6
THELEDEIS .. e G-8
The Capability COUESccevereeeeeeere e nne s G-8
SpECial CharaCter'Sciiiiiirieiie ettt s G-9
THE COUES ...ttt G-9

XV

Fitrix Screen Technical Reference

Interpretation and ACHIONceeeeeeire e G-11
TeStiNg the KEYS ..o s G-13
ACHON COUES ...ttt G-14
The Other COUES ..o e e G-14
OBSEIVELIONS ..ottt sttt G-15

Xvi

Part One

Introduction to
Fitrix Screen

Introduction

This chapter introduces you to Fitrix Screen and covers the following:

n

n

Technical merits
Overview of the Fitrix Screen product
Introduction to the four major components of Fitrix Screen

Features and capacities

Fitrix Screen Technical Reference

Technical Merits

Fitrix Screen CASE Tools provide a complete application development system.
Fitrix Screen offers significant technological advantages over any other application
development product on the market. Fitrix Screen gives you the power, speed, and
flexibility you need to create your applications.

n

1-2

Program maintainability - One of the biggest costs associated with com-
puter software is maintenance. Traditional softwareis so expensive to
maintain because it is not designed with maintainability in mind. Only the
original programmers can truly understand all of the complexitiesinvolved
with "spaghetti code.”

Fitrix Screen takes the headache out of modifying your programs. Fitrix
Screen creates highly commented and thoroughly documented code that is
logically organized into functional objects. Fitrix Screen generated pro-
grams are also 100% regenerable. Y ou need to add afield to your program?
Simply run the Form Painter, add the field to your screen, define the field,
regenerate the screen, then recompile the program. It isthat easy.

Object-oriented design - Much of the generated code is broken up into
functional objects. These functional objects are stored in libraries and can
be used interchangeably, thus preventing the duplication of code and sim-
plifying maintenance. Since each object is designed to meet specific stan-
dards, they can be easily modified to be used as the foundation for new,
more specialized objects.

4GL language - 4GL languages are easier to learn and use than other lan-
guages and they are portable across platforms.

SQL database technology - Structured Query Language (SQL) gives you
the ability to store any piece of datain your database and the flexibility to
access that data in any way necessary.

CASE technology - Fitrix Screen employs Computer Aided Software
Engineering (CASE) and actually creates most of the 4GL code needed to
run adata-entry application, saving you months of development time.

WYSIWYG form development - Y ou can create your program simply by
designing the form used for data-entry. A series of menus and prompts pro-
vide you with the tools and information you need to create your application.

Introduction

Fitrix Screen Technical Reference

n UNIX and open systems - More and more companies are discovering the
power and cost effectiveness of the UNIX operating system and open sys-
tems. Open systems allow you to displace work done on your expensive
mainframes to a network of smaller machines without losing performance.
Y ou can say good-bye to those horrendous mainframe maintenance costs.

Overview

Fitrix Screen CASE Tools offer acomplete solution for creating and maintaining
INFORMIX-4GL applications. With Fitrix Screen, you can create flexible and fea-
ture-rich applicationsin an incredibly short amount of time. Fitrix Screen generated
applications a so benefit from avariety of useful built-in functions, such as Zoom
references, file access, and the ability to lookup information from another table and
return data automatically. Applications created with Fitrix Screen are not only pow-
erful, but al'so extremely easy to maintain.

The 49l code generated by the Fitrix Screen Code Generator may be immediately
compiled into afunctioning data-entry screen or may be modified before compila
tion.

The following diagram gives you an idea of the process involved when creating an
application with Fitrix Screen.

Overview 1-3

Fitrix Screen Technical Reference

/ FORM
' PAINTER

Database

- (USER CONTROL >
Final Program LIBRARY

Compiler/Linker

Merged Source Code

Bl '
Extensmn Files

Trlgger Files

custom modifications

Specification Files

FEATURIZER

"
(G, ©C

Generated Source Code

k SCREEN CODE

GENERATOR

fg.screen

1-4 Introduction

Fitrix Screen Technical Reference

Fitrix Screen is comprised of four basic components: the Form Painter, the Code
Generator, the Featurizer, and the CASE Tools Enhancement Toolkit.

e Form Painter - aWY SIWY G environment used to design and create the basic
data-entry interface. The Form Painter creates a .per specification file used by
the Code Generator to generate the application.

e Code Generator - uses the specification file created by the Form Painter to
create most of the code necessary to run your application.

* Featurizer - thistool merges your custom modifications into base generated
code while maintaining regenerability.

e CASE Tools Enhancement ToolKit - consists of alibrary of end-user features
such as Navigation, Hot Keys, and User-Definable Help Text that automati-
cally enhance any application. The Enhancement Toolkit also consists of a
number of developer tools which let you add security and a graphical menuing
environment to your applications.

The Form Painter

The Form Painter simplifies the creation of data-entry screens by providing a desk-
top environment complete with menus and pop-up windows that greatly simplify
and shorten the time required to build a data-entry form. The Form Painter serves as
an easy-to-use and effective front-end to the Code Generator, further enhancing the
automation of data-entry application development.

The Form Painter allows you to create form specification files, also known as .per
forms. The Code Generator uses these specification files to create data-entry appli-
cations. Form specification files can be built two ways: with an editor such asvi or
using the Form Painter. Creating form specification files with a standard editor is
much more difficult and time consuming than using the Form Painter. Manual cre-
ation of aform specification file involves tasks such as typing in the attributes for
each field on the form, carefully defining the screen record(s), and ensuring the cor-
rect format and placement of each section of the form. Once these tasks have been
performed, you would attempt to compile the .per (form) fileinto a.frm file. Usu-
aly you would have to go through various debugging stages to get the form exactly
right without any mistakes.

Overview 1-5

Fitrix Screen Technical Reference

The Form Painter virtually eliminates mistakes by providing error checking as you
create the form. The forms you create with the Form Painter are error free.

Form Painter pull-down menus provide fast and convenient access to most of the
information needed to create .per form specification files.

1-6 Introduction

Fitrix Screen Technical Reference

The File pull-down
menu contains op-
tions that manage

The Edit pull-down
menu contains op-
tions used when cre-
ating or revising a

The Define pull-
down menu contains
options used to de-
fine the functionality
of the fields and the

The Run pull-down
menu contains vari-
ous options that al-
low you to run the
Code Generator on
your form, compile,
and execute the

your forms. form. form.
form.
Form Defaults. .. Compile Form
Open >> Undo ~U Input Areas... || ———————
******************** ICut T Cursor Path Generate 4GL
Save Form ICopy ¥ Trigpers >> Compile 4GL
Save fAs... Paste P Select Commands >> Fast Compile
1Save Trg File Clear Form [] - Run 46L Program
Close |- Field... [———
Delete Form >> Hark) Math. .. Navigate
IDelete Trg File >> Center Lookups. .. Hot Keys >>
Zoom. . .
Database. .. Novice Mode || —————————————————
Info >> Clipboard Program Menu...
Print >> Ring Menu Items. ..
Exit Copyright Text
menu line [File Edit Define Rum
(standard) (order.
— Order For
Customer No. : [Contact Name:[ils 1
H 1
H I 1
City/StiZip:l i 1t 1 Telephone:[1
. Order Date:l 1 PO Number:L Order No:[1
The Form Editor
. . Shipping Instructions: [1
displaying a —
Ttem Description Manufacturer Qty. Price Extension
sample form. Cr 1T 1T
L 1 1 [1 [1
L 1 1 [1 [1
L 1 1 [1 [1
Order weight:[1 T 1
Enter the customer code.

Defining Fields >>
Building Forms »>
Clipboard »>>
Running Forms >>
Miscellaneous >>
Navigation >>
The Help pull-down
menu contains vari-
ous help topics
which lead to refer-

ence information.

Overview 1-7

Fitrix Screen Technical Reference

Form Painter Features

n

n
n
n
n

5

Create error free form specification files.

Automatically generate aform from the database.

Specify all aspects of aform specification file.

Create custom modifications to the generated code viatriggers.

Create, compile, and run a 4GL data-entry application in a matter of min-
utes.

Create mathematical equations for fields.

Create Zooms, which allow the user to view a list of possible entries for a
field.

Define fields that automatically return data (lookups), as well as fields that
provide data validation.

The Code Generator

The Code Generator is designed to automatically write the INFORMIX-4GL pro-
gram needed to produce a sophisticated and consistent data-entry environment. The
primary advantage of the Code Generator isthat it dramatically reduces the time
needed to create 4GL code, compressing several days worth of work into afew
minutes. It also produces a source code product inherently more modifiable and
maintainable than traditional manually written code. The environment created
allowsyou to Add, Update, Delete, Find, and Browse through documents. The
source code follows a predefined and completely documented functional flow in
which specific areas of code are designated for specific types of modification.

1-8

Introduction

Fitrix Screen Technical Reference

Thefollowing is a sample header/detail type screen created by Fitrix Screen.

Action:]] IEEEN Update Delete Find Browse MNxt Prv Tab Options Quit
Create a new document

Order Form
Customer No.: 104 Contact Name: Anthony Higgins
Company Name: Play Ball!

Address: East Shopping Cntr. 422 Bay Road
City/St/Zip: Redwood City CA 94026 Telephone: 415-368-1100

Order Date: 01/20/86 PO Number: B77836 Order No: 1001

Shipping Instructions: ups

Item Description Hanufacturer Qty. Price Extension
1 baseball gloves HRO Hero 1 $250.00 $250.00
Order weight: 20.40 Freight: $10.00

Order Total: $260.00

(1 of 162

Code Generator Features

n

Automatically creates most of the code needed to run a data-entry applica-
tion.

Reduces application development time.
Supports multiple languages.
Simplifies application and program maintenance.

Triggers et you add custom code to specific logical pointsin the generated
code.

Generated code is thoroughly commented.

Add custom code or change any basic generated code through block tags
while maintaining regenerability.

Individual features of your program can be coded separately and easily
included or excluded from any product version.

Overview 1-9

Fitrix Screen Technical Reference

The Featurizer

The Featurizer merges custom code modifications into the generated base code.
Thisallows you to keep your modifications separate from the code generated by the
Code Generator for easier maintenance and also makes all programs regenerable.
Y ou can also separate your custom features and selectively plug and unplug any
feature into any version of your program.

Featurizer Features
n Create 100% regenerable applications.
n Localizeall custom modifications.
n Maintain multiple program versions without duplicating code.

n Create individual features that can be plugged or unplugged depending on
program version.

1-10 Introduction

Fitrix Screen Technical Reference

Fitrix Screen Documentation

Fitrix Screen documentation appears in two manuals, atechnical reference and a
tutorial. The Fitrix Screen Tutorial provides an introduction to the Form Painter,
the Code Generator, and the User Control Library Features.

The Fitrix Screen Technical Reference provides a source of information which can
be consulted repeatedly. This book addresses the technical aspects relating to the
specification of the data-entry screen image (.per) files, code generation based upon
those specifications, RDS issues, and more. The Fitrix Screen Technical Reference
contain sections for the Form Painter and the Code Generator.

The Fitrix CASE Tools Enhancement Toolkit Technical Reference provides docu-
mentation on the following features: User Control Library, C Library, Program
Control Library, Pull-Down Menus, and Security.

TheFitrix CASE Tools Training Course Workbook also provides an excellent
medium for learning how to use the major features of Fitrix Screen. The Fitrix
CASE Tools Training Course Workbook contains a number of exercises that teach
you how to use Fitrix Screen to create a custom application. The Fitrix CASE
Tools Training Course Workbook is available separately.

The Fitrix Screen Technical Reference is organized by section as follows:
Part I—Introduction to Fitrix Screen

Chapter 1: Introduction—an overview and a brief look at the features avail-
ablein the package.

Chapter 2: Getting Started—discusses setting up your environment to run
Fitrix Screen aswell as how to run the various tools.

Chapter 3: Introduction to the Data-Entry Interface—provides an introduc-
tion to the basic interface shared by programs created with the Code Generator.

Fitrix Screen Documentation 1-11

Fitrix Screen Technical Reference

Part II—The Form Painter

Chapter 4: Form Painter Basics—explains the contents of the menus, how to
use the menus, and how to move around the menu system.

Chapter 5: Managing Forms—describes form management issues such as
saving, opening, printing, closing, and deleting aform.

Chapter 6: Editing Forms—describes how to create and edit forms with the
Form Painter.

Chapter 7: Defining Fields—explains how to define fields in both novice and
expert modes and also how to change form defaults.

Chapter 8: The Run Menu—explains how to create an application from your
painted form.

Chapter 9: Database Administration—describes a program that allows you
to modify database tables.

Part III—The Code Generator

Chapter 10: Creating Screen Forms—discusses typical formats used for the
data-entry interface. Shows examples of .per forms and resulting data-entry
screens.

Chapter 11: Source Code—examines the source code produced by Fitrix
Screen Code Generator and discusses flow control and cursor handling.

Chapter 12: Customizing the Base Program with Triggers—discusses how
source code can be modified viatriggers.

Chapter 13: The Featurizer and Blocks—discusses how source code can be
modified with block commands.

Chapter 14: Compiling and Running Your Programs—explains how to
compile your 4GL source code and how to run your completed programs.

Chapter 15: Advanced Features—explains event handling logic, how to cre-
ate help for your application, and a number of other features.

Chapter 16: Version Control—covers the concept of Version Control and
how you can maintain multiple versions of a program without duplicating the
base code.

1-12 Introduction

Fitrix Screen Technical Reference

Chapter 17: Language Translation—explains how to create different ver-

sions of your programs in other languages.

Chapter 18: Helpful Techniques—contains a number of common "how-to’s."
Part IV—Appendices

Appendix A: Fitrix Screen Utilities—contains a variety of information such
as how to use the Tag utility and how to create a demonstration database.

Appendix B: The .per Specification File—|ooks at the components of the .per
file, used to generate the application.

Appendix C: Program Migration—contains information on moving your
programs from a devel opment machine over to a production machine.

Appendix D: Fitrix Screen Tables—contains alist of the Code Generator
tablesand alist of reserved terms.

Appendix E: Control Key Defaults—contains alist of the control key
defaults, aswell asalist of the Form Painter editing keys.

Appendix F: Reserved Terms and Style Guide—contains alist of 4GL
reserved terms and a screen form style guide.

Appendix G: Termcaps—describes how to write atermcap as well as setting
terminal options.

Documentation Conventions Used in
This Manual

Although many similar versions of UNIX and XENIX may run INFORMIX-4GL
and the Code Generator, the manual refersto this general category of operating sys-
tems with the single term UNIX.

Fitrix Screen Documentation 1-13

Fitrix Screen Technical Reference

Someinformation is difficult to convey in words, such as aseries of keystrokes or a
value you supply. This manual uses several conventionsto convey information that
has special meaning. These conventions use different fonts, formats, and symbols
to help you discern commands, program code, file names, and keystrokes from

other text.

Text Format

Meaning

Example

Courier Bold

Courier Bold
Italic

Couri er

Smal | Courier

Represents command
syntax in addition to
variable and file
definitions.

Represents text you
should replace with the
appropriate value.

Represents commands;
file, directory, table, and
column names; and
computer responses.

Represents program code
or text in afile.

fg.screen

-dbname
database_name

header . 4gl
Makefil e
st xhel pd
$f g/ bin

function Il h_add()

This function inserts

Symbol Meaning Example
Represents optional

[1] command flags and fg.screen [-yes]
arguments.
Represents command

1-14 Introduction

arguments that can be
repeated.

filename ...

Fitrix Screen Technical Reference

When not part of an explicit instruction, single keyboard characters, field values,
and prompt responses are shown in uppercase. For example:

Choose Y or N.

Enter an A for ascending or D for descending.

Press Q to quit.

Named keys, such as Tab, are shown in uppercase and enclosed in brackets.

[TAB]
[CTRL]

[F1]

[ESC]
[ENTER]
[DEL]
[SPACEBAR]

When a series of keys should be entered at the same time, they are shown with a
hyphen connecting them. For example:

To close the menu, type [CTRL]-[d].

Some key names are not consistent from keyboard to keyboard. This manual makes
repeated mention of the [ENTER] and [DEL] keys, but both of these may be miss-
ing entirely from some keyboards. Different hardware manufacturers give different
names to keys that perform the same functions. In addition to the keyboards them-
selves, software-controlled settingsin terminal control files may also alter the inter-

pretations of keystrokes.

The table below lists keys that are named differently on different keyboards.

KEYS

COMMONLY USED VARIATIONS

ENTER

RETURN, RTRN, ¢,

ESC

STORE

DEL

BREAK, CTRL C, CTRL BREAK

Fitrix Screen Documentation 1-15

Fitrix Screen Technical Reference

1-16 Introduction

Getting Started

This section covers information about installing Fitrix Screen, setting up your envi-
ronment, and invoking the various products.

n Setting Up Your Environment

n Required Tables

n Backwards Compatibility Issues
n Invoking the Form Painter

n Invoking the Code Generator

n Usingfg.start

2-1

Fitrix Screen Technical Reference

Installation and Preparation

The following must be performed before running the Form Painter or Code Gener-
ator on your UNIX system:

Install INFORMIX-4GL version 4.1 or later according to the instructions included
with the media. If you are installing the C Compiler version of INFORMIX-4GL,
installation must include the C compiler/Devel opment System and the "make" util-
ities included with the compiler.Install Fitrix Screen withf g. i nstal | as per
instructions included with the Code Generator media.

Installing in Different ($£g) Directories

Normally when you install an update of Fitrix Screen the newer version overwrites
the older version. Also, applications created with the Code Generator are typically
maintained in the same $f g that Fitrix Screen isinstalled in. However, you can
maintain your applications and the tools themselves (executables, libraries, etc.) in
separate base directories (i.e., in different $f g directories. This ability can also be
used to install and use the tools on a system without overwriting existing tools.
(Note however, that due to changes in the data of some tools tables, you cannot run
both sets of tools simultaneously under the OnLine engine.)

Follow the steps below to install and use the tools in a different directory:

1. Before (re)running the installation, set $f g to the full pathname of the target
directory and (export $f g).

2. Torun the new tools (and applications using the new libraries and etc., reset
$f g to point to your existing applications (the old $f g directory), and set and
export the following variablesto the new $f g directory:

$f gmakedi r
$fglibdir
$f gt ool di r

3. Tomake programs use the library *.frm’s from the new tools, put the new
$fglibdir/lib/forns aheadof theold$f g/ | i b/ f or ms in $DBPATH.

4. Add $f gt ool di r/ bi n toyour $PATH and make sure it comes before
$f g/ bi n.

2-2 Getting Started

Fitrix Screen Technical Reference

5. If using the INFORMIX-SE standard engine rather than the OnLine engine, set
$DBPATHto include $f gt ool di r / dat a before $f g/ codegen/ dat a.

For example, to usetoolsin/ usr / f our gen2 while the applications you create
and run are stored in a different directory, you could put the lines below into your
.profilefile (or a script to optionally execute—don’t forget to use the . to make the
settings apply to the current shell):

fgtool dir=/usr/fourgen2 ; export fgtooldir

fgnaekedi r=$f gtool dir ; export fgnakedir
fglibdir=$fgtooldir ; export fglibdir
DBPATH=$f gl i bdi r/ i b/ forns: $DBPATH ; export DBPATH

$f g: base directory for tools and applications.

$f gmakedi r: if set, f g. make looks for make filesin this directory rather than
$f g (even though local Makefiles still contain $f g).

$f gl i bdi r:if set, f g. make looks for upper level librariesin this directory
rather than $f g.

$f gt ool di r: if set, tools executables, (e.g. the 4gl program executed by callsto
the screen generator such asf g. scr een), are searched for in this directory rather
than $f g.

$DBPATH: Path to *.frm files. If new $f g doesn’t precedethe old $f g in
$DBPATH, when you run your program it will use the old library’s forms. (Thisis
not really crucial on systemswhere 4.10 isinstalled in the old $f g, since these
forms have not changed in the 4.11 upgrade.)

Installation Directory
Structure

The following diagrams illustrate the basic directory structure that is created when
you install Fitrix Screen. Installation of the Code Generator program produces the

directory structure outlined in the following pages. The diagrams provide an over-

view of the location of Code Generator files upon installation. The ellipse indicates
that avariableis used to represent part of the path.

Installation Directory Structure 2-3

Fitrix Screen Technical Reference

Overview of the Directory Structure

The following diagram represents the basic directory structure of Fitrix Screen.

bin codegen lib Make
bin ‘ demo.4gm ‘ forms ‘ utility.4gm
data install screen.4gm

These directories are the basis of the Fitrix Screen installation directory structure.
Each directory is explained in the following pages.

bin: Thisdirectory contains Fitrix Screen executables.

data: Thisdirectory contains database files used by Fitrix Screen.
demo . 4gm: This directory contains demonstration programs.
install: Thisdirectory containsinstallation files.

forms: Thisdirectory contains form specification filesfor forms used by the Form
Painter.

screen. 4gm: Thisdirectory contains the executables for Fitrix Screen programs.

utility.4gm: Thisdirectory contains source code for the language translation
programs.

2-4 Getting Started

Fitrix Screen Technical Reference

Executable Files

$fg $fg
bin codegen
)) bin
fg.screen RDS-linker scripts scr_demo
and other executables

miscellaneous
program scripts

The Code Generator isinvoked with thef g. scr een shell script. The Code Gen-
erator demo isinvoked withthescr _denp executable. Other shell scripts perform
functions related to the INFORMIX-4GL Rapid Development System (RDS),
hypertext tags, and other Code Generator-related matters. The. . / codegen/ bi n
directory contains shell scripts for creating tables required by the Code Generator
and for running generated applications.

Installation Directory Structure 2-5

Fitrix Screen Technical Reference

Library Source Files

$fg
lib
scr.4gs stubs.4gs ‘ user_nul.4gs
standard.4gs prog_ctl.4gs forms

The*. 4gs and f or ns directories contain code used by the Code Generator to
build applications.

scr. 4gs: Theselibrary files are used by programs generated with the Code Gen-
erator.

standard. 4gs: Theselibrary files are used by both Fitrix Screen and the Fitrix
Report Code Generator.

user_ctl.4gs: Theselibrary files contain additional features which can be used
from the Form Painter. These functions are also used by your applicationsiif this
library exists on the run-time system.

prog_ctl. 4gs: Thislibrary contains anumber of advanced functions which you
can incorporate into your own applications.

stubs. 4gs: Thislibrary contains stub functions for the st ubs. 4gs library.
This enables your applications to run if the Enhancement Toolkit has not been pur-
chased for the run-time system.

forms: Thisdirectory containsform specification files used by functions avail-
ablein code generated with the Code Generator.

2-6 Getting Started

Fitrix Screen Technical Reference

Makefile Files

make files

The Makef i | e files coordinate the compilation of source filesinto executable
program fileswithin a4GL application. The $f g/ Make directory contains the real
make files, which use the information found in directories containing Makef i | e

files. Program compilation is discussed in "Compiling Generated Code" on page
14-2.

Installation Directory Structure 2-7

Fitrix Screen Technical Reference

Install Files

$fg

codegen

install

scr_gen

files def install.sh install.rc

Thefi | es file provides an installation "blueprint,” indicating where files are
installed on the system relative to $f g. It lets the create script know what file
names to pass on to tar and changes ownerships, groups, and permissions. Thedef
file contains product information. Thei nst al | . sh fileisthe actual installation
script for the Code Generator program, and uses the setting provided by
install.rc.

2-8 Getting Started

Fitrix Screen Technical Reference

Database Files

$fg
codegen
data
screen.dat screen stores.dbs stores
unload files dbmerge database files dbmerge

The screen. dat files provide information (in the form of table unload files) used
to run applications off of thest or es sample database. Thedef aul t . dat direc-
tory also contains unload data used by features found in code generated by the Code
Generator. The scr een directory containsadbmer ge program which is used to
build the feature-required datainto a database. The st or es directory contains a
dbrrer ge program which is used to create the stores sample database, which is
foundin st or es. dbs.

Installation Directory Structure 2-9

Fitrix Screen Technical Reference

Demo Files

codegen
demo.4gm

screen[1-9].bak

files

A number of demonstration directories are installed with the Code Generator. The
demo directories contain a variety of different .per forms which you may useto
generate sample applications. Each screen directory isinstalled with a companion

. bak directory, to ensure that the original .per demo files are not atered. The con-
tents of the . bak directory should be copied over to the corresponding scr een
directory to generate and run the demo. Thescr _deno script copiesthe filesfrom
the .bak directory to a corresponding .4gs directory.

Thescr eenl directory contains a simple header-only application.

Thescr een2 application is header/detail, and appears with a browse but no
Zooms.

Thescr een3 application contains a full-featured header-detail application,
with a browse and Zooms.

2-10 Getting Started

Fitrix Screen Technical Reference

Thescr een4 directory isthe sameasscr een3 but isused for the Form
Painter demo.

Thescr eenb directory isacomplex header/detail application that demon-
strates triggers.

The scr een6 directories demonstrate the Featurizer. For information on this
demo refer to "The Featurizer and Blocks' on page 13-1.

Thescr een7 demo provides a sample program that utilizes extension
screens.

The scr een8 directory contains files which allow you to build a sample add-
on detail program.

Thescr een9 directory contains view-header, view-detail, and query screen
type examples.

Installation Directory Structure 2-11

Fitrix Screen Technical Reference

Setting Up Your Environment

The next step isto ensure that system variables used by the Form Painter and Code
Generator are set correctly. The following variables must be set prior to invoking
the Form Painter or Code Generator:

S$fg
$fgtooldir

$fgmakedir

$fglibdir

$INFORMIXDIR

$PATH

$SDBPATH

$TMPDIR

$DBTEMP

must point to the installation directory of Fitrix Screen.

optional variable that can be set to point to an alternate par-
ent directory containing acodegen source directory rather
than the onein $f g.

optional variable that can be set to point to an alternate par-
ent directory containing a Make utilities directory rather
than the onein $f g.

optional variable that can be set to point to an alternate par-
ent directory containing al i b upper-leve libraries direc-
tory used by the generated code rather than the onein $f g.

must point to the Informix directory on the system. Typi-
caly, thisis/ usr /i nf orni x.

must include $f g/ bi n and $| NFORM XDI R/ bi n. If
$f gt ool di r isset, youmust include$f gt ool di r/ bi n
before $f g/ bi n.

must include $f g/ | i b/ f or ms and $f g/ code-
gen/ forns. If $f gl i bdi r isset you must include
$fglibdir/lib/forms and$fglibdir/code-
gen/ f or ns in your $DBPATH.

isasystem variable that specifies the directory that tempo-
rary files are placed into. If you run into problems where
your TMPDIR space is not large enough you may need to
specify anew temporary directory location.

isthe directory into which INFORMIX-4GL placesits tem-
porary files. The default isthe/ t mp directory. If you are
using the standard engine you may need to specify a new

/ t mp directory that contains sufficient space.

2-12 Getting Started

Fitrix Screen Technical Reference

Note

The $f gt ool di r, $f gl i bdi r, and $f gnakedi r variables are optional
variables that you can set to point to alternate parent directories for certain com-
ponents of Fitrix Screen. These variables alow you to have more than one ver-
sion of Fitrix Screen on your system, and give you the ability to use a particular
component from a different version. For example, you could have two versions
of Fitrix Screen on your system, version A and version B. By setting $f gl i b-
di r to point to the directory containing the librariesin version B, you could
then run version A of the Code Generator but use the libraries from version B.
Refer to "Installing in Different ($f g) Directories" on page 2-2.

Tables Required to Run the Code
Generator

Special Code Generator tables need to be present in any database the Code Genera-
tor isrun against. All of the cg* and stx* tables need to be present in the devel op-
ment database in order to generate or compile programs.

When the Code Generator isinstalled, these tables are automatically added to your
databases. If you run the Code Generator against a database that does not have
these tables (i.e., the database was created after the installation of the Code Genera-
tor), they are added automatically. Whenever the Code Generator adds tablesto a
database, the indexes for that database get removed and recreated.

If you want to manually add the Code Generator tables to a database you can run a
script called nkt abl es. This script adds the necessary Code Generator tables to
the database. For more information on the tables that get installed with Fitrix
Screen refer to "Code Generator Tables' on page D-5.

Setting Up Your Environment — 2-13

Fitrix Screen Technical Reference

Tables Required to Run a Generated
Program

When running a program generated by the Code Generator, the stx* tables need to
be present in any database the generated program is run against. The stx* tables
contain program help and error messages, as well asthe User Control Library
tables. You canrun nkt abl es to add the stx* tablesto your database. The nkt a-
bl es script also addsthe cg* tablesto a database. Since you may not need the cg*
tables on your production database, you can remove these tables to save space. For
more information on transferring an application to another system, refer to "Mov-
ing Applications to Other Systems" on page C-2.

Standard Database Must Exist in
SDBPATH

Even though you might be using a development database other than st andar d, a
database named st andar d must exist on your system. Thisis because Fitrix
Screen was compiled against ast andar d database. When run, Fitrix Screen tries
toopenast andar d database. If ast andar d database can’t be found, an error
occurs. You can remove everything from the st andar d database if you wish to
use adifferent devel opment database. Y ou just need to make sure a database named
st andar d exists, even if it is empty.

2-14 Getting Started

Fitrix Screen Technical Reference

Recommended Application
Directory Structure

Since applications tend to grow and expand over time, we recommend the follow-
ing directory structure, which allows applications to grow in an organized fashion.
These directory structure conventions provide a consistency which make applica-
tions easier to support and maintain, particularly for those users other than the
author.

Neither the Form Painter or the Code Generator forces compliance with directory
structure conventions. However, Fitrix Fitrix Screen does perform best under the
organized environment created by the conventions explained in this section.

First, the directory hierarchy is explained, then directory naming conventions are
explained.

Directory Hierarchy

Each application should be broken down into athree tier hierarchy. At the first
level you have the directory that contains the entire application. Thisis called the
"root directory." Down from the application directory you have the module directo-
ries. Module directories contain groups of related programs. The program directo-
ries contain most of the code needed to run that particular program.

Recommended Application Directory Structure 2-15

Fitrix Screen Technical Reference

The following diagram illustrates the directory structure conventions for applica-
tions generated with Fitrix Screen.

application
root directory

module.4gm module.4gm module.4gm

]]

prog.4gs prog.4gs prog.4gs prog.4gs prog.4gs prog.4gs

Directory and File Naming
Conventions

Application root directory—a descriptive name such as "accounting." The appli-
cation root directory name should be less than 12 characters.

It may also be helpful to create a UNIX environmental variable to represent the top-
most directory in your application hierarchy. This variable generally would repre-
sent the installation directory, for example accounting.

Module directory—module directory names must follow the following format:
module name. 4gm The .4gm extension must be used to denote the module
directory level. module name must be 8 charactersor |ess.

Under the "application” directory, there are several different types of directories.
First are the "module” directories. A moduleis a free-standing part of the overall
application. A module directory is named for the module and the format is
module name. 4gm For example, ac_mmt . 4gmor heat _mmt . 4gminthe
case of plant maintenance.

2-16 Getting Started

Fitrix Screen Technical Reference

Program directory—under a module directory there are the individual source
directorieswhich not only contain the various .4gl programs but al so the actual exe-
cutableitself. These source directories are named with respect to their functions.
One convention used is as follows:

i _ - input screen
0__ - output report
p_ - posting report

These are immediately followed by a meaningful name, followed by ".4gs." For
example, i _ti nme. 4gs could mean "an input screen for time cards source direc-
tory."

Program names—program names take the first part of their name from the pro-
gram directory, but they have either a.4ge or a.4gi extension depending on how
they are compiled.

Note

Directory names must be no larger than 8 characters, not including the exten-
sion.

Next, under the application directory, there is the directory data. This directory
contains the database directory or directories (if multiple databases are used). The
$DBPATH environment variable should be set to point at:

application namel dat a when using the Standard Informix engine. This
directory containsthe . dbs directories used by Informix. The $| NFORM XDI R
variable must also be set.

The final recommended directory within an application hierarchy should be the
menu directory if Fitrix Menus is being used. Thisisthe directory in which all the
user menus are stored.

Recommended Application Directory Structure 2-17

Fitrix Screen Technical Reference

Application Hierarchy:

(or i_xxx.4ge)

application
data menu module.4gm module.4gm
xxx.dbs menu files
i xxx.4gs 0_Xxxx.4gs
|
i Xxx.4gi main.4gl midlevel.4gl

p_xxx.4gs

2-18 Getting Started

Fitrix Screen Technical Reference

Maintaining Backwards
Compatibility—The Options
Files

This applies only to users that have generated code with versions of the Code Gen-
erator previousto the May 1992 release. The Code Generator now generates q_
records differently than it has in the past, and certain triggers are handled differ-
ently. A g_ record is adata variable that parallels data elements defined in the
screen. If you are anew user of the Code Generator then this section doesn’t apply
to you.

Two special files have been created allowing you to control how the Code Genera-
tor and Featurizer handles some special circumstances. Thef gl pp. opt file con-
tains variables that allow you to specify how the Featurizer handles some of the
special triggers, whilethescr een. opt file contains avariable which alowsyou
to control how the Code Generator handlesg_r ecor ds.

The Featurizer Options File
(fglpp.opt)

This file contains options that control how the Featurizer handles special triggers
and how it handles missing blocks.

Trigger Controls
In order to maintain backward compatibility, a specia options file has been added
to the Featurizer which allows you to control how the Featurizer handles the fol-
lowing special triggers:

define

static_define

at _eof
swi t chbox_i t ens

Maintaining Backwards Compatibility—The Options Files 2-19

Fitrix Screen Technical Reference

The predecessor to the Featurizer, the Trigger Merge Utility, replaced the subse-
guent occurrences of the above, mentioned triggers. In other words, if you had the
directory search path 4gc:4gs, and you had adef i ne trigger in both directories,
thedef i ne trigger in the .4gs directory would be merged in first, and then the
def i ne trigger in the .4gc directory would replace the existing def i ne trigger.

The Featurizer now appends these triggers by default to prevent you from having
duplicate triggersin your directory. This sounds like a contradiction in terms, but
really it isn’t. If two identical st ati c_def i ne triggers are found when the
define_trigvariableisset to "append,” the merge will fail, giving you a dupli-
cation error. This allows you to go back and remove one of the duplicate triggers,
assuring that each of these special triggers in your application trigger files are
unique.

The Featurizer allows you to choose whether you want subsequent occurrences of
these special triggers to replace or append existing triggers.

The Code Generator creates a$f g/ codegen/ opti ons/ f gl pp. opt filewith
the following contents:

define_trig="append"; export define_trig
at _eof _trig="append"; export at_eof _trig
swbox_tri g="append"; export swbox_trig

These variables allow you to specify "append" if you want the Featurizer to append
the associated triggers, or "replace” if you want the Featurizer to replace existing
triggers. The default is"append.”

fglpp.opt File Variables Triggers Affected

define_trig defi ne
static_define

at_eof trig at _eof

swbox _trig swi t chbox_itemns

Anf gl pp. back file hasbeen included in the $f g/ codegen/ opt i ons direc-
tory. Thisfile contains settings which cause the Featurizer to work like the Trigger
Merge Utility. To make the Featurizer replace the special triggers
(static_define,define,at_eof,andsw t chbox it ens) instead of
appending them, copy the backward compatibility option fileto f gl pp. opt .

2-20 Getting Started

Fitrix Screen Technical Reference

cd $f g/ codegen/ options
cp fgl pp. back fgl pp. opt

To do thisfor just one program:

cd / pat h/ wher e/ ny/ progr ani sour ce/ code/ i s. 4gs
cp $fg/codegen/ options/fgl pp. back fglpp.opt

To do thisfor amodule:

cd / pat h/ where/ ny/ nodul e/ i s. 4gm
cp $fg/codegen/ options/fgl pp. back fglpp.opt

Missing Blocks

The Featurizer was recently changed to no longer consider missing blocks as fatal
errors. Thiswas done to correctly support version control regquirements with fglpp.
This behavior can be changed by setting the system variable

$f gl pp_fatal _warnto"Y." You can do this using the fglpp optionsfile

($f g/ codegen/ opti ons/ f gl pp. opt oraloca f gl pp. opt).

The Code Generator Options File
(screen.opt)

Thisfile contains options that allow you to control how the Code Generator gener-
ates certain attributes.

Generating q_ Records

Another optionsfile, $f g/ codegen/ opt i ons/ scr een. opt , contains a spe-
cial option for the Code Generator. Thescr een. opt file containsthe
non_scr _g_el ens option. This option allows you to maintain backwards com-
patibility with older versions of the Code Generator. This option determines what
should be included in the header file'sq_ record, which is generated in the file
gl obal s. 4gl . It also controlswhat q__ record elements are assigned valuesin
thel | h_m prep() and! | h_p_prep() functions.

The old way of creating the header q_ record is asfollows:

Maintaining Backwards Compatibility—The Options Files 2-21

Fitrix Screen Technical Reference

If you use afield that is not displayed on the screen, you need to create adef i ne
trigger to add the field to theq__ record. Y ou also need to use atrigger to add theq__
recordtothem prep() andp_prep() functions. The Code Generator automat-
ically generatesther ow i d.

Y ou can duplicate the old behavior of the Code Generator by setting the
non_scr_qg_el ens variableto "exclude."

The new way of creating the header q_ record:

If thenon_scr _qg_el ens variableis set to "include,” (thisisthe default), then a
g_ record is generated for every column in the table not displayed on the screen.
The new way also references these additional q__ record variables into assignment
statementswithinthel | h_p_prep() and!l | h_m prep() functions.

Here isthe default environmental variable settings:

non_scr_g_el ens="i ncl ude"; export non_scr_g_el ens

Note

If you are using extension screens, thenon_scr _q_el ens variable must be
set to "include.”

To make Fitrix Screen generate code the old way, copy the backward compatibility
option file, which residesin $f g/ codegen/ opt i ons/ scr een. back, to
screen. opt.

cd $f g/ codegen/ options
cp screen. back screen. opt

To do thisfor just one program:

cd / pat h/ wher e/ ny/ progr am sour ce/ code/ i s. 4gs
cp $f g/ codegen/ opti ons/ screen. back screen. opt

To do thisfor amodule:

cd / path/where/ ny/ nodul e/is. 4gm
cp $f g/ codegen/ options/screen. back screen. opt

2-22 Getting Started

Fitrix Screen Technical Reference

Controlling the Detail Display Function

Thisisabackward compatibility option for the detail display function. It can be set
to "current_context" or "first_page." If set to "first_page" thiswill direct the Code
Generator to generate the old stylel | d_showdat a() function (or equivalent) in
amanner to simulate past behavior which always displayed just the first page of
detail lines.

Thel | d_showdat a() function wasredesigned so that it can be called at any
timeto display the current set of detail linesinstead of thefirst page. This capability
reguiresthat the variables p_cur and s_cur are set correctly. Usually thiswill be the
case. However, if p_cur and/or s_cur are used in ways that change their values to
not reflect the current detail line context then the new function will behave incor-
rectly.

By default this function is set to "current_context." To change thisto simulate
"first_page" behavior you may set $det | _di spl ay="first _page."

Here are the current option settings as they appear in $f g/ code-
gen/ opti ons/ screen. org:

det| _di spl ay="current _context"; export detl _display

Modifying the Options Files Locally

If you want to change to the settingsin thef gl pp. opt orscr een. opt filesbut
you do not want to change them for every user on your system, you can create these
filesin your application or your program directories. For example, say you want to
run the Featurizer so that it "replaces,” but other developers want to use the default
"append.” Y ou can’t change the system default in $f g/ code-

gen/ opti ons/ fgl pp. opt. Allyouneedtodoiscreateanf gl pp. opt file
in your module or program directory and include the settings you want. For exam-
ple, you might have the following:

define_trig="repl ace"; export define_trig
at_eof _trig="repl ace"; export at_eof _trig
swbox_trig="repl ace"; export swbox_trig

You could also put anf gl pp. opt orscreen. opt fileinyour program direc-
tory.

Maintaining Backwards Compatibility—The Options Files 2-23

Fitrix Screen Technical Reference

When the Code Generator and the Featurizer are run, they run the option filesin the
$f g/ codegen/ opt i ons directory first, so those variables get set. Then any
.opt filein the application directory isrun. Finaly, the .opt files in the program
directory are run. Each time avariable in these filesis exported, it replaces the cur-
rent setting. In other words, if youhadnon_scr _q_el ens setto "include" in the
default scr een. opt file, anditisset to "exclude" in your application directory,
then it is set to "include" in the program directory, when you run the Code Genera-
tor from the program directory the non_scr _q_el ens variableis "include."

2-24 Getting Started

Fitrix Screen Technical Reference

Running the Form Painter

The Form Painter must be invoked from the directory you wish to develop your
program in. The CASE Tools are designed to work best in a particular directory
structure. This structure allows you to take full advantage of Version Control and
prevents you from having to duplicate code. Refer to "Recommended Application
Directory Structure" on page 2-15 for a detailed explanation of directory structure
and file naming conventions.

Once you arein the proper directory, you are ready to develop .per form specifica-
tion files and corresponding applications. The following command invokes the
Form Painter:

fg.form [-dbname database] [-o (0-5)] [-f] [-yes]
[-p perform]

-dbname The database can be pre-determined by using the
- dbname flag and specifying the name of a database.

-o (0-5) The - o flag followed by avalue (0-5) determines the amount
of code that gets displayed during code generation, which sub-
sequently affects the speed of generation. The less output that
is directed to the screen, the faster the generation. Invoking the
Form Painter with"f g. f orm - o 0" isthe fastest form of
code generation.

Thisflag is passed to the Code Generator when the Code Gen-
erator isinvoked from the Form Painter. The default genera-
tion level is4.

-f The- f (fast) flagissimilar tothe (- o 1) output level of Code
Generation. Thisflag is passed to the Code Generator when
invoked through the Generate 4GL option of the Form Painter.

-yes The - yes flag automatically answers all Code Generator
prompts with ayes. Thisflag is passed to the Code Generator
when invoked through the Generate 4GL option of the Form
Painter.

-p The -p flag allows you start up the Form Painter and
automatically load the specified .per file.

Running the Form Painter ~ 2-25

Fitrix Screen Technical Reference

Invoking the Code Generator

There are three ways to invoke the Code Generator: through the Form Painter, man-
ually by typingf g. scr een, and automatically with a startup program. To invoke
the Code Generator manually, a number of conditions must be met prior to invoca
tion. The startup program, f g. st ar t , automatically sets up many of these condi-
tions for you. First, the manual method is discussed.

Toinvoke the Code Generator for any application, you must first change directories
to the program directory that contains the .per forms you intend to use to generate
code. You must bein the correct directory when invoking the Code Generator.

If you are using Version Control, which allows you to maintain different versions
of your applications, you must also run the Code Generator from the appropriate
directory. However, with Version Control, al .per forms do not have to be located
in the directory in which the Code Generator is run. For more information see
"Invoking Programs That Use Version Control" on page 16-20.

File names are created relating to the current directory name. The .4ge and .4gi files
are given the name of the directory they were created in.

Once you are in the proper directory, and the variables mentioned previously con-
tain the required values, you are ready to generate the application. The following
command invokes the Code Generator on the specified .per file(s):

2-26 Getting Started

Fitrix Screen Technical Reference

fg.screen [-dbname database] [-o {0-5}] [-f] [-yes|no]
[perform file...]

-dbname Specifies the database on which the source code will operate.
There is no need to use this flag if the $DBNAME environmen-
tal variableis properly set.

-o {0-5} Specifies the generation level. The generation level controls
the screen display of generated code asit is being created.
Level 4 isthe default. Level 5isthe slowest—it is artificially
slowed for demo purposes. Level 0 displays minimal informa-
tion to the screen and produces the fastest generation level. The
output level can be changed during code generation by press-
ing [DEL].

-f Specifiesa"fast" generation level. This flag works the same as
if you specify -o 1.

-yes|no Specifiesinteractive or non-interactive generation modes. Y ou
can also usejust - y. During normal code generation, different
prompts may appear requiring user interaction. Such isthe case
if you have modified a .4gl. Upon regeneration, a prompt
appears requiring entry from alist of actions to take. If you
specify the - yes flag when invoking the Code Generator, the
codegen works silently without prompting for user input. All
user prompts are suppressed, and all are automatically
answered asif you had typed aY. This allows for automated
batch regeneration.

perform file Specifies.per formsto generate code for.

If you are using Version Control do not specify the .per file names. The Code Gen-
erator automatically determines what .per filesto use. Refer to "Invoking Programs
That Use Version Control" on page 16-20.

The entire generation process takes afew minutes, depending on the number of .per
files specified.

Invoking the Code Generator — 2-27

Fitrix Screen Technical Reference

Note

If any problems occur during start-up, check to make sure your $DBPATH
includes $f g/ i b/ forms and $f g/ codegen/ f or ns.

Using the £g.start Startup
Script

The second means of executing the Form Painter or the Code Generator iswith a
special startup program f g. st art . Thef g. st art program simplify helpsyou
set up your environment before running the Code Generator or the Form Painter.

Thef g. st art programisinstalled in $f g/ bi n. It does not require any system
variables other than $TERM However, $f g must be set to your Code Generator
installation directory. If $1 NFORM XDl Ris other than/ usr /i nf or m x or
/u/i nform x then $I NFORM XDI R must be set to your INFORMIX installa-
tion directory.

Note

$f g/ bi n must bein your $PATH.

fg.start canberunby typingf g. st art . It accepts two optional arguments,
"screen” to invoke the Code Generator instead of the Form Painter and "-dbname
database" to pre-select the database. Y ou may also invokeit with"f g. st art
hel p" to get ausage message. f g. st art syntax:

fg.start [-dbname database] [screen]

Typing f g. st art with no arguments defaults to Form Painter start-up. If you
specify "screen” thenf g. st art runsthe Code Generator.

The program displays afull screen entry form where you can select the database,

application directory, module directory name, program directory name, and all of

the command line arguments mentioned above in the "manual" invocation discus-
sion (like*. per or-o 2).

2-28 Getting Started

Fitrix Screen Technical Reference

Thef g. st art data-entry form:

Enter the Database and Program Environment
Press: [ESC] to Select [DEL] to Cancel

(Zoom)==

Database Selection

Database

fipplication/Program Selection

fpplication : /usr/davidh
Hodule
Program

Arguments

Enter the database you want to use.

Zoom forms are available in the Database, Module, and Program fields. The data-
base Zoom allowsyou to call up alist of available databases. The database Zoom is
based on $DBPATH so isnot OnLine sensitive. OnLine databases are not displayed.
All *.dbsin your $DBPATH are listed. The Zooms for module and program provide
alist of *.4gmsin the application directory and *.4g[sc] in the module directory.

Y ou are prompted to create any databases that do not exist and any directories that
do not exist.

Once selection is complete and [ESC] is pressed the program changes directories to
the selected program directory and runs either f g. f or mor f g. scr een onthe
selected database with the specified command line options. $f g and $I NFOR-

M XDI R are set by the program if not already set. $f g/ bi n and $I NFOR-

M XDI R/ bi n are appended to $PATH. The directory from whichf g. st art was
invoked is added to $DBPATH along with $f g/ | i b/ f or ns. Once you have run
fg. formorfg. screen andquit, you arereturned to thef g. st art screento
select another program. Y ou may exit thisform by pressing [DEL].

"Compiling Generated Code" on page 14-2 contains a description of source code
compilation and execution of compiled files. Information under that topic includes
program invocation flags, as well as methods for specifying filters, order by
clauses, and database names.

Using the fg. start Startup Script ~ 2-29

Fitrix Screen Technical Reference

Regeneration of Source
Code

One of the strengths of Fitrix Screen isthat it allows you to create regenerable pro-
grams. This means that you can regenerate your programs with a newer version of
the Code Generator without losing your original modifications.

If you re-run the Code Generator in a directory which already contains generated
code, the Code Generator does not assume that you wish to overwrite each source
code filein the directory. The Code Generator displays a prompt to determine how
you wish to deal with old (existing) source code files. The prompt appears for each
source code file that could be overwritten.

As an example of how the system handles duplicate files, consider asituation in
which aMakef i | e aready exists. The system shows:

There currently exists a file called: Makefile
Woul d you like to:

1) Overwite Makefile

2) Append the new Makefile to the existing Makefile
3) Mve Makefile to Makefile.old

4) Wite to Makefile.new

5) Don't wite Makefile at all, or

6) Exit Program

(If you wish to create Makefile.diff, type
a "d" after the selection. exanple 2d)

Enter Selection:

A similar menu appears for the INFORMIX-4GL source code filesif they already
exist.

» Option 1 causes the old version of thefile to be replaced with the new version.
e Option 2 appends the new version to the end of the existing file.

e Option 3 moves the existing file to one with the suffix . ol d appended to the
name, then writes the new one.

* Option 4 leaves the existing file asit is and writes the new code to afile with
. new appended to the name.

e Option 5 skips the creation of the file and goes to the next file.

2-30 Getting Started

Fitrix Screen Technical Reference

e Option 6 exits the Fitrix Screen Code Generator process without creating any
more files.

The option you select from the Duplicate File menu depends upon the modifica-
tions, if any, that you have made to the existing file; the modifications resulting
from changes to the screen form specification files; and the relative difficulty of
replicating or merging the code of the different files. The decision obviously
reguires some familiarity with the files and code generated by the Code Generator,
as does the modification of the filesin the first place. If you have not changed the
code created by the previous run of the Code Generator, you should select option 1
or 3.

Regeneration of Source Code 2-31

Fitrix Screen Technical Reference

2-32 Getting Started

The Data-Entry
Interface

This part of the documentation provides information on the data-entry interface
used by programs created with Fitrix Screen. This section covers:

n

n

n

The standard program interface

Ring menu commands

Introduction to the Zoom feature
Introduction to L ookups

Program Information menu commands

Default screen attributes

3-1

Fitrix Screen Technical Reference

The Basic Fitrix Screen

Generated Interface

Fitrix Screen creates a consistent data-entry interface. A consistent interface not
only makes it easy for your end-users to learn and use your programs, but a consis-
tent interface also makes it easier to create your programs and to maintain them.

Example data-entry program created with Fitrix Screen:

ring menu ——Action:|] [EEEN Update Delete Find Browse Nxt Prv

Create a new document

Tab Options Quit

menu Order Form
description Customer No.: 104 Contact Name: Anthony Higgins
Company Name: Play Balll
Address: East Shopping Cntr. 422 Bay Road
City/St/7ip: Reduwood City CA 94026 Telephone: 415-368-1100
Order Date: 01/20/86 PO Number: B77836 Order No: 1001

Shipping Instructions: ups

Item Description Manufacturer
1 baseball gloves HRO Hero

1 of 16)
1

Order weight: 20.40
Order Total: $260.00

Price Extension
$250.00 $250.00

Freight: $10.00

Current document is the first of a selected group of sixteen

3-2 The Data-Entry Interface

Fitrix Screen Technical Reference

The Data-Entry Ring Menu

The standard data-entry ring menu can be found on most programs created with
Fitrix Screen. If you have the CASE Tools Enhancement Toolkit you can specify an
optional ring-menu which consists of pull-down menus. These Pull-Down Menus
offer greater flexibility aswell as more commands. For more information about the
Pull-Down Menus refer to the Fitrix CASE Tools Enhancement Toolkit Technical
Reference.

The standard ring menu consists of ten default commands. These menu commands
give you the ability to perform avariety of operations on your records (documents).

The standard data-entry ring menu:

fiction:|] IEEEN Update Delete Find Browse HNxt Prv Tab Options Quit

Create a new document

Add: Adds anew record.

Update: Modifies an existing record.

Delete: Deletes arecord.

Find: Queriesfor asingle record or group of records.
Browse: Views asummary of all selected records.
Nxt: Pages to the next record in the current group.
Prv: Pagesto the previous record in the current group.
Tab: Views detail linesin current record.

Options: Contains custom menu options.

Quit: Quits the program.

Commands are executed from the ring menu by moving the highlight over the com-
mand and pressing [ENTER], or by typing the first letter of the command name.
Caseis not significant in running the commands; both lowercase and uppercase
characters work. There are additional keys for executing some commands. For
example, the Quit command may be run with X or E in addition to Q. These extra

The Data-Entry Ring Menu 33

Fitrix Screen Technical Reference

keys are noted in the descriptions that follow. In addition, operating system com-
mands may be executed from the ring menu command prompt by preceding the
UNIX command with an! (exclamation mark).

The items of the Fitrix Screen data-entry ring menu may be modified to work dif-
ferently in an application. Usually these customizations to the ring menu check
conditions of the data before allowing use of the menu item. For example, a screen
for entering customer data may not allow the user to use the Delete option if there
are orders for that customer.

The Add Command

fiction:|| IEEEN Update Delete Find Browse Nxt Prv Tab Options Quit

Create a new document

The Add command on the data-entry ring menu is used to add new rows to the
table. When you select Add by pressing an A or [ENTER] while the command is
highlighted, the system |oads an empty row and takes you to the first column on the
screen. When you have filled one column you may move to the next or previous
column with the [ENTER] and arrow keys. When you have completed column
data-entry, press the [ESC] key to store the data. If you pressthe [DELETE] key
before pressing [ESC] the entry is aborted and the new record is not saved.

The Update Command

Action:] Add J[EEXN Delete Find Browse MNxt Prv Tab Options Quit
Change this document

The Update command is used to modify datain existing rows. Once you have
located the row you wish to modify with the Find, Next, and Prev options, you may
change the data by typing U or pressing [ENTER] while Update is highlighted on
the ring menu. The Update command moves the data-entry cursor to the first col-
umn on the screen. Y ou may enter new column data by typing over the current con-
tents and can move the cursor to the next or previous column with the [ENTER]
and arrow keysjust asin the Add command.

34 The Data-Entry Interface

Fitrix Screen Technical Reference

When you have completed updating the row press the [ESC] key to store the data
and return to the data-entry ring menu. If you press the [DELETE] key before
[ESC] the datarevertsto the form it had before the Update command wasrun. This
is convenient when you accidentally change the contents of a column you did not
wish to change and do not wish to retype the original data. Pressing the [DELETE]
key returns the data to what it was when the last [ESC] was pressed.

The Delete Command

fiction:[] Add Update |IESXY Find Browse MNxt Prv Tab Options Quit

Erase this document

The Delete command is used to remove rows from atable. It may be executed with
the highlight or by typing a D. When you select the command from the ring menu
the system prompts:

Del ete: Verify docunent del etion
Erase this docunment? (Y/N)

Answering the prompt with an n or N aborts the del ete and returns to the ring menu
without removing that row. Answering with ay or Y removes the row and returns
to the ring menu above the now empty screen.

The Find Command

Action:] Add Update Delete |ENEH Browse Nxt Prv Tab Options Quit
Select and/or Reorder a group of documents

The Find command lets you locate rows by searching for certain patterns or ranges
of data. When you select Find by moving the highlight over the command and
pressing [ENTER] or by typing F at the data-entry ring menu, the screen presents a
"Query by Example" form. This screen looks like the regular data-entry screen but
allows you to type patterns and specia "operators' into columnsin order to locate a
row or set of rows.

If you select the Find command and then press [ESC], all rows are selected. If you
want to select a specific document or group of documents you can enter query pat-
ternsinto columns. Using query patterns to locate information allows the user the
flexibility to quickly access any row or group of rows in the table.

The Data-Entry Ring Menu 3-5

Fitrix Screen Technical Reference

Relational operators such as > and < allow you to find rows with column values
greater than or less than an entered value. The : operator lets you find a range of
column values. The | helps you to locate rows by alist of acceptable column con-
tents. Using the* and ? wildcard characters allow you to match complex patternsin
"char" type columns.

The available operators and their functions are listed in the table below.

Operator | Relationship
= Equal to
> Greater than
>= Greater than or equal
< Lessthan
<= Less than or equal
<> Not equal
Range
Or list
? Single character wildcard
* Multi-character wildcard

All operators may be used for any column with the exception of the wildcard oper-
ators, which work only in "char" type columns. Query searches are made by enter-
ing an operator and a pattern into one or more columns.

For example, to find all rows with last names that follow "Smith" in the alphabet
you would type >Sni t h into the Last Name column.

When you have completed entering search criteriainto the columns of the Find
Query by Example screen, press [ESC] to perform the search. Find searches the
entire table and displays the first row to match the criteria on the screen. The indi-
cator at the screen bottom tells you how many rows in the table match your find cri-

3-6 The Data-Entry Interface

Fitrix Screen Technical Reference

teria. If you see that your query is returning more rows than expected, you can
interrupt the query by pressing the [DEL] key. All of the rows found up to the point
at which [DEL] was pressed are displayed.

Sometimes the patterns used to locate rows exceed the physical column delimiters
on the screen. When you reach the end of a column while entering find criteriaon a
query screen your cursor jumps to the lower left corner of the screen alowing you
to keep entering characters and building your selection criteria.

The following example shows patterns entered into a Find screen to locate all
orders placed between September 20, 1986 and December 20, 1986
(09/20/86:12/20/86) where the customer number exceeded 109. The size of the
field places no limitation on the criteriayou can specify for a Find. In such cases
the field continues at the lower left hand part of the form.

Find: [ESC1 to Find, [DEL] to Cancel
Enter selection criteria into form

Order Form

Customer No.: >109 Contact Name:
Company Name:
Address:
City/St/Z2ip: Telephone:
Entering selection Order Date: 09/20/92 PO Number: Order No:
criteria that is larger Shipping Instructions: \
than the visible field Item Description Manufackurer oty. Price Extension
continues on the
bottom left portion of
the form. \ Order weight: Freight: -
Order Total:

[09s20/92: 127207920

The Browse Command

Action:)] Add Update Delete Find [[IRYERE MNxt Prv Tab Options Quit
Page through selected documents

The basic purpose of the Browse command is to display a summary of all selected
documents on a Browse form. The Browse form is a scrolling array which allows
you to quickly pick out the document you want to view or modify.

The Data-Entry Ring Menu 3-7

Fitrix Screen Technical Reference

In order to use a Browse form with ascrolling array, abr owse. per form must
exist in the program directory. The br owse. per formis created much like the
main data-entry .per form. Even if you do not create a Browse form for your pro-
gram the Browse function is still available, but only one document can be displayed
at atime.

If your program does not have abr owse. per, the Browse option changesthe
ring menu to display the following commands:

Move to first selected document

Browse:[| Last Next Prev Goto Quit ‘

Programs that do include a Browse screen show a slightly different list of com-
mands:

Move to next document

Browse:J] IIZ38 Prev Up Dowun Top Bottom Select ... ‘

Theéellipsis(...) indicate that other commands exist on the command line—they
cannot all be shown at once. The commands not shown in the graphic above are
accessed by moving the highlight to the far right, or by pressing the up or down

arrow keys. Commands not shown in the graphic above are Goto and Quit.

The next two sections describe the commands found on the browse form and the
browse commands available when a browse form is not used.

Browsing With a Browse Screen

When you first select Browse from within a program with a Browse Screen, the
system opens the browse window and displaysthefirst n rowsin the table (where n
is the number of lines on the browse screen) beginning with the current row shown
on the data-entry screen. If you have previously selected a set of rows with the Find
command, the window displays only rows from the active set.

3-8 The Data-Entry Interface

Fitrix Screen Technical Reference

The sample below shows a Browse screen for the or der s table of thest or es
database detailed in the INFORMIX-4GL manuals:

fiction: Add Update Delete Find Mxt Prv Tab Options Ouit
Page through selected documents

—————— Brouse:|] Prev Up Down Top Bottom Select ... —
Custo| Move to next document
Compa
Order No. Company PO No. Order Date
City
Ord 1005 Olympic City 2865 12/04/86 004
1006 Runners & Others 013557 09/19/86
Shipp 1007 Kids Korner 278693 03/25/86
—————— 1008 AA Athletics LZ230 11/17/86 —
Item 1010 Gold Medal Sports 4290 05/29/86 nsion
1 1011 Play Ball! B77897 03/23/86 50.00
2 1012 Kids Korner 278701 06/05/86 26.00
3 1013 Play Ball! B77930 09/01/86 40,00
1 1014 Watson & Son 8052 05/01/86 00.00
{1 of 1% ======
19.20

Order Total: $1435.20
{1 of 15}

Thetop row is highlighted. Y ou can move the highlight and scroll through rows
with the browse commands. Browse commands are executed like al Fitrix Screen
ring menu commands: by moving the highlight over the command and pressing
[ENTER] or by typing the first |etter of the command. After you exit the Browse
option, the current row on the data-entry screen is the one that was highlighted on
the browse screen. If you press the [DEL] key to exit you return to the original row
(the one loaded when you selected Browse) rather than going to the one highlighted
on the browse window.

Y ou must exit Browse before you may update data.

The Data-Entry Ring Menu 39

Fitrix Screen Technical Reference

Next: Moves the highlight to the next sequential row.

Prev: Moves the highlight to the previous row.

Up: Moves up through the preceding rows one "page" at atime.
Down: Moves downward through succeeding rows one page at atime.

Top: Loads thefirst page of the active set (all rows of the table if the Find com-
mand has not been run) into the browse window.

Bottom: Displays the last page of rows.

Select: Selectsthe row currently highlighted. The selected row becomes the cur-
rent document.

Goto: Access arow by typing the number of its order in the sequence of selected
records (the active set). When you run Goto, the system prompts you for the num-
ber with a message like:

Goto: [1-241 or [DEL] to Quit

Move to the document in position:]]

After you type in a number between 1 and 24 and press [ENTER] the program dis-
plays that row highlighted in the first line on the browse form, and fillsin remain-
ing browse lines with the subsequent rows.

Quit: Closesthe browse screen and returns to the data-entry form without selecting
arow. The document current prior to selecting the Browse command remains cur-
rent.

Browsing Without a Browse Screen

Since programs without a Browse screen use the original data-entry screen for the
Browse option, only onerow is displayed at atime. The Browse menu options also
differs dlightly.

First: Loads the first row of the selected group of rows.
Last: Loadsthe last row of the selected group of rows.
Next: Loads the next row in the sort order sequence.

Prev: Loads the preceding row in the sequence.

3-10 The Data-Entry Interface

Fitrix Screen Technical Reference

Goto: Displays specified row. Selecting this option prompts for the number of the
row to load. Enter the number of the row in the sort sequence for the table and press
[ENTER] to load the row into the screen. The row specified is displayed in the
Browse form.

The Next Command

fiction:[] Add Update Delete Find Browse J[ESM Prv Tab Options Quit

Yiew next document

Using the Next command loads the next sequential row into the data-entry screen.
Use the highlight or N key to select the Next command. Y ou determine the
sequence of rows for the individual program when you run the Code Generator. If
you have used the Find command to select a set of rows, Next takes you to the next
sequential row in that active set.

When the current row isthe last onein the active set, Next loads the first row in the
Set.

The Prev Command

fiction:[] Add Update Delete Find Browse Nxt IR Tab Options Quit

View previous document

Prev isthe opposite of the Next command. Selecting Prev loads the previous row of
the defined sequence. Like Next, Prev displays only those rowsin the active set. If
you have run the Find command, Prev finds the previous record matching the Find
search criteria. Running Prev when the current row isthe first row in the active set
loads the last row of the set.

The Data-Entry Ring Menu 3-11

Fitrix Screen Technical Reference

The Tab Command

fiction:l] Add Update Delete Find Browse Nxt Prv JIERN Options Quit

Access document detail lines

The Tab command is used in header/detail filesto move from the header portion of
the screen to the detail portion to view detail lines. Tab may be executed from the
data-entry ring menu by highlighting the command and pressing [ENTER], typing
aT, or by typing [CTRL]-[i].

While the screen cursor isin the detail line window, special detail line commands
are available:

Scroll: [TABI, [DEL], or [ESC1 to Quit
LARROW KEYS or CTRL-J/CTRL-KI to Scroll, L[F31 or [F41 to Page

These commands are described in "Detail Line Commands" on page 3-13.

When the screen cursor exits the first column in the detail lines (with the [UP
ARROW] key), the rows shift downward one line. If there are no more rows pre-
ceding the top line, the [UP ARROW] key causes an error message to appear:

There are no nore rows in the direction you are going.

The same message appears when you press the [DOWN ARROW] key on the line
of the last row for that header (if you are not updating data).

The Options Command

Action:] Add Update Delete Find Browse Nxt Prv Tab [ECHEN Quit
Additional options

The Options command leads to a ring menu which may contain additional com-
mands. This Options ring menu is typically the place where you would integrate
new commands into the existing data-entry ring menu. In the absence of additional
commands, the display resembles the following:

Return to the main menu

Options:] ‘

3-12 The Data-Entry Interface

Fitrix Screen Technical Reference

The Quit Command

Action:l] Add Update Delete Find Browse Nxt Prv Tab Options [[INECH
End the program

The Quit command of the data-entry ring menu ends the program. In addition to the
highlight, you can quit by typing an E, Q, or an X.

Detail Line Commands

Y ou may access the detail lines from the data-entry ring menu or with the [TAB]
key while updating the screen. Tab is executed from the ring menu by highlighting
the command and pressing [ENTER], pressing the [t] key, or pressing the [TAB]
key.

When you access detail lines from the ring menu you are not allowed to update the
detail line columns. When you press[TAB] whilein Add or Update mode, you are
allowed to both modify and add rows to the detail lines.

Although the detail line commands display only when you have run Tab from the
menu, they are also available when you are updating the lines. The arrow keys
move the screen cursor to the preceding or following line respectively. Typing an
[UP ARROW] while on the top line of the screen displays the previous "page” of
lines and, similarly, pressing a[DOWN ARROW] while on the last line of screen
displaysthe following "page" of lines.

Pressing an [UP ARROW!] while on the first detail row associated with the header
row produces the error message below:

There are no nmore rows in the direction you are going.

If you are not updating lines, pressing [DOWN ARROW!] or [ENTER] while on the
last row produces the same message.

Y ou may also "page" detail lineswith your function keys. The [F3] key displaysthe
next page and [F4] displays the preceding page. Paging in adirection with no more
rows produces the af orementioned error message.

Detail Line Commands 3-13

Fitrix Screen Technical Reference

Saving Your Data

While adding or updating a document you press [ESC] to store dataor [DEL] to
abort the changes and return to the previous data. When [DEL] is pressed, the fol-
lowing prompt appears:

[DEL] Pressed:
0K to Cancel? (y/n)J]

The prompt clarifies that the [DEL] command cancels only those changes made
since the document was last stored. If you respond with N, the changes remain and
you continue in the Add or Update mode. If you respond with Y, the changes since
the last store ([ESC]) are deleted, and you are returned to the ring menu.

The Zoom Form

Y ou can assign azoom form to any field in adocument. The Zoom function allows
you to call up aform displaying information about the field you are currently in, or
to call up adefault form from another zoom form. The Zoom function is useful in
situations when you must enter valid data that has already been defined, such asa
customer number. By Zooming into the customer number field, you can select a
valid customer number from alist.

Whenever azoom form is available, the word (Zoom) appears on the upper right
corner of the main data-entry form. The zoom form can be accessed by pressing
[CTRL]-[Z].

The zoom form:

Zoom: [ESC] to Select. L[TAB] for Menu Help:

LF31 or [F41 to Page. [DEL] to Quit [CTRLI-Lw]

CustNum FirstMName LastName Company
101 Ludwig Pauli All Sports Supplies
107 Charles Ream Athletic Supplies
118 Dick Baxter Blue Ribbon Sports
115 NAlfred Grant Gold Medal Sports
117 Arnold Sipes Kids Korner

I 105 Raymond Yector Los Altos Sports

(18 rows selected)

3-14 The Data-Entry Interface

Fitrix Screen Technical Reference

Calling up azoom form first displays a selection criteriaform which allows you to
limit the selection of datato display on the Zoom. For example you could choose to
display only customers with last names that begin with an s by typing "s*" in the
Last name column and pressing [ESC].

Notice the commands at the top of the zoom form. Pressing [TAB] displays the fol-
lowing menu:

Zoon:]] Sort Tab Quit

Select a group of rous

Each of these commands may be executed like any other ring menu command: by
highlighting it and pressing [ENTER] or by typing the first letter of the command.
For more information on the Zoom feature refer to "The Zoom Form" on page 3-14.

The Find Command (Zoom)

The Find command allows you to search for a specific piece of information. For
instance, if your zoom form displays information from your customer table and you
do not remember the customer code of the customer you want to select off the top
of your head, you could enter the first few letters of the customer code. If you enter
HAF*, then all of the customer codes that begin with HAF are displayed on your
zoom form. Y ou can then move the highlight to the customer you want to select.

All of the find criteria avail able to the main data-entry form can be used to help
limit your selection of items.

The Sort Command (Zoom)

The Sort command allows you to easily specify the field by which the selections are
sorted. Typing S displays the following ring menu:

Sort: [ESC] when done, [DEL] to Cancel
Enter ANY valid data into the colum to sort by.

To select the columns you want your selection sorted by, usethe [TAB], [ENTER],
and arrow keysto move the highlight to the appropriate column, then type any valid
character. For example, typing an ain the First Name column causestheitemsto be
sorted al phabetically.

The Zoom Form 3-15

Fitrix Screen Technical Reference

The Tab Command (Zoom)

When the cursor is in the zoom form’s ring menu, use the Tab command to return
to selection mode where you can continue viewing the items and make your selec-
tion.

In select mode, when the cursor isin the detail lines, use the [TAB] key to return to
the Zoom ring menu.

The Quit Command (Zoom)

The Quit command causes you to leave the zoom form without selecting anything.

The AutoZoom Feature

Another feature of the Code Generator is the AutoZoom. AutoZoom is a quick ver-
sion of the regular Zoom feature. AutoZoom allows you to bypass function keys
([CTRL]-[2]) and the normal selection criteriaform. AutoZoom is automatically
enabled in al character fields in which the regular Zoom is enabled. Y ou execute
the AutoZoom when you enter an asterisk in a character field that supports Zoom
functionality. This selects all documents that match the datain the field and dis-
plays them on a zoom form. For example, the AutoZoom enables you to call up a
list of all the customer orders whose manufacturers’ names begin with H. This
gives you very rapid access to the information you need even if you don’t remem-
ber amanufacturer’ sfull name. It also reduces the amount of typing you need to do.
For more information on the AutoZoom feature refer to " Creating a Permanent
Zoom Filter" on page 10-62.

3-16 The Data-Entry Interface

Fitrix Screen Technical Reference

Introduction to Lookups

Lookups evaluate the data that is entered into a field and match that data against
datain any table. A lookup placed on afield serves two purposes: verification, and
to retrieve related data from atable.

1

2.

Verification - lookups verify that avalue entered in afield existsin another
table. For example, on an order entry screen, the customer field has alookup on
it to verify that the value entered existsin a customer table. If the user entered a
value that did not exist in the customer table, the lookup would cause the fol-
lowing error message to occur:
"Value is not in the list of valid data"
Following diagram illustrates a verification lookup.
main table
cust. no. cust. name cust address cust phone
,— 100 <—|
lookup table
lookup lue is valid
request 56 value is vali
67
70
89
100
Looking up data - lookups are used to pull data out of tables. When the user

entersavalue into afield, alookup can pass that value to atable and retrieve a
corresponding value into an adjacent field. For example, when the user entersa
value into acustomer code field on an order entry screen, alookup can take that
value and "lookup" the customer name in the customer table and place the cus-
tomer name into a customer name field.

Introduction to Lookups 3-17

Fitrix Screen Technical Reference

The following diagram illustrates a data retrieval lookup.

main table
cust. no. cust. name cust address cust phone
100
lookup £ T
request lookup table
56 / /
67 / / retrieved
70 / / data
89
100 Fred 7201 B. St. T 2033334567 —]

For more information on lookups refer to "Defining Lookups' on page 7-23.

3-18 The Data-Entry Interface

Fitrix Screen Technical Reference

Program Information Menu

All data-entry applications generated by the Code Generator include a Program
Information menu. This menu contains options which provide additional function-
ality aswell as program-level information.

The Program Information menu is accessed via the default Hot Key setting
[CTRL]-[y]. Another method for displaying this menu is discussed in "Hot Keys
Menu" on page 3-22

Once selected, the Program Information menu appears on top of the current form as
follows:

fiction: Add Update Delete Find Mxt Prv Tab Options Quit
Page through selected documents

Order Form —-
Customer No.: 106 Contact Name: Georg| L[ESC] to Select.
Company Mame: Watson & Son [DEL] to Quit
Address: 1143 Carver Place
City/S5t/Z2ip: Mountain View CA 94063 Te| Program Information

Order Date: 04/12/86 PO Number: 8006 Ecknouledgements 004
Feature Requests
Shipping Instructions: ring bell twice Program Status
Navigate Merwn [———
Item Description Manufacturer Hot Keys Menu nsion
1 baseball gloves HRO Hero 50.00
2 baseball HRO Hero (5 items) 26,00
3 baseball bat HSK Husky 40,00
1 baseball gloves HSK Husky 1 $800,00 $800.00

Order weight: 95.80 Freight: $19.20
Order Total: $1435.20
(1 of 15)

Five options appear on the menu. Use the arrow keysto position the cursor over the
desired option. The [ESC] key selects the option. These options are explained next.

Viewing Program Acknowledgements

Thefirst option on the Program Information menu istitled Acknowledgements.
This option displays the Software Acknowledgements form, which displays all
acknowledgements pertaining to the particular program.

Program Information Menu 3-19

Fitrix Screen Technical Reference

The Software Acknowledgements form.

View: [ESC] or Help:
[DEL] to Quit [CTRLI-[w]
(Zoom)==

Software Acknouwledgements

5

Copyright (c) 1993
Bob”s Consulting. Inc.
Orlando, Florida USA

Modified by Erik Pierson, Larry Dillard

Written using the FOURGEN code generator
(14 items)

Thisform displays the default Code Generator comments as well as any acknowl-
edgements added to the default forms by the programmer.

The window that displays the acknowledgements varies in size depending on the
text shown.

Entering Feature Requests

The Code Generator provides applications with the ability to allow usersto store
feature request ideas without significantly disrupting the flow of work.

When the Feature Request option is selected, aform appears allowing you to enter
arequest.

Update: [ESC] to Store. [DEL] to Cancel Help:
Enter changes into form [CTRLI-Lw]
(Zoom)==

Software Feature Request

fpplication: Order Entry
Program : Update Customer Orders

I would like to be able to enter an order without
typing on the keyboard. The computer should

read my mind and do my work for me. This would
give me much more time for coffee breaks.

3-20 The Data-Entry Interface

Fitrix Screen Technical Reference

The Feature Request form is the interface through which user comments are trans-
ferred to thelocal er r | og file established in the current directory. All comments
stored on this form are written to the er r | og file as soon as the user exits the
application. Theer r | og fileisalso written to automatically by fatal errors, and
deliberately by users logging the text of an error message through the Errors form.
The system administrator or programmer can read through thelocal er r | og fileto
gather information on error messages or features requested by users.

Like all unstructured text-entry forms created with the Code Generator, this form
allows usage of the Informix edit keys.

The Zoom feature is available from the Software Feature Request form. The Zoom
|eads to the Default Software Feature Request form, which provides you or the sys-
tem administrator an opportunity to specify prompts or messages for those who
enter feature requests. Information on the Default Software Feature Request form
appears on the Software Feature Request form. The user may edit, modify, or delete
the default text prior to storing the feature request.

Program Status

The Program Status option on the Program Information menu provides userswith a
snapshot of current program information. When selected, this option displays a
form containing the Code Generator version number, database name, program ID,
screen ID, current field, and the current value of the st at us variable.

The Technical Status form resembles the following illustration:

Technical status screen
Press L[ENTER] to continue:]]

Code generator version:4.10.UC1 Database name:standard

Program ID:demo.davidh
Screen ID:default

Status variable: 0

Program Information Menu 3-21

Fitrix Screen Technical Reference

The Technical Status form is view-only. Thisform can aso be viewed (with more
specific information) from the Error Detail ring menu.

Navigate Menu

The Code Generator creates code that handles actions in the form of events, sepa-
rate from the keys used to invoke them. Due to this structure, events can be
assigned (and re-assigned) to a particular key or keystroke combination. Known
events are listed on the Navigate menu.

Navigation is a User Control topic; the Navigate menu only appears when the
Enhancement Toolkit is present on the system. If you do have the Enhancement
Toolkit, refer to the Fitrix CASE Tools Enhancement Toolkit Technical Reference.

Hot Keys Menu

The Hot Keys option on the Program Information menu provides an instant refer-
ence to the default Hot Key settings. When this option is selected, the Hot Keys
formisdisplayed. The Hot Keys form contains alist of events currently associated
with keys or keystroke combinations. The form appears as follows:

Choose: [ESC] to Select. Help:
[DEL] to Quit [CTRLI-[w]
(Zoom)==
Hot Keys
L[CTRLI-Lo] Operating System Exit

LCTRLI-Cp] Undefined
CCTRLI-Ct] To Do List
LCTRLI-Lul Undefined
LCTRLI-Cv1 Undefined
[CTRLI-Lw] On-Screen Help

LCTRLI-Cy] Program Information Menu
[{CTRLI-Lz] Zoom
(26 items)

The user can scroll through the definitions with the arrow keys or page with the
[F3] (page down) and [F4] (page up) keys.

If the user presses [ESC] to select a hot key definition, the event (if any) associated
with that key is carried out.

3-22 The Data-Entry Interface

Fitrix Screen Technical Reference

Applicationsinstalled with the Enhancement Toolkit allow users to redefine exist-
ing Hot Key definitions. In the absence of the Enhancement Toolkit package, users
have access to several predefined Hot Key settings that cannot be modified.

Program Information Menu 3-23

Fitrix Screen Technical Reference

Default Screen Attributes

Code generated with Fitrix Screen is given default screen display attributes. These
attributes serve as display conventions, and enhance the consistency of applica-
tions.

Attribute Conventions

Windows:

» First window (border only)—Dblue (dim).

» All other windows (and their forms)—white (regular).
Display statements:

» Program information (Press [ENTER], etc.)—never has attributes (i.e., shares
the attribute of the current window).

» Data—display in attribute(red) (all display and display array statements have
attribute(red)). This prints as bold on non-color terminals.

During Input:

* When entering a data field—display with attribute(reverse).
* When leaving the data field—display with attribute(red).
During Input Array:

» Theinput array does not follow the last displayed attribute (like input) and it
changes the attribute of al datato that of the window. The convention isto
show the data in attribute(red) while not in the input array statement, and show
the data without an attribute during input array.

e Entering a data field—display with attribute(reverse) (like input).

e Leaving adatafield—re-display without an attribute. (i.e., same attribute asthe
current window).

e Leavinginput array statement—re-display screen array in attribute(red). This
restores the screen array to the original color before the input array statement.

3-24 The Data-Entry Interface

Part Two
The Form Painter

Form Painter
Basics

This section of the documentation covers:

n

Pull-down menus in the Form Painter
Active/inactive menu options
Symbols displayed with menu options

Using on-line help in the Form Painter

4-1

Fitrix Screen Technical Reference

Form Painter Menus

The Fitrix Screen Form Painter interface provides pull-down menus relating to
form specification. The appearance and usage of these menus is the subject of this
section of the documentation. The purpose of the individual options on pull-down
menus is the subject of the next section in this manual.

The Form Painter contains five pull-down menus that you can access through com-
mands on the menu line. Each pull-down menu can be displayed by using the arrow
keysto highlight the appropriate command and then pressing [ENTER], or by typ-
ing the first letter of the command (e for the Edit pull-down menu). Immediately
below the menu line is the Prompt line, which displays a brief description of the
highlighted command.

menu line —- File Edit Define Run
—======(standard)================(order/1)

The appearance of the options listed on the pull-down menus varies depending on
the current situation. The system indicates whether an option is accessible—an
option that is not accessible appears dimmed, with a preceding exclamation mark.
For instance, if no form has been made current (the editor screen is blank), a"save"
option is meaningless. The save option then appears on the pull-down as follows:

Open >>
options marked with an ! | \sove Form
are currently unavailable | 1Save fs...
I~ 1Save Trg File
NIClose

Delete Form >>
IDelete Trg File >>
Database. ..

Info >>

Print >>

Exit

The exclamation point is added in case aterminal does not have dim/bright
attributes. In short, if an option appears bright on the terminal screen (colored red if
you have a colored terminal) without a preceding exclamation point, it is currently
accessible.

4-2 Form Painter Basics

Fitrix Screen Technical Reference

Some options appear with symbols appended to them. Options followed by ellipses
(.. .) lead to a pop-up window requiring data-entry. An exampleisfound on the
Form pull-down menu. The New... option leads to a pop-up window with a prompt
for you to specify the name of the form being created.

Optionsthat display the "greater than" symbols (>>) display a pop-up window con-
taining alist of possible selections. For instance, the Open >> option opens awin-
dow and displays alist of existing form names for selection.

Form pull-down menu Open form window

[ESC] to Select.

Open >> »- [DEL] to Quit
Options followed by a >> | ="~~~
di . ISave Form Choose a Form
isplay a pop-up window | 1Save fs...
that contains a list of :g;"e Trg File Brouse
. ! o5e
choices. Delete Form >> cujt_zm
IDelete Trg File > e
thlons followed py a.. Database . - stockzm
display a pop-up window Info >)
Print >> (5 items)

that requires data entry.

Exit

\ Table Information form

Action:]] IEEEN Update Delete Find Browse MNxt Prv Tab Options Quit
Create a new document

Table Information

Table Name :
Description:
Unique Key :
Ouner H
Created
Yersion

- Column Name ——————— Description Type

(No Documents Selected)

Form Painter Menus 4-3

Fitrix Screen Technical Reference

The File Pull-Down Menu

The File command on the menu line is used to access options that relate to manag-
ing forms. Select the File command to view alist of options contained on the File
pull-down menu.

The File pull-down:

1Save Form

1Save fAs...

1Save Trg File
IClose

Delete Form >>
IDelete Trg File >>
Database. ..

Info >>

Print >>

Exit

An option’ s accessibility on the File pull-down menu depends on whether thereisa
current form. That is, if thereis no current form, options relating to saving or clos-
ing aform areirrelevant and cannot be accessed even though they are visible on the
menu.

4-4 Form Painter Basics

Fitrix Screen Technical Reference

The Edit Pull-Down Menu

The Edit command leads to a pull-down containing options commonly used when
revising forms. The Edit pull-down menu also contains an option used to toggle
between Novice and Expert modes. For more information on modes, see the section
"Defining Fields and Forms."

The Edit pull-down menu:

Undo ~U
ICut AT
1Copy ~¥
Paste ~p

Clear Form

Novice Mode

Clipboard

The Define Pull-Down Menu

The Define command leads to a pull-down containing options used to define fields
and forms. Since options on this menu are form-specific, they are inaccessible until
aform is made current. The only exception is the Copyright Text option, whichis

used to modify global information regarding source code control and copyright(s).

The Define pull-down menu:

Form Defaults...

Input fAreas...
Cursor Path
Triggers >>

Select Commands >>

Program Menu...
Ring Menu Items...
Copyright Text

The Edit Pull-Down Menu 4-5

Fitrix Screen Technical Reference

The Run Pull-Down Menu

The Run command displays a pull-down containing options for compiling forms,
generating code, compiling code, and running applications.

The Run pull-down menu also contains the Navigate option. Navigation is a power-
ful featurefor carrying out pre-established events on the system without losing your
current place. Navigation becomes even more useful when you assign navigation
eventsto Hot Keys. Both the Navigate and Hot Keys features are documented in
the Fitrix CASE Tools Enhancement Toolkit Technical Reference.

The Run pull-down menu:

Generate 4GL
Compile 4GL
Fast Compile
Run 4GL Program
Navigate

Hot Keys >>

The Help Pull-Down Menu

The Help command allows you to access options that provide reference information
on aspects of the Form Painter. The Help pull-down menu also includes an option
for context-sensitive help information.

The Help pull-down menu:

Context Help... "W

Defining Fields >>
Building Forms >>
Clipboard >>
Running Forms >>
Miscellaneous >>
Navigation >>

4-6 Form Painter Basics

Fitrix Screen Technical Reference

Using Form Painter Online
Help

Online help is available to those working with the Form Painter. Help can be
accessed by topic through the Help pull-down menu. In addition, context-sensitive
help can be accessed by pressing [CTRL]-[w] from any point in the Form Painter.

Form Painter Topic Help

In order to view help text for atopic regarding the Form Painter, select the Help
command. The Help pull-down menu contains main topics under which the topic-
based help text is organized. The Help pull-down menu appears as follows:

Context Help... "W

Defining Fields >>
Building Forms >>
Clipboard >>
Running Forms >>
Hiscellaneous >>
Navigation >>

The greater than signs (>>) following each option on the Help pull-down menu
indicate that selection leadsto a picker list containing subtopics. For example, if
you select the option Defining Fields >>, you see the following picker list of help
text subtopics:

[ESC] to Select.
[DEL] to Quit

Defining Fields

Define: Fields
Field Attributes
Define: Math
Field Math
Define: Lookups
Field Lookups

(8 items)

Using Form Painter Online Help 4-7

Fitrix Screen Technical Reference

To scroll through the list of subtopics for which help text is provided, you can use
the up and down arrow keys, or page with the INFORMIX-defined [F3] and [F4]
paging keys. Use the [ESC] key to select atopic. Once you select atopic, the Help
form appears, displaying the help text defined for the selected topic.

The Help form appears as follows:

Help:[] View Update Quit

Request program information

Define: Fields

The Fields command only works when the cursor is in a field
in the form editor. UWhen executed, this command displays
the Define Fields form containing information for the
current field, allowing you to update it. The mode you are
in determines the amount of information that will appear on
the form.

The commands on the command line of the Help form are explained below:

Info: Leads to the Program Information Menu, which contains alist of five selec-
tions. For information on the Program Information Menu refer to "Program Infor-
mation Menu" on page 3-19.

View: Used to scroll through the text displayed on the Help form. The INFOR-
MIX-defined cursor movement keys (arrow keys, [F3], and [F4]) are available
while viewing the text.

Update: Selected to enter or modify help text. To store text entered on the form,
use the [ESC] key.

Quit: Exitsthe Help form and returns you to your position prior to entering the
Help form.

Context-Sensitive Help Text

Context-Sensitive help text is available from any place in the Form Painter by
pressing [CTRL]-[w]. A Help form appears containing information pertinent to
your current location.

4-8 Form Painter Basics

Managing Forms

This section covers the following:

n

n

n

Creating anew form

Opening aform

Saving aform

Automatic Saves

Closing aform

Deleting aform

Establishing software acknowledgements

Printing aform

5-1

Fitrix Screen Technical Reference

Creating a New Form

The New option on the Form pull-down menu lets you create a new .per form.

The Form Painter has two operating modes. Expert and Novice. The operating
mode is determined by toggling the Expert/Novice option on the Edit pull-down
menu. In Novice mode, the number of choices you have for various optionsis lim-
ited. The operating mode in which you are currently operating has an effect on the
actions that take place following the selection of the New option. If you are operat-
ing in Expert mode, you first see a pop-up list. The list contains the types of forms
that can be created.:

Choose: [ESC] to Select.
[DEL] to Quit

Select the screen type.

Bdd-on-detail
add-on-header
brouse
header/detail
extension

header

query

(10 items)

If you operate in the Novice mode you do not see thislist; Novice modeis used
strictly for header-only forms. More information about Expert and Novice modes
can be found in "Novice and Expert Modes' on page 7-2.

Form types are discussed in " Creating Screen Forms' on page 10-1.

After selecting the type of screen, adialog box appears prompting for the new form
name. The form appears as follows:

Update: L[ESC] to Store.
[DEL] to Cancel

Define a New Form

Form Name: |]

Less the ".per” extention.

Y ou can enter aform name up to seven characters long. Thislength is an estab-
lished naming convention. The extension ".per" is appended to all form names
when thefileis saved.

5-2 Managing Forms

Fitrix Screen Technical Reference

Note

Use the AutoForm feature to quickly create a new form using all columnsin a
table. Refer to "Using the AutoForm Feature" on page 9-6.

Opening a Form

The Open option on the Form pull-down menu lets you open an existing .per form.
The "greater than" symbols next to the name of the option indicate that selection
|eads to a pop-up window containing a list box of existing file names.

LESC] to Select.
[DEL] to Quit

Choose a Form

Brouse
cust_zm
order
stk_mnu
stockzm

(5 items)

The list box displays formsin the current directory lesstheir .per extension.

The cursor can scrolled with the arrow keys. Y ou can use the INFORMIX-4GL
paging keys ([F3] and [F4]) to page through the current list of forms. If [F3] and
[F4] don't work, you have a problem with the termcap settings for your terminal.
Please refer to "Writing Termcap Entries' on page G-6.

Database vs. Disk Copies of a Form

The Form Painter stores form file information in the database. This constitutes a

separate source of data (apart from the disk .per file) from which you can open a
.per form.

Opening a Form 5-3

Fitrix Screen Technical Reference

When you open an existing form file, the information is normally read in from the
database, not from the .per file on disk. If the information in the .per fileon disk is
newer than the information in the database, a prompt appears asking whether the
disk version should be rel oaded, thus updating the database copy.

A dialog box appears as follows:

Form "browse” is not current.
Perform file is newer than stored data.

Do you want to reload the data from
the perform file now?

YES NO CANCEL

Selecting Y ES causes the system to parse in the data from the disk version of the
form file, overwriting the database copy. Selecting NO causes the systemto load in
information from memory, not from the disk .per file. Selecting CANCEL cancels
the process of opening afile.

The benefit of storing form file information in both disk and database formatsis
that if the disk version of the .per somehow becomes corrupted or lost, you can
restore the form from the information stored within the database.

5-4 Managing Forms

Fitrix Screen Technical Reference

.per Form Requirements

In order for a.per form to load correctly into the Form Painter a number of condi-
tions must be met. Read this section if you want to load .per filesinto the Form
Painter that were not created by the Form Painter.

A .per form needs to contain the following attributes:
e It must conform to the INFORMIX-4GL form style.

e The Form Painter requires .per forms to have the following five sections:
DATABASE, SCREEN, TABLES, ATTRIBUTES, and INSTRUCTIONS.
(INFORMIX form specification files do not require an INSTRUCTIONS sec-
tion.) In addition, a FGSS section is required any time you want to use Math,
Zoom, Lookup, or Triggers.

» If the .per contains a FGSS section the word FGSS must be located at the begin-
ning of this section and the F in FGSS must appear in the first column.

» Field tags must be less than 6 characters long.

For more information on the specific attributes that compose a .per form, refer to
"The .per Specification File" on page B-1.

Troubleshooting a Non-Generated .per
File

If you are loading a .per file created with vi into the Form Painter to work with, and
you get the following error:

-4500

A nuneric conversion error has occurred due to
inconpatibility between a calling program and
its function paraneters or between a variable
and its assigned expression.

Y ou need to go through the .per file that is causing the problem and make sure all
field tags defined in the screen section are aso il defined in the attribute section.

Opening a Form 5-5

Fitrix Screen Technical Reference

Saving a Form

Forms can be saved at any stage of development; you can save forms asincompl ete
"fragments" or as complete .per files ready for compilation.

It isimportant to know that the Form Painter stores form file information in the
database—this constitutes a separate source of data from which a .per form can be
written. Unless you modify the .per file outside of the Form Painter program, the
database always contains the most current copy. When you exit afile, your only
decision is whether to update the disk copy (the actual .per file) with the informa-
tion from the database. That is, if the form file isincomplete, you may not want to
spend time saving it as acomplete .per file. In that case, you can choose hot to save
it asa.per file, and then exit without deleting the database copy.

If the .per file becomes corrupted or deleted, the database information for that file
can serve as a backup, restoring the form to the state in which it was last written to
disk.

The deliberate method of saving aform file as a .per file involves using the Save
option on the Form pull-down menu. Once you select it, the Form Painter composes
the form information into a structured .per form specification file, ready for code
generation.

A second method for saving the current form fileinto a .per file is provided when
you exit the current file without having saved it prior to the last edit. That is, asyou
close afile, attempt to open anew file, or attempt to exit the Form Painter, a prompt
appears providing an opportunity to save the current form as a .per file.

The prompt appears as follows:

Form "order” has not been saved.
Do you wish to write the perform file now?

YES NO CANCEL

YES: Writes the completed .per file.

CANCEL.: Cancels the operation and returns control to the Form pull-down menu
without saving the current file.

5-6 Managing Forms

Fitrix Screen Technical Reference

NO: Displays a new prompt providing the opportunity to retain the incomplete
file—it isnot written as a .per file but is retained in the database.

This prompt appears as follows:

Do you want to delete the Form from the
database (the perform file will not be
removed)?

YES NO CANCEL

The Form Painter maintains a database copy of files you create with the Form
Painter. The previous prompt determines whether the file should be removed from
the database (Y ES) or simply retained as an incomplete file (NO).

Saving a Form Under a New Name

A separate option on the Form pull-down menu allows you to save the current file
under anew name. This option istitled Save As. After selecting this option, the
Form Painter produces a pop-up window containing a prompt for a new file name.
The window appears as follows:

Save form as:|]

When the new name is entered, the Form Painter composes and saves the file under
the new name. Once the saveis completed, the cursor reappears in the Form Editor.
Although you save the information to a new file, you continue to work with the
"old" file.

Automatic Save

The Form Painter does not require that the .per file on disk be the master copy of
the form. The generator, compiler, and printer, on the other hand, require that the
.per file be the master copy of the form.

Saving a Form 5-7

Fitrix Screen Technical Reference

The current form is saved automatically and composed into a structured .per form
specification file when you select the Compile Form option on the Run pull-down
menu.

When you execute the Compile Form option, the Form Painter checks to determine
whether the file has been modified since the last save. If there have been changes
since the last save, the form file is automatically composed and saved prior to com-
pilation.

Likewise, the Generate 4GL option performs an automatic save if you have made
changes more recent than the modification date for the file.

The Print option on the Form pull-down menu also causes the database information
to be written out to the .per file, depending on whether the database information is
newer.

Saving an Incomplete Form

Anincompleteformisone that has not been written as a complete .per file. Thereis
only one method for saving an incomplete form. Y ou must first select one of the
following options: Close, Exit, Quit, or New. At the first prompt, choose not to save
thefileasa.per file.

Form “"browse” has not been saved.
Do you wish to write the perform file now?

YES CANCEL

Next, choose not to del ete the database information for the form file.

Do you want to delete the Form from the
database (the perform file will not be
removed)?

YES CANCEL

5-8 Managing Forms

Fitrix Screen Technical Reference

Thisway, theincomplete information in the form file remainsin the database, but is
not written out to disk. At the next editing session, you can simply select the form
file by name; the system loads the form file from the database.

Closing a Form

Use the Close option on the Form pull-down menu to close the current file. Files
get closed when loading another file or exiting the Form Painter.

Aslong asafileiscurrent, its name appears centered on the line below the Prompt
line.

Example:
Form Editor: [ESC] or [DEL] Command Line LCTRLI-Lw] Help
Update data entry image
=: tlorder/2)3 (Zoom) (1,2)====
form title

The Close option clears out text on the Form Editor and removes the filename dis-
play. If you have modified the file since the last time you saved it, a prompt (similar
to the one displayed previoudly in this section) sequence appears to ask you for
storage instructions.

When the Close option appears on the Form pull-down menu preceded by an excla-
mation mark (and/or dimmed), thereis no current file and, hence, no file to close.

Closing a Form 5-9

Fitrix Screen Technical Reference

Deleting a Form

The Déelete option on the Form pull-down menu allows you to delete existing .per
form specification files. Once the Delete option is selected, a picker list appears,
displaying each .per filein the current directory. To delete afile displayed in the
picker list, simply select that file. A verification prompt next appears, requesting
confirmation on the delete command. Answering yes deletes the selected file. The
.per file is deleted from both the disk and the database.

The Delete Form prompt:

Ready to delete form "browse"”.
Continue?

YES NO CANCEL

Recovering a Deleted File

When you delete a form with the Delete Form option, the physical .per fileis not
actually removed from the disk but rather it is moved from the current directory to
the/ t np directory. This meansthat if you accidently delete aform, you may be
able to recover it by copying the .per form from the/ t np directory back to the
origina directory.

5-10 Managing Forms

Fitrix Screen Technical Reference

Establishing Software
Acknowledgements

Y ou can establish software acknowledgements for applications you create and gen-
erate with the Form Painter. While the acknowledgement text does not appear on
the .per form, it is attached to the application code during generation with the Fitrix
Screen Code Generator.

There are three stages to creating acknowledgements:

1. The Software Acknowledgements form.

View: [ESC] or Help:
[DEL] to Quit L[CTRLI-Lw]
(Zoom)==

Software Acknowledgements

-

Copyright (c) 1993
Bob™s Consulting. Inc.
Orlando, Florida USA

Modified by Erik Pierson, Larry Dillard

(14 items)

Thisview-only form is displayed when the end-user selects the Acknowledgements
option from the Program Information Menu. This form displays the default Code
Generator comments as well as any acknowledgements added to the following two
forms.

The window that displays the acknowledgements variesin size depending on the
text shown.

Pressing [CTRL]-[Z] displays the following Acknowledgements form.

Establishing Software Acknowledgements 5-11

Fitrix Screen Technical Reference

2. The Acknowledgements form.

Update: L[ESC] to Store. [DEL] to Cancel Help:
Enter changes into form LCTRLI-Lw]
(Zoom)==
Acknouwledgements

Copyright (c) 1993
Bob"s Consulting. Inc.
Orlando. Florida USA

Modified by Erik Pierson, Larry Dillard

This form enables you as the devel oper to add any type of acknowledgements you
wish to your programs. Text added on this form shows up on the Software
Acknowledgements form for this particular program only.

Pressing [CTRL]-[Z] displays the following defaults form.
3. The Acknowledgements (default) form.

Update: L[ESC] to Store. [DEL] to Cancel Help:
Enter changes into form LCTRLI-Lw]

Acknouwledgements (Default)

Copyright (c) 1993
Bob"s Consulting. Inc.
Orlando, Florida USA

Thisform allows you, as the developer, to add default acknowledgement text to
every Software Acknowledgement form in the application.

5-12 Managing Forms

Fitrix Screen Technical Reference

Printing a Form

Use the Print option on the Form pull-down menu to print an existing .per form
specification file. The Print option uses the value currently found in $SPOOLER,;
thedefaultis| p. If | p isunsuitable for your system, you need to adjust the value
of $SPOCLER.

If any changes have been made since the last time you saved the form, the Form
Painter automatically saves the form prior to printing. The Print option leadsto a
window containing a picker list, which allows you to specify the file you want to
print.

Use the INFORMIX-defined [F3] and [F4] paging keysto scroll through the list.
Select aform by moving the cursor to the proper row and pressing [ESC].

Printing a Form 5-13

Fitrix Screen Technical Reference

5-14 Managing Forms

Editing Forms

This section covers:

n

The Form Editor
Editing keys

Undoing edits
Centering text

Using the text Clipboard

Marking, cutting, and copying text blocks

6-1

Fitrix Screen Technical Reference

The Form Editor

The bottom section of the Form Painter interfaceis called the Form Editor. The
Form Editor displays the image of the form. It is here where theimage of aformis

created.
menu line——— File Edit Define Run
__|=======(standard)================(order/1)
Order Form
Customer No. : [Contact Name:[1C 1
Company Name:[1
Address:[1L 1
i City/St/Zip:L i 1t 1 Telephone:L 1
The Form Editor
dlsplaylng a Order Date:[1 PO Number:[1 Order No:[1
Sample form. Shipping Instructions: [1
Item Description Manufacturer Qty. Price Extension
L 1 I 1 L 1C
[I 1 I 1 1C 1
[I 1 1 C 1C 1
[I 1 I 1 L 1C 1
Order weight:L 1 Freight:[1
Enter the customer code.

The Form Painter Edit

Commands

The only time the cursor appears in the Form Editor portion of the screeniswhen a
form fileis current. When aform is current, the cursor can be toggled back and
forth between the Form Editor and the menu line by pressing the [ESC] key. You
can also switch from the menu line to the Form Editor by executing the Edit Form
option, found on the Edit pull-down menu.

6-2

Editing Forms

Fitrix Screen Technical Reference

When the cursor is in the Form Editor, you have access to a number of INFOR-
MIX-defined editing keys. The Form Painter uses additional keys that enhance the
"painting”" environment. The table shown in this section lists Form Editor keys and
their significance.

Keys Action

[CTRL]-[a] toggle between insert and overstrike

[CTRL]-[X] delete character

[CTRL]-[d] delete to the end of the line

[CTRL]-[u] undo an edit

[CTRL]-[V] mark/copy

[CTRL]-[t] cut

[CTRL]-[p] paste

[CTRL]-[w] context help

[F1] insert ablank line

[F2] deletealine

[ENTER] move to the beginning of the next line
[HOME] move to the top left corner of the form

[define anew field

] lengthen an existing field

[ESC] toggle between command and edit mode
[DEL] go to command mode

The Form Painter Edit Commands 6-3

Fitrix Screen Technical Reference

It isworth noting here that the INFORMI X termcap definitions are used. If you find
that the keys shown in the previous table do not operate as expected, the problem is
likely to be in the termcap definition used for your particular terminal. For informa-
tion regarding the specification of termcap definitions, please see "Writing Term-
cap Entries' on page G-6.

Undoing the Previous Edit

The Form Painter editor allows you to "undo" your previous edit with the Undo
option on the Edit pull-down menu. The Form Painter interprets an edit as the most
recent single change—typically the result of one command. For instance, the fol-
lowing list of edits are al considered individual, and could be reversed with the
undo command:

* deleting text to the end of aline ((CTRL]-[d]). The undo command restores all
characters deleted by this action.

» addingasingle, contiguousline of text to aform. The undo command appliesto
all text entered on the same line since the last time the [ESC] key was pressed.

e using [CTRL]-[X] (within a defined field) to shorten the length of afield. The
undo command returns the right delimiter (]) to its original position.

» reversing uninterrupted deletions using [CTRL]-[X]. The undo command, when
used immediately, restores contiguous characters del eted successively.

» undoing acut replaces an entire block of text if it was marked and cut.

» undoing a paste replaces a block of text that was pasted into the form from the
Clipboard.

» undoing an "undo" reverses the effect of the undo command just executed.

The undo command only affects the latest edit. For example, assume the undo com-
mand (when first pressed) removes the last word typed. If executed again (with no
subsequent changes), undo restores the removed word.

6-4 Editing Forms

Fitrix Screen Technical Reference

Centering Text on the Form

The Edit pull-down menu offers an option enabling you to center any line specified
on aform. First, place the cursor on an existing line of text. Next, select the Edit
pull-down menu, and then the Center option. The system automatically provides
the required number of spaces to the left of the text line so the lineis centered on
the form.

Working with the Clipboard

The Fitrix Screen Form Painter offers a number of options for working with large,
contiguous blocks of text. This part of the documentation explains the use of the
Clipboard as well asthe Mark, Cut, and Paste features.

Using the Clipboard

The Form Painter allows you to mark any current block of text on the Form Editor
and cut or copy it to the Clipboard where you can later retrieve and use it. Think of
theseindividual blocks of text as Clipboard "pages.” The discussion first focuses on
how to use the pages on the Clipboard. Next, the focus turns to methods for adding
pages to the Clipboard.

Data stored in the Clipboard by any given user isretained in the form of pages. The
most recent 100 titled pages are preserved in a stack for later use. When you store a
new page on the Clipboard, the oldest page is "pushed off" the end of the stack. The
stack of titled clipboard pagesis maintained for use in future editing sessions. In
order for a Clipboard page to remain on the stack from one Form Painter session to
the next, you must giveit atitle. The topic of titling pages is addressed |ater in this
section.

The Clipboard is most effective as atime-saver when you perform repetitive tasks.
Instead of typing several identical lines, you can type one line, copy it to the Clip-
board, then paste it several times. Y ou can also use the Clipboard to copy sections
from existing data screens, then paste those sectionsinto a new screen.

Centering Text on the Form 6-5

Fitrix Screen Technical Reference

To display the Clipboard, select the Clipboard option on the Edit pull-down menu.
The clipboard page at the top of the stack isdisplayed in afull-sized window on the
editor form. The cursor appears on the Clipboard command line, allowing you to
select from anumber of Clipboard-related commands. The following diagram illus-
trates the general format.

Clipboard:|| [I[EETN Delete Browse MNext Prev Select Quit
Change block title

Inventory Items==

Item Number
Manufacturer”s Code:[A2

Item Description :[A3
Unit Price :Lh4
Unit Code :LAS
Unit Description :[LA6

The Clipboard command line offers seven commands for use with the individual
pages.

Think of clipboard pages as documentsin afile; they can betitled (Update), viewed
(Next, Prev, Browse), deleted (Delete), or selected for pasting into the current doc-
ument (Select). The commands are outlined below:

Update: Name or rename the current page. Y ou must title blocks of text (pages)
you plan to usein the future. When you exit the Form Painter, all untitled Clipboard
pages are automatically removed. When you select the Update command, the
prompt line changes to the following:

Enter title:

Enter thetitle you intend to give the text page currently shown in the clipboard win-
dow. Press[DEL] instead of [ESC] if you decide against storing the text page under
the title specified at the prompt. The standard INFORM I X-defined edit keys are
available. For more information on how the Form Painter Clipboard titles pages
refer to the discussion of the Cut option on page 6-11.

Delete: Delete a pagein the Clipboard stack.

Browse: View alist of pages. This command draws a Browse window over the
form containing alist of pages currently stored on the clipboard. Thelist of items
consists of all thetitled and untitled pages.

6-6 Editing Forms

Fitrix Screen Technical Reference

The Browse window appears as follows:

LESC] to Select.
[DEL] to Quit

Blocks

Block 1
Block 2
Customer Information

(3 items)

Next: View the next page in the stack. When used at the bottom of the stack, the
Next command loops around to display the first page in the current stack.

Prev: View the previous page in the stack. This command is the opposite of the
Next command.

Selecting an item (page) in the Browse window makes that item current in the clip-
board window. In order to paste the page into the current form, select it from the
clipboard window with the Select command.

Select: Select the page for pasting into the current form. Once you select a page, it
appears on the Form Editor at the cursor position from which the Clipboard was
called up. The page text is displayed in reverse video, with the cursor located in the
upper left corner of the page.

Quit: Quit the Clipboard and return to the Form Editor. Use this command to
return to the Form Editor without pasting a page from the Clipboard.

Working with the Clipboard 6-7

Fitrix Screen Technical Reference

The following illustration provides an indication of how a selected clipboard page
might look on the Form Editor prior to pasting.

Paste: [ESC] to Paste [DEL] to Cancel LCTRLI-Lw] Help
Use arrow keys to position for pasting
(filenam/1) (2,1)====

Ttem Number :
Manufacturer”s Code:

Item Description
Unit Price
Unit Code
Unit Description

Notice that the Clipboard command line is replaced with the Paste command line at
the top of the screen. Use the arrow keys to move the highlighted page of text into
the desired position on the form. When it appears in the proper location, press
[ENTER] or [ESC] to paste the page into the current form. Once the page has been
pasted into the form, it becomes part of the form and can be edited like any other
text. Clipboard pages can be re-used for forms that contain identical areas, such as
detail lines.

The information on the text page erases existing text and fields on the form (charac-
tersand fields), if pasted on top of existing text or fields. Unless you want to delete
existing definitions, it is not a good idea to position and paste clipboard text on top
of existing text/fields.

Note

Some fields on the Clipboard page may not transfer to new forms. Newer ver-
sions of 4GL have data types that older versions don’t recognize. When you
paste a page created in a newer 4GL version into an "older" form, awarning
pops up to tell you that you can’'t paste the incompatible data typesinto the form.
See "Engine/4GL Compatibility" on page E-4.

6-8 Editing Forms

Fitrix Screen Technical Reference

If you decide not to paste selected text from the Clipboard, simply press [DEL] to
return to the Form Editor.

Using the Paste Command

The Edit pull-down menu contains the Paste option, which is used to automatically
paste the top (newest) page of text from the clipboard.

By using the Paste option, you do not have to use the Clipboard command line. The
Paste option automatically selects the newest page of text from the Clipboard.

The Paste option is designed to be atime-saver for those occasions when a certain
block of text appears repeatedly on the screen form. By simply marking and copy-
ing the text to the Clipboard, you can re-use it quickly and easily. The default Hot
Key setting for the Paste option is[CTRL]-[p].

Note

The text pages stored on the Clipboard can consist of any block of text entered
onto a Form Editor. Thisincludes the definitions for fields included in the text
block. When you cut or copy a block containing fields, the block retains the def-
initions specified in the original field.

Marking Text Blocks

The preceding part of the documentation explained how you can benefit by using
text pages stored on the Clipboard. This part focuses on how to store pages of text
blocks on the Clipboard. In short, there are two ways to store pages in the Clip-
board: by cutting (Cut), and by copying (Mark).

Both methods of storing text to the Clipboard rely on the Mark option, which lets
you "pin down" the ranges of the text block. Once text is "marked," it isready to be
cut or copied to the Clipboard.

Working with the Clipboard 6-9

Fitrix Screen Technical Reference

To mark ablock:

1. Position the cursor in one of the corners of the block to be marked.

2. Select Mark from the Edit pull-down menu or press [CTRL]-[v].

3. Stretch the highlight until it covers the entire area to be cut or copied.

The Edit pull-down menu contains the Mark option. Mark can also be selected by
pressing [CTRL]-[v]. The cursor must be positioned in a corner (upper left or lower
right) of the text block before the Mark option is executed. Thisisimportant
because once the Mark option has been executed, the cursor is"anchored.” That is,
the cursor cannot be moved from the anchor point; the only function of the cursor
movement keysisto stretch the highlight to cover the block intended for storage on
the Clipboard. The block can be stretched in arectangular shape away from the
anchor point; it can range in size from a single character to an entire form.

The following diagram depicts a marked block.

Mark: CUT to Delete COPY to Clip [ESC] Command Line [DEL] Cancel
Use arrow keys to highlight region for CUT or COPY [CTRLI-Lw] Help
(order/2) (Zoom) (12.76)==
Order Form
Customer No.:L] Contact Name:L 1C]
Company MName:[]
Address:[1C]

City/St/Zip:L L 1L 1 Telephone:L]

Order Date:l] PO Number:[] Order No:L]
Shipping Instructions: []
Item Description Hanufacturer Qty. Price Extension

marked block—{HIEL L 10 1 L 1L

In the previous example, the marked text block consisted of just one line. Prior to
marking, the cursor could have been over the "C" in Cut, or over the right field
delimiter. The text block, indicated by the highlighted area, can be expanded or
contracted prior to cutting or copying.

6-10 Editing Forms

Fitrix Screen Technical Reference

Cutting Text Blocks

Once amark has been placed on the form (anchoring the cursor), you can cut or
copy the text into the Clipboard. In order to cut text into the Clipboard, you must
execute the Cut option on the Edit pull-down menu or press [CTRL]-[t].

For example, assume you have marked an area of text you want to cut and retain in
the clipboard. The next step is to execute the Cut option. Y ou can do this by access-
ing the Edit pull-down menu and selecting Cut. This must be done while the text is
till highlighted—if you execute the Cut option without having highlighted text on
the Form Editor, thereis no effect.

Once you execute the Cut option, the highlighted text on the Form Editor is moved
from the Form Editor to the Clipboard.

Keep in mind that text pages stored in the Clipboard are titled generically until you
deliberately title them through the Clipboard Update command discussed previ-
ously under "Using the Clipboard." The generic titleis Bl ock n, withnbeing a
number incremented each time a new pageis stored to the Clipboard. The most
recent untitled text page is automatically titled Bl ock 1. It isstrongly suggested
that a new text page be given a descriptive title as soon as it appears on the Clip-
board—a Clipboard text page is not saved from one Form Painter session to the
next unlessit has been given atitle. For instructions on titling Clipboard text pages,
see the discussion of the Clipboard Update command on page 6-6.

Copying Text to the Clipboard

The second method for storing text pages to the Clipboard is by copying text. To
copy text, you first have to mark the text to be copied with the Mark command
([CTRL]-[Vv]), then execute either the Copy or the Mark option after the block is
highlighted. The Copy hot key is the same as the Mark key, [CTRL]-[v].

The primary steps are the same as those you used to cut text to the clipboard. On a
current form, you must first use the Mark option to anchor the cursor at a corner of
the text block you want to copy to the Clipboard. Then expand the highlight to
encompass the desired text. Execute the Copy command or the Mark command a
second time. Once atext block is copied, the highlight disappears and the demar-
cated text becomes the top page of the Clipboard stack.

Working with the Clipboard ~ 6-11

Fitrix Screen Technical Reference

As with text pages cut to the Clipboard, copied pages should be given descriptive
titles as soon as possible.

Creating Detail Arrays

The copying and pasting features of the Form Painter make it easy to create detail
field arraysin your forms.

To create adetail array (used in the detail section of a header/detail form):
1. Make sure you are in input area 2.

2. Create the first line of detail fields.

3. Copy the detail line.

4. Paste the detail line multiple times.

Field definitions are retained.

Copying Between Input Areas

When you cut or copy afield and then paste it back to the form, the pasted field
becomes part of the current input area. All input areas must be defined before you
copy fieldsto them.

To copy afield from input area 1 to input area 2:
1. While in input area 1, copy the field.
2. Switch to input area 2.

3. Paste the new field where you want it.

6-12 Editing Forms

Form Definition

This chapter addresses the definition of individual fields and forms. The informa-
tion in this section is based on the options found on the Define pull-down menu.
Theinformation in this chapter covers:

Novice and Expert Modes

Defining Form Defaults

Defining the Input Area

Defining Fields

Defining the Cursor Path

Defining Math for Fields

Defining L ookups

Defining a Zoom Field

Defining Triggers

Selecting Commands for the Ring Menu
Short Cutsto Define Options

Defining Copyright Text for Applications

> 3 O3 5 5 5 5 5 O oS S S

Fitrix Screen Technical Reference

Novice and Expert Modes

Y ou enter field definitions onto data-entry formsin the Form Painter. Each field on
adefinition form used to enter table name/column name information offers the
Zoom feature aswell asinput validation. For example, any time you need to enter a
join statement or a unique key, you can use the Zoom to select avalid entry.

The first aspect to consider when defining information is your operating mode.
Two modes are available in the Form Painter: Novice and Expert. The system
default is Expert mode.

The Edit pull-down menu offers atoggling option that switches the mode under
which you operate. The two modes, Novice and Expert, determine which type of
forms you may create as well as the amount of detail you can define for each field.

When Novice mode isin effect, atoggling option on the Edit pull-down menu
appears as follows:

Edit

Undo “U
i . . ICut T
This option is a toggle. ICopy Y
By selecting the Expert Paste p
X . Clear Form
Mode option, youwill | _ZZZT0 T
switch to expert mode. Mark ¥
This also indicates that Center
you are currently in
novice mode Clipboard

7-2 Form Definition

Fitrix Screen Technical Reference

To change to expert mode, you need to select the Expert Mode option. When the
expert mode is active, the option is displayed differently:

Selecting the Novice
Mode option switches
you to novice mode.
This also indicates that
you are currently in ex-
pert mode

Undo

ICut

1Copy

Paste
Clear Form

Mark

Center

—MNovice Mode
Clipboard

U
~T
¥
P

If the Novice Mode option is visible, selecting that option makes the novice mode
active. Creating formsin novice mode is easier because system defaults are used,
which denies you some of the more complicated details associated with screen form
specification. It can be used only for painting header-only forms (flat files). You
cannot use the novice mode to build header/detail, zoom, or browse forms. Pop-up
windows used to define fields and forms are | ess detailed when running under the
Novice mode; not as many characteristics are available.

Novice and Expert Modes

7-3

Fitrix Screen Technical Reference

Defining Form Defaults

The next step in defining a data-entry application with the Form Painter isto estab-
lish form defaults. Y ou have access to the Define the Form form through the Form
Defaults option on the Define pull-down menu. Alternatively, you can access the
form by pressing [CTRL]-[z] in the Form Editor when the cursor is anywhere but
inside a defined field. Either way, you must first be working with a current screen
form. The Define the Form form:

Update: L[ESC] to Store. [DEL] to Cancel Help:

Enter changes into form [CTRLI-Lw]
(Zoom)==

Define the Form

Form ID : order

Module ID : demo

Program ID : screend

Hain Table e ders |

Form Type : header/detail

Returning (zoom) H

Upper Left Row,Col = 2 . 3

Lower Right Row.Col : 16 . 78

Form Attributes : white

Initial Filter : order_num > 100

Non-Source Form N

Engine Compatibility: SE
4gl Compatibility = 4.00

Enter the name of the table that this form uses.

A number of default values appear on the form automatically. The fields Form ID,
Module ID, and Program ID are NOENTRY ; they take their values from the form
name and directory structure in which you are devel oping the screen form.

Form ID: The Form ID is established when the current form is first created, and
contains the name of the form.

Module ID: The Module ID is derived from the parent directory name (less the
.4gm extension).

Program ID: The Program ID name comes from the name of the present working
directory (less the .4gs extension).

Main Table: The Main Tablefield isrequired if you use a browse or zoom form
with a header, header/detail, or add-on header form. Y ou can use the Zoom feature
to display apicker list of existing table names in the default database. Validation
occurs on this field although you are not required to enter an existing value.

7-4 Form Definition

Fitrix Screen Technical Reference

Form Type: The Form Type field contains the type of form you selected after
naming the form. Y ou may change the type of form by entering anew typein this
field.

Thisfield offers the Zoom feature, available by pressing [CTRL]-[z]. The Zoom
feature draws a picker list of valid screen types. For more information refer to
"Form Types' on page 10-4.

Returning (zoom): Thisfield is bypassed unless the form type is zoom. Since a
zoom form can be used to return selected data, the field name for returned data
must be listed here. The Zoom feature is availablein thisfield to help you select a
valid entry. Validation occurs on thisfield although you are not required to enter an
existing value.

Upper Left Row, Col: These fields each contain two values that position the
data-entry form on the terminal screen. The field labeled Upper Left Row, Col
stores the beginning row and column number, respectively, for the screen form.
The default values 2, 3 correspond to those typically assigned to a header or
header/detail form. Y ou will most likely change the values in these fields for
browse and zoom screens, which tend to be displayed across a portion of the main
program screen form.

Lower Right Row, Col: Thisfield maps the lower row and ending column val-
ues. If specified, these values can "extend" the boundaries of the form beyond the
column or row (given the limits on the form size). If left blank, the size of the form
defaults to the lower row and right-most column entered onto the form. The benefit
of specifying values for the Lower Right Row, Col field is that the form can be eas-
ily resized.

When creating browse or zoom screens, the Lower Right Row, Col field really has
no effect. When you save your form, the right edge of the form defaults to the right-
most character on the form. Therefore, in order to center your columns on your
form, you may need to use a dashed line to determine the width.

Form Attributes: Default attributes can be assigned through the Form Attributes
field. The default attributes (border, white) are consistent with code generated with
the Fitrix Screen Code Generator.

Initial Filter: Thisfield controlstheinitial selection of records from the database.
The default filter 1=0 evaluates to false for each record, indicating that no auto-
matic selection of records takes place. The filter 1=1 automatically selectsall
records since the program always evaluates the filter statement as true. The special

Defining Form Defaults 7-5

Fitrix Screen Technical Reference

words"all" and "ALL," when you enter them into the Initia Filter field, have the
same significance as 1=1. The words "none" and "NONE" are interpreted in this
field as 1=0.

The entry in thisfield is checked for syntactical correctness. If irregular syntax is
detected, awarning prompt appears. The system does not, however, require that
valid syntax be specified.

Non-Source Form: The Non-Source Form field is ayes/no field that determines
whether or not the Code Generator generates source code off thisform. If you
answer Y, then theflag non_sour ce_f or miswritten to thefirst line following
the copyright heading of the .per file. The non-source form statement prevents the
Code Generator from generating code for this form. This allows you to have multi-
plemai n . per formsin working directories, which may be necessary when you
generate code off of one particular form but you use another form for display pur-
poses.

Thelast two fields allow you to choose the engine and 4GL compatibilities for the
form. These fields circumvent incompatibilities between engine and 4GL versions.
Certain data types available in the 4.10 4GL s run only on the OnLine engine.

For more information refer to "Engine/4GL Compatibility" on page E-4.

Engine Compatibility: The default engineis Standard Engine (SE). Zoom is
available.

4GL Compatibility: The default 4GL versionis4.10. Zoom is available.

7-6 Form Definition

Fitrix Screen Technical Reference

Defining the Input Area

The definition of input areas becomes important when you create a complicated
screen form such as the header/detail form. When creating a header/detail applica-
tion, you must define two distinct input areas, each with its own main table, unique
key, filter, etc.

Note

Y ou must define input areas before creating, copying, or pasting fields.

This part of the documentation explores the characteristics that you define at the
input arealevel. The discussion is based on the Input Areas option, found on the
Define pull-down menu and on the picker list that appears when you press[CTRL]-
[Z] in the Form Editor. Since you must operate in Expert modein order to develop a
header/detail screen form, the discussion assumes that you are in expert mode.
Later, the abbreviated Define Input Areas form used for Novice mode is discussed.

Theinput areais automatically determined by the main table you declare for the lat-
est field you define. That is, you enter the table name for each field you define on
your form. When the table name for the current field differs from that of the most
recent field, anew input areais established. All subsequent fields sharing the new
table name form part of a common input area. Typically, thislets you distinguish
between the header and detail portions of the form. In the .per file, input areas are
titled inputN, with N being a number.

Y ou enter and modify some of the input area characteristics through the Define
Input Areaform. When you select the Input Areas option while working with a
header/detail form, a picker list helps you determine the particular input areato
define. After you select the desired input area, the Define Input Area form appears.

Defining the Input Area 7-7

Fitrix Screen Technical Reference

The Define Input Area form:

Update: [ESCI to Store., [DEL] to Cancel
Enter changes into form

(Zoom)==

Define Input Area 1

Main Table © o IEIN

Unique Key : order_num

Join :

Filter : order_date > "12/31/80"
Order : order_num

************** Scrolling Areas Only ———————————
Array Limit:]
Auto Number:

Enter the main table for this input area.

Entry into the fields on this form is determined by the input area chosen and by the
type of form you are developing (form type).

Main Table: Thisfield stores an entry which defines the main table for thisinput
area. There can be only one main table for each input area. The Zoom featureis
availableinthisfield to help you select avalid entry. Validation occurs on thisfield
although you are not required to enter an existing value.

Unique Key: The Unique Key field storesalist of fields that comprisesthe unique
key for the main table in the main (non-scrolling) section of the screen. The system
usesthisinformation to key "secondary" datato the main table. This secondary data
includes Freeform Notes and User Defined Fields. If the key is not defined, you do
not have access to certain User Control Library features such as Freeform Notes or
User Defined fields.

The Unique Key field scrolls so the entry into this field can exceed the visible
length shown on this form. The Zoom feature is available in this field to help you
choose avalid entry. Validation occurs on this field although you are not required
to enter an existing value.

Join: The Join field defines the criteriafor joining the scrolling input area to the
main input area. The Join field is only specified in the scrolling input area (input
area 2); therefore, thisfield is not specified unless the form type is header/detail .
The Zoom feature is availablein thisfield to help you select avalid entry. Valida
tion occurs on thisfield although you are not required to enter an existing value.

The following is an example:

7-8 Form Definition

Fitrix Screen Technical Reference

itens. order_num = orders. order_num

In thisinstance, the scrolling section main table (items) isjoined to the main section
main table (orders).

Filter: TheFilter field stores the hard-coded filter used in every query. Thisfilter is
joined with your query by example filter and the filter that may be passed viathe
command line. The Zoom featureis available in thisfield to help you choose a
valid entry. Validation occurs on thisfield although you are not required to enter an
existing value.

Thisfield' sdefault is 1=1 (no hardfilter). The special words"all" and"ALL", when
entered into the Filter field, have the same significance as 1=1. If you enter the
words "none" and "NONE" in thisfield, they are interpreted as 1=0.

For example, if you only wanted to see customerswith acust omrer _numgreater
than 1000 in this program, you would specify in the Filter field:

cust onmer _num > 1000

Order: The Order field stores the field names by which you wish to order the
selection of documents. Enter the desired "order by" clausein thisfield. The "order
by" clause can be made descending or ascending. The Zoom feature is availablein
thisfield to help you select avalid entry. Validation occurs on this field although
you are not required to enter an existing value.

Like other variable-length fields, the Order field stretches to accommodate an entry
that exceeds the visible length of the field on the Define Input Areaform.

The last two fields appearing on the Define Input Areas form are accessible only
when you define the detail input area. To enter these fields, you must define a
header/detail screen form, and you must select Detail on the input area picker list.

Array Limit: The Array Limit field stores an integer value determining the num-
ber of internal program array elements you wish to provide space for in the scroll-
ing input area. It only is used for detail and Zoom type input areas. The default
value for thisfield is 100.

Auto Number: The Auto Number field specifies a detail field that the system
applies unique line numbers to, for maintaining the order of detail rows. This
allows each detail line to be unique. Any detail field specified in Auto Number

Defining the Input Area 7-9

Fitrix Screen Technical Reference

identifies an item entered on the first detail line as "item on line number 1." Then,
whenever the detail lines are re-displayed, they are displayed in the same order they
were entered.

If you want to maintain the order of your detail lines you must specify an Auto
Number field; if you do not, detail lines appear in unpredictable order. Do not list
the line number field (that contains the actual line numbers) in the form image
because it is not maintained during input. It is maintained only upon disk writes.
There is no default value.

The Zoom feature is availablein thisfield to help you select avalid entry. Valida
tion occurs on thisfield although you are not required to enter an existing value.

Switching Between Input Areas

When you work in the Form Painter you can toggle between input areas by pressing
[CTRL]-[n]. Pressing [CTRL]-[n] moves the cursor to the first field in the next
input area. The current input area appears at the top of the form next to the form
name. Thetitlecust oner / 1 indicates that you are working in input area one of
the current form.

Defining the Input Area in Novice Mode

Y ou can define the input area while operating in Novice mode, although the form
used is limited to two fields: Main Table and Unique Key. While in Novice mode,
you can only create header-only screen forms, so the additional fields described
previously are not applicable.

The Novice Define Input Area form appears as follows:

Update: [ESCI to Store., [DEL] to Cancel
Enter changes into form

(Zoom)==
Define Input Area 1

Main Table © o IEIN

Unique Key : order_num

Enter the main table for this input area.

7-10 Form Definition

Fitrix Screen Technical Reference

The fields appearing on the form are discussed in "Defining the Input Area" on
page 7-7.

Defining Fields

Fields on the Form Editor are delimited by square brackets. Square brackets ([])
have special significance when entered into the Form Painter. When the | eft bracket
(D) is pressed while the cursor is on ablank space, the Field Definition form isdis-
played. The[] keys have no effect when entered on top of existing text. The right
square bracket appears on the form automatically once afield has been defined.

Y ou may resize any field by typing a] near an existing field delimiter. For example,
if you want to expand the width of afield by two characters, move the cursor two
characters to the right of the right bracket and type]. The old field delimiter disap-
pears and the field is lengthened by two characters.

Y ou can also shorten afield by moving the cursor in-between the field delimiters
and pressing [CTRL]-[x]. This movestheright field delimiter one space to the left.

Sometimes you may not have enough room on your form to use sgquare brackets as
delimiters between two adjacent fields. In thisinstance you can use the pipe symbol
"[" as a delimiter between fields. Say you have two 10 character fields that need to
be located next to each other but you only have one space between them to specify
afield delimiter:

Custoner Nanme: | 10]
If the above does not fit, you could use the pipe delimiter like this:
Cust omer Name: [|]

Adjacent brackets][can be converted to pipe"|" delimited fields by moving the
cursor to either the ending] of thefirst field or the starting [of the second field and
pressing the | key.

Defining Fields 7-11

Fitrix Screen Technical Reference

If the pipe (|) is pressed when the cursor rests on the | of thefirst field, the end] of
thefirst field is converted to a pipe and second field is moved |eft with its starting [
removed.

cursor is here

action: "|" key pressed [11]
resul t: [| 1

Y ou can also disconnect fields that use the pipe delimiter in the same way. With the
cursor on the pipe, type aright or left square bracket "1" or "["

cursor is here

action: "[" or "]" key pressed [|

1
resul t: [10]

If there is not enough room to perform this operation an error message is displayed.

7-12 Form Definition

Fitrix Screen Technical Reference

Defining Fields in Expert Mode

Expert mode, which isrequired for all screen form types other than header-only,
provides you with additional control over the field definition. When the | eft square
bracket ([) is pressed on ablank part of the Form Editor screen in Expert mode, the
Expert Define Fields form appears.

Update: [ESC] to Store. [DEL] to Cancel Help:
Enter changes into form [CTRLI-Lw]
(Zoom)==
Define Fields
Table Name : offiSrNEEEEEN Input firea @ 1
Column Name: customer_num Entry ? Y
Field Type : integer Autonext ? :
Message ' Enter the customer code. Downshift ?:
Picture : Upshift ?
Display Fmt: Yerify ?
Yalidate : Required ? :
Default : Skip ?
Translate

Enter table name (or “formonly™).

Table Name: Thisfield identifies the table this field accesses. Pressing [CTRL]-
[2] in the Table Name field displays a selection criteria prompt that allows you to
narrow the list of available table names. After entering criteriaand pressing
[ENTER] the picker list appears asfollows:

[ESC] to Select.
[DEL] to Quit

Choose a Table

Beddgrpd
cgrarchd
cgrarchr
cgrfldsd
cgrimged
cgrmathr

(27 items)

Aswith other picker lists used throughout the system, pressing the [ESC] key
selects the row on which the cursor appears. The [DEL] key returns control to the
Define Fields pop-up window without returning any information. The INFORMIX-
defined paging keys, [F3] (page down) and [F4] (page up), allow you to page
through long lists.

Defining Fields 7-13

Fitrix Screen Technical Reference

Column Name: Thisfield lets you specify the name of the column thisfield
affects. The column name should be listed as part of the table you select in Table
Name. Press[CTRL]-[Z] to view a picker list of the columns found in the named
table.

The picker list appears as follows:

[ESC] to Select.
[DEL] to Quit

Choose a Column

Brder_num
order_date
customer_num
ship_instruct
backlog
po_num

(10 items)

The Zoom on Column Name only operates if you have specified avalid table name
for thisfield. Validation occurs on these fields although you are not required to
enter an existing value.

Input Area: Thisfield determineswhich input areathe field belongs to. The input
areais defined by the main table. For more information on input areas refer to
"Defining the Input Area' on page 7-7.

Entry: Thisisayes/no field that determines whether the field isto be NOENTRY .
If you restrict entry for afield, you establish it as display-only. Display-only fields
are generally used to return information by alookup.

If you indicate that the field isNOENTRY (N), the cursor does not enter the field
on the compiled data-entry form. When Entry?is set to N, the Required? and Mes-
sage fields do not need to be specified.

Field Type: Field type is automatically displayed based on the table and column
description for the field. If Table Name is specified as formonly, you are able to
specify thefield type.

There aretwo field typesthat allow you to enter text files, such as a spread sheet, or
byte files, such as graphics, sound, or video clips. These field types are called
BLOBs (Binary Large OBjects).

7-14 Form Definition

Fitrix Screen Technical Reference

If you try to create a BLOB field and your engine or 4GL are not compatible, a
warning message appears. For more information refer to "Creating BLOB Fields'
on page 7-18.

If the field type is defined "like" an existing table.column in the current database,
the Zoom feature can be used to select avalid table.column entry. Validation occurs
on thisfield although you are not required to enter an existing value.

Message: Thisfield storesacomment or description line that appears on the com-
piled program whenever the cursor enters the field being defined. When a user runs
the application created from your painted form and enters a field, message text
defined for that field appears at the bottom of the form. Also, whenever your cursor
enters afield while you are in the Form Editor, text from the Message field is dis-
played at the foot of the Form Editor. Message text must be limited to 74 charac-
ters.

Picture: Thisfield can be used to establish a character pattern determining how
data-entry on the compiled form appears. Perhaps the most obvious usage of this
attribute isto format the input of telephone numbers. An example for area code and
phone humber:

(H###) ### - B

Asyou enter digitsin the compiled form, they appear in place of the pound signs
(#), which serve as placeholders. The pound sign is used for numeric entry; the
character A isused for alphabetic characters; the character X is used for a phanu-
meric entries. Do not "quote" your pattern in the Picture field attribute.

Display Fmt: Thisfield serves as ahybrid attribute for the INFORMIX attributes
FORMAT and DISPLAY LIKE. These attributes are mutually exclusive; you can
use the entry in Display Fmt for either of the two INFORMI X attributes. Examples
of proper entries:

mi dd/ yy
H#itH- #it- #HH#H
li ke stxcntrc.conmpany

If the display format is defined "like" an existing table.column in the current data-
base, you can use the Zoom feature to select avalid table.column entry. Validation
occurs on this field although you are not required to enter an existing value.

Defining Fields 7-15

Fitrix Screen Technical Reference

Validate: Thisfield is similar to Display Fmt in that it covers two INFORMIX
attributes that are mutually exclusive. In this case, the attributes are INCLUDE and
VALIDATE LIKE. Validate stores INCLUDE information unless the first word
specified is"like" (in which case, the field attribute behaves asif it werea VALI-
DATE LIKE entry). The following are examples of proper entries:

e

1 to 50, 200 to 422

I'i ke custoner.fnanme

If the entry isdefined as"like" an existing table.column in the current database, you
can use the Zoom feature to select a valid table.column entry. Validation occurs on
thisfield although you are not required to enter an existing value.

Default: Thisfield enables you to enter any data that appearsin afield by default
when the program isrun. A user running the program could then press[ENTER] to
accept the default value or to enter new data. When specifying default datafor char-
acter fields you must surround your data with quotes (").

Notes about Default:

1. Defaultsarelimited to 30 charactersin length. The default line can contain
many default values for fields, with each default value having a maximum
length of 30 characters.

2. Defaulting is not performed in input area 1, the header, unless all of the
variablesintheinput 1 program p_r ecor d arenull.

3. Defaulting is not performed for a specific row in the detail input array
unless all the program p_r ecor d variables for agiven row are null.

You can easily create afield that defaultsto the current date. Simply put "today" in
the default field. The "today" keyword works with date columns only.

Translate: Thisfield lets you enter translation context. If you are using language
translation you must first set up your translation contexts by populating the st x-

| angr table. Anything you enter in this field must be defined in the st x| angr
table. For more information on language translation refer to "Translating Values
Used in Data Entry" on page 17-7.

7-16 Form Definition

Fitrix Screen Technical Reference

Autonext: Thisfield determines whether the cursor automatically transfersto the
next field on the compiled data-entry form when the current field isfull. If the entry
in Autonext?is, the cursor automatically jumpsto the next field when the current
fieldisfilled. Thisisuseful for fields typicaly filled with a constant number of
characters, such as department codes.

Downshift: Thisfield converts uppercase charactersto lowercase upon display. A
Y (Yes) entry converts all uppercase data-entry characters into lowercase.

Upshift: Thisfield isthe opposite of Downshift?; it converts|lowercase characters
into uppercase for screen display.

Verify: Thisfield is available as a means by which data-entry accuracy can be
enhanced. If thisfield storesthe value Y (Y es), end-users are required to make an
identical entry into the defined field twice.

Required: If the current field is enterable, you can designate whether thisfield is

reguired. When the compiled application isrun, required fields must be filled with a
valid entry before the document can be saved. The Required? field stores a value of
either Y or N. Detail fields cannot be made required.

Skip: A Y inthisfield causes skip logic to be generated for thisfield. Refer to
"Creating Skip Field Logic" on page 15-36.

Defining Fields in Novice Mode

Novice mode displays an abbreviated field definition form shown in the following
illustration. Since the Novice mode can be used only to build header-only screen
forms, the required information is limited. If you operate in Expert mode, please
see the previous section "Defining Fieldsin Expert Mode" on page 7-13.

Defining Fields 7-17

Fitrix Screen Technical Reference

In Novice mode, the Define Fields form appears as follows:

Update: [ESC] to Store.
[DEL] to Cancel

(Zoom)==

Define Fields
Table Name : o[RS

Column Name: order_num
Entry ? Y
Required ? :

Message:

Enter table name (or "formonly™).

For an explanation of these fields see the previous section.

Modifying Existing Field Definitions

The preceding information explains how to define fields. Y ou must use the | eft
square bracket ([) to initially define afield. To modify an existing field definition,
you must first place the cursor in the field (the entire field appearsin reverse video).
Next, execute the Fields option on the Define pull-down menu, or press[CTRL]-[Z]
from within the Form Editor and select Fields from the picker list.

After selecting this option, the Define Fields form appears. Y ou can then modify
any attribute you wish. The appearance of the Define Fields form depends, of
course, on the mode in which you are operating.

Creating BLOB Fields

If you are running INFORMIX-4GL 4.10 or higher and the OnLine engine, you can
create an application that uses BLOB (Binary Large Object) technology. A BLOB
can be atext file, agraphicsfile, asound file, or another application. For more
information on BLOBs refer to "Creating BLOBS' on page 15-31.

7-18 Form Definition

Fitrix Screen Technical Reference

To create afield that uses BLOBSs (Binary Large Objects), you must select a col-
umn that has been set up asa "text" or "byte" field. Once you specify atext or byte
column in the Column Name field on the Define Fields form a pop-up window
appears into which you enter the program and edit permission for the BLOB.

Update: [ESC] to Store. [DEL] to Cancel

Enter changes into form

Define Blob Field Program Characteristics

Program : xloadimage

Edit

Program can edit the blob({(Y/N)%?

The following lists the default values:
For atext field:

Program vi
Edi t Y

For abytefield:

Program x| oadi mage

Edi t N
When you specify BLOBs and compile the form, the .per fileliststhe BLOB fields
in the attributes section. If the BLOBs are columnsin atable, the input 1 section of
the .per contains one or more blobdef lines—one per BLOB. The blobdef lists the
column name, the specified program, and the edit permission.

Anexample: sp_sheet isthe column name of atext BLOB. Wingz is the pro-
gram name and the permission to edit is set to Y. After you save the form, the blob-
def line appears as follows:

bl obdef - sp_sheet, Wngz, y

When running the final application created with aform that usesa BLOB field, if
the BLOB field on the screen is blank, the field is empty. If the field on the screen
contains an asterisk, thereis datain the BLOB field. Zoom on the asterisk to view
(or run) the BLOB file.

More information on creating BLOBs can be found in "Creating BLOBS' on page
15-31.

Defining Fields 7-19

Fitrix Screen Technical Reference

There are several other field typesin addition to BLOBs that depend on engine and
4GL compatibility. Refer to "Engine/4GL Compatibility" on page E-4 for more
information.

Defining the Cursor Path

Y ou may choose to have the cursor proceed from field to field in an order different
from the order in which the fields on the screen form were defined. The sequence
can be modified quickly and easily with the Cursor Path option on the Define pull-
down menu. Alternatively, you can access the Cursor Path option by pressing
[CTRL]-[z] while in the Form Editor, outside a defined field.

Once you select the Cursor Path option, a picker list appears allowing you to deter-
mine the input area you wish to work with. Once you select an input area, the field
tags for the defined fields in the input area appear. The field tags are automatically
numbered according to the order in which the fields were specified. The cursor path
for the header section of a screen form might appear as follows:

These num-

Cursor Path: [ESC] to Store, [DEL] to Cancel. Help:
bers represent| [U1 to Update. [ENTERT or [TAB1 for Next Field [CTRLI-[w]
the order of (order/1)

Order Form

the field in the W] Contact Mame:[02 1003]
cursor pathg any Name:[04 1

Address:[05 1006 1

y/St/Zip:L07 10081 [09 1 Telephone:[10]
OrderMate:[11 1 PO Number:[12 1 Order No:[13 1
Shipping Instryctions: [14 1

Item Description Manufacturer Qty. Price Extension
[I L 1 1]
[I L 1 1]
[I L 1 1]
[I L 1 1]
1 Freight:[16 1
Order Total:[17 1

Sequence: 01]]

7-20 Form Definition

Fitrix Screen Technical Reference

The previous example consists of a header/detail form, with the cursor path dis-
played for the header input area. The detail input area cannot be changed at the
same time; the cursor path is modified one input area at atime. For this reason, the
field tags for the detail input areafields are not displayed in the previous example.

The Cursor Path option changes the command line prompt to provide information
about updating the existing cursor path. Press U to update the cursor path for the
current screen form field. The order in which the cursor moves depends on the
order of the field tags specified for the fieldsin the input area. Therefore, simply
enter anew value for fields that you intend to reorder. The field tags are modified
one at atime.

Defining the Cursor Path 7-21

Fitrix Screen Technical Reference

Defining Math for Fields

The Fitrix Screen Code Generator can automatically generate the logic for mathe-
matical calculationsin fields. To take advantage of this capability, you must define
the calculation for the field by using the Math option on the Define pull-down
menul.

To define math for afield:

1. Define the field.

2. Move the cursor into the field on the Form Editor.
The entire field should be in reverse video.

3. Select the Math option on the Define pull-down menu (or on the picker list
appearing after you press [CTRL]-[z] while you are in a defined field).

4. Enter the math formula.

The Define Math form appears on top of the existing data-entry form as follows:

Update: [ESC] to Store. [DEL] to Cancel Help:
Enter changes into form LCTRLI-Lw]

Define Math
(IR m (total_price) + ship_charge

Enter the formula to the right of the = sign.

The Define Math form contains only one field, the Formulafield. Thisfield stores
the required mathematical eguation. Entries can be longer than the visible length of
the Formula field; the field scrolls to accommodate |onger equations.

Sample entry for the Formulafield:

sun(total _price) + ship_charge

7-22 Form Definition

Fitrix Screen Technical Reference

Defining Lookups

Lookups evaluate the data that is entered into a field and match that data against
datain any table. A lookup placed on afield serves two purposes: verification and
dataretrieval.

See "Introduction to Lookups* on page 3-17 for illustrations of the two types of
lookups.

The Define Lookups Form

The Define Lookups form lets you create lookups for fields on your .per form. The
Define Lookups form is displayed by selecting afield in the Form Editor and then
choosing L ookups from the Define pull-down menu. Y ou can al so display thisform
by pressing [CTRL]-[Z] in afield and then selecting L ookups from the Define
Fields picker.

The Define Lookups form appears as follows:

Update: L[ESC] to Store. Help:
[DEL] to Cancel [CTRLI-Lwl

Define Lookups

Lookup Name : cIETETTR

Lookup Table : customer
Join Criteria: customer_num = ...

— Lookup From Into

Enter the name for this lookup.

Lookup Name: The Lookup Name field stores the name of the lookup. Uniquely
naming lookups allows you to have multiple lookups for the samefield. Anentry in
the Lookup Namefield is required, and must contain a unique name. Generally, the
L ookup Name contains the name of the lookup table except when multiple lookups
are performed on the same table; then you must use a unique name for each lookup.

Defining Lookups 7-23

Fitrix Screen Technical Reference

Lookup Table: The Lookup Table field stores the table that is being looked up.
That is, this field contains the table name storing the looked-up values. The Zoom
feature helps you select avalid table name from the current database.

Join Criteria: The Join Criteriafield lets you enter the "where" clause for thejoin
statement used in the lookup. This field scrolls to accommodate entries larger than
the visible size of the field. The Zoom feature can be used in thisfield to select
valid column names; the Zoom appends selected data to the existing datain this
field. Validation occurs on this field although you are not required to enter an exist-
ing value. For example:

stock_num = $stock_num

In thisinstance, the where clause matches the row in the stock table where the
st ock_numcolumn valueis equal to the st ock_numfield value on the data-
entry form. Variables appear on the right side of the equals sign.

Lookup From/Into: If you do not enter anything into these fields, then the Code
Generator automatically returns looked up datainto all NO-ENTRY fields that
belong to the same table as the field that was |looked up.

Y ou must fill in the Lookup From and Into fields when either of the following items
aretrue:

1. Thefield name on the screen has a different name from the column in the
table that you are looking up.

2. Thereis more than one lookup to the same table.

The Lookup From column contains the name of the column in the table being
looked up, while the Lookup Into column contains the name of the field on the
form.

Usethe[TAB] key to enter the Lookup From/Into section. The [TAB] key aso lets
you exit this section.

The Zoom feature is available in each column of this section to help you select
valid column names based on the lookup table specified. Entriesin this section
must correspond to column.table names defined on this screen form and in the
lookup table. Thisisascrolling set of columns; you may enter up to 50 destination
column names.

7-24 Form Definition

Fitrix Screen Technical Reference

The following example demonstrates alookup inthe st ock. st ock_numcaol-
umn and returns a corresponding description into the description column on the
screen. Thisis how this lookup would appear in the .per file.

| ookup = nanme=stock_num key=stock_num tabl e=stock,
filter=stock_num = $stock_num into=description

Creating a Data Retrieval Lookup

Dataretrieval lookups are keyed from afield in the main table for thisinput, and
they retrieve information from another table to place into destination fields. Desti-
nation fields must be NOENTRY type (Entry? set to N). The default destination
(Lookup Into) fields are all NOENTRY fieldsin the input area that have atable
name matching the lookup table name.

Lookups are defined through the Lookup option found on the Define pull-down
menu (also found on the picker list appearing when you press [CTRL]-[z] from
within a defined field). The lookup is defined in the key field, not in the fields
receiving data returned by the lookup.

To define adataretrieval 1ookup:
1. Create the key lookup field.

Thekey field isthe field that triggers the lookup. For example, if you specify
the Customer Codefield asthe key field, then whenever avalueis entered here,
the lookup occurs.

2. Display the Define Lookup definition form.
3. Name the Lookup.
Lookups are generally named after the table being looked up.
4. Enter the Lookup table name.
Thisisthe name of the table the lookup is querying.
5. Enter the where clause for the lookup key.

Thisisthe join statement that matches the datain the lookup field to datain the
database.

Defining Lookups 7-25

Fitrix Screen Technical Reference

6. Enter the column to be looked up from and the field to be returned into.

Y ou only need to complete this step if the name of the column being looked up
differs from the name of the column on the screen.

7. Save the Lookup form by pressing [ESC].

8. Create each destination field that will display lookup information, defining
each of them as NOENTRY.

Creating a Data Validation Lookup

Typical verification lookups simply check the value entered by the user and do an
SQL query on atablefor it. If the value is not found, the standard error message
"Valueisnot inthelist of valid data' appears and the user iskept in the field until a
valuethat isin the tableis entered.

Datavalidation lookups differ from dataretrieval lookupsin that validation lookups
don’t return information into any fields. Therefore when setting up a validation
lookup, you don't specify an Into field. If an Into field is not specified and no field
on the screen shares the same table as the lookup field, information is not returned
to any field.

The following example uses the customer entry form in Fitrix Screen demo 1

($f g/ codegen/ deno. 4gni scr eenl. 4gs), aheader-only screen for entry
into the customer table of the st or es database. On this screen thereisafield for
the state code "State:" but no field for the state description. This example adds a
verification lookup to ensure that the state code entered isavalid value in the state
table of the st or es database.

To create a data validation lookup:
1. Enter the field you want to place the validation lookup on.
2. Call up the Define Lookups form.
3. Give the lookup a descriptive name, like st at e_| k.
The Lookup Table is the table checked for avalid value.

4. Enter the join criteria to match the column in the table with the field on
the screen.

7-26 Form Definition

Fitrix Screen Technical Reference

For example:
state.code = $state

Where st at e. code isthe columnin the table and $st at e representsthe
field on the screen. In the resulting program, the value entered by the user is
matched against the column valuesin the state table.

When a user runs the program and enters a state value that does not exist in the state
table, the"Valueisnot in the list of valid data’ message appears.

Refer to "Error Handling Functions (fg_err and lib_error)" on page 15-44 for infor-
mation on creating custom error messages.

Deleting Lookups

Lookups can be deleted by calling up the lookup definition form for the unwanted
lookup and pressing [CTRL]-[d] to delete the lookup name. When you press
[ENTER], you are prompted to verify whether you want this |ookup deleted.
Answering Y es del etes the lookup.

Defining Multiple Lookups

If you call up the lookup form on afield that has already had alookup defined, the
Select aLookup Name form appears displaying the name of all lookups defined for
that field, and an option for Add a L ookup. The Add a Lookup option allows you to
define multiple lookups per field.

Each lookup must have a unique name.

Lookup Dependencies

L ookups must appear in the .per file in the order they are needed. If alookup
depends upon another, you need to list the lookups in the .per form in the order that
they will be performed.

Defining Lookups 7-27

Fitrix Screen Technical Reference

Examples of Lookup Usage

The following describes three examples of lookup usage:

1. Ifthereisnoi nt o statement, the Code Generator searches the screen record
for definitions of the same table as the table name of t abl e=t abl enane.

screen record s_pvendr (stpvendr.vend_code, stpvendr.bus_nane,
stpvendr.terns_code, stpternr.terns_desc)

| ookup = nane=t erm | ookup, key=terns_code,tabl e=stpternr,
filter= stpternr.terns_code = $terns_code

The Code Generator will find st pt er nr . t er ns_desc in the screen record
therefore defaulting thei nt o=t er ns_desc.

If the Code Generator cannot find an associated table, then the lookup is
defined as a validation only lookup (alookup that returns no data).

2. If youusethei nt o statement, all i nt o statement’s must be specific. You
cannot usethei nt o statement for some fields and expect the Code Generator
to default the other ones.

Thei nt o=col umm must be a column in the lookup table. It does not have to
be a screen record field. If your screen record field has the same name as the
column then the lookup returns data into that field otherwise it puts that data
into a parallel record.

screen record s_acct (stpinvce.acct_no, fornonly.acct_desc)
| ookup = nane=acct _| ookup, key=acct_no, table=stxchrtr,
into=acct_desc, into=incr_wth_crdt,

filter= stxchrtr.acct_no = $acct_no

The Code Generator putstheacct _desc intop_pi nvce. acct _desc and
incr_w th_crdt intog_pince.incr_w th_crdt.

The p_ record is associated with the screen and the q_ records are parallel to
the p_ records.

3. If you want to assign alookup where the column selected is not the same name
asthefield you want to put it into, you can usethef r om i nt o syntax.

screen record s_acct (stpinvce.acct_no, fornonly.janes_desc)

7-28 Form Definition

Fitrix Screen Technical Reference

| ookup = nane=acct _| ookup, key=acct_no, table=stxchrtr,

from.into=acct_desc janmes_desc, from.into=incr_wth_crdt
is_it_a credit

filter= stxchrtr.acct_no = $acct_no

The Code Generator putstheacct _descinto p_pi nvce. j anes_desc
andincr_with_crdt intoq_pince.is_it_a credit.

The lookup () Function

Lookups are initiated by a change in data of afield. Inl | h_a_fi el d (thefunc-

tion that gets called after every entry field to perform after-field logic), the function
I'1 h_l ookup iscaled asfollows:

After data_changed | ogic
if data_changed
then
case
when scr_fld = "state"
Perform Lookups

if 1lh_|lookup("state_| k", true) = false and
length(this_data) !'=0
then

let nxt_fld = "state"
return
end if
end case
end if

Thefirstargumenttol | h_| ookup isthelookup name. The second argumentisa
"must find" condition, indicating what to do if the value entered is not found.
I h_l ookup behavesasfollowsif "true" or "false" isthe second argument:

true: cal the standard error message "Valueisnot in thelist of valid data."

false: continue on with no call to an error message.

Fitrix Screen creates the second argument as "true" by default. The function
'l h_l ookup itsdlf returns "false” if the value is not found. Thus we have spe-
cific logic that is performed when | | h_| ookup returnsa"false" condition:

if 1lh_|lookup("state_| k", true) = false and
length(this_data) !'= 0 # A~MAAN returns fal se condition

t hen # <------ so this logic is performed
let nxt_fld = "state"

Defining Lookups 7-29

Fitrix Screen Technical Reference

By default, Fitrix Screen setsthe variablenxt _f | d to the current field name to
leave the user in the field until avalid valueis entered.

Defining a Zoom

Zooms allow users of an application to call up aform to display alist of valid data
for afield. The user can then select an entry from the zoom form which is then
automatically returned to the original field. The Zoom function isinvoked when
running the compiled application by pressing [CTRL]-[z] when in afield with
Zoom functionality.

The Define Zoom Form

If you intend to add Zoom functionality to the application, you need to specify the
relationship between the current screen form and the zoom form. The Form Painter
uses the Define Zooms form to prompt for information concerning the Zoom from a
given field. The Define Zooms form is accessed through the Define pull-down
menu (also found on the picker list appearing when you press [CTRL]-[z] from
within adefined field). The Define Zooms form:

Update: [ESCI to Store., [DEL] to Cancel
Enter changes into form

(Zoom)==

Define Zooms

Zoom Form ID ¢
Auto Zoom ? Y
Main Zoom Table : customer

Zoom Entry Filter:
Zoom From Column :

Enter the zoom form’s unique ID.

Zoom Screen ID: Thisfield stores the name of the zoom screen form without the
.per extension. Aswith all screen form names, the name should be limited to seven
characters. The Zoom feature is available to help select an existing form.

Auto Zoom: ThisfieldisaY/N field that determines whether the Code Generator
creates AutoZoom code for thisfield. When running the compiled application, if
you place an asterisk anywhere in afield with AutoZoom capability, the Zoom

7-30 Form Definition

Fitrix Screen Technical Reference

logic uses that data to build the matches clause, then automatically calls the zoom
screen. For example, if you enter an "s*" into an AutoZoom field, azoom form
automatically displays listing all of the values that begin with an s.

Do not specify AutoZoom if you need to have an asterisk as a piece of datain a
Zoom key field, or if the Zoom key field isanon-char (numeric) type field that can-
not use the MATCHES clause in an SQL query.

Main Zoom Table: Thisfield lets you specify the main table for the Zoom. It is
required only if you wish to have AutoZoom. The system requiresit to build the
MATCHES clause for AutoZoom.

Zoom Entry Filter: Thisfield stores the "where" clause used when you enter the
Zoom. By specifying afilter, you can determine what is displayed when the user
executes the Zoom function. If aZoom filter is specified, it uses that filter instead
of placing the user into the query by example screen. The Zoom feature can be used
in thisfield to select valid column names for the filter; the Zoom appends selected
datato existing data (if any) in thisfield.

The special words"all" and "ALL," when entered into the Zoom Entry Filter field,
have the same significance as 1=1 (select all records). The words "none" and
"NONE" areinterpreted in thisfield as 1=0 (select no records).

Validation occurs on this field although you are not required to enter an existing
value.

Note that the initial filter specified here is used only upon the initial display. Once
the user uses the Find command on the zoom, the initial filter islost. Y ou can set up
a permanent zoom filter that stays even when the user selects the Find command.
For information refer to " Creating a Permanent Zoom Filter" on page 10-62.

Zoom From Column: Thisfield is required when the following items are true:

1. Thetable.column name being Zoomed into is different from the name of
the column on the screen.

2. Thescreen field you are Zooming from is a character field.

3. Auto-Zoom is enabled. Zooms with the "noautozoom" keyword or afilter
do not require the "from" keyword.

Defining a Zoom 7-31

Fitrix Screen Technical Reference

For example, if the field on your screen isnamed cust oner _numand thefield
being Zoomed intoiscalled cus_num you would enter cus_numinto the Zoom
From Column field.

Creating a Zoom

To attach a Zoom function to afield:
1. Create the field to utilize Zoom functionality.
2. Display the Define Zooms definition form.

3. Enter the Zoom Form ID which is the name of the zoom .per form that this
Zoom function calls.

4. Specify whether the field will allow the Auto-Zoom function.
5. Enter the Main Zoom Table name.

6. Enter the selection criteria used for the initial selection in the Zoom Entry
Filter.

7. 1If table.column name being Zoomed into is different from the field name
on the form, specify it in Zoom From column.

8. Store this Zoom function by pressing [ESC].
9. Create the Zoom .per form with the Form Painter.

10. If data is to be returned to the field on the main form, specify the returning
column on the Define the Form form for the Zoom.

Deleting a Zoom

Y ou can delete a Zoom by calling up the Zoom Definition form for the field you
want to delete, then blanking out the Zoom Form ID field. After removing the entry
in the Zoom Form ID field either with [CTRL]-[d] or by pressing [SPACEBAR]
until the field is erased. Pressing [ESC] displays a prompt warning you that the
Zoom will be deleted. The Zoom for thisfield is deleted if you answer "yes' to this
prompt.

7-32 Form Definition

Fitrix Screen Technical Reference

Defining Triggers

The Form Painter permits you to add triggers as you are devel oping your data entry
screen. Triggers allow you to localize form specific custom 4GL code modifica-
tionsand additionsin asinglefile, known as atriggersfile. When you run the Code
Generator on aform, the instructions placed in the triggers file are interpreted and
incorporated into the resulting source code. Two benefits of triggers are:

1. Youcan make powerful and fast modificationsto the resulting program without
having to be intimately familiar with the source code.

2. You can add to and re-generate programs without losing any of your changes.

To add triggers with the Form Painter, select atrigger from alist of available trig-
gers, then enter the program code for the trigger into atrigger definition form.
When you save your form, atriggersfileis created with your form name plus the
.trg extension. When you run the Code Generator on your form, the triggersfileis
parsed, and the resulting generated program contains all the custom modifications
you created with your triggers.

Y ou can select the triggers feature from several different locations within the Form
Painter. When you select the Triggers function, your location determines what type
of trigger selection list will appear.

The Triggers function can be accessed by selecting the Triggers option from each
of the following places:

Selecting Triggers from

this location Displays the following form

Define pull-down menu Choose a Trigger Class
Define Form picker Choose aTrigger Class
Define Field picker Choose a Trigger

Defining Triggers 7-33

Fitrix Screen Technical Reference

The Choose a Trigger Class form appearsif you call up Triggers while the cursor is
in the Form Editor and not in afield or from the Define pull down.

Choose: [ESC] to Select.
[DEL] to Quit

Choose a Trigger Class

Default
Input Area 1
Input Area 2

(3 items)

Thisform allows you to select which class of triggers you want to work with.

» Default triggers handle custom modifications to nai n. 4gl

» Input Areal triggers manage modificationsto header . 4gl .

* Input Area 2 triggers manage modificationsto det ai | . 4gl .

For more information on trigger classes, refer to "The Trigger File" on page 12-4.

After selecting atrigger class, the Choose a Trigger list appears. The Choose a
Trigger list displaysall the available triggersfor the selected class. Y ou can select a
trigger by moving to the trigger and pressing [ESC] or [ENTER]. Selecting one of
these triggers displays an entry form into which you may enter the code for that
trigger.

Note

When you call the Triggers function from within afield, the Choose a Trigger
form displays only those triggers that are available from within the current input
area.

7-34 Form Definition

Fitrix Screen Technical Reference

A Trigger Definition form appears as follows:

Update: [ESC] to Store. [DEL] to Cancel Help:
Enter changes into form LCTRLI-Lw]
(Zoom)==

Default Trigger: define

prev_field char(490)

used with accountindwindow |
orig_data char(80)
used to restore prev_data

Into this form you may enter 4GL code for the particular trigger. When entering
triggers through the Form Painter you do not need to type the name of the trigger.
The trigger name is automatically written to the triggersfile. Also, asemicolonis
automatically appended to the end of each trigger definition when thetriggersfileis
created, so you do not need to put semicolonsin.

A trigger can be deleted by deleting al the linesin the trigger with [CTRL]-[d].

For more information about each specific trigger refer to "The Triggers' on page
12-8.

Editing the Trigger

While you arein the Trigger Definition form, you can press[CTRL]-[z] to Zoom
into your favorite editor such asvi. The Trigger Zoom adds to the flexibility of the
Form Painter, allowing you to create triggersin the environment you are most com-
fortable with. Pressing [CTRL]-[Z] in the Trigger Definition form putsyou in a
temporary file containing whatever was in the Trigger Definition form. If the form
was empty when you pressed [CTRL]-[Z], you will see an empty file. In the tempo-
rary file, create your trigger. When you are finished, write and quit like you would
normally quit your editor. If you are using vi then you would perform a":wq."
Upon quitting the editor, you will return to the Trigger Definition form. Whatever
you entered into your temp file will appear in the Trigger Definition form.

Defining Triggers 7-35

Fitrix Screen Technical Reference

Saving the Trigger File

The Form pull-down menu provides an option to Save Trg File. This option allows
you to save your triggers to afile named after your current form with a .trg exten-
sion. The Form Painter creates two files: a.per file and a .trg file. When you save
the form with the Save Form option, a.per fileis created along with a.trg file if you
have defined any triggers. The Save Trg File option is useful when you open aform
and only modify the triggers. Thisway you only have to save the part of the form
that has been modified.

Deleting the Trigger File

The Delete Trg File option allows you to delete any trigger filein the current direc-
tory. Deleting atrigger file is convenient when you need to heavily modify aform.
Rather than changing each individual trigger, you can delete the trigger file and
rebuild them from scratch. The Delete Trg File option displays a picker list contain-
ing all trigger filesin the current directory. Select the file you wish to delete.

Recovering a Deleted Trigger File

If you use the Delete Trigger File option in the Form Painter, you may be able to
recover an accidently deleted file. Instead of removing atrigger file with ther m
command, the Delete Trigger File option copiesthe trigger file to the/ t np direc-
tory. If you need to recover adeleted file, all you need to do isretrieve thefile from
the/ t np directory.

Selecting Commands for the
Ring Menu

The Select Commands option on the Define pull-down menu modifies thering
menu of the application being created. The Select Commands option may only be
selected if aheader or header/detail is currently open.

7-36 Form Definition

Fitrix Screen Technical Reference

When the Select Commands option isinvoked a sub-menu appears that allows you
to choose whether the ring menu for the program you are creating will have pull-
down menus or the standard ring menu without pull-downs. If you have User Con-
trol Library installed you will get two options: With Pulldowns and Without Pull-
downs.

With Pulldouwns

WithOut Pulldouwns

Thescradv. a library, which is part of the User Control Library, must be used in
order to have pull-down menus. If you do not have the User Control Library, then
you cannot create ring menu items with pull-downs.

For more information on the scradv.alibrary and using pull-down menus refer to
the CASE Tools Enhancement Toolkit Technical Reference.

After selecting either With Pulldowns or Without Pulldowns a selection box
appears:

Options marked with a *

! —c |
appear on the final pro- *Update
gram’s ring menu Delete

#*Find
#*Brouwse
H H * #Tab
Options without a . do ot
not appear on the final #Prey

program’s ring menu. [Option

Inside of this selection box are the available menu items of the application ring
menu. An asterisk next to the menu item indicates that the item is enabled and will
appear on the application ring menu. A menu item without an asterisk indicates that
the menu item is disabled and will not appear on the application ring menu.

The up and down arrow keys position the cursor and the [ENTER] key toggles the
state of the menu item. The [ESC] key accepts the selection and the [DEL] key
aborts the selection.

Information is handled differently depending on whether the User Control Libraries
are present.

Selecting Commands for the Ring Menu 7-37

Fitrix Screen Technical Reference

1. If using the With Pulldowns option the information is stored in either thecgm
cmdr (if al menu items are present) or cgrmenud (if only a subset of the
menu items are present).

2. If you are using the Without Pulldowns option and you choose a subset of the
ring menu items, alocal det | _nmenu() or head_menu() function isgener-
ated. If you define such a ring menu using the With Pulldowns option, no local
menu function is generated but scr adv. a is added to the Makefile. Custom
ring menus that utilize pull-downs require scr adv. a to belinked in.

If you have both With and Without Pulldown thescr adv. a versionis given pre-
cedence (with pull-downs) and you won't get alocal menu function.

If you have defined a custom ring menu that does not utilize all of the standard ring
menu items, and then revert back to include all of the normal options, the custom
menu logic will no longer be generated locally.

If you use the Program Menu option to define a custom menu, scr adv. a will be
included in the Makef i | e if you choose any menu but Old_ring as your "Get
Ring" value. If you choose Old_ring alocal menu function will be generated for the
program you are setting up.

The With Pulldowns option indicates that the menu name is "Mainring." The With-
out Pulldowns option indicates that the menu nameis"Old ring."

It is not possible to add menu items using the With Pulldown or Without Pulldown
options. These options only enable or disable the "Mainring" or "Old_ring" menu
items. Y ou could modify these menus to add whatever items you want.

If thescr adv. a menus are used, two programs can be used to modify their
behavior. These programs are invoked from the Program Menu option and the Ring
Menu Items option on the Define menu. The Ring Menu Items option builds and
maintains the menus and the Program Menu option allows you to customize a
defined menu for a specific application.

If you really want scr adv. a to manage the standard ring menu without pull-
downsyou will havetouseado_not _gener at e trigger to suppress the genera-
tion of the local menu function and you will need to either add scr adv. a tothe
LIBFILESinthe Makefi | e or compilewithf g. make -L scradv. a. If you
do not have the User Control Library and try to usethescr adv. a menus, it won't
work: the link phase of the compile will fail.

7-38 Form Definition

Fitrix Screen Technical Reference

An Example:

In this example, the User Control Library is present. The goa isto change the
scr_demo 3 application so that the ring menu items Update and Delete do not
appear on the order form ring menu.

1. First, change directories to $fg/codegen/demo.4gm/screen3. 4gs.
2. Start the Form Painter by typing fg. form.

Open up the order.per form.

Select Define.

Choose Select Commands.

Choose With Menus.

A L

Select Update and Delete.
The asterisk disappears next to these items.

8. Compile the forms and then generate 4gl, compile 4gl, and run the pro-
gram.

If you run the program, the Update and Delete items do not appear on the applica-
tionsring menu. To achieve this,adet | _menu() function isgenerated in the
mai n. 4gl .

The Program Menu Option

Usethisoption if you have the Enhancement Toolkit and you want to customize the
optional pull-down ring menu for your programs.

For an introduction to the Pull Down Menus feature, see the Fitrix CASE Tools
Enhancement Toolkit Technical Reference.

Detailed documentation on the Program Menu option can be found in the Fitrix
CASE Tools Enhancement Toolkit Technical Reference.

The Program Menu Option 7-39

Fitrix Screen Technical Reference

The Ring Menu Items Option

Use this option if you have the Enhancement Toolkit and you want to create new
menu items for your ring menus.

For an introduction to the Pull Down Menus feature, see the Fitrix CASE Tools
Enhancement Toolkit Technical Reference.

Detailed documentation on the Program Menu option can be found in the Fitrix
CASE Tools Enhancement Toolkit Technical Reference.

7-40 Form Definition

Fitrix Screen Technical Reference

Short Cuts to Define Options

There are two waysyou can call up the Field, Input Area, Lookup, Zoom, and Form
Defaults forms:

1. Exit the Form Editor and select the appropriate option on the Define pull-down
menu.

2. Press[CTRL]-[Z] to provide definitions without exiting the Form Editor.

When you press [CTRL]-[Zz] in the Form Editor, a picker list appears containing a
set of relevant define options. The contents of the picker list vary depending on the
location of the cursor when [CTRL]-[Z] ispressed. That is, if the cursor is currently
within afield, the picker list contains options defined at the field level. The Define
Field pop-up menu:

[ESC] to Select.
[DEL] to Quit

Define Field

Field. ..
Math...
Lookups. ..
Zoonm. ..
Triggers >>

(5 items)

Use the arrow keys to move the cursor to the option you wish to define and press
[ESC] to select it. Press[DEL] to quit and return to the form editor. Selecting an
item on the picker list is equivalent to selecting the corresponding option on the
Define pull-down menu—the same data-entry appears.

Short Cuts to Define Options 7-41

Fitrix Screen Technical Reference

If the cursor is currently outside of a defined field in the form editor, pressing
[CTRL]-[z] will lead to apicker list containing topics defined at the form or input
level. The Define Form pop-up menu:

LESC] to Select.
[DEL] to Quit

Define Form

Form Defaults. ..
Input fireas...
Cursor Path
Triggers >>

(4 items)

When you quit the selected define form, the program returns to the form editor.

Defining Copyright Text

The Form Painter provides an option that allows you to establish and maintain
copyright and SCCS (source code control system) information for any screen form
file painted. The option istitled Copyright Text, and is found on the Define pull-
down menu. Once selected, the Copyright Text form appears on the screen as fol-
lows:

Update: [ESC] to Store, [DEL] to Cancel Help:
Enter changes into form [CTRLI-Lwl

SCCS and Copyright Text
Mopyright (C) 1992

All rights reserved.

Use, modification, duplication. and/or distribution of this
software is limited by the software license agreement.
Scesid: %Z% ¥MZ ZIX% Delta: X%GZ

Any information entered and stored on this form will appear as commented header
text in al .4gl files generated with the Code Generator.

7-42 Form Definition

The Run Menu

This section covers the options found on the Run pull-down menu in the Form
Painter. The following items are discussed:

n

n

n

Compiling the Form

Creating 4GL

Running the 4GL Application
Using Hot Keys

Using Navigation

8-1

Fitrix Screen Technical Reference

Run Pull-Down Menu

Thetopics discussed in this section all relate to options found on the Run pull-down
menu. The Run pull-down menu appears as follows:

[

Generate 4GL
Compile 4GL
Fast Compile
Run 4GL Program
Navigate

Hot Keys >>

All the options except Navigate and Hot Keys relate to compiling, generating, or
running code. Once the screen form is devel oped, the final steps to creating your
application are asfollows:

1. Compilethe form.

2. Generate the 4GL code from the form specifications.
3. Compile the generated 4GL code.

4. Runthe compiled 4GL application.

This section discusses each step in addition to the Navigate and Hot Keys features.

8-2 The Run Menu

Fitrix Screen Technical Reference

Compiling the Screen Form

The Compile Form option found on the Run pull-down menu runs the screen form
through the INFORMIX f or mdgl compiler. The compiler checks syntax and
compiles and names error-free forms with .frm extensions. For example, a screen
form named r out es. per would be compiled into aform namedr out es. frm

Selection of the Compile Form option leads to a picker list, prompting the user to
specify which form(s) to compile at the present time. The picker list appears as fol-
lows:

Choose: [ESC] to Select.
[DEL] to Quit

Compile Form: Enter Selection

T11 Forms
Current Form
blah
browse
cust_zm
order
stk_mnu
(8 items)

Y ou can choose to compile all forms, just the current form, or any individual form.
Use the [ESC] key to select the form you want to compile.

Compiling the Screen Form 83

Fitrix Screen Technical Reference

Generating 4GL Code

The generation of source code from .per form specification filesis the job of the
Fitrix Screen Code Generator. The Form Painter provides an option that allows you
to generate source code without having to exit the program. The Generate 4GL
option on the Run pull-down menu is used to produce source code for a ready-to-
use data-entry front-end.

If you have changed the current screen form since your last save, asaveis con-
ducted once you select Generate 4GL . If the screen form is not yet compiled, it is
compiled in the process of generating the 4GL source code.

Once you select the Generate 4GL option, awindow containing alist of formsin
your current directory appears. As with the Compile Form option, the picker list
offers selections for generating 4GL for the current form, for all formslisted, or for
any individual listed form.

When you select All Forms, adialog box appears asking if you want to compile
only the formsin the current directory.

Local forms only?

YES NO CANCEL |«

If you answer NO, the Code Generator uses Version Control to determine where to
look to find .per forms not in the current directory. The variable $cust _pat h
determines which directoriesto look in. The default $cust _pat h is4gc:4gs. For
more information on Version Control refer to "Version Control" on page 16-1.

Ascodeis generated, it is displayed on the screen. When code generation is com-
plete, the cursor returns to the Run pull-down menu.

A window appears at the conclusion of code generation to display the results of the
operation.

8-4 The Run Menu

Fitrix Screen Technical Reference

Note

Y ou can change the speed at which the code is generated by first selecting the
Generate 4GL option, then pressing the [DEL] key. A prompt appears asking if
you wish to cancel the generation. At this prompt you can change the speed of
generation by typing the number of the generation level, from 0-5, 0 being the
fastest. The default generation level is4.

Compiling Generated Source
Code

The next step following the generation of 4GL code is the compilation of that
source code. Generation and compilation of 4GL code are performed separately,
allowing you to modify the generated code.

A more detailed description of source code compilation isfound in " Compiling
Generated Source Code" on page 8-5. The discussion hereis limited to running the
Compile 4GL option, found on the Run pull-down menu.

Once selected, the Compile 4GL option uses the information from the local Make-
fileto compilethe .4gl filesfound in thelocal directory. No picker list appears after
this option is selected—compilation begins immediately on the source codein the
local directory.

Once the source code successfully compiles, the cursor is returned to the Run pull-
down menu on the command line.

Compiling Generated Source Code 8-5

Fitrix Screen Technical Reference

Running a Compiled
Program

The compiled data-entry interface can be executed from within the Form Painter by
executing the Run 4GL Program option found on the Run pull-down menu. Once
you select this option, the compiled executable (named after the directory in which
it resides) is executed.

Upon quitting from the generated program, the cursor returns control to the Run
pull-down menu.

Navigation in the Form
Painter

The Navigate option, found on the Run pull-down menu, is a powerful enhance-
ment to the Form Painter. Navigation is the ability to move around the system and
carry out other jobs without sacrificing your current process. By selecting the navi-
gate menu from within an application, you can "jump” to an event such as reading
mail, printing a report, or loading another application.

Events can be classified asinterna (internal to the current program) or external.
Internal eventsinclude accept, backtab, cancel, help, and hot keys. External events
include operating system events, or any event handled outside of the current pro-
gram. When finished with the event, you are returned to the point of departure.

The Form Painter allows you to create navigation events for your own use while
running the Form Painter. Also, if the site that will be running the application you
are creating has the User Control Library, you can create events for use with your
application.

For detailed information on the Navigation feature refer to the Fitrix CASE Tools
Enhancement Toolkit Technical Reference.

For detailed information on the concept of Navigation and events"Event Handling
Logic" on page 15-2.

8-6 The Run Menu

Fitrix Screen Technical Reference

Hooking a Navigation Event to Your
Application

If the site runs your finished application has the User Control Library installed, you
can hook navigation eventsto your programs.

Once the event is specified, you need to create and hook the event into your pro-
gram. Thisinvolves creating atrigger that adds afew lines of code to the 4GL pro-
gram.

To hook your navigation event to your application:

1.

Specify the event by selecting the Add a Navigation Action option from the
Navigate menu.

The navigate menu can be displayed by selecting Navigate from the Run pull-
down menu or by pressing [CTRL]-[g].

Add an on_event trigger to the trigger file for the specific form from
which you want the action to occur.

Make sure that you place the on_event trigger in the appropriate section of
thetrigger file. If you put your trigger in the input 1 section, the event will only
be executed from the input 1 area of the program.

The on_event trigger requires an argument. Enter the value that you put
in the Action Code field for your event.

For example, if you created an event and put my _event inthe Action Code
field, your trigger would look like the following:

input 1
on_event ny_event
di splay "You have just executed ny_event."

sl eep 3;

This example displays the words "Y ou have just executed my_event" on the
screen whenever this event is executed from the header section of the form.

Generate 4GL code.

Transfer navigate table information to destination database.

Navigation in the Form Painter 8-7

Fitrix Screen Technical Reference

After setting up an event in this manner, it can then be executed while running the
application by selecting the event from the Navigation Menu, or it can be assigned
to ahot key.

Hot Keys

The Hot Keys option on the Run pull-down menu allows you to associate keyswith
Navigation events for convenient, instant execution of events. Within the Form
Painter, you can set up hot keys for your own use while using the Form Painter.
Also, if the site that runs the application you are creating has the User Control
Library, you can create hot keys for use with your application.

The Hot Keys feature is part of the User Control Library of features. For more
information refer to the Fitrix CASE Tools Enhancement Toolkit Technical Refer-
ence.

8-8 The Run Menu

Database
Administration

This section discusses the Database Administration system. The Database Admin-
istration system gives you the flexibility of modifying your database through the
front end. Y ou can create columns and tables as you create your application.

n Using the Database Administration system

9-1

Fitrix Screen Technical Reference

Using the Database
Administration System

The Form Painter includes a Database Administration system. The Database option
on the Form pull-down menu leads to the Table Information form. Thisform allows
you to use the desktop environment of the Form Painter to modify the current data-
base. Y ou work with the database without exiting from the Form Painter.

This option alows Form Painter users to modify the database; tables can be added,
modified, and removed. With this option, permissions are an issue to consider. Y ou
cannot set or modify database privileges through the Database option; however,
database privileges can be set elsewhere (e.g., ISQL).

Y ou can aso invoke the Database Administration feature directly from a UNIX
prompt by typing f g. dbadni n.

Note

The Database Administration program does not communicate directly with the
dbmerge program. Changes made to a database with the database administration
program must also be made to dbmerge (if you want your changes to affect the
sample database.)

9-2 Database Administration

Fitrix Screen Technical Reference

The Table Information form appears as follows:

Action:|| IGEEN Update Delete Find Brouwse MNxt Prv Tab Options Quit
Create a new document

Table Information

Table Name :
Description:
Unique Key :
Ouner :
Created
Yersion

- Column Name ——————— Description Type

(No Documents Selected)

The fields appearing in the Main section of thisform are as follows:

Table Name: Thisfield accepts up to 18 a phanumeric characters. Table names
must be unique within a given database, and must begin with aletter. Do not use an
INFORMIX-reserved word as a table name. Once stored in the database, the Table
Name field becomes no entry; it cannot be modified on this form.

Description: Thisfield stores atable description of up to 30 alphanumeric char-
acters. The table description can be changed at any time.

Unique Key: Enter column names that make a unique row within the table. Col-
umn names must be separated with acomma. The entry in thisfield can be updated
at any time. Once the unique key for atableis defined on thisform, it serves asthe
unique key definition for input areas that use the table as the main table.

Owner: Thisfield is system-maintained; it cannot be manually modified. Once the
document containing the table information is stored, the table is created within the
current database. The name of the user entering the document is then listed as the
owner.

Created: Thisfield is system-maintained; it cannot be manually modified. The
field displays the creation date of the table.

Using the Database Administration System 9-3

Fitrix Screen Technical Reference

Version: Thisfield is system-maintained; it cannot be manually modified. When a
tableisfirst defined through this form, it is considered version one. Each future
modification to the table causes the version number to be incremented. For
instance, adocument with the value of threein the Version field has been modified
twice—the initial value of one plus two incrementsyields a current value of three.

The columns appearing in the detail section of thisform are as follows:

Column Name: This column stores the column name for a given table field. The
field accepts an entry of up to 18 aphanumeric characters. Once stored, theentry in
thisfield cannot be modified.

Description: This optional column stores a description for the field name.
Descriptions may be up to 30 alphanumeric characters long, but only 18 characters
are displayed. The Zoom feature displays a form which allows you to enter the full
30 characters for the description as well as the message you wish to display when
the cursor enters the field on the working application. When selected, the zoom
form appears as follows:

Update: L[ESC] to Store. [DEL] to Cancel Help:
Enter changes into form [CTRLI-Lw]

Column Information

Table Name : stxacknd

Column Name : ack_module

Description : PR Rl ENIE

Message Line:

Enter a one line column description.

Type: Thisfield storesthe field type. Field types are valid INFORMIX data types.
Field typesinclude:

» Byte—adata object that contains any kind of binary data. It has no maxi-
mum size. Bytes are one type of BLOB (binary large object). Y ou can use
bytes only in 4GL version 4.00 or higher and only with the OnLine engine.

9-4 Database Administration

Fitrix Screen Technical Reference

e Char—acharacter string up to 32,511 characters long.
« Date—adate entered as a character string.

e Datetime—amoment in time that can include year, month, day, hour,
minute, second, and fraction of a second. This datatypeisonly available
with 4GL version 4.00 or higher.

» Decimal—adecimal floating-point number.
» Foat—a floating-point number corresponding to the double C data type.
e Integer—awhole number from -2,147,483,647 to +2,147,483,647.

e Interval—a span of time that can include year, month, day, hour, minute,
second, and fraction of a second. This datatypeisonly available with 4GL
version 4.00 or higher.

* Money—adecimal datatype displayed with aleading dollar sign.
e Serial—asequentia integer assigned automatically by the database engine.
e Smallint—awhole number from -32,767 to +32,767.

« Smallfloat—a floating-point number corresponding to the floating C data
type.

e Text—adataobject that containstext data. It has no maximum size. Text is
the other type of BLOB (binary large object). Y ou can use text only in 4GL
version 4.00 or higher and only with the OnLine engine.

* Varchar—avariable-length text string of up to 255 characters. It can
include ASCII characters, tabs, and newlines. Y ou can use varcharsonly in
4AGL version 4.00 or higher. Y ou also need to run the OnLine engineif you
specify varchars from a database (table and column) in your form.

Please consult "Engine/4GL Compatibility" on page E-4 and your INFORMIX-
AGL documentation for further information.

Note

Onceacolumnisstored asnot nul | ,thenot nul | definition cannot be
removed.

Using the Database Administration System 9-5

Fitrix Screen Technical Reference

Using the AutoForm Feature

The Database Administration system offers afeature that copies the columns of the
current table into a Clipboard page. Later the page can be used as atemplate for
building new data-entry forms. Y ou can access the AutoForm feature through the
Options command on the main ring menu of the Table Information form. The Table
Information form is accessed through the Form Painter with the Database option on
the Form pull-down menu.

The Form Painter displays the data created from columns in the selected database
table. The following example isbased on the orderstable fromthest or es sample
database (installed with INFORMIX-4GL).

Form has been copied into the clipboard.
Press [ENTER] to continue: [

Inventory Items

Item Number [Nl]
Manufacturer”s Code:[N2 1

Item Description :[N3]
Unit Price HNE)]

Unit Code H L

Unit Description :LN6]

The text and definitions for the selected table comprise a new page on the Clip-
board, titled according to the contents of the Description field on the Table Infor-
mation form. The data on the Clipboard page can then be used as a template for
other projectsinvolving al or part of the particular database table.

For further information on using the Clipboard, see "Working with the Clipboard"
on page 6-5.

To generate a data-entry form based columnsin atable:

9-6 Database Administration

Fitrix Screen Technical Reference

oW

8.
9.

From the Form Painter menu line, select New from the File pull-down
menu.

Select what type of form you want to create.

Name the form.

Select the Database option on the Form pull-down menu.

Make a particular database table current on the Table Information form.
Use the Find command to locate a table.

Select the Options command on the main ring menu.

Select the AutoForm command on the Options ring menu.

A generic form appears along with a message explaining that the form was cop-
ied to the clipboard.

Quit out of the Database Administration form.

Move down into the Form Editor.

10. Press [CTRL]-[p] to paste the automatically generated screen image.

11. Continue to modify the form as you like.

Using the AutoForm Feature 9-7

Fitrix Screen Technical Reference

Using the Database
Administration Recorder

The Database Administration feature also contains a "recorder” that allows you to
apply changes made to one database to other databases. It also provides arecord of
all changes made to your database through the Database Administration program.

Whenever you modify a database with the Database Administration feature, alog
of al of your database modificationsis created with I1SQL statement formats. Then
with ISQL, you can use the recorded log to alter other databases. This means that
you can easily modify multiple databases with little effort.

Each timeyou perform an Add, Update, or Deletion of atable whilein the Database
Administration program, the ISQL statement required to perform that task iswrit-
tento alog file named dbadm n. sql inthe current directory. Each action that is
performed on a particular table is appended to the log file.

Example: You add atable called "freddy" with a column "name char(10)" to the
st or es database.

The following log file would be appended to the dbadmi n. sql login your cur-
rent directory.

{ Fri Mar 27 10:57:29 PST 1992 }

dat abase stores;
create table freddy (name char(10));

Notice that atime stamp is placed before each ISQL command in ISQL comment
format.

Remember that changes are appended to the existing dbadmi n. sql file. This
means that maintenance of thisfileisleft up to you.

9-8 Database Administration

Fitrix Screen Technical Reference

Defining Column Level Help
Text

With the Database Administration program you can define column level help for
your application. Information about defining column level help with the Database
Administration program can be found in "Defining Application Help Through the

Form Painter" on page 15-27.

Defining Column Level Help Text 9-9

Fitrix Screen Technical Reference

9-10 Database Administration

Part Three

The Code
Generator

Creating Screen
Forms

This chapter discussesin detail the different types of data-entry screens that can be
generated with the Fitrix Screen Code Generator. This chapter covers:

Designing screen forms
Header screens
Header/detail screens
Extension screens
Add-on header screens
Add-on detail screens
Query screens
View-header screens
View-detail screens
Browse screens

Zoom screens

> 3 3 3 O 5 5 5 S5 S5 S

10-1

Fitrix Screen Technical Reference

Steps to an Application

This section is a simple step-by-step introduction to the creation of a data-entry
application using the Fitrix Screen Form Painter and Code Generator. Use thislist
asan introduction to the flow of activitiesin Fitrix Screen as well as achecklist for
development projects.

Preparatory Steps

1

If database tables for the application do not yet exist, plan the tables you need.
Decide how the datais organized in the database.

Sketch the data-entry form on paper.

Decide on the main table for the form. The main table is the table that the
screen isreferencing. If the form is a header/detail form, also decide on the
main detail table for the scrolling (detail) section.

Chart the columnsin the database tables that the data-entry form maintains.

Plan for any fields on the form that requires a Zoom into areference file to
select avalid entry.

Decide whether any fields perform lookups. Plan out which fields automati-
cally have values returned to them based on alookup.

Select the Database option on the Form pull-down menu. If tables and columns
are not already established, add them to the database that the data-entry form
USes.

Form Painter Steps

1

2
3
4,
5

If the form is not a header, make sure you are operating in Expert mode.
Select New Form, choose the form type you want, and name the form.
Define the form defaults, including the main table.

Define the input area for the main and scrolling sections.

Define the fields in the main (header) section of the form.

10-2 Creating Screen Forms

Fitrix Screen Technical Reference

6. Enter thefieldsin the scrolling (detail) section. Enter one row, then copy it onto
the clipboard. Use the clipboard to paste in copies for the rest of the screen

array.

7. Specify thej oi n statement to link the detail section to the main table of the
main section of the form.

8. Carry out additional (optional) steps:
» Define the lookups taking place in the data-entry form.
« Definethe formulafor any form-only math field in the data-entry form.

« Define Zoomsfor any fields that have the capability of allowing the user to
select from a group of established entries. Be sure to create and name all
referenced zoom forms.

« Define abrowse form for working with multiple documents. Make sure the
browse form uses the same table that the main data-entry form uses.

9. Savethe data-entry form. This step actually generates the .per file used by the
Code Generator to create the 4GL source code.

10. Compile the data-entry form. To do this, select the Compile Form option on the
Run pull-down menu.

Code Generator Steps

1. If you want to make any modifications to the generated code, create triggers or
block commands. The code you write for triggers and blocks is incorporated
into the base code with the Featurizer. Y ou can also create a post processor
script and identify it with the $I ocal _scr variable.

2. Select the Generate 4GL option on the Run pull-down menu. This invokes the
Code Generator on the data-entry form. The 4GL source codeis created by this

step.
3. Compile the generated 4GL code with the Compile 4GL option.
4. Runthe 4GL application.

Steps to an Application 10-3

Fitrix Screen Technical Reference

Form Types

Y ou can define ten common types of forms with Fitrix Screen: header,
header/detail, browse, zoom, extension, add-on header, add-on detail, query, view-
header, and view-detail.

When creating anew form, you can choose your form type by selecting your choice
from the Screen Type list. The form type can aso be specified in the Form Type
field on the Form Definition form in the Form Painter.

The following screen types are used as main input screens.

header: Thisisaflat type. Header forms contain one input area and one main
table.

An example of aheader screen can be found in $f g/ code-
gen/ deno. 4gm screenl. bak/ cust f or m per.

header/detail: thisis aflat type (header) with another scrolling (detail) section
joined to the header. Header/detail forms are suited for order forms where there is
one occurrence for customer information and multiple line items for merchandise.

An example of a header/detail form can be found in $f g/ code-
gen/ denp. 4gm screen3. bak/ or der. per.

Thefollowing auxiliary screen types are not used as stand-al one data-entry screens.
They are generally called from the "main” input program.

add-on header: thisisaheader screen used in conjunction with another header or
header/detail screen to provide an extra window of fields. This screen type gener-
ates disk read and write functions.

An example of an add-on header form can be found in $f g/ code-
gen/ denp. 4gm scr eenb5. bak/ cust . per.

add-on detail: thisisascrolling detail-only form. This form can be called from
any other form to display any detail information. This screen type generates disk
read and write functions.

An example of an add-on-detail screen can be found in $f g/ code-
gen/ deno. 4gm scr een8. bak/ adddt | . per.

10-4 Creating Screen Forms

Fitrix Screen Technical Reference

extension: thisisaspecia type of screen that enables you to include an extension
of the main header table or detail table. This screen type shares data with the main
screen.

An example of an extension screen can be found in $f g/ code-
gen/ deno. 4gm scr een7. bak/ conpany. per

query: thisformisused only for building an SQL query. Thisform can replace the
m h_const ruct function.

An example of aquery screen can be found in $f g/ code-
gen/ deno. 4gm scr een9. bak/ cust qry. per

view-detail: thisis a detail-only form that allows you to view data but not alter it.

An example of aview-detail screen can be found in $f g/ code-
gen/ deno. 4gm scr een9. bak/ or dvi ew. per

view-header: thisisaflat form used to view header information.

An example of aview-header screen can be found in $f g/ code-
gen/ deno. 4gm scr een9. bak/ cust vw. per

Thefollowing special screen typesare unlike any other screen type. Thesetypesare
used in conjunction with the main input program and are basically used to locate
and select information.

browse: thisis a scrolling type screen whose main table is the same as the header
section main table. It enables you to view onerow of the header table per line rather
than one row per screen. Only one browse screen may be used per program. An
example of abrowse form can be found in $f g/ code-

gen/ deno. 4gm scr een3. bak/ br owse. per.

zoom: thisisaspecial type of screen that enables you to view and/or retrieve data
from another table (or set of tables which are "joined"). An example of azoom
form can be found in $f g/ code-

gen/ deno. 4gm scr een3. bak/ cust zm per.

Form Types 10-5

Fitrix Screen Technical Reference

Form Design

This section discusses basic concepts in effective form design. The Appendix con-
tains aform style guide providing information on established design conventions.

The proper structure of aform isdefined in your INFORMIX-4GL documentation.
The structure established by INFORMIX-4GL isfollowed here, though the Form
Painter appends an additional section, FGSS, to the perform to direct the operation
of the Code Generator.

This discussion points out the issues that you should bear in mind prior to invoking
the Fitrix Screen Form Painter. The following list of questionsis by no meansa
complete checklist of what you should decide prior to painting aform. Neverthe-
less, it does cover some basic points that expedite your use of the Form Painter.

e What is the purpose of the form? Thisis perhaps the most basic question
regarding the painting of forms. Decide how the screen form affects the data-
base. Determine how the form complements other formsin the same applica-
tion. Try to condense the purpose of the form into a brief statement.

* What type of form are you creating? Decide whether the data-entry formis
header(flat file) or header/detail. |s the form used as a Browse or Zoom?

* How are fields grouped on the form? Pay attention to the grouping of related
data. This concept leads to better organization in form design. Well-organized
forms are easier to understand and use. Although the cut and paste capabilities
in the Form Painter make reorganization of fields relatively simple, adrawing
done ahead of time can only expedite the process.

e Which table(s) will the form use? Know ahead of time which table(s) the
form will use.

* What database engine and 4GL version are you using? Make sure that your
engine and 4GL are compatible with each other as well as with this software.

* What type of validation is required for fields on the form? Determine which
fields require data checks and data-entry validation. This planning ensures that
the new form preserves the database’ s integrity.

10-6 Creating Screen Forms

Fitrix Screen Technical Reference

e Do any fields on this form use browse and zoom screens? If thisisaprimary
data-entry form (header or header/detail), do any of the fields use a reference
(zoom screen)? Is a browse form used to display current documents on individ-
ual rows?

* Do any fields require mathematical computation? Plan for any required
equations.

Form Limitations

Forms cannot be designed with a completely free hand—some limitations on struc-
ture do exist. Observe the following limitations as you plan the structure of your
form:

* The maximum number of linesin the input section of aform must not exceed
18. Additionally:

Two lines are reserved for the border.
Onelineisreserved for messages at the bottom of the form.

Three lines are reserved at the top for the ring menu, message line, and the
double dashed line.

Which brings the total number of linesto 24.
¢ The maximum number of columnsin aform must not exceed 76.

e The maximum number of linesin the completed .per form specification file
may not exceed 200.

e The maximum number of .per formsin any one directory must not exceed 50.

Form Limitations 10-7

Fitrix Screen Technical Reference

Header Screens

The simplest type of .per fileisthe header screen. Header screens are also known as
flat file applications. Such applications operate on one row of atable at atime. An
example of a header application can befoundinscr _deno 1.

The st andar d database containsthe table cust omer . The records for thistable
can be maintained through the demo scr _deno 1 data-entry interface based on
the code generated from the cust f r m per file.

Thefollowing is a sample .per specification file that is used to create a header
application.

DATABASE st andar d

SCREEN

CUSTOVER FORM

Nunber

Owner Nare
Conpany

Addr ess

Cty

Tel ephone
TABLES

cust oner

ATTRI BUTES

f000 = custoner.
f001 = custoner.
f002 = custoner.
f003 = customner
f004 = custoner.
f005 = customer.
f006 = custoner.
a0 = custoner.
f007 = custoner.
f008 = customner.
| NSTRUCTI ONS

[fooOo]

:[fo001]1[f002]

:[f003]

1 [f004]

:[f005]

;[f006] State:[aO] Zipcode:[f007]
:[f008]

cust oner _num
f nane;
| nane;

. conpany;

address1;

addr ess2;

city;

state, UPSHI FT;

zi pcode;

phone, PICTURE = "###- ###- #t## XXXXX";

SCREEN RECORD cust (custoner.custonmer_num custoner.fnane, custoner.|nang,
cust onmer . conpany, custoner.addressl, custoner.address2,

customer.city,
custoner.state, custoner.zipcode, customner.phone)

10-8

Creating Screen Forms

Fitrix Screen Technical Reference

Notice that the | NSTRUCTI ONS section includes only one SCREEN RECORD
cust . Thisimpliesthat, based on this .per form specification file, the Code Gener-
ator generates code for aflat file application.

During code generation, the information in the .per form produces a number of
source code files that combine to produce a fully-operational data-entry front end.
The source code produced by the Code Generator is the focus of " Source Code" on
page 11-1.

Below is asample header only application that was generated with the Code Gener-
ator:

Action:| IEEEN Update Delete Find Browse Nxt Prv Options Quit
Create a new document

CUSTOMER FORM

Number Hs 1
Ouner Mame H ac 1
Company Hs il
Address H 1
Hs 1
City H 1 State:L 1 Zipcode:L 1
Telephone Hs 1

(No Documents Selected)

Header Screens 10-9

Fitrix Screen Technical Reference

Header/Detail Screens

Often it isthe case that one row of acertain table isrelated to a set of rows from
another table. In order to manage such one-to-many relationships you can create a
header/detail (also known as master/detail) application.

On adata-entry level, header/detail screens contain datafrom one row of the header
table and several detail line rows from the detail table.

HEADER

DETAIL

customer data

invoices for that customer

categories of inventory
items

items within that category

employee data

list of jobs completed by the employee

cash receipts

invoices paid with that receipt

company profit centers

account activity for that profit center

rental items customers renting the item
hotel rooms reservations for each room
inventory vendors parts avail able from each vendor

employee payroll data

individual payments made to that employee

any item database

notes concerning each item

The Code Generator allows you to easily create header/detail screenswith a section
of the window for header information and another section to display lines of detail
data. Y ou may toggle between header and detail lines.

The .per form specification file used to create a header/detail applicationis dlightly
more complicated than the .per file specified for aflat file application. In short, the
following differences apply:

10-10 Creating Screen Forms

Fitrix Screen Technical Reference

1. The TABLES section must contain more than one table name, with the table
used for the header information being listed first.

2. Thefield tagsin the ATTRIBUTES section must be defined with the appropri-
ate table name in addition to the column name (or der s. cust oner _num
cust omer . f nane, etc.). Y ou must specify the correct table name for each
particular column.

3. TheINSTRUCTIONS section must include more than one screen record. The
screen record for the detail sectionisinthe form of an array, with the number of
rows to be displayed at one time enclosed in sgquare brackets (for instance,
s_itens[4]).

4. The FGSS section must include thej oi n criteriafor the detail table to the
header.

An example of a.per form specification file used to generate the header/detail
application is shown on the following page. The example shown isthe .per file used
to generatethescr _deno 3 demo application.

The detail information appears under the columns| t em Descri pti on, Man-
ufacturer, Qy., Price,andExtension.Noticethatthefieldtagsare
the same from row to row.

Example Header/Detail Form

The following is an example of a header/detail form:

DATABASE st andard

SCREEN
{
——————————————————————————————— Order FOrm-----cmommmmm i
Customer No.:[f000] Contact Nane:[f001 1[f002]
Conpany Nane:[f003]
Addr ess: [f004 1[f005]

City/ St/ Zip:[f006 1[a0] [fO07] Tel ephone: [f008]

Order Date:[f010] PO Nunber:[fO011] Order No: [f009]
Shi pping Instructions: [f012]

I tem Description Manuf act ur er Qy. Price Ext ensi on

Header/Detail Screens 10-11

Fitrix Screen Technical Reference

[f14][f15 1[f16][f17] [f18][f19 1[f20]

[f14][f15 10f16][f17] [f18][f19 1[f20]

[f14][f15 1[f16][f17] [f18][f19 1[f20]

[f14][f15 10f16][f17] [f18][f19 1[f20]
O der weight:[f30] Freight:[f31]

Order Total:[f32]

}

TABLES

orders

itens

cust omer

st ock

manuf act

ATTRI BUTES

f000 = orders. custoner_num comrents =
" Enter the custoner code.";
f001 = custoner.fname, noentry;
f002 = custoner.|nanme, noentry;
f 003 = custoner.conpany, noentry;
f004 = custoner. addressl, noentry;
f005 = custoner. address2, noentry;
f006 = custoner.city, noentry;
a0 = custoner.state, noentry;
f007 = custoner. zi pcode, noentry;
f008 = custoner. phone, noentry;

f009 = orders.order_num noentry;
f010 = orders.order_date, format = "nmm dd/yy", default = today, coments =
Enter the order date.";
f011 = orders. po_num coments =
Enter the custoner’s purchase order nunber.";
f012 = orders. ship_instruct, comments =
" Enter any special shipping instructions to show on the invoice.";

f14 = itens. stock_num coments =
" Enter the stock nunber for this line item";
f15 = stock. description, noentry;
f16 = itens. manu_code, coments =
" Enter the manufacturers code for this stock nunber.";
f17 = manufact. manu_nane, noentry;
f18 = itens.quantity, coments =
" Enter the nunber of units sold for this item";
f19 = stock.unit_price, noentry;
f20 = itens.total _price, noentry;

f30 = orders. ship_weight, coments =

" Enter the total shipping weight for this order.";
f31 = orders.ship_charge, coments =

" Enter the total shipping charge for this order.";
f32 = fornonly.t_price type noney, noentry;

10-12 Creating Screen Forms

Fitrix Screen Technical Reference

instructions

screen record s_order (orders.custonmer_num custoner.fnanme, custoner.|nang,
cust omer. conpany, custoner.addressl, custoner.address2, custoner.city,
custoner.state, customner.zipcode, custoner.phone, orders.order_date,
orders. po_num orders.order_num orders.ship_instruct,

orders. shi p_wei ght,
orders. ship_charge, fornmonly.t_price)

screen record s_itens[4] (itens.stock_num stock.description,
i tens. manu_code,
manuf act. manu_nane, itens.quantity, stock.unit_price, itens.total _price)

delimters " "
{
FGSS
defaults
type = header/ det ai |
init = order_num > 100
input 1
tabl e = orders (default = 1st table in the "tables" section)
key = order_num
filter = order_date > "12/31/80"
or der = order_num
mat h = t_price = sun{total _price) + ship_charge
| ookup = key=custoner_num tabl e=custoner,
filter=custonmer_num = $custoner_num
zoom = key=cust onmer_num screen=cust_zm tabl e=custoner
input 2
tabl e = itenms
join = itens. order_num = orders.order_num
or der = itemnum
arr_max = 100
autonum = item num
mat h = total _price = quantity * unit_price
| ookup = nanme=stock_num key=stock_num tabl e=st ock,
filter=stock_num = $stock_num into=description
| ookup = nane=stock_manu, key=manu_code, t abl e=stock,
filter=stock_num = $stock_num and manu_code = $manu_code,
into=unit_price
| ookup = key=nmanu_code, table=nanufact, filter=manu_code = $manu_code
zoom = key=stock_num screen=stockzm tabl e=stock, noautozoom
zoom = key=manu_code, screen=stk_mmu, tabl e=stock,
filter=stock.stock_num = $stock_num
}

Header/Detail Screens 10-13

Fitrix Screen Technical Reference

After running the Code Generator on the preceding .per form, the 4gl source code
can be compiled to produce a ready-to-use data-entry front end. The data-entry
screen appears as follows:

aAction:ll IEEEN Update Delete Find Browse MNxt Prv Tab Options Quit
Create a new document

Order Form
Customer Mo.: 106 Contact Name: George Watson
Company Name: Watson & Son

Address: 1143 Carver Place
City/St/Zip: Mountain Vieuw cAa 94063 Telephone: 415-389-8789

Order Date: 04/12/86 PO Number: 8006 Order No: 1004

Shipping Instructions: ring bell twice

Item Description Manufacturer Oty. Price Extension
1 baseball gloves HRO Hero 1 $250.00 $250.00
2 baseball HRO Hero 1 +126.00 +126.00
3 baseball bat HSK Husky 1 $240.00 $240.00
1 baseball gloves HSK Husky 1 $800.00 $800.00

Order weight: 95.80 Freight: $19.20

Order Total: $1435. 20
{1 of 15)

The following function is how other screen types are hooked into your main pro-
gram.

10-14 Creating Screen Forms

Fitrix Screen Technical Reference

The socketManager ()
Function

Thesocket Manager () functionisthe mainflow control manager for all screen
types other than header or header/detail screens. This function controls what func-
tions get generated for a particular type of screen. The Code Generator automati-
cally creates aflow manager for the main screen, which can be a header or
header/detail. Y ou must add the call to the socket Manager () function for all
additional screens, except for zoom screens in most cases.

socketManager ("screen name", "screen_ type",
"flow_manager")

screen_name The name of the screen without the .per extension.

screen_type Thetype of screen. The screen type can be one of the fol-
lowing: extension, add-on header, add-on detail, zoom,
query, view header, view detail, custom, and
single function. The single_function screen typeisdis-
cussed next.

flow_manager Theflow manager isusualy "default.” If you want to use
your own custom flow manager you can enter "custom.” If
you pass custom to the socket Manager () besureto
providealoca F_scr id() function.

For example, extension screens have four types of flow
control managers: flat_ext, deep_ext, view, custom. Refer
to "Extension Screens' on page 10-17.

The single_function Screen Type

The single_function screen type isused to call asingle function in a screen’s flow
without having to pass control to the screen’s flow control manager.

The flow manager for the single_function screen typeisthe function in the screen’s
switchbox you want to execute ("init", "read", and so on),

The socketManager () Function 10-15

Fitrix Screen Technical Reference

For example, you could create a header/detail screen that displaysafield from a
third table. Thisrequiresyou to create a.per form for the third table, generate code
for it, then make the main screen anon_source_form and add the same field name
and record from the additional screen. Then you need to add the call to the sock-
et Manager ("your _screen", "single_ function", "display").
Most of thetime you will havetwo callstothesocket Manager () function: one
call to read the data and another call to display it.

10-16 Creating Screen Forms

Fitrix Screen Technical Reference

Extension Screens

Extension screens are extensions of the main screen. They allow you to display
information related to your main form on separate screens that are called from the
main screen. Extension screens use the same table as the main screen.

If you have atable with many columns, you can organize the columns by subset
and display each subset on a separate form. For example, you can break up a cus-
tomer table into subsets, each containing specific types of columns (O/E info, ship-
toinfo, billing, etc.) Y ou can then create extension screens off of the main screen
using the subset columns.

Extension screens are "generic" and can be stored in alibrary and used by other
programs. Y ou can call an extension screen from either a header or detail section.

Extension screens support lookups, math, Zooms, free-form notes, help text, and if
used as an extension of the main header table, required field logic (nonull). Dupli-
cate check logic is handled by the main screen. The .4gl filethat is generated issim-
ilar in style to an add-on header .4gl file.

When using extension screens you must set the environment variable called
non_scr_g_el ens equa to "include" and export it. This variable is associated
with the Featurizer and can be setinascr een. opt file. For more information
refer to "The Code Generator Options File (screen.opt)” on page 2-21.

Extension Screens 10-17

Fitrix Screen Technical Reference

Example

Extension Screen Form

The following is an example extension screen .per form:

4/ 23/ 92

Copyright (C 1992 Fitrix, Atlanta, Ceorgia.

Al rights reserved.

Use, nodification, duplication, and/or distribution of this

software is limted by the software |icense agreenent.

Sccsid: @#) .../deno.4gnm screen7.bak/conpany.per 1.3 Delta:
Screen CGenerator version: 4.11.UC1 }

DATABASE st andar d

SCREEN

{

Conpany Name :
Address :
Gty :

State :

Zip Code :

Phone Number

[AL]

[A2 1 [A3]
[A4]

[A5]

[A6]

[A7]

}
TABLES

cust omer
ATTRI BUTES
Al = custoner.
A2 = custoner.
A3 = custoner.
A4 = custoner.
A5 = custoner.
A6 = custoner.
A7 = custoner.

comment s

I NSTRUCTI ONS

screen record
cust omer . a
cust omer. p

delimters "

conpany, comments = "Enter the Conpany Nane";
addressl, coments = "Enter the Address";
address2, comments = "";

city, coments = "Enter the City";

state, upshift, comments = "Enter the State Code";
zi pcode, comments = "Enter the Zip Code";

phone, picture = "###- ###- #H#H#E XXX,

= "Enter the Phone Number";

s_conpany (custoner.conpany, custoner.addressl,

ddress2, custoner.city, custoner.state, custoner.zipcode,

hone)

10-18 Creating Screen Forms

Fitrix Screen Technical Reference

FGSS

defaults
nodul e = deno
type = extension
init = 1=0
attributes = border, blue
| ocation =2, 3

input 1
tabl e = custoner
key = custonmer_num
filter =1=1

Creating Extension Screens

The following steps create an extension screen:
1. Create the extension screen with the Form Painter.

The extension screen is created in the same way as a header or add-on header
type screen. The extension .per file contains a single screen record, and the
FGSS section containsadef aul t s andi nput 1 section.

2. Create a switchbox items trigger.

In order for your extension screens to get hooked into your program, you need
tocreateasw t chbox_i t ens trigger and put it in the trigger file for the
main screen. Theswi t chbox_i t ens trigger is needed for the main screen to
recognize the extension screen.

All triggers used are either of typedef aul t s ori nput 1.

Example:
defaul ts
swi t chbox_i t ens

nmorord S_norord
conpany S_conpany;

Extension Screens 10-19

Fitrix Screen Technical Reference

3. Create a hook to call the socketManager () function.

Next, you need to create some kind of hook to call thesocket Manager ()
function. Thiscanbean af t er _fi el d trigger or some other method such as
anavigation event.

Example:

after_field conpany
cal | socket Manager ("conpany", "extension", "flat_ext");

For an explanation of the socket Manager () function, refer to "Thesock-
et Manager () Function" on page 10-15.

Creating Zooms from Extension
Screens

Y ou can create Zooms on extension screens. However, if the zoom field on the
extension screen does not appear on the main screen, then you need to create a
swi t chbox_i t ens trigger for that Zoom. If the Zoom field on the extension
screen does appear on the main screen, then the Code Generator automatically cre-
atesaswi t chbox it ens trigger for that Zoom.

Types of Extension Screen Flow Control Managers

Y ou can specify four types of flow control managers for extension screens:
flat_ext, deep_ext, view, custom. These types are explained next.

flat_ext: Thisisthe flow control manager for flat type screens. The datain each
flat type screen is independent of any other extension screen, except if the flat
screen is called from a deep type screen. Thet _cl ear function only clearsthe
data for that flat screen upon an interrupt.

10-20 Creating Screen Forms

Fitrix Screen Technical Reference

Any number of flat extension screens can be called from other flat extension
screens. Y ou can also string together callsto flat extension screens like this:

Main
Screen

Flat

E—

EXT #1

Flat
- »| EXT#2
Flat
\
EXT #3

Y ou can call aflat extension screen from a deep extension screen, but if you do, the
datain the flat extension screen depends on the deep screen. If the datain the deep
screen is stored by pressing [ESC], the datain the flat screenisalso saved. If [DEL]
is pressed from the deep screen, then the datais also lost from the flat screen.

deep_ext: Thisisthe flow control manager for deep type screens. Screens called
from a deep type screen are dependent upon the deep screen. If [DEL] is pressed
whilein the deep screen, all data entered into any screen called from the deep

screen is not saved.

Extension Screens 10-21

Fitrix Screen Technical Reference

Anytime the user presses [DEL] from the EXT #1 screen (deep), al changes
entered into EXT #2 and #3 screens (both flat), are lost. Each individual flat exten-
sion screen is independent from the other.

Main

Deep Flat
Screen o

EXT#1 ——»| EXT#2

Flat

EXT #3

view: Thisisthe flow control manager for view type screens. This type of flow
model allows the user to view the datain an extension screen. An example of it's
use isto create a menu command in the main screen Option’s ring menu that
invokes the screens with a flow type of view.

custom: Callsthelocal F_() function.

Extension Screen Upper-Level Library
Functions

Several Upper-Level Library functions facilitate the use of extension screens. The
calls to these functions are automatically generated when you use extension
screens.

t_init(): Initializesthe temporary data table used to communicate between
screens and sets up the read, write, and delete cursors for this temporary table.

t_read () : Reads from the temporary datatable. A function called PR_header
or PR _det ai | isalso generated in the local code for reading the data from the
temporary table into the main screen.

10-22 Creating Screen Forms

Fitrix Screen Technical Reference

t write(row_num, name, data): Writesto thetemporary datatable. A
function called PW header or PW det ai | isalso generated inthelocal codefor
writing the data to the temporary table from the main screen.

t_clear(scr_id): Thisfunction deletes rows from the temporary table based
on the screen id passed to it. If the screen id isblank it deletes all rows.

dec_let (d): Thisfunction isused to preserve the precision of values contained
in decimal & money fields since data transfer is by character fields.

Extension Screen Functions

There are five functions generated that are not called automatically. They are the
C_(clear), T_ (touch), K_ (key), F_ (flow), and OP_ (options) functions.

C_scr_id(): Thisistheclear function. Thisfunction initializes both thep_ and
g_ recordsto null.

T scr_id(): Thisisthetouch function. It's purposeisto identify this screen to
the object manager.

K_scr_id(): Thisfunction putsinto scr at ch, viatheput _varar g() func-
tion, the name of the main input table, followed by pairsof put _var ar g() cals
for each key field which makes up the key. The first half of the pair isacall to

put varar g() sending the column name of the key field. The second half of the
pair, whichisacall to put _var ar g() sendstheq_ record element which holds
the actual value of the key field. In the case of akey specified as

"cust oner _num | name," and with the main input named "customer," the
callstoput _vararg() would beasfollows:

call put_vararg("customner")

call put_vararg("custoner_nuni)

call put_vararg(g_stomner.custoner_num
call put_vararg("fnane")

call put_vararg(g_stoner.fnane)

For more information on varargs see "The Vararg Family of Functions" on page 11-
35.

OP_scr_id(): The options function can be used when you create a"view" type
flow model. A view type screen allows you to view datawithout adding or updating
the form.

Extension Screens 10-23

Fitrix Screen Technical Reference

F_scr_id(): Theflow function can be used to create a custom flow control
manager. For certain applications, you may want to create a custom screen that
behaves differently from the standard extension screen flow model. To do this you
need to build a custom data flow manager, then create a call to socket Man-
ager ("screen_nane", "extension", "custonl).Thisinstructsthe
program to use thecustom F_ () function asits flow manager.

For example you may want to call custom library functions that are not provided in
the standard flow model. The following F_ function provides the basic flow control
for a header extension screen.

Example (cuscr is the name of the screen):

function F_cuscr()
call PW header ()

call lib_nmessage(nenu_item
call PR _cuscr()
call I _cuscr()

call PWcuscr ()
call PR _header ()
end function
F_cuscr ()

Here are the block commands necessary:
start file "cuscr.4gl"

after block F_cuscr flow
call PW header ()
call lib_nmessage(nmenu_item
call menu_line()
call PR _cuscr()
call I _cuscr()
call PWcuscr()
call PR _header();

10-24 Creating Screen Forms

Fitrix Screen Technical Reference

Y ou also need the following block commands to finish the application:
start file "header.4gl"

after_field field3
call socket Manager ("cuscr", "extension", "custoni);

start file "main.4gl"

swi t chbox_i t ens
cuscr S cuscr

Extension Screen Limitations

e Currently, the extension screen types do not support the BLOB datatypes.

* Thereare problems with formonly table fields, especially if the datatypes are
money or decimal. What you seeisthat if the fields are part of a math state-
ment, the updated values are not displayed until after the user presses [ESC]
and re-enters the screen.

Extension Screen Demonstration

For an example of what an input program looks like using this screen type, a screen
demo has been provided. This demo contains an extension screen from both the
header and detail portions of the main screen. It isinvoked by typing scr _deno
7. This places you into anew shell in $f g/ code-

gen/ deno. 4gm screen7’. 4gs.

Screen demo 7 is a header/detail form that uses two extension screens to display
detailed customer information on one, and shipping information on the other.

Extension Screens 10-25

Fitrix Screen Technical Reference

The main header/detail form (scr een. per):

Action:] Add Update Delete |ENEH Browse MNxt Prv Tab Options Quit
Select and/or Reorder a group of documents

Customer Order Form

Customer Number - [1011
Customer Name : [Ludwig 1 [Pauli 1
Company : [All Sports Supplies 1

Order Date Order Number Shipping Instructions
[06/01/861 [10021 [po on box: deliver back door only 1
[12/10/921 [11111 Cups]
L 1L 1L]
L 1L 1L]
L 1L 1L]
(1 of 18)
The customer information extension screen (conpany. per):
Update: [ESC] to Store, [DEL] to Cancel Help:
Enter changes into form [CTRLI-Lwl

Company Information

Company Name : AN RIS DR

Address : 213 Erstwild Court
City : Sunnyvale
State = CA
Zip Code = 94086
Phone Number : 408-789-8075

Enter the Company Name

The company screen is accessed with after field logic placed in the company field
on the main screen. Pressing [ENTER] while in the Company field automatically
displays the company extension screen.

10-26 Creating Screen Forms

Fitrix Screen Technical Reference

The orders extension screen (nor or d. per):

Update: L[ESC] to Store. [DEL] to Cancel Help:
Enter changes into form LCTRLI-Lw]

More Order Information ———-——-————————————

P.0. Number Ship Date Ship Weight Paid Date

[OZCENNNT [06/06/86 1[0 50.601 [07/03/861

Enter the P.0. Number

Like the company screen, the orders screen is called up with after field logic. Press-
ing [ENTER] while in the Shipping Instructions field calls up the orders extension
screen.

A few simple blocks are needed to connect these extension screens to the main
form. The blocksused areinthescr een. ext file. You can see how these exten-
sion screens are hooked in to the main form by looking at thisfile. The

screen. ext file

start file "main.4gl"
swi t chbox_i t ens
nmorord S_norord
conpany S_conpany;

start file "header.4gl"

after_field conpany
call socket Manager ("conpany", "extension", "flat_ext");

start file "detail.4gl"

after_field ship_instruct
cal |l socket Manager ("norord", "extension", "flat_ext");

Screen demo 7 also provides an example of how to access an extension screen
through the Options command on the main ring menu. Look in opt i ons. ext to
see the block command that accomplishes this.

start file "options.4gl"
before bl ock ring_options command_key

command key (v) "View' "View the Conpany Screen"
cal | socket Manager ("conpany", "extension", "view')

Extension Screens 10-27

Fitrix Screen Technical Reference

The block displayed above changes the Options command on the ring menu to dis-
play this:

Options:[| Quit |

View the Company Screen

Add-On Header Screens

Add-on header screens are additional data entry screens to the main screen which
can be incorporated into your input programs. These screens access tables other
than the header or header/detail tables used by the main screen. Add-on header
screens generate disk read and write functions.

Add-on header screens, unlike zoom screens, can be called up from anywherein a
program. For example, you can have an add-on screen appear after the user entersa
certain valueinto afield, after the user isfinished inputting arecord, before the user
starts inputting arecord, when an additional ring menu option is selected under
"Options," or as an event.

Add-on header screens can be used to add or update information. To update infor-
mation on an add-on header you need to create a navigation event to call the add-on
screen from the main screen. Navigation events allow your user to switch back and
forth from the main screen to the add-on header screen.

For an example of how to call an add-on header, seetheor der. t r g filein
scr_deno 5.

Note

The name of the add-on header .per file (not including the .per extension) can be
no more than 7 characters. The same requirement applies for all .per files.

Sample Add-On Header Form

The following is an example of a simple add-on header .per file:

DATABASE st andar d

10-28 Creating Screen Forms

Fitrix Screen Technical Reference

SCREEN {
CUSTOMER FORM
Number :[f000]
Onner Nane:[f001 1[f002]
Conpany: [f 003]
Address: [f 004]
:[f005]
City:[f006] State:[a0] Zipcode:[f007]
Tel ephone: [f 008]
}
TABLES
cust oner
ATTRI BUTES

f 000 = custoner. custonmer_num

f001 = customner. f nane;

f002 = custoner. | nane;

f 003 = custoner. conpany;

f 004 = custoner. addressli;

f005 = custoner. address2;

f006 = customer.city;

a0 = customner.state, UPSH FT;

f 007 = custoner. zi pcode;

f008 = customner.phone, PlICTURE = "###- ###- #### XXKXXX";

| NSTRUCTI ONS

SCREEN RECORD cust (custoner.custoner_num custoner. fnang,
custoner. | nane, custoner.conpany, custoner.addressli,
cust oner. address2, custoner.city, custoner.state,
cust oner . zi pcode, custoner. phone)

{
FGSS
defaults
type = add- on
input 1
tabl e = customer
key = customer_num
mat h = t_price = sunm(total _price) + ship_charge

Add-On Header Screens

10-29

Fitrix Screen Technical Reference

Assigning a Key Field

The .per file for an add-on header resembles a header form. When you create an
add-on header, you must specify akey in the .per form specification file. Thekey is
needed in order to attach certain User Control Library functions such as User
Defined Notes to the add-on header screen. For example, an add-on header screen
for adding/updating customers might have the following key in the .per file:

input 1
key = custoner_num

Specify this key in the input 1 section of the add-on header .per file.

Calling the Add-on Header

Y ou must pass three arguments on to the add-on header functions: entry mode,
entry filter, and an order by. These arguments are sent viaa function called
fgStack_push().

10-30 Creating Screen Forms

Fitrix Screen Technical Reference

The argumentsto send thef gSt ack_push() function follow:

entry mode Either an"A" to add arecord, or a"U" to update a record.
call fgStack_push("U")

entry filter InAddmodefortheadd-on header, thefilterisnull (""). Inthe
case of Update mode for the add-on header, the SQL filter
needs to be able to select the row you are going to update.

Y ou should put thisfilter together into a string, and pass the
string name as the argument:

let sqlstr = "orders.custoner_num= ", get_num
call fgStack_push(sqlstr)

If thefilter returnsmore than one row, the first row retrieved is
the one put into an update session.

order by If more than one row isreturned by the select statement, this
order by isused to order the rows. With the current release, you
can only work on one row within the add-on header.

call fgStack_push("")

However, if there is a scenario where you want to update the
first row of a particular group of rows, specifying an order by
allows you to do that.

The following example shows how to send the arguments above before calling an
add-on header screen:

on_event update_cust

l et scratch = "orders. custoner_num=",
entry mode orders. cust omer _num
T cal | fgStack _push("U")
entry fiter ———— call fgStack_push(scratch)

/ call fgStack_push("")
order by cal | socket Manager ("cust", "add-on header", "default");

Creating an Add-On Header Screen

To create an add-on header screen do the following steps:

Add-On Header Screens 10-31

Fitrix Screen Technical Reference

1.

Create the add-on header screen with the Form Painter.
Add-on headers are created much like regular header screens.
Define a key field.

Add-on headers must have akey field in the input 1 section.

In the trigger file for the add-on header, create a switchbox items
trigger.

In the base program trigger file, you must create aswi t chbox_i t ens trig-
ger for the add-on header in order for the main screen to recognize the add-on
header screen.

Thefirst part of the trigger isthe name of the add-on header and the second part
being the name of the add-on header prefixed by an"S ." In the case of an add-
on header named cust (cust . per), put thefollowingswi t chbox_i t ens

trigger in your base program trigger file:

def aul t
swi t chbox_i t ens
cust S_cust;

Create the logic used to call the add-on header.

This can be either atrigger or a block command. The most common ways to
call an add-on header isto use either anaf t er _fi el d trigger or anavigation
event.

Oneway to use an add-on header inaf t er _fi el d logicisbased on acertain
condition. Inthecaseof scr _deno 5, oneof thehooksisinafter field
cust omer _num whereif p_or ders. cust omer _num hasthe value of
zero, then call socket Manager () to add a customer.

Another way to use an add-on header isto define a navigation event called
updat e_cust . Then map the navigation event to an available hot key.

When in an Update session of an order, pressing [CTRL]-[u] would put you in
Update mode in an add-on header for that particular customer record.

After setting up a hot key, go into your base program trigger fileand put in a
trigger likethisinthei nput 1 section, and re-generate the base program:

on_event update_cust

10-32 Creating Screen Forms

Fitrix Screen Technical Reference

| et scratch = "orders. custonmer_num= "
orders. cust omer _num cl i pped
call fgStack_push("U")
call fgStack_push(scratch)
call fgStack_push("")
call socket Manager ("cust", "add-on header", "default");

You may also call thesocket Manager () function from within
options. 4gl .

Creating Zooms from Add-On Header
Screens

Y ou can create Zooms on add-on screens. However, if the zoom field on the add-on
screen does not appear on the main screen, then you need to create a

swi t chbox_i t ens trigger for that Zoom. |f the zoom field on the add-on
screen does appear on the main screen, then the Code Generator automatically cre-
atesaswi t chbox_i t ens trigger for that Zoom.

Add-On Header Triggers

Not all triggers can be used when working with an add-on header. Y ou do not, how-
ever, get an error when you use atrigger not supported by a code generation of an
add-on header. What followsis alist of triggers, and where they are inserted into
the add-on header code:

defaults section

before_init: Thistrigger inserts codein thefunction A_scr id(), right
after the call to put _scr i b(), and before the call towi ndow_pos() .

after_init: Thistrigger inserts codeinthefunction A_scr id(), right after
opening the add-on header window.

input 1 section

define: Thistrigger puts all its elementsinto the q_ record. For more informa-
tion on the q__ record, see the section on the q_ record.

Add-On Header Screens 10-33

Fitrix Screen Technical Reference

static_define: Thistrigger inserts variables static to the source at the top of
the .4gl file under define.

on_event: Thistrigger code isinserted into the function EV_scr id().

before field fieldname: Thistrigger isusedtoinsert before fiel d
logic for the fieldname specified. Thelogic is put into function BF_scr 1id().

after field fieldname: Thistrigger isused toinsert after field logic for the
fieldname specified. Thelogic is put into function AF_scr id() .

after change_in fieldname: Thistriggerisusedtoinsertafter field
logic for the field name specified. Thelogicisputintothe AF_scr id(). This
after change in fi el dlogicexecutesafter leaving the field specified only
if the data for thisfield has changed.

on_disk_read: Thistrigger isused toinsert codeinthefunctionR_scr_ id()
after the fetch and r owi d assignment.

on_disk update: Thistrigger is used to insert code in the function
W scr id() beforethe update statement.

on_disk_add: Thistrigger isused to insert codein the function W scr 1id()
before the insert statement.

before_input: Thistrigger isused to insert codein thefunction! _scr id()
before the input command.

on_exit: Thistrigger isused toinsert codeinthefunctionZ_scr id() after
the"l et scratch = nul | " statement. It is here that you can use
put _vararg() to returninformation back to your base program.

at_eof: Thistrigger is used to add code to the end of the add-on header .49l
source file.

The Add-On Header Demonstration

Screen demo 5 has an example of an add-on header. The base program is used to
add customer orders, and the add-on header is used to add or update customers. The
demo can be executed by running scr _deno 5. This putsyou into a new shell,
and into the directory $f g/ codegen/ deno. 4gnf scr een5. 4gs. Thisdirec-
tory contains severa .per files. The or der . per isthe base program perform file,

10-34 Creating Screen Forms

Fitrix Screen Technical Reference

and thecust . per isthe add-on header perform file. Once in this directory, you
need to run the Code Generator on all the perform files. The program is designed to
work in the following manner:

1. If youtypeinazerointhe customer number field, it calls the add-on header,
putting you into Add mode. Saving this newly added customer puts you back
into the base program screen, bringing the new customer number with it.

2. If you press [CTRL]-[u] from within an Update session, you are put into the
add-on header Update session of the particular customer. You need to set up a
navigational event named updat e_cust specifying nothing for the O/S com-
mand, then map this navigational event to the [CTRL]-[u] key.

Transaction Processing Using Add-On
Header Screens

When running transaction processing on a Fitrix Screen data entry program, a
begi n wor k is executed when entering a document via an Add or Update on the
main screen. When you press[ESC] aconmmi t wor k isissued. When you press
[DEL] (for cancel) ar ol | back wor k isissued. The main tables are added to or
updated based when [ESC] is pressed. If [DEL] is pressed, the tables are not added
or updated and arollback work isissued. All work done whilein Add or Update
mode isrolled back if [DEL] is pressed. The default isto roll back.

If you want to handle transaction processing so a commit work isissued when
[DEL] ispressed instead of the default rollback work, you need to put the following
linesinto the trigger file of the main entry screen for the appropriate programs:

after_init
call put_scrlib("scrn_trx", "commt");

Transaction processing notes:

1. No transaction processing takes place when entering or leaving an add-on
header, except if the add-on header is called from the Options menu.

2. If you userollback as your default, all work isrolled back including al add-on
work and User Control work such as Notes or Hot Keys when you press [DEL]
from the main entry screen.

Add-On Header Screens 10-35

Fitrix Screen Technical Reference

Add-On Header Functions

What follows isthe list of functions created in the add-on header source code.

The scr idwould be substituted for the basename of the add-on header .per file.
If thisfileisnamed cust . per, thenthe scr idwould be substituted for the
string "cust,” like in the function name S_cust () .

S_scr_id(): Thisfunction contains this particular add-on header switchbox
mechanism. It works basically the same way asthe swi t chbox mechanism you
are used to seeing in Zoom source code. It callsthe appropriate add-on header func-
tion based on the value of the variable scr _f unct . This function must be speci-
fiedinaswi t chbox_i t ens trigger in the base program trigger file.

T _scr_id(): Thisisthetouch function. It's purposeisto identify this screen to
the object manager.

A _scr_id(): Thisfunctionis called to open and initialize the screen. Thisis one
of the first functions called when an add-on header is invoked.

C_scr_id(): Thisistheclear function. Thisfunction initializes both the p_ and
g_ recordsto null.

R_scr_id(): Thisfunction reads the data from the disk into the program vari-
ables. It iscalled only if all the key fields contain data when the add-on header is
invoked. The first thing this function doesisretrieve ther owi d of the record that
isto be updated. If the key is not complete when the add-on header isinvoked, this
functionis never called, and ther owi d referenced in the add-on header source
codeisnull. Thisr owi d variableisusedin aconditiona withintheW scr id()
to determine whether or not to insert or update the row in the table.

W_scr_id(): Thisfunction writes the program variables to disk. The function
decides whether to perform an INSERT or an UPDATE based on the contents of
ther owi d variable. Both the INSERT and the UPDATE statements use column
lists. The column lists are created in the following order: first, all thep_ record
variables that exist in the main input table, and second, all the q__ record variables
that exist in the main table. The same rule applies in the creation of the values list.
The creation of the INSERT/UPDATE statements in any add-on header follow the
same rule mentioned above.

10-36 Creating Screen Forms

Fitrix Screen Technical Reference

When a serial field for the main table existsin p_ and/or q__ record(s), the insert
statement generated specifies this table column last in the column list, and it puts
thevalue"0" (zero) asthelast valuein the values list. In the case of an update state-
ment, the serial field is not specified if it existsinthe p_ and/or q__ record(s).

Based on the add-on header .per example above, and ani nput 1 defi ne trig-
ger of:

define
state |ike custoner.state,
j kI l'ike custoner.custoner_num

the following SQL INSERT and UPDATE statements are generated. In this partic-
ular example, the column cust oner _numisaserial field.

Insert the new row

insert into custonmer (fnanme, |nane, conpany, addressl, address2, city,

zi pcode, phone, state, fname, custoner_nun) values (p_custfor.fnane,
p_custfor.lname, p_custfor.conpany, p_custfor.addressl, p_custfor.address2,

p_custfor.city, p_custfor.zipcode, p_custfor.phone, g_stoner.state,
g_stoner. fname, 0)

Note

The seria field cust oner _numisreferenced last in both the column list, and
the valueslist.

Also in the column list is the duplicate references of the column "fname.” Thisis
because it isafield actually on the screen (inthe p_ record), aswell asin the

i nput 1 defi ne trigger (which isthen eventually put intheq_ record). When
this particular INSERT is executed, the fname column contains the value from the
variable q_st oner . f name inthevaluesligt, sinceit is hooked up to the last ref-
erence of the column "fname."

Update the existing row

update custoner set (fnane, |nane, conpany, addressl, address2, city,

zi pcode, phone, state, fname) = (p_custfor.fnane, p_custfor.|nane,
p_custfor.conpany, p_custfor.addressl, p_custfor.address2, p_custfor.city,

p_custfor.zipcode, p_custfor.phone, q_stoner.state, g_stoner.fnane) where
rowd = g_stoner.row_id

Add-On Header Screens 10-37

Fitrix Screen Technical Reference

Note

The serial field cust orrer _numis not referenced.

K _scr_id(): Thisfunctionusestheput _vararg() functionto passthe
name of the main input table, followed by pairs of put _var ar g() calsfor each
key field which makes up the key. The first half of the pairisacall to

put _varar g() sending the column name of the key field, and isfollowed by the
second half of the pair, whichisacall toput _var ar g() sendingit theq_ record
element which holds the actual value of the key field. In the case of akey specified
as"cust oner _num | nane," and with the main input named "cust oner ,"
thecalsto put _vararg() areasfollows:

call put_vararg("custoner")

cal |l put_vararg("custoner_nun')

call put_vararg(g_stoner.custoner_num
call put_vararg("fnane")

call put_vararg(qg_stoner.fnane)

For more information on varargs see"The Vararg Family of Functions' on page 11-
35.

I_scr_id(): Thisfunction contains the input statement for the add-on header. It
isidentical tothel | h_i nput () function found in header . 4gl on any header
program.

BF_scr_id(): Thisfunctionisthebef ore fi el d functionfor an add-on
header. Itissimilartothel | h_b_fi el d() functionfoundinheader. 4gl on
any header program.

AF_scr_id(): Thisfunctionistheafter fi el d functionfor anadd-on
header. Itissimilartothel | h_a_fi el d() functionfoundinheader. 4gl on
any header program.

AI_scr_id(): Thisfunctionistheafter input function for an add-on header. Itis
similartothel | h_a_i nput () functionfoundinheader . 4gl on any header
program.

EV_scr_id(): Thisfunctionistheon event function for an add-on header. It
issimilartothel | h_event () functi on foundinheader. 4gl onany
header program.

10-38 Creating Screen Forms

Fitrix Screen Technical Reference

SD_scr_id(): Thisfunctionistheset dat a function for an add-on header. It
issimilartothel | h_set dat a() functionfoundinheader . 4gl onany header
program.

HI_scr_id(): Thisfunctionisthehi ghl i ght function for an add-on header.
Itissimilartothel | h_hi gh() functionfoundin header . 4gl on any header
program.

SH_scr_id(): Thisfunctionistheshow dat a function for an add-on header.
Itissmilartothel | h_di spl ay() functionfoundinheader. 4gl onany
header program.

Z_scr_id(): Thisfunctionis called upon the end of an add-on header session. It
closes the add-on header window, and initializesscr at ch back to null.

PL_scr_id(): Thisfunction contains the lookup logic for the add-on header.
This function is not present if there are no lookups.

MA scr_id(): Thisfunction contains the math logic for the add-on header. This
function is not present if there is no math specified.

PR_scr_id(): Thisfunction loadsthe p_ and q_ records from the temporary
table.

PW_scr_id(): Thisfunction writesthe p_ and q_ records to the temporary
table.

Add-On Detail Screens

Add-on detail screens are designed to provide auxiliary detail input to your entry
programs. The tables used by these screens are other than the tables used in your
header/detail program.

Add-on detail screens can be hooked to the following type of screens: header,
header/detail (either the header or detail portion), add-on header, extension, and
other add-on detail screens.

An add-on detail screen can utilize the following logic: Zooms, lookups, order, fil-
ter, autonum, or math.

Add-On Detail Screens 10-39

Fitrix Screen Technical Reference

Add-on detail screens aren't restricted to only being called by a particular entry
screen, and can be plugged in to several different calling screens, aslong as each
calling screen sends it the same number of values.

All Zooms used in an add-on detail screen must have swi t chbox_i t ens trig-
gers defined for them in the entry screen’ strigger file. For more explanation, refer
to "The Add-On Detail Demonstration” on page 10-46.

Fieldsinvolved in amath equation all must be referenced within the add-on detail
screen.

10-40 Creating Screen Forms

Fitrix Screen Technical Reference

Example Add-On Detail Form

Thefollowingistheadddet | . per formfrom scr_demo 8.

DATABASE st andar d

SCREEN
{

I'tem Description Manuf act ur er Qy. Price Ext ensi on
[f14][f15 J[fi6][f17] [f18]J[f19 1[f20]
[f14][f15 J[f16][f17] [f18]J[f19]1[f20]
[f14][f15 1[fi6][f17] [f18]J[f19 1[f20]
[f14][f15 J1[fi6][f17] [f18]J[f19 1[f20]
[f14][f15 J[f16][f17] [f18]J[f19]1[f20]
[f14][f15 1[fi6][f17] [f18]J[f19 1[f20]
[f14][f15 J[fi6][f17] [f18]J[f19 1[f20]
[f14][f15 J[f16][f17] [f18 J[f19][f20]
[f14][f15 J[fi6][f17] [f18]J[f19 1[f20]
[f14][f15 J[fi6][f17] [f18]J[f19 1[f20]
[f14][f15 J[f16][f17] [f18 J[f19][f20]
}

TABLES

items

stock

manuf act
ATTRI BUTES

f14 = itens.stock_num comments =
" Enter the stock nunber for this line item";
f15 = stock. description, noentry;
f16 = itens. nanu_code, comments =
" Enter the manufacturers code for this stock nunber.";
f17 = manuf act. manu_nanme, noentry;
f18 = itens.quantity, coments =
" Enter the nunber of units sold for this item";
f19
f20

= stock.unit_price, noentry;
= itens.total _price, noentry;

instructions

screen record s_itens[11] (items.stock_num stock.description, itens.nanu_code,
manuf act . manu_nane, itens.quantity, stock.unit_price, itens.total _price)

delinmters "

{

FGSS

defaul ts
nodul e = denp
type = add-on

attributes = white, border

Add-On Detail Screens 10-41

Fitrix Screen Technical Reference

| ocation =9 2
input 1

table =itens

join = items.order_num = orders. order_num

or der = itemnum

arr_max = 100

autonum = item num

mat h = total _price = quantity * unit_price

| ookup = name=stock_num key=stock_num tabl e=stock,
filter=stock_num = $stock_num into=description

| ookup = name=stock_nanu, key=manu_code, tabl e=stock,
filter=stock_num = $stock_num and manu_code = $manu_code,
into=unit_price

| ookup = key=manu_code, table=manufact, filter=manu_code = $manu_code

zoom = key=stock_num screen=stockzm tabl e=stock, noautozoom

zoom = key=manu_code, screen=stk_mu, tabl e=stock,

filter=stock.stock_num = $stock_num

Note

Also notice that form type in the add-on detail is add-on. The Code Generator
determines if the form is an add-on header or add-on detail type form by the
screen record. If the screen record is an array, then the form is a detail form. If it
is not, then the form is a header form.

Characteristics of an Add-On Detail
.per Form

The following are the characteristics of an add-on detail screen:
e The SCREEN section contains only a detail layout.

* TheINSTRUCTIONS section of the perform file only has the screen record
array defined.

* The FGSS section only has default and input 1 sections, just like an add-on
header screen, but the input 1 section in an add-on detail screen containsinfo
regarding the detail. In other words, in the traditional header/detail screen, the
information found under the input 2 section would be the same type of informa-
tion found under an add-on detail screen’sinput 1 section.

e Thej oi n clause contains elements that get passed to the screen being called.

10-42 Creating Screen Forms

Fitrix Screen Technical Reference

Creating an Add-On Detail Screen

The following are the steps creating an add-on detail screen:
1. Create the add-on detail .per form.

The add-on detail looks much like the detail section of a normal header/detail
screen.

e Specify "add-on" for the form type.
e Createthe detail array.

2. Create a join clause in the .per to join the add-on detail form to the main
form.

Thej oi n clauseinyour add-on detail .per formisused to tell the add-on detail
select statement how to join itself with the data from the screen that invokes
this add-on detail. Thisj oi n isdefined in the same way for an add-on detail
screen asit is defined in any other header/detail screen. The syntax for the

j oi n clauseis:

join = detail _tbl.detail _colum = other_tbl.other_col um

Inthisexample, det ai | _t bl isthe name of the detail table that this add-on
detail maintains, and det ai | _col utm isacolumn of thedet ai | _t bl
tableused inthej oi n. Theot her _t bl tableisused by the screen that cals
the add-on detail screen, and ot her _col umm isacolumn from the

ot her _t bl tableusedinthej oi n. Multiplej oi ns can be specified if
required, such as:

join = detail _tbl.detail_columl = other_tbl.other_columl and
detail _tbl.detail_colum2 = other_tbl.other_col um2

Theot her _t bl . ot her _col umm references are translated into "?"' sin the
add-on detail screen’ s select statement. These join elements are referenced only
as away to provide the Screen Code Generator the number of host variablesto
be supplied by the screen calling this add-on detail screen, aswell asletting the
add-on detail screen know how many passed data values it should expect to
receive.

In other words, just because the table named ot her _t bl wasused inthejoin
does not mean that the calling screen hasto betied to the ot her _t bl table.

Add-On Detail Screens 10-43

Fitrix Screen Technical Reference

To clarify this, let'slook at thej oi n from the screen demo 8 demonstration
for add-on detail screens:

join = itens. order_num = orders. order_num

The add-on detail screenisjoined to thetable namedi t ens. The calling
screen is a header which is hooked to the table named or der s. Hence the

j oi n above. Thefollowing showswhat is generated in the add-on detail select
clause:

sel ect stuff fromitens
where itens.order_num= ?

When the add-on detail screeniscalled in this example, the calling screen sends
an order number value, which the add-on detail screen retrieves and usesiniit’'s
open cursor statement. The add-on detail screen doesn't care whether the
data value sent wasfrom or der s. or der _numor i nven-

tory. order _numorst ock. order _num All it knowsisthat it expectsa
value, one value (as specified), and that the value represents an order number.

3. Create a call to the add-on detail screen.

Add-on detail screens are displayed by placing acall in the code for the screen
from which the add-on is called from. This call is made up of three possible ele-
ments:

1. an additional filter - used in conjunction with the hard filter specified in
the add-on detail .per file. Sending an additional filter is optional, and uses
akeyword (filter) to specify that it is used as afilter.

2. an order by - to replace the order by specified in the add-on detail .per file.
Sending an order by is optional, and uses a keyword (order by) to specify
that it isto be used as afilter. If no order by is sent, then the one specified in
the add-on detail perform fileisused if it exists.

3. the data values - these arethej oi n elements. The oi n_el ens key-
word is used to specify that these data values are used in the join criteria of
the add-on detail select statement. Thej oi n_el ens keyword isrequired,
followed by the proper number of elements.

Theput _var ar g() function in the calling screen sends these pieces of data
to the add-on detail screen. The add-on detail screen usesget _varar g() to
retrieve the sent data. The following isan example of what a calling screen does
to send afilter, order by, and three data values:

10-44 Creating Screen Forms

Fitrix Screen Technical Reference

a)
b)

c)
d)

e)
f)
9)
h)
i)

a)

b)
©)
d)

e)

)
h)

call put_vararg(“"filter")
call put_vararg("itens.order_num > 1000")

call put_vararg("order")
cal |l put_vararg("order_nunt)

call put_vararg("join_el ens")

call put_vararg(p_record. data_val uel)
call put_vararg(p_record. data_val ue2)
call put_vararg(p_record. data_val ue3)

call socket Manager ("adddet!l", "add-on detail", "default")

passes the keyword "filter." When the add-on detail screen starts retrieving
this data, it first gets the keyword "filter." Because of this keyword, it
knows that the next piece of datais the actual filter that it is supposed to
use.

passes the actual filter to be used.
sends the keyword "order."

the actual order by elements you wish to use. When the add-on detail reads
in the keyword "order," it knows its next read returns the order by that it is
supposed to use.

Again, passing additional filters or a substitute order by is optional. Passing
datavaluesisrequired.

sends the keyword "join_elems.”
sends the first actual data value.
sends the second actual data value
sends the third actual data value.

Since the add-on detail screen in this example expects three data val ues sent
to it, the calling screen must send three data values. If it doesn't, then the
add-on detail screen does not display. When the add-on detail reads in the
keyword "join_elems," it knows that the rest of the passed pieces of data
arein fact actual data valuesit needs to use in satisfying itsj oi n. It keeps
count of how many it reads, and it must match what it expects.

Add-On Detail Screens 10-45

Fitrix Screen Technical Reference

i) isthelastlineof codefor the call for add-on detail screens. It isthe function
that brings up the add-on detail screen. It isonly after the socket Man-
ager () functioniscalled that data passed toitisread. Y ou send the name
of your add-on detail screen as an argument to this function. This function
call of courseisrequired.

That's it for the hook code required in the calling screens logic. The screen
demo 8 demonstration program is explained below, and it is highly recom-
mended you run through this demo and study it before launching into the cre-
ation of your own add-on detail screens.

The Add-On Detail Demonstration

Screen demo 8 illustrates the use of an add-on detail screen. The add-on detail
screen isinvoked in this demo with after field logic from the main header screen,
but any event can be used to trigger an add-on detail screen. In this example, the
add-on detail screenisnamed adddet | . per . There are Zooms, lookups, and
math defined in the .per file.

Similar to add-on headers, aswi t chbox_i t ens trigger exists for this add-on
detail screen, aswell asswi t chbox_i t ens trigger entries for any other auxil-
iary screens called from within this add-on detail screen, such as zooms, add-on
headers, or add-on details. For example, the entry header isnamed or der . per,
and the Zooms called from the add-on detail are named st ockzmand st k_mmu.
In order for the add-on detail Zooms to work, you need to create the file

or der. trg, with thefollowing entry:

def aul t
swi t chbox_i t ems
adddet| S_adddet |
st ockzm st ockzm
stk_mu stk_mmu;

Thefirst swi t chbox_i t ens entry isthe actual add-on detail screen itself. The
S preceding the screen name represents the name of the add-on detail’sswi t ch-
box() function. The second and third swi t chbox_i t ens entries are for the
two Zooms, which can be invoked from within theadddet | add-on detail screen.

Therest of theor der . t r g trigger file consists of this:

input 1
after_field ship_instruct

10-46 Creating Screen Forms

Fitrix Screen Technical Reference

call put_vararg("join_elens")
call put_vararg(p_orders.order_num
call socket Manager ("adddet!", "add-on detail", "default");

Once again, this add-on detail isinvoked withaf t er _fi el d logic, namely
after _fi el dlogicfor the entry header field named shi p_i nstruct . After
thisfield add the following:

call put_vararg("join_elens")

This statement puts the keyword "join_elems' into the variable arguments, which
the add-on detail screen logic reads once it gets control. Once the add-on detail
screen finds this keyword "join_elems," it knows that subsequent calls to

get _vararg() returnthe datavaluesit needsto useintheopen cur sor
statement. These retrieved values are used to substitute the host variables of the

j oi n clausewithinthesel ect statement.

call put_vararg(p_orders.order_num

Here you need to put into the variable argument pool the actual datato be used by
theopen cur sor statement in the add-on detail logic. This particular add-on
detail only needs one data element to fill itsj oi n clause, so you only send one. If
thej oi n required three external data values, then you would have three separate
callstoput _var ar g() here, onefor each of the three data val ues expected.

call socket Manager ("adddet|", "add-on detail", "default")

Thisisthe controlling function that activates the add-on detail screen. Notice that
this function is sent the name of the add-on detail screen; in this case adddet | .

Generic Detail Write

The write functionality implemented within add-on detail screensworks differently
from the way disk update is handled in the traditional header/detail screens.

In header/detail screens, pressing [ESC] to save the record first deletes al of the
initially selected detail lines and then inserts the current detail lines back into the
detail table. There has never been an "update” function for detail lines. Thisway of
handling disk updates for detail rows has never been areal problem until you have
an instance where a serial column isa part of your detail row, and you depend oniits
value being consistent once established. Deletion and re-insertion in this scenario
resultsin adesired static serial number becoming very dynamic. This problem has
been resolved for add-on detail disk updates in the new add-on detail logic.

Add-On Detail Screens 10-47

Fitrix Screen Technical Reference

Add-on detail screens handle updates differently from other screen types. When it
comes time to update the disk, each detail row is determined to be either updated,
inserted, or deleted. Furthermore, no action istaken on those rowsthat havenot had
any data changed within them, resulting in performance benefits proportionate to
the amount of detail activity a particular interface has.

Note

As stated, this new detail disk update functionality is present only in your add-on
detail code and not in your traditional det ai | . 4gl code.

Query By Example Screens

The query screen type provides aform into which a user can enter queriesto find
information. The Code Generator automatically uses the main input screen as a
guery screen when the Find command is used. Y ou may create your own query
screen if you don’t want to query using the main form.

Creating a Query Screen

Thefollowing is required to create the query screen.
1. Create the query screen with the Form Painter
Be sure to define the screen type as "query."

2. Create the call to the query screen and place them in an .ext file. Example:
start file "mdlevel.4gl"

repl ace bl ock m h_construct define_var

define
msnal lint,
n smallint;

del ete bl ock m h_construct end_construct
repl ace bl ock m h_construct construct

call socket Manager ("custqgry", "query", "default")
let scratch = null

10-48 Creating Screen Forms

Fitrix Screen Technical Reference

let n = fgStack_pop()
ifn=0
then

let int_flag = true
el se

for m=1ton

let scratch = scratch clipped, fgStack_pop()
end for
end if;

3. Create a switchbox items trigger.

Thistrigger can be placed either in the trigger file for the main form or, asin
thisexample, inan .ext filewithastart fil e command.

start file "main.4gl"

swi t chbox_i t ens
custqgry S custqry;

View-Header Screens

This screen typeis used to display header information only. This screen type only
generates aread, showdata, and view function.

To use aview-header screen you must do the following:

1. Call the view-header screen.

first pass the the rowid to put_vararg
let p_cur = arr_curr()
select rowid into scratch from custoner
where customer_num = g_ordvi ew p_cur].custonmer_num
call put_vararg(scratch)
cal | socket Manager ("custvw', "view header", "default")

2. Create switchbox_items trigger for screen.

swi t chbox_i t ems
custvw S_custvw,

View-Header Screens 10-49

Fitrix Screen Technical Reference

View-Detail Screens

This screen type is used only to display detail information. View-detail screens
only generate aread, showdata, and view function.

To use aview-detail screen you must do the following:

1. Call the view-detail screen.

on_event tab
call put_vararg("order")
call put_vararg("order_date desc")
call put_vararg("join_elens")
call put_vararg(p_stoner.custoner_nun)
call socket Manager ("ordview', "view detail", "default");

2. Create switchbox_items trigger for screen.

swi t chbox_i t ens
ordvi ew S_ordvi ew,

Browse Screens

Ring menu code produced automatically by the Code Generator provides a Browse
command. The Browse command facilitates your work with batches of documents.
Often, a user needs to update a number of documents. The Browse command is
used to page through a number of current documents.

In programs without abr owse. per form specification file, the Browse option
displays the following commands at the top of the screen:

Browse: First Last Next Prev Got o Exi t
Move to first selected docunent

These Browse commands allow for movement among the selected or current set of
documents. Only one document can be viewed at atime.

The Browse option can be further enhanced by condensing current documentsto
one line of information for array-style display on a browse screen. The browse
screen provides summary information of the selected set of documents. The user

10-50 Creating Screen Forms

Fitrix Screen Technical Reference

points to the desired row (representing a unique current document) and selectsit.
This feature can be added to your applications by creating abr owse. per filein
the application directory.

Example Browse Form

The .per form specification file for the Browse resembles the detail array portion of
a header/detail form specification file. That is, the structure of the field tags from
row to row underscore the fact that data displayed in a browse form appears as an
array. The example of abr owse. per file shown below istaken from the
scr_deno 3 application.

Browse Screens 10-51

Fitrix Screen Technical Reference

Thebr owse. per file

dat abase standard

screen
{

Order No. Conpany PO No. Order Date
[fp_1 I [fp_2 1 [fp_3 1 [fp_4 1
[fp_1 1 [fp_2 1 [fp3 1 [fp_4 1
[fp_1 I [fp_2 1 [fp_3 1 [fp_4 1
[fp_1 1 [fp_2 1 [fp3 1 [fp_4 1
[fp_1 I [fp_2 1 [fp_3 1 [fp_4 1
[fp_1 1 [fp_2 1 [fp3 1 [fp_4 1
[fp_1 I [fp_2 1 [fp_3 1 [fp_4 1
[fp_1 1 [fp_2 1 [fp3 1 [fp_4 1
[fp_1 I [fp_2 1 [fp_3 1 [fp_4 1
[fp_1 1 [fp_2 1 [fp3 1 [fp_4 1

}

tabl es
orders
cust onmer

attributes

fp_1 = orders. order_num
fp_2 = custoner. conpany;
fp_3 = orders. po_num

fp_4 = orders. order_date;

instructions
screen record b_ordr[10] (orders.order_num custoner.conpany,
orders. po_num orders. order_date)

delimters "

{

FGSS

defaul ts
type = browse
| ocation = 5,10

}

The columnsin the form access datain the cust onmer and or der s tablesin the
st andar d database. The number of rows specified in the screen section aswell as
the number indicated in the screen record (b_or dr [10]), indicate that the browse
screen displays up to ten rows at atime.

10-52 Creating Screen Forms

Fitrix Screen Technical Reference

The following graphic shows how a browse screen appears within a data-entry
application:

Action: Add Update Delete Find MNxt Prv Tab Options Quit
Page through selected documents

—————— Brouwse:[] Prev Up Down Top Bottom Select ... —_—
Custo| Move to next document
Compa
Order No. Company PO No. Order Date
City
Oord 1005 Olympic City 2865 12/04/86 004
1006 Runners & Others Q13557 09/19/86
Shipp 1007 Kids Korner 278693 03/25/86
—————— 1008 AA Athletics LZ230 11/17/86 —_—
Item 1010 Gold Medal Sports 4290 05/29/86 nsion
1 1011 Play Ball! B27897 03/23/86 50.00
2 1012 Kids Korner 278701 06/05/86 26.00
3 1013 Play Ball! B27930 09/01/86 40,00
1 1014 Watson & Son 8052 05/01/86 00.00
(1 of 1%) ======
19.20

Order Total: $1435.20

(1 of 15}

The browse screen displays one-line summaries of current documents. The user
selects the desired document by scrolling the cursor to the desired row and selecting
the document.

By convention, browse and zoom forms should begin on row 5.

Browse Screens 10-53

Fitrix Screen Technical Reference

Zoom Screens

Zoom isafeature that permits usersto view a screen of valid column entries, select
avaue from alist, and paste the selected value (and other dependent values) into
the current data-entry form. Zooms can help reduce the likelihood of data-entry
errors and free data-entry personnel from having to memorize codes.

In code generated by the Code Generator, the Zoom feature is handled as an event.
The default access to the Zoom feature is through [CTRL]-[Z], although Zoom can
be assigned to other keys as well.

In order to have Zoom logic generated automatically by the Code Generator, you
must create a.per form for each Zoom. The zoom .per file needsto bein the style of
adetail form, with records displayed oneto arow.

For example, the screen demo 3 has been generated with a Zoom in the header sec-
tion of the screen. The Zoom is setup to be used while the cursor isin the Cus-
tomer No. field. When the user activates the Zoom feature by pressing [CTRL]-
[z], anew screen opens up, displaying an array of rows listing codes currently
defined inthecust oner table of the st andar d database. When the user selects
arow (displaying the customer number desired), the selected entry automatically
appearsinthecust oner _numfield.

Sample Zoom form:

Update: L[ESC] to Store, L[DEL] to Cancel. LTAB1 Mext Window Help:
Enter changes into form CCTRLI-Lwl
==== Y=
———| Zoom: [ESC] to Select,. [TAB] for Menu Help: -

Cus| L[F31 or L[F4] to Page. LDEL] to Quit LCTRLI-Lwl
Com
CustNum FirstName LastName Company
Ci
B 117 nArnold Sipes Kids Korner
0 105 Raymond Vector Los Altos Sports
116 Jean Parmelee Olympic City
Shi 103 Philip Currie Phil"s Sports
—_— 104 Anthony Higgins Play Ball! -
Tte 108 Donald Quinn Quinn”s Sports on
1 {19 rouws selected) 00
2 00
3 baseball bat HSK Husky 1 $240.00 $240.00
1 baseball gloves HSK Husky 1 $800.00 $800.00
Order weight: 95.80 Freight: $19.20
Order Total: $1435. 20
Enter the customer code.

10-54 Creating Screen Forms

Fitrix Screen Technical Reference

Calling a Zoom Screen

If your zoom screens are created and attached using the Form Painter then the 4g|
code talked about in this section is generated automatically. This section discusses
the 4gl code that calls the zoom screens.

A zoom screen is called with the socket Manager () function just like all other
additional screens. Y ou must send an entry filter to the zoom functions with the
fgStack_push() function beforethe cal to thesocket Manager () func-
tion. The entry filter istheinitial filter that is used when the Zoom is activated. If
thisisnull (""), then the user goes into the query by example form. The entry filter
is sent to the zoom functions viathef gSt ack_push() function. The following
is an example zoom screen call:

#_zoom st ock_num

when scr_funct = "zoont and infield(stock_num
call fgStack_push("")
cal |l socket Manager ("stockznt, "zoont, "default")

When control returns back to the main program from the zoom screen several lines
of code are needed to assign the value returned from the zoom to the current p_
variable.

let tnmp_str = fgStack_pop()
if tnp_str is not nul
then

let p_itenms[p_cur].stock_num= tnp_str
let nxt_fld = "stock_nunt
end if

Thef gSt ack_pop() function returns the value selected by the user from the
zoom functions. Thisvalueis assigned to the current p_ variableand nxt _f1 d is
Set.

Creating a Zoom Screen

Thefirst step to adding a zoom screen to an application is to create the zoom .per
form. The zoom .per form contains the basic instructions for the zoom window, and
is set up like your regular .per file. When naming zoom formsit is agood ideato
follow a naming convention so you can recognize zoom .per forms at a glance. For

Zoom Screens 10-55

Fitrix Screen Technical Reference

example, the namecust _zm per, uses zm to identify the Zooms. Zoom .per
files, like al .per files, must be named with a maximum of seven characters not
including the .per extension.

By convention, zoom screens should be located on row five. Zooms should aso be
centered. Refer to "Centering a Window" on page 18-4 for an easy way to deter-
mine the coordinates for a centered window.

The next step isto add the required Zoom information to the main input screen .per
file that the Zoom keys from.

Specia steps to adding a Zoom to your program:
1. Create the main input form your Zoom is attached to.
2. Specify Zoom logic on the field you want Zoom functionality.

From the field you want to initiate the Zoom from display the Define Zooms
form. Enter the name of the zoom form along with the main table used by the
zoom form. If you want to be able to AutoZoom on the field then enter aY in
the Auto Zoom field. If you want to specify afilter for the Zoom, do so in the
Zoom Entry Filter field. The Zoom From Column field is required when the
following are true:

1. Thetable.column name being Zoomed in is different from the name of the
column on the screen that the Zoom is attached to.

2. Thescreen field you are Zooming from is a character field.

3. AutoZoom is enabled. Zooms with AutoZoom set to N or afilter, do not
require the "from" keyword.

10-56 Creating Screen Forms

Fitrix Screen Technical Reference

For example, if the field on your screen is named cust orrer _numand the
column being Zoomed into is called cus_num you would enter cus_num in
the Zoom From Column field. For more information on the Define Zooms form
refer to "Defining aZoom" on page 7-30.

Update: [ESC] to Store. [DEL] to Cancel

Enter changes into form

(Zoom)==

Define Zooms

Zoom Form ID IS st _zin|
Auto Zoom ? HE
Main Zoom Table : customer

Zoom Entry Filter:
Zoom From Column :

Enter the zoom form”™s unique ID.

3. Create the zoom form.
4. On the Define the Form form, specify the main table for the Zoom.

5. On the Define the Form form, specify a returning field if you wish to
return data from the zoom form to the main screen.

If you want the Zoom to return data to your main form, specify the name of the
field on the main form in the Returning (zoom) field. Ther et ur ni ng key-
word identifies the name of the field on the zoom that isto return information to
the calling function. Only onefield per zoom screen can be specified to return
information. Y ou can, however, return information into more than one field
with alittle bit of code manipulation. Refer to the discussion of vararg func-
tions for areal example of returning more than one value with a Zoom. See
page "Examples of put_vararg() and get_vararg()" on page 11-39. This

r et ur ni ng keyword isrequired for zoom screens and has no default.

Example Zoom Form

Three zoom .per files have been included as part of the screen demo 3 application.
The cust _zmfileis shown here as an example of the format shared by all three
Zoom form specification files.

Zoom Screens 10-57

Fitrix Screen Technical Reference

Thecust _zm per file:

DATABASE st andar d

SCREEN
{

Cust Num Fi rst Name Last Nane Company
[fO1] [f02 10f03 1[fo4]
[fOo1] [f02 1[f03 1[fo4]
[fO1] [f02 10f03 1[fo4]
[fOo1] [f02 1[f03 1[fo4]
[fO1] [f02 10f03 1[fo4]
[fOo1] [f02 1[f03 1[fo4]
}
TABLES

cust omer
ATTRI BUTES
fo1l = cust oner. custoner_num
fo2 = custoner. f nane;
f03 = custoner. | naneg;
fo4 = customner. conpany;
I NSTRUCTI ONS

screen record s_cust z[6] (custoner. custoner_num custoner. f nane,
cust omer. | name, custoner. conpany)

DELIMTERS " "

FGSS

defaul ts

nodul e = ar

scr_id = cust_zm

type = zoom

| ocation = 10,4

attributes = border,red

returning = customer_num
input 1

arr_max = 100

or der = conpany

key = custonmer_num
}

10-58 Creating Screen Forms

Fitrix Screen Technical Reference

Zoom Logic

The following diagram represents the basic flow describing what happens when a
Zoom iscaled. The arrowsindicate function calls.

LOCAL CODE

calling screen .4gl

zoom screen .4g|l

flow close

sktlnit

\ sktFlow

socketManager()
/ sktClose

LIBRARY CODE

»

socketZoom()

Zoom Screens 10-59

Fitrix Screen Technical Reference

The following diagram displays a bit more detail about the order that the zoom
events occur.

Calling Screen

LOCAL CODE

zoom selected

lfilter pushed onto stack

Zoom Screen

A

2caII socketManager()

\

init

)

0zoom functions
Z_close

socketManager()

LIBRARY CODE

3ca|| socketZoom_sktlInit()

1/45ave environment
set new context

1/2(:a|| socketZoom_sktFlow()

Bestore prev environment

Dcall socketZoom_sktClose()

socketZoom()

= socketZoom_sktlnit()
init

set sticky

p socketZoom_sktFlow()
— a

3

0default flow <&
various flow functions

0ﬂow
?/4c|ose

» socketZoom_sktClose()

The following are the local zoom screen functions:

Ascr_id(): (Init) Initializes variables and pulls up the zoom screen.

Kscr_id(): (Key) Returns name of main table and fields that build a unique key.

10-60

Creating Screen Forms

Fitrix Screen Technical Reference

QOscr_id(): (Query) Obtains selection criteriausing the INFORMIX-4GL CON-
STRUCT statement.

Rscr_id(): (Read) Builds and executes the SQL statement and fills the
p_record array for the Zoom.

Dscr_id(): (Display) Displays p_r ecor d array for user and waits for user to
select. Handles logic for pressing [ESC], [DEL], [TAB], or event processing.

Zscr_id(): (Close) Closes screen, assigns resulting field value to respective
p_record field. It does not display this value.

Refer to "Diagram of the switchbox() function:" on page 11-30 to see how each of
these single-task functions interacts with the sole tailored function that calls them.
Noticethat just likeswi t chbox andl i b_scr een, swi t chbox and thetai-
lored function act merely as "routers' of requests from libraries to perform each
individual task that makes up a Zoom. The Switchbox diagram also shows the
scr_funct s that are passed viaswi t chbox toinitiate these single-task func-
tions.

Each Zoom hasitsown scr _i d and tailored function. When a Zoom is initiated,
swi t chbox routes the requests not to the "default" data entry screen but to the
zoom screen (based on the value of scr _i d). Thetailored function is then called
and again routes the requests. Requests are routed by calling the single task func-
tion based onthevalue of scr _f unct.

A tailored function isvery similar tol i b_scr een; achief difference isthat
i b_screenisalibrary function and atailored function is generated in local
code.

Zooms are usualy initiated as part of acase statement in
I'1'h_event/I1d_event (withinaninput statement). Several library functions
are called from the function Zoom and control worksits way down to lowlevelsvia
swi t chbox.

Note

If you want to be able to use the Freeform Notes feature ([CTRL]-[n] for notes)
on each line of your Zoom, then you must display all key fields for that table on
the zoom screen. The key fields must be defined in the following sections of
your zoom per form: SCREEN, ATTRI BUTES, and | NSTRUCTI ONS. If all

Zoom Screens 10-61

Fitrix Screen Technical Reference

key fields are not displayed on the screen, then you must manually change the
Kscreen id() function to return the correct key field for that table based on
the line that the user ison.

Creating a Permanent Zoom Filter

Y ou can attach an initial filter to azoom statement to define the complete set of
rows selected when the zoom isfirst executed. If no zoom filter is provided, the
user first seesa"Find" (query-by-example) version of the form, which allows the
user to enter search criteriato limit the rows selected. However, if the zoom has an
initial zoom filter, that filter is disregarded if the user pressed [TAB] to re-sort and
re-select zoom rows.

Y ou can define a permanent zoom filter, often refered to as a sticky filter, which
defines a subset of datathat can be accessed through the zoom, even when the user
enters search criteria. That is, when the user enters patterns with the Find command
of azoom form, the zoom selects data that matches the entered criteria AND the
criteria of the permanent zoom filter.

To demonstrate the permanent zoom, you can use the Screen Demo applications as
an example. Typescr _denp 3 toplaceyourself inthescr een3. 4gs program
directory with sample *.per files which contain zooms. Run the Code Generator
with thecommand f g. screen -0l -yes. When the code has been generated,
locatethefunction| | h_zoom filter() intheheader. 4gl file(e.g. with
the vi editor). The code should look like the following:

#
#_define_var - define local variables
define
tnp_filter char(512) # Tenporary string for building the filter

#_filter - Set the filter based on the current field
case
#_when_fal se - Just to satisfy 4G syntax
when fal se
#_false - Code placed here will never execute
#_otherwise - No condition satisfied so execute this |ogic
ot herw se

10-62 Creating Screen Forms

Fitrix Screen Technical Reference

#_no_filter - No persistent filter for zoom being called
let tnmp_filter = null
end case

#_push_filter - Push the sticky filter onto fgStack
call fgStack_push(tnp_filter)

end function
11 h_zoomfilter()

Note that there is already alocal variable that can be used for building the filter that
you will send. Note also that the filter will be sent through thef gSt ack_push()
function. In this example, the selection for the customer zoom is limited to cus-
tomer numbers less than 110. In order to do this you need to build an .ext file with
block commands for inserting your code.

Create and edit aheader . ext file(e.g.vi header. ext). Enter the code
below, then quit and save thisfile.

start file "header.4gl"

before block Il h_zoomfilter otherw se
#_when_in_customer_num - Are we in the custoner_numfield?
when infiel d(customer_num
#_customer _numfilter - Set the sticky filter
let tnp_filter = "custoner.custoner_num < 110"

After creating theheader . ext , createabase. set filethat contains the name
of the .ext file.

Next, merge and compile the new code with the f g. make command, then run it
(eg. withf gl go *4gi). Select the Update or Add option and press [CTRL]-[Z]
in the Customer No. field. When the zoom Find screen appears, press [ESC]. Note
that the zoom form contains only those customers for which cust oner _numis
less than 110. (To verify that more rows are in the customer table, you may use
SQL query utilitiesor scr _deno 1.)

The AutoZoom Feature

Zoom logic generated by the Code Generator for character fields automatically
includes a useful short-cut for selecting values. The AutoZoom feature is an accel-
erated version of the regular Zoom feature. It allows users to quickly narrow the
selection of records that appear on the standard zoom form.

Zoom Screens 10-63

Fitrix Screen Technical Reference

The AutoZoom takes effect when an asterisk (*) is entered into a character field
that supports Zoom functionality. The Zoom feature is automatically invoked to
display al rows that match the criteria specified in the field. For example, if you
enter "sta*" into afield with AutoZoom, al rows that begin with sta are instantly
displayed on the standard zoom form.

Note

Thefield you are auto-zooming from must have the same column name as the
one you are Zooming into.

In the case where the column that you are Zooming from isn’t the name of the col-
umn in the table you are Zooming to, you must put noaut ozoomin the zoom def-
inition of the .per file. If you want an AutoZoom on afield that has a different
column name than the column being Zoomed into, you must put it inthe "af t er
field <myfiel d>"logic.

aut oZoomis considered after field logic, thus an aut oZoomisinitiated in
I[1h_a field/lld_a_ field (withinaninput statement). The function
aut oZoomis called to start the AutoZoom.

From here the same single task functions are called by the Zoom tailored function.
The only singletask function that isnever called isQcust _zm because thereisno
need to query the user since the user provides filtering criteria at data entry time.
Even if the user enters nothing or the valueis not in the list of valid data, the Auto-
Zoom is still performed and pulls up all valid values.

The aut oZoomfunction builds the SQL statement by putting the user’ sinput into
SQL format and adding anat ches clause. A default SQL statement is always
appended to this SQL statement in case the user enters nothing or invalid data so at
least the SQL statement is executable; a/l valid values are returned if this happens.
Additional filtering criteria can be added by assigning the variablescr at ch to an
SQL statement before calling aut 0Zoomin the input statement. When the aut o-
Zoomfunction has assembled the entire SQL statement and placed it all in

scrat ch, aut oZoomcallsthe zoomlibrary function to perform the rest of the
Zoom, based on the SQL statement held inscr at ch.

10-64 Creating Screen Forms

Source Code

This section of the Fitrix Screen Technical Reference covers the source code cre-
ated by running the Code Generator on .per form specification files. Topics covered
in this section include:

n

n

Basic code design

Variables used by the Code Generator
Dataflow

Screen generated program flow

Ring detail processing

Switchboxes

Varargs

11-1

Fitrix Screen Technical Reference

Source Code Logic Overview

Application source code has both a physical and logical structure. The physical
design describes where and what the source code is. The logical design describes
what it does. The following elements of source code are discussed in this chapter:

Code Design: This section covers the basic design of code generated with the
Code Generator. You learn how Fitrix Screen generated programs utilize libraries
to reuse generic functions.

Code Structure: Examination of the source code for the created application
begins by looking at the physical nature of the source code: whereit isstored and in
what files. This part of the source code is simple and straight forward involving
directory structure and file naming conventions.

Data Flow: More complicated is the logical nature of the code. Thefirst part of
this section looks at how information moves through the application. This discus-
sion first goes through the variables that are used to hold the application's data as
that data moves through the various stages of processing. This section looks at how
those variables are named and how their values change as information comes from
the data entry forms. The main functions in which these data variables are stored
and the trigger points at which you can manipulate the data are identified.

Function Flow: After looking at data flow, the functional program flow is dis-
cussed. This section steps through the various functions that go together to make up
the application. This process analyzes how library and generated functions work
together to create the application the user sees on the screen. In moving through
these functions, you learn what the application is doing where and how the triggers
fit into this process.

Switchbox Function: Thelocal swi t chbox() joinsloca screens together by
transferring calls from the global libraries to other screen forms that are connected
to the main screen. The global code only knows about the main data entry screen
and all of the ring menu commands work directly through it (global code also
knows about the browse screen, which is really a different version of the main
screen). All other screen forms are tied to the main screen in one way or another.
While the global libraries make callsthat affect these secondary screen forms, these
calls are generic requests to read, display and so on that are routed to the appropri-
ate screen form and the data on it through the swi t chbox() .

11-2 Source Code

Fitrix Screen Technical Reference

Vararg Functions: The vararg functions allow you to pass a variable number of
arguments between functions. The last section in this chapter covers the vararg
family of functions and how they are used throughout the generated code.

The Basic Code Design

The unmodified generated application handles information input and output in a
standardized way, offering a consistent user interface. Screen forms devel oped
using the Fitrix Screen Form Painter are used to take input from the user and to
store and view the datain the database. When using generated applications, you can
access aring menu of commands that allows you to add, update, find, delete, or
move through the various documents displayed on data entry screens. Thering
menu commands available on the data entry screen are designed to directly access
the information on the main header/detail type screen forms. Other types of
screens: browse, zoom, extension, and add-on screens created by the Form Painter,
plus any other kind of custom screen you might add, are all tied to the information
displayed on that main screen in one way or another.

The source code that makes up the final application consists of two parts:

Local Code: The most visible part is the code generated from the forms created
with the Form Painter. These forms are stored in your local directory. Thislocal
code is built automatically after defining the application characteristics with the
Form Painter, and it contains all the specific references to the data entry forms,
database tables, and the program.

Thelocal, generated functions themselves are designed as a"white box" so that you
can understand how they work so that you can modify them. However, the pro-
grams are designed so that most (and hopefully all) modifications need not be made
directly in the generated source code. Since this generated source code contains all
types of referencesto the screen forms and data tables you are using, that generated
code must be able to change when your data tables and screen forms are changed.
Since applications evolve over time, we have made generated applications regener-
able so that, as the screen forms and database tables change, the tool can make the
changes to the code for you.

To accommodate your need to make enhancements to local code and to simulta-
neously preserve regenerability, we have built triggers into both the Form Painter
and the Code Generator. Triggers are predefined areasin the code to which you can

The Basic Code Design 11-3

Fitrix Screen Technical Reference

make additions. The Code Generator then merges your custom triggersinto the
code at the appropriate points asit is regenerated. This allows you to create, for
example, after field processing for a specific data entry field on your screen and, if
your screen changes, preserve that processing in the regenerated code. For more
information on triggers refer to the next chapter "Customizing Y our Base Program
With Triggers' on page 12-1.

Since you can make almost any type of modification through the use of triggers,
you don't actually have to modify any source code, either generated or library code,
to modify your applications. However, you will find a more complete understand-
ing of the code design almost invaluable in modifying the application. While you
can add code at triggers without understanding the overall structure of the source
code that drives the application, it isalittle bit like trying to make a meal blind-
folded: it is unnecessarily difficult. A good understanding of the design and flow of
the source code makes writing successful triggers much easier and more immedi-
ately rewarding.

Library Code: The other less visible part of the source code residesin various
libraries that are linked to the local code to create the application the user sees at
runtime. The functionsin the libraries are designed to be used unaltered by the gen-
erated application. Since the focus is on reusing as much code as possible, Fitrix
Screen design moves as much work as possible from the generated filesin the local
directory to the generic functionsin the libraries.

Thelibrary code itself is also divided into two parts:

Screen: The codein the screen library ($f g/ | i b/ scr . 4gs) contains the basic
templates for document maintenance commands (add, update, delete and so on) that
the users access from aring menu. This code controls much of the program flow as
the users access these various commands, calling the local, generated, 1/0 type
commands as needed.

Standard: Thereisalso codein the standard library ($f g/ | i b/ st an-

dar d. 4gs), which contains utility commands that do a variety of tasks, such as
passing variables. These functions are called both by the screen library functions
and the locally generated application specific functions.

When understanding the basic design of Fitrix Screen code, it is unnecessary, for
the most part, to know exactly how the library functions work. It is best to think
about them as "black boxes" that are called upon to produce a certain result. L ater,

11-4 Source Code

Fitrix Screen Technical Reference

this chapter describes the program flow through these black boxes, but only
because you should think of these various functions as resources you can draw
upon in making enhancements or additions to the generated application.

For example, if you want the screen to redraw itself at a certain point, all you need
todoiscal theri ng_refresh() function passing it the current rowid. You
need not know how this redraw is accomplished.

At no time should you consider modifying the library functions themselves to pro-
duce a specific result. The code is designed so that everything a programmer might
normally want to control in the source code can be controlled from the application
specific codein the local library. Except for certain well-defined situations, you
should not need to alter any global functions to get the applications to behave as
you desire. When you need a global function to behave differently within a specific
application, the codeis designed so that you can make a copy of thelibrary function
in your local directory and, if you use the same function name, the local version of
that function islinked in instead of the global one.

Though thisis rarely done with most library functions, thereis a class of library
functions that devel opers are expected to commonly replace with local functions of
the same name. For these types of functions, there are srub functions (functions that
are called and exist at the library level, but which do very little if anything) at the
library level, but they exist just to allow you alevel of control over the way the
library behaves.

For example, the ok functionssuch asok _add() andok_del et e() areusedto
alow or disallow the addition or deletion of documents from the ring menu under
specific conditions. In this case, these functions are called before a document is
added or deleted. Because they exist on the library level always allowing document
additions or deletions, these functions are not generated. If you wish to control this
upper level file maintenance command, you simply add these functions to your
local code, putting whatever tests you desire to take place before the Add or Delete
command.

Code Structure

Apart from the Makefile (see the section "The Makefile" on page 14-12), dl files
created by the Code Generator contain uncompiled INFORMIX-4GL code.

Code Structure 11-5

Fitrix Screen Technical Reference

Data-entry applications must use the following directory structure.

module directory (*.4gm)
$fg
*.49s *49s *.49s lib
4gl/.org *.per Makefile standard.4gs scr.4gs stubs.4gs

Fitrix Screen creates only the code appearing within the .4gs program directories,
although the application utilizes executables and pre-compiled libraries installed
with Fitrix Screen.

Thelibrary source code is covered after the discussion on program directory source
code.

Program Directory Source Code

As mentioned previously, the Code Generator creates source code files within the
modul e directory that contains the .per form specification files. An example of the
type and purpose of source code files created can be found after running the Code
Generator inthescr een3. 4gs demo application directory.

The following .per files provide al of the instructions necessary to create a basic
data entry program for customer orders. The scr een3 application directory con-
tains the following .per files:

* order.per: containsinstructions passed to the Code Generator for the main
header/detail form.

* browse.per: addsadocument browse screen to the application.

11-6 Source Code

Fitrix Screen Technical Reference

* custzm.per, stk_mnu.per, and stockzm.per: add Zoom featuresto
particular fields on the main screen.

Refer to "Creating Screen Forms' on page 10-1 for information on screen forms.

After invoking the Code Generator on the .per files listed above, the following
source code files are created in the scr een3. 4gs program directory:

* Makefile: Thisfileis created to facilitate the compilation of source code. It
determines variables for the real make, stored in $f g/ Make. Thislocal Make-
fileisused to compile source code that has been modified since the last compi-
lation. Source code compilation is discussed in "After Code is Generated.”

* globals.4gl: Thisfiledefinesall globa variables. A changeto thisfile
causes make to compile all .4gl sourcefiles.

e main.4gl: Thiscodeinitializes variables and windows before calling one of
thefollowing library functions. Ther i ngMenu_st art (1) functioniscalled
if the data-entry screenisaflat file, orri ngMenu_st art (2) if thescreenis
header/detail.

* midlevel. 4gl: Thisfile containsall middle-level source code. Cursor con-
trol logic and some data validation occurs at this level.

* header. 4gl: Thissourcefile storeslow-level code used to handle the datain
the header portion of the data-entry form. This code is present in both flat file
and header-detail applications.

e detail.4gl: Thisfilecontainslow-level code for handling detail linesin
header/detail application screens. When no detail section is specified in the .per
form specification file (flat file—header only applications), nodet ai | . 4gl
fileis created by the Code Generator.

* options.4gl: Thissource codeisused to add further functionsto the ring
menu of commands that appear at the top of the data-entry form.

* browse.4gl: Thissource code fileisonly created when the br owse. per
fileis specified prior to code generation. Codein br owse. 4gl controlsthe
opening of the browse window and the display of data within the window.

* cust_zm.4qgl: Thisfileis created as aresult of specifying the
cust _zm per fileprior to code generation. It contains logic used to control
the Zoom window, and the data appearing within the window.

Code Structure 11-7

Fitrix Screen Technical Reference

* stk _mnu.4qgl: Thisfileiscreated as aresult of specifying the
st k_mmu. per file prior to code generation. It contains source code required
for the manufacturer code Zoom function in the orders example.

* stockzm.4gl: Thisfileiscreated asaresult of specifying the
st ockzm per file prior to code generation. It contains logic used to control
the item code Zoom function in the orders example.

Library Source Code

Fitrix Screen differs from other application creating toolsin its use of 4GL librar-
ies. Libraries, as used by Fitrix Screen generated code, consist of functions that are
pre-compiled and grouped together under a directory with other similar functions.
A library function should be created when a generic data-independent task can be
used by more than one program module.

The Code Generator libraries produce two desirable conditions: they allow many
programs to share common code, and they serve as the foundation for any CASE-
generated system. Libraries save time for both initial development and mainte-
nance.

The Code Generator uses the following librarieslocated in $f g/ | i b:

* scr.4gs: Thisdirectory containsthe uncompiled sourcefor library functions
for Fitrix Screen only. The source code in this directory is used by programs
generated with the Code Generator.

e scr.a: Thisisthe pre-compiled collection of screen library functions for
systems that run INFORMIX-4GL and not RDS.

* scr.RDS: Thisisthe pre-compiled collection of screen library functions for
systems that run RDS rather than INFORMIX-4GL

* standard.4gs: Thisdirectory containsthe uncompiled source for library
functions. The source code in this directory is used by Fitrix Screen and Fitrix
Report, and can also be used by other programs.

e standard.a: Thisisthe pre-compiled collection of standard library func-
tions for systems that run INFORMIX-4GL and not RDS.

11-8 Source Code

Fitrix Screen Technical Reference

standard.RDS: Thisisthe pre-compiled collection of standard library
functions for systems that run RDS rather than INFORMIX-4GL .

stubs4gs: Thislibrary contains the source code for systemsthat do not
have the Enhancement Toolkit installed. The stub functions are installed if the
Enhancement Toolkit has not been purchased. The functions are then compiled
intotheuser _ct | directory (discussed next). When the Enhancement Toolkit
is purchased, it replaces the compiled null functionsintheuser _ct | direc-
tory.

stubs.a: Thisisthe pre-compiled collection of user control library functions
for systems that run INFORMIX-4GL and not RDS.

stubs.RDS: Thisisthe pre-compiled collection of user control library func-
tions for systems that run RDS rather than INFORMIX-4GL .

user_ctl.a: Thisdirectory contains the pre-compiled User Control Librar-
iesif they have been purchased. Otherwise, it contains the pre-compiled null
functions. Thisdirectory isfound on systems running INFORMIX-4GL and not
RDS.

user.ctl.RDS: Thisdirectory contains the pre-compiled User Control
Librariesif they have been purchased. Otherwise, it contains the pre-compiled
null functions. This directory isfound on systems running RDS rather than
INFORMIX-4GL.

forms: Thisdirectory storesthe .per forms and compiled .frm files used by
library functions.

tags: Thisfile storesthelist of function call dependencies. Thislistis used
by the hypertext feature made part of Fitrix Screen-generated code upon compi-
lation. Thisfileisread as you move through the source code function-by-func-
tion using the tags feature. For more information refer to "The Tag Utility" on
page A-5.

Code Design Levels

Source code generated with the Code Generator can be categorized into three lev-
els: upper level, midlevel, or low level. The classification of code depends on the
function it performs. This method of organization helps make the code easier to
understand and modify.

Code Structure 11-9

Fitrix Screen Technical Reference

Upper Level Functions: Upper level code includes library functions, menuing
logic, and flow control logic. Upper level code contains no local logic and does not
reference specific databases, tables, or columns. It can be considered generic.
Upper level code callson midlevel code and low level code, leaving the specificsto
these other two classes of source code. The following are some of the upper level
functions.

Function Purpose

ring_options() controls the options ring menu option
ring_add() controls the add ring menu option
ring_update() controls the update ring menu option
ring_del ete() controls the delete ring menu option

Midlevel Functions: Midlevel code interacts with the upper level code to control
the function of command line or ring menu commands. This class of source code
includes functions that make reference to the database (but are not usually modi-
fied), and local code not found in the library functions. Generally speaking,
midlevel functions give program specific information to control database accessfor
the program. Midlevel code isidentified by the first part of the function name:

m h_ for header functions, m d__ for detail functions, and ok _ for functions that
control upper level code.

The ok __ functions allow for control over pre-compiled functions of the data-entry
ring menu options. These functions can be defined withintheni dl evel . 4gl file
in the local source directory for any of the ring menu commands, such as add,
update, and delete. When defined inmi dl evel . 4gl , the function returns avalue
of true or false, which determines whether the ring menu command is executed.

Function Purpose

m d_cl ear () clearsthe program variables

m h_cursor () cursor handling for header screen
ok _add() controls upper level add

ok_del et e() controls upper level delete

ok _updat e() controls upper level update

11-10 Source Code

Fitrix Screen Technical Reference

Low Level Functions: Lowlevel code passes data between screen record and
database. Data validation occursin low level logic aswell. Functionsin this class
act as a pipeline between input to the screen (by way of the screen array(s) specified
on the .per form specification file) and information stored in database tables.

Lowlevel codeisfound in the local source directory, and is commonly modified.
Low level code can be identified by name, since functions containing this code
begin with the characters| | h_ (for header) or I | d__ (for detail).

Function Purpose

I'1'h_input() Input logic for header part of screen.
I'1d_show ine() Displays screen record variables onto screen line.
I1d_p_prep() Creates screen record array.

I1d read() Readsin array elements from disk.

I'1d_add() Inserts data into detail table.

Code Generator Variables

Certain variables are created in the Code Generator libraries and the gl o-
bal s. 4gl source code file by the Code Generator. These variables are relied
upon by a number of functions generated as part of the application.

This section of the documentation providesalist of such variables aswell as abrief
explanation of the purpose they serve.

There are several categories of variables that are used extensively throughout the
Code Generator: global variables used by the program only, global variables used
at the library-level, static variables, and local variables.

Some of the most useful global and static variables are discussed next.

Code Structure 11-11

Fitrix Screen Technical Reference

Global Variables Used by the Program

Global variables can be used anywhere within a program. The following generated
variables are put at the very end of the gl obal s. 4gl filein the Library commu-
nication area. They are used for communication within libraries and between local
code and libraries. These variables must be located at the very end of the globals

section.

Variable
progid
scr_id
scr_funct

sql _filter
sql _order
menu_item
i nput _num
p_cur
s_cur
scr_fld

nxt_fld
prev_data
this data

dat a_changed

hot key
scratch

Type
char (17)
char (7)
char (20

char (512)
char (100)
char (10)
smal | i nt
smal |int
smal |int
char (40)

char (40)
char (80)
char (80)
smal |int
smal |int
char (2047)

Purpose
Stores identification of the current program.
Stores the current screen identification.

Stores name of current screen function being
run.

Stores filter portion of an SQL statement.
Stores order portion of an SQL statement.
Current ring menu option being performed.
Stores current input section within screen.
Stores current input array element.

Stores current screen array element.

Stores name of current screen field
("table.column" format).

Stores name of programmatic next field.
Stores the datain the field prior to entry.
The data currently entered into field.
Indicates whether the field data changed.
Identifies hot key pressed.

Provides "scratch pad” for communication
between functions.

Global Variables Used at the Library-Level

Another category of variablesis library-level variables. These are status variables
that hold data about the program and activity happening at the moment. These vari-
ables answer questions such as:

11-12

Source Code

Fitrix Screen Technical Reference

e What version isrunning?

e Canthe user update user definable fields?

* What isthe current rowid?

e How many element were retrieved in a Find, etc.?

Library-level variables are located in the file $f g/ | i b/ st an-

dar d. 4gs/scr_lib. 4gl . These static variables are local to the screen library
functions, yet they can be accessed from anywhere in the application. The

scr_I i b family of functions, located in the same file, maintains these variables.
Thelibrary function put _scrl i b loadsthese variablesand get _scrli b
returns the values of these variables. All scr _| i b variables are defined as

char (80) . Here arethe library-level variables used with the scrlib functions:

Code Structure 11-13

Fitrix Screen Technical Reference

Variable
dbnane
version
nmodul e

| anguage
scr_type
curs_pos
curs_count
curs rowd
num r ows
num col s
scr_tab
fld_tab
scr_key
aut o_udf

auto_note

aut o_answr
scrn_tier
scrn_trx

Purpose

Stores the name of the current database.

Stores current version of the generated code.

Stores the name of the module.

Stores current language being used.

Stores the current type of screen.

Tracks the current "Find group™ position.

Stores number of elementsin "Find group."”

Stores rowid of the current document.

Stores number of rows in the current window (1-24).
Stores number of columnsin the current window(1-80).
Stores the name of the main screen table.

Stores the name of the current screen field' stable.
Stores the unique key for the screen.

Determines whether user automatically updates user-defined
fields (y/n). Part of user control package.

Determines whether user automatically updates freeform notes
form (Y/N). Part of user control packages.

Automatically answer Y/N to al prompts.
Level of screentier.

Determines whether to commit or rollback when [DEL] is
pressed.

Thefunctionsput _scrlib() andget scrli b() areused to maintain static
variables that are used by the library functions. They are intended for use by the
library functions, but they can be accessed from anywhere in the application to
check on the status of the library functions.

11-14 Source Code

Fitrix Screen Technical Reference

The syntax of theput _scrlib() andget _scrli b() functions:

put _scrlib("variable", " value") —inserts "value" into the library variable
passed as "variable."

get _scrlib("variable") —returns the current value stored in that
"variable."

Example:

call put_scrlib("version","4.1")
l et version_num = get_scrlib()

Inthisexample, acal toput _scrlib("version", "4.1") ismadefrom
withinthemai n() function. Thisidentifiesthe version of the Code Generator that
generated the local code.

It isthe responsibility of each library function to maintain backward compatibility
with older versions of generated code.

Static Variables for Header/Detail Forms

The following static (module) variables are used by header . 4gl and
det ai | . 4gl . These variables maintain their values only within the .4gl file they
are defined in.

header.4glor
detail.4gl

| ookup_prep char(1) Have the lookups been prepared? both

Variable Type Purpose

select _prep char(1) Has the select statement been prepared?both

dup_prep char (1) Has the duplicate check been prepared?header . 44l
defaul t ed char (1) Has the defaulting been done? header . 4gl
exit_level smal | int O=input, 1=field both

tab_pressed snallint (boolean) wasthetab key pressed? both

insert_prep char(1) Has the insert statement been prepared?det ai | . 44l
del _flag char (1) Isthis an insert after a delete? detail . 44l
in_insert smal | int (boolean) trueif we'reininsertrow detai | . 4gl

Code Structure 11-15

Fitrix Screen Technical Reference

Data Flow

The key to understanding a Fitrix Screen generated program is to understand how
information flows from disk to screen and from screen to disk. Thisflow was
designed to simplify modification of generated program.

The Data Variables

To understand how information moves within the data entry applications, you first
have to know alittle about the data variable structure within which the generated
code stores data variables. There are different sets of these variable recordsfor both
the header and detail sections, which areinitially definedingl obal s. 4gl . These
records create a pipeline for moving records back and forth between tables and
screen. These records are manipulated by midlevel and lowlevel code.

These variable records (variables defined to parallel screen and database records)
are called them_ (map), p_ (picture), g_, and s__ (screen) records because of the
naming convention they follow. If the name of the database tableisyyyxxxxzz
and itsfieldsareyyyxxxxzz. fi el d1 andyyyxxxxzz. fi el d2, thenthe
name of them_ record would bem xxxxzz and the name of thep__ record would
bep_xxxxzz. Thelast six characters of the table name are used.

The most important variables are the screen and disk variable records.

p_record: The p_ (picture) record parallels the data elements defined on the
screen. The p__ record only contains those fields displayed on your data entry
screen.

11-16 Source Code

Fitrix Screen Technical Reference

m_ record: Them_(map of datatable) record parallelsthe information in the data
tables. Them_ record contains all of the same columns as the database table. The
m_ record is sometimes referred to as the disk record.

Note

INFORMIX-4GL has atable naming convention that requires the first eight
characters to be unique. The Code Generator requires that the last six characters
of those first eight characters also be unique.

Any input data from the screen isfirst validated and stored in a corresponding p_
record. From the p__ records the data is formatted to fit the tables by moving the
datainto m_records. Them_ records look like the tables.

These p_ and m_ records contain data from either screen to database or from data-
base to screen and are found in only two .4gl files, header . 4gl or
detail . 4gl .

Them prep() function transfersthe datafrom the p_ records into records that
look like the tables. These records are named withm_ and the last six characters of
the table. Since the rows of the detail line table are transferred one-by-one, thereis
only onem_ record for detail linesinstead of an array.

Similarly, thep_prep() function transfers datain the opposite direction, filling
the screen-like p__ records with the contents of thetable-likem_ records whenever
datais read from storage and displayed on the screen.

For detail rows, them_ record isasingle record, mapped to the row in the data-
base, but the p__ record is an array with as many elements as you have defined to
allow in the rows of your documents. Thisisusually ahundred or more. It isn't [im-
ited to the number of lines on the screen itself.

q_ record: The q_ record contains all columns for the table not displayed on the
screen. The g__ record follows the same naming convention (q_XXxxXzz).

A specidl fileexistsin $f g/ codegen/ opt i ons/ scr een. opt that allows
you to control how the q__ record gets generated in the header.

If thenon_scr _qg_el ens variableis set to "exclude,”" then you must add the q_
records you want with triggers.

Data Flow 11-17

Fitrix Screen Technical Reference

If thenon_scr _qg_el ens variableis set to "include," then q_ records automati-
cally get created for all columns not defined on the screen.

For more information onthenon_scr _q_el ens variable see "The Code Gener-
ator Options File (screen.opt)" on page 2-21.

The q_ record for the detail rowsisalso an array containing all the rows you have
defined as part of the detail section of the document.

Other data variables: A number of variables are used to track the detail rowson
the screen. For displaying the detail section of the screen, the system also keepsthe
variablescr 1_max, which tells the program how many lines are displayed in the
detail section of the screen. Thisvariable is used, for example, in function

1 d_display(),todisplay al thelines of detail to the screen. The variable
recl_max isused to keep the total number of recordsin the detail section stored
on the disk, so that when aread is done, it checks this variable to make sure that
thereisarecord there. The variabler ec1_cnt isused to keep track of the last of
those disk records stored in the display array. The variablep_cur , isthe array
number of the "current” detail line.

s_ record: Thereisanother set of screen variable arrays that are not defined any-
where in the program but in the .per file itself. This screen record is named for the
screen itself. If the screen’'s name was "screen,” the name of the screen record for
the header would be s_scr een and the name for the screen record for the detail
section would bes_dscr een. The only time these variables are mentioned in the
program is when information is being displayed or input from the screen. Theses_
records always interact directly with the p_ records.

MEMORY TRICK: If you find yourself getting confused about the meaning of
them p_ q_ands_ records, try this;

m_ means "Map of datatable."
p_ means"Picture" - asin what is on the screen.
g_ means "data not seen on screen.” Thisis the complement of p_.

S_ means "Screen."”

11-18 Source Code

Fitrix Screen Technical Reference

Data Flow Through Variables

Most of the flow between these various variables that carry the data takes place in

very few places. It works like this:

From Disk to Screen

From di sk to m_variabl es
From m_variables to p_ variables

From p_ variables to s_ variables
From Data Entry to Disk

Froms_ variables to p_ variables

From p_ variables to m_ variables
Fromm_ variables to Disk

To create a new row
To update a row

To delete a row

Low Level
Header

I'l'h_read()

I'1'h_p_prep()
I'l h_di spl ay()

I''h_i nput ()
I'1'h_m prep()

I h_add() (new)
Il h_update ()
Il h_del ete()

Detail Functions

I'1d_read()

I'1d_p_prep()
I'1 d_di spl ay()

I'1d_i nput ()
I1d_mprep()

Il d_add()
(none: del eted & added)
I'1d_del ete()

Data Flow 11-19

Fitrix Screen Technical Reference

The flow of datainput and display and associated lowlevel functions may be repre-
sented by the diagram below:

screen
/ arrays
Ilh_display . input Ilh_input
Ild_display | disPlay vaidate |Ild_input
_inp
p_
::2 _p_prep p_{]

P_prep Ilh_m_prep
Ilh_lookup | p_prep m_prep —
I1d_lookup lld_m_prep
Ild_math

m
_ IIh_add
i reed defele |Ild_add
I

— read add Ilh_update
Ild_read ‘\ update |IIh_delete

tble Ild_delete

data

In the following section concerning the program flow, you see how these various
functionsfit into the entire flow of the program, but here they are aways "low-
level" functions: called by other functions simply to move data. Thisis done at var-
ioustimesin different ways depending upon what the user and the programmer are
trying to accomplish. Using the standard Add, Find, Update, Delete and other com-
mands, the flow follows the basic to disk and from disk patterns. The Add com-
mand documents flow is from screen to disk. The Find, Tab, Next, Prev, Browse
and Tab (view detail lines) commands all have information flow from disk to
screen. The Update command uses both from disk to screen and from screen to
disk. You haveto first Find adocument before you update it. The Delete command
isaspecia case sinceit removes information, but information here basically flows
from the user (if not the data entry screen) to the disk.

11-20 Source Code

Fitrix Screen Technical Reference

The point of having all these different variablesis so that, at any time in the appli-
cation, you can use both disk data and screen data independent of each other and so
that you can work in between the various data transformation processes. Triggers
allow you to deal with the data flow without changing the generated programs.
They give you specific points in the program where you can manipulate data flow
between variables.

Triggers in Data Flow

To change the information that comesin off of the screen to affect its display, you
have pass through these triggers. There are actually two sets of each of these trig-
gers: one for the "header" information and one for the "detail" information, but
since they al basically work the same, except that detail information hasto be put
into alarger array, each oneislisted only once:

From Disk to Screen Triggers

Header section:

Trigger In Function Happens After Happens Before

on_di sk_read I'1'h_read() from"s" to "nt I'1'h_p_prep()
novenent

on_screen_record_Il1h_mprep() from"m' to "p" Il h_di splay()

prep novenent

Detail section:

Trigger In Function Happens After Happens Before

on_di sk_read I'1d_read() from"s" to "nt I'1d_p_prep()
novenent

on_screen_record_I1d_mprep() from"m' to "p" I'1d_display()

prep novenent

Theflow hereis more complicated, largely because during user input, you havelots
of different points at which things can be controlled. In many ways thisis the most
complicated part of the program, but this discussion should help to simplify it. The
asterisk indicates flows where the before or after situation is sure to happen, but in

Data Flow 11-21

Fitrix Screen Technical Reference

which the situation may not have happened immediately before or after. For exam-
ple,af t er _fi el d will always eventualy befollowed by af t er _i nput , but
anafter_change_i n oranother bef ore_fi el d, may intervene.

From Screen to Disk Triggers

Header Section:

Trigger In Function Happens After Happens
Before

on_event I'l'h_event () user presses key anyt hi ng

bef or e_i nput I'1'h_i nput () 11 d_default() from"s" to "nt

before_field I'1h_b_field() bef ore_i nput * after_field

after_field I'1h_a_field() before_field after_i nput *

after_change_in I'1h_a_field() after_field after_i nput *

after _i nput I'l'h_i nput () after_field * I'l'h_mprep

on_di sk_record_prep I'1'h_m prep() on_di sk_add

after_i nput ()

I'l h_add I'1'h_m prep() on_di sk_updat e I'l h_updat e()

I'1'h_m prep on_di sk_del ete() 11 h_del ete() del ete verifica-
tion

11-22 Source Code

Fitrix Screen Technical Reference

Detail section:

Trigger

on_event

bef ore_i nput

bef ore_r ow

bef ore_i nsert
bef ore_del ete
before_field
after_field
after_change_in
after_row
after_insert
after_del ete

af ter _i nput
on_di sk_record_prep
on_di sk_add
on_di sk_updat e

on_di sk_del ete

In Function

I'1d_event ()
I'1d_i nput ()
I'1d_b_row()
I'1d_b_insert()
I'1d_b_del ete()
I'1d_b_field()
I'ld_a_field()
I'ld_a_field()
I1d_a_row()
I1d_a_insert()
I'1d_a_del ete()
I'1d_i nput ()
I'1d_mprep()
I'1d_add()

I'1 d_updat e()
I'1d_del ete()

Happens After

user presses key
11 d_defaul t()
bef ore_i nput *
before_i nput *
bef ore_r ow
before_row *
before_field
after_field
after_field *
after_change_in
bef ore_del ete
after_field *
af ter_i nput
I'1d_m prep()
I'1d_m prep()

user delete verifi-
cation

Happens
Before

anyt hi ng
from"s" to "nt
before_field
before_field
after_del ete
after_field

after_row *

after_input *
af ter _i nput
af ter _i nput

I'1d_m prep()

These triggers are involved every place at which you can test for conditions and
ater field values. When you use these regenerable triggers, you do not need to
replace entire sections of the code or usethedo_not _gener at e trigger to pre-

serve those changes during regeneration.

Program Flow

As adeveloper or programmer, it isimportant to understand the flow control of
source code. This section focuses on the flow of logic in code generated by the
Code Generator. The diagrams found in this section are designed to provide addi-
tional perspective on how the logic proceeds within an application.

Program Flow

11-23

Fitrix Screen Technical Reference

Note

A couple of utilities are provided which help you locate source code. These util-
itiesare especially useful when learning Fitrix Screen programs. The tags feature
allows you to quickly access and display functions simply by typing their name.
Another utility allows you to print the comments for specified functions. For
more information on these useful utilities see "The Tag Utility" on page A-5

The Code Generator offers avast improvement in efficiency over manual coding of
data-entry applications. It also provides the groundwork for consistency across ver-
tical applications that might (in the absence of the Code Generator) otherwise not
be found. This consistency in data-entry applicationsis clearly identified through
the use of generic upper level (ring menu) functions. The prior section on "Code
Design Levels' mentioned the fact that these upper level ring menu functions pro-
vide a control loop, which in turn controls access to midlevel and low level func-
tions.

11-24 Source Code

Fitrix Screen Technical Reference

The following diagram illustrates the basic flow of an input program.

Genera Input Program Flow

LOCAL
(Tool Generated)

ring_update

DD

LIBRARY Y
ri ngMenu_start (2)
FIND A UPDATE DELETE . ..

ring_delete

Il h_update

/

eh
i

v

LOCAL

(Tool Generated) trigger:

i

I1'h_delete

The following diagram depicts theinitial flow upon invocation. The local

mai n. 4gl file passes control tother i ngMenu_st ar t (2) function. The

ri ngMenu_start (2) function performsinitialization tasks and enters an action
menu loop. The loop contains logic for the ring commands shown at the bottom of

the diagram.

Program Flow

11-25

Fitrix Screen Technical Reference

Upper Level Flow:

MAIN

housekeeping
logic

\i

ring_detail

initialization

“Menu” Loop

Add || Updt || Del || Find ||Brws || Next || Prev || Tab || Optn || Quit

The Main Program and the init ()
Function

The main program starts on the local level with the file mai n. 4gl . Thisislocal,
generated code. In general, mai n() first opensthe database and the form, and
then calls the upper level ring menu functions.

More specificaly, mai n() clearsthe screen, callsthe Informix function startlog to
start an error log, then stores variables telling the system what version of the pro-
gram is running and what database the user is accessing using the function

put _scrlib().Itthen opensawindow and callsthei ni t () function. After
calinginit (), mai n() opensthe main screen form and callsthe

ri ngMenu_start (2) function. At this point, the main program flow is trans-
ferredtother i ngMenu_st art (2) function in the screen library.

11-26 Source Code

Fitrix Screen Technical Reference

The switchbox () Function

Object oriented programs are written to execute objects, not functions. Objects are
tangible things such as a screen, amenu, or adialog box. When programming with
objects, you cannot always know the specific name for the function that the object
represents. Theswi t chbox () determines whereto go when you want to execute
afunction for an object such asaread. More specifically, theswi t chbox() joins
local screens together by transferring calls from the global libraries to the other
screen formsthat are connected to the main screen. Since the ring menu global code
works directly through the main data-entry screen, all local screens must betied to
the main screen. Theswi t chbox () routes generic library requests to the appro-
priate local or secondary screen forms.

There aretwo levels of switching: screen(object) level and function level. These are
discussed next.

Screen Level Switchbox

The screen level swi t chbox() residesinmai n. 4gl inafunction caled

swi t chbox () and acceptsrequestsfrom dataindependent library functions. This
function’s main responsibility isto direct program flow to the appropriate screen.
Swi t chbox() directs control to the appropriate screen handling function based
onthevaueof scr _i d. If the current screen being worked on is the header/detail
screen (the main data entry screen), scr _i d is set to default, and the library func-
tionli b_screen() iscaled. Thel i b_scr een function includes a case state-
ment for matching the value of the scr _i d variable and calling subsequent
functions based on the particular match. Since Zooms have screens, acall to a
Zoom passes through the function swi t chbox () . Theswi t chbox () function
directs control down to the zoom handling functions based on the zoom’sscr _i d.
Theglobal variablescr _i d isexamined to see what screen is to be handled.

The switchbox () Function 11-27

Fitrix Screen Technical Reference

Following is an example of the function swi t chbox() .

function sw tchbox(funct)

This is the switchbox function for version 4.11. UB1 screens.
1t is used to pass flow control to the appropriate screen functions.

#
#_define_var - define local variables
define
#_local _var - local variables

funct char(20) # Function to pass on to the screen

#_post _scr_funct - Post the current function
let scr_funct = funct

#_switchbox - Pass flow control to appropriate screen
case

when scr_id = "cust_zm' call cust_zm()

when scr_id = "stockznt' call stockzmn()

when scr_id = "default" call lib_screen()

#_otherwi se - otherw se cl ause

otherw se let scratch = "no screen”
end case

#_scr_funct - Reset scr_funct upon return
let scr_funct = ""

end function
swi t chbox()

11-28 Source Code

Fitrix Screen Technical Reference

Diagram of theswi t chbox() function:

alibrary
request occurs

FLOW | NTO

1lib_scr
teston scr_funct

l scr_funct

switchbox *

teston scr_id

FLOW QUT OF

stock_zm

LIBRARY

7

cust_zm
teston scr_funct

build key
mlh_key
showdata
Ilh_display
set this_data lld_showline
llh_setdata |
lid_setdata cl Zoéﬁst m
highlight disolay arr
construct =
Qcust_zm
init read
Acust_zm Rcust_zm

* switchbox isin local code (main.4gl)

LOCAL CODE \

The switchbox () Function 11-29

Fitrix Screen Technical Reference

Function Level Switchbox

Once the program flow has been directed to the appropriate screen, the second level
of swi t chbox() isrun. Thissecond level isthe function level swi t chbox() .
Itsmain job isto direct program flow to aparticular local code function. It doesthis
based on the value of the global variablescr _f unct , which is set above by the
library function that called the function swi t chbox () . If the current screen
being worked on is the header/detail screen (i.e., thescr _i d is"default") the
library function| i b_scr een actsasthe function level swi t chbox() and
passes control asfollows:

function lib_screen()

This function is the hardcoded sw tchbox for the default header or
header/detail screen.
#
define

i nput _type integer,

ring_row d integer,

ring_cursor integer,

ring_total integer

Trap fatal errors
whenever error call error_handler

#_get _cursor_info - Get information about the cursor if needed

if scr_funct = "add" or scr_funct = "update" or
scr_funct = "delete" or scr_funct = "construct" or
scr_funct = "browse" or scr_funct = "view'

t hen

let ring_rowid = get_scrlib("curs_row d")
let ring_cursor = get_scrlib("curs_pos")

let ring_total = get_scrlib("curs_count")
end if
case
New functionality
when scr_funct = "add"
#_get_scr_type - Determine if this is header or header/detail
if get_scrlib("scr_type") = "header/detail"

then let input_type = 2
el se let input_type 1

end if

call ring_add(input_type, ring_row d, ring_cursor, ring_total)
returning ring_rowid, ring_cursor, ring_total

call ring_border(ring_rowid, ring_cursor, ring_total)

when scr_funct = "update"
let ring_rowid = ring_refresh(ring_row d)

11-30 Source Code

Fitrix Screen Technical Reference

#_get_scr_type - Determine if this is header or header/detail
if get_scrlib("scr_type") = "header/detail"
then let input_type = 2
else let input_type =1
end if
call ring_update(input_type, ring_row d)
call ring_border(ring_rowid, ring_cursor, ring_total)
when scr_funct = "del ete"
let ring_rowid = ring_del ete(ring_row d)
if ring_rowid = -1 and ring_total >0
then
let ring_rowid = 0
call put_scrlib("curs_rowd", 0)

end if
call ring_border(ring_rowid, ring_cursor, ring_total)
when scr_funct = "construct”

call ring_find(ring_rowd, ring_cursor, ring_total)
returning ring_rowi d, ring_cursor, ring_total
call ring_border(ring_rowid, ring_cursor, ring_total)
when scr_funct = "browse"
call ring_browse(ring_rowd,ring_cursor,ring_total)
returning ring_rowi d, ring_cursor, ring_total
call ring_border(ring_rowd, ring_cursor, ring_total)
when scr_funct = "view'
call |ib_nessage("scroll")
call md_scroll ()
let int_flag =0
call ring_border(ring_rowid, ring_cursor, ring_total)

when scr_funct = "set sticky"
if input_num= 2
then call Ild_zoomfilter()
else call Ilh_zoomfilter()
end if
when scr_funct = "set this_data"
if input_num= 2
then call Ild_setdata()
else call |lh_setdata()
end if
when scr_funct = "touch”

ldentify the screen type
call put_vararg("type")
call put_vararg("old header/detail")
ldentify the cursor table, hard filter, and default order
call put_vararg("cursor")
call mh_cursor()
when scr_funct = "highlight"
if input_num= 2

then call [1d_high()
else call Ilh_high()
end if
when scr_funct = "pwite"

if input_num= 2
then call PWdetail ()

The switchbox () Function 11-31

Fitrix Screen Technical Reference

el se call PWheader ()
end if
when scr_funct = "pread"
if input_num= 2
then call PR detail ()
el se call PR _header ()

end if

when scr_funct = "after_query"
call mh_aquery()

when scr_funct = "nath"
call Ilh_math()

when scr_funct = "clear"

call mh_clear()
call md_clear()

when scr_funct = "showdat a"
if input_num= 2
then call Il1d_show ine()
el se call 11h_display()
end if
when scr_funct = "showarray"
call 11d_display()
when scr_funct = "build key"
call mh_key()
end case

end function
lib_screen()

Note that control is directed to the appropriate function in local code based on the
value of thevariablescr _funct (for example, if scr _funct issettoset

t hi s_dat a thenthelocal code functions! | h_set dat a() or
I1d_setdata() arecalled). Theglobal variablei nput _numindicates whether
the header portion of the screen is being worked on or the detail portion of the
screen is being worked on.

Likel i b_screen() , each non-default screen such as zoom screens, hasits own
tailored function that acts asafunction level swi t chbox () . Thistailored func-
tion has the same name as the .per file. One such tailored function may look like

this:

function cust_zm()

This is a screen function sw tching nechani sm
1t's job is to route requests fromthe screen manager
to the appropriate |local function.
#
#_define_var - define local variables
define

no_function smallint # true if scr_funct not in case statenent

11-32 Source Code

Fitrix Screen Technical Reference

#_err - Trap fatal errors
whenever error call error_handl er

flow_.init - initialize flags
let no_function = fal se

#_swi tchbox - Screen sw tchbox function

case

#_case - case statenent
#_init - init function
when scr_funct = "init" call Acust_zm()
read - disk read function
when scr_funct = "read" call Rcust_zm()
#_key - build unique key function
when scr_funct = "build key" call Kcust_zm)
#_close - close function
when scr_funct = "close" call Zcust_zm)
#_dsp_arr - display array function
when scr_funct = "display array" call Dcust_zm)
#_construct - construct function
when scr_funct = "construct"” call Qust_zm)
#_after_query - 'after construct’ function
when scr_funct = "after_query" call AQust_zm()

#_get _filter - Get the persistent filter
when scr_funct = "get sticky" call GFcust_zm()
#_set _filter - Set the persistent filter
when scr_funct = "set sticky" call SFcust_zm)
#_ot herwi se - ot herwi se cl ause
otherwi se l et no_function = true

end case

#_flow close - check no_function status
case
_no_function - no function found
when no_function

let scratch = "no function”
#_reset - function was found, reset scratch
when scratch = "no function"

let scratch = null
#_flow cl ose_ot herwi se - otherwi se cl ause
end case

end function
cust_zm()

Notice that just likel i b_screen(), control isdirected to the appropriate func-
tioninloca code based on the value of the variablescr _f unct (for example, if
scr_funct issetto"read" then thelocal codefunction Rcust _zn() iscalled).

The switchbox () Function 11-33

Fitrix Screen Technical Reference

The chief difference between | i b_screen() andthesetailored functionsis that
i b_screen() isalibrary function and the tailored functions are generated in
local code.

In summary, the switchboxes act as a conduit between libraries and functionsin the
lowlevel code. Datais passed back and forth between libraries and mid and low-
level functions. The function swi t chbox () actsvery much like ageneric library
function, but because specific scr _i d’sand their respective functions must be
hardcoded into it, it is generated in local code as part of mai n. 4gl .

The Vararg Family of
Functions

Sometimes a variable number of arguments have to be passed to the same function.
Since functions normally can be passed only a predefined number of arguments, a
set of functions have been created that allow you to deal with situations where you
don’t know the exact number of data elements being passed between functions.
Thisfamily is called the vararg family of functions.

The vararg family of functionsincludes the following:

put _vararg()
get _vararg()
num varar g()
max_vararg()
getx_vararg()
peekx_vararg()

Thevararg functions are needed in avariety of situations. A good example of thisis
arequest for swi t chbox() tobuild akey. A library function requestsswi t ch-
box() torecord the key(s) of the current table (by passing swi t chbox() the
scr_funct "build key"). Thelibrary function is data independent and knows
nothing about a table and what its key(s) is. In many instances, atable uniquely
defines arow by more than one column, thus concatenated keys are used. If a
key(s) isto be passed to a function as an argument, the capability of passing a vari-
able number of arguments must be allowed. For instance, you can call afunction
and pass one key, two keys, three keys, etc. The vararg family of library functions
takes care of thisfor you.

put_vararg(argument)

11-34 Source Code

Fitrix Screen Technical Reference

Thisfunctioninitiatesthe use of var ar g and must be used immediately before
any of the other functions. Its purposeisto temporarily store a string of charac-
tersasasingle argument. Thisfunction is normally called several timesin a
row, each time passing a new argument. These arguments are stored in an array
from which they can be again retrieved by theget _var ar g() function.
Onceaget var arg() or similar function is called, no new arguments can
be added. The next calling of put _var ar g() startsanew variablelist and
erases the old.

Here are some examplesof callstoput _var ar g() , what the variablelist and
the array values would look like, and the number of arguments passed (key
names and their values are being passed):

calls: cal | put_vararg("custoner_nuni)
cal |l put_vararg(p_orders. custoner_num

variable list: list = "custonmer_nuni, 104
nunber of argunents: 2
calls: call put_vararg("stock_nunt)
call put_vararg(p_itens.stock_num
cal |l put_vararg("mnu_code")
call put_vararg(p_itens. manu_code)
variable list: list = "stock_nunl, 6, "manu_code", SMI
nunber of argunments: 4
calls: call put_vararg("order_nuni)
call put_vararg(p_itens.order_num
call put_vararg("stock_nunt')
call put_vararg(p_itens.stock_num
call put_vararg("manu_code")

call put_vararg(p_itens. manu_code)

variable list: list = "order_nunf', 1005, "stock_nuni, 1, "nmanu_code",
HRO

nunber of arguments: 6

Noticethat thereisasinglecall toput _var ar g() (passing asingle argument
each time) for every argument strung together inarg_| i st.Thearg | i st
variableisthe variable list that gets passed around to the vararg functions.

get_vararg()

The Vararg Family of Functions 11-35

Fitrix Screen Technical Reference

Thisfunction retrieves the arguments from thear g _| i st inthe order that
they were stored. Each time it is called, the next variable in the string is
returned. When get _var ar g() ortherelated get x_var ar g() iscaled,
thenext call of put _vararg() startsanew variablelist.

Hereisan example of theget _var ar g() and how it retrieves values from
thevariablelist:

variable list: [list = "customer_nuni', 104
calls: let string = get_vararg()
| et nunber = get_vararg()
val ues: string = "custoner_nunt
nunber = 104

num_vararg ()

This function returns a count of the total number of argumentsin the
arg |list.

max_vararg ()
This function returns the length of the longest string being heldinarg_I i st.
Example:

| et biggest_string = max_vararg()

11-36 Source Code

Fitrix Screen Technical Reference

getx_vararg (argument number)

Thisfunctionisjust likeget _var ar g() except that it returns a specific argu-
ment fromar g_| i st, not just the next onein sequence. get x_var ar g()
receives as its argument the number of theargumentinarg_I i st () . Exam-

ple:

If there were the following callsto put _var ar g:

call
cal |
call
cal |
call
cal |

put _vararg("order_nun')
put _vararg(p_itens.order_num
put _vararg("stock_nun')
put _vararg(p_itens. stock_num
put _varar g(" manu_code")
put _vararg(p_itens. nanu_code)

Likeget _vararg(),getx_vararg() pullsout both the values of vari-
ables along with the variable names.

l et order_num = getx_vararg(2) # returns the value "1005"

| et stock_num
| et manu_code

getx_vararg(4) # returns the value "1"
get x_var ar g(6) # returns the value "HRO'

peekx_vararg(argument number)

Thisfunctionisjust likeget x_var ar g() except that it does not remove the
variablesin the array. peekx_var ar g() allowsyou to return an exact value
stored by put _var ar g() , without removing the string fromthearg | i st.

Note

Sinceput _vararg() andget _vararg() re-initiaize each other, be care-
ful not to use retrieving functions until you are finished storing arguments.

The Vararg Family of Functions 11-37

Fitrix Screen Technical Reference

There are some limitationsto the use of put _vararg() andget vararg():
* Anargument cannot exceed 512 charactersin length.
e You can use no more than 100 arguments.

e Thetota string size of al arguments cannot exceed 2048 characters.

Examples of put vararg() and
get vararg()

The vararg family works nicely within a"while" loop. Often the key of atableis
needed in Screen source code. A library function called|l i b_get key() performs
this task. However library functions are data independent and know nothing about
the database. In many instances, a table uniquely defines arow by more than one
column, thus concatenated keys are used. The function| i b_get key() usesthe
vararg family to handle getting one key, two keys, three keys, etc.

lib_getkey() firstcalsswi t chbox() passingitthescr funct "build
key." Control tricklesdowntonm h_key(),whichislocal code and calls

put _vararg() toloadarg | i st withthekeys, however many there are.
When control passesback up, | i b_get key () usesawhile loop to evaluate what
isinscrat ch. Thistimeitusesget vararg() andnum var ar g(), which
returns the number of argumentsinar g _| i st. Herearethelinesof codein
lib_getkey() that accomplish this:

1t's main purpose is to set the scr_tab and scr_key vari abl es.

#
define
tabnane char (18), # main table for this screen
tabkey char (30), # the key to the table
¢ char(1), # tenporary char variable
n smal lint # generic nunber

Trap fatal errors
whenever error call error_handl er

if (menu_item= "find" and scr_funct != "zoon{) or

nmenu_item = "browse"
t hen

11-38 Source Code

Fitrix Screen Technical Reference

call mh_key()

el se
call sw tchbox("build key")
end if
if scratch = "no function" then return end if

l et tabname = get_vararg()
let tabkey = ""
let n = numvararg() - 1
whenever error continue
while n >0
let ¢ = get_vararg() # don’t need the col um nane
let status = 0
l et tabkey = tabkey clipped, get_vararg()
check for too long of a key
if status = -4401

t hen
call lib_error("standard","lib_key",1,"")
let tabkey = ""
exit while
end if
let n=n- 2
end while

whenever error call error_handl er
call put_scrlib("scr_tab",tabnane)
call put_scrlib("scr_key", tabkey)
end function
1ib_getkey()

The Vararg Family of Functions 11-39

Fitrix Screen Technical Reference

11-40 Source Code

12

Customizing Your
Base Program With
Triggers

This section explains how to customize your applications while maintaining regen-
erability. All modifications to the base code are stored in separate files. Y our cus-
tom code automatically merges into the base code at specific points called triggers.

n How to modify your application with triggers
n Explanation of the triggers

n Custom .4gl/.org files

12-1

Fitrix Screen Technical Reference

Using Triggers to Modify
Your Application

There are two major concepts that you need to understand to fully utilize Fitrix
Screen: triggers and blocks. The basic concept going on here isthat all of your cus-
tom modifications are placed in separate files from the base code generated by the
Code Generator. Then when you compile your program, your modifications auto-
matically get placed into the base code.

By keeping your modifications separate from the base code, your programs can be
completely regenerable, meaning that with each new upgrade of Fitrix Screen, al
you need to do isto regenerate your application to take advantage of the newest fea-
tures built in to Fitrix Screen. Also, triggers actually simplify the modification pro-
cess because you don't even have to know where to place your modification in the
source code.

Triggers: Triggers are specific locations, "trigger points," in the generated code
where your modifications get inserted. Specifying the name of atrigger before a
piece of custom code places your code into the generated code at the point where
the trigger occurs.

Blocks: Blocks on the other hand are a bit more complicated. Block commands
allow you to replace any piece of generated code or insert any code anywherein
any 4gl file. Blocks are the subject of the next chapter.

Featurizer: The Featurizer is the program that merges triggers and blocks into the
source code. The Featurizer is discussed in the next chapter along with blocks.

Trigger File (.trg): Likethe .per file, the trigger file also serves as a source of
input to the Code Generator. Each trigger file contains modifications to a particular
screen. Onetrigger file may exist for every .per file. Whilethe .per file instructs the
Code Generator what kind of code to generate, the .trg file contains additional code
that you want to add to the base code.

Some of the main benefits of atrigger file:

» Simplifies the structure of Fitrix Screen code, making it easier to use and mod-
ify—instead of looking throughout source code to find modifications, specific
modifications are kept in asingle file.

12-2 Customizing Your Base Program With Triggers

Fitrix Screen Technical Reference

 Optimizes placement of modifications—instead of having to learn the structure
well enough to ideally place your modifications, triggers are automatically
inserted into the 4GL code by the Featurizer.

* Reduces development time in creating complex input screens—a trigger file
contains quick and easy rules for fast modification.

 Separates your modifications from the code generated by the Fitrix Screen—
you can keep a custom trigger file with your own modifications so you can dis-
tinguish your code from the Code Generator’s.

« Allows regenerability—maodifications can al be kept in a single file and code
can be repeatedly generated based on the specifications in thisfile.

* Provides backwards compatibility—maodifications made through triggers are
assured proper placement in the .4gl code with future releases of the Code
Generator.

Trigger files only work with source code. Modifications specified in atrigger file
are placed in the appropriate place in the code by the Featurizer. Modifications
specified in the trigger file are not guaranteed to compile. The Featurizer does not
check the syntax of your custom modifications specified in atrigger file. Thisisthe
job of the compiler.

Thus when encountering errors during compiling, you should look first to resolve
the errorsin the trigger file and not in the source code itself.

Although much of the work required in customizing code can be done through a
trigger file, there are circumstances when you need to make modifications outside
of known trigger points. Y ou can use avariety of specia "block commands' to
selectively modify virtually any piece of codein any .4gl file. For moreinformation
on block commands, refer to "Using Block Commands to Manipulate Code" on
page 13-17.

The following items could be put into atrigger file to get added to the generated
code:

» Global or static variables.

» Any libraries that are used with a particular program, especially custom librar-
ies.

Before initialization or after initialization logic.
Additional /O logic.
Before field or after field logic.

Using Triggers to Modify Your Application 12-3

Fitrix Screen Technical Reference

 Beforeinput or after input logic.
» Event handling logic.
 Custom functions can replace Fitrix Screen generated functions.

The Trigger File

A trigger file contains all of the triggers that modify one particular screen. Trigger
files have the same name as the screen that they are modifying with a .trg extension
instead of .per. For example, if the name of the .per isor der . per , then the name
of the trigger file modifying itisor der . t r g. Trigger files can accompany any
.per file, including zoom and browse .per files.

A trigger file can contain up to three separate sections depending on the type of
screen being modified: defaults, input 1 and input 2. These sections determine what
4gl source code files are effected by a particular trigger. For example, a

st ati c_def i ne trigger can be placed in any one of the three sections with the
following effects:

defaults: inserts code into the main.4gl file
input 1: inserts code into the header.4gl file
input 2: inserts code into the detail 4gl file

In each section of the trigger file, you list the name of the trigger and the custom
code you want to insert into the source code. The following is the format for atrig-
ger:

trigger_nane
cust om code
nore custom code

Each trigger must be separated by a semicolon (;).

12-4 Customizing Your Base Program With Triggers

Fitrix Screen Technical Reference

Note

If you need to use a semicolon as aformatting type characteristic in atrigger or a
block command, you must put a backslash beforeit (\ ;). The backslash is
removed during processing.

Comments ("#") placed before atrigger and its associated text causes that trigger
and text to be ignored.

Do not place comments after the ending semicolon.
The following describes the parts of atrigger file.
defaults:

Thedef aul t s section manages custom entriesin the mai n. 4gl and gl o-
bal s. 4gl files. Also, custom characteristics about the program are handled
in this section (what libraries to use, what functions not to generate). Extraini-
tialization and disk access logic can also be specified inthedef aul t s sec-
tion.

input 1:

Thei nput 1 section handles modificationsin header . 4gl . This section
contains before/after field logic, before/after input logic, and event handling
logic for the header portion of the screen.

This section is also used to place variablesin q_ parallel header records. Static
variable definitions can also be created in header . 4gl .

input 2:

Thei nput 2 section places modificationsin det ai | . 4gl . Thissection
contains the same types of logic asani nput 1 section, except the detail por-
tion of the screen arrays are often involved. Thus custom before/after row,
before/after insert, and before/after delete logic is specified in thei nput 2
section.

Thei nput 2 section aso alowsyou to place variablesin q_ parallel detail
records. Static variable definitions can also be created indet ai | . 4gl .

The Trigger File 12-5

Fitrix Screen Technical Reference

The section of the trigger file you place your triggers into determines which .4gl
file the code is merged into. The type of .per form also determines which section of
the trigger file to place your triggersinto.

Thei nput 1 sectionisused to place codeintotheheader . 4gl file of aheader
or header/detail form.

Thei nput 2 sectionisonly used to place code into thedet ai | . 4gl fileof a
header/detail type form.

Thedef aul t s section isused with all screen types with avariety of effects.
Triggersplacedini nput 2 on anything besides a header/detail form are ignored.

Thefollowing table shows what .4gl files are effected by placing triggersin certain
areas of thetrigger file for aparticular form type.

. 449l File
Form Type .trg Section Affected
header defaults main.4gl or
header/detail globals.4qgl
header input 1 header.4qg|
header/detail
header/detail input 2 detail .4gl
add-on defaults scr_id.4gl
zoom inputl
extension
browse defaults browse.4gl

The following sample trigger (.trg) file gives you an idea of what these look like:

12-6 Customizing Your Base Program With Triggers

Fitrix Screen Technical Reference

defaul ts
define
mgcntrc record |ike stgentrc.*, # record holding G control info
mxcntrc record |like stxcntrc.*, # record holding control info
m xperdr record |ike stxperdr.*, # record holding period info
| _prepared snmallint,

n smal lint, # tenporary counter

prev_fld char(40), # gl obal version of prv_fld

str array[10] of char(80) # | anguage i ndependent array;
libraries

... lall . 4gmlib. a;

do_not _generate
I'1d_read;

after_init
call gcontrol () returning mgcntrc. *
call xcontrol () returning mxcntrc.*
call str_init();

input 1
bef ore_i nput

let prev_data = null
let prev_fld null ;

before_field acct_no
set global prev_fld to prv_fld for after field skip |ogic
let prev_fld = prv_fld ;

before_field incr_with_crdt
set global prev_fld to prv_fld for after field skip |ogic
let prev_fld = prv_fld ;

after_change_in acct_no
#_ck_dup - check for duplicate key if field is not null
if this_data is not null
then
| h_dupchk returns false if duplicate exists(err condition)
if not IIlh_dupchk()

then
call scr_error("dupchk", "acct_no")
let p_xchrtr.acct_no = prev_data
let this_data = prev_data
| et data_changed = fal se
let nxt_fld = "acct_no"
return

end if

end if

For amore detailed example refer to "Sample Triggers File" on page 12-48.

The Trigger File 12-7

Fitrix Screen Technical Reference

Trigger File Limitations

A trigger file cannot exceed 699 lines.

If you create atrigger file that is bigger than 699 lines, you can remove large pieces
of code, like custom functions, from the trigger file and move them into a separate
Agl/.org file. We recommend you name thisfilecust om or g to ensure that your
name does not conflict with file names in future upgrades of our applications. For
more information on cust om or g filesrefer to " Custom .4gl/.org Files' on page
12-47.

Using Triggers in .ext Files

Triggers can be used in .ext (extension) files. These .ext filesare similar to .trg files
but they contain block commands and triggers necessary to drive a particular fea-
ture. This allows you to selectively plug and unplug certain features for different
versions of your program. For more information on using triggersin .ext files refer
to "Pluggable Features (.ext Files)" on page 13-32.

The Triggers

Following is a discussion of each trigger. A complete sample trigger file can be
found in Appendix D, "Sample Trigger File." Triggers associated with Add-On
Headers are discussed under "Add-On Header Triggers."

12-8 Customizing Your Base Program With Triggers

Fitrix Screen Technical Reference

define

Thistrigger lets you add global variables to the define statement in gl o-
bal s. 4gl .

Trigger File Placement

o defaults
e inputl
e input2

Defaults Section

A define trigger specified in the defaults section puts variables directly into the
beginning of the globals (gl obal s. 4gl) file. A definetrigger in the defaults sec-
tion isused for individual variables not associated with any records. 4 comma must
be included after the last variable.

Example

defaul ts
define
nyvar4 smallint,
nmyvar5 smallint,
nyvar6 smallint,

Input 1 and Input 2 Sections

A g_ record(s) (record parallel to the header or detail record) is always created
when generating with the Code Generator.

Thedef i ne trigger specified inthei nput 1 sectionori nput 2 section places
variablesinto the q_ record parallel to the header or the q__ record parallel to the
detail, respectively. Leave comma out on last variable.

The Triggers 12-9

Fitrix Screen Technical Reference

Example
input 1
define
nyvar7 smallint,
nyvar8 smallint,
nyvar9 smallint
Notes

Thedef i ne trigger isn't allowed in .ext files. Usef unct i on_defi ne,
static_define,orin_bl ock commandsfor thesefiles.

When using multiple directory search paths, the Featurizer either replaces or
appends def i ne trigger definitions processed previously. The action that the Fea-
turizer takes depends on the current setting in thef gl pp. opt file. For moreinfor-
mation, refer to "Maintaining Backwards Compatibility—The Options Files' on
page 2-19.

12-10 Customizing Your Base Program With Triggers

Fitrix Screen Technical Reference

static_define

Thest ati c_defi ne trigger inserts static (local) variables into the define state-
ment for particular .4gl files. Thest ati c_def i ne trigger isthe same asthe
def i ne trigger except that variables are not placed in gl obal s. 4gl . Static
variables are variables that are available only within a particular 4gl file.

Leave comma out on last variable.

Trigger File Placement

o defaults

e inputl

e input2
Example

static_define
nyvar10 smallint,
nmyvar1ll smallint,
nyvar12 smallint

Notes

Thest ati c_defi ne trigger, placed in different sections of the .trg file, yields
different results. In the following table, ast at i ¢c_def i ne placed in a section
specified in the first column resultsin a placement of variables at the top of a.4ql
file specified in the second column.

The Triggers 12-11

Fitrix Screen Technical Reference

. 44l File
Form Type .trg Section Affected
header(/detail) defaults main.4gl
header(/detail) input 1 header.4qg|
header/detail) input 2 detail 4gl
add-on defaults scr_id.4gl
zoom
extension
browse defaults browse.4gl

For zoom and add-on screens, it makes the variable static to the

{screen_id}. 4gl file andfor browse screens, it isstatic to thebr owse. 4gl

file.

When using multiple directory search paths, the Featurizer either replaces or
appends st ati c_def i ne trigger definitions processed previously. The action
that the Featurizer takes depends on the current setting in the f gl pp. opt file.
Refer to "The Featurizer Options File (fglpp.opt)" on page 2-19 for more informa-

tion.

12-12 Customizing Your Base Program With Triggers

Fitrix Screen Technical Reference

function_define

Thistrigger defines the specified variables as local to the specified function.

Trigger File Placement

o defaults

e inputl

e input2
Example

function_define nmy_function

Notes

nyvar23 smallint,
nmyvar24 smallint

Thefilethat thistrigger triesto find the function in depends on where the trigger is

located within the .trg or .ext file.

. 449l File
Form Type .trg Section Affected
header defaults main.4gl
header/detalil
header input 1 header.4gl
header/detalil
header/detail input 2 detail .4gl
add-on defaults scr_id.4gl
zoom
extension
browse defaults browse.4gl

If thef uncti on_defi ne triggerisina"start file" section, the function must
reside in that specified file.

The Triggers

12-13

Fitrix Screen Technical Reference

on_event

Theon_event trigger allows you to automatically add event handling logic.

Note

Y ou must re-run the Code Generator after adding anon_event trigger. Thisis
the only trigger that does not get merged into your code with the Featurizer.

Trigger File Placement

* defaults

e inputl

e input?2
Example

on_event noworry
let scratch = "Don't worry, be happy"
call lib_nmessage("scr_bottont)
sleep 3

Notes

Additions to code required to handle global and local events can all be added auto-
matically by using theon_event trigger. However, since an event must be
invoked by a keystroke or by selecting it from the Navigation Menu, additional
steps must be taken in order to add the event to the navigation and hot key tables.
The event can be added to the navigation tables through the Navigation and Hot
Key features available with the User Control Library.

Thelocation of theon_event trigger in the trigger file determines where the
event is placed in the code and where it can be used.

For aglobal event, specifyingon_event inthedef aul t s sectionresultsin
gl obal _event s() being added to mai n. 4gl . Thisfunction handlesthe logic
for al global eventsin the program.

12-14 Customizing Your Base Program With Triggers

Fitrix Screen Technical Reference

Specifyingon_event inthei nput 1 section causes the event to be executed
only from input area 1 (header section).

Specifying on_event inthei nput 2 section causes the event to be executed
only from input area 2 (detail section).

The following table summarizes the results of theon_event trigger:

section .4gl file:input function .4gl:event handling function
defaults none main.4gl:global_events

input 1 header.4gl:11h_input header.4gl:1lh_event

input 2 detail 4gl:11d_input detail .4gl:1ld_event

For more information, refer to "Event Handling Logic" on page 15-2.

See dso "The Navigate Feature" and "Hot Keys" in the Fitrix CASE Tools
Enhancement Toolkit Technical Reference.

More Examples
The following examples show where the on_event trigger inserts the event into
the code.

Specifying aglobal event nowor ry inthedef aul t s section of the trigger file:

on_event noworry
let scratch = "Don't worry, be happy"
call lib_nmessage("scr_bottont')
sleep 3

The Triggers 12-15

Fitrix Screen Technical Reference

resultsin mai n. 4gl :

function gl obal _events(act_key, p_funct)
returning true if it runs the event, otherw se false

This function’s job is to run all events that need to be run

#
on a global (programw de) basis. |[|f you have defined an event
that needs to be run at the menu level in addition to the |oca
input level, the event nust be listed here
If you wish to know the function name that called hot_key, it
is passed as p_funct.
#
define
act _key char(15), # Action to process
p_funct char(15) # Current function nane

Process the events based on act_key
case
when act_key = "noworry"
let scratch = "Don’t worry, be happy"
call 1lib message ("scr_bottom")
sleep 3

otherwi se return false
end case

return true
end function
gl obal _events()

This global event would not be accessible in a program until you add the global
event viathe Navigation feature.

Local events are specified in asimilar manner. For local events, specifying
on_event inthei nput 1 ori nput 2 sectionswill yield two entries. In the
input statement, local event processing, acall tohot _| ocal isplaced inthe code
calling the event specified. Also, the event handling code specified is placed in the
[1h_event ()/11d_event () function asan additional when clause to the
case statement. Example:

12-16 Customizing Your Base Program With Triggers

Fitrix Screen Technical Reference

In thetrigger file, specifying thefollowing ini nput 1 section:

on_event zoom
and infield(order_date)
if zoonm("date_znt')

t hen
let p_orders.order_date = scratch
let nxt_fld = "order_date"

end if

resultsinheader . 4gl :I | h_i nput :
Local event processing
| abel event:

call hot_local ("date_zn')

call Ilh_event()

andinheader. 4gl : 1| h_event:
case
when .
when scr_funct = "zoont
and infield(order_date)
if zoom("date_zni,"")
then
let p_orders.order_date = scratch
let nxt_fld = "order_date"
end if
when .
end case

The Triggers 12-17

Fitrix Screen Technical Reference

libraries

If you have built alibrary of custom functions and wish to use this custom library
with the current application, you can specify thel i br ari es trigger in atrigger
file. Any libraries specified here are automatically placed into the LI BFI LES sec-
tion of thelocal Makefi | e.

Trigger File Placement
» defaults section

Example

libraries
$(fg)/lib/nylib.a

Notes

Any library specified through al i br ar i es trigger isplaced afterthe. . /| i b. a
line but before the rest of the Fitrix Screen libraries. If there are any functions that
have the same name across libraries, the functions found in the earlier LI BFI LES
entry is executed.

12-18 Customizing Your Base Program With Triggers

Fitrix Screen Technical Reference

custom_libraries

If you have built alibrary of custom functions and wish to use them before the
.. /l'i b. alibrary with the current application, you can do so by specifying the
custom | i brari es trigger in atrigger file. Any libraries specified here are
automatically placed into the LI BFI LES section of the local Makefile before
../1ib.a.

Trigger File Placement
» defaults section

Example

customlibraries
$(fg)/lib/newib.a

The Triggers 12-19

Fitrix Screen Technical Reference

switchbox_items

Theswi t chbox_i t ens trigger adds an additional when clauseto thecase
statement in the function swi t chbox () . Use thistrigger to add additional
screens to the flow controller.

Trigger File Placement
» defaults section

Example

swi t chbox_i t ems
screen2 screen2

Notes
Theswi t chbox() functionresidesin mai n. 4gl .

Y ou can also specify function argumentsin your swi t chbox_i t ens trigger
code:

swi t chbox_i t ems
fredA fredA(argl, arg2, arg3)

When using multiple directory search paths, the Featurizer either replaces or
appends SWi t chbox_i t enrs trigger definitions previously processed. The action
that the Featurizer takes depends on the current setting in the f gl pp. opt file.
Refer to "The Featurizer Options File (fglpp.opt)" on page 2-19.

12-20 Customizing Your Base Program With Triggers

Fitrix Screen Technical Reference

before_init

Thebef ore_init trigger let’syou insert logic before the program initialization
occursinthei ni t () function.

Trigger File Placement
» defaults section

Example

before_init
initialize nyvarl to null
initialize nyvar2 to null
initialize nyvar3 to null

Notes

Themai n. 4gl file performsinitialization. It does this by calling the function
i nit().Custom initialization logic can be placed before or after this call to
init() byusngthebefore_ init orafter _init trigger, respectively.

The Triggers 12-21

Fitrix Screen Technical Reference

after_init

Theafter _init triggerissimilartobefore_init,buttheafter _init
trigger places code after theopen f or mstatementinnai n. 4gl (after the call to

init()).

Trigger File Placement
» defaults section

Example

after_init
open wi ndow w_cust_zmat 4,5 with form"cust_znt
attribute (white, border)

12-22 Customizing Your Base Program With Triggers

Fitrix Screen Technical Reference

at_eof

Theat _eof trigger isuseful for placing custom functions at the end of a .4gl file.
Thistrigger is often used in conjunction with thedo_not _gener at e trigger.

Note

Block commands allow you to duplicate the function of the

do_not _gener at e andat _eof triggersbut in amuch cleaner way. Using
block commandsiis preferred. Refer to "Block Command Statements' on page
13-24.

Trigger File Placement
» defaults section
e inputl
e input2

Example

defaults
at _eof #pl aced at end of main. 4gl

function please_wait()

Trap fatal errors
whenever error call error_handl er

instead of this
nessage " Please wait..."

let's say this
message " Have a happy day ..."

end function
please_wait ()

The Triggers 12-23

Fitrix Screen Technical Reference

Notes
The placement of theat _eof trigger in the trigger file yields different results.
. 44l File

Form Type .trg Section Affected
header defaults main.4gl
header/detail
header input 1 header.4qg|
header/detall
header/detail input 2 detail 49l
add-on defaults scr_id.4gl
zoom
extension
browse defaults browse.4gl

When using multiple directory search paths, the Featurizer either replaces or
appends at _eof trigger definitions processed previously. The action that the Fea-
turizer takes depends on the current setting inthe f gl pp. opt file. Refer to "The
Featurizer Options File (fglpp.opt)" on page 2-19.

In the example above, the library function pl ease_wai t was copied into local
code, modified, and placed after theat _eof trigger def aul t s section.

There are three ways that functions can be customized using at _eof :

1. A custom function can be coded from scratch and given a unique name. This
function may also be called from the trigger file.

2. Alibrary function can be copied into your local code and customized using the
at _eof trigger. Thisfunction retains the same name as the library function
and the call (wherever it is) isleft the same. But when the functionis called, the
local function isused instead of the library function because during compilation
the linker looks first to local code and then to the libraries when resolving func-
tion calls.

12-24 Customizing Your Base Program With Triggers

Fitrix Screen Technical Reference

During regeneration, Screen placed this code at the end of mai n. 4gl . When
compiling, the linker looked locally first and found this function and linked it
in. When running the program, this custom function was called instead of the
library function.

A local function normally generated with Screen can be modified and used in
place of the generated function. However ado_not _gener at e trigger must
also be used to prevent the original function from being generated or else two
local functionswill exist in the local code resulting in a compile or run-time
error. Thedo_not _gener at e trigger is discussed next.

The Triggers 12-25

Fitrix Screen Technical Reference

do_not_generate

Thedo_not _gener at e trigger can prevent any function in local code from
being generated. Thisisideal for when you take a function generated with Fitrix
Screen and modify it so that when the call is made, the modified function isused in
place of the original function.

Note

Block commands allow you to duplicate the function of the

do_not _gener at e andat _eof triggers but in a much cleaner way. Using
block commands make thistrigger unnecessary and is preferred. Refer to "Block
Command Statements" on page 13-24.

Trigger File Placement
» defaults section

e inputl
e input?2
Example

defaults

do_not _generate
m h_cl ear

Notes

The modified function must replace the function generated by Fitrix Screen. You
can usetheat _eof trigger to specify the modified function and
do_not _gener at e to prevent the original function from generating.

Asfor callsto functions, do_not _gener at e has no effect on calls to functions
that are specified under do_not _gener at e. Fitrix Screen generates calls to
functions whether the function is there or not.

12-26 Customizing Your Base Program With Triggers

Fitrix Screen Technical Reference

Thedo_not _gener at e trigger acts asa"delete block" block command. The
trigger can bein any section of the .trg or .ext file. If thereis afile context (it's not
in a"defaults' section), then the context is determined by the current file context
(within a"start file" or "input n" section).

If itisin adefaults section of a.trg file (thereisno such sectionin an .ext file), then
the following rules are applied to determine which .4gl file to assign the command
to.

If the screen type is zoom or add-on, it uses the .4gl file associated with this .trg
file.

If the screen typeis browse, it usesbr owse. 4gl .

If the screen type is header or header/detail, then it uses the following logic to
determine the .4ql file:

If thefirst 2 characters of the function are "ml", then it usesmi dl evel . 4gl .
If the first 3 characters of the function are "IIh", then it uses header . 4gl .
If the first 3 characters of the function are "Ild", then it usesdet ai | . 49l .

Otherwise, it uses nai n. 4gl .

The Triggers 12-27

Fitrix Screen Technical Reference

. Function Not 4gl File
Form Type -trg Section Generated Affected
header defaults mi* midlevel .4gl
header/detail Ilh* header.4gl
Ild* detail 4gl
other main.4gl
header input 1 header.4gl
header/detail
header/detail input 2 detail 4gl
add-on defaults scr_id.4gl
zoom
extension
browse defaults browse.4gl

More Examples

This example explains how alocal function can be modified using theat _eof and

do_not _gener at e triggers.

Y ou can take thislocal function generated with Fitrix Screen:

function mh_clear()

#

initialize p_stomer.* to null
initialize g_stoner.* to null
initialize mstoner.* to null
end function
mh_cl ear

and modify it and place it withintheat _eof trigger of the trigger file:

defaul ts

12-28 Customizing Your Base Program With Triggers

Fitrix Screen Technical Reference

at _eof

function nm h_clear()

#
initialize p_stoner.* to null
initialize g_stoner.* to null
initialize mstoner.* to null
a-> initialize nyvarl to null
a-> initialize nyvar2 to null
a-> initialize nyvar3 to null
end function
m h_cl ear

If you were to regenerate at this point, the modified function would be placed at the
end of mai n. 4gl . However, Fitrix Screen would also regenerate the original

m h_cl ear (), yielding two functions of the same name in the local program
directory. To avoid this from happening, you would add thedo_not _gener at e
trigger to tell the Code Generator to not generate the origina m h_cl ear () :

defaul ts

do_not _generate
m h_cl ear

Thustheoriginal M h_cl ear () isnot generated and the one modified
m h_cl ear () isplaced into the source code. When running the program, the call
tom h_cl ear () usesthemodifiedm h_cl ear ().

The Triggers 12-29

Fitrix Screen Technical Reference

on_screen_record_prep

Code specified in thistrigger is placed at the bottom of thep_pr ep() function.

Trigger File Placement

e inputl
e input?2
Example

on_screen_record_prep
di splay "p_prep successful"”
sleep 3

Notes

The p_ records arefilled automatically from datafound in m_ records and from
lookups. If additional codeis needed tofill p_ records or codeisneeded toload g__
records, thisisthetrigger to doit.

Thistrigger can beused in either i nput 1 ori nput 2 to affect Ilh or I1d respec-
tively.

12-30 Customizing Your Base Program With Triggers

Fitrix Screen Technical Reference

on_disk_record_prep

Code specified in this trigger is placed at the bottom of them pr ep() function.

Trigger File Placement

e inputl
e input2
Example

on_di sk_record_prep
di splay "p_prep successful"
sleep 3

Notes

m_records are filled automatically from datafound in p_ records (and sometimes
g_ records) before adisk write. If additional code is needed for writing to table col-
umns not specified inthe p_ or q_ records, thisisthetrigger to do it.

Thistrigger can beused in either i nput 1 ori nput 2 toaffectIlhor lld respec-
tively.

The Triggers 12-31

Fitrix Screen Technical Reference

on_disk_read
Thistriggerisplacedinl | h_read()/11d_read () after the disk read is per-

formed and beforethecal tol | h_p _prep() /I 1 d_p_prep() . Thistrigger is
executed only if theread is successful.

Trigger File Placement

e inputl
e input?2
Example

on_di sk_read
display "read successful"
sleep 3

Notes

Thistrigger can beused in either i nput 1 ori nput 2 to affect Ilh or I1d respec-
tively.

12-32 Customizing Your Base Program With Triggers

Fitrix Screen Technical Reference

on_disk_delete

Thistrigger is added after a disk record has been successfully deleted. Thisis usu-
aly at the end of the delete function, | | h_del ete() /11 d_del et e() . Datais
deleted based on rowid.

Trigger File Placement

e inputl
e input2
Example

on_di sk_del ete
di spl ay "del ete successful”
sleep 3

Notes

Thistrigger can beused in either i nput 1 ori nput 2 to affect Ilh or Ild respec-
tively.

The Triggers 12-33

Fitrix Screen Technical Reference

on_disk_add

Ini nput 1, thistrigger isinserted after the row is successfully added to the table.
Thisisplacedinl| | h_add.

Ini nput 2, because the insert cursor is used for speed, the on_di sk_add is
executed after each row of detail is put into the cursor. The cursor does not get writ-
ten to the table until it is closed.

Trigger File Placement
e inputl
e input?2

Example

on_di sk_add
di splay "add successful "
sleep 3

Notes

Thistrigger isused in either i nput 1 ori nput 2 to affect [lh or I1d respec-
tively.

12-34 Customizing Your Base Program With Triggers

Fitrix Screen Technical Reference

on_disk_update

Thistrigger isinserted after the update statement successfully occursin
Il h_update().

Trigger File Placement
e input 1only

Example

on_di sk_updat e
di spl ay "update successful"”
sleep 3

The Triggers 12-35

Fitrix Screen Technical Reference

before_input

Thistrigger inserts your code directly before the input statement in
['1h_input()/11d_input().Datachecksbeforeaninput can be done here.

Trigger File Placement

e inputl
e input?2
Example

bef or e_i nput
display "start inputting"
sleep 3

Notes

Thistrigger can beused in either i nput 1 ori nput 2 to affect Ilh or I1d respec-
tively.

12-36 Customizing Your Base Program With Triggers

Fitrix Screen Technical Reference

before_field

Thistrigger inserts logic that occurs just before afield is entered.

Trigger File Placement

e inputl
e input2
Example

before_field ship_instruct
if menu_item = "add

then
let p_orders.ship_instruct = "will call"
let nxt_fld = "ship_charge"

end if

Notes

Thisfield-specific before field logic is placed in

I1h b field()/11d_b field() asanadditiona when clauseof acase
statement. Thiscase statement handles any specific before field work before

i b_beforeiscaled. Library functionl i b_bef or e() handlesthe generic
before field logic.

The Triggers 12-37

Fitrix Screen Technical Reference

after_field

Thistrigger inserts logic that occurs just after leaving afield.

Trigger File Placement

e inputl
e input?2
Example

after_field ship_charge
if menu_item= "add
then
l et p_orders.ship_charge = "10. 00"
end if

Notes
This field-specific after field logic is placed in

I[1h_a field()/11d_a_field() asanadditiona when clause of acase
statement. Thiscase statement handles any specific after field work before
lib_after() iscaled. Thelibrary functionl i b_aft er () handlesthe generic

after field logic.

12-38 Customizing Your Base Program With Triggers

Fitrix Screen Technical Reference

after_change_in

Thistrigger allows you to place logic to be executed when data changesin a partic-
ular field.

Trigger File Placement
e inputl

Example

after_change_i n order_date
if p_orders.order_date < "01/01/80"
t hen
error "lInvalid date"
let nxt_fld = "order_date"
end if

Notes

Thistrigger isan ideal placeto put field-level datavalidation logic. Logicisputin
thei f data_changed statementinl I h_a fiel d().

If you create validation on afield that restores the original valueif the datais
changed, you need to manually set the dat a_changed variable to false.

Hereis an example: Say you have afield that the user can enter into but you don’t
want the user to be able to change the value so you use alet next_field=current field
statement and then you restore the original value.

When the user enters afield for the first time the data changed variable is set to
false. If the user changes avalue, thedat a_changed variableis set to true,
which initiates any validation logic. This puts the user in aloop until avalid value
is specified. However, if your validation logic restores the datato its original value,
thedat a_changed variable is still set to true, even though the data hasn't
changed. The user would never be able to get out of the field. The solution isto
manually set the dat a_changed variableto false.

The Triggers 12-39

Fitrix Screen Technical Reference

after_input
Thistriggerisplacedinl I h_a_i nput () or |l d_a_i nput () whichiscalled

just beforetheexi t i nput statementinl | h_i nput ()/11d_i nput ().This
isan ideal placeto put record-level data validation.

Trigger File Placement

e inputl
e input?2
Example

af ter_i nput
if p_orders.ship_charge < 5.00
then
error "ship charge too | ow
let nxt_fld = "ship_charge"
end if

Notes
Thenxt _f | d variable can be set to re-enter the input statement.

12-40 Customizing Your Base Program With Triggers

Fitrix Screen Technical Reference

before_insert

Thebef ore_i nsert trigger places code at the bottom of the
I1d b _insert () function. Thiscode is executed before arow isinserted.

Trigger File Placement
e input 2 only

Example

before_insert
di spl ay "done before insert”
sleep 3

Notes
Thel I d_b_insert () functioniscalled withinaninput array statement.

The Triggers 12-41

Fitrix Screen Technical Reference

after_insert

Theafter i nsert trigger placescodeat thebottomof thel | d_a_i nsert ()
function. This code is executed after arow isinserted.

Trigger File Placement
e input 2 only

Example

after_insert
di splay "done after insert”
sleep 3

Notes
Thel I d_a_insert () functioniscalled within an input array statement.

12-42 Customizing Your Base Program With Triggers

Fitrix Screen Technical Reference

before_row

Thebef or e_r owtrigger placescodeinthel | d_b_row() function. Thiscode
is executed before arow is entered.

Trigger File Placement
e input 2 only

Example

bef ore_r ow
di spl ay "done before row'
sleep 3

Notes
Thel I d_b_row() functionis called within an input array statement.

The Triggers 12-43

Fitrix Screen Technical Reference

after_row

Theaft er _rowtrigger placescodeinthel | d_a_row() function. Thiscodeis
executed when leaving arow.

Trigger File Placement
e input 2 only

Example

after_row
di splay "done after row'
sleep 3

Notes
Thel I d_a_row() functioniscalled within an input array statement.

12-44 Customizing Your Base Program With Triggers

Fitrix Screen Technical Reference

before_delete

Thebef or e_del et e trigger placescodeinthel | d_b_del et e() function.
This code is executed before arow is deleted.

Trigger File Placement
e input 2 only

Example

bef ore_del ete
di spl ay "done before del ete"
sleep 3

Notes

This code is performed when the user presses [F2] to delete the row and before the
actual array elements have shifted. 1 | d_b_del et e() iscalled within an input
array statement.

The Triggers 12-45

Fitrix Screen Technical Reference

after_delete

Theaft er _del et e trigger placescodeinthel | d_a_del et e() function.
This code is executed after arow is deleted.

Trigger File Placement
e input 2 only

Example

after_del ete
di splay "done after delete"
sleep 3

Notes

This code is performed when the user presses [F2] to delete the row and after the
actual array elements have shifted. 1 | d_a_del et e() iscalled within an input
array statement.

12-46 Customizing Your Base Program With Triggers

Fitrix Screen Technical Reference

Custom .4gl/.org Files

Thecust om or g fileisthe place where you can put any custom functions that
are called from your trigger file. Thisfile must have a name of eight characters or
less and a.org extension. The Fitrix Screen Code Generator uses the informationin
your trigger files along with information in your .per files to create the 4GL code.
Anything withinacust om or g fileis not touched by the Code Generator. Since
syntax checking is performed on the cust om or g file, it isagood place to start
when debugging your applications.

Note

If you have any cust om or g filesand you are using version control, then you
needtobesuretoaddastart file "custom org" linetoyour .extfile
in any directory that does not contain the .org file. This ensures that the Featur-
izer seesyour .org file and compilesit properly inyour local directory. For more
information on version control and .org filesrefer to "Using Non-Generated .4l
files With Version Control (fg_funcs.4gl)" on page 16-19.

The"whenever error call error_handl er" lineof code should be
placed in the first function of every .4gl file. Sections of code should be wrapped
withthe"whenever error continue" ... "whenever error call
error _handl er" only when specific errors are expected. If thiswrap is used,
then the expected errors should be tested for immediately following.

If your cust om or g file growstoo large, you may need to create more than one
.org file. Note that the name before the .org extension must be a maximum of 8
characters.

Custom .4gl/.org Files 12-47

Fitrix Screen Technical Reference

Sample Triggers File

defaul ts
define
nyvarl snallint,
nyvar2 smallint,
nyvar3 snallint,

static_define
nyvar10 smallint,
nyvar1ll snallint,
nyvar12 smallint

’

on_event noworry

placed in globals
include comma on |ast variable

placed at top of main.4gl
| eave comma out on last variable

placed in main.4gl:global _events

let scratch = "Don't worry, be happy"
call |ib_nessage("scr_bottont)
sleep 3
libraries # placed in local Mkefile:LlIBFILES

$(fg)/lib/nylib.a
do_not _generate
m h_cl ear

swi t chbox_i t ems
new_zm new_zm

’

before_init

does not generate this function

placed in swtchbox

placed before main's call to init

initialize nyvarl to null
initialize nyvar2 to null
initialize nyvar3 to null

after_init

placed after main "open fornt

open wi ndow w_cust_zmat 4,5 with form"cust_znt

attribute (white, border)

at _eof

placed at end of main. 4gl

function please_wait()

Trap fatal errors
whenever error call
instead of this
nessage " Please wait..."
let’s say this

error_handl er

message "

Have a happy day ...

end function
pl ease_wai t ()

input 1

’

define

12-48

Customizing Your Base Program With Triggers

Fitrix Screen Technical Reference

nyvar4 smallint,

nmyvar5 smallint,

nyvar6 smal lint
static_define

nmyvar13 smallint,

nyvar14 smallint,

nmyvar1l5 smallint

on_event date_zm
and infield(order_date)
if zoom("date_zni,"")

placed in globals.4gl:qg_ record
| eave commm out on last variable

placed at top of header. 4gl
|l eave comma out on |ast variable

placed in Il h_input and Il h_event

then
let p_orders.order_date = scratch
let nxt_fld = "order_date"
end if

on_screen_record_prep # placed in Il h_p_prep
di splay "p_prep successful"
sleep 3

on_di sk_record_prep # placed in Il h_mprep
di splay "p_prep successful"
sleep 3

on_di sk_read # placed in Il h_read
di splay "read successful"
sleep 3

on_di sk_del ete # placed in Il h_delete
di spl ay "del ete successful”
sleep 3

on_di sk_add # placed in Il h_add
di spl ay "add successful "
sleep 3

on_di sk_updat e # placed in |l h_update
di spl ay "update successful"”

sleep 3

bef ore_i nput
di spl ay
sleep 3

"start inputi

before_field ship_instruct
if menu_item = "add

t hen
| et
let nxt_fld =

end if

after_field ship_charge

p_orders. ship_instruct
"shi p_char ge"

placed before "input"
ng" # 11 h_i nput

placed before a field
" # 1lh_b_field
="will call

placed after a field

Sample Triggers File 12-49

Fitrix Screen Technical Reference

if menu_item = "add " # llh_a field
then
l et p_orders.ship_charge = "10. 00"
end if
after_change_in order_date # placed after a field
if p_orders.order_date < "01/01/80" # Ilh_a field
then
error "lnvalid date"
let nxt_fld = "order_date"
end if
after_i nput # placed in |l h_a_input
if p_orders.ship_charge < 5.00
then

error "ship charge too | ow'
let nxt_fld = "ship_charge"
end if

at _eof # placed at end of header. 4g
Put lots of lovely text here
i nput 2
define
nyvar7 smallint, # placed in globals.4gl:q_[]

nyvar8 snallint, # | eave comma out on last variable

nyvar9 smallint
static_define
nyvar16 snmallint, # placed at top of detail.4g

nyvarl7 smallint, # | eave conma out on |ast variable

nyvar18 snallint

on_event prce_zm # placed in Il1d_input and |1 d_event

and infield(unit_price)
if zoom("prce_znt,"")

then
let p_itens.unit_price = scratch
let nxt_fld = "unit_price"
end if
on_screen_record_prep # placed in Ild_p_prep
di splay "p_prep successful"”
sleep 3
on_di sk_record_prep # placed in I1d_mprep
di splay "p_prep successful"”
sleep 3
on_di sk_read # placed in Ild_read
display "this row read"

sleep 3

12-50 Customizing Your Base Program With Triggers

Fitrix Screen Technical Reference

on_di sk_del ete
di spl ay
sleep 3

on_di sk_add
di spl ay
sleep 3

on_di sk_updat e
di spl ay
sleep 3

bef ore_i nput
di spl ay
sleep 3

bef ore_insert
di spl ay
sleep 3

after_insert
di spl ay
sleep 3

bef ore_row
di spl ay
sleep 3

after_row
di spl ay
sleep 3

bef ore_del ete
di spl ay
sleep 3

after_del ete
di spl ay
sleep 3

af ter _i nput

"this

"this

"start

"done

"done

"done

"done

"done

"done

placed in |ld_delete

row del et ed"

placed in |1d_add

row added"

placed in |ld_update
"updat e successful"

placed before "input" in

inputing”

placed
before insert"

pl aced
after insert"

pl aced
before row'

placed
after row'

placed
before delete"

placed
after delete"

placed

if p_items.unit_price < 1.00

then
error "unit price too |ow'
let nxt_fld = "unit price"

end if

at _eof

pl aced at

Put lots of lovely text here.

This triggers file cannot be nore than 699

11d_i nput

n lld_b_insert

n lld_a_insert

n lld_b_row

nlld_a row

n l1d_b_delete

n lld_a delete

n I1d_a_input

end of detail. 4gl

l'i nes.

Sample Triggers File

12-51

Fitrix Screen Technical Reference

12-52 Customizing Your Base Program With Triggers

13

The Featurizer and
Blocks

This section explains how to customize your applications while maintaining regen-
erability. Special files store all of your modifications in separate pieces known as
"triggers" and "blocks." How these triggers and blocks get merged into the source
code with the Featurizer is also discussed. This section covers:

n Merging custom code into generated code with the Featurizer
n Customizing generated code with block commands

n Making your programs regenerable

13-1

Fitrix Screen Technical Reference

Featurizer Overview

The Featurizer merges custom modifications into 4gl source code produced by the

Code Generator. The Featurizer "pre-processes’ the source code (.4gl files created

by the Code Generator) just before it is compiled (converted into object code). The
Featurizer performs these four tasks:

1. Trigger merging

2. Block merging

3. Feature set merging
4. Version control

Before reading this section, you should familiarize yourself first with triggers. See
the previous section for information on triggers.

Note

There are some compatibility issues to be aware of between the Trigger Merge
Utility and the Featurizer. Please read "Maintaining Backwards Compatibility—
The Options Files" on page 2-19.

The following is the Tools Overview diagram modified to include the Featurizer.
New files and utilities on the diagram are explained after the diagram.

13-2 The Featurizer and Blocks

Fitrix Screen Technical Reference

Featurizer Overview 13-3

Fitrix Screen Technical Reference

Final Program

i

Compiler/Linker

Merged Source Code

=

FEATURIZER

e
] o]

Generated Source Code

\ﬁ' :

Trigger Files

A

SCREEN CODE
GENERATOR

fg.screen

Specification Files

13-4 The Featurizer and Blocks

Fitrix Screen Technical Reference

The flow of the preceding diagram is as follows. First you create your input pro-
gram with the Form Painter. The input program is saved as a .per file. While in the
Form Painter you can also define custom modifications to your input program
through triggers. Triggers are saved in a.trg file. Y ou can also place source code
for custom features in .ext files. .ext files contain triggers and block commands
which instruct the Featurizer where and how to modify the generated code. These
.ext files must be coded manually with your own text editor.

The next step is to generate code for your program. Thisis done by invoking the
Code Generator on your .per files created with the Form Painter. The Code Genera
tor creates the basic 4GL source code to run your program. This generated codeis
stored in .4gl and/or .org files. A .org fileis generated if the Code Generator findsa
.org file with the same name that it is trying to generate anywhere in the directory
path.

Next, the Featurizer isrun, which searches for the custom code you put into triggers
aswell as custom code stored in .ext files. The Featurizer merges the code in your
.trg and .ext files and places it into the appropriate areas in the source code. This
creates merged .49l filesfor all of the code needed to run your application. An .org
fileisalso created for each file that hastriggers or blocks merged into it. These .org
files contain the original code that was generated by the Code Generator and are
used by the Featurizer during subsequent merges. Next, you link and compile the
Agls. This creates your completed, ready-to-run program.

Featurizer Terminology

Thefollowing is an introduction to key concepts talked about in this chapter.

Regenerability

Regenerability isthe ability of a code generation tool to re-create the base source
code while maintaining custom modifications. For the application to be regenera-
ble, any modifications done to the source code after initial generation must be
applied to the new source code that has been re-generated. The Featurizer givesyou
true regenerability.

Featurizer Overview 13-5

Fitrix Screen Technical Reference

Triggers

Triggers should be thought of as custom 4GL code that is executed from known
places in the application. Triggers are used when you want to customize the origi-
nal functionality provided by the Code Generator. Examples would be "upon disk
update" and "after a screen field has changed.”

Triggers alow the generated code to be regenerable. Instead of modifying the phys-
ical source code generated by the Code Generator, certain kinds of modifications
are placed in .trg filesin trigger format. These triggers are then merged into the
generated program. This allows the program to be re-generated without losing the
custom modifications.

Triggers denote logical locations in the source code.

Source Code Blocks

By following programming conventions, source code can be divided into small
chunks or "blocks." A block is the definition of specific lines within a source code
file. Blocks are denoted by block tags.

The reason for the definition of source code blocksis that there is not atrigger for
every place in the code that may need to be modified. For truly regenerable source
code, you may describe changes as alterations to known blocks of source code.

Fitrix Screen provides a set of block commands that allow the insertion of new
blocks, deletion of blocks, replacement of blocks, and aterations of lines within a
block.

Note

By convention, blocks are defined as the physical lines of code that perform a
logical function. Logical functionsincludeinitializing variables, checking vali-
dations, updating the disk, or any logical group of source code lines. Blocks
should be separated by white space (blank lines), and they should be relatively
small. The more blocks within a source code file the better.

13-6 The Featurizer and Blocks

Fitrix Screen Technical Reference

Custom Directories (Version Control)

Base 4gl programs should be stored in separate directories with the filename exten-
sion of .4gs. In order to maintain different versions of the same application on a
system, a custom directory is created, and the differences in source code are stored
in the custom directory. A generic custom directory extension is .4gc.

Y ou may choose any three character extension for custom directories. At runtime,
setting your $cust _key environment variable to a custom extension runs the pro-
grams stored in that directory.

At pre-processing time, a custom directory search path is specified that merges
source code and extensions from other directories. Thisallows you to store only the
differencesin a custom directory (vs. a copy of the original). When the original is
changed, are-compile in the custom directory brings forward changes from the
other directories in the search path. Custom directories and version control are dis-
cussed in "Version Control" on page 16-1.

Plug-in Features

Logically, features are things that can be plugged in or unplugged based on the
need for that feature. Physically, features are groups of source code "extension"
(.ext) files throughout the application.

If afeatureisinstalled (plugged in), that source codeis applied to the application. If
itisnot installed (un-plugged), the source code for that feature is not merged into
the final source code.

Organizing source code into features has several advantages. It allows for plug
infout functionality, it allows the application to have multiple versions, and it
allows for the organization of source code for a particular unit of work into one
area. Thismakesit very easy to identify the effect of afeature on the application.

Plug-in features can be used in different ways. In addition to the plug in/out func-
tionality, they can be used to maintain different upgrade versions of the application,
different customer regquirements, product testing, etc.

Featurizer Overview 13-7

Fitrix Screen Technical Reference

Feature Sets

Feature sets are ssimply groups of plug-in features. Since some features may be
incompatible with other features, you may wish to group features into different
"sets" that are known to work together. When compiling an application, you can
specify which feature set to apply.

Feature set files (base. set) include alist of featuresin the order that they are
applied to the source code.

Invoking the Featurizer

The Featurizer can be invoked four ways:
1. Fromfg. make.

2. During code generation.

3. From the Form Painter.
4

Directly from the command line.

Invoking From the £g.make Utility

The most common way of running the Featurizer isthrough thef g. make compi-
lation script. Each timeyou run f g. nake to compile your programs, the Featur-
izer is automatically invoked and merges any necessary files into your program.
Flags are available with f g. make to control whether you want to merge or not to
merge triggers and blocks when calling f g. make. Refer to "Compiling Generated
Code" on page 14-2 for more information on f g. nmake.

Invoking From the Code Generator

The Code Generator automatically creates the trigger tags and block tags in the
generated code. After the code is generated, the Code Generator automatically
invokes the Featurizer, which searches for and merges .trg and .ext filesinto the
generated code.

13-8 The Featurizer and Blocks

Fitrix Screen Technical Reference

Invoking From the Form Painter

The Compile option of the Form Painter invokesf g. make with the -mf flags. The
-mf flags are explained below. Keep in mind that this forces a merge of all related
triggers every time the Compile option is selected.

Executing the Featurizer Directly

Y ou can also run the Featurizer directly at the UNIX command line. The following
lists the syntax for thef gl pp command.

fglpp [-dbname database] [-C] [-force] [-set set] [-yes]

[-trace]

-dbname

-force

-set

-yes

-trace

filename

[filename. . .]

Specify a database name to use. Overrides $DBNANME or
"standard" if $DBNAME doesn't exist.

Inserts comments into merged .4gl code noting origin of
triggers and/or blocks. However, comments are not placed
in Makefiles.

Forces merge of al triggers and blocks regardless of file
time stamps.

Specify the *.set file to use (to define feature set).

Automatically overwrite files without write permission
Set.

Displays Featurizer activity.

Thefile(s) to pre-process. If omitted, alist is built of the
files that need pre-processing.

Invoking the Featurizer 13-9

Fitrix Screen Technical Reference

The Difference Between
Triggers and Blocks

Triggers are tagged locations in the generated source code for inserting requested
modifications. Various locations have been identified in the generated code where
custom modifications are commonly made. The Code Generator inserts special tags
at these locations. The Featurizer takes your logic within atrigger and insertsit into
the code at these locations.

When using triggers, you are limited to specific locations in the source code. It is
likely that you will have a need to insert custom logic outside of these known loca-
tions.

The Code Generator places special markers throughout the generated code which
identify "blocks" of source code. Using special block commands, you can perform
custom modifications to any part of the code.

Thefollowing section explains the three ways in which you could modify a piece of
source code for which atrigger does not exist.

The example:

There might be an occasion when you must add custom logic tothel | h_add
functionin header . 4gl .

To assign the current dateto an m r ecor d variable caled "entry_date", include
one line of code just before the Informix insert command, as follows:

Set the serial field

| et morders.order_num= 0

let morders.entry_date = today =g

#_insert - Insert the data
insert into orders val ues(morders.*)
let new.row d = sqlca.sqlerrd[6]

This simple modification assigns the current date to the m_ record variable
ent ry_dat e Before modifying this program, anent r y_dat e column has been
added to the orderstable. Right after today’s date is assigned to the

13-10 The Featurizer and Blocks

Fitrix Screen Technical Reference

m or der s.entry_dat e variable, the insert takes all valuesinthem_ record
and writes them into the orders table, including the value of theent ry_dat e
variable.

Thereisno trigger that allows you to do this. Thereistheon_di sk_add trigger
that adds code to thel | h_add function, but as you can see from the

on_di sk_add trigger tag above (#_on_di sk_add), any on_di sk_add trig-
ger logic is added after the insert command is executed. Y ou must insert custom
code before the insert command. This location is not identified by triggers.

If no trigger location exists for your modification, you have three options, listed in
order of least desirable to most desirable:

1. You can modify the 11h_add function directly. Thiswould require that you
manually maintain this .org file whenever further modifications are placed in
code. Y ou would have to re-insert this line of code each time the Code Genera-
tor was run. This type of modification is not regenerable.

2. You could copy the entire function into the trigger file under the at_eof
trigger and then modify it there. Theat _eof trigger isfor placing whatever
isunder it at the bottom of a.4gl source codefile. It is commonly used for plac-
ing customized functions into source code. Y our trigger file would look like
this:

input 1

at _eof

function Il h_add()

This function inserts data into the header table.

#
#_define_var - define local variables
define
|l ocal _var - local variables

new row d integer # Rowid after insert

Set the serial field
let morders.order_num= 0

let morders.entry_date = today
#_insert - Insert the data

insert into orders val ues(m.orders.*)
let new row d = sql ca.sql errd] 6]

The Difference Between Triggers and Blocks 13-11

Fitrix Screen Technical Reference

#_serial - Bring back the serial field & display it
l et morders.order_num = sql ca. sql errd[2]

l et p_orders.order_num = sql ca.sql errd[2]

call 11h_display()

#_on_di sk_add
#_end

rowid - Reset rowid
let sqlca.sqlerrd[6] = new rowd

end function
11 h_add()

The Featurizer would read theat _eof trigger and place the modified function
into the source code. Since you are modifying alocally created function and the
origina | I h_add function isstill inlocal code, at _eof isfrequently used
withthedo_not _gener at e trigger, which removestheorigina | | h_add
function from source code. This prevents two functions with the same name
from existing in local code. If two functions with the same name exist in local
code, then the program will not compile. Your do_not _gener at e trigger
would appear as follows:

defaul ts

do_not _generate
I'l'h_add ;

Thisisaviable solution, but not ideal. If you have to insert oneline of codeinto
avery large function, you must maintain the entire function in your trigger file
just for that one line of code. For example, inl | h_add above, you must main-
tain 10 lines of source code for that 1 custom line of code. Lookup functions
(I'l'h_I ookup and!l | d_I ookup) arelarge, line-intensive functions and fre-
guently must be handled this way because one or two lines of code must be
added to make it function a preferred way.

3. You could use blocks. Blocks alow you to go into a function and just modify
one part of that function. Blocks are pieces of source code within afunction that
perform a specific task. They could be considered "sub-functions’, i.e., modu-
lar "functions’ within afunction.

Consider the unmodified | | h_add again:

function Il h_add()

13-12 The Featurizer and Blocks

Fitrix Screen Technical Reference

This function inserts data into the header table.

#
#_define_var - define local variables
define
|l ocal _var - local variables

new rowd integer # Rowid after insert

Set the serial field
let morders.order_num= 0

#_insert - Insert the data
insert into orders val ues(m.orders.*)
let new.row d = sqlca.sqlerrd[6]

#_serial - Bring back the serial field & display it
l et morders.order_num = sql ca.sql errd[2]

l et p_orders.order_num = sqlca.sqglerrd[2]

call 11h_display()

#_on_di sk_add
#_end

rowid - Reset rowd
let sqglca.sqlerrd[6] = new_rowd

end function
11 h_add()

There are four main tasks being performed within thel | h_add function:

1
2.
3.
4,

variables are defined;
the insert command is executed;
the serial number assigned to the record is displayed;

the rowid isre-set.

The source code that performs these tasks is grouped together in blocks. Blocks are
groupings of code within afunction that perform one task. Blocks in the source
code are identified with block tags. Block tags are identified as:

#_{ bl ock_nane}

The# _identifiesablock tag, much like a# _identifies atrigger tag in source code.
The following block tag that is seen at thetop of | | h_add:

#_define_var

The Difference Between Triggers and Blocks 13-13

Fitrix Screen Technical Reference

identifies the group of source code that defines variablesfor | | h_add. The Code
Generator automatically places block tags into the generated source code.

Thisblock tag seenin| | h_add:
#_insert
identifies the source code that inserts the record.

This block tag:
#_serial
identifies the group of code that displays the assigned serial number.
Finally, this block tag:
#_rowi d
identifies the group of code that re-sets the rowid.

Anything after the space following the block tag is considered a comment and not
read by the Featurizer. Thus for the following block tag:

#_define_var - define local variables

the "- define local variables' is a comment and not read by the Featurizer.

The#_on_di sk_add that you seein| | h_add isnot ablock tag. Itisatrigger
tag, and it isfor you to insert custom INFORMIX logic viaatrigger (in this case,
theon_di sk_add trigger).

Observeinl | h_add abovethe# defi ne_var and# | ocal _var block tags.
There can be blocks within blocks. Blocks are delimited by indentation. For
instance, the#_i nsert block endswhen it encounters the next block at the same
level of indentation:

#_insert - Insert the data
insert into orders values(m.orders.*)
let new.row d = sqlca.sqlerrd[6]

#_serial - Bring back the serial field & display it

Here, the# i nsert block isterminated with the appearance of the#_seri al
block.

13-14 The Featurizer and Blocks

Fitrix Screen Technical Reference

The#_defi ne_var block endsat the# i nsert block, not the
| ocal _var block, becausetheentire# | ocal _var block isindented within
the#_defi ne_var block:

#_define_var - define local variables
define
|l ocal _var - local variables

new rowd integer # Rowid after insert

Set the serial field
let morders.order_num= 0

#_insert - Insert the data

The# | ocal _var block isterminated withthe# Set the serial field
commented line, because# Set the serial fieldout-indentsthe

| ocal var block. The# defi ne_var block isterminated with the

insert block.

The Code Generator automatically places block tags into the source code that it
generates. All lines of source code created by the Code Generator are within blocks.
So not only do you have known locations to place logical modificationsin source
code (through triggers), but you also have control over every line of source code
and can make physical modifications (through blocks) to the code.

If blocking conventions aren't followed, the entire source code fileis regarded as
one block. If block conventions are followed, a source code file may be divided into
as many blocks asyou desire.

When to Use Blocks

It isimportant that you gain an understanding of when to use triggers and when to
use blocks. Thisrequires an understanding of the difference between "logical" areas
of code, and "physical" areas of code.

Logical areas of code can be defined as anywhere in the program that a certain
event takes place (such as leaving afield, entering afield, writing to disk, etc.).
Theselogica pointsin the code are defined as "triggers."”

Physical areas of code can be defined simply as the address of certain lines of code
in the .4gl file. Thereis abig difference between aphysical location and alogical
location. Fitrix Screen can change quite substantially and still offer the samelogical
locations (disk write, after field, etc.). Not so for physical locations.

The Difference Between Triggers and Blocks 13-15

Fitrix Screen Technical Reference

If you write your modificationsin triggers (as opposed to block commands), the
likelihood that your modification will work in future versions is much greater than
if you write your madifications using block commands. We will strive for 100 per-
cent forward compatibility for trigger code. Bottom line: use triggers whenever you
can. Only use block commands if there's no trigger for what you' re doing.

Also keep in mind the physical/logical difference when defining your blocks. Try
to describe them in logical terms (what you' re doing) vs. physical terms (how
you'redoing it). Block tags are fairly reliable reference pointsin the generated code
and they should not change with future releases. However when you use stringsin
block commands to locate and delineate blocks, you gamble that those specific
strings won't change during future rel eases. Since most code is enhanced over time,
block commands utilizing strings can not be guaranteed to always be compatible
with future releases.

Note

Triggers and blocks can both be put in .ext files, while only triggers can be
placed into .trg files.

Block Commands Overview

To modify source code within a block, there are a set of block commands to indi-
cate what you wish to do to that block. Unlike, triggers, which are placed in .trg
files, block commands go into files with a.ext extension. The Featurizer reads the
block commandsin the .ext file and act on the specified block in the source code.

13-16 The Featurizer and Blocks

Fitrix Screen Technical Reference

Here are some examples of simple block commands:

before block 11h_add insert
after block Ilh_add serial
replace block IIh_lookup not_found

delete block I1h_lookup must_find

A block command takes two arguments:

1. Thefunction name that contains the block.

2. Thename of the block (called the "block name" or "block ID").

Using Block Commands to Manipulate
Code

The following are some block command examples to help give you an idea of what

block commands are and how they work. For more examples refer to "Block

Manipulation Examples' on page 13-48. Using thel | h_add example from the
previous section, say you want to place one extraline before the "insert" command:

let morders.entry_date = today

Again, hereisthe unmodified | | h_add function:

#
#_define_var - define local variables
define
#_local _var - local variables
new rowid integer # Rowid after insert

Set the serial field
let morders.order_num= 0

#_insert - Insert the data
insert into orders values(morders.*)
let new rowi d = sql ca.sql errd[6]

#_serial - Bring back the serial field & display it

The Difference Between Triggers and Blocks

13-17

Fitrix Screen Technical Reference

let morders.order_num = sql ca.sql errd[2]
l et p_orders.order_num = sql ca.sql errd[2]
call Ilh_display()

#_on_di sk_add
#_end

#_rowid - Reset rowd
let sqglca.sqlerrd[6] = new_rowd

end function
11 h_add()

Y ou would usethebef or e bl ock command to add this one extraline before the
"insert" block. Thusin the .ext file, you would place the following block command
and source code:

start file "header.4gl"

before block I1h_add insert
let morders.entry_date = today ;

This block command would go into the .ext file under thelinestart fil e
header . 4gl because you are modifying the source codein header . 4gl .

The .ext fileisread by the Featurizer, and the Featurizer pre-processes the appropri-
ate .4gl file to include the extraline of code. After pre-processing, thisis the result
inthel | h_add function (in header . 4gl):

Set the serial field
| et morders.order_num= 0

let morders.entry_date = today

-

#_ insert - Insert the data
insert into orders values(morders.*)
let new.row d = sqlca.sqlerrd[6]

If you wanted to insert the custom logic after the "insert" block, then you would use
theaft er bl ock block command in the .ext file asfollows:

after block Ilh_add insert
let morders.entry_date = today ;

13-18 The Featurizer and Blocks

Fitrix Screen Technical Reference

Theresult in the function| | h_add would be:

#_insert - Insert the data
insert into orders values(morders.*)
let newrow d = sqglca.sqglerrd[6]

let morders.entry_date = today -—

#_serial - Bring back the serial field & display it
I et morders. order_num = sql ca.sql errd[2]

| et p_orders.order_num = sql ca.sql errd[2]

call 11h_display()

Note that all block commandsin .ext files are delimited by semicolons, just like

triggers are delimited by semicolons.

Y ou can even replace blocks. Let’s say you wanted to add your custom logic

between the"i nsert into"andthe"l et new_r ow d" linesof code. You

could replace the entire block with the replace block command:

repl ace block Il h_add insert
insert into orders val ues(morders.*)
let morders.entry_date = today
let newrow d = sqlca.sqlerrd[6]

Thiswould result asfollowsin| | h_add:

Set the serial field
let morders.order_num= 0

#_insert - Insert the data

insert into orders values(morders. * @———
let morders.entry_date = today -
let newrow d = sqglca.sqglerrd[6] B

#_serial - Bring back the serial field & display it
l et morders. order_num = sql ca.sql errd[2]

| et p_orders.order_num = sql ca.sql errd[2]

call 11h_display()

Y ou can even search for strings in blocks and place code before or after a string of

code within a block.

Y ou can delete blocks with the foll owing command:

del ete block Ilh_add insert

The Difference Between Triggers and Blocks

13-19

Fitrix Screen Technical Reference

Theeffecton!| | h_add is:

Set the serial field
let morders.order_num= 0

-
#_serial - Bring back the serial field & display it
I et morders.order_num = sql ca.sql errd[2]
l et p_orders.order_num = sql ca. sql errd[2]
call Ilh_display()

In addition to manipulating code within blocks, you can add code to the top or bot-
tom of a.4dgl file. Y ou use block commands with various reserved words as argu-
ments to the commands. In lieu of the function name argument in a block
command, you could specify TOF for Top Of File or EOF for End of File. If you
used these reserved words as the function name argument to the block command,
the block name argument would be NUL/NULL for null, since there is no block at
the top or bottom of a .4dgl file.

Here is ablock command that places extra code at the bottom of aheader . 4gl
file:

start file "header.4gl"

after block EOF NUL
display "this code is at the end of header.4gl"
sleep 3 ;

Notice how "after block EOF NUL" acts exactly astheat _eof trigger acts—it
puts text at the end of files. "TOF", "EOF", and "NUL" must all be uppercase.

See "Block Command Statements' on page 13-23 for afull list of al block com-
mands, their syntax, and examples.

Block Command Files (.ext files)

As mentioned earlier, block commands are placed in .ext files much like triggers
are placed into a .trg file. There is some philosophy behind .ext files that makes
them alittle bit more complicated than .trg files. Basically .ext files serve two pur-
poses: thefirst isto provide a means of plugging and unplugging features; whilethe
second isto simply hold block commands which always need to be merged into the
basic program.

Also, .ext files can contain triggers. This allows you to create independent features.

13-20 The Featurizer and Blocks

Fitrix Screen Technical Reference

Note

An .ext file can be named with any combination of letters, numbers and under-
scores. Y ou cannot use hyphens or any other symbol in an .ext’s name.

For more information on the concept of pluggable features, refer to the separate
section "Pluggable Features and Feature Sets' on page 13-32.

Specifying Which .ext Files to Merge
(base.set files)

Unlike .trg fileswhich get merged automatically, you must specify all .ext filesyou
want to be merged by listing them in afile named base. set .

A more detailed description of base. set filesisavailable in"Pluggable Features
and Feature Sets" on page 13-32.

Specifying Files for Blocks to Work
(start file)

Thestart fil e command allowsyou to specify which .4gl files you want your
block commands to work on. The start file command, along with the blocks that
correspond to it, are placed in .ext files. The syntax of thest art fi | e command
is:

start file "filename"
Example:
start file "mdlevel.4gl"

after block mh_clear init
initialize ny_record.* to null ;

Thefollowing is an example of how you can use an .ext file,astart fil e com-
mand, and a block command to make a customization to a section of .4gl code.

The Difference Between Triggers and Blocks 13-21

Fitrix Screen Technical Reference

Suppose that you wish to modify the functionml h_cl ear inni dl evel . 4gl .
There are no triggers that allow you to add custom logic to functions classified as
midlevel, but you can do it with blocks. Hereis an exampleof ml h_cl ear in

m dl evel . 4ql :

function mh_clear()

#
#_define_var - define local variables

#_init - Initialize

initialize p_orders.* to null
initialize g_orders.* to null
initialize morders.* to null

end function
m h_cl ear

You seethedef i ne_var andi ni t blocksinm h_cl ear . Youwishto apply
the following block command and codeto thei ni t block:

after block mh_clear init
initialize ny_record.* to null ;

First you need to create a .ext file to put your block command in. Since this modifi-
cation does not relate to a specific "pluggable feature," you would create a
base. ext filetoputitin.

Next, youwould add thest art fi | e lineto specify which file you want to
apply the block to.

Here is how you would apply the above "after block" block command to
m dl evel . 4ql :

start file "mdlevel.4gl"

after block mh_clear init
initialize nmy_record.* to null ;

The result of the above block command would beinmi dl evel . 4gl asfollows:

function nlh_clear()

#
#_define_var - define local variables

#_init - Initialize

13-22 The Featurizer and Blocks

Fitrix Screen Technical Reference

initialize p_orders.* to null
initialize g_orders.* to null
initialize morders.* to null
initialize ny_record.* to null

end function
m h_cl ear

Block Command Logic

The function name and block ID can also be viewed as "scopes’, or "starting
points." The Featurizer first searches for the function name. Once it locates the
function name it searches for the block 1D within that function name. Once thisis
found, code manipulation takes place. Function name and block ID really stand for
"major known section of the file" and "minor known section of the file," respec-
tively. The block ID isthe block tag without the # .

Theuse of "from", "after", "to", "thru", or "through" can further define the block 1D
starting location. The keywords "thru" and "through” are synonymous.

The following function names and block 1Ds have special meaning when used in
Block Command Statements:

e The TOF function name specifies the top of thefile.
e The EOF function name specifies the end of thefile.

e TheNUL (or NULL) block ID means that there is no associated block tag for
this command.

* a_<field name> can beused to target "# after_field <field>."
* b_<field_name> can be used to target "# before field <field>."
* ¢ _<field_name> can be used to target "# after_change_in <field>."

* e _<event_name> can be used to target "#_on_event <event>."

Block Command Statements

This section lists the syntax of each Block Command Statement and it’s definition.

start file "filename"

The Difference Between Triggers and Blocks 13-23

Fitrix Screen Technical Reference

This command specifies that the commands below this line are working on the
specified filename. The filename must be in quotes. It isrequired as the first
block command in the .ext file, and may appear throughout the file to change
the file associated with the block commands that follow this. An example of
filename could bef g_f uncs. 4gl . For moreinformation refer to " Specifying
Filesfor Blocksto Work (start fil e)" on page 13-21.

before block <function name> <block ID>

Thisinserts the text directly above thefirst line of the block. The special func-
tion name of TOF insertsthe text at the top of thefile.

in block <function name> <block ID> {before | after}
"string"

Thisinserts the text either before or after the line that begins with the specified
string. "before” or "after" isrequired. The line identification string can be 50
characters max. The special function name of EOF is not allowed in this com-
mand.

after block <function name> <block ID>

Thisinsertsthe text after thelast line of the block. The special function name of
EOF inserts the text at the end of thefile.

replace block <function name> <block ID> [{from | after}
"string"] [{to | thru} "string"]

This replaces the specified block (or portion of a block) with the given text.

Y ou may specify "through" instead of "thru." The line identification strings can
be 50 characters max. If the entire block is specified (with no from/after or
to/thru strings) only the text portion of the block isreplaced. The#_ block tag
lineand the# _end line (if present) are preserved. The special function name
of EOF is not allowed in this command.

delete block <function name> <block ID> [{from | after}
"string"] [{to | thru} "string"]

This deletes the specified block (or portion of ablock). The line identification
strings can be 50 characters max. The special function name of EOF is not
allowed in this command.

13-24 The Featurizer and Blocks

Fitrix Screen Technical Reference

One special delete block command can be used to delete the entire contents of a
file.Itisdel ete bl ock TOF NUL thru "string",where"string" is
thelast linein thefile.

Note

Caution should be exercised when using the delete block command since it
deletes all existing block tags within the specified block, thus making it difficult
to maintain regenerability.

function define <function name>

Like the define trigger, this command only allows you to define new or addi-
tional local variables used in a specific function. If you need to add some local
variables to a specific function, use this command. If the function specified by
function name does not have the "define" keyword in it (there are no local vari-
ables previously defined in this function), the Featurizer puts the "define" key-
word in, before adding the trigger variables.

Note

Semicolons: All block commands except "delete block" require additional text
(trigger code) following the command. This additional text must be terminated
with a semicolon. In the case of the "delete block" command, you do not need a
semicolon, because thereis no trigger code associated with the block command.

Using Strings in Block Commands

Using strings in block commands should be avoided if possible. The reason being
the generated code may change in future releases causing the Featurizer to be
unable to locate your strings.

Since triggers and block tags will not change in future rel eases you can be sure your
code will remain compatible if you rely on these pointsin the code. However, if
you use a string to locate a block, the generated code may change over time with
enhancements which may break your string searches.

A string can consist of up to 50 characters.

The Difference Between Triggers and Blocks — 13-25

Fitrix Screen Technical Reference

Note

Very important: When using "string", you must include the text from the begin-
ning of the line through the "string" that you are trying to target. In other words,
you cannot specify a"string" that beginsin the middle of aline of text. If you try
this, it resultsin a Featurizer error. See the following example.

Example:
l et abc = xyz.

If you use"string" equal to "abc", the Featurizer errorsout. If you use "string" equal
to"let abc" (again, including text up to the beginning of the 4GL line you are trying
to target), the Featurizer findsthe line.

Illustrated aboveinthe "replace” and "delete” block commands, isthe use of strings
such as "after", "from"”, "to", and "thru/through.” When deciding which one to use
you must decide whether or not you want to include the line of code that matches
the "string" pattern in the effect of the change. In other words, using "from "abc""
in adelete block causes the line of code containing the string "abc" to be deleted as

well. Consider the following to help your decision:

o dfter "string" - line matching "string" is un-affected

o from"string" - line matching "string" is affected

* to"string" - line matching "string" is un-affected

e thru"string" - line matching "string" is affected

» through"string” - line matching "string" is affected
Note

Y ou may use double quotesin a string block command as long as you backslash
it.

The following example DOES NOT work:

"when scr_fld = "stock_nuni"

Backslashing the double quotes works.

"when scr_fld = \"stock_num""

13-26 The Featurizer and Blocks

Fitrix Screen Technical Reference

Block Identification & Grouping

The start of ablock isaways alinethat beginswith a#_ asthe first non-blank
character of theline.

The end of ablock is determined by the following rules:
A - The next block at the same indentation level, or
B - Any text to the left of the block identification line, or
C - An"end function” statement as the first words of the line, or
D - Anexplicit #_end block marker

Given these rules for ending blocks, any block indented to the right of another
block is considered contained in the first block.

Thisworkswell for programming constructs that have control processing (like
if/fend if, case/end case, foreach/end foreach, etc.)

The Difference Between Triggers and Blocks 13-27

Fitrix Screen Technical Reference

Consider the following program segment:

1 — # prc_rows - Process the rows in the cursor
2 foreach abc_cursor into ny_rec.*
3
4 — #_sleep - Had nmuch sleep lately?
pre_rows —g— if ny_rec.recent_sleep = "Y"
sl eep 6 then .
7 di splay "Need nore sleep..."
8 let ny_rec.need_sleep = "Y"
9 L end if
10
11 — #_col _level - Need a chol esterol |evel checkup?
12 if my_rec.eats_fats = "Y"
13 then
14 if my_rec.num hanburgers > 20
col _l evel 15 then
16 di splay "Checkup is due..."
17 l et nmy_rec.need_checkup = "Y"
18 end if
19 L— endif
20
21 end foreach
22
23— # nxt_blk - Next bl ock..
Block Start line End Line Rule
prc_rows 1 21 A
sleep 4 9 A
col_level 11 19 B

If you wish to group a number of blocks that have no control loop structure, you
may indent the blocks within the group.

If ablock isindented due to logical grouping, by convention there should be an
end bl ock blockname marker. Thisisnot required by the Featurizer, but it
is a convention that should be practiced.

13-28 The Featurizer and Blocks

Fitrix Screen Technical Reference

Example: (notice line #19)

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

#_bldcrmd - Build the shell command to run that gets a list of
all .trg and .ext files in the current directory and in the
customdirectory paths.

#_stfind - Start the find command & add current directory
let scratch = "cd ..; find ",
dir_nanme clipped, ".", dir_ext clipped

#_addcus - Add customdirectories

for cur_path = 1 to num paths
let scratch = scratch clipped, " ", dir_nane clipped,
".", cust_path[cur_path]

end for

#_finfind - Conplete the find comrand
let scratch = scratch clipped, "' (' -name '?*.trg’ -0 ",
"-name '?*.ext’ ')’ -print 2>/dev/null"

#_end bl ock bl dcnd
#_prcfiles - Process
while true

call c_conmmand(scratch)

returning stat_flag, stat_exit, sql_filter

_noelem - No nore el enments to read
if stat_flag < 1 then exit while end if

end while

Note that the "prcfiles” block would have ended thebl dcrd andf i nf i nd blocks
implicitly, but the explicit # _end block line should be used.

Note on Block Replace and Block Delete

If areplace or delete block command is passed a string that causes the deletion to
span ablock start or end line, the block 1D for the spanned block is deleted (for
example, it cannot be used in alater block I1D).

Example: If the following command is specified:

del ete bl ock TOF stfind from"dir_nanme" thru "for cur_path"

on the following file:

The Difference Between Triggers and Blocks 13-29

Fitrix Screen Technical Reference

#_bldcrmd - Build the shell command to run that gets a list of
all .trg and .ext files in the current directory and in the
customdirectory paths.

—— #_stfind - Start the find command & add current directory
let scratch = "cd ..; find ",

1
2
3
4
5
6
7
8

dir_nane clipped, ".", dir_ext clipped

—— #_addcus - Add customdirectories

deleted7
unusable 41|

blocks 12

for cur_path = 1 to num paths
let scratch = scratch clipped,
", cust_path[cur_path]

di r_nane clipped,

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

L— end for

#_finfind - Conplete the find command
let scratch = scratch clipped, "' (° -nane '?*.trg’ -o ",
"-name '?*.ext’ ')’ -print 2>/dev/null"

#_end bl ock bl dcnd
#_prcfiles - Process
while true

call c_conmmand(scratch)

returning stat_flag, stat_exit, sql _filter

#_noelem - No nore elenments to read
if stat_flag < 1 then exit while end if

end while

Given thefile above, lines 7 through 10 would be deleted. Since the command
spanned over the top of theaddcus block, theaddcus block ID cannot be used
any longer. The deletion also spanned past the end of the st f i nd block, and the
st fi nd block ID cannot be used any longer. The larger bl dcnd block ID isleft
intact because the del etion was completely within it.

Spanning blocks for deletion is not suggested because it disturbs the logical group-

ing of blocks. Int

he above example, it would have been better to delete both the

st fi nd and addcus blocks, then insert any new logic above thef i nfi nd

block.

Note

If the text of acommand inserts or replaces block labels, the text of the insertion
is scanned for any new block IDs. The block scan is limited to the end of the

insertion.

13-30 The Featurizer and Blocks

Fitrix Screen Technical Reference

When inserting blocks, thereis no way to have any new block label span past the
end of theinsertion.

Custom Block Id (Tags) Conventions

» Block markers contain no white space.
« Block markers must be unique to 20 characters.

« Block markers should be long enough to uniquely identify the block within the
function and still be somewhat readable (i.e., no # zz and no
real_wordy_block identifiers, even if they are unique to 20 chars).

» Block markers must consist of only the following characters: [0-9], [a-Z], [A-
Z], or _(underscore).

« By convention, block markers are lowercase |etters followed by a space-dash-
space, followed by averbal block description starting in an uppercase letter.

Examples:
#_init - Initialize
#_verify_credit - Verify the credit limt
#_In_calc - Calculate the order |ine anount

The block identifier for ablock should never change. The description can change,
the code in the block can change, but not the identifier. Others may key off this
identifier.

The Difference Between Triggers and Blocks — 13-31

Fitrix Screen Technical Reference

Pluggable Features and
Feature Sets

Pluggable Features: areindividual featuresthat are stored in source code exten-
sion (.ext) files. The filename specifies the feature that it contains. For example, a
file containing source code for the "balance forward" feature might be called

bal fwd. ext .

Feature Sets: contain alist of features to apply to the application. Feature set
filesare named base. set . Each feature contained in abase. set fileis stored
inan .ext file. .ext files are specified one to aline, and arelisted in their order of
merging.

Once you have afeature self-contained in a .ext file, you have the ability to "plug"
the feature into the program. To "plug in" afeature means that you instruct the Fea-
turizer to merge the code just for that feature into the .4gl source code files. The
Featurizer takes the feature-driving code from the .ext file and merge it into the rest
of the source code.

Pluggable Features (.ext Files)

An .ext file contains all of the source code necessary to drive one feature. Source
codeis either in the form of blocks or triggers. See the previous section for adis-
cussion of block commands. Y ou determine which .4gl file to perform work on by
using the start file block command. A start file command must precede any block
commands or triggers. Y ou can specify multiple start file commandsin an .ext file
to perform modifications to multiplefiles.

Note

In order for the source code in your .ext files to be merged, you must list the
name of each .ext filein afeature set (base. set) file.

Extension (.ext) files are very similar to .trg files, except they contain code that
drives one specific feature. Trigger files mainly contain modifications made to a
specific screen, while .ext files contain code that may effect many screens.

13-32 The Featurizer and Blocks

Fitrix Screen Technical Reference

Extension files are not tied to screens like .trg files. The trigger concept requires
that .trg files correspond with the .per files they work on. Thus .trg files have the
same prefix as .per files.

The prefix of an .ext file describes the feature for which it contains code. For exam-
ple, in "approval.ext”, you might find code within triggers and block commands
that drives an "approval entry” feature. For "secur.ext", you could find code in trig-
gers and block commands that institutes security on a program.

Note

Extension file names must consist of only the following characters. [0-9], [a-Z],
[A-Z], and _(underscore).

Asan example, we usethe or der . t r g filefrom the $f g/ code-

gen/ deno. 4gm scr eenb5. 4gs program directory. This program contains the
order form program, which enters datainto thest or es database. Thefollowingis
added trigger logic that drives an "approval” feature that requires entry of an
approval code on al orders over $500.00. Here is the conventional way the feature
iscoded into a.trg file (seetheaf t er _i nput and at _eof trigger):

defaults
swi t chbox_i t ens
cust S cust;

input 1
static_define
upd_cust _filter char (40);

af ter _i nput
if p_orders.t_price >= 500.00

then
call need_approval ()
end if ;
on_event add_cust
call add_on("cust", "A", "", "");

on_event update_cust

if menu_item = "update"

then
let upd_cust_filter = "custoner.custoner_num= "

p_orders. cust omer _num cl i pped

call add_on("cust", "U', upd_cust_filter, "")
| et p_orders. custonmer_num = get_vararg()
if I'lh_l ookup("custoner",false) then end if
call I1h_display()

Pluggable Features and Feature Sets ~ 13-33

Fitrix Screen Technical Reference

end if;

after_field custoner_num
if p_orders.custoner_num= 0

then
call add_on("cust™, "A', "", ")
| et p_orders.custoner_num = get_vararg()
end if;
at _eof

function need_approval ()

#
this function pronpts the user for an approval code. the user
is kept within the input command until the proper approval code
1is entered
#

define

code_entered char (6)

pronpt "Order is over $500. Enter the approval code: " for code_entere
if code_entered != "denver"
then

error "You entered the wong approval code. Press [ESC] to try again
let nxt_fld = "custoner_nunf

end if

end function
need_approval ()

Notice how the "approval" feature is interspersed with the other features and
embellishments that you see in the trigger file: invoking the add-on screen to add a
customer, invoking the add-on screen to update a customer, etc.

Now, with .ext files, the specific logic that drives the "approval" feature can be
taken out of the trigger file and placed into an .ext file. This way you can easily
"plug in" or "unplug" this feature from your different applications. Hereisthe
"approval” feature coded entirely in the "approval.ext" file:

start file "header. 4gl"

after_i nput
if p_orders.t_price >= 500.00

13-34 The Featurizer and Blocks

Fitrix Screen Technical Reference

then
call need_approval ()
end if

at _eof

function need_approval ()

#
this function pronpts the user for an approval code. the user
is kept within the input command until the proper approval code
is entered.
#
define
code_ent ered char (6)
pronpt "Order is over $500. Enter the approval code: " for code_entered
if code_entered != "denver"
then
error "You entered the wong approval code. Press [ESC] to try
again."
let nxt_fld = "custonmer_nunt
end if

end function
need_approval ()

’

Unlike a .trg file, an .ext file has no sections (defaults, input 1, or input 2). There-
fore, a"start file" command is always issued in an .ext file to indicate which file to
insert the code.

Note

When merging code, the Featurizer always merges the .trg files first, and then
the .ext files. Thisisimportant because you may have code in your .trg file that
conflicts with your .ext file code.

Pluggable Features and Feature Sets 13-35

Fitrix Screen Technical Reference

Feature Set (base.set) Files

Y ou instruct the Featurizer which features to plug in through abase. set file. A
base. set fileholdsthe user-specified "settings" for that program. The
base. set fileistheuser'sfeaturelist.

You specify featuresinthe base. set file asthe names of the .ext files without
the .ext extensions. In abase. set file, anything placed one space after the fea-
tureisnot read by the Featurizer. Y ou can use therest of the line for comments. The
following example of base. set mergesthe code for the "approval" and
"instvals’ featuresinto the .4gl files:

approval - pronpts for approval for orders of $500
instvals - pulls up list of valid values for shipping instructions

When you invoke the Featurizer, the featuresinthebase. set it are merged inthe
order listed. Each featurelisted in thebase. set file must have an associated .ext
file of the same name.

Note

Since the Featurizer looks for only one base. set file, you must be sure that
thebase. set fileinyour current directory contains all of the features you
want to incorporate into your program. In other words, if you have a common
function specified in thebase. set directory at your application level and you
want to include those functions in a specific program, you must either specify
that application level base. set file, or specify each individua .ext file listed
inthat application base. set inanew base. set filelocated in the program
directory. If you want to add new features to your program with .ext files, you
must be sure to add those featuresto the base. set file.

13-36 The Featurizer and Blocks

Fitrix Screen Technical Reference

Pre-merged Generated Files
(.org Files)

The Code Generator and the Featurizer both create .org files. Whenever atrigger or
block ismerged into a4dl file, a.org fileis created which is a copy of the .4gl file
before anything gets merged into it. The .org file contains source code in its gener-
ated but pre-merged form.

The Code Generator and .org Files

When the Code Generator isrun, it searchesto seeif any .org files are present in the
current directory, or in the custom directory path. If it doesfind a.org file, the Code
Generator creates a new .org file with the same filename prefix. If a.org file is not
found, a .4gl fileis created instead.

The Featurizer and .org Files

Whenever the Featurizer merges a block or atrigger into a .4gl file that does not
have an associated .org file, a.org fileis created by copying the .4gl to a .org. If a
.org file does not exist for a specific .4gl, such asheader . 4gl , the Featurizer
assumes that this particular .4gl does not have any triggers or blocksin it. The Fea-
turizer then copiesthat header . 4gl filetoaheader . or g file. Oncea.orgfile
exists, the Featurizer 1oads the .org, merges the triggers and blocksinto it, then cre-
ates anew .4gl file that contains the merged code. Every time a merge takes place,
the merge is performed on the .org file to create a new .4ql.

The Featurizer creates an .org filein the current directory for every file specified
with a start file command.

Removing Triggers and Blocks from Existing .4gl
Files

Thefollowing logic only applies to the situation where you used to have triggers or
blocks merged into a file and decide that you no longer want anything merged into
that file.

Pre-merged Generated Files (.org Files) 13-37

Fitrix Screen Technical Reference

Say youoncehad ascreen. trg filewithanafter fi el d trigger that has
already been merged into header . 4gl and you decide you no longer want it. All
you have to do is remove that trigger file and then run the Featurizer.

Specia logic has been added to the Featurizer to automatically handle this situa-
tion. The Featurizer copiesthe header . or g, which must exist if the

header . 4gl has been merged before, over to header . 4gl , thus restoring
header . 4gl toit'sorigina generated state. The Featurizer does the same if you
once had ablock or trigger specified in a .ext file, and then decided to removeit.

General Flow of the
Featurizer

The following describes the operational flow of the Featurizer.
1. Load triggers and feature sets into the database.

All .trg and .ext files for the specified feature set are located in the current
directory and the custom directory search path. If any of these files have been
modified since the last compile, they are marked as modified, and loaded into
the database.

2. Build a list of files to process.

Thisstepiseither very simpleor fairly complex. If afileor list of filesis passed
onto the command line, the Featurizer merges only thosefiles. The- f or ce
option is assumed if files are specified on the command line.

If no files are specified on the command line, the Featurizer must build the list.
It does thisin two phases.

First, it buildstheinitial list as all files that have been referenced in all .trg and
.ext filesin the current directory and the custom directory search path.

If the- f or ce option is specified on the command line, thisinitial list is used,
and step #2 is compl ete.

13-38 The Featurizer and Blocks

Fitrix Screen Technical Reference

Second, the Featurizer checks each .trg and .ext filein thelist to seeif they have
been modified since the last merge. If afile has not been modified (the modifi-
cation date of thefile is the same as the .4gl file), thefileisignored. If the file
has been modified since the last merge, then the Featurizer re-merges that file.

3. From the list of files to process, each file is Pre-processed as follows:

A. Determine the original (.org) source file to work from, and load it into
memory.

The .org file is usually in the current directory, but if it doesn't exist here,
the custom directory search path is searched to find the .org file to work
from.

The name of the .org file isbuilt by appending ".org" to the destination file-
name, or by replacing any 3 character file extension with "org." It then
loads this .org file into memory for processing.

If no .org fileisfound (meeting this naming criteria) in the search, a UNIX
cp command isrun on the .4gl file to create a .org in the current directory.
The name of this .org fileis the same as the destination filename with any 3
character extension replaced by ".org." If the destination filename does not
have a 3 character extension, then .org is appended to the filename to deter-
mine the .org filename (up to 14 characters).

B. Build alist of commands (CMDs) to apply to thisfile.

Commands (CMDs) are triggers and block commands stored in the .trg and
.ext filesfor this feature set.

The sequence that CMDs are merged into the code is significant. The order
is determined by the file they are located in, and their relative position
within that file. The ordering rules follow:

e CMDsstored in lower level directory search paths are applied before
CMDsinthe current directory. The default order is .4gs, then .4gc, then the
current directory. This order may be overridden with the CUSTPATH set-
ting. For more information on the order CMDs get merged refer to "Version
Control" on page 16-1.

* All CMDsin one directory are processed before any CMDs in another
directory in the search path.

General Flow of the Featurizer 13-39

Fitrix Screen Technical Reference

e Within any directory, CMDslocated in .trg files are merged before CMDs
located in .ext files. In other words, triggers are merged before blocks.

» Theorder of .ext filesis determined by the order that the features are speci-
fiedinthebase. set filefor thisfeature set.

e CMDsarethen merged in their order within the .trg and .ext files.

Note

Triggers are physically implemented as "replace block" commands. Any trigger
that was inserted in aprior CMD isreplaced if that sametrigger is defined in a
later CMD.

C. Executethat list of commandsin their proper sequence.

After the list of CMDs has been built, each CMD isindividually processed.
If the block within the .org file isn't found, an error is displayed unless the
CMD originated from a higher directory in the search path.

D. Create .tmp files and/or .4gl files.

The Featurizer outputs to a.tmp file. It then compares the .tmp file with the
existing .4gl file, if there is one. If there is no difference, the original .4gl
file is untouched, thus preserving the time stamp of that .4gl file. If no
Agl’s are present, the Featurizer copies the .tmp filesinto .4gl files.

Do not use .tmp extensions for your own files. If you do, your files will be
removed.

13-40 The Featurizer and Blocks

Fitrix Screen Technical Reference

Filename Extensions

Extension | File Explanation

Agm Application module directory (A/R).

Ags 4GL source code directory.

Agc General custom 4GL source code directory.

.abc Example used for specific (non .4gc) custom source code directo-
ries.

Agl 4GL source codefile.

A4go RDS compiled 4GL object code file.

.0 C Compiled 4GL object codefile.

Age Executable program (run directly from the O/S).

Agi Executable program (run from the fglgo or fgldb runners).

.per Source code for a data entry screen.

frm Compiled representation of the .per file.

trg Trigger file associated with a screen.

.ext Source code extension file associated with a plug in feature.

Set File that contains the list of featuresin a feature set.

.opt File that defines the functionality of certain triggers.

tmp Reserved for use by the Featurizer and Code Generator.

.org File that contains the original generated code before the Featur-

izer merge.

Filename Extensions 13-41

Fitrix Screen Technical Reference

Note

Do not use .tmp extensions for your files. The .tmp extension is used by the Fea-
turizer aswell as the Code Generator. If you use a.tmp extension the file will be
removed.

Featurizer Environment
Variables

$£qg: Path to the Fitrix Screen install directory (used to find executables so you do
not have to be within $f g while running the Featurizer).

$cust_path! If thisvariable is set before code generation and no CUSTPATH
variable exists in an existing Makefile, then the value of $cust _pat h iswritten
into the new Makefile. If CUSTPATH isaready set in a Makefile, the

$cust _pat h variableisignored. This variable provides a path that the Featurizer
searches for .trg and .ext files to merge. For more information refer to "Version
Control and the Code Generator" on page 16-8.

$feature_set: Thisoptional variable contains the name of a*.set file to use.

$force_merge: If settoY, f gl pp re-mergesall triggers and blocks regardless
of time stamps.

$FGLPPDIR: Directory containing thef gl pp executable program.

$FGLPPOPTIONS: Directory containing global optionsfile (f gl pp. or g and
f gl pp. opt) with default variable settings. Thisis used to set arguments such as -
C for running fglpp from f g. make.

$fglppflags: Containsextraflagsto passtothef gl pp program (whether
caled with f gl pp, f g. make, etc.) such as-C.

The following backwards compatibility flags are discussed in detail in "Maintain-
ing Backwards Compatibility—The Options Files* on page 2-19.

$define_trig: If setto"replace” defi ne andst ati c_defi ne triggers
are replaced by subsequent triggersinthe $cust _pat h.

13-42 The Featurizer and Blocks

Fitrix Screen Technical Reference

$at_eof trig: If setto"replace” at _eof triggersarereplaced by subsequent
triggersinthe $cust _pat h.

$swbox_trig: If setto"replace,” swbox_t ri g triggers are replaced by subse-
quent triggersinthe $cust _pat h.

$fglpp_fatal warn: Ifsetto,f gl pp givesafata error if amissing block
isfound.

Featurizer Environment Variables 13-43

Fitrix Screen Technical Reference

Featurizer Limitations

Limitations Number Notes
filesit can pre-processin one directory 50 A
custom directories to search in CUSTPATH 10 A
featuresin afeature set 100 A
characters in custom directory extensions 3 B

block definitionsin onefile 1000 A
linesinthe (.org + .trg + al .ext’s) 7500 A,C
triggers and block CMD’ sfor an .org file unlimited D
charactersin oneline unlimited E
block nesting levels 10 A

13-44 The Featurizer and Blocks

Fitrix Screen Technical Reference

This number represents an internal program array limit. It can be expanded in
future versionsiif the number is found inadequate.

By convention

Thislimit represents the total number of lines (excluding blank lines) in the
.org file plus the number of lines of code from all .trg .ext files that reference
this .org.

Any number of triggers and block commands may be applied to an .org file—
as long as the total number of lines doesn’t exceed the limit specified in (C)
above.

This represents the number of charactersto the right of the indentation level. If
this number exceed 70 characters, the lines are (internally) split into as many
70 character lines as necessary. The only effect isthat each split internally con-
sumes a new line (of which there are alimited number—see (C) above). By
convention, wetry to keep our right margin at 70 characters or below for aes-
thetic purposes. We use the row of 70 pound signs (#) surrounding function
declarations as a margin guide.

Featurizer Limitations 13-45

Fitrix Screen Technical Reference

Featurizer Troubleshooting
Tips
Question: Where is the Featurizer located?

Answer: The utility, f gl pp. 4ge, islocated in the $f g/ code-
gen/ screen. 4gn f gl pp. 4gs directory.

Question: The Featurizer keeps displaying a message stating that my 4GL source
is newer than my trigger file and skipping my trigger. Why is this happening and
what should | do?

Answer: The Featurizer is designed to behave in asimilar fashion to the make
and f g. make utilities. It knows if atrigger file has changed since the associated
source was last changed and will not merge atrigger that is older than its associated
source code. Thiswas done to prevent slowdowns during compilation and linking
due to merging of triggers.

If f g. make isrunwiththe- nf it causesthetrigger and 4gl time stamping logic to
be bypassed.

If the utility isrun directly, it can be invoked with the - f or ce option. This causes
aforced merge to occur.

Specific triggers can be forced to merge by either writing them in vi or using the
touch utility. Use of the touch utility on afile which does not exist creates a zero
length trigger file. This causes the utility to remove triggers from your 4GL source.

When the Featurizer isinvoked from the Code Generator, a forced mergeis used
because the newer 4GL code istriggerless and needs to be merged to be brought up
to date. The time stamps on the filesimmediately following code generation do not
reflect the current stamp of the 4GL source filesrelative to the trigger files.

13-46 The Featurizer and Blocks

Fitrix Screen Technical Reference

Question: What changes to my program require regeneration of my program vs.
simply merging my fileswith f g. make?

Answer:

1. Addition of new fieldsto a screen.

2. Deletion of fields from a screen.

3. Addition or deletion of lookups and zooms.
4. Addition of aglobal event.

5. Addition of alocal event.

6. Changesto your table schemas.

Question: Are comments acceptable in my triggers files?
Answer: Comments are acceptable in most cases.

Question: How do | cause the Featurizer to never berun from f g. make, the
painter or the generator until | decide | want to turn it back on?

Answer: Set the environmental variableno_ner ge=Y and export it to your envi-
ronment.

Example:
no_mer ge=Y; export no_nerge

Question: How do | force amerge of my trigger filesif | just want the merge to
aways be run when | run fg.make?

Answer: Set the environmental variablef or ce_ner ge=Y and export it to your
environment.

Example:

force_nerge=Y; export force_nerge

Featurizer Troubleshooting Tips ~ 13-47

Fitrix Screen Technical Reference

Question: Where do | look for error messages explaining why the Featurizer is
aborting?

Answer: These can befound inthefilef gl pp. err. Thisfileresidesin the pro-
gram directory in which you are currently working.

Block Manipulation
Examples

The following are some examples of block manipulation commands. These exam-
ples use the following function. This function would typically be found in an .org
file.

function Il h_dupchk()

#
define
dup_rowi d integer

#_dup_sql _stnt - the sql used to check for duplicate rows
if dup_prep is nul

then
#_prepare_sql - the preparation of the sq
let dup_prep = "Y"
let scratch = "select rowid from custoner "
end if

end function
11 h_dupchk()

In the above example, thefunction-id isl | h_dupchk, and there are two block-ids
specified, named dup_sql _st nt and pr epar e_sql . What follows are exam-
ples of some block commands, the impact on the above code, along with any Expla-
nation:.

13-48 The Featurizer and Blocks

Fitrix Screen Technical Reference

1. after block <function name> <block ID>

The .ext file:

after block |l h_dupchk dup_sql _stnt
di splay "CODE |I'S PLACED HERE";

Resulting code

function Il h_dupchk()

#
define
dup_row d integer

#_dup_sqgl _stnmt - the sql used to check for duplicate rows
if dup_prep is null

then
#_prepare_sql - the preparation of the sql
let dup_prep = "Y"
let scratch = "select rowid fromcustoner "
end if

di splay "CODE | S PLACED HERE"
end function
11 h_dupchk()
Explanation:

Based on the definition of what signifiesablock, theblockdup_sql _stnt is
terminated by the "lesser" indentation of the line "end function." Hence, any
codethat is placed after theblock dup_sql _st nt isplaced after theend i f
line.

Block Manipulation Examples 13-49

Fitrix Screen Technical Reference

2. before block <function name> <block ID>

The .ext file:

before bl ock |1 h_dupchk dup_sql _stnt
di splay "CODE |I'S PLACED HERE";

Resulting code:

function Il h_dupchk()
#

define
dup_row d integer

di splay "CODE |'S PLACED HERE"
#_dup_sql _stnt - the sql used to check for duplicate rows
if dup_prep is null

t hen
#_prepare_sql - the preparation of the sql
let dup_prep = "Y"
let scratch = "select rowid from custoner "
end if

end function
11 h_dupchk()

Explanation:
Block code comes before the specified block tag.

13-50 The Featurizer and Blocks

Fitrix Screen Technical Reference

3. before block <function name> <block ID>
The .ext file:

before bl ock |1 h_dupchk prepare_sql
di splay "CODE |I'S PLACED HERE";

Resulting code:

function Il h_dupchk()

#
define
dup_row d integer

#_dup_sqgl _stnmt - the sql used to check for duplicate rows
if dup_prep is null

then
di splay "CODE | S PLACED HERE"
#_prepare_sql - the preparation of the sql
let dup_prep = "Y"
let scratch = "select rowid fromcustomer "
end if

end function
11 h_dupchk()

Explanation:

The custom code is put before the block tag pr epar e_sql .

Block Manipulation Examples 13-51

Fitrix Screen Technical Reference

4. after block <function name> <block ID>

The .ext file:

after block Ilh_dupchk prepare_sql
di splay "CODE |I'S PLACED HERE";

Resulting code:

function Il h_dupchk()
#

define
dup_row d integer

#_dup_sql _stnt - the sql used to check for duplicate rows
if dup_prep is null

then
#_prepare_sql - the preparation of the sql
let dup_prep = "Y"
let scratch = "select rowid from custoner "
di splay "CODE |I'S PLACED HERE"

end if

end function
11 h_dupchk()

Explanation:

The end of the block named pr epar e_sql isthel et scratch =line,
based on the "lesser” indentation of “end if" line which follows it. Hence the
codeisput after thel et scratch =line

13-52 The Featurizer and Blocks

Fitrix Screen Technical Reference

5. in block <function name> <block ID> before "string"

The .ext file:

in block Il h_dupchk prepare_sql before "let dup_prep"
di splay "CODE |I'S PLACED HERE";

Resulting code:

function Il h_dupchk()
#

define
dup_row d integer

#_dup_sqgl _stnmt - the sql used to check for duplicate rows
if dup_prep is null
then
#_prepare_sql - the preparation of the sql
di splay "CODE | S PLACED HERE"
let dup_prep = "Y"
let scratch = "select rowi d from customer "
end if

end function
11 h_dupchk()

Explanation:

From the block tag specified, a pattern/string is searched for. The block com-
mand keyword of "before" specifies the .ext code to be inserted before the pat-
tern/string specified. If the pattern/string could not be found, an error is
generated. If thereis more than one occurrence of the string found, the 4GL
Pre-processor uses the first occurrence. In other words, if the string specified
had been "let" instead of | et dup_pr ep, the above results would have been
the same.

Block Manipulation Examples 13-53

Fitrix Screen Technical Reference

6. in block <function name> <block ID> after "string"

The .ext file:

in block Il h_dupchk prepare_sql after "let"
di splay "CODE |I'S PLACED HERE"

Resulting code:

function Il h_dupchk()
#

define
dup_row d integer

#_dup_sql _stnt - the sql used to check for duplicate rows
if dup_prep is nul
then
#_prepare_sql - the preparation of the sq
let dup_prep = "Y"
di splay "CODE | S PLACED HERE"
let scratch = "select rowid fromcustomer "
end if

end function
11 h_dupchk()

Explanation:

From the block tag specified, a pattern/string is searched for. The block com-
mand keyword of "after" specifies the .ext code to be inserted after the pat-
tern/string specified. If the pattern/string could not be found, an error is
generated. If there is more than one occurrence of the string found, the 4GL
Pre-processor uses the first occurrence. In other words, if the string specified
had been "let" instead of | et dup_pr ep, the above results would have been
the same.

13-54 The Featurizer and Blocks

Fitrix Screen Technical Reference

7. replace block <function name> <block ID>
The .ext file:

repl ace bl ock |1 h_dupchk prepare_sql
di splay "CODE |I'S PLACED HERE";

Resulting code:

function Il h_dupchk()
#

define
dup_row d integer

#_dup_sqgl _stnmt - the sql used to check for duplicate rows
if dup_prep is null
then
#_prepare_sql - the preparation of the sql
di splay "CODE | S PLACED HERE"
end if

end function
11 h_dupchk()

Explanation:

The whole block named pr epar e_sql isreplaced. Notice that the original
block tag is left intact.

Block Manipulation Examples 13-55

Fitrix Screen Technical Reference

8. replace block <function name> <block ID>

The .ext file:

replace bl ock Il h_dupchk dup_sql _stnt
di splay "CODE |I'S PLACED HERE";

Resulting code:

function Il h_dupchk()

#
define
dup_row d integer

#_dup_sql _stnt - the sql used to check for duplicate rows
di splay "CODE | S PLACED HERE"

end function
11 h_dupchk()

Explanation:

Thewhole block named dup_sql _st nt isreplaced. Notice that the original
block tag is left intact.

13-56 The Featurizer and Blocks

Fitrix Screen Technical Reference

9. replace block <function name> <block ID> after
"string"

The .ext file:

replace bl ock Il h_dupchk dup_sql _stnt after "if dup_prep"
di splay "CODE |I'S PLACED HERE";

Resulting code:

function Il h_dupchk()

#
define
dup_row d integer

#_dup_sqgl _stnmt - the sql used to check for duplicate rows
if dup_prep is null
di splay "CODE |I'S PLACED HERE"

end function

11 h_dupchk()

Explanation:

Notice this block goes to a certain point in a block, that point denoted by a
match in the supplied pattern/string, and then replaces from that point on, the
existing block with what was supplied as block text. Thisis similar to thei n
bl ock command, except it does replacement as opposed to insertion.

Block Manipulation Examples 13-57

Fitrix Screen Technical Reference

10.replace block <function name> <block
ID> from "string"

The .ext file:

replace block Il h_dupchk dup_sql _stnt from"if dup_prep"
di splay "CODE |I'S PLACED HERE";

Resulting code:

function Il h_dupchk()

#
define
dup_row d integer

#_dup_sql _stnt - the sql used to check for duplicate rows
di splay "CODE | S PLACED HERE"

end function
11 h_dupchk()

Explanation:

Same as example #9, except using thef rom " st ri ng" causestheline con-
taining the matching string to be replaced as well. In example #9, the use of
after "string" causesthe line containing the matching string to be pre-

served, and not be a part of the replacement.

13-58 The Featurizer and Blocks

Fitrix Screen Technical Reference

11.replace block <function name> <block ID> from
"string" to "string"
The .ext file:
repl ace bl ock Il h_dupchk dup_sql _stnt
from"if dup_prep" to "let scratch”

di splay "CODE |S PLACED HERE";

Resulting code:

function Il h_dupchk()
#
define
dup_row d integer

#_dup_sql _stnt - the sql used to check for duplicate rows
di splay "CODE | S PLACED HERE"

let scratch = "select rowid fromcustoner "
end if

end function
11 h_dupchk()

Explanation:

Notice codeis replaced for the line containing the matching f r om st ri ng,
up to, but not including, the line containingthet o stri ng.

Block Manipulation Examples 13-59

Fitrix Screen Technical Reference

12 .replace block <function name> <block ID> from
"string" thru "string"

The .ext file:
repl ace bl ock I1h_dupchk dup_sql _stnt
from"if dup_prep" thru "let scratch”

di splay "CCDE | S PLACED HERE";

Resulting code:

#
define
dup_row d i nteger

#_dup_sql _stnt - the sql used to check for duplicate rows
di splay "CODE |'S PLACED HERE"
end if

end function
11 h_dupchk()

Explanation:

Notice codeis replaced for the line containing the matching f r om st ri ng,
up to, and including, the line containing thet hr u st ri ng. Also notice that
ther epl ace block command above is split onto two different lines. You are

allowed to do this, aslong as akeyword like "after”, "from", "to", or "thru" start
this new line, asit does in the above example (the keyword "from").

13-60 The Featurizer and Blocks

Fitrix Screen Technical Reference

13.replace block <function name> <block ID> thru
"string"

The .ext file:

replace bl ock Il h_dupchk dup_sql _stnt thru "let scratch"
di splay "CODE |I'S PLACED HERE";

Resulting code:

function Il h_dupchk()

#
define
dup_row d integer
di splay "CODE | S PLACED HERE"
end if

end function
11 h_dupchk()

Explanation:

Code isreplaced from block starting point thru/through "string."

Block Manipulation Examples 13-61

Fitrix Screen Technical Reference

14 .delete block <function name> <block ID>

The .ext file:

del ete bl ock Il h_dupchk dup_sql _stnt;

Resulting code:

#
define
dup_row d i nteger

end function
11 h_dupchk()

Explanation:
The block is deleted. Notice that the block-id tags are removed as well.
15.delete block <function name> NUL

The .ext file:

del ete bl ock |1 h_dupchk NUL;
Resulting code:
nothing
Explanation:

The function is deleted. Notice that the block-id tags are removed as well.

13-62 The Featurizer and Blocks

Fitrix Screen Technical Reference

l16.delete block <function name> <block ID> from "string"
to "string"

The .ext file:

del ete bl ock Il h_dupchk dup_sql _stnt
from"#_prepare_sql" to "let scratch”;

Resulting code:

function Il h_dupchk()

#
define
dup_row d integer
#_dup_sqgl _stnmt - the sql used to check for duplicate rows
if dup_prep is null
then
let scratch = "select rowid fromcustoner "
end if

end function
11 h_dupchk()

Explanation:
The block is deleted from target string to target string.

Block Manipulation Examples 13-63

Fitrix Screen Technical Reference

17.delete block <function name> <block ID> after
"string" through "string"

The .ext file:

del ete bl ock Il h_dupchk dup_sql _stnt
after "# prepare_sqgl" through "l et scratch";

Resulting code:

function Il h_dupchk()

#
define
dup_row d integer
#_dup_sql _stnt - the sql used to check for duplicate rows
if dup_prep is nul
then
#_prepare_sql - the preparation of the sq
end if

end function
11 h_dupchk();

Explanation:

Theblock is deleted, preservingtheaf t er "string", but removing the
t hrough "string".

18 .before block TOF NUL

The .ext file:

bef ore bl ock TOF NUL
di spl ay "CODE PUT HERE"

Explanation:

Using the function name value of TOF (top of file) allowsyou to put code at the
very top of any file. In this case, since thisisan "input 1" section, the file mod-
ified is header.4gl. Since thereisn’'t avalid function name to search for, you
must specify the keyword NUL for the function name.

13-64 The Featurizer and Blocks

Fitrix Screen Technical Reference

19 .before block NUL <function name>

The .ext file:

bef ore bl ock NUL prepare_sql
di spl ay "CODE PUT HERE";

Explanation:

Since the block ID is NUL, the search for function name (which is
"prepare_sgl") starts from the top of the file, and "acts" on the first block tag
that matches the function name.

20.after block EOF NUL

The .ext file:

after bl ock EOF NUL
di spl ay "CODE PUT HERE";

Explanation:

Block codeis put at end of file. Thisisthe command that isissued when you
usean at _eof block aswell. Thisisto accomplishanat _eof block inan
.ext feature set file.

21.function_define <function name>

The .ext file:

function_define main
new_var smallint;

Explanation:

Theresult isthe variable new_var added to the list of local variables defined
in the function named mai n. If no local variables exist before merge, and con-
sequently no def i ne keyword in the function mai n, then thedef i ne key-
word is added, along with the block variables specified.

Block Manipulation Examples — 13-65

Fitrix Screen Technical Reference

22

23.

24

.before block <function name> b _<block ID>

The .ext file:

before block Il h_b_field b_custoner_num
display "Hello world";

Explanation:

Theb_ specia block marker allowsyou to target the#_before_fiel d
block tag.

before block <function name> a <block ID>

The .ext file:

before block Il h_a_field a_custoner_num
display "Hello world";

Explanation:

Thea_special block marker allowsyou to target the# _after _fi el d block
tag.

.before block <function name> c_<block ID>

The .ext file:

before block Il1h_a_field c_custoner_num
display "Hello world";

Explanation:

The c_ special block marker allowsyou to target the#_aft er _change_in
block tag.

13-66 The Featurizer and Blocks

Compiling and
Running Your
Programs

This chapter covers the following:
n Compiling your programs

n Usingthef g. nake script

=)

Compiling and linking libraries

=)

Compiling your entire application

=}

Executing the final program

14

14-1

Fitrix Screen Technical Reference

Compiling Generated Code

"Compiling code" means turning Informix forms, 4gl source code, and triggersinto
aworking program. Fitrix Screen provides the facilities to do this for asingle pro-
gram or for an entire set of programs.

The script for compiling your generated codeisf g. make. It has the capability to
compileindividual programs, all the programsin a module, or even an entire appli-
cation. Thef g. make script is capable of compiling programs into pseudo-code
(commonly called p-code) object files, if you have the INFORMIX-4GL Rapid
Development System, as well as compiling using the Informix c4gl compiler.

If you have both Informix products on your system (4GL and RDS), f g. make
assumes that you want to compile using the RDS p-code compiler. If you wish to
override this behavior, use the -F flag (e.g., f g. make - F)toforcef g. make to
use the c4gl compiler.

In genera, the stepsf g. make goes through are:

1. If run at the application level, it compiles each module listed in the application
Makefile.

2. If run at the module level, it compiles each library and program listed in the
module Makefi | e.

3. Inalibrary, f g. nake:
a. converts form source (.per) filesto form (.frm) files;
b. converts 4GL source (.4gl) filesto object (.4go or .0) files;
c. loads object filesinto the archive (.afile or .RDS directory);
d. removes the object files produced in step b.

4. Inaprogram directory, f g. make:

a. mergestrigger logic from .trg and .ext files with .org files to produce .4gl
files.

b. converts form source (.per) filesto form (.frm) files;

c. converts4GL source (.4gl) filesto abject (.4go or .0) files;

14-2 Compiling and Running Your Programs

Fitrix Screen Technical Reference

d. linksthe object files together with objects from library archiveslisted in the
program Makef i | e to produce the program (.4gi or .4ge) file.

Note

Thef g. make script requiresthat the standard UNIX make utility be present on
every machine it runsin order to determine whether afile needs to be compiled
or not. If your machine does not have a C Development System, then you need
to copy the/ bi n/ make (or equivalent) script from amachine that contains the
C Development System to the machine where you are running your applications.

Differences Between RDS and 4GL
Compilation

INFORMIX-4GL can be compiled into two different forms: a binary executable
(machine specific) program, or a pseudo-code file that is interpreted by a"p-code
runner" program. The processto produce thefirst, is called a"4GL compile,” while
the process used to produce the second is called an "RDS compile.”

During the 4GL compile, the 4GL source code files (extension .4gl) go through
severa transformations. The .4gl fileisfirst transformed by an Informix program
called f glc to an Informix ESQL-C file (.ec). Thefileis then transformed into a
pure C code file (.c). At this point, compilation is turned over to cc, the UNIX C
compiler on your system. It produces an object file (.0). Finally, cc runsl d, the
UNIX linker which links .o files with each other and with objects stored in alibrary
archivefile. This process produces abinary file (.4ge) that is directly executable on
your computer.

The 4GL compilation process:

Compile phase
per —» .frm

dg —» &€ —» Cc —» .0

Link phase
Olibraries(.@ — .4ge

Compiling Generated Code 14-3

Fitrix Screen Technical Reference

The INFORMIX-4GL Rapid Development System (RDS) goes through a some-
what different process. An Informix program called f gl pc transformsthe .4gl file
into ap-code object file (.4go). These p-code object files need only be concatenated
using the UNIX cat command. However, thereis no Informix program to find p-
code objectslocated in libraries. Instead, ashell script called | i nkr ds. shis
used. It emulates the behavior of | d and searches the library archives specified in
the program Makef i | e to locate .4go files needed to complete the compile.

This process produces a p-code file (.4gi) that isinterpreted by an Informix pro-
gram called f gl go. (Note that Informix also provides a p-code debugger program
called f gl db that can interpret the .4gi file).

The RDS compilation process:

Compile phase
per —» frm
49 —» 400

Link phase
Agolibraries(RDS) —» .4gi

By the way, as adeveloper’ stool, RDS iswonderful. It hasafirst class debugger, it
compiles quickly, and the p-code it produces is compl etely portable between
machines. RDS generally works very well for your end user, aswell. It is an excel-
lent ideato have RDS and the RDS Debugger on your users’ or customers’ sys-
tems.

Using £g.make to Compile Your
Program

Thef g. make shell script assumesthat afile called Makef i | e existsin your cur-
rent directory. In the program directory, this Makef i | e isone of the generated
files. The Makef i | e isdiscussed on page 14-11.

Initself, f g. make isnot aterribly complicated script. It has two purposes: it
accepts command line flags and uses them to set up some environment variables,
and it runs the appropriate program to do the actual compiling. The programs that

14-4 Compiling and Running Your Programs

Fitrix Screen Technical Reference

do the compiling use the environment variables to determine some of their actions.
That means you can change the default behavior of f g. make by setting those vari-
ablesin your own environment.

Here' s an example: As mentioned earlier, if you have both RDS and 4GL on your
system, f g. make assumes you wish to compile using RDS unless you use the -F
flag. The underlying environment variableis called make_net hod. If you set this
variableto "4GL", then f g. make defaultsto the 4GL compile. Then, to do an
RDS compile, you use the -R flag (e.g. f g. make - R).

Hereisabrief summary of all the flags available with f g. make. Each of these
flags can be set to the default option by setting a variable in your environment.

Usage:

fg.make [-h] [-F | -R] [-L library] [-M makefile]
[-T type] [-m {n|o|f|of}] [-o execname] [-1] [-£f] [-D]
[-r] [-u] [-a] [-i] [-c] [args]

-h Prints a help message.

-F (49l compile): Thisflag tellsf g. make to override the
default and perform a 4gl compile. Environment variable
equivalent: make_rmet hod=4gl .

-R (rds compile): Thisflag tellsf g. nake to perform an RDS
compile. Environment variable equivalent:
make net hod=4gl .

-L library The -L flag allows you to specify the names of any addi-
tional libraries you want to link in. These libraries will
appear inyour Makef i | e above the upper level libraries.
Environment variable equivalent: xtra_| i b=1ibrary.

-M makefile Thisflag allows you to specify aname other than "Makefile"
for the Makefile. Thisis useful when testing.

-T type Thisflag lets you specify which type of makefile to create.
Y ou can create the following types of Makefiles: applica-
tion, module, library, program, shell, and make.

Compiling Generated Code 14-5

Fitrix Screen Technical Reference

-m{n|o|f]|fo}

-mn

-mfo

-0 éexecname

(merge): The -m flags allow control over how the Featurizer
isrun.

(no merge): The -mn flag preventsf g. make from perform-
ing amerge. The Featurizer will not be called. Environment
variable equivalent: no_ner ge=y.

(merge only): This runs the Featurizer without a subsequent
compilation. Environment variable equivalent:
ner ge_onl y=y.

(force merge): Thisflag overrides the time stamp compari-
son logic and forces amerge. Environment variable equiva
lent: f or ce_ner ge=y.

(force merge only): Thisflag is used to force a merge and
override the time stamp comparison logic without compiling
or linking.

In library compiles, this specifies the name of the target
archive (outname.a or outname.RDS). In program compiles,
this specifies the program name (out f i | e. 4ge or out -
file.d4gi).Itstripsoff any extensionsyou might add to it.
Thisisuseful for testing.

14-6 Compiling and Running Your Programs

Fitrix Screen Technical Reference

(link only): RDS only. When compiling under RDS, the -
flag instructs the program to link the object files together
into a .4gi file, with no checking for modification between
4gl and corresponding .4go files. Environment variable
equivalent: | i nk_onl y=y.

The -I flag is used when alocal .4gl source file has been
modified and compiled (with f gl pc) intoa. 4go object
file, with the remainder of the application source code held
constant.

Thisflag causesf g. nake to skip thef gl pc and

f or migl parts(i.e., compilation of 4gl files and form files
is skipped) and run only the link part of the f g. nake suite
of shell scripts. fg.makeruninl i nk_onl y mode aways
rebuildsthefi | el i st. RDSinthelocal program direc-
tory. When compiling alibrary, link_only meansto just
rebuild the library archive catalogs.

(fast link): RDS only. Much of the work done by the

f g. make script need not be done each timeit isrun for a
program. Thel i nkr ds. sh part of the compile creates a
list of filesthat must be concatenated with thelocal .4gofiles
to create the .4gi file (under RDS). That list is saved in the
local directory under thenamef i | el i st. RDS. Aslong as
no new callsto library functions have been added to the pro-
gram being compiled, this list need not be recreated the next
timef g. make isrun. The Featurizer is still run when the
fast _|i nk optionisused. Environment variable equiva-
lent: fast _| i nk=y.

RDS only. Thisflag creates a dependency list (filelist.RDS).
The-D flag letsyou rebuild your f i | el i st . RDS without
having to rebuild the .4gi. Thisworks with RDS only.

Compiling Generated Code 14-7

Fitrix Screen Technical Reference

-r (recursivelink): RDS only. The -r flag causes
I i nkr ds. sh to make multiple passes through the library
list when making a program. If functions were not found on
the first pass, they may be found on subsequent passes. This
should never be necessary. It can be useful for debugging
library problems. Also note that this could allow you to write
non-portable code. Thisflag hasno meaningif f ast _| i nk
has been specified. Environment variable equivalent:
recursive_link=y.

-u (list unresolved): RDS only. The -u flag causes
[i nkrds. sh towarn the user of any function callsit was
unableto resolve. Thisflag has no meaning if f ast _| i nk
has been specified. Environment variable equivalent:
[ist_unresol ved=y.

-a Thisflag causes al filesto be recompiled regardless of
dependencies. Environment variable equivalent:
no_use_mnake=y.

-c When thisflag is used in a program directory, f g. nake
stops after compiling the source code. The linking phase is
skipped and no program is produced.

When thisflagisused in alibrary directory, f g. make stops
after it compiles the source code. The archiveis not loaded
(either the .afile or the .RDS directory).

args Objectsto be compiled. The default isthelist in the Makefile

Many of these flagswork together. Some are mutually exclusive. f g. make - nof
(or -nfo),forexample skipsall compilation except the Featurizer trigger
merge, and passesthe force mergeflag to the Featurizer. Likewise, f g. nake - f
(or -1f) skipsthe compile phase and goesright to the linkage (-1) and uses the
list of library files (filelist.RDS) produced by the last link rather than producing a
new list (-f).

On the other hand, specifying -l implies -mn and overrides the -mo and/or the -mf
flags. Likewise, if -R and -F are specified, the last one on the command line takes
effect.

14-8 Compiling and Running Your Programs

Fitrix Screen Technical Reference

Just as an aside, the single character flags can be listed together and so can the -m
flagsif they arelast in the crowd. This, for example, islegal: f g. make -i ur-
f I nof where nof isequivalent to - no and - nf . The three character flags must
stand alone.

Speeding Application Compiling

When you are working with programs, you can speed up the compilation process
by using only the parts of the process that relate to the changes you are making.

Y ou can make four different types of changes that might shorten the compilation
time so that you don't have to run acomplete f g. make. The assumption hereis
that you are using RDS because the main issue istime. If you are not using RDS,
compiles are going to take alot of time and these strategies do not save much of it.
The four types of changes are:

1. A changeto only certain source files, not all of them.

2. A "cosmetic" change to a screen form that doesn’t change any of the data
onit.

3. A changeto thetrigger filesthat require are-merge of triggers.

4. A changetothe Makef i | e that requires new librariesto be compiled into
the code.

When you make these types of changes, you can control f g. make through the use
of different flags, to only do the steps you need done, and/or use the programs that
make calls. In doing so, you can dramatically cut the time it takes to test programs
if computer speed is an issue.

Changing Only One Source File

Thisisthe most frequent type of change. Thef g. make utility only compiles
source filesthat need it, but it checksthem all and this can taketime. It also builds a
new list of library files needed in the compile. Here, it is assumed you are adding no
callsto new library functions. Since you know what source files you have changed,
you can specify these files as arguments.

fg.make -f name (.4gl is optional)

Compiling Generated Code 14-9

Fitrix Screen Technical Reference

The- f isthefast link flag. This puts together the compiled local programs and all
the library functions. It assumes you have run acompletef g. make at sometime
in the past on this program to create the list of library files (filelist.RDS) needed,
that you haven't changed the Makef i | e to require adifferent set of libraries, and
that the libraries haven’t changed.

At this point you can run the program.

Cosmetic Form Changes

Cosmetic form changes, are those that adjust the position of information on the
screen but doesn’t change that information in any way. For these changes, you type
thef or migl command with the name of the form file changed.

formigl form

The above line creates a new compiled screen form or .frmfile.

A Change to a Trigger File

Note

See the section on the "The Featurizer and Blocks' on page 13-1 for more infor-
mation about merging triggers.

After atrigger fileis made, it must be merged with the .org files that are generated
from the generator. There are several flagson thef g. make command that merge
triggers and then do various other steps in the compilation process depending on
what your intentionis.

When you just want to merge the .4gl file, you run the following:
fg. mke -np

The - no flag means merge only and it just merges triggers and blocks and does
nothing else.

Normally, f g. make checksto make sure that the .trg file is newer than the .4gl
beforeit doesamerge. In other words, it can seeif a particular merge is necessary
or not.

14-10 Compiling and Running Your Programs

Fitrix Screen Technical Reference

The following examples show how the time-stamp comparison logic works:

Example 1:

STWTWTrw 1 gordona informx 3777 Aug 6 11:18 order. 4qgl
STV T WA T W 1 gordona informx 596 Aug 6 11:05 order.trg

A merge of br owse. tr g into br owse. 4gl isnot performed because
br owse. 4gl ismore current than br owse. t rg.

Example 2;

STWTWTrw 1 gordona informx 3777 Aug 6 11:18 order. 4qgl
STWAT WA T W 1 gordona informx 596 Aug 6 11:25 order.trg

A merge of br owse. tr g intobr owse. 4gl isperformed because
br owse. t r g ismore current than br owse. 4gl .

When you want to force a merge, no matter what the file dates, use:
fg. make -nfo

The - nf 0 means merge forced only and it meansthat the f g. make utility per-
forms only the merge and forcesit even if dates on .4gls are newer than thetriggers.

When you want to force a merge, but do al of the other compilation as well, use:
fg. make -nf

The- nf flag indicates aforced merge, but it doesn’t only do a merge. It doesthe
following steps during compilation—creating object files, linking, and so on.

The Makefile

Thef g. make script reads adescription file that contains the information it needs
to produce a program. By default the name of thisfileis Makefi | e.

Here is an example of a generated program Makefi | e.
Screen Generator version: 4.11. UAl
Makefile for an Inform x-4G. program

#_type - Makefile type
TYPE = program

Compiling Generated Code 14-11

Fitrix Screen Technical Reference

#_name - program name
NAME = davi dh. 4ge

#_objfiles - programfiles
OBJFI LES = gl obal s. 0 browse.o cust_zmo detail.o header.o \
main.o mdlevel.o options.o stk_mmu.o stockzm o

fornms - performfiles
FORMS = browse.frmcust_zmfrmorder.frm\
stk_mu. frm stockzmfrm

#_custpath - version control path
CUSTPATH = dj h: 4gc: 4gs

#_libfiles - library list

LIBFILES = ../lib.a\
$(fg)/lib/scr.a\
$(fg)/lib/scr.a \
$(fg)/libluser_ctl.a\
$(fg)/libl/standard. a

#_globals - globals file
GLOBAL = gl obal s. 4gl

#_all _rule - programconpile rule
all:
@cho "make: Cannot use make. Use fg.make -F for 4GL conpile.”
The following variables are contained in a Makefile.

TYPE: Thetype of the Makefile. There are six types of Makefiles: program,
library, application, module, shell, and make.

NAME: The name of the compiled executable. For an RDS compile, f g. make
converts the extension to .4gi.

OBJFILES: Thelist of local object filesto be linked together to produce the exe-
cutable.

FORMS: Thelist of .frm files used by the executable.

CUSTPATH: The version control path used to create this executable. This macro
does not appear in your Makefileif the$cust _pat h environment variable is not
set before the generation.

LIBFILES: The names of the library archives to search to resolve function calls.
For an RDS compile, f g. make converts the extensions to .RDS.

14-12 Compiling and Running Your Programs

Fitrix Screen Technical Reference

Note

When doing an RDS compile, f g. make producesalist of the object filesthat it
has resolved from the libraries. Thislist, fi | el i st. RDS, can bereused in
later compiles by specifying the -f flag with f g. make. This can only be done
when there have been no new function calls added but it does result in afaster
compile.

Thef g. make script automatically appendsc_I i b. a andst ubs. a totheend of
thelist of library archives. If any library in the list does not exigt, it is silently
ignored.

GLOBAL: Anentry for thegl obal s. 4gl . All local object files depend on this
file.

all: Thisisamake rule. Itislisted here to inform you not to use the UNIX nmake
utility.

Compiling Generated Code 14-13

Fitrix Screen Technical Reference

Modifying the LIBFILES Macro to Use
Custom Libraries

Y ou can modify the LI BFI LES macro in your Makef i | e to use your own cus-
tom libraries by using triggers. Here are three examples:

The libraries Trigger
Thel i brari es trigger placesyour library after the . . /| i b. a line. For exam-
ple, thistrigger:

defaul ts

libraries
... lall . 4gmlib. a;

producesthis LI BFI LES macro:

LIBFILES = ../lib.a\
..l lall.4gmlib.a\
$(fg)/lib/scr.a\
$(fg)/lib/user_ctl.a\
$(fg)/lib/standard. a

The custom libraries Trigger
Thecustom | i brari es trigger placesyour library beforethe. . / 1'i b. a line.
For example, thistrigger:

defaul ts

customlibraries
.. /libadv. a;

producesthis LI BFI LES macro:

LIBFILES = ../libadv.a \
. Ilib.a\
$(fg)/lib/scr.a\
$(fg)/lib/user_ctl.a\
$(fg)/lib/standard. a

14-14 Compiling and Running Your Programs

Fitrix Screen Technical Reference

Changing the LIBFILES Macro with Block Commands

Y ou can also use block commands to alter the L1 BFI LES macro. In an extension
(.ext) file, these lines use the brute force method. For example;

start file "Makefile"

LIBFILES = ../libadv.a \
.. Ilib.a\
... lall.4gm |ibadv.a \
$(fg)/lib/scr.a\
$(fg)/libluser_ctl.a\
$(fg)/lib/standard. a

Using the -L Flag to Link Custom Libraries

All three of the methods described above result in a physical change to the Make-
file.Thefg. make script provides a method for specifying additional libraries
without actually changing the Makef i | e. Thisfacility can be very useful if you
wish to try out new featuresin alibrary but do not wish to make the change perma-
nent.

For example, suppose you have written some useful functions that you would like
toputina$f g/l ib/standard. cus library directory (see LIBRARIES
below). Y ou can physically change your Makef i | es using the methods shown
above to change your Makef i | es for al your programs, or you can usethe - L
flagwith f g. make to avoid this:

fg. make -L standard. cus
This effectively acts asif you had changed the LI BFI LES macro to look like this:
LIBFILES = ../lib.a \
$(fg)/lib/scr.a\
$(fg)/lib/user_ctl.a\
$(fg)/lib/standardcus.a \
$(fg)/lib/standard. a
Y ou can use more than one -L flag, for example:

fg.make -L standard.cus -L scr.adv

The previous exampl e produces the same effect as changing LI BFI LES to look
like this:

Compiling Generated Code 14-15

Fitrix Screen Technical Reference

LIBFILES = ../lib.a \
$(fg)/lib/scradv.a \
$(fg)/lib/scr.a\
$(fg)/lib/user_ctl.a\
$(fg)/lib/standardcus. a \
$(fg)/lib/standard. a

It is possible to modify the path name:
fg.make -L /usr/our_work/lib/standard. cus

The previous example produces the same effect as changing L1 BFI LES to look
like this:

LIBFILES = ../lib.a \
$(fg)/lib/scr.a\
/usr/our_work/lib/standardcus.a \
$(fg)/lib/user_ctl.a\
$(fg)/lib/standard. a

Y ou can add new libraries to the end. If you do, don’t use the period:
fg. make -L newguy

The previous example produces the same effect as changing L1 BFI LES to look
like this:

LIBFILES = ../lib.a\
$(fg)/lib/scr.a\
$(fg)/lib/user_ctl.a\
$(fg)/lib/standard.a \
newguy. a

If your LI BFI LES macrois already customized to look like this:

LIBFILES = ../lib.a \
..l lall.4gmlib.a\
$(fg)/lib/scr.a\
$(fg)/lib/user_ctl.a\
$(fg)/libl/standard. a

and you needed to insert something in front of the second occurrenceof | i b. a,
include more than the word "lib" in your prefix. The question mark can be used
instead of the dlash so f g. make does not interpret the slash to mean pathname.

fg.make -L all.4gn®?lib. adv

The above line would produce the same effect as changing L1 BFI LES to look like
this:

14-16 Compiling and Running Your Programs

Fitrix Screen Technical Reference

LIBFILES = ../lib.a\
../..lall.4gmlibadv.a \
ol lall.4gmlib.a\
$(fg)/lib/scr.a\
$(fg)/libluser_ctl.a\
$(fg)/lib/standard. a

Here arethe-L rules:
« Theargument prefix isused to find where to insert the library.
e Theargument suffix is used as part of the library name.

e A dashinthe argument causes the argument to be treated as a path name. This
doesn’t affect where the name isinserted.

* The question mark can replace the dash if the slash is needed as part of the
insertion criteria

« If thereisno match, thelibrary is put at the end with no change.

Note

Wildcards can be used in the -L argument.

Linking in Libraries with $cust path

Thef g. nake script automatically inserts libraries that correspond with entriesin
$cust _pat h. For example if $cust _pat h contains djh:4gc:4gs and there
existsa. ./ |i b. dj h library directory and itsarchive. . / | i bdj h. a, it will be
inserted before. . / | i b. a. Thus custom libraries need not be inserted specifically
into the Makefile when using Version Control.

Compiling Generated Code 14-17

Fitrix Screen Technical Reference

Compiling Libraries

Much of the RDS program compile parallels the 4GL compile. The form .per files
transform into .frm files, the source .4gl files transform into object files (.4go or .0),
and non-local function calls are resolved by searching the library archiveslisted in
the LI BFI LES macro. But it'sthislast processthat is, in fact, the most different
between the RDS and 4GL compiles.

With regard to Fitrix Screen, there are two classes of libraries. One class consists of
thescr, st andar d,anduser _ct | libraries, which provide the flow of control
of generated programs and a number of specialized functions that provide the fea-
tures of these programs.

Briefly, scr contains the flow control type functions. These are where the ring
menus and the functions for adding, finding, updating and del eting documents are
located. The st andar d library contains many common functions, many of which
you might want to call yourself for various purposes. Theuser _ct | library of
functionsis used to extend the functionality of your programsin many ways. This
isthe only library where the source code is not provided. Thereis another library
called st ubs that supplies stub functionsif theuser _ct | library isnot installed.

The other class of libraries are those that you maintain yourself for common func-
tions that are used by more than one of your programs, or for modifying the behav-
ior of functions provided with Fitrix Screen.

f g. make isused to maintain both classes the same way, but it is not advisable to

make changes to the supplied functions. Y our changes are lost when you install the
next release of Fitrix Screen. It is possible to add or change these functions by cre-
ating your own libraries.

To create your own library, there are two things you must consider: where it should
be physically located, and what sequence it should be linked into your program.

Consider alibrary of functions that are common to a family of programs. You
would have a program source directory for each program. Create a directory called
I'i b. 4gs aong with your program directories. If you review the example Mak e-
fi |l e above, you should note that the first entry inthe LI BFI LES list is
../lib.a.Thisl i b. 4gs contains the source for this archive.

14-18 Compiling and Running Your Programs

Fitrix Screen Technical Reference

Creating the Library Archive

A library archive contains the compiled objects and catal ogs used for linking your
programs. A 4GL archiveisafile with an extension of .a. An RDS archiveisa
directory with an extension of .RDS. A 4GL archiveis created with the UNIX ar
utility and its catalogs are stored internally. The RDS archive is created by

f g. make directly and its catalogs are stored as files in the archive.

To create alibrary archive you must have aMakef i | e inyour library. Here' san
example of alibrary Makefi | e.

Makefile for an Inform x function library

TYPE = library

LI BFI LES =\
$(LIB) (fn_namel. o)\
$(LIB) (fn_name2.0)\
$(LIB) (fn_name3.0)\
$(LI B) (fn_name4. o)

FORME = fnl frmfrmfn2_frmfrmfn3_frmfrm)\
fnd_frmfrm

LIB=../lib.a

@cho "make: Cannot use make. Use fg.nake to conpile."

TYPE: The type of the Makefile. There are six types of Makefiles: program,
library, application, module, shell, and make.

LIBFILES: Thelist of object filesto be put into the library archive.
FORMS: Thelist of .frm files used by the library functions.

LIB: The name of the library archive. It does not have to match the name of the
library source directory. For example, if you wish to create alibrary to hold cus-
tomized functions fromthe $f g/ | i b/ scr . 4gs directory, thereis a convention
for doing so: You create your library source directory as$f g/ | i b/ scr . cus,
and you make the LIB macro in your Makef i | e look like this:

LIB = ../scrcus.a

Compiling Generated Code 14-19

Fitrix Screen Technical Reference

This strategy allows you to use the -L feature when compiling programs with
fg. make. Thecommand f g. make -L scr. cus automatically links your cus-
tom library just beforethe scr library.

It is also possible to use the same name in the LIB macro for different libraries. In
this example, your Makefile could contain LI B = ../ scr. 4gs. Thiswould
cause your objectsto be loaded into the same archive as the code generated objects.
Just remember you must recompile your library after anew installation.

For an RDS compile, f g. make converts the extension to .RDS.
To create the library archive, runf g. make inl i b. 4gs.

If you have any forms, they are converted into .frm files, which remain in
i b. 4gs. The open form statement in your function should probably say
../Il'ib.4gs/fm nane so any programs calling the functions are able to find
the forms. Two other choices are to use the full path name, or to just use the form
name, but include the library directory in $DBPATH when you run your program.

When f g. nake performsa4GL compile, it creates .o filesfor thefileslisted in
the LI BFI LES macro from the corresponding .4gl files and loads them into the
lib.aarchivefilein the directory above. It creates the archive if it doesn’t exist.

When f g. make does an RDS compile, it creates .4go files rather than .o files.
These are then moved over to an archive directory, | i b. RDS. Thisdirectory is
created if it does not exist. In addition, the .4gl files are copied to the archive direc-
tory.

There are two reasons for keeping the .4gl filesinboth | i b. 4gs and | i b. RDS.
First, the .4gl sourcefileis needed in the archive for creating the RDS catal ogs.
Second, it is convenient when using the debugger. Even if you have changed 4gl
filesin thelibrary source directory, the 4gl files in the archive match the function
objects that are linked into your program. In the debugger, this keeps the source
consistent with the objects.

Inaddition to the .4gl and .4gofilesinl i b. RDS, there arefour catalog files. These
aref unc_map. RDS, depend. RDS, unr esol ved. RDS, and
resol ved. RDS.

14-20 Compiling and Running Your Programs

Fitrix Screen Technical Reference

* The func_map.RDS fileisalist of al thefilesin this directory and their
functions. During the linking phase of aprogram RDS compile, | i nkr ds. sh
refersto thislist to find the names of the files containing the "unresolved" func-
tionsit is searching for.

* Thedepend.RDS fileisalist of al thefiles any file depends on. Once
I i nkrds. sh hasfound the names of the files that will resolve functions for
it, it must then find the names of any other files that the "found" ones also
depend on.

e Theunresolved.RDS fileisalist of al the functions that were called by
functionsin| i b. RDS but were not resolved there. | i nkr ds. sh refersto
thisto find out what new function namesit hasto add to its list of unresolved
functions before it goes on to the next library.

* Theresolved.RDS fileisalist of all thefiles and function calls that were
resolved in thislibrary.

These files should be rebuilt every timef g. make doesan RDS compilein the
library.

If you have modified a .4gl filein| i b. 4gs, but your modification does not
include changes to function names, nor added, deleted, or changed function calls, it
is not necessary to rebuild the catalogsin the .RDS directory.

Thereisashortcut. When the -f (fast_link) flag isused with f g. nake to compilea
library, f g. make skipsthe catalog creation step. Y ou can specify the specific files
you wish compiled.

fg.make -f funcl func2 (.4gl extension optional)

Compiling Your Entire Application

Consider organizing your programs in a hierarchy. The top level would be the
application, the second level a module of that application, and the third would be
the programs themselves. As an example of applications, here are two: accounting
and codegen. Examples of modules in the accounting application include general
ledger, accounts receivable, payroll and quite afew more. The following explains
how to set up your hierarchy.

Compiling Generated Code 14-21

Fitrix Screen Technical Reference

Create adirectory for your entire application. It's recommended that you do thisin
the $f g directory, though that is by no means a requirement. The name for this
directory isn’t set by convention, so make the name something meaningful.

In your application directory, create directories for each of the modulesin your
application. The names for your module directories should have 4gm as an exten-
sion, but the prefix can be anything that you consider meaningful. Examples might
besal es. 4gmrcvbl s. 4gmi nvent ory. 4gm Also, put the application
Makef i | e inthisdirectory.

Use thisasamodel for the example $f g/ myappl i cat i on/ Makefi | e:

TYPE = application
APPL = nyapplication
MODULES = sales rcvbls inventory

@cho "meke: Cannot use nake. Use fg.make to conpile.”

To compile your entire application, typef g. make inthe application directory. To
compile only specific modules, give the module names as arguments (for example
fg. make sal es rcvbl s).

Compiling a Module

Put your program directories in the module directories. The names of these pro-
gram directories would normally have an extension of 4gs. Examplesin

sal es. 4gmmight beentry. 4gs, i nvoi ce. 4gs, and post . 4gs. Also, put
the module Makef i | e inthe module directory.

To compile your entire module, typef g. make in the module directory. Hereisan
example $f g/ nyappl i cati on/ sal es. 4gnf Makef i | e which you can use
asamodel:

14-22 Compiling and Running Your Programs

Fitrix Screen Technical Reference

TYPE = modue
MODULE = sal es. 4gm
LIBS =1ib
PROGS = entry invoice post prog4 \
prog5 prog6 prog7 and_so_on

@cho "neke: Cannot use make. Use fg.nmake to conpile.”

Application and Module Compilation
with $cust path

When compiling at the module level, al program directories with an extension
found in the $cust _pat h are compiled.

For example, if i nvoi ce islisted in the module Makefile and $cust _pat h =
dih:4gc:4gs, theni nvoi ce. 4gs,i nvoi ce. 4gc, andi nvoi ce. dj h arecom-
piled if they exist. (They are compiled in reverse sequence of $cust _pat h).

Compiling Generated Code 14-23

Fitrix Screen Technical Reference

Running Your Programs

As soon as source code has been compiled, it can be executed. There are a number
of command line arguments that can be specified upon invocation. This section will
address these arguments, and explain the invocation of programs compiled with
4GL and RDS. Later, the usage of ther un UNIX shell script is explained.

Invoking Compiled Programs

The method of executing a program depends on whether INFORM 1 X-4GL or
INFORMIX-RDS is used to compile the source.

The INFORMIX-4GL system compiles source (.4gl) files down to object (.0) files,
which are then linked together into an executable (.4ge) file. This executable file
can be invoked by simply typing its filename at a UNIX prompt. The following is
an example of the required syntax:

screen3. 4ge [args]

INFORMIX-RDS compiles source into pseudo-code, which is stored in object code
files (.0). The object files are linked together into a non-executable program file
(.4gi). The following provides an example of the required syntax:

fgl go <program nane. 4gi > [ar gs]

A number of command line arguments can be used when invoking a program gen-
erated by Fitrix Screen.

14-24 Compiling and Running Your Programs

Fitrix Screen Technical Reference

fglgo program name.4gi [-dbname database] [order
order by clause] [filter filter clause] [-a] [A] [-u] [-
U] [f]

-dbname Specifies the database to run against.

order Specifies the order of initial selection.
filter Limitsthe initial selection.

-a Enters directly into the Add mode.

-A Same as above only exit after adding.
-u Enter directly into the Update mode.
-U Same as above only exit after updating.
-f Enters directly into Find mode.

The database can be selected on the command line. Use the following argument to
name the database in which the program will run:

- dbnanme dat abase
Example:
fglgo screen3. 4gi -dbnanme stores

The name of the database must follow the - dbnane argument.

Other command line arguments allow the user to pass afilter clause and order by
clause to the program. This controlsthe selection and order of documents appearing
on the data-entry form upon invocation. The filter argument only selectsitemsin
the main table for the header portion of the form.

Y ou can define the initial filter for the selection of documents by specifying the fil-
ter on the command line. Use the following syntax:

filter "filter clause"

Example:

fglgo screen3.4gi filter "custoner_num >100"

Running Your Programs 14-25

Fitrix Screen Technical Reference

Note

The example above only worksfor ani nt eger typefield. If you want to select
astring, you must quote the string like the following example:

fglgo screen3.4gi filter "po_nume 100" "

If thefilteris"1=0", no rows areinitially gathered. Y ou may wish to passthe filter
"1=0" if you are using the - a (Add mode) argument.

Y ou can aso specify acommand line argument to sort the initial selection of docu-
ments. Y ou may sort by any data entry column, though the columns must be in the
main table. The syntax follows:

order "order by colum(s)"
Example:
fglgo screen3. 4gi order "po_nunt

Nulls come before any other data so rows that have a null value for the "order by"
column appear first. The column will be sorted according to ASCII conventions.

The following set of command line arguments control the mode in which the user
enters upon start-up of the program, (-a, -A, -u, -U, -f). For example:

fglgo screen3.4i -a
puts the user directly into Add mode.

Y ou can use these arguments to create new navigation events. For instance, you can
define anavigation event asAdd a cust oner . That event could be called from
invoice entry, or any other part of the application. The order that arguments appear
on the command line isinsignificant.

14-26 Compiling and Running Your Programs

Fitrix Screen Technical Reference

Arguments must be separated by spaces.

Incorrect:

-Ud stores
-dstores

Correct:

-dbnane stores
-A -dbnane stores

Executing Programs When Using
Version Control

When using Version Control, the following startup scripts should be used instead
of f gl go or f gl db when executing your compiled code. Both of these scripts
automatically set your $DBPATH variable so that the programs can correctly locate
the necessary .frm files used with Version Control.

£g. go: runs the program created using Version Control. This script determinesiif
the program is a .4gi or a .4ge and runs it accordingly.

£g. db: runs the program under the INFORMIX-4GL Interactive Debugger.

For moreinformation refer to "Invoking Programs That Use Version Control" on
page 16-20.

Running Your Programs 14-27

Fitrix Screen Technical Reference

14-28 Compiling and Running Your Programs

15

Advanced Features

This section explains how to perform avariety of modifications to your programs
including:

> 3 5 5 oS S S oS oS S S

Event handling logic
Creating custom libraries
Creating application help text
Creating BLOB field types
Using skip field logic

Cursor handling philosophy
Generic text picker/editor
Thefg_ err andli b_error functions
Creating a post-processor
Example of ok _del et e
Modifyingl i b_message

15-1

Fitrix Screen Technical Reference

Event Handling Logic

Events are actions that can occur while a program is running, such as shelling out to
the operating system, running another program, and displaying help text. An event
describes the start or end of a particular activity. This section describes how event
logic is handled by code generated with the Code Generator, and how you can add
your own events to your programs.

Types of Event Handling Logic

There are two main types of events that can be performed within Fitrix Screen
code:

1. External events: External events occur outside of the program. They are typ-
ically operating system commands such as viewing mail and checking disk
space. Theinstructions for external events are UNIX operating system com-
mands.

2. Internal events: Internal events are accessed within the program only. Exam-
ples of internal events include Zooms, Notes and User Definable Fields.
Instructions for internal events are created with INFORMIX-4GL code.

There are two types of interna events:

1. Local events: Local eventsonly occur at a particular point in arunning
application. Typically theseinternal events occur within an input statement.
For instance, an event performed only when inputting on a detail record is
considered alocal event. Thislocal event (and the hot key mapped to it)
cannot be executed at any other point in the program.

2. Global events: Global events areinternal events that can occur at any
point in the running application. Global events can occur:

» when inputting onto the header record.
» when inputting onto the detail record.
e atthering menu.

» when executing a Zoom.

» when sglecting anavigation item.

15-2 Advanced Features

Fitrix Screen Technical Reference

< when performing any User Control feature, etc.

Event Flow

When hot _| ocal () andhot _key() arecalled fromlocal code, aplethora of
activity occurs within these functions.

Note

Thehot _| ocal () functionisonly caledif youuseanon_event trigger.

Some of the key event handling functions and their flow are mentioned here (all of
the event handling functions are located in thefile
$fg/libl/user_ctl.4gs/| _event. 4gl . Thefollowing explains how
scr_funct issetfor alocal event and how the navigate and hot key tables are
used during event processing.

Flow for events:

1. Within theinput screen (header or detail section), an event (any event) is exe-
cuted for thefirst time. Thehot _| ocal () functioniscalled.

2. hot | ocal ():Ifthisisthefirsttimehot | ocal () iscalled,
hot | ocal () calstheevent handling function event _i ni t (), which:

* Prepares and declares SQL statementsfor all of the above tables. SQL
statements are not executed at this time, except for the SQL statement for
the Hot Key Definitions Detail Table (st xhot kd); this statement is exe-
cuted tofill an array (called key _rmap) telling what key is mapped to what
event.

» Loadsthelocal event array (called | ocal _evnt) with hardcoded local
events. These events are tab, btab, cancel, accept, zoom, null

Event Handling Logic 15-3

Fitrix Screen Technical Reference

Note

Zoom is a hardcoded local event. Thus when generating code there is never a
caltohot | ocal () foraZoom. Onceevent i nit () loadsthe event
array with local events,hot _| ocal () proceedsto add itsevent (passedtoit as
an argument) to this array. After all callstohot _| ocal () arethrough, the
local event array contains all local events for the entire program. After all calls
tohot _I ocal (), hot _key() iscaled.

3. hot _key() : Itsjobisto map the key to the event.

Back in local code beforethecallstohot | ocal (), theglobal variable
hot key is set to the number of the key upon pressing that key:

Event trapping logic

on key (control-b) let hotkey 2 goto event
on key (control-e) let hotkey 5 goto event
on key (control-f) let hotkey 6 goto event
on key (control-g) |let hotkey 7 goto event

on key (control-i) let hotkey
on key (control-n) let hotkey
on key (control-0) let hotkey
on key (control-p) let hotkey
on key (control-t) let hotkey
on key (control-u) let hotkey
on key (control-v) let hotkey
on key (control-w) |et hotkey 23 goto event
on key (control-y) let hotkey 25 goto event
on key (control-z) let hotkey = 26 goto event
on key (f5) let hotkey 105 goto event
on key (f6) let hotkey 106 goto event
on key (f7) let hotkey 107 goto event
on key (f8) Ilet hotkey 108 goto event
on key (f9) Ilet hotkey 109 goto event

9 goto event
14 goto event
15 goto event
16 goto event
20 goto event
21 goto event
22 goto event

Thefunctionhot _key() examinesthehot key global variable and retrieves
its respective event name out of thekey nmap array (remember thekey map
array isfilled with values from the Hot Key Definitions Detail table (st x-

hot kd)). Thenhot _acti on() iscalled.

4. hot _action() : Itsjobissimply to set the global variablescr _f unct . It
setsscr _f unct based on answersto the following questions, in the following
sequence:

15-4 Advanced Features

Fitrix Screen Technical Reference

Isitinthelocal event array with a hot key mapped to it? The local event
array includes the events passed as argumentsto hot _| ocal () .

If YES, scr_f unct isset to the event name specified in the Hot Key Def-
inition Detail table (st xhot kd) (via the array key_nap). The event is
then processed locally in the local event function |1 h_event (),
I1d_event(),orEV_scrid.

If NO,

Isthe event disabled?

If YES, don't processit. If NO,
Isit aglobal event?

If YES, process it as a global event using the gl obal _event s() func-
tioninmai n. 4gl .

If NO,
Isit an Enhancement Toolkit function?

Here are the event names of the User Control features. These are al pro-
cessed with separate functions:

navigate (Navigation)

help (User-updatable Help Text)

hot (User-definable Hot Keys)

info (Program Information)

notes (Freeform Notes)

ack (Software Acknowledgement System)
status (Program Status Monitor)

feature (Feature Request System)

bang (Operating System Exit)

errbrws (User-updatable Error Text)

Event Handling Logic 15-5

Fitrix Screen Technical Reference

e todo (Personal To-Do List)
» funct_edit (Edit Current 4GL Function)
If NO,

e Istheos_command column in the Navigation Event Reference table
(st xact nr) for thisevent null?

An SQL query isdone on thistable for thisevent. If YES (the event isnull),
scr_funct issettothe event namein thecolumn act _key of the Nav-
igation Event Reference table. The event is processed localy (in
[1h_event,lld_event(),orEV_scrid).

If NO, the event is an external event. The event is processed externally
using the INFORMIX-4GL run statement.

Coding Local Events

Event handling logic is not performed by standard INFORMIX-4GL branching
logic (if-then, case statements, etc.). Fitrix Screen generates special labelsin the
code to handle events. There are placesin the code that are labeled "events' and
code branches to them viaa"goto" statement, for example:

Local event processing
| abel event: # this event is labelled "event"

after input # this event is labelled "end_input”
| abel end_i nput:

Lowlevel functionscaled! | h_event ()/11d_event()/EV_scri dtake
care of event handling logic.

To create alocal event, you need to create an on_event trigger. Theon_event
trigger allows you to place custom INFORMIX-4GL logic for an internal event into
your program, for example:
on_event show_nessage
display "Logic fromny internal event is executing now "

sl eep 3;

For moreinformation ontheon_event trigger refer to "on_event" on page 12-14.

15-6 Advanced Features

Fitrix Screen Technical Reference

Before coding alocal event trigger, the event should be added to the Fitrix Screen
tables with the navigation feature or by using 1SQL.

To incorporate the local event into the program, some lines of source code should
be added. These lines of code can be added automatically by specifying atrigger in
atriggersfile (see "on_event" on page 12-14):

e Cdlhot | ocal ("event"),whereeventisthevaueintheact key col-
umn of the two tables, if the event was added via ISQL or 4GL. This function
should be called just before the call to function hot _key() . A cal to
hot | ocal () tellshot _key() thatthereiscustomlogic coded just for this
event and perform this custom logic instead of the logic that is usually per-
formed. This custom logic is added to the function
I1h _event()/11d_event()/EV_scrid,andthisfunctioniscalled
right after callstohot | ocal () andhot _key() . Any usual logic can be
overridden by acall tohot _| ocal (), evenlogic for an event that occursin
the upper level functions.

e Thecal tohot _key() simply mapsthe key pressed to the function being
caled, performsthe usual logicif acall tohot _I ocal () isnot specified, sets
scr_funct,andreturns. Thescr _funct variableis set to the event name,
oract _key column value.

e Custom logic for handling the local event is coded in the function
I1h_event()/11d_event()/EV_scrid.Anadditiona "when" clause
of the CASE statement is added.

Example of source code added to handle alocal event:

Inll h_input():
Local event processing
| abel event:
a- > call hot_local ("date_znl') # Look to Ilh_event for customlogic
call hot_key("Ilh_input") # Map the key to the event
call I1h_event()

Inll h_event ():

case

when scr_funct = "zoont and infield(customer_num
if zoom("cust_zni,"")
then

| et p_orders. custonmer_num = scratch
let nxt_fld = "custoner_nunt

Event Handling Logic 15-7

Fitrix Screen Technical Reference

end if
a-> when scr_funct = "date_znl' and infield(order_date)
a-> if zoom("date_znt,"")
a-> then
a- > l et p_orders.order_date = scratch
a-> let nxt_fld = "order_date"
a-> end if
when scr_funct = "accept”
let nxt_fld = "exit input"”
when scr_funct = "tab" or scr_funct = "btab"
let tab_pressed = true
let nxt_fld = "exit input"
when scr_funct = "cancel "
let int_flag = true
let nxt_fld = "exit input"”
end case
** a-> = |lines that were added

When running the application, you can choose the event from the navigation menu.
This event only runs at the point specified in the running program. The event does
not work anywhere else. For instance, the above lines of code are executed only
during inputting on the header. If this event is chosen anywhere else besides during
inputting on the header, it does nothing.

Coding Global Events

Global events can occur at any point in arunning application.

Global events are located in afunction called gl obal _event s() at the end of
mai n. 4gl .

There are two ways to add aglobal event:

1. Addtheevent viathe Navigation Event feature. Then go into I1SQL and null out
thenav_user column. This alowsthe event to be accessible by al users.

2. The second way isto add rows to the two navigation tables as specified in add-
ing local event code above. This can be done through ISQL or 4GL.

Either way, in mai n. 4gl , you need to add to the gl obal _event s() function
an additional "when" clause to the case statement. If thereis no

gl obal _event s() function, copy the example below or usetheon_event
trigger inthedef aul t s section of atriggersfile (explained below) to create one
automatically.

15-8 Advanced Features

Fitrix Screen Technical Reference

Example:

function gl obal _events(act_key, p_funct)

returning true if it runs the event, otherwi se false
This function's job is to run all events that need to be run
on a global (programw de) basis. |[If you have defined an event
that needs to be run at the menu level in addition to the Iocal
input level, the event nmust be listed here.
1f you wish to know the function name that called hot_key, it
is passed as p_funct.
#
define
act _key char (15), # Action to process
p_funct char(15) # Current function nane
Trap fatal errors
whenever error call error_handler
Process the events based on act_key
case
There nust be at least 1 statenent |isted.
when act_key = "info" call fg_info()
otherw se return false
end case
return true
function

gl obal _events()

The Event Tables

The following describes the four tables you need to become familiar with in order
to understand event handling and navigation.

1. Navigation Event Reference Table - st xact nr

Thistable contains all events that are displayed on the navigation menu. This
table isthe "header" table for navigation events. When the user adds a naviga-
tion event while running the program, arow is added to this table for that event.
The event nameis stored intheact _key column.

There may be eventsin the program that do not appear in thistable.

Event Handling Logic 15-9

Fitrix Screen Technical Reference

Here is a sample row from thistable:

column data

| anguage ENG

act _key shipto

description updat e shi ppi ng addresses

os_conmmand

press_enter N

The "shipto" event in the previous example can be identified as alocal event
because the os_conmmand columnis blank.

The following is an example of an external event. Event cust _i nf o might
havearow in st xact nr that contains the following information. External
events have something inthe os_conmand column.

column data

| anguage ENG

act _key cust_info

description Cust ormer | nformation

os_conmmand cd ../..lar.4gmi_custr.4gs; fglgo *i -c $conmpany
press_enter Y

15-10 Advanced Features

Fitrix Screen Technical Reference

2. Navigation Event Detail Table- st xnvgt d

Thistable isthe "detail" table for navigation events. It holds the program, mod-
ule, and user for the event. Thel i ne_no column may be manipulated to alter
the order that items appear on the navigation menu. The nav_user column
may be filled in with a user to allow only that user to execute that event.

The contents of thetable st xnvgt d determine the scope of the event.
Remember that the definition of an event as global or user global does not auto-
matically make it available to an individual program. The logic necessary to
invoke the event must still be added to each program that uses the event.

An event can be:
e user/program specific
A specific user can use this event in a specific program.
e user global
A specific user can use this event in all programs.
e program specific
This event can only be used with a specific program.
e global
This event can be used with al programs and by al users.

The following table shows example entriesin the st xnvgt d table:

Type of event act_key line_no nav_user nav_program nav_module
user/program specific cust_info null gordona screenl deno
user global cust_info null gor dona nul | nul |
program specific cust_info null nul | screenl deno
global cust_info null nul | nul | nul |

If 1'i ne_no isblank for an event, this event shows up above any events that
are numbered.

Event Handling Logic ~ 15-11

Fitrix Screen Technical Reference

3. Hot Key Definitions Reference Table - st xkeysr

Thistable assigns a unique number to a key on the keyboard. It assigns num-
bersfor control keys, function keys, the tab key, and delete key. The number
assigned to control keys corresponds with the numeric sequence of the al phabet
([CTRL]-[d] is1, [CTRL]-[b] is2, [CTRL]-[c] is 3, etc.). Function keys start
with the number 100. Here is a sample from this table:

key_code
2

© N o o

key_desc
[CTRL] - [b]

[CTRL] - [e]
[CTRL]-[f]
[CTRL]-[d]
[TAB]

-le

4. Hot Key Definitions Detail Table - st xhot kd

15-12 Advanced Features

Fitrix Screen Technical Reference

This table stores each event and its respective hot key number for the hot key
that initiates that event. Re-assigning hot keys merely changes this number. The
module, program, and user is also stored so there can be duplicate numbers.
Hereisasample from st xhot kd table:

hot_key act_key hot_module hot_program hot_user
2 bt ab

5 hot

6 udf

7 navi gat e

9 tab

14 not es

15 bang

16 nul |

20 todo

21 nul |

21 payto a p_vendr
21 add_i nfo ar i_invce
22 nul |

22 acctg_info ar i_invce
23 hel p

25 info

26 zoom

101 insert

102 del ete

103 page_down

104 page_up

105 mai |

106 payt o ap i _vendr
106 add_i nfo ar i_invce
107 acctg_info ar i_invce
134 bt ab

135 accept

136 cancel

Event Handling Logic ~ 15-13

Fitrix Screen Technical Reference

There are two ways to add an event to Fitrix Screen tables: viathe navigate feature

or ISQL.

1. The navigate feature: \When running the application, you can add alocal event
by executing the Navigate feature of the User Control Library. For more infor-
mation on using the navigate feature refer to the Fitrix CASE Tools Enhance-
ment Toolkit Technical Reference.

2. ISQL: ISQL or 4GL can be used to add rows to the two navigate tables, st x-
act nr andst xnvgt d.

Theact _key columnin st xact nr uniquely identifies the event in st xact nr
and st xnvgt d.

Creating an Event that Calls a Program

The best way to create a navigation event that calls another program is to use the
Fitrix Menus ez - i command. If you usethenz -i command you do not haveto
cd to the program directory and then run it, and you do not have to determineif the
programisa.4gi or a.4ge. Thenz -i command doesthat automatically. Another
benefit you get when usingthenz -i command isthat $cust _key and other
environmental variables are maintained.

Thenez -i command can only be used if you have Fitrix Menus and the program
you want to run appears on a menu somewhere. The reason the program hasto
appear on amenu isbecausethenz -i command utilizesaMenu Item Instruction
file.

For example, you could set up a navigation event to run the Error Message Tranda-
tion program, $f g/ codegen/ uti | -

ity.4gmi _terorh.4gs/i _terorh. 4gi.Thefollowinglinewould appear
on the Operating system command line on the Navigation Commands form.

Operating system conmand:
nz=$f g/ codegen/ utility.4gmexport ng;nme -i a menus transnenu

Note that when you usethenz -i command, you must first set the $nez variable
to point to the directory above the project directory. Then you need to specify the
project directory and the menu the item appears on.

For moreinformationonthene -i command and Item Instruction files refer to
your Fitrix Menus documentation.

15-14 Advanced Features

Fitrix Screen Technical Reference

Moving Events to Your Customer’s
System

Y ou must have entriesin all three of the following tablesin order for an event to be
called by ahot key.

st xact nr - thistable stores the navigation event
st xnvgt d - thistable stores which programs can use the event
st xhot kd - thistable stores which keys call the event

Becausethest xact nr table does not have away to specify nodul e. pr ogr am
you need to transfer the whole table to your customer’ s site. If your customer’ s site
has custom events that differ from your development platform, then there is a prob-
lem, because you would wipe out all of their custom events.

Currently there is no easy way to handle this. What you need to do is unload your
customers'sst xact nr table, unload your st xact nr table, thendoasort -u
ontheact key. You would redirect thisto an output file and then would end up
with an unload file that contained all events.

Record-level Validation

Record-level validation logic is considered event logic. The very last activity to
take placein an input statement is after the "after input” statement is executed. This
is an appropriate place to put record-level validation logic. When the user presses
[ESC], control passestotheevent end_i nput , which is part of the after input
statement. Within end_i nput thereisacal to

I1h_a input()/11d_a_input().Withinthisfunction, validation logic can
be inserted to be performed on all input fields (as awhole). After this, control exits
input, the variablescr _f unct isset to null and the input function terminates.

Control can return back into the input statement in

I'1h_a_ input()/11d_a_input() by manipulating the value of the variable
nxt _fl d.Youcansetnxt fl dtoafieldwithintheinput statement to move
control to that field.

Event Handling Logic ~ 15-15

Fitrix Screen Technical Reference

How to Assign Default Hot Key
Settings

When a user assigns a hot key definition, the system automatically inserts the user
idinto st xhot kd. Thisrestricts that definition to be used by that user alone.

In order to set up aglobal hot key that can be used by all users of a particular pro-
gram, anull value needs to be placed into the hot _user column. Modifying the
hot key definition in this way should be done vialSQL, since the system automati-
cally assignsthe user id.

To map aglobal hot key go into 1SQL and add your definition to the st xhot kd
tablewith anull valueinthehot _user column. The st xhot kd table contains
the following columns:

hot _key

act _key

hot _nodul e
hot _program
hot _user

By nulling out thehot _nodul e, hot _program and hot _user columns,
you can define a hot key that can be used by any user within any application.

15-16 Advanced Features

Fitrix Screen Technical Reference

To map adefault hot key:
1. Create a file containing your hot key definition.
Example 1:
107| surm| oe| i _i nvce| |

This example alows all users of the Order Entry i _i nvoi ce program to
access this hot key definition.

Example 2:

107| sum | | |

Example 2 allows any users running any application to use this hot key defini-
tion.

2. Run ISQL and load the contents of your unload file into stxhotkd.

Example:

load from"filename" insert into stxhotkd

Creating and Using Custom
Libraries

Creating alibrary to store generic functions rather than maintaining them at the
local level simplifies and streamlines the source code.

Thereisno functional need to segregate functions—the same result can be achieved
independent of the organization of the code. Y et the benefits gained by establishing
and building a custom library are clear: reduction in the total number of lines of
code within an application, greater modularity of source code, and facility of subse-
quent modification.

When functions shared by more than one module are moved to a custom applica-
tion library, the number of lines of source code specific to that program is reduced.

Modularity isadesirable goa in source code development. Much of the power and
ease of modification found in applications generated with the Code Generator is
rooted in modular organization. Resulting source code is more compact and more

Creating and Using Custom Libraries 15-17

Fitrix Screen Technical Reference

understandabl e to those other than the author. When maodifying library source, it is
easier to isolate the effects of code changes—you can more easily trace program
flow. Applications can be "grown" in amore orderly, concise manner. Rather than
"reinventing the wheel," you can take advantage of existing functionsto fulfill sim-
ilar objectives within an application.

Globa modifications are made by changing the code in one place, rather thanin all
the local places the code appears.

Creating a Custom Library

Custom libraries created at the module level are found in a directory named
..I'nylib.4gs (relativeto the .4gs source code directory).

To create a custom library, you must follow these steps:
1. Createthenyl i b. 4gs directory at the module level.
2. Placethelibrary function(s) into nyl i b. 4gs.

3. Copy aMakefil eintomylib. 4gs. TheMakefi | e can be created from
scratch, but it isfar easier to copy an existing Makef i | e. The best type of
Makef i | e to usefor thispurposeisfoundin $f g/ | i b/ scr. 4gs.

For more information on compiling libraries refer to "Linking in Libraries with
$cust_path" on page 14-17.

4. Modify the Makefi | e copiedintothe. ./ myl i b. 4gs directory. Edit the
LI BFI LES section to include your function filenames. Make sure the last
$(LI B) entry does not end in abackslash (\). Next, change the
LI B=. ./ scr. alineto the following:

LIB=../nylib.a

5. After the Makef i | e file has been modified, runf g. make in the custom
library directory to compile your function(s).

6. Runf g. make onyour local program to link your library functionsinto your
program.

15-18 Advanced Features

Fitrix Screen Technical Reference

After completing these simple steps, you can use those functionsin your local pro-
gram directories asif they resided there. Thef g. make linker finds them and
makes them a part of the executable program.

Thel i brari es trigger lets you append your custom directory after the
.. Iyl i b. alinebut before the rest of the Fitrix Screen libraries. For more infor-
mation on this trigger refer to "libraries’ on page 12-18.

Thecust om | i brary trigger allows you to place any custom library before the
../ nyl i b. a library. For more information on this trigger refer to
"custom_libraries" on page 12-19.

The hypertext functionality provided for all applications generated by the Code
Generator also extends to custom libraries. For more information on hypertext
functionality, see the section "L ocating Source Code."

The libraries Trigger

If you have built alibrary of custom functions and wish to use this custom library
with the current application, you can do so by specifyingthel i br ari es trigger
in atriggersfile. Any libraries specified here are automatically placed into the

LI BFI LES section of the local Makefi | e. Example:

Specifying the libraries trigger like so:

defaults
libraries
$(fg)/lib/nylib.a
input 1
input 2

resultsin the local Makefile looking like this:

Makefile for an Inform x-4GL program
NAME =

OBJFI LES =

Creating and Using Custom Libraries 15-19

Fitrix Screen Technical Reference

FORMS =

LIBFILES = ../lib.a \\
$(fg)/1ib/nylib.a \\
$(fg)/libl/scr.a\\
$(fg)/libl/standard.a \\
$(fg)/libluser_ctl.a

GLOBAL =

Note that any library specified through atriggers file places that library before the
Fitrix Screen libraries, so that if there are any functions that have the same name
across libraries, the functions found in the earlier LIBFILES entry are executed.

Thel i brari es trigger must always be placed in thedef aul t s section of the
triggersfile. Thel i brari es trigger isthe only trigger that does not affect a.4gl
source codefile.

Customizing Library
Functions

A highly useful example of customizing library functionsin local code is disabling
ring menu options (Add, Update, Delete, etc.). Thisis done by using library func-
tionscalled ok__ functions. These ok __ functions are:

« ok _add
 ok_update
« ok _delete
e ok find
ok _browse
e ok_next
 ok_prev

« ok _tab

e ok _options

15-20 Advanced Features

Fitrix Screen Technical Reference

e ok _exit
« ok_bang (for shelling out)

Before aring menu option is executed, thereisacall to itsrespectiveok _ function.
If there are no restrictions on performing that ring menu option, the library ok _
functionis called and it returns a value of true, which meansit is OK to perform
that ring menu option.

However, if you wish to place restrictions upon aring menu option (for example,
disabling the Delete option), the ok __ function handling that ring menu option may
be copied out of thelibrary into local code and modified. A ring menu option may
be completely disabled if thislocal ok __ function returns a value of false. During
compilation, the linker finds the local ok __ function first and usesit instead of the
library ok __ function.

Here is an example of an ok __ function that has been modified. When the user is
trying to delete a customer with the Delete ring menu option, a warning comes up
and then the user is asked to verify deletion of the record:

function ok_del ete()
returning true or fal se based upon ok to delete

#
#
define
pronpt _response char (1)

open wi ndow del ete_rec at 14,16 with 9 rows, 51 colums
attribute (border, blue, pronpt line |ast)

display " WARNI NG! "at 1,1
attribute (reverse)

display " " at 2,1

display " Deletion of this record will also delete all " at 3,1

display " orders and their itens associated with this " at 4,1

display " custoner. " at 5,1

display " " at 8,1

| et pronpt_response = null
whi | e pronpt _response matches "["yYnN]" or
pronpt _response is null
pronpt " Continue? " for pronpt_response
end while
if upshift(pronpt_response) = "N
then

Customizing Library Functions — 15-21

Fitrix Screen Technical Reference

cl ose wi ndow del ete_rec
return fal se
end if

cl ose wi ndow del ete_rec
return true

end function
ok_del ete()

Notice how the user’ s response to verification isinterpreted. If the responseis"N",
a"false" value isreturned and the delete is not performed.

The ok _ functions are classified as midlevel functions.

Creating Application Help

Fitrix Screen generated applications have multiple levels of context sensitive online
help. Y ou can define unique help at virtually any point in your application, whether
it be at the menu level, the ring menu level, or the field level. This section focuses

on creating ring menu and field level help.

When an application is run, help can be displayed by pressing [CTRL]-[w]. This
displays a screen containing help text relating to your current position. The follow-
ing is an example help screen:

Help:[] View Update Quit

Request program information

EOP Reverse(Y/N): end of period reverse

Single—character field which accepts a value of either Y
(yes) or N (no). The default for this field is N (no). A
document stored with a value of Y in this field is treated
the same as any other document. with one exception.
Normally when posting occurs in G/L, documents are deleted
from the General Journal file. Documents with the EOP
Reverse field set to Y are an exception. These documents
are not deleted-they are retained for use after the Begin a

The commands on the command line of the Help form are explained below:

15-22 Advanced Features

Fitrix Screen Technical Reference

Info: This option leads to the Program Information Menu, which contains alist of
five selections. The Program Information Menu and its selections are documented
in the "Program Information Menu" on page 3-19.

View: This option scrolls through the text displayed on the Help form. The
INFORMIX-defined cursor movement keys (arrow keys, [F3], [F4]) are available
while viewing the text.

Update: Thisoptionis selected to enter or modify help text. To store text entered
on the form, use the [ESC] key.

Quit: Thisoption exits the Help form and returns the cursor to the original position
prior to entering the Help form.

The Fitrix Screen Online Help System

This section describes how the help system works. The text that is displayed on
help screensis stored in the database. The logic that links the datain the database to
the particular blocks of text differs slightly depending on where help is called from.

The st xhel pd table contains al of the help information for the application. This
table contains both the actual help text itself, but also special keysthat link the
strings of help text to various locations in the program. The st xhel pd table con-
tains the following columns:

st xhel pd:
| anguage char (3),
userdef char(1),
hl p_nodul e char(18),
hl p_program char (18),
hl p_nunber snallint,
line_no smallint,
hl p_text char(60)

Thehl p_nodul e, hl p_program hlp_number, and |ine_no col-
umns make up the unique key for the text. The datain these columns link the text
to the correct locations in the program.

The following describes the four ways help text islinked to various parts of the pro-
gram.

Creating Application Help ~ 15-23

Fitrix Screen Technical Reference

1. Ring menu help

If you're at the ring menu, help text is keyed from the module and progid (this

wastheinitial intent of the help system - hencethe hl p_nodul e and
hl p_pr ogr amcolumn namesin st xhel pd):

At the main ring menu:

hlp_module hlp_program hlp_number
logic program_module program_name 1
example al i_alias 1

Thisway, you can have help text that relates to the main screen in the program.

Thewholeideabehindhl p_nunber wasthat if a programmer wanted to shift
contexts within the screen (say, a different help in the options menu, or in find
mode, or something), they could programmatically call help with another num-
ber, and still keep the context to the module and program. The hl p_nunber
isusualy 1.

Specia screen types

Since the advent of add-on screens, you can have many screensin one applica-
tion. When add-on’ s were conceived, a decision was made to tie screen level
helptothescr _i d for these types of screens.

hlp_module hlp_program hlp_number
logic program_module scr_id 1
example al acct_zm 1

A screenisidentified as an add-on type if thescr _i d isnot default. If the
scr_i disnot default, it's of the add-on family (including extensions and
zooms), sothescr _i d isused for thehl p_pr ogr aminstead of the
progr am nane.

The zoom screen is the only type of additional screen that has aring menu. So
for al practical purposes, zoom screens are the only additional screens that
have screen level help.

15-24 Advanced Features

Fitrix Screen Technical Reference

3. Fieldlevel help

The most common type of help isfield level help. Field level help iswhen you
are updating aform, and you press [CTRL]-[w] on afield. In this scenario, your
help iskeyed as follows:

hip_module hlp_program hlp_number
logic table_name column_name 1
example stxalisr gl_alias 1

4. Formonly field help

Thefourth level is alittle bit more abstract. Thisiswhere a screen field isn’t
attached to a database column. These screen fields are of formonly type.

If you press [CTRL]-[w] on aformonly type screen field, help text is keyed to
the screen, not the database (for obvious reasons). Here' s the logic:

hlp_module hlp_program hlp_number
logic moldule.program field_name input_area
example all.i_cashe g_pl 2

Noticethe hl p_nunber iskeyed to the input area number (in this case, the
detail section - area 2). Thisis because you can have the samefield_namein
both input areas, meaning two different things, so you have to uniquely key
them.

Like the add-on example above, if the screen isn’'t the main screen in the appli-
cation, the hl p_nodul e iskeyed to the screen vs. the program:

hlp_module hlp_program hlp_number
logic moldule.scr_id field_name input_area
example all.inc_exc o_p1 2

Creating Application Help ~ 15-25

Fitrix Screen Technical Reference

Note

Thereisaway to create field-level help that is unique to a program. Refer to
"Creating Field Level Help That is Unique to the Program” on page 18-2.

How to Create Help Text for Your
Applications

There are several waysto create help text for your applications. One way isto use
the Table Information form from the Database Administration option that is avail-
ablein the Form Painter. This program allows you do define help and attach it to
your database columns. Another way isto create unload files with your own editor
such asvi and then load them into your database. Defining application help through
the form painter is discussed first.

Y ou can a'so create help text by copying pre-defined help from another module or
program. For moreinformation on copying help text refer to the Fitrix CASE Tools
Enhancement Toolkit Technical Reference.

Defining Application Help Through the Form Painter

The ability to define help for an application is part of the form painting processas a
matter of convenience; application help text can be modified at any time, even after
the 4GL code has been compiled.

Field level help text can be defined at the column level through the Database
Administration feature. Once help text has been defined for a particular column,
any field on any data-entry form that references that column accesses the help text
defined for the column.

Thefirst step in defining application help isto select the Database option from the
Form pull-down menu. Before you can define help text for columns, you must
make atable current on the Table Information form. Use the Find command on the
ring menu to help make atable current.

15-26 Advanced Features

Fitrix Screen Technical Reference

The following example shows the manuf act table fromthe st or es sample
database:

Action:] Add Update Delete |[ENEN Brouse Nxt Prv Tab Options Quit
Select and/or Reorder a group of documents

Table Information

Table Name : manufact
Description: Manufacturer Definitions
Unique Key : manu_code

Ouner : seanb
Created : 03/06/92
Yersion : 4

- Column Name ——————— Description Type
manu_code Manufacturer Code char(3)
manu_name Manufacturer Name char(15)

1 of 1)

In the example above, help text defined for columnsin themanuf act table can be
accessed later from application data-entry form fields referencing columns in the
manuf act table.

To define help text for columns you must update the record for the table containing
the columns. Records shown on the Table Information form contain two sections:
header and detail. The detail section, on the lower portion of the form, contains
information about columns comprising the table. With the cursor on arow in the
detail section, press[CTRL]-[n] to create, view, or modify help text for the particu-
lar column listed on that row.

Creating Application Help ~ 15-27

Fitrix Screen Technical Reference

Pressing [CTRL]-[n] while on a column in the detail section of the Table Informa-
tion form displays the following form:

Update: L[ESC] to Store. [DEL] to Cancel

Enter changes into form

Hanufacturer Code
This field contains the Manufacturer Code. It accepts

up to three characters.

The Help form shown hereisthe form used to define help text for database columns
and, thereby, for applications. Enter help text for data-entry fields that reference
this database column.

Creating Help Text Through Unload
files.

The other way to create help text for your programs consists of creating unload
files. Unload files are ASCII files that contain database information. The informa-
tionin an unload fileisloaded into a database using SQL. Unload files are used to
add information to existing databases.

Online help text existsin an unload file called st xhel pd. Thisfile contains all of
your original help text and isloaded into your customers database. The st xhel pd
unload files do not contain any user defined help. A typical st xhel pd filelooks
like this:

ENG | col m def | col desc| 1| 1| The Col uim Nane field contains a descriptive nane
for the|

ENG | col m def | col desc| 1| 2| dat abase colum. You may enter a nane that
better|

ENG | col m def | col desc| 1| 3] descri bes the database col um. |

ENG | col m def|collabl|1] 1| This field contains the nane of the colum that
wi Il appear|

ENG | col m def|collabl|1] 2| on the report. Enter the colum nane the way you
want it]

ENG | col m def| col | abl | 1| 3| to appear on the report. |

15-28 Advanced Features

Fitrix Screen Technical Reference

ENG | dgr p_def | dat a_desc| 1| 1| This fiel d contains the name of the Data G oup.
Dat a|

ENG | dgr p_def | dat a_desc| 1| 2| G oups al low you to find the main table for the
report and|

ENG | dgr p_def | data_desc| 1| 3| restricts the SQL rel ati onshi ps to a nanageabl e
set. By]|

ENG | dgr p_def | dat a_desc| 1| 4| choosing a Data Goup, all related tables are
automatical ly|

ENG | dgr p_def | data_desc| 1| 5| retrieved. Enter a descriptive nane for the
Data G oup. |

Thefirst six columnsin this unload file make up the "key" to the help text. Thiskey
iswhat matches the help text to a particular point in a program. The first word,
ENG, represents the language tag. This tag allows you to display help text in other
languages.

Next you seea"[" (pipe). The pipeisafield separator in an unload file. Pipes sepa-
rate different columnsin the database. In this example, you see two pipes next to
each other indicating that the second "field" is null.

This second slot isreserved for "User Defined.” If you were to unload your st x-

hel pd table from your database and a user had modified some field description, a
Y would appear here indicating that help is User Defined. When help is marked as
User Defined, future upgrades of the software do not overwrite the help definition.

The third column contains the database table name identifying the particular field.
Each field on aformisidentified by atable and a column.

The fourth column contains the column identifying the field.
The fifth column usually contains the number 1.

The sixth column contains the line number of the help text. Each line of help text
for afield is numbered sequentially.

Creating Application Help ~ 15-29

Fitrix Screen Technical Reference

Creating BLOBs

The Code Generator and Form Painter both can utilize byt e andt ext OnLine
engine data types. However, these data types can only be used when running the
OnLine engine.

If you are using the OnLine engine, you can create an application that uses BLOB
(Binary Large OBject) technology. A BLOB isatext file, graphicsfile, sound file,
or another application. The Code Generator provides most of the work for BLOB
functions, but it is up to the programmer to specify the program needed to invoke
the BLOB, whether it calls aread file, displays a graphic, plays a sound, or runs
another application.

For example, you may want to create an application that accesses a Wingz spread-
sheet. What you do is create afield in your application that is defined in the data-
base astype byt e, choose the method for invoking the spreadsheet, and finally
determine if the spreadsheet can be modified.

When the generated application is run, an asterisk appearsin the BLOB field when
datais available for that field. To display the datain thefield, or in this case to run
the program to invoke Wingz, enter the field and press [CTRL]-[z]. The Wingz
spreadshest appears on the screen. To return to the original application, perform a
regular exit for the BLOB application.

To use aBLOB, create afield with text or byte as the field type. Y ou must then
enter the program and edit permission. Program and edit permission is entered
using the Form Painter. For more information on creating BLOBs with the Form
Painter refer to "Creating BLOB Fields' on page 7-18.

The following example shows the format required in the FGSS section of the .per
form.

15-30 Advanced Features

Fitrix Screen Technical Reference

blobdef = blobbyte, Wingz, Y

blobdef isthe keyword.

blobbyte identifiesthe BLOB asabytetype.

Wingz specifies the name of the program to call.

Y

isthe edit permission flag.

A typical program for atext BLOB might be vi or your standard editor. A typical
program for a byte BLOB might be xloadimage.

NOTES:

1

Field types of byte and text are only supported in the input 1(header) region of
header and header/detail forms.

BLOBs cannot be part of a detail table.

Full maintenance of byte and text BLOB fields is only generated for BLOB
fields which are in the main table for the form.

Full maintenance of byte and text BLOB fields is not provided for formonly
BLOB fields. Y ou must provide additional code for maintenance of these for-
monly fields.

Y ou cannot have atable with only a serial field and a BLOB field. Another
field type such as char or integer must be present when using a serial field and
BLOB field together in atable.

The Code Generator creates atemporary O/S file that contains the BLOB, and
passes the name of thisfile asthe first argument to the program. When the BLOB is
exited, the temporary file is automatically removed.

If aBLOB isedited, it is updated in the table when [ESC] is pressed. If the [DEL]
key is pressed, any changesto the BLOB are not recorded.

Creating BLOBs 15-31

Fitrix Screen Technical Reference

Custom 4GL Functions and BLOBs

If you want to run a custom 4GL function rather than a UNIX program you need to
specify the name of the function and any arguments in parentheses. The following
isan example:

ny_funct("blobfield", 22, "Y")

In the above example, when [CTRL]-[Z] is pressed in the field containing the
BLOB, ny_funct () iscaled with the three parameters:; "blobfield", 22, "Y".
Parameters are optional, but you must provide the parentheses to inform the Code
Generator that thisis a custom 4GL function and not a program name. Y ou must
also provide the functioninthe at _eof section of atrigger file.

Y our custom 4GL function communicates with the generated code viathe
scrat ch variable. Set scr at ch to one of the following before returning from
your function:

1. null: A null scr at ch specifiesthat no edit was performed. Y our 4GL func-
tion must take care of the removal of the temporary file (if any).

2. "(delete)": If scr at ch contains"(delete)", then that specifies a delete request
to the generated code. The BLOB is deleted from the current row.

3. O/S filename: If anything elseis specified in scr at ch, it isassumed to be a
UNIX filename where the BLOB resides.

An example 4GL function that handles BLOBsisfound in $f g/ | i b/ st an-
dar d. 4gs/ run_bl ob. 4gl andisnamedrun_bl ob().

Sample BLOB Application

The following example explains how to add a byte BLOB field to an application
that calls up an Informix Wingz spreadsheet. This example showswhat is contained
in the .per specification file. For more information on creating BLOBs with the
Form Painter refer to "Creating BLOB Fields" on page 7-18.

1. Defineabytefield inthe input 1(header) region of your .per form.

For example, specify something like the following in the SCREEN section of
the .per:

15-32 Advanced Features

Fitrix Screen Technical Reference

byte colum :[A]
Then specify the following in the ATTRIBUTES section:
A = <table> bl obbyte, comments = "Wngz field";
2. Addthefollowing line to the FGSS section of the .per form:
bl obdef = bl obbyte, Wngz, Y

The Code Generator creates the necessary code to maintain the byte field and
invoke Informix Wingz with [CTRL]-[z] when the user isin the byte field.

In the current implementation of the Code Generator, Informix Wingz isinvoked
with atemporary file name that does not have a".wks" extension. Because of this,
thefirst time Wingz is run with afile the "Save as' option must be used to remove
the".wks" extension that Wingz attempts to append to the filename with which it
was invoked.

Example of a.per form using byte and text fields:

-

Copyright (C) 1991

Fitrix, Atlanta, Georgia

Use, nodification, duplication, and/or distribution of this
software is limted to the terms of the software agreenent.
Sccsid: W% %W %% Delta: %%

Screen Generator version: 4.11.UCL

3

DATABASE gor dona

SCREEN

{

—————————————————————————— blob test table --------------mo o
non- bl ob col um: [A1]

byte col um A

text colum ([B]

}

TABLES

gordo

ATTRI BUTES

Al = gordo. nonbl ob, comments = "Non-blob test field";
A = gordo. bl obbyte, coments = "Wngz field";

Creating BLOBs 15-33

Fitrix Screen Technical Reference

B = gordo. bl obtext, conments = "Vi text field";

I NSTRUCTI ONS
screen record s_daren (gordo. nonbl ob, gordo. bl obbyte, gordo. bl obtext)

delimters "

FGSS

defaul ts

nodul e = deno

type = header

init = 1=0

attributes = border, white

| ocation =2, 3

input 1

tabl e = gordo

filter = 1=1

bl obdef = bl obbyte, Wngz, Y

bl obdef = blobtext, vi, Y
}

15-34 Advanced Features

Fitrix Screen Technical Reference

Creating Skip Field Logic

The Skip Function alows you to skip a specified field on your form during data
entry when a specified condition is met. In other words, you can use conditional
logic in conjunction with the SK_ skip function to cause an enterable field to be
skipped during dataentry. For example, say you have written skip logic for the
Address field on your order form that instructs the program to skip the Address
field if the Customer Namefield is null. If you add a new order and leave the Cus-
tomer Namefield blank, the program skips over the Addressfield and placesyou in
the next enterable field.

To create skip logic for afield:
1. Identify the fields that use skip field logic.

You can mark afield as a skip field on the Define Fields form in the Form Painter.
Marking skip fieldsin the Form Painter creates the following skip instruction in the
.per file:

skip = col 1, col2, col3, col4

Fields requiring skip logic need to be specified in the .per file to cut down on the
size of the generated function. By specifying which fields use skip logic, codeis
generated only for those fields, rather than for every field.

2. Write the skip logic for each field and put it in a .trg file.

To call the skip function you must specify the condition that causes the field to be
skipped and place the following code into your .trg file:

before_field {col unm nane}
if {condition}
then

call 11 h_skip(prv_fld)
end if

The location of the field determines the exact syntax of your skip statement. For
example, if you need to skip afield in the input 2 section of your form, then use the
following:

before_field {col unm nane}
if {condition}
then

call 11d_skip(prv_fld)
end if

Creating Skip Field Logic 15-35

Fitrix Screen Technical Reference

If you want to call the skip function from aform type other than header or
header/detail forms, then use:

call SK_scr id(prv_fld)

Cursor Handling Philosophy

Code generated with Fitrix Screen uses cursors as temporary tables to assist with
the manipulation of data within the data-entry application.

The cursor philosophy has many advantages:

Y ou can use database transactions and the OnL ine engine. (The library code
handl es the begin/commit/rollback work statements.)

Cursors can be programmed easily—all of the work isdonein the user interface
libraries.

You canusetheri ng_sort () routine from the options menu to have the
user define the sort criteriafor the browser.

Y ou can watch the computer gather the documents (in increments of 100).

Y ou can press [DEL] during the document gathering process without canceling
the cursor. The cursor retains the documents gathered before [DEL].

Y ou can pass afilter clause on the command line.

Y ou can pass an order clause on the command line.

15-36 Advanced Features

Fitrix Screen Technical Reference

Creating a Generic Text
Picker/Editor

A text picker isalist box that displays alist of items to the user. Once the user
selects the data from the picker, the datais returned into scr at ch, and then

scr at ch can be set to the field into which the data is returned. Before a picker is
run, picker items must be put into a system-maintained array. Picker items can be
hard coded into the array with thet ext put () function:

cal |l textput("Harpo")
call textput ("G oucho")
call textput("Chico")
call textput("Zeppo")
call textput("Karl")

t ext put () can also accept the argument of "(see scratch)” to pull a picker item
out of scratch . Thet ext pi ck() functionis called to pull up the picker with the
values loaded. The argument of t ext pi ck() isthe heading of the picker. For
example:

if textpick("Pick a Marx Brother") > 0
then | et p_orders. marx_brother = scratch
end if

t ext pi ck() automatically determines what window size is needed based on the
widest picker item or header. The picker scrollsif there are more than 6 items.

t ext pi ck also returns the number of itemsit found, so in the example, if there
are no items that come up the picker does not come up.

textsel () isliket ext put except that it expectsscr at ch to contain avalid
SQL statement, and it loads the picker array with the result of that SQL statement.
t ext sel returnsthe number of rows that have been sel ected.

Hereisan example of how t ext sel () andt ext pi ck() called before the zip-
code field is entered on a customer input screen. t ext sel interprets the city and
state entered for the customer and t ext pi ck() pullsup apicker with zipcodes
for that city and state. In the trigger file, simply add the following:

Creating a Generic Text Picker/Editor ~ 15-37

Fitrix Screen Technical Reference

input 1
static_define
quot e char (1)

before_field zipcode
let quote =" ""
let scratch =
"sel ect distinct zipcode fromcustoner where custoner.city ="
quote, p_stonmer.city, quote, "and customer.state ="
quote, p_stoner.state, quote, "order by zipcode"
if textsel() > 0 then
if textpick("Select a Zi pcode") then
| et p_stoner.zipcode = scratch
end if
end if

The Text Editor: The text editor is ageneric set of routinesthat display datain a
window where it can be edited and then retrieved.

The size of the text editor window is determined when thet ext edi t () function
iscalled. Text edit windows can be opened in increments of 20, 30, 40, 50, 60, or
74 characters.

The Text Picker: The text picker is ageneric set of routines that display awin-
dow and allow a user to scroll through alist of dataand retrieve aline.

The text picker determines the size of the window to open based on the longest line
of datain the array.

If there is only oneitem in the menu, that item is picked automatically and the
menu is not displayed.

The flow for these windowsiis as follows:

1. Fill thearray with dataset (viat ext put () ortextsel ())

e caltexthel p() if youwant to define help text

o caltextdefault() if youwant default datafor the editor (not for picker)
2. Call the editor or picker

3. Return the edited or picked data

The following functions, which can befoundin $f g/ | i b/ st an-
dard. 4gs/ i b_t ext. 4gl, areincluded in the picker/editor group:

15-38 Advanced Features

Fitrix Screen Technical Reference

textinit () — call toreset the text array

Thisfunction rarely needs called. If noinitial dataisloaded into the editor, or if
you are looping through t ext put () 'sand the loop may not execute once,
then this function is called before any other t ext * callsto initialize the text
arrays. Thisfunctioniscalled by t ext put () andt ext sel () . If you are
using these functions, you do not needtocal t exti ni t () .

textput (" text") — place "text" into next available slot

This function puts text into the next available array element. After the
picker/editor is called, it cleans out the array for futuret ext put () cals. If

the value of text = "(see scratch)", then the value to place into the array element
isin the scratch variable.

Example:

cal |l textput("Apples")

call textput("Oranges")

let scratch = "Peaches"

call textput("(see scratch)")

textsel () — providetext viaan SQL select statement

This function expects the scratch variable to contain avalid SQL statement. It
executes that SQL statement and loads the array with the database values. It
then returns the number of rows that have been selected. If the number of rows
returned from the SQL statement is greater than the number of elementsin the
array, t ext sel () returns-1. If the SQL statement fails for any reason,
lib_error() iscaled, and Oisreturned.

Example:
let scratch = "select tabname from systables order by tabname"
if textsel() >0
then

if textpick("System Tables") > 0
then | et tabname = scratch
end if
end if

Creating a Generic Text Picker/Editor ~ 15-39

Fitrix Screen Technical Reference

textdefault ("default key") — define default text for the editor

This function defines the unique key to use to place default text into the editor.
The default text is placed into the editor if there are O lines of text to be edited
upon entry into the editor. If there is a default key, the (Zoom) message
appears. If Zoom is pressed during text entry, the default text can be edited.

texthelp ("module" , "program" , number) — define help text used

This function defines for the picker/editor the module/program/number of help
text to use instead of the generic help text.

texthlp (number) — define help text used (shortcut - uses pr ogi d)
Sameast ext hel p(), only it gets module/program from pr ogi d.
textedit ("heading",width) — enter the text editor

This function invokes the text editor on the array. It places the heading at the
top of the window. The length defines the length of the variables in the array.
Y ou may pass any length, though windows are limited to the following lengths:
20, 30, 40, 50, 60, and 74. If the length of the variables exceed the length of the
window, then data may be truncated. Upon return, the scr at ch variable con-
tains the data in the array element selected by the user (by pressing [ESC]). If
[DEL] is pressed, the function returns false. It returnstrue if [ESC] is pressed.

textpick ("heading") — enter the text picker

Thisfunction invokes the text picker. It placesthe heading at the top of the win-
dow. The window size is determined by the longest value in the array, or the
heading size (whichever islongest). A window is opened displaying the datain
the array. If the user presses [ESC] to pick anitem, scr at ch isfilled with
datafrom that array element, and the function returns true. If [DEL] is pressed,
scr at ch isnulled, and the function returnsfalse. If [CTRL]-[Z] is pressed, the
function returns fal se (nothing picked) but places the string zoomin

scrat ch[1, 4] and thetext of the line the cursor was on (when [CTRL]-[Z])
inscratch[5, 80].

15-40 Advanced Features

Fitrix Screen Technical Reference

Example:

if textpick("Pick a Fruit") >0
then let fruit = scratch
end if

This example opens awindow with "Pick a Fruit" at the top. It then waits for
the user to respond. If the user picks an item, the variablef r ui t containsthe
selection.

If thereis only oneitem in the menu, that item is picked automatically and the
menu is not displayed.

textget () — get the next line of the text array

Thisfunction iscalled after t ext edi t (ort ext pi ck) to get the datain the
array elements. t ext get () isthe opposite of t ext put () . A call tot ext -
get () returnsthe "next" item from the picker. The "next" item is alwaysitem
#1 thefirst timet ext get () iscalled for agiven picker and isincremented
for each call after that. This function is useful when you use the function

t ext sel () toload the picker instead of aseriesof callstot ext put () .

t ext sel () automatically loadsthe picker for you using the SQL query given
asan argument. Later, if you need the results of the query for somereason, it is
faster to collect theitems from the picker instead of performing the query again.
When you call t ext get () the"next" item in the picker is copied into
scrat chandt ext get () returnstrue. Once there are no more itemsto
return, t ext get () returnsfalse.

Example:

let line =1

while textget()
let my_array[line].text = scratch
let line =line + 1

end while

This example loadsthe array ny_ar r ay with the contents of the picker.

Creating a Generic Text Picker/Editor — 15-41

Fitrix Screen Technical Reference

textview () — view form of textpick

This function behaves in the same manner asthet ext pi ck() function
except for the message displayed on the form. Thet ext vi ew() message
appears as follows:

Vi ew. [ESC] or
[DEL] to Quit

textzoom () — insert the (Zoom) message
This function tells the text picker to present the (Zoom) message.

A few examples:

Pick froma list

call textput("Apples")

cal |l textput("Oranges")

cal | textput("Peaches")

cal | textput("Bananas")

call textput("This is a long fruit name that requires a w der w ndow')
if textpick("Choose a Fruit") >0

then let fruit = scratch

end if

Or

whi | e textpick("Choose a Fruit") =0
error "You need to pick a fruit"

end while

let fruit = scratch

Pick a table from systables
let scratch = "select tabname from systabl es order by tabname"
if textsel() >0
then

if textpick("Database Tables") > 0

then

l et tabname = scratch

end if

end if

Edit a known set of data

let scratch = "select text, line_no from custnotes
where cust_key =", cust_num " order by |line_no"
if textsel() <O
t hen
error "Too many lines to edit."
el se

call texthelp("ar","custoner",4) # Define the help text
call textdefault("table: custnotes") # Define a unique key for default text

15-42 Advanced Features

Fitrix Screen Technical Reference

if textedit("Custoner Notes",50) = true

t hen
del ete from custnotes where cust_key = cust_num
let line_no =1
whil e textget()

insert into custnotes val ues(cust_num scratch, |ine_no)
let line_no =1line_no + 1
end while
end if
end if

Error Handling Functions
(fg_err and 1ib_error)

There are two error functions commonly used when coding data validation logic:
fg_err() andlib_error().Whichoneisused depends on whether or not
you want to duplicate the "common" error you have defined in multiple programs.

Example:
call fg_err(3)

Thef g_err (#) (where#isthe actual error number) function is used when you
want to have a specific call to an error unique to the application you are running. It
assumes the module name and the program-id from the variables |oaded at run
time. Only the error number you want to useispassedtofg err().fg_err()
looks to the variables for rodul e and pr ogi d.

Thelib_error("nodul e, "programid", # "") functioniscalledto
access any error message in the system.

Example:
call lib_error("gl","i_genjrn","2","")
The extra"" are for storing atechnical message that is displayed optionally when

errors occur during execution of the program.

Thelib_error() andfg_err () functionsareinthe Enhancement Toolkit,
and since there is no source code available for Enhancement Toolkit, you cannot
modify the way they work.

Error Handling Functions (fg_errand 1ib_error) 15-43

Fitrix Screen Technical Reference

Using a Custom Error Message with
Verification Lookups

If you want to incorporate a more specific message when avalueis not found, you
must "hand-code" the lookup into .ext files. There are two stepsto creating a
lookup with a custom error message:

1. Change the second argument of the call to 1L1h_lookup to "false" to have
it continue without calling the standard error message.

2. Create specific logic to handle the "value not found" condition.

This example usesthe library functionf g_er r () to call the error message. This
error message number is"1." Hereis an example:

After data_changed | ogic
i f data_changed
then
case
when scr_fld = "state"
Perform Lookups
#_cust oner _st at e_| ookup
if I'lh_lookup("state_| k", false) = fal se and # do nothing
length(this_data) !'= 0 # upon error
then
call fg_err(1) #No State Code for what you entered
let nxt_fld = "state"
return
end if
end case
end if

This modification is made with block commands. First you need to create an .ext
file and create a block command to replace the generated lookup with your custom
version.

15-44 Advanced Features

Fitrix Screen Technical Reference

Create areplace block command:
start file "header.4gl"
replace block Il h_a_field custoner_state_| ookup

if I'lh_l ookup("state", false) = false and # change second

length(this_data) !'=0 # argunent to "fal se"
t hen
call fg_err(l) # No State Code for what you entered
let nxt_fld = "state"
return

end if

Creating a Post-Processor

The Code Generator allows you to customize generated code by running a post-pro-
cessor on the code after generation. This type of customization is useful for global
changes that affect many programs.

Thef g. scr een program runs a post-processor on the local application if the
environment variable$l ocal _scr isset. Usethisvariableto point to the name of
the program you wish to run on the generated 4GL code.

For example, assume you have written amore relevant initialization routine (say,
chg_ini t ())thanthegenerici ni t () functionthat iscreated by the Code Gen-
erator. Youwant mai n. or g tocall chg_i ni t () rather thanthei ni t () func-
tion. Y ou can set up a post-processor to changetheinitialization call inmai n. or g
tochg_init (). Thestepsin setting up thistype of post-processor program are as
follows:

1. Writeaprogram (chg_i ni t for example). It might be a shell script that runs
"sed" on mai n. or g asfollows:

#chg_init

sed "s, call init, call chg_init," < main.org > nain.tnp
m/ maein.tnp nain.org

Creating a Post-Processor 15-45

Fitrix Screen Technical Reference

2. Setyour $l ocal _scr environment variable to the name of the post-processor
script (you might want to do thisin your .profilefile):

Bour ne Shel |
local _scr=chg_init; export |ocal_scr

C Shel |
setenv | ocal _scr chg_init

Once the Code Generator completes the generation of the application, the local
mai n. or g file contains the function call chg_i ni t () rather thani nit ().

Note

Post-processors must operate on the .org files. If you try to change something in
a .4dl file, those changes are lost because the Featurizer copies the contents of
the .org fileinto the .4gl file before merging the .ext and .trg files.

The 1ib_message Function

The message function | i b_nessage() displays certain messages at fixed loca-
tions on a screen. Here is a list of events that can be passed (as arguments) to
I i b_message and their results:

zoom of f displays"======"atline 3

zoom on displays"(Zoom)" at line 3

not e_of f displays"======="at line 3

not e_on displays"(Notes)" at line 3

sort displays"Sort: [ESC] when..." message at line 1

fi nd displays"Find: [ESC] to Find..." message at line 1
zoomdisplays"Zoom: [ESC] to Select..." message at line 1
updat e displays "Update: [ESC] to Store..." message at line 1
add displays"Add: [ESC] to Store..." message at line 1

15-46 Advanced Features

Fitrix Screen Technical Reference

t ab displays™", [TAB] Next Window" at line 1

scrol | displays"Scroll: [TAB], [DEL],..." message at line 1

scr _bot t omdisplaysthe valuein scratch at calculated screen bottom
t ext vi ewdisplays"View[ESC] or" message at line 1

choose displays"Choose: [ESC] to Select,” message at line 1

err chose displays"Errors: [CTRL]-[Z] to..." message at line 1

cur _pat h displays"Cursor Path: [ESC] to ..." message at linel

hel p displays"Help: " at line 1

For some of these events, the variablescr at ch can be set to amessage just before
thecal tol i b_message. Theresult would be the message being displayed at the
fixed location on the screen. As aways, care should be taken when manipulating
thevalue of scr at ch.

Hereisan example of how | i b_nmessage appears on arunning application:

Add: LESC] to Store. [DEL] to Cancel. LTAB] Next Window Info:
Enter changes into form LCTRLI-Ly]
(Notes)==(Zoom)==

Just bel ow the ring menu options on theright side of the menu ling, ("=======") is
theresult of | i b_nessage. Theargument not e_on and zoom on are passed
tol i b_message causing (Notes) and (Zoom) to appear on the right side of the
menu line.

The 1ib _message Function 15-47

Fitrix Screen Technical Reference

Modifying 1ib_message

All of the messages that are accessiblethrough | i b_nessage are held in the
Fitrix Screen message table, st xnssgr . Messages such as (Zoom), (Notes),
Update: [ESC] to Select, Errors: [CTRL]-[Z] to ... are stored in this table. If you
have messages that you want to appear on the screen, you can add your messagesto
the message table and call your messagewith | i b_message. Say you have a
simple message called "Gee, I'm happy today" to display to the screen. Using

I i b_message involves athree-step process:

1. Addthe messagetothest xnssgr table.

2. Modify thelibrary functionl i b_nmessage.

3. Cdllib_message to make your custom message appear.
Step 1 - Adding the messageto st xnssgr .

All messages used in Fitrix Screen generated programs are held in the table
st xmesgr , aschema of which looks like this:

| anguage char (3),
nesg_nodul e char(8),
nmesg_program char (8),
nssg_nunber snallint,
nmessage char (132)

Notice how messages are uniquely defined by module, program and number, just
like error text, help text, navigation items, and hot key definitions. Y ou can specify
any module or program you wish. If your message is throughout several input pro-
grams, you may wish to use the generic Fitrix Screen module and program and
makethenssg_nodul e andnssg_program "lib_scr" and" nmessage”
respectively. Y ou can add your row to st xmssgr asfollows (in unload file for-
mat):

ENG | i b_scr| nessage| 39| Gee, |’ m happy today|

Notice how aunique nssg_numnber of 39isassigned. Thereisastatic array for

I i b_message that holds each messagewithnssg_nodul e of "l i b_scr " and
nesg_program of "nessage." Thisarray sizeis currently at 38, soin this
example number 39 was assigned to this message.

15-48 Advanced Features

Fitrix Screen Technical Reference

Step 2 - Modifyingl i b_nmessage.

Thelibrary functionl i b_nessage needsto be modified to access your new mes-
sage. Sinceit isalibrary function, make a custom library adjacent toscr . 4gs
and copy inmessage. 4gl (the .4gl filethat contains| i b_nmessage). Make
your modifications there. Building and compiling custom libraries is documented
in "Creating and Using Custom Libraries* on page 15-17.

Asan overview of thefunction | i b_nessage, two things occur:

1. Uponthefirstcaltol i b_nessage,| i b_nmessage’sstatic array isfilled
with all of Fitrix Screen’s generic messages (nssg_nodul e of "standard”
and mssg_pr ogr am of "message").

2. Themessageisdisplayed to the screen at the location specified. Thelocation is
indicated by the argument passedtol i b_nessage . Withinl i b_nessage,
thisargument is called "funct."

So, to modify | i b_message to accommodate your new message ("Gee, I'm
happy today"), you add codeto nessage. 4gl asfollows:

1. Atthevery top isthe static array that holds all the messages. Bump this up
from "38" to "39" to make room for our new message:

arr_nesgs array[38] of record # ol d Message text
arr_nesgs array[39] of record # Message text
mesg_t ext char (132)
end record

2. An"if" statement loadsthis static array thefirsttimel i b_nmessage is
called ("if mssg_prepisnull..."). Inl i b_nessage, the function
fg_nessage() iscalled passing nssg_nodul e, nesg_pr ogr am
and nssg_nunber (justlikelib_error).fg _nessage doesthe
select on st xnssgr and returns the result. At the very end of this"if"
statement, add the call tof g_nmessage to access your message #39. Make
sure and add the comment so you know what messageisin element number
39 of the array:

let arr_nesgs[39].nssg_text = fg_nessage("lib_scr","nmessage", 39)
#39: "Cee, |'m happy today."

let mesg_prep = "Y"
end if

The 1ib _message Function 15-49

Fitrix Screen Technical Reference

3. A CASE statement that evaluates the argument passedto | i b_nessage
("funct"). Each WHEN clause evaluates "funct" and displays the message
at the hard-coded location. For this example just display the message to the
screen. The default location of the lower left hand corner is used:

when funct = "gee"
di splay arr_nesgs[39].nmssg_text clipped

The WHEN clause is placed anywhere in the CASE statement.

When specifying a location, there are some helpful library-level variables
that can be used, such asnum r ows and num col s . num r ows stores
the number of rows in the current window (1-24). num col s stores the
number of columns in the current window (1-80). The library function
ri ng_cl ear simply clearsthe menu lines on the very top.

The preceding are al the modifications necessary tol i b_message. After com-
piling, this modified library function is ready to be called from your local program
directory.

Step 3- Calling | i b_message from the program directory

The call is made entirely with triggers. Place the call anywhere you want it to
appear in the input program. For this example, it is put in after-field logic:

after_field po_num
call |ib_nessage("gee")

Notice how the argument "gee" is passed to invoke our "Gee, I'm happy today"
message. If you have put the modified message. 4gl fileinacustom library,
don’t forget to include the custom library in thelist of librariesto link in (L1B-
FILESinthe Makefile). Usethel i brari es orcustom | i brari es trigger to
do this. Regenerate, recompile, and test.

15-50 Advanced Features

Fitrix Screen Technical Reference

Shell Escapes and UNIX
Commands

When running a generated program in the standard UNIX Bourne shell you can
"drop out" to the operating system by typing an [!] and then the command sh.

When the [!] is pressed, the menu prompt changes to:

System Enter conmand or [DEL] to quit

Typing acommand at this prompt is equivalent to typing the same command before
entering the Fitrix Screen program.

Fitrix Screen has implemented this as an event that can be used with Navigation, or
assigned to a hot key. The default hot key definition for this event is[CTRL]-[0].

Screen output from operating system commands appear at the bottom of the screen
and force the Fitrix Screen form to scroll upward (unless the command redraws the
screen. When the command is compl eted, the program prompts:

Press [ENTER] to continue.

Pressing any key causes the program to redraw the form and return to the Fitrix
Screen program.

Preventing Shell Escapes

Y ou may prevent users from access to the shell by setting the $SHELL variable to
false. To prevent your users from shelling out of your Fitrix Screen generated pro-
gram set the following variable;

SHELL=f al se; export SHELL

Thisvariable should be set inthe $f g/ bi n/ f g. st ar t up script. If you use
Fitrix Menus to run your program, the $SHELL variable is automatically set to

[bin/shinfg. startup. Therefore you need to put the SHEL L =false; export
SHELL command just before the mz command inf g. st ar t up.

Shell Escapes and UNIX Commands 15-51

Fitrix Screen Technical Reference

15-52 Advanced Features

Version Control

This chapter discusses version control; a concept that allows you to easily maintain
different versions of your application programs without duplicating code. This
chapter explains:

n

n

What files are affected by version control

How to organize your applications to take advantage of version control
What special triggers are affected by version control

How the featurizer works with version control

How to run programs when using version control

How Fitrix Menus works with version control

16-1

Fitrix Screen Technical Reference

Introduction to Version
Control

Version Control isakey to designing applications that grow with the users needs
rather than becoming outdated as technology advances and user needs and desires
change.

Version control is useful whenever it is helpful to distinguish two or more versions
of the same program(s). These situations include:

* When the programs are to be used by two or more sets of users, who may have
different desires regarding functionality.

» "Co-development" arrangementsin which two or more groups of programmers
are contributing features and fixes to the code.

* When abase product isto be modified by others.

* When an application or moduleisto be offered in various "suites," usually
varying with the size of the company or corporation.

* When different sets of features are selected by different groups of users, asin
different business units and offices of a corporation.

* When amodulein live use by customersis being upgraded. New versions can
be "turned on and of f" during testing and review.

The multi-version features of Fitrix Screen improve management of these situations
and reduce duplication of code and work in creating and maintaining multiple ver-
sions of programs.

Fitrix Screen allows you to easily maintain different versions of your application
programs without duplicating code. Version control allows you to share common
files such as .per forms, .trg, and .ext files. What this meansisthat you do not have
to copy these files to every program directory if you are creating multiple versions
of your programs. Without version control, you would need to have all .per, .trg,
and .ext files present in every program directory. Duplicating code consumes space
and becomes a nightmare to maintain.

16-2 Version Control

Fitrix Screen Technical Reference

In order to take full advantage of version control, be sure you read everything in
this chapter. Y ou must learn what files are used and when, and which triggers or
blocks are used to build your program.

There are severa facetsto version control.

1. Directory structure.

2. The directory search path - Scust_path.

changing the default $cust _pat h
which .per forms to generate code for
which .trg files are merged

trigger precedence

which .ext files are merged

block precedence

3. Using non-generated .4gl files.

4. Running programs when using version control.

5. Fitrix Menus and version control.

The following diagram gives a simple scenario of how version control works. In
this example, the base program existsinthei _or der . 4gs directory. In order to
customize this program by adding new triggers, ani _or der . 4gc directory is
created. All changes to the .4gs program are added to a new trigger file in the .4gc
directory. The new value added program is created by running the Code Generator

Introduction to Version Control 16-3

Fitrix Screen Technical Reference

and then compiling the program, which invokesthe Featurizer. The Code Generator
and Featurizer use code found in the base directory along with the new triggers to
create the new version of the program.

i_order.4gs i_order.4gc
Code
screen.per e
generated.org generated.org
new triggers
screen.trg »(Featurizer screen.trg
merged.4gl merged.4gl

16-4 Version Control

Fitrix Screen Technical Reference

Required Directory
Structures

The discussion of version control beginsfirst with how it works with .per files only.
This servesto introduce you to the concept of version control. Once you understand
the basic concept you learn how version control works with triggers, blocks, and
the Featurizer.

The program directory extension, known asthe cust _key, is stored in the data-
base along with the module basename, the program basename, and the screen base-
name. The directory extension isthe key piece of information used by version
control to determine whereit is and where it needs to go. Think of directory exten-
sions as road signs. Both the Code Generator and the Featurizer identify where
.pers, .trgs, and .exts are located by the extension of the current directory.

In order to use version control effectively, you must follow the module-program
directory structure illustrated below. In this example, the module is General Led-
ger, and the programs are different versionsof ani _chart program. Listed under
the directory name are perform file names.

module level gl.4gm
program level | |
i_chart.abc i_chart.xyz i_chart.4gc i_chart.4gs
screenl.per screenl.per zoom.per screenl.per
browse.per zoom.per
browse.per

Version control requires extensions on your program directories. We recommend
the following conventions:

4gs extension - The program directory that contains the base version of the pro-
gram. In the example above, the base product containsscr eenl. per,
zoom per,andbr owse. per.

Required Directory Structures 16-5

Fitr

ix Screen Technical Reference

4gc extension - The program directory for the “value-added” directory. This
contains additional changes on top of your base package that you want to apply
to al your customers. In the example above, you may have decided to modify
thebasescr een2. per . Perhaps you added an extrafield. Y ou would want

this changed scr een2. per to apply to al your clients, so you placeit in the
4gc directory.

Any other extensions are considered to be client-specific program directories, cre-
ated to further specialize programs for specific client needs:

16-6

xyz extension - The special program directory for your “xyz” client. For exam-
ple, this client may want both a different browse screen, and additional fieldsto
thescr een?2. per that the value-added scr een2. per doesnot have. Both
custom perform files exist in this .xyz directory.

abc extension - The special program directory for your “abc” client. For exam-
ple, this client may want afield removed inscr eenl. per.

Version Control

Fitrix Screen Technical Reference

Version Control and the
Code Generator

When using version control, the Code Generator automatically locates all of the
.per files needed to generate the program, even if they are not contained within the
current directory. In order for the Code Generator to automatically find the correct
.per files, you need to invoke it as follows:

fg.screen -dbnanme dat abase

Notice that no perform files are specified. When invoked in this manner, the Code
Generator makes alist of the perform files in the current directory, and then looks
in the next directory down in the hierarchy. The default hierarchy of directoriesis
asfollows, from highest to lowest:

client-specific - in the exanple above, “abc” and “xyz”
val ue- added - in the exanpl e above, “4gc”
base - in the exanpl e above, “4gs”

The directories are always scanned (when $cust _pat h isnot set) from the bot-
tom of the hierarchy up to the current location.

If you run the Code Generator in the base (.4gs) directory, which isthe lowest, it
does not look in the value-added (4gc) directory for perform files.

If you run the Code Generator in the .4gc directory, the .persin the .4gs directory
are found first, and then the .persin the .4gs directory. If any .persexist in the .4gc
directory that have the same name as a .per found in the .4gs directory, the .per in
the current .4gc directory is used instead.

Y ou can change the search path the Code Generator usesto find .per files by setting
an environment variable called $cust _pat h. For more information on the
$cust _pat h variablerefer to "Changing the Version Control Search Path
($cust _pat h)" on page 16-11.

Version Control and the Code Generator 16-7

Fitrix Screen Technical Reference

By running the Code Generator without specifying the .per files and without setting
the$cust _pat h variable, the following files are processed:

module level gl.4gm
program level ‘ ‘
i_chart.abc i_chart.xyz i_chart.4gc i_chart.4gs
screenl.per screenl.per zoom.per screenl.per
browse.per zoom.per
browse.per

When the Code Generator isrunfromi _chart . 4gs, it uses only the .per files
contained there.

i_chart.4gs: The files used would be:
..li_chart.4gs/screenl. per
..li_chart.4gs/ zoom per
..li_chart. 4gs/ browse. per

When the Code Generator isrun fromthei _chart . 4gc directory, the
zoom per inthe .4gc directory takes precedence over the zoom per inthe
i _chart. 4gs directory and it is used to create the application.

i_chart.4gc: The files used would be
..li_chart.4gc/ zoom per
..li_chart.4gs/screenl. per
..li_chart. 4gs/ browse. per

When the Code Generator isrun fromthei _chart . xyz directory, the
zoom per andthebr owse. per contained there take precedence over the
zoom per andthebr owse. per contained in the value-added (.4gc) and the
base (.4gs) directories.

i_chart.xyz: The files used would be
..li_chart.xyz/zoom per
..li_chart.xyz/ browse. per
..li_chart.4gs/screenl. per

When the Code Generator isruninthei _chart . abc directory, it usesthelocal
(.abc) screenl. per,thezoom per inthe value-added (.4gc) directory, and
thebr owse. per from the base (.4gs) directory.

16-8 Version Control

Fitrix Screen Technical Reference

i _chart.abc: The files used woul d be
..li_chart.abc/screenl. per
../li_chart.4gc/ zoom per
..li_chart. 4gs/ browse. per

The. ./ directory/screen_name format is used in the creation of the
Makefil e FORMB=. .. line. The correct perform files are then compiled with
f g. make.

If the Code Generator isinvoked with perform files specified on the command line,
the Code Generator does not search other directoriesin the hierarchy as described
above. The Code Generator createsthe FORMS=. . . lineinthe Makef i | e with
only those perform files found in the current directory.

Preventing Code Generation on a Base
.per Form

There may also be cases where you want to disable a particular screen for aclient.
To do thisyou need to copy that screen into that client’ sdirectory, and edit theform
by adding thelinenon_sour ce_f or m so that codeisnot generated fromit. You
need to copy the form into the clients directory, because if you don’t, the Code
Generator finds the real perform file further down the hierarchy.

Thenon_sour ce_f or mstatement is placed in the .per immediately following
the copyright statement within the first set of braces{}.

{ HHHHHHHHHHHHHH R H R R R R
Copyright (C 1993

Your Conpany Nane

Use, nodification, duplication, and/or distribution of this
software is limted to the terms of the software agreenent.
Sccsid: %% %Wo % % Delta: %%
HUHHHHHHHHHHHHHHH R R

non_sour ce_forn}

Version Control and the Code Generator 16-9

Fitrix Screen Technical Reference

The Featurizer and Version
Control

The Featurizer merges triggers and blocks into generated source code and supports
version control. The Featurizer allows you to merge triggers and blocks found in
different directories into source code in your current program directory. If you are
developing in multiple directories, you do not need to recopy trigger files or .ext
filesinto your current directory. This avoids keeping duplicate code in multiple
versions of the same program, which saves disk space and simplifies maintenance.

When using version control, the goal is to keep only the differences of aversionin
aprogram directory. For instance, for user ABC Company’s version of the

i _i nvce program, the .trg and .ext filesinthei _i nvce. abc directory would
contain only the custom triggers and features needed to create ABC Company’s
custom version. All of the .trg and .ext files that are part of the base product remain
in the .4gc and .4gs directories.

The Featurizer looks at the $cust _pat h variable to determine where to look for
filesto merge. If you run the Featurizer in a custom directory such as .abc without
setting the $cust _pat h variable, files are processed from program directoriesin
this order:

1. 4gs
2. 4gc
3. any other 3 character extension (for example, .abc)

When you invoke the Featurizer from an ".abc" directory, the Featurizer immedi-
ately looks for a .4gs directory with the same prefix (i _i nvce in the above exam-
ple) and then loads all code from the .trg file and all code from any specified .ext
files. Remember the feature must be plugged in viaabase. set filefor the Fea-
turizer to load the .ext file for that feature.

Next, the Featurizer looks for a.4gc program directory with the same prefix
(i _i nvce inthe above example). Again, it loads .trg logic and .ext logic as
instructed. If the .4gc directory does not exist, then it skips this step.

Finally, the Featurizer returns to the user-specific directory from which it was
invoked and loads in any remaining .trg and .ext logic from this directory.

16-10 Version Control

Fitrix Screen Technical Reference

The end result of pre-processing is a suite of .4gl source code files containing
plugged in features from .4gc or .4gs program directories, plus any trigger or fea-
ture logic specific to that user only.

Trigger and Block Command Priority

The order that atrigger or block command is merged determinesits priority. Like
.per filesin the current directory take precedence over all .per filesfound elsewhere
in the directory path, block commands and most triggers replace identical com-
mands. However there are some special triggers that can be specified to either
replace or append subsequent triggers. These special triggers are described on page
16-15.

Specifying Which .ext Files to Merge

When using version control and .ext files, you must remember to place a

base. set filein every directory you generate or compilein in order to merge
selected .ext files. With version control, .ext files are not automatically merged
from parallel directorieslike triggers. Y ou must specify every .ext file that you
want to merge into your local program. This means that you have to list every .ext
filein every directory in the search path.

The best technique for making sure the necessary .ext’s are merged is to copy the
base. set filefrom the previous directory in the search path into the local direc-
tory. After copying thebase. set file, you then add to the list of .ext’s contained
within it any local .ext’s.

Changing the Version Control Search
Path ($cust_path)

You can set a UNIX environment variable called $cust _pat h toinform the
Code Generator and Featurizer which order and which directoriesto search for .per,
.trg, and .ext files. The default $cust _pat his4gc: 4gs. The$cust _pat h
variable accepts three character extensions separated by semi-colons.

The Featurizer and Version Control 16-11

Fitrix Screen Technical Reference

For example, if you set $cust _pat hto4gc: abc: 4gs, and you generate or
compile from the .4gc directory, the tool s first search the 4gs directory, then the abc
directory, and finally the .4gc directory for .per, .trg, and .ext files to process.

If you generate in adirectory not specified in the $cust _pat h, the generator
looks at the last directory in the $cust _pat h first and then continues up the
$cust _pat h until it finally reaches the current directory.

For instance, you could instruct the Featurizer to read .trg and .ext filesin this
order:

1. 4gs
2. .abc
3. J4gc
or perhaps:
1. .abc
2. JA4gc
3. 4gs
4. Xxyz

The $cust _pat h variable also determines the order .trg filesand .ext files are
merged into the .org code. Although the current directory isthe top of the hierarchy
and the triggers found there take precedence over all similar triggersin the

$cust _pat h, it isthelast one processed. The Featurizer processes the triggersin
thelast directory in $cust _pat h first, then works its way up to the current direc-
tory.

Note

The order directories are searched in the $cust _pat h isfrom the last exten-
sion listed to the first. This gives the first extension in the path precedence.

16-12 Version Control

Fitrix Screen Technical Reference

An example of trigger hierarchy follows:

$cust _pat h=4gc: abc: 4gs A
Agc
(current
directory)
order
filesare
-abe processed
A4gs

If you haveyour $cust _pat h setto4gc: abc: 4gs, and you run the Featurizer
from the .4gc directory (the .4gc directory is current), then the Featurizer first
searches the .4gs directory for any .trg and .ext files and merges them into the .4gl
filesin the current directory, then it searches the .abc directory and merges those
trg filesinto the .4gl filesin the current directory, and finally the .trg filesin the
current directory are merged into the current .4gc directory.

The hierarchy depends on what directory you are in when you invoke the Featur-
izer. Triggersin the current directory take precedence over al triggers from there
on down the CUSTPATH hierarchy.

The Makefile’s CUSTPATH Variable

Setting the $cust _pat h environment variable before code generation causes the
contents of the variable to be written to the CUSTPATH variable in the resulting
Makefi | e. If aCUSTPATH setting already existsin aMakef i | e, re-generation
does not cause the current setting of CUSTPATH to be overwritten. The new
Makef i | e keepsthe CUSTPATH setting inthe old Makef i | e. For moreinfor-
mation onthe $cust _pat h variable refer to page 16-11.

Another way to specify CUSTPATH is by setting it in the Makef i | e, asfollows:

Makefile for an Inform x-4GL program

The Featurizer and Version Control 16-13

Fitrix Screen Technical Reference

NAME = davi dh. 4ge

OBJFI LES

gl obal s. 0 browse.o cust.o cust_zmo \
detail.o header.o main.o nidlevel.o \
stk_mu. o stockzmo

FORMS = ../ davi dh. 4gs/ browse. frm
CUSTPATH = 4gc: abc: 4gs
LIBFILES = ../lib.a\

$(fg)/lib/scr.a\
$(fg)/lib/standard.a \
$(fg)/libluser_ctl.a

GLOBAL = gl obal s. 4gl

@rake -f $(fg)/ Make/ program NAVE="$(NAME) " \
LI BFI LES="$(LI BFI LES)" OBJFI LES="$(OBJFI LES)" \
FORMB="$(FORVB) " GLOBAL="$(GLOBAL) " $(NAME)

cl ean:
@rake -f $(fg)/ Make/ program NAMVE="$(NAME) " \
LI BFI LES="$(LI BFI LES)" OBJFI LES="$(OBJFI LES)" \
FORMVB="$(FORMB) " GLOBAL="$(GLOBAL) "cl ean

This CUSTPATH variableis set in your program, module, or application directory
Makef i | e. If aCUSTPATH does not appear in the Makef i | e of the current pro-
gram directory, then the Featurizer |looks at the Makef i | e in the Program direc-
tory for a CUSTPATH. If it can’t find it there, then it looksin the Makef i | e for
the application. The Featurizer, when invoked, searches for CUSTPATH valuesin
the following order:

1. CUSTPATH setting in program directory Makef i | e

2. CUSTPATH setting in module level directory’s Makefi | e. or g
3. CUSTPATH setting in application level directory’s Makefi | e
4

$cust _pat h UNIX environmental variable

16-14 Version Control

Fitrix Screen Technical Reference

Special Trigger Processing

If the same trigger is specified in a custom directory that existsin a .4gs or another
lower custom directory in the CUSTPATH, the trigger in the custom directory
replaces all similar triggers found before it. The CUSTPATH determines which trig-
gersare applied first. If atrigger is applied to a section of code where atrigger has
already been placed, it actsasar epl ace_bl ock command, and replaces the
previous trigger with the more "local" trigger.

An example would beif your CUSTPATHIis4gc: 4gs and you arein

i _chart. abc. If you specify a"before field" trigger and that same trigger is
specifiedini _chart. 4gc andi _chart . 4gs, the Featurizer first inserts the
trigger from the .4gsdirectory, then replacesit with the trigger in the .4gc directory,
then replaces that with the trigger in the local .abc directory.

Triggers react differently when using version control.
1. Most triggers replace identical triggers.

2. There are some special triggers, however, which you can specify to either
append or replace their counterparts.

3. Thereare other special triggers that do not replace their original counterpart if
specified in custom directories and always append.

Here are some examples:

« Theswi t chbox_i t ens trigger either replaces or appends to other
swi t chbox_i t ens triggersin higher order directories.

e Thedefine,static_defineandfunction_defi ne triggerseither
replace or append to like triggers in higher order directories.

e Thedo_not _gener at e trigger acts as a"delete block" command, and once
deleted, they can't be un-deleted in other custom directories.

« Theat _eof trigger either replaces or appendsto other at _eof triggersin
higher order directories.

Y ou can determine how these special triggers function in order to preserve back-
ward compatibility with older generated code. For information on selecting the
append/replace mode refer to " The Featurizer Options File (fglpp.opt)" on page 2-
19.

The Featurizer and Version Control 16-15

Fitrix Screen Technical Reference

The following diagram illustrates how the Featurizer works with $cust _pat h
and how the def i ne trigger istreated.

$cust_path = 4gc:abc:4gs
current directory = test.4gc

directory: test.4gc test.abc test.4gs
trigger file: order.trg order.trg order.trg
trigger: define define define

fred smallint fred char(20) fred char(10)

Run fg.screen or fg.make.

If $define_trig = "append” you see thisin your globals.4gl:

define
fred smallint,
fred char(20),
fred char(10)

If $define_trig = "replace" you see thisin your globals.4gl:

define
fred smallint

Note

The$defi ne_tri g variableis specifiedinthef gl pp. or g filein

$f g/ codegen/ opt i ons. Thisvariable controls how the Featurizer handles
the special def i ne trigger when encountered using version control. For more
information on the $def i ne_t ri g refer to "The Featurizer Options File

(fglpp.opt)" on page 2-19.

16-16 Version Control

Fitrix Screen Technical Reference

Thisdiagram is similar to the previous diagram, only a different CUSTPATH s
used.

cust_path = abc:4gc:4gs
current directory = test.abc

directory: test.abc test.4gc test.4gs
trigger file: order.trg order.trg order.trg
trigger: define define define

fred char(20) fred smallint fred char(10)

Run fg.screen or fg.make.

If $define_trig = "append” you see thisin your globals.4gl:

define
fred char(20),

fred smallint,
fred char(10)

If $define_trig = "replace” you see thisin your globals.4gl:

define
fred char(20)

The define Trigger

When using multiple directory search paths, the Featurizer either replaces or
appends def i ne trigger definitions processed previously. The action that the Fea-
turizer takes depends on the current setting in thef gl pp. opt file. For moreinfor-
mation refer to "Maintaining Backwards Compatibility—The Options Files' on
page 2-19.

The Featurizer and Version Control 16-17

Fitrix Screen Technical Reference

The static_define Trigger

When using multiple directory search paths, the Featurizer either replaces or
appends st ati ¢_def i ne trigger definitions processed previously. The action
that the Featurizer takes depends on the current setting in the f gl pp. opt file.
Refer to page 2-19 for more information.

The at_eof Trigger

When using multiple directory search paths, the Featurizer either replaces or
appends at _eof trigger definitions processed previously. The action that the Fea-
turizer takes depends on the current setting in thef gl pp. opt file. Refer to
"Maintaining Backwards Compatibility—The Options Files' on page 2-19.

The switchbox items Trigger

When using multiple directory search paths, the Featurizer either replaces or
appends sSWi t chbox_i t ens trigger definitions previously processed. The action
that the Featurizer takes depends on the current setting in the f gl pp. opt file.
Refer to "Maintaining Backwards Compatibility—The Options Files" on page 2-
19.

Using Non-Generated .4gl files With
Version Control (fg_funcs. 4gl)

When using version control, the Code Generator and the Featurizer automatically
handl e the copying of generated .49l files from your base directory to your custom
directory. However, if you have custom .4gl filessuchasanf g_funcs. 4gl in
your base directories, you have to take a special step in order for that custom .4gl
file to get used in your local directory.

Y ou can simply copy your custom filesinto the local directory by hand but this
would mean duplicating code and would require double maintenance. Every time
you needed to modify your base custom .4gl file you would need to re-copy that file
to each custom directory that needs it.

16-18 Version Control

Fitrix Screen Technical Reference

Version control can automatically copy these cust om 4gl files provided you
placeastart file "fg_funcs. 4gl" commandinan .extfileinyour cus
tom directories. This causes the Featurizer to automatically copy the fileinto the
directory that needsiit.

Thus when you make a change in the base directory and subsequently regenerate
code in the custom directory, the change in the base directory is automatically prop-
agated to your custom directory.

Invoking Programs That Use
Version Control

When aprogram isrun it needsto be able to locate compiled .frm files for each .per
file that makes up the program. When using version control, not all the perform
files used in code generation are in the local directory; the program must be told
where these non-local perform files exist. There are two ways you can inform the
program where to find non-local perform files:

1. modify $DBPATH to include all directories that contain a source form or,

2. usethef g. go/ f g. db script to run the program.

Modifying $SDBPATH

By modifying the environment variable $DBPATH to include the directories where
these perform files exist, your program is able to open these perform files at runt-
ime.

Using the previous example, if yougointoi _chart . abc and run the program
there, your $DBPATHwould have to include both thei _chart . 4gc and

i _chart. 4gs directories, so that the program could open scr een?2. f r mand
br owse. f r m The $DBPATH variable would look like this:

DBPATH=. ./i _chart.4gc:../i_chart. 4gs: $DBPATH

Invoking Programs That Use Version Control ~ 16-19

Fitrix Screen Technical Reference

Using £fg.go and £g.db

When running a finished program from the command line, there are two shell
scripts you can use that set up your $DBPATH variable for you, so you do not have
to pre-set it as described above. These scripts automatically prepend the path to the
A4gc and .4gs directories to the $DBPATH. So if you run f g. go from the .abc
directory, the program looks first for the presence of all .frm filesin the local direc-
tory, and if any .frm fileis not found, then the .4gc directory is searched, and then
the .4gs.

£g.go: modifies $DBPATH and runs the program. This shell script detectsif the
program is an RDS program and runsit with f gl go or as an executable.

Examples:

fg.go program 4gi -dbnane dat abase
fg.go program 4ge -dbnane database

£g. db: runsthe finished program under the RDS Debugger, if the finished pro-
gramis an RDS program.

Example:
fg.db program 4gi -dbnane dat abase

Again, the use of these two shell scriptsis required when running the finished pro-
gram from the command line. As mentioned before, these scripts adjust your
$DBPATH setting properly, and then restore $DBPATH to its original setting upon
exit of the program.

16-20 Version Control

Fitrix Screen Technical Reference

Running Programs with
Fitrix Menus

Fitrix Menus can take advantage of version control by allowing you to pick and
choose which particular version of a program you want to run. Y ou can do this by
setting an environment variable called $cust _key to the directory extension the
program resides in. For example, you could set $cust _key to "abc" to inform
Fitrix Menus to run the program inai _chart . abc directory.

Fitrix Menus runs the program contained within the directory matching the

$cust _key variable. If aparticular version of the program doesn’t exist for the
$cust _key, Fitrix Menus searches the program directories for the program to run
in the same hierarchical fashion as used by version control in the Code Generator.

Take the following example:

—— i _chart. abc
—— i _chart. 4gc
i _chart. 4gs

0_i ncorme. 4gc
0_i ncone. 4gs

gl .4gm —

| p_genl ed. xyz
| p_genl ed. 4gs

i _genjrn. 4gs

Aboveisageneral ledger module (gl . 4gn), with different program directories
underneath. Multiple versions of some of the programs exist. The following dia-
gram depicts which executable would be selected based on the $cust _key.

Running Programs with Fitrix Menus 16-21

Fitrix Screen Technical Reference

cust _key=4gs
i _chart. 4gs
o_i ncone. 4gs
p_genl ed. 4gs
i _genjrn. 4gs

cust _key=4gc
i _chart. 4gc
o_i ncone. 4gc
p_genl ed. 4gs - since there is no p_genl ed. 4gc
i_genjrn.4gs - since there is no i_genjrn.4gc

cust _key=xyz

i_chart.4gc - since there is no i_genjrn.xyz
Oo_incone. 4gc - since there is no i_genjrn.xyz
p_genl ed. xyz

i_genjrn.4gs - since there is no i_genjrn.xyz or i_genjrn.4gc

cust _key=abc
i_chart. abc
o_i ncone. 4gc - since there is no o_incone. abc
p_genl ed. 4gs - since there is no p_genl ed.abc or p_genl ed. 4gc
i_genjrn.4gs - since there is no i_genjrn.abc or i_genjrn.4gc

So at any time, you can set the $cust _key variable, run Fitrix Menus , and see
what the product looks like for any particular customer.

The Relationship Between $cust key
and Scust _path

The previous examples all demonstrate what happenswhen $cust _key isset and
the default $cust _pat h of 4gc: 4gs isused. It isalso important to understand
how the Scust _key variablerelatesto $cust _pat h.

If $cust _key isnot set, Fitrix Menus looks at the $cust _pat h variable to
determine where to look for the program. If both $cust _key and $cust _pat h
are not set, then the default path of 4gc:4gsis used.

If the$cust _key isinthe$cust _pat h, then Menuslooksinthe$cust _key
directory first, and if a program is not found there, it continues down the
$cust _pat h until aprogram isfound.

16-22 Version Control

Fitrix Screen Technical Reference

For example, if Scust _pat h issetto.abc: 4gc: 4gs, and $cust _key isset
to .abc, then Menus searches for a program first in the .abc directory, then the 4gc
directory, and finally the 4gs directory.

If $cust _pat hissetto.4gc: abc: 4gs, and $cust _key isset to .abc, Menus
searches for a program first in the .abc directory, then the 4gs directory. The .4gc
directory is not searched.

Version Control Summary

Pre-Processing: During pre-processing the Featurizer takes the following steps:

1

If the current directory extension isin the search path, then the files there
take precedence. The Featurizer then looks for .trg and .ext filesin the last
directory in the CUSTPATH firgt, then it continues on to the previous direc-
tory in the CUSTPATH, until the current directory is reached.

For example:
CUSTPATH = 4gc: abe: 4gs

If your CUSTPATH is set as above, and your current directory is .abc, then
the filesin the .4gs and the .abc directory are used. The Featurizer does not
look in the .4gc directory.

If the current directory is not in the search path, the Featurizer begins pro-
cessing the filesin the last directory and then searches each of the directo-
riesin the search path for .trg and .ext files, which are each merged into the
Agl files. Thefilesin the current directory are merged last.

Code Generation: When generating code, the Screen Code Generator does the fol-
lowing before it createsthe Makefi | e:

Running Programs with Fitrix Menus ~ 16-23

Fitrix Screen Technical Reference

1. The Screen Code Generator checksto seeif a CUSTPATH entry existsina

pre-existing Makef i | e, asinthe case of running the Screen Code Genera-
tor a second time on a particular program. It usesthe gr ep command to
check for this CUSTPATH. If it findsiit, it retains the current CUSTPATH
setting.

If it doesn't find a CUSTPATH setting in aMakef i | e, it checks the envi-
ronment variable $cust _pat h to seeif itisset. If so, it usesthe valuein
$cust _pat h when creating this new Makef i | e. Thelogic explained
above retains a possible CUSTPATH setting, and does nor overwriteit when
the Screen Code Generator creates anew Makefi | e.

At Runtime: When a program is run, Fitrix Menus performs the following:

1. Fitrix Menus triesto find a program in a directory that matches the exten-

sionsetin $cust _key. If $cust _key isnot set, Menuslooksfor a
default 4gc:4gs directory.

Fitrix Menus also searchesthe $cust _pat h setting for a program to exe-
cute. If $cust _pat h isnot set, Fitrix Menus uses the default path of
4gc:4gs. If the $cust _key isnotinthe$cust _pat h, Menus prepends
$cust _key to$cust _pat h. The order that directories are searched
depends on the $cust _pat h.

For example, if $cust _key is abc and $cust _pat h is xyz:abc:4gs,
Menus looks for the program to run by looking first in a directory with a
.abc suffix. If aprogram is not found there, a directory with the .4gs exten-
sion is searched. The .xyz directory would not be searched in this case
because it comes before the $cust _key setting inthe $cust _pat h.

Practical Examples

The following pages contain graphical examples of version control.

16-24

Version Control

Fitrix Screen Technical Reference

Adding a New Trigger to Your Base
Program

This example shows you how you can customize your base program by adding a
new trigger to atrigger filewhile utilizing the .per forms and .trg filesfrom the base
directory to generate your custom program.

1. Create a custom directory (.4gc).
2. Create a new screen. trg file in the .4gc directory.

3. Add only the new trigger to screen. trgin .4gc. Leave the triggers in the
base .trg file alone.

Ags Agc
screen.per > Ge%grdat?or
generated.org generated.org
'
screen.trg »(Featurizer screen.trg
merged.4g| merged.4g

Practical Examples 16-25

Fitrix Screen Technical Reference

Customizing Your Base Program with
Blocks

This example shows what you need to do to perform afew block operationsto cus-
tomize your base program without having to duplicate the original code.

1.
2.

Create a new custom directory (.4gc).

Create a new .ext file that has a different name from any .ext in the base
directory.

Put the new block command in the .ext in the .4gc directory.
Copy the base. set file from the .4gs directory into the .4gc directory.

Add the name of the new .ext file to the base. set file in the .4gc direc-
tory.

Generate your custom program.

16-26 Version Control

Fitrix Screen Technical Reference

4gs Adge
o Code
screen.per > Generator
generated.org generated.org
base.set base.set
base cust
A

base.ext =@at~urizer - cust.ext

merged.4gl merged.4gl

Practical Examples 16-27

Fitrix Screen Technical Reference

Pulling a Custom .4gl (fg_funcs. 4gl)
File Into a Custom Directory

If you use version control with a program that utilizes custom 4gl files, (4gl files
that are not created by the Code Generator), a specia techniqueisrequired in order
for them to be copied into a custom directory. This tells the Featurizer to automati-
cally copy the .org file associated with the custom file into the custom directory.

1. Create a custom directory (.4gc).
2. Create an .ext file in the .4gc directory.
3. Createastart_file "fg.funcs.4gl" command in the .ext.

4. Create abase. set file and list the names of all .ext’s to be merged.

16-28 Version Control

Fitrix Screen Technical Reference

4gs Adge
o Code
screen.per ~_ Generator
generated.org generated.org
base.set base.set
cust
base.ext cust.ext
fg.funcs.org fg.funcs.org
fg.funcs.4gl fg.funcs.4gl
merged.4gl merged.4gl

Practical Examples 16-29

Fitrix Screen Technical Reference

How to Modify a .per in a Base
Directory

Whenever you need to customize a.per form you need to copy it to a custom direc-
tory and perform the modifications there. Any .per forms found in the local direc-
tory are used in place of any similarly named .per in any other directory found in
the $cust _pat h.

1.
2.

Create a custom directory.

Copy the .per you want to modify from the .4gs directory to your custom
directory.

Modify the .per form in the custom directory.

Run the Code Generator.

16-30 Version Control

Fitrix Screen Technical Reference

4gs Adge
screen.per Code <«——— screen.per
' Generator '
zoom.per
Y
generated.org generated.org
merged.4gl merged.4gl

Practical Examples 16-31

Fitrix Screen Technical Reference

A Complex Example Involving .trgs,
.exts, custom.4gls, and .per
Modifications

This example illustrates what happens when using version control with a heavily
customized program. This example illustrates exactly what files are used to build
the custom program.

Scenario: A field is added to acopy of themain screen. Anaft er _fi el d trigger
is added to the screen.trg file. A replace block command is added to the cust.ext
filee Astart file "fg_funcs. 4gl" command isadded to the cust.ext file.

1.

AN U S o

Create a custom directory.

Copy the .per forms you want to modify.

Modify the .per forms.

Run the Code Generator.

Create any new triggers and put them in a .trg file in the custom directory.

Create any new block commands and put them in a .ext file in the custom
directory.

Create a base. set file in the custom directory and include the name of
all .ext files you want to merge.

Create a start file"fg_funcs.4gl" block command in an .ext file
to pull over any custom .4gl files from the .4gs directory.

16-32 Version Control

Fitrix Screen Technical Reference

4gs Agc
sreen e sreenpe
generated.org generated.org
screen.trg screen.trg
base.set base.set
base cuts
A
base.ext »{ Featurizer cust.ext
fg_funcs.org fg_funcs.org
fg_funcs.4gl fg_funcs.4gl
merged.4gl merged.4gl

Version Control

Fitrix Screen Technical Reference

Using Version Control with Three
Directories

This example shows how you can use version control from three or more directo-
ries. The most common application of this type of structure occurs when avalue-
added program needs to be customized for a particular customer.

In this example, the value-added product consists only of anew trigger file. To
build a version controlled custom program, various parts are used from both the
.4gs and the .4gc directory. These are combined with the contents of the .abc direc-
tory to create a custom program.

1. For this example assume that you have already completed your base (.4gs)
and value-added(.4gc) programs.

2. Create a new custom directory to hold the customer specific version (.abc).
3. Create a new screen.trg file and add your new triggers.

4. Run the Code Generator and create the custom program.

Practical Examples 16-35

Fitrix Screen Technical Reference

|6ty pabiow |Bt7"pabiow 1617 pabiow
B1ruselos Bzunes{)= Barusels Bay'usals
4 e Wy
B0 paresoush B0 pareseush B0 pareloush
loeRuw N\ .
) - Jod usalos
qer I8 sSp”

16-37

Practical Examples

Fitrix Screen Technical Reference

Advanced Example: Multiple
Modifications using Multiple
Directories

This example demonstrates how version control works with more than two directo-
ries. For this example, the order.per form was modified, new triggers were added
for the main screen, and anew .ext file was created to hold some new block com-
mands. Also thebase. set filewas copied over to the .abc directory and the new
ord.ext file was added to thefile.

1. For this example assume that you have already completed your base (.4gs)
and value-added(.4gc) programs.

Create a new custom directory to hold the customer specific version (.abc).
Copy the order.per form from the .4gs directory and modify it.
Create a new screen.trg and add your new triggers.

Create a ord. ext and add your new block commands.

A U i

Copy the base. set file from the .4gc directory and make sure that it con-
tains the name of every .ext file you want to merge in your custom version
of the program.

16-38 Version Control

Fitrix Screen Technical Reference

1Bt pebiow 1By pebiew |6t pabiew
B11'UsIs Barusalos \ Barusaios
(R S
1Xopio X9 1sN0 \ 1Xo'aseq
— 7
plo N aseq
}saseq es'aseq
esaseq
B0 paresoush B0 paresoush B0 paresoush
Jad leplio Jad-Jepio
JorsUeD "\ .
apoD - Jod ussias
qer 8 s3p°

16-39

Practical Examples

Fitrix Screen Technical Reference

16-40 Version Control

17

Language
Translation

This chapter covers:
n Creating language independent programs
n Trandating .per forms

Trandating values used in data entry

=)

Trangating database strings

=)

17-1

Fitrix Screen Technical Reference

About Language Translation

Because of their modifiable nature, Fitrix Screen generated applications are easy to
trand ate into other languages. Application trandation takes place in four basic
areas.

1. Create Language Independent Programs

In order to make translation as easy as possible, all of your programs should refer-
ence strings in the database. Do not hard code messages or any type of displayed
text. Y ou should keep all displayed text as language independent as possible. The
f g. mesgr program helps you create language independent programs.

2. Translate .per forms.

The only thing that needs to be trandated in your .per forms are the field labels and
comments. Once you have your trandated .per forms you need to create a subdirec-
tory in your program directory to hold the translated .per forms. This subdirectory
should be named after the language the forms are trandlated into. For example an
SPA subdirectory could contain .per forms translated into Spanish.

3. Translate values used in data entry.

Another step involved with language trandation is translating the actual datathat a
user sees and/or enter. Since the underlying code iswritten in English and uses cer-
tain characters and words such as Y/N, it may become necessary at timesto display
these values to the user in whatever language they are using. For example, if some-
oneisrunning a French version of an application, they might want to see O/N
instead of Y/N. This alowsthem to enter O whichisreally stored as Y so the pro-
gram can understand it.

4. Translate database strings.

Database strings include all of the textual messages that display to the screen, such
as error messages and help text. Several programs have been created to allow easy
tranglation of these strings.

17-2 Language Translation

Fitrix Screen Technical Reference

Creating Language
Independent Programs

All application message strings, error messages, and warning messages should be
stored in your database. This makes your programs very modifiable, and easy to
switch from one language to another.

Thef g. nssgr tool should be used when you are creating custom code. Instead of
using a constant string to display messagesto your users, use variables so your code
can remain easily modifiable and language independent.

Thef g. nesgr tool lets you use language independent programming techniques,
yet not have to take time out to do the steps involved in setting up a string variable
and value. Thef g. nesgr tool doesthese steps:

1. Createsan element in aglobal record to hold the string value.

2. Addsacall to aninitialization function to initialize the string.

3. Insertsthe new string into the database.

4. Addsan entry to an unload file to allow for maintenance of the message string.

Thef g. mesgr tool isintended to run as you are programming. Y ou can call this
program from "vi" or from the Form Painter with [CTRL]-[O] asyou are creating a
trigger or block that uses some new message string. For example, if you are writing
atrigger that loads a picker and you need a "title" string for the picker, you can
issue the command:

fg.mssgr "Choose an |tent
or
fg.nmesgr -q -r chs_item " Choose an I|tent

Touseastringinyour code, runf g. mesgr and giveit the character string to use.
Y ou also have optional arguments for finer control.

Y ou then automatically have a str.{ string} record variable that you can use in the
code immediately. This method is almost as easy as using a constant string.

Creating Language Independent Programs 17-3

Fitrix Screen Technical Reference

Thef g. nesgr script adds the messageto the st xnssgr table, and creates a
local st xmssgr. unl message unload file. It also makesa. set, and .ext fileto
build the global and init logic.

The syntax for f g. nssgr isasfollows:

fg.mssgr [-q] [-b] [-dbname database] [-1 language]
[-m module key] [-p program key] [-n number key]
[-r record name] [-x max_length] "message string"

-q Suppresses output (quiet mode). Defaults to not quiet.

-b Causes block extension code not to be created. The -
b flag is used to prepare unload data only. This may
be useful in programs where all strings are consoli-
dated in globals.4gl.

-dbname database Specifies the database name to use. Defaults to

st andar d.

-1 language Specifiesthethree character language key. Defaultsto
ENG.

-m module_key Specifies the module name. Defaults to the basename

of the parent directory minus the suffix.

-p program_ key Specifiesthe program name. Defaults to the basename
of the current directory minus the suffix.

-n number_key If not given, the number key istaken as one more than
the last number key of messages with common lan-
guage, module, and program keysin the local
st xmssgr. unl unload file. If thereisno
stxmssgr.unl file or no messages with acommon key,
then the number is started at 1. Default is taken from
local st xmesgr. unl file.

-r record_name Names the str record variable to use for the message.

-x max_length Sets the maximum length of the string. Default is
determined by doubling the string length up to a max-
imum of 80 characters.

17-4 Language Translation

Fitrix Screen Technical Reference

"message string" Thisisthe string being created. The string should be
quoted. Thisargument is required.

Note

$nessage_nodul e and $nessage_pr ogr amcan be used to override the
module and program defaults.

Keep in mind that the record element name can be accidentally duplicated in block
extension code. The message keys determine if the message is already defined. This
approach prevents accidental replacement of valid stringsin thest r record and
forces the record to reflect the strings in the database. This sort of error is detected
immediately upon compilation and is much easier to detect and correct than an
error of accidental omission.

Typing the following command:

fg.mssgr -dbnanme standard -1 ENG -mscreen -p painter -r scren "This is the
new string."

produces this SQL statement:
dat abase st andard;
del ete from stxmssgr where | anguage="ENG' and
mesg_nodul e="screen" and nmssg_progranF"painter"” and
nesg_nunber =1;
insert into stxmssgr values("ENG',"screen","painter", 1, "This is the new
string");
I's this okay (y)?
PressY to accept, then you'll see:

Dat abase sel ect ed.

0 row(s) del eted.

1 row(s) inserted
Thebase. set filelookslike this:

str

Thestr. ext filelookslikethis:

Creating Language Independent Programs 17-5

Fitrix Screen Technical Reference

Copyright (C 1992 Your Conpany Name

Al rights reserved.

Use, nodification, duplication, and/or distribution of this
software is limted by the software |icense agreenent.

Sccsid: %% %Wo % % Del ta: %%

start file "globals.4gl"
in block TOF NUL after "define"

#_strings_record - Record of constant strings
str record

scren char(10) # 1 This is the new string
end record,;

start file "main.4gl"

before block main after_init

#_str_init - Call the string initialization function
call str_init()

at _eof _main

function str_init()

This function initializes all of the static strings

#

#_init_strings - Get the static strings fromthe database
call fg_nessage("screen", "painter", 1) returning str.scren
#_end_init_strings

end function
str_init();

17-6 Language Translation

Fitrix Screen Technical Reference

Utility Menu

Thef g. t ool s program calls a menus interface which provides options for trans-
|ating database strings into multiple languages. Y ou need Fitrix Menus installed on
your system in order to usef g. t ool s. If you do not have Fitrix Menus installed,
then you need to go to the program directory for the various programs and run them
individually. The following is the String Translation menu on the Utility menu.

Mail Help Quit

Enter selection: [I

1 - String Translation

1 - String Translation >> b - Error Message Detail
c — Help Text
2 - Select Database d - Message

e - Data Translation

standard database

Written in INFORMIX-4GL
(C) Copyright 1993

Translating Values Used in Data Entry

Several functions alow for language trandation. Although the field labels on .per
forms still need to be trandated individually and used independently from each
other, you can now use and store datain your native language regardless of the lan-
guage the program is running under. For example, you can have a French version of
aperform, which is basically the same as the English version of the .per form, with
different field labels and comments. By specifying certain fields as trandate fields,
and making corresponding entriesinto the st x| angr table for those fields, your
users can view and enter datainto the translated fields in whichever languageis
specified when running the program. If the user specifies French, then datais dis-
played in French. These translation functions are nice because English equivalent

Utility Menu 17-7

Fitrix Screen Technical Reference

(or whatever you use as your native language) gets stored in the database. Say the
French user adds a new order in French. Another user on the same system can eas-
ily pull up the exact same order and read the trandated fields IN ENGLISH.

Although any field can be translated, normally you only trandlate fields like Y/N,
debit/credit and other simple fields like these that display only specific values.

To use language translation, you first need to enter the foreign equivalents to the
native language into the st x| angr table. This can be done using the Data Trans-
lation option on the String Translation Menu. If you do not have Fitrix Menus
installed, you can invoke this program by running $f g/ codegen/ uti | -
ity.4gmi _tlangr.4gs/i_tlangr.4g[i|e].YoucanasouselSQL to
load the st x| angr table.

The Data Tranglation program:

Action:)] Add Update Delete Find Brouse [ESHl Prv Options Quit
¥iew next document

Field Translation Maintenance
Language: GER
Key Field: stootypr.reference_order
Context: ALL
Native Value: Y

Translated Yersion: A

(6 of 26)

The next step in trandating datais to modify your perform files and specify which
fields you want to tranglate.

Translating the Native Language

For each translated field there must be an entry in the table st x| angr . Thisisa
table that holds the native string and the corresponding foreign string. Below isthe
schema of the st xI angr table and a sample row in unload format.

17-8 Language Translation

Fitrix Screen Technical Reference

Table schema: st x| angr

language char (3) foreign language
tr_tab_col char(37) table.column of the screen field
tr_context char(10) context (default isALL)
native char (50) native language equivalent
non_native char (50) foreign language equivalent

Sample unload file:
GRM strcustr.gross_entry| ALL| Y| J|

Thetr _cont ext column contains the context that determines where this particu-
lar trandlated value should be displayed. Context allows you to create multiple
translations for the same native word, then specify which trandlation you want to
display in any particular field.

For example, say you have two different screens where the English word "debit" is
displayed, General Ledger and Order Entry. In your foreign language you might
have two different words (and meanings) for the English word debit. On one form
you want to display "fred," and on the other form you want to display "larry." What
you would do is create the following entries in your stxlangr table:

GRM strchbl ah. debit_credit| ALL| debi t| fred|
GRM strcbl ah. debit_credit|oe|debit|larry]|

Y our .per forms would contain the following translated fields.
Order Entry .per form:

translate= debit_credit oe
General Ledger .per form:

translate= debit_credit ALL

The context column can contain any value, uppercase or lowercase. Specify "ALL"
if the foreign value displays the same string in al occurrences of the native value.

Utility Menu 17-9

Fitrix Screen Technical Reference

Specifying Translation in the .per File

Once all of the values have been trandated inthest x| angr table, you can modify
your .per forms. The Screen Code Generator generates translation logic only for
those fields on your .per forms you have defined as trandate fields.

Trandlate fields can be defined in the Form Painter viathe Define Field form.

All that is required is to list the names of the columns you want to translate. Note
that the "context" isusually ALL. Logic is generated so that when the program is
run with a specific language, those fields defined as trand ate fields display values
in the language specified.

The following line shows how to define translated fields in the .per file:

translate = col 1 context, col2 context, col 3 context

Creating Directories for Translated .per Forms

To properly take advantage of Fitrix Screen’ s language handling techniques, you
need to locate al of your .per formsin subdirectories named after the language key.
For example, if you have trandated thei _cust r program into both French and
Spanish, thenunder i _cust r. 4gs you should create a FRN directory to contain
the French .per forms, an SPA directory to contain your Spanish forms, and aENG
directory to store your original English forms. When using trandation, no forms
should appear in the program directory itself, or those forms will always be used
regardless of what the $| anguage variableis set to.

When invoking the program, Fitrix Menus knowsto find the proper forms based on
the $| anguage global variable. The subdirectory matching the contents of the
$l anguage variable is added to the $SDBPATH.

Alternate forms can a so be displayed by invoking the program and passing a - |
language on the command line. However, you must manually add the correct
forms subdirectory to your $DBPATH if the program is run from the command line.

Modified Functions

Severa functions allow for language trandation. All of the display functions con-
tain callsto two functions, st ri ng_t o_f or ei gn() and
string_to_native(),for eachtrandated field. These functions display the
datain the foreign language while retaining the datain the program variablesin the

17-10 Language Translation

Fitrix Screen Technical Reference

native language. For instance when running a program in German, with the native
language as English, a J might appear on the screen representing Y es, but the pro-
gram variable still contains the English equivalent Y. In other words, what you see
is not what you get. This allows the program to continue to make logic decisions
based on native language strings such as Y and N.

If there are translated fields on the screen, a section that transforms the construct
statement is generated below the normal construct statement. The function that
transformsthe constructed statement isst ri ng_const ruct () . Followingisan
example of the code.

#_translate - Change construct for |anguage independence if needed
if get_scrlib("language") != "ENG'
then

numtrans - Send the nunber of fields to be translated

call put_vararg(3)

#_send_construct - Send the constructed string
call put_vararg(scratch[1,512])

#_like_type - Send translated field and it's context
call put_vararg("stootypr.like_type")

call put_vararg("ALL")

#_master_order - Send translated field and it’s context
call put_vararg("stootypr.master_order")

call put_vararg("ALL")

#_trans_construct - Rebuild construct for |anguage i ndependence
call string_construct()

let scratch = get_vararg()

let numtrans = get_vararg()

if numtrans > 0

then let is_translated = "transl ated"
else let is_translated = null
end if
end if

The trandation functions are found in $f g/ | i b/ st an-
dard. 4gs/| _trans. 4gl .

Utility Menu 17-11

Fitrix Screen Technical Reference

Translating Values and Database
Strings

The successful creation of language independent programs relies on storing strings
of text in the database. Y ou can then create trandlations of each string and tell the
program to use the strings defined for a particular language.

Error messages can now be easily trandated into different languages. Two utility
interfaces allow you to display the error message to be translated in your native lan-
guage, while allowing you to enter the translated text. Both of these programs are
options on a utility menu discussed next. This utility menu is displayed by typing
fg. t ool s. See"Utility Menu" on page 17-7.

Thefirst program, Error Message Header (i _t er or h), isused to trandate the one
line error messages that appear when an error is first encountered. The second pro-
gram, Error Message Detail (i _t er or d), is used to trandate the error message
detail text. Error message detail text is separated into both problem text and solu-
tion text.

Remember when using any of these tranglation programs, datais put directly into
your database. If you need to move the translated information to other databases
then you need to create unload files to dump the data created with these programs.

Translating the Error Message Header

The Error Message Header is the one line message that appears when an error is
encountered. To tranglate the error header message into different languages run
fg. t ool s and select the Error Message Header option on the String Translation
menu. If you do not have Fitrix Menus, runthe i _t er or h programin

$f g/ codegen/ utility. 4gm

Find the message you want to trandate in whatever native language you choose.
The native language is usually English. Specify the language you want to translate
into, then enter the translated text.

17-12 Language Translation

Fitrix Screen Technical Reference

The Error Message Header translation program.

Update: [ESC] to Store., [DEL] to Cancel Help:
Enter changes into form [CTRLI-[wl

******************** Error Message Translation (Header) ————————————
- Native Language —

Language: ENG
Module: all
Program: i_actgrp
User Defined:
Error Number: 2

Error Message:
Duplicate Account Group.

- Translated Language -
Language: SPA
Error Message:

Groupo De Cuenta Duplicada @ |

Enter the translated error.

The following steps describe how to create error header messages.

1.

Find the native error message.

Thefirst step isto find the native message you want to translate. Execute the
Find command on the ring menu and then enter the key information that identi-
fiesthe particular message you want to trandate. All of the fields on the top part
of the screen make up the key for error message headers (language, module,
program, user defined, and error number.)

Select the Update command.
Enter the foreign language to translate into.

After selecting Update, the cursor is put into the translated language field. In
thisfield enter the language you want to translate the message into. If you want
to create a Spanish trandation, enter SPA.

After entering avalue into the trandated language field for the first time, aglo-
bal variableis set so that when you update the next message the value that you
entered before automatically appears. Thisis so you do not have to keep enter-
ing the same information over and over if you are sitting down and trying to
translate all of the messages at once. Once a language value appearsin this
field, press[ENTER] to get to the message line. Y ou can change this value at
any time by entering anew language. Thisis a3 character field.

Utility Menu 17-13

Fitrix Screen Technical Reference

4. Enter the translated text.

The Error Message field is a 40 character field that contains the translated error
message. If text exists for the translated language and key, it is automatically
displayed here. Text can be modified by typing over it.

5. Save the new record.

Translating Error Message Detail

If you have Fitrix Menus, running f g. t ool s and selecting the Error Message
Detail option on the String Translation menu allows you to trandlate the problem
and solution detail text of an error message. If you do not have Fitrix Menus you
can run the executable in $f g/ codegen/ uti | -

ity.4gmi _terord.4gs/i _terord. 4g[i| €] .Error messagedetail isthe
text that is displayed when you press [CTRL]-[Zz] to get more information about an
error after it appears.

The functionality of thei _t er or d program is dightly different from the error
message header program. This program consists of two forms. The first form (the
main screen) allows you to find the native error text you want to translate and dis-
plays the text on the bottom of the screen.

Main screen:

Update: [ESC] to Store, [DEL] to Cancel, [TAB] Next Window Help:
Enter changes into form [CTRLI-Lwl
******************** Error Message Translation (Detail) —————————
Native Language: ENG Translated Language: S{i

Hodule: all

Program: i_actrng

Error Number:
a/b Error Message
a You have entered a number on this line that is numerically
a smaller than the number on the line above.
a These account types must be in numerical order.
b Enter a larger number on this line.
b Enter a smaller number on the previous line. but a number
b that is larger than the one above it.
Enter the language to translate into and press [ESC]

17-14 Language Translation

Fitrix Screen Technical Reference

Like the other error message programs, once you locate the native message you
want to translate, you Update the form. Updating the document puts you in the
Trandated Language field. In thisfield you enter the language to translate into.
Pressing [ESC] calls up the detail form, which displaysthe native and the translated
error text together.

Detail screen:
Update: [ESCI to Store., [DEL] to Cancel Help:
Enter changes into form [CTRLI-[wl
-—— a/b Error Message
a You have entered a number on this line that is numerically

a smaller than the number on the line above.
a These account types must be in numerical order.

b Enter a larger number on this line.

b Enter a smaller number on the previous line. but a number
b that is larger than the one above it.

-— a/b ~———————————————— Translated Message
a Usted ha entrado un numero en esta linea que es menos
a que la linea anterior.
a Estas tipas de cuentas tienen que estar en orden numerico.
b Entra un numero mas largo en esta linea.
b Entra un numero mas pequeno que la linea anterior pero tiene
b que ser un numero mas largo que el numero en la linea
b que viene antes de esa linea.

a = problem text. b = solution text

Y ou can move between the two detail sections by pressing [TAB]. Thisalowsyou
to use the arrow keysto scroll the native text. The bottom section contains the
translated text. Pressing [ESC] saves the translated error text.

Y ou should be aware that error messagesin thest xer or d (the table this program
modifies) and st xer or h tables are related to each other. This meansthat if you
translate detail errors, then you need to make sure to translate the header errors as
well. A specia check has been put into the Error Message Detail program. If you
translate an error message detail that does not have an existing entry inthe st xer -
or h table for the same key, a warning box appears notifying you of this. You can
then type in the corresponding header message into afield in the box if you wish.
Or you can simply press [ENTER] and then define the header portion later.

Utility Menu 17-15

Fitrix Screen Technical Reference

Translating Help Text

If you have Fitrix Menus, running f g. t ool s and selecting the Help Text option
on the String Translation menu allows you to translate on-line help text for your
programs. If you do not have Fitrix Menus you can run the executable in
$f g/ codegen/ utility.4gm i _thel pd. 4gs/i_thel pd. 4g[i|e].
On-line help text is displayed when you press [CTRL]-[Z] to get more information
about afield in aprogram.

Thei _t hel pd program consists of two forms. The first form (the main screen)
allowsyou to find the native help text you want to translate and displays the text on
the bottom of the screen.

Main screen:

Action:] Add Update Delete Find [[IRYERE Nxt Prv Tab Options Quit
Page through selected documents

Help Message Translation (Detail) ---———-——-——————————-

Native Language: ENG Translated Language:
Module: all
Program: i_mtaxgr

Help Mumber: 1

Help Message
Multilevel Tax Groups are used to allow the tracking
not only of multiple levels of tax for a given document
but also multiple taxes for any given line item.

In order to use this feature. you must enter a Y into the
Use Multilevel Tax Group field of the Company Information
form. If you decide to use the Multilevel Tax Groups feature
a Multilevel Tax Group Code must be entered instead of a

(6 of 1,502)

Like the other error message programs, once you locate the native message you
want to trandate, you Update the form. Updating the document puts you in the
Trandated Language field. In this field you enter the language to trandate into.
Pressing [ESC] calls up the detail form, which displays the native and the translated
help text together.

17-16 Language Translation

Fitrix Screen Technical Reference

Detail screen:
Update: [ESC] to Store. [DEL] to Cancel Help:
Enter changes into form [CTRLI-Lw]

Help Message
Multilevel Tax Groups are used to allow the tracking
not only of multiple levels of tax for a given document
but also multiple taxes for any given line item.

In order to use this feature. you must enter a Y into the
Use Multilevel Tax Group field of the Company Information
form. If you decide to use the Multilevel Tax Groups feature
Translated Message

Enter the translated error text

Y ou can move between the two detail sections by pressing [TAB]. Thisallows you
to use the arrow keys to scroll the native text. The bottom section contains the
translated text. Pressing [ESC] saves the trandlated help text.

Message Translation

Thest xnssgr table contains various strings of text that get displayed to the
screen. To trandate a message into different languagesrun thef g. t ool s pro-
gram if you have Fitrix Menus, and select the Message option on the String Trans-
lation menu. If you do not have Fitrix Menus then you can run

$f g/ codegen/ utility.4gnli _tmssgr.4gs/i_tmssgr.4g[i|e].
Find the message you want to translate in whatever native language you choose. If

Utility Menu 17-17

Fitrix Screen Technical Reference

the native language is English, then enter "ENG." After the string has been found,
Update the form. Specify the language you want to translate into, then enter the
trandlated text.

Action:)] Add JJEERN Delete Find Browse MNxt Prv Options Quit
Change this document

Message Translation
- Native Language —

Language: ENG
Module: all
Program: i_actgrp
Message Number: 1

Message:
ficcount Number

- Translated Language -
Language: SPA

Message:
Numero de Cuenta

(1 of 1.565)

The following steps describe how to translate messages.
1. Find the native message.

Thefirst step isto find the message you want to translate. Execute the Find
command on the ring menu and then enter the key information that identifies
the particular message you want to trandlate. All of the fields on the top part of
the screen make up the key for messages (language, module, program, and mes-
sage number.)

2. Select Update.
3. Enter the foreign language to translate into.

After selecting Update, the cursor is put into the Translated Language field. In
thisfield enter the language you want to translate into. If you want to create a
Spanish translation, enter SPA.

After entering avalue into the translated language field for the first time, aglo-
bal variableis set so that when you update the next message the value that you
entered before automatically appears. Thisis so you do not have to keep enter-
ing the same information over and over if you are sitting down and trying to

17-18 Language Translation

Fitrix Screen Technical Reference

translate all of the messages at once. Once a language value appearsin this
field, press[ENTER] to get to the message line. Y ou can change this value at
any time by entering anew language. Thisis a3 character field.

4. Enter the translated text.

The Message field is a 132 character field that contains the translated message.
If text exists for the translated language and key, it is automatically displayed
here. Text can be modified by typing over it.

5. Save the new record.

Utility Menu 17-19

Fitrix Screen Technical Reference

17-20 Language Translation

18

Helpful Techniques

This section explains how to perform avariety of modifications to your programs
including:

> 5 53 5 o5 S5 S oS S S

Creating field-level help unique to a program

Creating phony joins

Centering a window

Calling screen applications from a screen application
Capturing the user’s name

Disabling the "Add a Navigation" menu option
Disabling the F1 and F2 keys in a screen detail section
Enabling hot keys in scroll mode of a detail section
Immediate Zoom without pressing [CTRL]-[Z]
Disabling Function Keys

18-1

Fitrix Screen Technical Reference

Creating Field Level Help
That is Unique to the
Program

Field level help is unique to the table and column. This means that once you define
help for afield, the same help appears in every program that uses the same
table.column.

Here is one way to create field help unique to the program. Basically you need to
add your custom help to the st xhel pd table with ISQL using the normal table
and column key and also anew hl p_nunber other than one. The help number is
what makes your custom help unique to a program.

Y ou then need to add some callsto put _var ar g to pass the unique values to the
help function.

Here isa sample trigger that goesin the trigger file for your main form:

——————— begin screen.trg----------
input 1 (if the field you want is in the header section of the form
on_event hel p
call put_vararg("hl p_nunmber")
call put_vararg("2") # this is the unique hlp_nunber for this form
call scr_hel p()

on_event hel p

if scr_fld = "custoner_nunt

then
call put_vararg("hl p_nunber")
call put_vararg("2") # this is the unique hlp_nunber for this form
call scr_hel p()

el se

call scr_hel p()

end if

Y ou then need to create your own help text using the following keysto tie the text
to the field on the screen: table, column, and hl p_numnber . Changing the

hl p_numnber to something other than one makes it unique to this particular pro-
gram because you are calling it explicitly.

18-2 Helpful Techniques

Fitrix Screen Technical Reference

This maintains all of the regular methods of help, including the built in field level
help.

For more information on creating help refer to " Creating Application Help" on page
15-22.

Creating Phony Joins

A problem occurs when you want to display information from two tables on the
screen that have no real header/detail relationship. For example, the Company
Information form common to all Fitrix accounting applications displays company
information in the top portion of the screen and department codes in the lower half
of the screen. The problem isthat thereis no rea join between the company infor-
mation and department codes tables.

The solution isto set up a phony join between two columns then to modify afew
linesin the code. For the example mentioned above this involves setting up the fol-
lowingj oi nlineini nput 2 of the.per's FOURGEN section:

join = stxinfor.src_key = stxcntrc.co_nane

After the code is generated, three placesin the logic need to be modified in
detail.4gl:l11d mprep(),lld read(),andl | d _del ete().The
changes involve simply searching for the wher e clause that match thej oi n line
and replacing the second half of the clause. However, to maintain regenerability,
the following steps need to be taken. First, the modified functions are copied into
theat _eof sectionof thei nput 2 section of the trigger file. Next, the
do_not _gener at e trigger is added for the three above mentioned functionsto
the default section. The following is an example of atrigger file used to get around
this.

Creating Phony Joins 18-3

Fitrix Screen Technical Reference

H* B H B 3

Copyright (C) 1991

Your Conpany Name

Use, nodification, duplication, and/or distribution of this

software is limted to the terns of the software agreenent.

Sccsid: @#) .../all.4gnmi_contrl.4gs/screenl.trg 1.12 Delta: 10/11/91

#

Screen Generator version: 4.00.UCL

defaul ts

do_not _generate
I1d_delete
I'1d_mprep
I'1d_read;

function |1 d_mprep(n)

let mxinfor.src_type = "D

function I1d_read()

"where stxinfor.src_type = 'D"

function I1d_del ete()

where stxinfor.src_type = "D

Centering a Window

The following section explains an easy way to determine the starting location for a
window in order to center it.

This method can be used for any windows other than full screen windows (main
entry screen).

Starting screen coordinates in Fitrix Screen are giveniny, x format, where y=row
and x=column. The convention for all windowsisto have a"fixed" y (row) at posi-
tion 5. Thisway, al windows open up just below the menu line of the ring menu.
The x (column) should usually be centered. Here's agood formulato use to estab-
lish the starting location:

18-4

Helpful Techniques

Fitrix Screen Technical Reference

let x = ((80 - x1) / 2) + 1

x isthetotal column length of the window to be centered. For example, if you have
a browse window that has 14 rows and 60 columns. They is 5 (following conven-
tion). To find the conventional starting location for x:

let x = ((80 - 60) / 2) +1 # the result of whichis 11

Therefore, the proper starting location is 5, 11.

Calling Screen Applications
from a Screen Application

Thisisoneway you can modify opt i ons. 4gl to run other programs from the
Options ring-menu in your program. Remember, opt i ons. 4gl does get regen-
erated, so your changes should be placed in a .ext file. The code is added after the
menu command similar to what is shown below.

menu " Options"
conmand
"Custoner" "Reference the Custoner database file"
run "runcust"
exit menu

runcust syntax: (runcust located in the programdirectory)
don't forget to make the edit file executable (ex: chnod 770 runcust)
you can of course pass in filters to the fglgo command

#
#
#
#
cd ../i_custr.4gs
fglgo i _custr.4gi

Another way to perform thistask isto define achar variableinopt i ons. 4gl , set
the variable to the command you want to run, then run that variable as in the exam-
ple below:

xx char (40) # nust be |arge enough to accept the string
let xx = "cd ../i_custr.4gs; fglgo i _custr.4gi"
menu " Options"
command "Custoner” "Reference the Custoner database file"
run xx
exit menu

Calling Screen Applications from a Screen Application 18-5

Fitrix Screen Technical Reference

Capturing the User’s Name

Thefunction f g_user namne returns the user’s name. It islocated in the
$f g/ li b/ standar d. 4gs library directory. You can cal it like this:

l et usr_name = fg_usernane()

Thef g_user name function usessyst abl es to obtain the user’s name. If no
name is found, the value "UNKNOWN" is returned.

Disabling the "Add a
Navigation” Menu Option

Y ou can disable the "Add a Navigation Action" menu selection to disallow users
from adding an event.

To make thiswork, you need to copy $f g/ | i b/ st an-

dard. 4gs/ i b_text. 4gl intoyour local directory. Make the modifications
outlined below to | i b_t ext . 4gl , remove the .4go’s and recompile your pro-
gram. Run the program, press [CTRL]-[g], and naotice that neither an accept key,
[ENTER] or [CTRL]-[z] alowsyou to add a navigation action. All you seeisa
series of asterisks.

This is $fg/lib/standard. 4gs/1ib_text. 4gl

txt array.
#
define
_text char(74), # passed text
n smal lint # generic nunber

Don't allow recursion
if is_open = "Y" then return end if

Initialize the array
if reset_cnt = 123
then el se

call textinit()
end if

18-6 Helpful Techniques

Fitrix Screen Technical Reference

Substitute the string to be blocked with a known string
to test for in textpick()

Circunvent select navigation event events

a->> if _text = "Add a navigation action"
a->> then
a_>> |et text = "hkkkkkkkkhhkhkhkhkkkkhkhkhkrkhk k"

a->> end if

let arr_cnt = arr_cnt + 1
let arr_cur = arr_cnt
if arr_cnt > 150
t hen
call lib_error("lib_scr","textzn', 1,"")
return
end if

Set text if passed in scratch
if _text = "(see scratch)" then let _text = scratch end if

Bunp up nmax_col if necessary
let n = length(_text)

if n>mx_col then et max_col = n end if
Set text into array
let txt[arr_cur]._text = _text

end function
textput()

function textpick(head)

returning the line number of the picked element or 0 if [DEL] pressed.
also returning picked data in scratch if selected.

returns 0 and scratch[1, 4] ="zoont and scratch[5,74] zoom line text

(if you need the line # for zoom call arr_curr())

This function places the user into display array on the txt[] array.

* 3

1t is designed as a ‘picker’ to select froma list.
#
define

a->>j smallint, # arr_curr()
head char(80) # screen headi ng (passed)

Don't allow recursion

if is_open = "Y"

then
call lib_error("lib_scr","recursiv",1,
"W ndow. GCeneric text picker/editor")
return fal se

end if

Assign the static ‘heading’ variable

Disabling the "Add a Navigation" Menu Option 18-7

Fitrix Screen Technical Reference

| et heading = head

Bunp up mex_col if heading is bigger than max_col

if max_col < |ength(heading)

then | et max_col = |ength(heading)

end if

Call textshow (no update - view only)

if textshowfalse) = fal se

then return 0

el se

Test for known string and return O indicating nothing
was selected if a disabled itemwas sel ected

a->> let | = arr_curr()
a->> if txt[j]._text[1,4] = "****"
a->> then

a->> return O
a->> end if
return arr_curr()
end if

end function
textpick()

This modification must be made to disable the ability of a user to Zoom from "Add
aNavigation Action" on the Navigate picker and put this map to a hot key. About
line408inlib_text.4gl:

Send the zoom down to the picker’s calling function
let arr_cur = arr_curr()

a-->if txt[arr_cur]._text[1,4] = "****"
a-->t hen
a--> let scratch = txt[arr_cur]._text
a- - >el se
let scratch = "zoont, txt[arr_cur]._text
a-->end if

return fal se

18-8 Helpful Techniques

Fitrix Screen Technical Reference

Disabling the F1 and F2 Keys
in a Screen Detail Section

Y ou can disable the F1 and F2 keys in the detail section of a Screen Generated
application by using the Informix options command to re-map these two keys.
Refer to the INFORMIX-4GL Reference Manuals for specific information on the
options command. Place the options commandsin abef or e_i nput trigger in
the input 2 section of your .trg file.

Example:

bef ore_i nput
options insert key F36
options del ete key F36

Notice that in this example, insert and delete are re-mapped to the same function
key, F36, which is not even accessible from most keyboards.

If you have problems re-mapping akey to F36, another safe alternativeisto re-map
insert and delete to "control-s'. For example:
bef ore_i nput

options insert key control-s
options delete key control -s

Disabling the F1 and F2 Keys in a Screen Detail Section 18-9

Fitrix Screen Technical Reference

Using Triggers to Disable
Function Keys

Function keys can be easily disabled using triggers. For example, you may have an
input screen that you want to disable the [TAB] and [DELETE] keysfor. All you
have to do is create a .trg file with the same name as the .per file, such as:
screenl. trgif the.perisnamedscr eenl. per.

Then add the following linesto thei nput 1 section of the .trg file:

input 1
on_event tab
exit case

Thefinal step isto regenerate your code.

You can also easily disable the [F1] and [F2] function keys by re-mapping them to
something that is unlikely to be defined, such as F36. That is, most termcap entries
do not have adefinition for F36, so reassigning insert and delete to F36 (yes, both!)
inaf ter _i nit putsthe disabling logic in main, and effectively disallows usage
on aprogram level.

Example:
after_init

options insert key f36
options del ete key f36;

Creating a Verification
Prompt for Deletions

Here is an example of how to create a prompt for verification before executing the
"Delete" ring menu option.

Let'ssay that an ok_del et e functionis placed into the source code for a cus-
tomer input screen. When the user tries to delete a customer with the "Delete” ring
menu option, ok_del et e pullsup awarning and asks the user to verify deletion
of the record:

18-10 Helpful Techniques

Fitrix Screen Technical Reference

function ok_del ete()
returning true or false based upon ok to delete

define
pronpt _response char (1)

open wi ndow del ete_rec at 14,16 with 9 rows, 51 colums
attribute (border, blue, pronpt line |ast)

display STR deletel at 1,1 attribute (reverse)
display " "at 2,1

display STR delete2 at 3,1
display STR delete3 at 4,1
display STR delete4 at 5,1
display " " at 8,1

| et pronpt_response = null
whi | e pronpt _response matches STR. not_yes_no or
pronpt _response is null
pronmpt STR ok_continue for pronpt_response

end while
if upshift(pronpt_response) = STR n_response
then

cl ose wi ndow del ete_rec
return fal se
end if

cl ose wi ndow del ete_rec
return true

end function
ok_del ete()

Creating a Verification Prompt for Deletions 18-11

Fitrix Screen Technical Reference

Immediate Zoom Without
Pressing [CTRL]-[Z]

Itispossible for a user to Zoom immediately upon entering a particular field. This
arrangement might be appropriate if, for example, the shipping address for a spe-
cific order must be selected from among several possible ship-to addresses.

Add atrigger similar to the following before the field with a zoom.

input 1
before_field custoner_num

if p_orders.custoner_numis null

then
call fgStack_push("")
cal |l socket Manager ("cust_znt, "zoont, "default")
l et p_orders.custoner_num = fgStack_pop()
if p_orders.custonmer_numis null

then let nxt_fld = "customer_nuni' end if
end if

Adding Cursor Scrolling in
Detail/Add-on Detail Screens

Thefollowing is an .ext you can plug into your detail or add-on detail screensto
allow you to control your cursor scrolling.

Copyright (C) 1992 Your Conpany Nane.

Al'l rights reserved.

Use, nodification, duplication, and/or distribution of this
software is limted by the software |icense agreenent.
Sccsid: %% %Wo % % Delta: %%

oW H B

The following logic will allow you to progranmatically control
field and row positioning within the standard detail array, and
shoul d al so work for your add-on detail as well.

What is required is that you have a 'hidden’ no-entry field as the
-last- field in the detail line. Wile some see this need for a
dummy field as a disadvantage, others would need this input array

HTHFEHERHE RS

18-12 Helpful Techniques

Fitrix Screen Technical Reference

FH HE HHFHHFHHHHHEHRH

control will make the dummy field. However, if the current |ast
field happens to already be a no-entry field, than you will not
need to add the dummy field. The bottomis that the last field
needs to be a no-entry field. Replace the nane of this existing/
new no-entry field with the "no_entry_field" string found below in
the before_row bl ock code. Then, all you need to add is the
field/row validation that you need, setting goto_row and goto_fld
to where you want the cursor to be placed:

let goto_row = 5
let goto_fld = "field_nane"

command.

Remenber to change the filenane nane in the 'start file’

start file "detail.4gl"

static_define
#_scrol |l _variables - are assigned the destination to scroll to
goto_row smal lint, # The array rowto go to
goto_fld char(18) # Field to go to on goto_row,

bef ore_i nput
#_init - initialize variables
let goto_row = null
let goto_fld = null;

bef ore_r ow

#_scroll _control - scrolling |ogic managenent
if goto_rowis not null
then

case

when p_cur < goto_row # Go to the next row
let nxt_fld = "no_entry_fld"
return

when p_cur > goto_row # Go to the top
let nxt_fld = "goto top"
return

when p_cur = goto_row # W' ve made it.
let nxt_fld = goto_fld
let goto_row = null
let goto_fld = null

end case
end if;

before block I1d_a_row after_row

#_scroll _fall_through - don't validate rowdata if in 'scroll’ node
if goto_rowis not null
then
let nxt_fld = null
return
end if;

Adding Cursor Scrolling in Detail/Add-on Detail Screens 18-13

Fitrix Screen Technical Reference

18-14 Helpful Techniques

Part Four
Appendixes

Fitrix Screen
Utilities

This appendix discusses several useful utilities included with Fitrix Screen along
with other miscellaneous information such as:

n

n

Thescr _deno script

The tags utility

A script that lists all functions (with descriptions) in a program
Adding stores demo tables to a database (mkden)

Creating a demonstration database (f g. denodb)

Viewing database table descriptions

Usingi map

Adding Code Generator tables with mkt abl es

Usingf g. set shel |

Fitrix Screen Technical Reference

The Demo Script (scr_demo)

A number of screen demo applications are included with the Code Generator. The
screen demos are essential to learning Fitrix Screen. The screen demos:

e providereal working examplesillustrating various capabilities of Fitrix Screen.
» show how browse forms, Zooms, and lookups work.
» show how an add-on header is hooked into your main form.

» show how triggers are automatically merged into your .4gl files and how any
line of code can be modified via block commands.

Each demo application has a corresponding .bak directory, which contains the orig-
inal .per form specification files.

There are two ways to run a screen demo.

1. Youcanusethescr _deno script. This script automatically sets up your envi-
ronment and prepares a fresh directory with new .per forms.

2. Or you can do the work of thescr _deno script by hand. After your environ-
ment is set correctly ($f g, $PATH, $DBPATH, and $I NFORM XDI R),
create a .4gs directory. Next, copy the files from the $f g/ code-
gen/ deno. 4gm scr een*. bak directory to your .4gsdirectory (where* is
the number of the demo you wish to run). Then generate, compile, and run the
demo.

In order to usethe scr _deno script, invoke it from a UNIX prompt as follows:
scr_demo {1]2|3]|5|6]|7|8]9}

The script must be invoked with one argument, to specify the particular demo to
run. The following demos are available:

1. Header only screen demo.
2. Header/detail screen demo.
3. Header/detail demo with Zoom, lookup, math, etc.

4. Same as 3 but this directory is used with the Form Painter.

A-2 Fitrix Screen Utilities

Fitrix Screen Technical Reference

Header/detail complex demo with triggers.
Header/detail that demonstrates triggers and Version Control.
Extension screen demo.

Add-on detail demo.

© ®©® N o o

View-only, view-detail, and query screen demo.

Oncethescr _deno script carries out the preparatory steps, it displays the present
working directory and opens a shell for the purpose of running the demo.

Note

Eachtimethescr _deno script isrun, it removes everything in the

$f g/ codegen/ denp. 4gm scr een*. 4gs directory, then copies the .per
filesfrom the parallel .bak directory. This action means that every time you run
scr_deno, you wipe out all previous work. If you wish to leave ademo and
then return to it later, simply cd directly into the scr een*. 4gs directory and
continue your work. Do not runthe scr _deno script if you want to continue a
previous demo.

Note

The st or es demo tables need to be present in any database you run the screen
demos against. You can add these tables by running the mkdeno script dis-
cussed next.

The Demo Script (scr _demo) A-3

Fitrix Screen Technical Reference

Adding stores Demo Tables
to a Database (mkdemo)

The screen demos require tables from Informix’s st or es demo database.
Although installing the Code Generator adds these tablesto the st andar d data
base, you can add the st or es demo tables to any database by running the
nmkdeno script.

Syntax:

mkdemo -dbname database

Creating a Demonstration
Database (fg.demodb)

Thef g. denodb script allows you to create another st or es database for demon-
stration purposes. Y ou can create another st or es database anywhere you want.
To create ademo database first change directories to the | ocation you want to create
the st or es database. Type:

$fg/bin/fg.demodb
Y ou are prompted for a name for the database.

If you are running the OnLine engine, you are prompted for the dbspace to create
the database in. For more information on dbspace refer to your INFORMIX-
OnLine documentation.

If you are running the Standard engine, domerge is run and the database is created
in your current directory.

A-4 Fitrix Screen Utilities

Fitrix Screen Technical Reference

Locating
Functions/Displaying
Function Descriptions

This section describes some utilities included with Fitrix Screen that help you
quickly locate and display library functions.

The Tag Utility

During compilation of source code, a database of function callsis created and
stored in files named tags. The files are found in the local module directory and at
the $f g/ | i b level. These tags files constitute the paths for all local and library
functions called by the executable program. These tags are created by two shell
scripts:

» $f g/ bi n/itags creates an INFORMIX-4GL t ags filein the loca source
directory.

« $f g/ bin/litags creaesat ags file for 4GL libraries and merges it into
../tags

Tags files allow you to benefit from hypertext-style mobility. If you use vi as your
text editor, you can set up your system to edit afunction simply by pressing one
pre-defined key. For example, if the cursor is currently positioned on aword that is
afunction call, your pre-designated hypertext key takes you to the file that defines
the function. A separate key can be set up to take you back to the departure point.
The tags feature helps you to examine the source code in a step-by-step fashion.

To benefit from the tags feature, make afew additions to your SHOVE/ . exr c file.
Set tags as follows:

set tags=tags\ ../tags\ (Sfg expanded)/all.4gm/tags\
(Sfg expanded)/1lib/tags

The$f g/ | i b/ t ags pointsto the tagsfilein the directory containing the
archived library functions. With the above linein your $HOVE/ . exr c file, you
can take advantage of the power of hypertext-style mobility with source code.

Locating Functions/Displaying Function Descriptions A-5

Fitrix Screen Technical Reference

To automate the process further, to map keysin your $HOVE/ . exr c file.

Note

The characters] represent [CTRL]-[]]. The characters ™ represent [CTRL]-
[*]. When mapping these keystroke combinations, press [CTRL]-[v] prior to
typing in the "action" characters.

Thereafter, pressing | with the cursor positioned on the name of the desired func-
tion displays that function, wherever it happens to be defined within the current
application. Likewise, the [key returns you to the file from which you began.

Note

Some versions of vi do not recognize the [CTRL]-[]] shortcut.

It isnot necessary to map keysin your $HOVE/ . exr c fileto take advantage of the
tags feature. Y ou can use the tag command within vi to instantly edit or view any
function defined in the program source code. For example, while using vi to edit a
source code file (*.4gl), the command:

:tag func name

loads the source code file containing function f unc_nane() , with the cursor
positioned on the first line of code defining f unc_name() . Toreturn to thefile
from which the last tag command was given, type:

ce#

The tags utility can also be used to start vi from the command line. The command
is:

vi -t func_name
In such cases, map the | keystroke as follows:

map] :tag

A-6 Fitrix Screen Utilities

Fitrix Screen Technical Reference

Upon editing a file with vi, the] key begins the command:
:tag func name

Simply complete the command with the name of the function you wish to edit,
press [ENTER], and the tags feature | oads the file containing the appropriate source
code.

Sometimes tagging to a function might not give you the function you want. The

$f g/ t ags fileisbuilt using abinary sort. If you try to tag on afunction that
appears in more than one library, you are placed into the function and library that
appearsfirst in the tags file. This means that the tags utility always takes you to the
function that appears first alphabetically. For example, if you tag onthei ni t ()
function while examining screen code generated programs, you are placed into the
$fg/lib/report.4gs/init.4gl file. Thisobviously isnotthei ni t ()
you want to see.

The following lines are from the $f g/ | i b/ t ags file and illustrate how the first
i nit.4gl istagged to rather than the second:

init $fg/lib/report.4gs/init.4gl /~Munction init
init $fg/liblscr.4gs/init.4gl /~unction init

Displaying Functions Within Programs

The following shell script displaysalist of al the function names and comments
found within those functions in a specified program. Thus by running this script
and specifying the name of aprogram, you can view a description of every function
found within that program.

awk script to display function name and comments. specify fil enane(s)
on command |ine.You can use wildcards and al so redirect the output to
afile.

awk -’

BEG N {
TRUE=1
FALSE=0
i nf | ag=FALSE

if (inflag == TRUE && $0 ~ /"%) {

Locating Functions/Displaying Function Descriptions A-7

Fitrix Screen Technical Reference

substitute space for pound sign(s)

gsub(/#/, " ", $0)
print $0
}
el se
inflag = FALSE
}
/~unction/ {
gsub(/~function */, "", $0)
inflag=TRUE
printf ("\n%\n", $0)
}' s@

Here is sample output.
I'1d_i nput ()
returning -1 if tab pressed (next wi ndow), O otherw se
I1d_b_field(field_nane)
This function is called fromthe input function before every field. The
"prv_fld variable contains the field we cane from The 'scr_fld variable
contains the field we're going into. Set "nxt_fld if you want to skip this
field or exit input.
I1d_a_field()
This function is called after every field.
I'1d_a_i nput ()
This function is called whenever the input statenent exits (except due to an
interrupt). If you don’t want the input session to end, set the nxt_fld
variable to contain the field to be placed back into.

I'1d_event ()

This function is called whenever the user presses an event key. The event is
mapped to the 'scr_funct’ variable and processed here.

This script is extremely useful when trying to learn new programs. By running this
script in aparticular library, you can produce alisting of all functions and their
descriptionsin that library.

A-8 Fitrix Screen Utilities

Fitrix Screen Technical Reference

Viewing Database Table
Layouts (imap)

Fitrix Screen includes the script i map, which can be used to provide information
onindividual database tablesin a specified database. The script can also be used to
provide alisting of all tablesin a particular database.

The syntax for thei map script is asfollows:
imap [-dbname database] [tablename]

If youpassa - dbnanme database argument, thei map script uses that data-
base. Otherwise, i map searches for the value of the $DBNAME system variable (if
it has been specified). If $DBNAME is not set, i map defaultsto the st andar d
database.

If you pass atable name, then thei map script returns the schema of that table. If no
table name is specified, i map produces alist of tablesin the database.

Invocation examples:

imap -dbname stores custoner
imap -dbnanme stores

imap itens

i map

Viewing Database Table Layouts (imap) A-9

Fitrix Screen Technical Reference

Adding Code Generator
Tables (mktables)

The UNIX script mkt abl es adds tables to your database that are needed by gen-
erated programs and may also be used to create new databases in $f g/ code-
gen/ dat a. The mkt abl es script also builds al of the tables required by any
program usingthescr. a, user_ctl.a, or standard. alibraries.

The syntax for the nkt abl es script follows:
$fg/bin/mktables -dbname database

This script adds a number of cg* and stx* tablesto your database. If spaceisacon-
cern, you may remove the cg* tables from your application database. Only the stx*
tables need to be present to run a program that was generated with the Screen Code
Generator. For acomplete list of tables refer to "Code Generator Tables' on page
D-5.

Adding Tables Required by
Fitrix Security (mksecuri)

In order for your generated applications to useFitrix Security, you need to add the
security tables to your database. The following script adds the tables needed by
Fitrix Security.

$fg/bin/mksecuri -dbname database

A-10 Fitrix Screen Utilities

Fitrix Screen Technical Reference

Adding Upper Level Library
Tables (mklib)

Applications created with Fitrix Screen require a number of tables to be present in
any database they are run against. The nkl i b script adds these tables.

$fg/bin/mklib -dbname database

Setting up the Shell
(fg.setshell)

Thef g. set shel | script forces aprogram to be run in the bourne shell. The pur-
pose of this shell script isto re-boot the current program using a shell that’ s known
towork on this platform. Most platforms pass the QA suite using the regular bourne
shell located in/ bi n/ sh, but some platforms have shellsthat work better than the
/ bi n/ sh shell.

This program is usually called from within other shell scripts using the following
format:

. fg.setshell

Thef g. set shel | scriptislocated in $f g/ bi n.

Cleaning Your Database
(fg.delfrm)

At times you may need to clean up old screen information from your database. For
instance, if you delete adirectory, the form imagesin that directory are still retained
in the database.

Adding Upper Level Library Tables (mk1ib) A-11

Fitrix Screen Technical Reference

Sometimes when aform is parsed, corrupt data may get into your database. The
Code Generator usually cleansitself out when parsing aform but if bad datagetsin,
the Code Generator may be unable to clean itself out. If you run into strange errors
when generating code you should try running this script and specify your problem

directory and forms.

To run this script $f g/ bi n must bein your $PATH.

Syntax:

fg.delfrm { [-m module]|[-p program]|[-s scr_id] |

[-k cust_key] }

-m module

-p program

-s scr_id

-k cust_key
-dbname dbname
-c

-u

[-dbname dbname] [-c] [u]

one module or alist of modules.

program.

the name of the screen.

specify cust _key if using version control.
database name. default standard.

cron mode. no display output. default no cron mode.

update statistics. default no update.

A-12 Fitrix Screen Utilities

The .per
Specification File

This appendix explains the .per specification file, which serves asinput to the Code
Generator. Although the Form Painter automatically creates these .per specification
files, understanding the make up of the .per file gives you a better comprehension
of the overall code generation process. This section covers:

n The .per specification file
n preventing code generation on a.per form

n converting INFORMIX-SQL perform files

B-1

Fitrix Screen Technical Reference

The .per Specification File

The code generated by the Code Generator is based on information supplied by the
.per file(s) present in the application directory. That is, the resulting code depends
on the prior specification of the .per file(s). Even Zoom (lookup) logic can be auto-
matically generated by the Code Generator provided there is azoom .per form
present prior to generating the application. The .per file(s) in any given directory
can be created with any text editor or with the Fitrix Screen Form Painter.

The .per form specification file contains six basic sections: DATABASE, SCREEN,

TABLES, ATTRI BUTES, and | NSTRUCTI ONS. An optional section titled FOUR-
GEN is specified below the | NSTRUCTI ONS section. The sections of the .per file
must appear in this order.

The FOURGEN section provides an additional source of information for the Code
Generator. Sinceit isenclosed in braces"{}", this section isignored by form4gl,
the 4gl form preprocessor. Code can be generated without having a FOURGEN sec-
tion specified in the .per file for header screens only. All other screen types must
have a FOURGEN section to work with the Code Generator.

Note

All .per files must be less than 200 lines.

Note

.per file naming convention: .per file names must be seven characters or less
not including the ".per" extension in order to be read into the Form Painter. For
example: invoice.per isthe maximum length of a.per name.

B-2 The .per Specification File

Fitrix Screen Technical Reference

DATABASE Section

The DATABASE section specifies the database on which the form is based. The
example below indicates that the st or es database is the basis for the display
fields on thisform.

An example:

DATABASE st or es

SCREEN Section

The SCREEN section of the .per file defines the image of the data-entry screen.
Although 4GL accepts screens that are up to 600 rows by 600 columns, 4GL Forms
limits the size of the SCREEN section to 74 charactersin width by 18 linesin length
(to alow for the border around the form). The section begins with the SCREEN
keyword, and continues with the screen image enclosed by curly braces. Fieldsin
the SCREEN section must also be defined in the ATTRI BUTES section. Field tags
must be limited to six charactersin order to work properly with the Form Painter.

Note

A { must precede the screen image and be on aline by itself.

Fields are generally delineated by square brackets. Sometimes you may need to
locate two fields next to each other, and you only have one space for a delimiter so
two sguare brackets do not work (][). When this occurs, you can use the pipe (|)
to delineate between two fields.

An example:

Contact Nanme: [f001 | f 002]

DATABASE Section B-3

Fitrix Screen Technical Reference

An example SCREEN section:
SCREEN
{
————————————————————————————— Oder FOrm-------c--mommmmmiiaae o
Cust onmer No. :[f000] Cont act Nane:[f001][f002]
Conpany Nare: [f 003]
Address: [f 004 1[f005]
City/ St/ Zip:[f006 1[a0] [f007] Tel ephone: [f008]
O der Date:[f010] PO Nunber:[fO011] Order No:[f009]
Shi pping Instructions: [f012]
Item Description Manuf act ur er Qy. Price Ext ensi on
[f14][f15 J[f16][f17] [f18][f19][f20]
[f14][f 15 1[f16][f17] [f18 1[f19 1[f20]
[f14][f15 J[f16][f17] [f18][f19][f20]
[f14][f 15 1[f16][f17] [f18 1[f19 1[f20]
O der weight:[f30] Freight:[;gz _______ ;
Order Total:[f32]
}

TABLES Section

The TABLES section of the .per file lists the tables containing the columns speci-
fied in the ATTRI BUTES section. All tables listed must be part of the database in
the DATABASE section. Thefirst table listed in the TABLES section is the default
main table for the program.

An example:

Tabl es
orders
items
cust oner
st ock
manuf act

B-4 The .per Specification File

Fitrix Screen Technical Reference

ATTRIBUTES Section

The ATTRI BUTES section found in the .per file coordinates the fields defined in
the SCREEN section and optionally provides other attributes on afield-by-field

basis. Field tags must be limited to six characters to work properly with the Form
Painter.
An example:
ATTRI BUTES
f000 = orders. custonmer_num comments =
Enter the customer code.";
f001 = custoner.fnanme, noentry;
f002 = custoner.| name, noentry;
f 003 = custoner.conpany, noentry;
f004 = custoner.addressl, noentry;
f005 = custoner.address2, noentry;
f006 = custoner.city, noentry;
a0 = custoner.state, noentry;
f007 = customer. zi pcode, noentry;
f 008 = custoner.phone, noentry;
f009 = orders.order_num noentry;
f010 = orders.order_date, default = today, comments =
Enter the order date.";
f011 = orders. po_num comments =
Enter the custoner’s purchase order nunber.";
f012 = orders. ship_instruct, comments =
" Enter any special shipping instructions to show on the invoice.";
f14 = items.stock_num comrents =
" Enter the stock nunber for this line item";
f15 = stock. description, noentry;
f16 = itenms. manu_code, comrents =
" Enter the manufacturers code for this stock nunber.", UPSHI FT;
f17 = manuf act. manu_nanme, noentry;
f18 = itens. quantity, comments =
" Enter the nunber of units sold for this item";
f19 = stock.unit_price, noentry;
f20 = items.total _price, noentry;
f30 = orders. ship_wei ght, coments =
" Enter the total shipping weight for this order.";
f31 = orders. ship_charge, coments =
" Enter the total shipping charge for this order.";
f32 = fornonly.t_price type noney, noentry;

ATTRIBUTES Section B-5

Fitrix Screen Technical Reference

Note

It is recommended that you do not use thei ncl ude statement for data valida-
tion for the following reason: If bad datais entered into afield causing an error
message, that data can be saved if the [TAB] key is pressed to move out of that
field followed by an [ESC].

Formonly Fields

Formonly fields are used to display values of variables that are not associated with
columns of the database. For more information on formonly fields refer to your
Informix documentation.

INSTRUCTIONS Section

The | NSTRUCTI ONS section establishes the screen records used with the display
columns on the data-entry form. Screen records can include some or al of the dis-
play fields established in the ATTRI BUTES section. When defining screen records,
you must provide the full name of each display field to be included. With the Code
Generator, you cannot use formatslikefi el d1 THRU fi el d13, or
stores. *.

The | NSTRUCTI ONS section should also contain the following del i mi t er s
statement changing the default display field delimiter to blanks (to accommodate
the new field highlighting characteristics).

An example:
I NSTRUCTI ONS

screen record abc (tablel.colum, table2.colum, ...)
screen record def[4] (table3.colum, table4.colum, ..)

delimters " "

B-6 The .per Specification File

Fitrix Screen Technical Reference

INSTRUCTIONS Section—Points to
Observe

Thefollowing isalist of pointsto follow when building the | NSTRUCTI ONS sec-
tion of the .per file.

The first screen record listed in a header screen is the main record.

Thefirst screen record listed in a header/detail screen isthe record for the
header.

The second screen record listed in a header/detail screen must be an array type
and isthe record for the detail lines. The number of elements of the array corre-
sponds to the number of lines on the screen, not the number of program ele-
ments in the internal program array.

Thefirst table listed in the TABLES section of the screen determines the
DEFAULT main table name for the header.

Thefirst ELEMENT of the detail screen record (table3.column in defaults
above) determines the main table name for the detail lines.

The table = tabname in the FOURGEN section (below) overrides the above
defaults (and is the preferred method of determination).

All fields in the .per file must appear in the screen record.

If the table name of an element in the screen record is the same asthe main
table for that screen record (defined above), then the Code Generator provides
data input/output for that column. The following example uses "customer” as
themain table:

screen record s_cust (custoner.fname, custoner.|nanme, orders.ord_num

If the table name of an element in the screen record is not the same as the main
table for that screen record, then the field must either be a destination field of a
lookup, or amath field. Otherwise the Code Generator doesn’t generate code
for that field.

INSTRUCTIONS Section B-7

Fitrix Screen Technical Reference

» If thetable nameisn’t the main tablename for the screen record, and it'snot a
lookup destination or math result column, the programmer must fill that field in
the appropriate p_pr ep() function (1| h_ for header, | | d_ for detail) man-
ualy.

» Itisrecommended to have the following delimiters statement in the instructions
area of the file (with two spaces between the quotes) because the new cursor
highlights the entire data field.

delimters "

» If you do not have the delimiters statement (like above), then the field high-
lights and displaysthe specified[] delimiters (most users do not like both
highlightingandthe[] deimiters).

FOURGEN Section

The FOURGEN section of the .per form specification file provides a wealth of spe-
cificinformation used by the Code Generator to generate the program. Whileit is
not required for other types of perform files, it is the method by which you control
characteristics of the code generated by Fitrix Screen . If the FOURGEN section is
not specified prior to code generation, default values are used.

The FOURGEN section is required when a header-detail screen hasani nput 2
join line or when you want to use math, zoom, lookup,

or any other Code Generator function. The keyword FOURGEN must appear in the
.per file for the above mentioned functions to work or when any FOURGEN specifi-
cations are used.

Thefollowingisalist of pointsto keep in mind when building the FOURGEN sec-
tion of the .per form specification file.

» Theentire FOURGEN section must be surrounded by braces{ } (form4gl
treats this as a comment section).

e Thereisno case sensitivity in this section (FOURGEN doesn’t need to be capi-
talized).

e Thelines of #### above and below the word FOURGEN are not required.
Sample FOURGEN section:

B-8 The .per Specification File

Fitrix Screen Technical Reference

{
FOURGEN
defaults
type = header/detail
init = order_num > 1000
attributes = border, blue
| ocati on =2, 3
input 1
table = orders
key = order_num
filter = order_date > "12/31/80"
or der = order_num
mat h = t_price = sun(total _price) + ship_charge
| ookup = key=custoner_num tabl e=cust oner,
filter=custonmer_num = $cust oner_num
zoom = key=custoner_num screen=cust_zm tabl e=cust oner
input 2
table = items
key = order_num itemnum
join = itens. order_num = orders.order_num
or der = itemnum
arr_max = 100
autonum = item num
mat h = total _price = quantity * unit_price
| ookup = nanme=stock_num key=stock_num tabl e=st ock,
filter=stock_num = $stock_num into=description
| ookup = nane=stock_manu, key=manu_code, t abl e=stock,

filter=stock_num = $stock_num and manu_code = $manu_code,
into=unit_pric

| ookup = key=nmanu_code, table=nanufact, filter=nmanu_code = $manu_code
zoom = key=stock_num screen=stockzm tabl e=stock, noautozoom
zoom = key=manu_code, screen=stk_mmu, tabl e=stock,

filter=stock.stock_num = $stock_num

The FOURGEN section can contain 3 sections: def aul t s,i nput 1, andi nput
2. An explanation of the attributes in the FOURGEN section follows.

FOURGEN Section B-9

Fitrix Screen Technical Reference

defaults section

The FOURGEN section of the .per form specification file containsadef aul t s
section that defines the characteristics of the generated code. It is not mandatory
that thisinformation be provided as part of the .per file. Code Generator defaults
are used in the absence of def aul t s section. The following section provides an
overview of the components of this section.

type
(upto 15 chars)

type = zoom
Thescr _t ype can be only one of the following:

* header—thisisaheader only form or flat type. It contains one input area and
onemain table.

* header/detail—thisis a header with another scrolling (detail) section joined to
the header.

e add-on header—thisisaflat type like a header form, only it isused in conjunc-
tion with a header/detail form to provide multiple screens.

* add-on detail—thisisan addition scrolling detail form that can be attached and
used with the main screen.

» extension—thisisan additiona screen that serves as an extension of the main
screen.

e view-header—thisisaview-only header form that can be attached to amain
screen.

» view-detail—thisisaview-only detail form that can be attached to amain
screen.

* query—thisisaform that can be used to build SQL query.

e browse—thisisascrolling type screen whose main table is the same as the
header section main table. It allows you to view one row of the header table per
line rather than one row per screen.

B-10 The .per Specification File

Fitrix Screen Technical Reference

« zoom—thisisaspecial type of screen that allows you to scroll through data
from another table (or set of tables joined).

Default: If thereisonly oneinput area (and that input areais not an array type) then
the screen type is assumed to be header only. If there are two input areas (a hon-
array type followed by an array type) then the screen typeis assumed to be
header/detail. If there is only one input area, and it is a scrolling type, then the
screen typeis assumed to be zoom unless the filenameisbr owse. per . Inthat
case, the default screen typeis browse.

init
(up to 200 chars)

init = customer_numis not null and custoner_type = "A"

Thisistheinitial filter that is used when the application isfirst run. Y ou can over-
rideit by invoking the programwithafilter = "filter cl ause" onthe
command line.

Default; 1=0 (select no rows upon program load). Y ou may also specify 1=1to
select all rows, or [as above] you may specify an SQL filter.

attributes
(up to 30 chars)

attributes = blue, border

This overrides the default window attributes. To retain consistency throughout your
applications, we recommend not using the attributes keyword.

Default: white, border

location
(two integers separated by a comma)

location = 5,20
This specifiesthe y (row), x (column) location to place the window.

Default: 2, 3 (minimum upper left coordinates)

FOURGEN Section B-11

Fitrix Screen Technical Reference

returning
(field name)

returni ng = custoner_num

This keyword is for zoom screens only. It identifies the name of the field in this
screen that you wish to return to the function that called the zoom. Y ou may only
specify onefield to return to the calling function. This keyword is not required for
zoom screens. If it is omitted, however, no data can be returned to functions calling
this zoom screen.

input section

The FOURGEN section of the .per form specification file continues with thei nput
section(s), which define(s) the characteristics of the generated code. The input des-
ignator must be followed by a number designating which input area (sequentially)
you are defining. The only screen type that has more than one input areaiis
header/detail. i nput 1 correspondsto header sectionswhilei nput 2 corre-
sponds to detail sections. The following section provides an overview of the com-
ponents of this section, and serves as an example of how it can be used.

order
(up to 100 chars)
order = conpany, |nanme

This determines the order of each Find. Y ou may specify desc after any column to
impose a descending sort on that column. The order defaults to ascending order.

In .per terms desc isthe string following the or der = within the FOURGEN sec-
tion of a.per file. When you have an or der by in the select statement, the col-
umns you are ordering by must also beinthesel ect clause of the select
statement. If these are not present, you get a syntax error. Basically, if thereisno
or der by requested in the .per file, the only thing you have in your sel ect
clauseis"rowid". If anor der = isspecifiedinthe .per file, thentheor der by
requested is put into achar variable called sgl _or der . At the time of the SQL
statement creation, the contents of the sql _or der variable need to be checked.

B-12 The .per Specification File

Fitrix Screen Technical Reference

table
(default main table is specified in TABLES section)

tabl e = custoner

This defines the main table for thisinput area. There can be only one main table for
an input area.

key
(unlimited list of fields)

key = custonmer_num

This definesthe list of fields that build the unique key for the main table. The sys-
tem uses this information to key secondary data to the main table. This secondary
dataincludes Freeform Notes and User Defined Fields. If the key is not defined,
you do not get Freeform Notes or User Defined Fields. The fields in the key must
not exceed 30 charactersin length, and the total combined key length may not
exceed 80 characters.

Duplicate checking code is automatically generated on the fields listed on the key
line of thei nput 1 header region in the FOURGEN section. Duplicate checking
logic isonly generated if at least one of the fieldsin the key is enterable. A dupli-
cate error message is displayed after arow isaccepted and the user is placed back in
the first enterable field in the key.

Notes:
1. Duplicate checking is not performed on detail rows.
2. Duplicate checking isonly performed if al the fieldsin the key are non-null.

3. All entry fields in the key should be made required fields using the nonul |
keyword.

4. Duplicate checkingisperformedinthel | h_a_i nput () function. The actual
test for aduplicate valueisdonein| | h_dupchk() .

5. If aduplicate has been created, the message, "This value already exists' appears
in abox at the bottom of the screen when the user presses the accept [ESC] key.
The user is placed back in the first enterable field in the key.

6. If you do not want to utilize the default duplicate checking logic:

FOURGEN Section B-13

Fitrix Screen Technical Reference

e createatrigger that hasado_not generate || h_dupchk.

» createyour ownl | h_dupchk that always returns true.

join
(up to 200 chars)

join = custoner.custoner_num = orders. cust omer _num

This definesthejoin criteriafor detail lines joined to the header input area and also
defines the join criteriafor zoom screens (if there is more than one table listed in
the TABLES section, this defines the join for those tables).

filter
(up to 200 chars)
filter = itens.itemnumis not null (for detail)

Thisisthe hardcoded filter that isused in every query. Thisfilter is combined using
AND with the user’s query by example filter, and the filter passed via the command
line. You can also usethe mat ches, not mat ches, | i ke,andnot 1i ke
operatorsin the filter.

Default: 1=1 (no hardfilter) Example: If you only wanted to see customers with a
cust onmer _numgreater than 1000 in this program, you would specify:

filter = customer_num > 1000

B-14 The .per Specification File

Fitrix Screen Technical Reference

arr_max
(integer)
arr_max = 200

Thisisthe number of internal program array elements you wish to provide space
for in the scrolling input area. It only is used for detail and zoom type input areas.

Default: 100

autonum
(auto sequencing of detail lines)

autonum = |ine_no

Thisisfor detail input areas only. It sequences the detail lines by specifying a
unique line number field that the system maintains. Autonum maintains the order
that detail lines are entered. If you do not specify autonumber for your detail lines,
the detail lines are not displayed in the order that they were originally entered. This
line number field is not recommended to be listed in the form image because it is
not maintained during input. It is maintained only upon disk writes.

math
(math statement)
math = t_price = sun(total _price) + ship_charge

This statement tells the Code Generator how to perform math on the screen. The
system knows about addition, subtraction, multiplication, division, modulus, and
summation of detail fields. The first element must be the destination field, followed
by an equal sign and the mathematical formularequired to fill the destination field.

FOURGEN Section B-15

Fitrix Screen Technical Reference

blobdef
(blob definition)

bl obdef
bl obdef

bl obtext, vi, y
bl obbyte, Wngz, y

Thebl obdef statement allows you to link Informix BLOBs (Binary Large
Objects) to fields in your form. BLOBs may be of type byte or text. BLOB field
types are only supported inthei nput 1 (header) section of header and
header/detail forms. For more information on blobs refer to "Creating BLOB
Fields" on page 7-18 and "Creating BLOBS' on page 15-31.

bl obdef = column type program {y|n}

Thebl obdef isthe keyword. Thecol unm_t ype isthe datatype. The pr o-
gr amisthe program that invokes the blob. They/ n flag determines whether the
blob can be edited.

lookup

| ookup = nane=st ock_nmanu, key=nanu_code, tabl e=stock,
filter=stock_num = $stock_num and manu_code = $manu_code,
into=unit_price

This statement defines a system lookup. Lookups are keyed from afield in the main
table for thisinput, and they look up information from another table to place into
destination fields. The destination fields should be noentry type.

The Code Generator attemptsto find acolumn in the table by the name of thei nt o
field. In the example above, code is generated to select theuni t _pri ce column
fromthe st ock table; so it isimportant that the field names you select in the

scr een. per match the actual names of columnsin tables. If the field on the
screen has a different name than the column in the table being looked up then you
must usethef r om i nt o statement.

Thei nt o statement is needed when there is more than one lookup to the same
table. Otherwise the default destination is al fields in the input areathat share the
same table name.

B-16 The .per Specification File

Fitrix Screen Technical Reference

Note

Lookups must appear in the .per file in the order they are needed. If alookup
depends upon another, you need to list the lookupsin the .per form in the order
that they are performed.

The following describes three examples of lookup usage:

1

If thereisnoi nt o statement, the generator searches the screen record for defi-
nitions of the same table as the table name of t abl e=t abl enane.

screen record s_pvendr (stpvendr.vend_code, stpvendr.bus_nane,
st pvendr.terns_code, stpternr.terns_desc)

| ookup = nane=t erm | ookup, key=t er ns_code, t abl e=st pternr,
filter= stpternr.terns_code = $ternms_code

The generator finds st pt er nr . t er ns_desc in the screen record therefore
defaulting thei nt o=t er ms_desc. If the generator cannot find an associated
table, then the lookup is defined as a validation only lookup (alookup that
returns no data).

If youusethei nt o statement, al i nt 0’ s must be specific. You cannot use
thei nt o statement for some fields and expect the generator to default the
other ones.

Thei nt o=col um must be a column in the lookup table. It does not have to
be a screen record field. If your screen record field has the same name as the
column then the lookup returns data into that field otherwise it puts that data
into a parallel record.

screen record s_acct (stpinvce.acct_no, fornonly.acct_desc)
| ookup = nane=acct _| ookup, key=acct_no, tabl e=stxchrtr,
i nto=acct _desc, into=incr_wth_crdt,

filter= stxchrtr.acct_no = $acct_no

The generator putstheacct _desc intop_pi nvce. acct _desc and
incr_with crdt intog_pince.incr_with crdt.

The p_ record is associated with the screen and the q__ records are parallel to
the p_ records.

FOURGEN Section B-17

Fitrix Screen Technical Reference

3.

If you want to assign alookup where the column selected is not the same name
asthe field you want to put it into, you can usethef r om i nt o syntax.

screen record s_acct (stpinvce.acct_no, fornonly.janmes_desc)

| ookup = nane=acct _| ookup, key=acct_no, table=stxchrtr,

from.into=acct_desc janes_desc, from.into=incr_wth_crdt
is_it_a credit,

filter= stxchrtr.acct_no = $acct_no

The generator putstheacct _descinto p_pinvce. janes_desc and
incr_wth_crdt intog_pince.is_it_a credit.

Y ou can specify alookup that does not return information to afield for data
validation purposes by not using thei nt o statement. Information is returned
in this case as long as your screen record does not contain any fields that refer-
ence the table that the lookup is made into.

A lookup can also be used for data validation asin the following example (that
appearsin header . 4gl):

if Ilh_lookup("cust_lk",true) = false

In this example, when the function is passed a value of true, then the field must
befilled with avalid code and the lookup takes place. If thefunction is passed a
value of false, the lookup occurs, but data validation does not. However, it isup
to the programmer to take care of the situation where the field is|eft blank. See
the following example:

after field cust_code

if auto_zoon("custz","strcustr","")
then let p_rshipr.cust_code = scratch end if
call lib_after()
if data_changed
then

Perform | ookups
if I'lh_l ookup("cust_Ilk",true) = false
then next field cust_code end if
end if

The lookup statement looks for the following elements separated by commas:
nane, key,tabl e,filter,into,frominto.

lookup - name
(unique lookup name - up to 18 chars)

B-18 The .per Specification File

Fitrix Screen Technical Reference

name = custl| kup2

This defines a unique name for the lookup. The default name is the name of the
table. Y ou would only need to define aname if you have more than one lookup in
an input areathat looks up from the sametable.

lookup - key
(fieldname)

key = customer_num

This defines the field that the lookup istriggered on. In this case, when you change
thedatainthecust oner _numfield anew lookup is performed. The key attribute
isrequired.

lookup - table
(tablename)

tabl e = custoner

This defines the table to be looked into. There can only be one table per lookup.
Thisisrequired information.

lookup - filter
(SQL filter)

filter = custoner.custoner_num = $custonmer_num

Thisisthewher e clausethat is built when the lookup is performed. If you havea$
preceding afield, that tells the system to use the data in program variables as that
part of thefilter. Thefilter clause must be expressed in oneline. The above example
placesthe current cust omer _num(say, 104) into the following wher e clause:

where customer. customer _num = 104

Thefilter statement is required.

lookup - into
(screenfield in thisinput area)

into=fnane, into=lnanme, into = conpany...

FOURGEN Section B-19

Fitrix Screen Technical Reference

Thistells the lookup which field to place the datainto. Y ou may have any number
of i nt o statements, but you may only specify onefield per i nt 0. Normally, you
do not need to specifically tell the system which fields to input into. The default

i nt o listisdetermined by all fields defined in the screen record that have a table-
name that matches the table for this lookup. Y ou may want to override that default
list if you do not wish to have al elements from that tablefilled on thislookup, or if
you wish to lookup into columns of the main table for the input area.

lookup - from_into
(screenfield in thisinput ared)

from.into=acct_desc janes_desc

Thefrom_ i nt o statement allows you to place information that is retrieved from
one column into afield with a different column name. In the preceding example,
whatever isfoundintheacct _desc columnisplaced into thej anes_desc
field on this form. The column must be a column in the lookup table and thei nt o
field must be afield on the screen.

zoom
(definition)

zoonrkey=nmanu_code, screen=stk_mmu, tabl e=stock,
filter=stock.stock_num = $stock_num

This statement defines the relationship between this screen and a zoom screen. It
has multiple sections like the lookup statement described previously.

B-20 The .per Specification File

Fitrix Screen Technical Reference

zoom - key
(field to zoom from)

key = custonmer_num

This defines the field you wish to zoom from, and the field that the zoom screen
returns datainto.

Zoom - screen
(zoom screen name - up to 7 chars)

screen = stk_mu

This specifies the name of the zoom screen to call when the user gives the zoom
command in the key field.

zoom - table
(tablename)

tabl e = stock

This defines the main table for the zoom. It isrequired only if you wish to have
AutoZoom functionality. The system needsiit to build the matches clause for auto-
zoom.

where {tabl enane}.{key} matches {data typed into key field}

When running the application, if you arein an AutoZoom type field and an asterisk
is entered anywherein the field, any datain that field is used to build the matches
clause, and the zoom screen is automatically called.

zoom - filter
(SQL filter)

filter=stock.stock_num = $stock_num

Thisisthewher e clausethat is built when the Zoom is performed. If you havea$
preceding afield, it tells the system to use the data in the system as that part of the
filter. In the above example, the current st ock_num(say, 4) is placed into the fol-
lowing where clause:

FOURGEN Section B-21

Fitrix Screen Technical Reference

where stock_num = 4

If azoom filter is specified, it uses that filter instead of placing the user into the
query by example screen. If no documents are selected based on thisfilter, the user
is put into the query by example screen. In either case, if the user executes Find
from this query by example screen, the filter is not used in the subsequent select.

For example, if you use the following filter:
filter=1=1

then the query screen is not called when the zoom screen isfirst displayed.

zoom - from
(column name differs from screen field)

f ronrcol um_nane

This statement lets you specify the name of the column being zoomed into if it dif-
fers from the name of the column on the screen. For example, if the field on your
screen isnamed cust oner _numand the field being zoomed into is called
cus_num you would specify f r omrcus_num

Thef r omkeyword isrequired for azoom definition in the FOURGEN section if all
of the following are true:

1. Thescreen field which isthe key to your zoom has a different name than the
corresponding column name in the table you are perusing with your zoom.

2. Thescreen field you are zooming from is a character field.

3. The zoom has autozoom enabled. Zooms with the noaut ozoomkeyword or a
filter do not require the f r omkeyword.

zoonr key=state, screen=stat_zm table=state, fronrcode

B-22 The .per Specification File

Fitrix Screen Technical Reference

noautozoom
(do not generate autozoom logic)

zoom = key=trd_ds_code, screen=discz, noautozoom,
tabl e=stxinfor,filter=stxinfor.src_type = "I"

This keyword requires no arguments. It tells the Code Generator not to generate
autozoom code for thisfield.

Specifying noaut ozoomeliminates the following two lines for the specific field
(inthiscase,trd_ds_code).

if auto_zoon("discz","stxinfor","(see scratch)")
then let p_rcustr.trd_ds_code = scratch end if

Y ou would specify noaut ozoomif you needed to have an asterisk as a piece of
datain azoom key field, or if the zoom key field isanumeric type field that cannot
use the matches clause in an SQL query.

defaults

default = custonmer_num = 105, addressl = "805 West ham
PKW", or der _date = today, po_num = "3K5100"

Usethedef aul t keywordineitheri nput 1 ori nput 2 of the FOURGEN sec-
tion of the perform screen to place default valuesin fields on the screen.

Numeric fields:

default = field-nanel = nuneric-value, field-nanme2 = nuneric-val ue
Character fields:

default = field-nanel ="char. string", field-nane2 = "char. string"
Variable defaults:

default = field-nanel = vari abl e-nane, field-nanme2 = vari abl e- nane
Explanation:

e default istherequired keyword.

FOURGEN Section B-23

Fitrix Screen Technical Reference

fi el d- nane isthe name of acolumn in the screen record without the table
name prefix.

Correct: cust oner _num
I ncorrect: orders.custoner_num

nuneri c val ue isaninteger or other numeric constant.

char. stringisacharacter string enclosed in quotes with alength lessthen
or equal to 30 characters.

Notes:

1

If any defaults are present in the ATTRI BUTES section, the Code Generator
creates adefault entry with thedef aul t keyword in the appropriate input area
of the FOURGEN section.

2. Defaults are limited to 30 characters in length. The default line can contain
many default values for fields with each default value having a maximum
length of 30 characters.

3. Defaulting isnot performed ini nput 1, header, unless all of the variablesin
thei nput 1 program, p_ record are null.

4. Defaulting isnot performed for aspecific row in the detail input array unlessall
the program, p_ record variables for agiven row are null.

nonull

(entry required)

nonul | = po_num custoner_num ship_charge

Thenonul | keyword is used to require entry in fields even when data is changed
or afield is entered multiple times.

Notes:

1
2.

Thenonul | keyword isonly available for the header input 1 region.

If the REQUI RED keyword isfound in the ATTRI BUTES section for afield in
theinput 1 areathe Code Generator and the Form Painter removeit and create a
nonul | entry in the FOURGEN section.

B-24 The .per Specification File

Fitrix Screen Technical Reference

3. The REQUI RED keyword may be used in the attribute section for fieldsin the
input 2, detail, region. It is not stripped by the tools. However, this technique
should not be used.

4. Nonull logiciswritteninl 1 h_a_i nput ().

5. When the accept key is pressed with nonull fields left null an error message, "A
required field isnull," appears in abox at the bottom of the screen. The user is
placed back in the first null nonull field based upon cursor path.

Preventing Code Generation
on a .per Form

Each input screen in your application can only have one source form. A source
formisa.per form used to generate code. If you have two similar header or
header/detail .per formsin one directory, and you try to generate code, the Code
Generator generates code for the first form, then for the second form. The code gen-
erated off of the second form overwrites the code for the first form.

Sometimes you might have a situation where you want to generate code from one
form, but then you want to physically display a different form. In thisinstance you
would specify the display only form asanon_sour ce_f or m This statement
tells the Code Generator to skip this form and not generate off of it.

If you have a.per in alocal directory that is not to be used for generating code, the
first line following the copyright information of the .per should contain the state-
ment non_sour ce_f or m An example:

{

Sccsid: W% %6 % % Delta: %%

non_source_form

}

Thenon_sour ce_f or mstatement should appear following copyright informa-
tion within the braces. Anything contained within bracesis ignored by form4gl.

Preventing Code Generation on a .per Form B-25

Fitrix Screen Technical Reference

When you run the Code Generator on all formsin alocal directory, it does not gen-
erate code for those .persthat contain thisline. Thenon_sour ce_f or mstate-
ment allows you to have multiple screensin the local program directory and
eliminates any chance of running the Code Generator on the wrong screen.

Converting INFORMIX-SQL
Perform Files

Perform applications written in INFORMIX-SQL may be easily converted to
INFORMIX-4GL by running the Code Generator on the perform screens. The code
created by Fitrix Screen effectively replaces the perform screen interface with the
Code Generator ring menu interface. Many Perform commands are not recognized
by INFORMIX-4GL, however, if you have defined many additional instructionsin
the perform form, you have to add functions to the Code Generator code to achieve
the same effects.

» All statements of the |l NSTRUCTI ONS section of a perform screen, with the
exception of thedel i m t er s command, areignored.

e 4GL does not accept form definitions containing more than one screen. If your
perform file contains multiple screen definitions these must be removed.

» Joins defined in the screen form are ignored.

* TheLOOKUP, NOUPDATE, QUERYCLEAR, RI GHT,and ZEROFI LL
attributes of perform screens have no meaning in 4GL.

B-26 The .per Specification File

C

Program Migration

This section discusses moving your generated applications onto production plat-
forms.

n Program migration

C-1

Fitrix Screen Technical Reference

Moving Applications to Other
Systems

To successfully run programs generated with Fitrix Screen on systems other than

the devel opment system, afew steps must be taken. These stepswill ensure that the
tables, data, and forms your program needs to operate exist on the system to which
you are transferring the program, and that your program knows where to find them.

The following steps are required to add the necessary tables to the application data-
base:

1. Createthe following directories on the target system:
- $f g/ Make
 $fg/bin
e S$fg/lib/datal/library. dat
- S$fg/lib/data/library

2. Copy thefilesin the following three directories from the development system,
to the directories you created on the target system:

e $fg/bin

- S$fg/lib/data/library. dat

- S$fg/lib/data/library
3. Change your PATH on the target system to include the $f g/ bi n directory.
4. Besurethat each database to be converted isin the $DBPATH.
5. Runnklib -d database on each database that needs to be converted.

Thenkl i b script adds a number of tables required by Fitrix generated appli-
cations.

6. If youarealsoinstaling Fitrix Screen at the customers site then you need to run
nkt abl es -d database, which adds anumber of cg* and stx* tablesto
your database.

C-2 Program Migration

Fitrix Screen Technical Reference

7.

If your customerwill be using Fitrix Security, which isincluded with the
Enhancement Toolkit, you needtorun nksecuri -d database toadd
security tables.

These steps are required to make the appropriate forms avail able to the application:

8.
9.

10.

Createa$f g/ | i b/ f or ns directory on the target system.

Copy thefilesinthe $f g/ | i b/ f or s directory on the devel opment system
into the $f g/ | i b/ f or ns directory on the target system.

Add $f g/ 1i b/ f or s to your $DBPATH on the target system.

Thefollowingisalist of the minimum files required to move your application from
one system to another.

Agi and .frmfiles
$fg/lib/data/library.dat/*
$fg/lib/datallibrary/ dbmerge. 4gi
$fg/lib/forms/*.frm

$fg/bin/nmklib

$f g/ Make/ *

Y our startup scripts and/or custom runners

** $f g/ bi n needsto bein the $PATH

** $f g/ |'i b/ f or ms needsto bein the $DBPATH

Moving Applications to Other Systems C-3

Fitrix Screen Technical Reference

C-4 Program Migration

Screen Tables

This appendix covers the database tables used by Screen.
n Adding Code Generator tables with nkt abl es

n A list of the Code Generator tables

D-1

Fitrix Screen Technical Reference

Required Tables

The following table lists the database tables required for Screen to run, aswell as
what tables are needed to run the generated application.

Table Description Screen 2;::?:;?3"5
cgdcol nr | datadictionary for database columns | X X
cgdt abl r | datadictionary for database tables X X
cgnecndd menu item definition detail X X
cgnmcrmdr | menu item definition header X X
cgnmenud | program menu definition X X
cgmposr | menu position X X
cgrringd | lineimagefor reports X X
cgsbl obr | containsblob information X

cgsclipr | clipboard detail X

cgscndsd | featurizer detail table X

cgscndsr | featurizer header table X

cgsdpndd | field dependency list X

cgsi fl dd | inputfield definition X

cgsi nged | storagefor screen image X

cgsi nptr | input areadefinitions X

cgsscrnr | main screen definitions for a .per X X
cgsstypr | screendefaults X

D-2 Screen Tables

Fitrix Screen Technical Reference

Table Description Screen Ssgﬁ::aatt?gns
cgstrigd | storestriggerscode X

cgstrigr | avalabletriggers X

cgszoonr | zooms (from fields) X

cgxfnanr | screentypeloca function name X

cgxfsetd | functionsgenerated for screen type X

cgxl kupr | lookups X

cgxl ntod | lookup from/into detail X

cgxmat hr | math X

cgxsorcd | pathname of perform and triggers X X

files

pcdt abl r | containslist of module tables X X
st xacknd | software acknowledgement detail X X
st xact nr | navigation event reference X X
st xaddl d | user defined fields detall X X
st xaddl r | user defined fields header X X
st xconpr | list of valid companies for mz X X
st xerord | basefileserror text detail X X
st xerorh | basefileserror text header X X
st xfil er | operating system information X X
stxfiltr | schedulingfor reports X X

Required Tables D-3

Fitrix Screen Technical Reference

Table Description Screen ﬁ::ﬁ::t?gns
st xf uncr | security events X X
st xgropd | group permission security detail X X
st xgropr | group permission security header X X
st xhel pd | basefileserror text header X X
st xhot kd | hot key definitions detail X X
st xkeysr | hot key definitions reference X X
st x| angr | language trandation table X X
st xmssgr | storesprogram comments X X
st xnot ed | freeform notes detail X X
st xnvgtd | navigation events detail X X
st xpar md | parameter detail X X
st xpar nmh | parameter header X X
st xprogr | list of programs X X
st xsecud | security permissions detail X X
st xsecur | security permissions header X X
st xt odod | todo list detail X X
st xt xt dd | default text X X
st xuni gc | unique seria control X X

D-4 Screen Tables

Fitrix Screen Technical Reference

Note

If you have Report Writer, thecgdt abl r, cgdcol nr, and pcdt abl r tables
must be present.

Code Generator Tables

Screen automatically builds in awide range of features to expand the power and
versatility of your data-entry interface. In order to accommodate these features, the
generated code must be able to rely on the existence of specialized tables to main-
tain the information these features support.

Asan application is being generated, the Code Generator searches the specified
database (named in the .per file) for these tables. If they do not exist, they are cre-
ated. This section lists the tables referenced by features of generated code (in al pha-
betic order).

cgdcolmr—the data dictionary for columns

tabnanme char (18),

col name char (18),

| anguage char (3),
description char(30),
col _Il abel char(30),
nmesg_l i ne char(74)

cgdtablr—the datadictionary for tables

tabname char (18),

| anguage char (3),
description char(30),
uni q_l i st char(60),
tab_order char(60)

cgmcmndd—menu item definition detail

m nane char (8),
m order smallint,
m | ang char(3),
m | abel char (20),
m_hel p char (50)

Code Generator Tables D-5

Fitrix Screen Technical Reference

cgmemndr—menu item definition header

m nanme char (8),

m desc char (20),
m order smallint,
mtype char(1),

m event char(8),
m cl ass char (12),
mstyle char (1),
m rowon char (1),
m curon char (1),
m toton char(1),
m deton char (1),
m enter char(1)

cgmmenud—program menu definition

nodul e char (8),
prog char(8),
scrid char(8),

m | ocal smallint,
m nanme char (8),
m desc char (20),
m order smallint,
mtype char(1),

m event char(8),
m cl ass char (12),
m style char(1),
m_rowon char (1),
m curon char (1),
mtoton char (1),
m deton char (1),
m enter char (1)

cgmmposr—menu position

m_nane char (8),
m type char (1),
X_pos smallint,
y_pos smal lint,
width smallint,
hol d char (1)

D-6 Screen Tables

Fitrix Screen Technical Reference

cgsblobr—the blob description table

nodul e char (8),
prog char(8),

scrid char(7),
cust_key char(12),
i nput _num smal lint,
fl dname char(18),
runprog char (60),
progedit char (1)

cgsclipr—the clipboard detail table

usernane char(12),
clipname char(8),
clip_title char(30),
segno serial not null,
srow smal lint,

erow smal lint,

scol smallint,

ecol smallint,
clip_status char(1)

cgscmdsd—featurizer detail table

cnd_i d integer,
line_no smallint,
txt char(70),
indent smallint,
cont_line char(1),
whi t espace smal | int

cgscmdsr—featurizer header table

cmd_id serial not null,
cmd_type char (1),
cnd_order smallint,
trig_code smallint,
nodul e char (14),
prog char(14),

cust _key char(3),
fil ename char(14),

| oad_tine integer,
src_file char(14),
funct _id char(18),
bl ock_i d char (20),
fromafter char(1),
fromstr char(50),
to_thru char(1),
to_str char(50)

Code Generator Tables D-7

Fitrix Screen Technical Reference

cgsdpndd—thefield dependency list table

nodul e char (8),
prog char(8),

scrid char(7),

cust _key char(12),
src_type smallint,
src_field char(18),
dpnd_field char(18)

cgsifldd—theinput field definitions table

nmodul e char (8),

prog char(8),

scrid char(7),

cust _key char (12),

i nput _num snal lint,
seqgno snal lint,
field_tag char(6),
tabnane char(18),

fl dnane char(18),
fldtype char(42),

f _autonext char (1),
f_conments char (74),
f_default char(30),
f_display_like char(42),
f _downshi ft char(1),
f_format char(50),

f _include char(50),
f _picture char(50),
f_noentry char (1),
f_required char(1),
f_upshift char(1),
f_valid_like char(42),
f_verify char(1)

cgsimged—the screen image storage table

nmodul e char (8),

prog char(8),

scrid char(7),

cust _key char (12),
line_no smallint,

i mge_data char (132)

D-8 Screen Tables

Fitrix Screen Technical Reference

cgsinptr—theinput areadefinitions table

nodul e char (8),

prog char(8),

scrid char(7),
cust_key char(12),

i nput _num smal lint,
scr_rec char(12),

mai ntab char (18),

sel _j oin char(200),
sel _filter char(200),
sel _order char(100),
uni que_key char (80),
ok_del ete char (1),
aut o_nunber char (18),
scr_siz smallint,
arr_max smallint

cgsscrnr—the main screen definitions table

nmodul e char (8),

prog char(8),

scrid char(7),

cust _key char(12),
scr_type char(15),
mai ntab char (18),
init_filter char(200),
win_x smallint,
win_y smallint,
delimters char(2),
_returning char(18),
scr_attr char(30),

| oad_tinme integer,
trig_time integer,
non_src_frmchar (1),
eng_ver char(10),
fgl _ver char(10)

cgsstypr—the default screen typetable
set _key char (20),

df It _arr_max integer,
userdef char (1)

Code Generator Tables D-9

Fitrix Screen Technical Reference

cgstrigd—thetrigger code table

nodul e char (8),

prog char(8),

scrid char(7),

cust _key char(12),

i nput _num snal | int,
trig_code snallint,
arg_one char(18),
trig_order smallint,
trig_text char(74)

cgstrigr—thetriggerstable

trig_def char(30),
trig_code smallint

cgszoomr—the zoom table

nodul e char (8),

prog char(8),

scrid char(7),

cust _key char(12),

i nput _num snal | int,
key_field char(18),
zoom scrid char(7),
zoom t abl e char(18),
noaut ozoom char (1),
sel _filter char(200),
zoom from char (18)

cgxfnamr—screen type local function name
set _key char(20),
func_key char(10),
func_nane char (18)
cgxfsetd—functions generated for screen type
set _key char(20),

func_key char(10),
userdef char (1)

D-10 Screen Tables

Fitrix Screen Technical Reference

cgxlkupr—thelookupstable

nodul e char (8),

prog char(8),

scrid char(7),
cust_key char(12),

i nput _num smal lint,
| kup_nanme char (18),
key_field char(18),
| kup_t abl e char(18),
sel _filter char(200)

cgxlntod—the lookup from/into detail table

nmodul e char (8),
prog char(8),

scrid char(7),

cust _key char(12),
manual char (1),

| kup_nane char(18),
| kup_i nto char(18),
| kup_f rom char (18)

cgxmathr—the math table

nodul e char (8),
prog char(8),

scrid char(7),
cust_key char(12),
i nput _num smal lint,
key_field char(18),
mat h_t ext char (100)

cgxsorcd—stores the pathname of perform and trigger files

nmodul e char (8),
prog char(8),
scrid char(7),
cust _key char(12),
src_code char(3),
src_nane char (200)

pcdtablr—thelist of modulestable

prodi d char(8),
line_no smallint,
tabname char (18)

Code Generator Tables D-11

Fitrix Screen Technical Reference

stxacknd—the software acknowledgement detail table

ack_nodul e char(8),
ack_program char(8),
line_no smallint,
ack_t ext char(60)

stxactnr—the navigation event reference table

| anguage char(3),

act _key char(15),
description char(30),
os_command char (74),
press_enter char (1)

stxaddld—the user-defined fields detail table

filename char(18) not null,
record_key char (30),
line_no smallint,

data char (30)

stxaddlr—the user-defined fields header table

filename char(18) not null,
line_no smallint,
field_label char(20)

stxcompr—Iist of valid companies for use with mz

conp_id char(8),
db_nane char (14),

I ogfile char(150),
line_no smallint,
consol i date smal lint

stxerord—the base files error text detail table

| anguage char(3),
userdef char (1),
err_nodul e char(8),
err_program char(8),
err_nunber smallint,
a_b char(1),

line_no smallint,
err_text char(60)

D-12 Screen Tables

Fitrix Screen Technical Reference

stxerorh—the base files error text header table

| anguage char (3),
userdef char(1),
err_nodul e char(8),
err_program char(8),
err_nunber smallint,
err_line char(40)

stxfiler—the operating system information table

uni g_num i nt eger,
line_no serial not null,
line_text char(248)

stxfiltr—schedulefor reports

uni que_i d char(15),
seqg_no smallint,

stxfuncr—security events

nodul e char (8),
prognane char(8),
funcname char (20),
description char(30),
allow flag char(1),
userdef char (1)

stxgropd—the group permissions detail table

group_id char(8),
user _id char(8)

stxgropr—the group permissions header table

group_id char(8),
description char(30)

stxhelpd—the basefiles help text detail table

| anguage char (3),
userdef char(1),

hl p_nmodul e char(8),
hl p_program char (8),
hl p_nunber snallint,
line_no smallint,

hl p_text char(60)

Code Generator Tables

Fitrix Screen Technical Reference

stxhotkd—the hot key definitions detail table

hot _key smal lint,
act _key char(15),
hot _nodul e char (8),
hot _program char (8),
hot _user char (10)

stxkeysr—the hot key definitions reference table

key_code snmal lint,
key_desc char (15)

stxlangr—I|anguage translation table

| anguage char(3),
tr_tab_col char(37),
tr_context char(10),
native char (50),
non_native char (50)

stxmssgr—stores program comments

| anguage char (3),
nesg_nodul e char(8),
nmesg_program char (8),
nssg_nunber snallint,
message char (132)

stxnoted—the freeform notes detail table

filenane char(18) not null,
record_key char(30),
line_no smallint,

data char (60)

stxnvgtd—the navigation events detail table

act _key char (15),
line_no smallint,
nav_nodul e char(8),
nav_program char (8),
nav_user char(10)

D-14 Screen Tables

Fitrix Screen Technical Reference

stxparmd—the user permissionstable

| anguage char (3),

nmodul e char (8),

user _id char(8),
access_key char (30),
l'ine_no integer,
userdef char(1),
shd_flag char (1),

par m desc char (30),
is_rule char(1),
is_fatal char(1),

hel p_num smal | i nt,

val _tabl e char (30),

val _col um char (60),
val _filter char(60),
val _j oin char(60),

val _swi t chbox char(8),
val _description char(18),
zoom filter char(60),
zoom sw t chbox char (8),
par m val ue char (32)

s txparmh—the program permissions table

| anguage char (3),
nmodul e char (8),
headi ng char (76)

stxprogr—thelist of programstable

nodul e char (8),
prognane char(8),
description char(30),
use_trx smallint,
userdef char (1)

stxsecud—security permissions detail

user_id char(8),
nodul e char (8),
prognane char(8),
funcname char (20),
al l ow_flag char (1)

Code Generator Tables D-15

Fitrix Screen Technical Reference

stxsecur—security permissions header

user_id char(8),

| name char (20),

fname char (20),

mnitial char(1),
conpany char (30),

dept char(15),

responsi bility char(30),
phone char (15)

stxtodod—theto dolist detail table
todo_user char(10),
line_no smallint,
todo_t ext char(60)
stxtxtdd—the default text table
txt_key char(30),
line_no smallint,
df It _text char(74)
stxuniqgc—the unique serial control table

uni g serial not null

D-16 Screen Tables

Control Key
Defaults

This appendix provides alist of control key defaults and a cross reference for
engine compatibility:

n Control key defaults

n Engine compatibility

E-1

Fitrix Screen Technical Reference

Control Key Defaults

Trapped
Control Key Defaults During
Input

"a | Toggle between insert and overstrike modes (Infor-

mix edit key)
b Back Tab yes
c Operating system key (on DOS systems)
~d Delete to end of line (Informix edit key)
e Edit hot keys yes
N yes
g Navigate (go) yes
“h Same as left arrow (Informix edit key)
A Tab yes
N Same as down arrow (Informix edit key)
"k Same as up arrow (Informix edit key)
A Same asright arrow (Informix edit key)
"m | Enter
n Toggle input areas yes
"o Operating system exit yes
p Paste yes
q Reserved for O/S (continue screen output)
~r Redraw the screen
s Reserved for O/S (stop screen output)

E-2 Control Key Defaults

Fitrix Screen Technical Reference

Trapped
Control Key Defaults During

Input

™M yes

U Undo yes

Y Mark/Copy yes

“w | Help yes

X Delete character (Informix edit key)

Ny Display Program Information menu yes

4 Zoom yes

Function Keys Trapped During Input

F1-F4 | At menulevel: User-definable menu hot keys

F1-F4 | During input: Informix movement keys
Fl=Insert line, F2=Delete line, F3=Page down, F4=Page up (dur-
ing input of a non-scrolling section, F1-F4 aren’t used)

F5-F16 | User definable hot keys

F17- User definable hot keys (must add logic to trap)
F30

F34 Hardmapped to ""B" (Back Tab"

F35 Hardmapped to "ESC" (accept)

F36 Hardmapped to "DEL" (cancel)

Control Key Defaults E-3

Fitrix Screen Technical Reference

Engine/4GL Compatibility

The following table lists 4gl data types and the engines on which they run.

Data Type | 4GL Engine Comments

byte >=4.10 Online header forms only
(BLOB)*

char all all

date al al

datetime >=4.10 all

decimal all all

float al al

integer all all

interval >=4.10 all

money all all

serial all all

smallint all all

smallfloat al al

text >=4.10 Online

(BLOB)*

varchar >=4.10 Online and formonly on SE

*Binary Large OBject

E-4 Control Key Defaults

Reserved Terms
and Style Guide

This appendix contains the following information:
n A list of reserved terms
n Table naming conventions

n Screen form style guide

F-1

Fitrix Screen Technical Reference

Reserved Terms

There are anumber of terms that can be considered reserved, for their inadvertent
use may cause unexpected problems with code generated by Fitrix Screen. When
modifying code created by the Code Generator, it is helpful to check against this

list to ensure that duplication of nhames does not occur.

Many terms have special significance with Informix products, and cannot be used
when modifying generated code. Please check the INFORMIX-4GL User Guide for
the list of INFORMIX-4GL reserved words.

Thelist of reserved variable names is restricted to the variables found in the gl o-
bal s. 4gl file. Thelistisreprinted here for convenience.

scrl_max recl_max recl_cnt progid
scr_id menu_item scr_funct sql _filter
sql _order i nput _num p_cur s_cur
scr_fld prev_data this_data dat a_changed
hot key scratch nxt_fld

Thelist of reserved function names can be easily identified with the help of the tags
feature. For information on the Tags feature refer to " The Tag Utility" on page A-5.
Thetagsfile, which isre-created every time the relevant source code is recompiled,
contains alist of function names and locations called by the application.

Thelist provided in this manual is based on the demo application (orders), and the
library source generated as part of the application.

cust _zm stk_mmu stockzm brw_cl ose
brw_di spl ay br w_hook brw_open I'1d_add
I1d_delete Il d_display I'1 d_high Il d_i nput
I'1d_I ookup I1d_mprep I1d_math I1d_p_prep
I1d_read I1d_setdata Il d_show ine Il h_add

Il h_del ete I'l h_di spl ay I'l h_hi gh I'l h_i nput

I h_I ookup I'1'h_mprep Il h_math Il h_p_prep

Il h_read Il h_setdata Il h_updat e m d_arr_count
m d_cl ear m d_scroll m h_cl ear I'l h_construct
m h_cursor mh_init m h_key ring_options
swi t chbox

F-2 Reserved Terms and Style Guide

Fitrix Screen Technical Reference

Table Naming Conventions

The Code Generator imposes an additional restriction on table names. In addition to
the database engine restriction that the first 8 characters of the table name be
unique, the Code Generator requires that the last 6 characters be unique. When
naming internal program record arrays and records the Code Generator usesthe last
6 of the unique name to coin the internal program record and arrays. For example:

strinvce becomes p_rinvce and mrinvce records in globals.

The trouble starts when you have table names like "herinvce" and "derinvce' asa
header and a detail table. The generator generates two records one that is not an
array and one that is an array for the header and detail tables respectively with the
same name.

A program generated with a header and detail record with the same name does not
compile. Thiswould create an array defined in globalsform r i nvce for the detail
andasoam ri nvce record for the header.

Table Naming Conventions F-3

Fitrix Screen Technical Reference

Screen Form Style Guide

The following conventions have evolved from the devel opment of standardized
applications. Use this guide as a source of information for consistent and organized
display of fields and sections on a screen form.

F-4

The Screen or Form title should appear in the center of the first line of the
screen. It should start with a capital letter, but should not be all capital |etters.

The title should not contain the word Screen or Form.
Thettitle should be a noun describing the document or the contents of thefile.

The title should not contain a verb unless the menu item that calls the screen
only allows one possible action and other menu items allow different actions on
the samefile.

Screens and menu items are named for the contents of the file or table they
access, not areport or thefile itself. For example, the screen should say, "L ed-
ger Accounts' rather than "Chart of Accounts."

When afile contains documents, they should be called by their most common
name. For example: invoices, orders, checks, etc.

Do not use the term "Document" as part of the name of a document. For exam-
ple: use "Tax Definitions' or "Tax Codes," not "Tax Documents’.

If there is one document in afile, the file' stitle should be singular. If there are
more than one, it should be plural. For example, title multiple document files
"Company Information," " Account Groups," and " Customers,” not " Customer."

If the file contains multiple items, but a description of its contents cannot be
made plural, add the word, Items. For example: "Inventory Items," not "Inven-
tory" or "Inventories."

If the screen contains rows of detail, the detail should appear in the lower por-
tion of the screen, separated from the "header" information by aline.

If the screen contains totals from the detail, that information should appear
below the detail in a special footer section separated by aline.

Reserved Terms and Style Guide

Fitrix Screen Technical Reference

Headings at the top of a screen form should be centered within aline of dashes
which extends to the ends of the form, for example:

not

Headi ng Here

Sub-headings should be within aline that extends to three spaces from either
side, for example;

Detail heading lines should extend to one character from the form edge.

Detail line sections should end with a solid line of dashes that extends to within
one character space of the form’s edge.

Subsection lines should never extend beyond the heading line, and should have
a space under thefirst and last dash of the heading line.

Screen Form Style Guide F-5

Fitrix Screen Technical Reference

For example, format this way:

—————————————————————————— Subsection -------------oaooon--
Cash Account Nunber: [] Expense Account Nunber []

However, avoid this:
———————————————————————— Subsection ---------------oao---

Cash Account Nunber: [] Expense Account Nunber []

» If aform has no detail section and has room for another line, there should be a
solid line of dashes from left to right just above the comment line at the bottom
of the form.

* Whenever possible, fields on a document header should appear one to a screen
row.

e Fieldsread in from adetail table should appear in rows and columns.

e Usea"field descriptor” to indicate the contents of afield whenever possible.
Descriptors for fields in a heading should appear before the field. Descriptors
for fields arranged in columns and rows should appear at the top of the column.

» Descriptors should begin with a capital letter, but not appear in all capital let-
ters.

» Descriptors for data entry fields in which the field follows to the right of the
descriptor should be followed by a colon.

» Descriptors and headings should not be abbreviated unless thisis required for
spacing. Abbreviations should be followed by a period.

* Do not use # to indicate numbers if No. fits. Do not use No. if Number fits.

« Dataentry fields should be stacked, each starting in the same column. Their
headings should be placed so that their ending colon is one character to the left
of the beginning of the field.

» Display-only fields should not start in the same column as data entry fields.
Display-only fields should form their own column, preferably to the right of the
data entry fields.

F-6 Reserved Terms and Style Guide

Fitrix Screen Technical Reference

« Row descriptors start, if the areais large enough, over the first character of the
valuein atext field. In anumeric column, they end over last character of data
(right justified). If the column is narrower than the heading, the heading is cen-
tered. They are not followed by colons or other punctuation.

* Screens should not include technical information or terms of no interest to the
users, such as the technical name of the program or of any files.

Screen Form Style Guide F-7

Fitrix Screen Technical Reference

F-8 Reserved Terms and Style Guide

Termcaps

This section covers:
n Terminal options
n Termcaps

n Suggestions for debugging termcap problems

Fitrix Screen Technical Reference

Terminal Options

Programs created with Fitrix Screen use key combinations which may conflict with
the terminal options currently set on your system. These options can be remapped
to other key combinations with the Unix st t y command.

The most common terminal options that must be remapped are:

Terminal Option Typical Default Key Combination

susp [CTRL-Z]

dsusp [CTRL-Y]

These options are remapped by the startup shell scriptsfor Fitrix Screen. They also
may need to be remapped for programs created by the Fitrix Screen.

These terminal options can be remapped on most systems with the following com-
mand:

stty susp <SOVE KEY> dsusp <SOVE KEY>

In the first shell script shown below, the susp and dsusp terminal options are both
remapped to [CTRL] - [-] or control "-" with the command:

stty susp "~-" dsusp "~-"

The two shell scripts shown below are examples of how you might want to boot-
strap your programsin a manner which will avoid st t y terminal option conflicts.

G-2 Termcaps

Fitrix Screen Technical Reference

Shell script example 1:

Copyright (C) 1992 Your Conpany Nane

Al'l rights reserved.

Use, nodification, duplication, and/or distribution of this
software is limted by the software |icense agreenent.
Sccsid: @#) /ulfourgen/bin/run 1.5 Delta: 4/16/92

HOH K K H

Usage: run dirnanme [args]
fg.setshell

Check for an argunent

if test "$1" = ""

then
echo "Syntax: run dirnane [args]"
exit 1

fi

cd $1
shift

prognane=‘sed -n "s/"NAME *= *//p" Makefile’

Run execut abl e.
if test -x $prognane
then

exec ./ $prognane "$@
fi

Run 4gi (RDS) if existing.
prognanme=' echo $prognane | sed -e s’, Z4ge, Z4gi ,
if test -f $prognane
then
exec fglgo $prognane "$@
fi

Can't find the programto run

echo "Cannot find the program $prognane"”
sleep 2

exit 100

Terminal Options G-3

Fitrix Screen Technical Reference

Shell script example 2:

Copyright (C 1991

#

Use, nodification, duplication, and/or distribution of this

software is limted to the terns of the software agreenent.

Sccsid: @#) [/usr/fourgen/work/bin/fg.setshell 1.14 Delta: 4/10/92
The purpose of this shell script is to re-bootstrap the current

programusing a shell that’'s known to work on this platform

Most platforns pass the QA suite using the regular bourne shell

located in /bin/sh, but sone platforns have shells that work

better than the /bin/sh shell.

This programis usually called fromw thin other shell scripts using
the followi ng format:

#

Make sure we're using the correct shell

fg.setshell

#

if test "$fg_shell™ =""

t hen
Get the unix version information
uni x_version="unane -a' 2>/dev/null

Sone platforns require special shells
case $unix_version in
HP- UX) fg_shel | =/ bin/ksh
{
stty susp ""
stty dsusp ""
}>/dev/null 2>/dev/null;;
ULTRI X) fg_shel | =/bin/shb
stty old;;
* Al X*) fg_shel | =/ bin/sh
stty susp ""
stty dsusp ""
stty quit "";;
Sun) fg_shell=/bin/sh
{
stty susp
stty dsusp ""
stty |l next ""
stty rprnt
stty werase
stty flush ""
} 2>/dev/null;;
*) fg_shel | =/ bin/sh
{

stty susp ""

G4 Termcaps

Fitrix Screen Technical Reference

el se

fi

stty dsusp
}>/dev/ null 2>/dev/null;;
esac
SHELL=%f g_shel |
export SHELL fg_shell

this followng line is here ONLY for 4.1 executable core-dunp prob
test "$TERM || TERM=vt 100; export TERM

this followng code is here ONLY for 4.1 executable core-dunp prob
if test "$TERMCAP" = ""

then
if test -f /etc/terntap
then
TERMCAP=/ et c/ t er ntap; export TERMCAP
el se

TERMCAP=$| NFORM XDI R/ et c/ t er ntap; export TERMCAP
fi
fi

Re-boot ourselves in a shell that’'s known to work
t hi sprog="type $0 |

sed -e s, [()],.9 -e's,Z$,,' -e’'s,..* [,], -e’s, .* ¢
if test | -f "$thisprog" -o "$thisprog" =""
then
echo "ERROR in fg.setshel "
exit 1

fi
exec $fg_shell $thisprog "$@

fg_shel I =""

Terminal Options G-5

Fitrix Screen Technical Reference

Writing Termcap Entries

This section will help you decipher your termcap files and can help you debug your
own termcaps. Should you need more information on termcaps and terminfo, refer
to the appendix of your INFORMIX-4GL Reference Manual.

Termcap is short for "terminal capabilities," which are descriptions of the various
features of aterminal, and instructions on how to use these features, al writtenin a
rather cryptic language in atermcap file. The language which describes the termi-
nal capabilitiesisinterpreted by programsthat use terminal 1/O in order for the pro-
gram to correctly control the terminal and interpret input from the keyboard.

The Termcap File

Thetermcapfile, / et ¢/ t er ncap, usualy consists of several termcap entries,
each one corresponding to a particular terminal or to a particular emulation mode
on some terminal, or to aterminal being used in some special fashion. The rest of
the termcap file, about 20%, consists of lines beginning with a#. These are com-
ment lines and are generally lessintelligible than the rest of the termcap file. These
lines are to be mostly ignored. One termcap entry can be separated from another
once you understand what an entry itself looks like.

The Termcap Entry

Each entry hastheform| abel [| | abel][: capabi li ty]: . Thismeansthere
are astring of labels by which the entry can be referred to, each separated from the
next by a"|" symbol followed by a string of terminal capability codes each sepa-
rated from the next by a":". If the termcap entry islonger than asingle line (almost
all of thetimeit is) then the symbol "\" is used on the end of aline to indicate that
the entry continues to the next line. An easy example of what two termcap entries
might look like follows (easy because whoever edited them tried to make them easy
to distinguish as entries):

G-6 Termcaps

Fitrix Screen Technical Reference

n2| 7901| NCR 7901: co#80: | i #24: bs: am cl ="L: \
ti =\ EOPAXML: \ t e="O"X\ EO@ cnr\ EY%*+%+: ce=\
EK: cd=\ Ek: kh="A: kl =AU: bc="U: kr =AF: nd="F: \
ku=~Z: up=~Z:\ kd="J: do="J: kb="H: kc="M so="N: \
se="0 sg#0: ul : us=\ E0* *N: ue=\ EO@ O ug#0: \
NMEAOMX\ EO@ NB=\ EOB"N: NR=\ EOP*N: \
NS=\ EOR*N: AL=\ EOA*N: AB=\ EOC*N: \
AR=\ EOQ'N:

n3| vwpt | vi ewpoi nt | ADDS Vi ewpoi nt : co#80: | i #24:\
bs:amcl =AL:ti =\ EOP"X "L:\te="O"X\ EO@\
cnr\ EY% % ce=\ EK: cd=\ Ek: kh="A: kIl ="U: \
bc="U: kr =AF: nd="F: \ ku="Z: up=~Z: kd="J: do="J:\
kb="H: kc="M so="N: se="O sg#0: ul : us=\ E0* *N: \
ue=\ EO@ QO ug#0: NM="O*X\ EO@ NB=\ EOB"N: \
NR=\ EOP"N: NS=\ EOR"N: AL=\ EOA*N: \
NR=\ EOP*N: NS=\ EOR*N: AL=\ EOA*N: \
AB=\ EOC*N: AR=\ EOQ"N: AS=\ EOS"N: OV#0: \
k1=\ E1: k2=\ E2: k3=\ E3: k4=\ E4: k5=\ E5: \
k6=\ E6: k7=\ E7: k8=\ E8: k9=\ E9: MP=\ EOPAX"L: \
MR=\ EO@ X: NU="N: EN="V: CN="X: CF="W

Not all termcap entries appear like the examples above. Sometimes they might look

like the following:

n2| 7901| NCR 7901: co#80: | i #24: bs: am cl ="L: ti =\
EOPAXAL: t e="O"X\ EO@ \ cn¥\ EY% % ce=\
EK: cd=\ Ek: kh="A: kl =AU: bc="U: kr =AF: nd="F: \
ku=~Z: up=~Z:\ kd="J: do="J: kb="H: kc="M so="N: \
se="QO sg#0: ul : us=\ E0‘ *N: ue=\ EO@ O ug#0: \
NMEAOMX\ EO@ NB=\ EOB"N: NR=\ EOP"N: NS=\
EORMN: AL=\ EOA*N: AB=\ EOC*N: AR=\ EOQ"N:

n3| vwpt | vi ewpoi nt | ADDS Vi ewpoi nt : co#80: | i #24:\
bs:am cl =AL: ti =\ EOPX"L:\ te="O"X\ EO@ cn¥\
EY% %t :ce=\ EK: cd=\ Ek: kh=A: kl =AU: bc="U: \
kr =AF: nd="F: \ ku="Z: up=~Z: kd="J: do="J: kb="H: \
kc="M so="N: se="Q sg#0: ul : us=\ EQ* *N: \ ue=\
E0@ O ug#0: NME"O*X\ EO@ NB=\ EOB"N: NR=\
EOPAN: NS=\ EOR"N: AL=\ EOA"N: \ AB=\ EOC"N: \
AR=\ EOQ"N: AS=\ EOS"N: OV#0: k1=\ E1: k2=\ E2: \
k3=\ E3: k4=\ E4: k5=\ E5: \ k6=\ E6: k7=\ E7: k8=\ E8: \
k9=\ E9: MP=\ EOP*X"L: MR=\ EO@ X: NU="N: \
EN="V: CN=AX: CF="W

Obvioudly, it is harder to distinguish one entry from the next in the second example

especially when you consider that there may be hundreds of entries formatted

together like this.

Writing Termcap Entries

G-7

Fitrix Screen Technical Reference

Notice that the last line of the entry for n2 does not end with a"\" but that every
other line of the entry does end with "\". If the last line of the entry ended in"\" like
the others then the entry for n2 would continue into the entry for n3. Correct inter-
pretation of the termcap entries relies heavily upon these very important "\" charac-
ters.

The Labels

Thelabel part of the termcap entry is the mechanism by which a program can find
the entry in the termcap file. Usually it consists of atwo letter code, a short name or
two, and a brief description of the terminal. The termcap entry can be identified by
any of the labelsin the label section of the entry and the identification is usually
based upon the value of the system variable STERM(useecho $TERMto seeits
current value). It is highly advisable to use one of the short names rather than the
two character code for the value of $TERMsince the two character code may not be
unique and programs find the first occurrence of the label whether or not thereis
another—yours—further down in thefile.

The Capability Codes

The terminal capabilities directly follow the labels in each termcap entry and each
codeis separated from the next by a":" and has atwo letter "name.” There are three
different sorts of codes used to identify a capability; a boolean type either the code
is there or not with no specific value associated with it; a numeric type an integer
value is assigned to the code; a string type a string of charactersis assigned to the

code.

The boolean type codes are used to identify the existence or lack of a certain termi-
nal characteristic such as whether the cursor automatically wraps around the mar-
gins of the terminal. In the termcap entry they can be identified because they
consist solely of the capability name (amfor automatic margins).

The numeric type codeis used to identify countable parameters associated with the
terminal such as number of columns and number of rows on the screen. These
codes have the form codenane#val ue (i.e. number of columns would be
co#80 for an eighty column screen).

G-8 Termcaps

Fitrix Screen Technical Reference

The string typeis used to identify strings of characters sent by certain keys on the
keyboard and strings needed by the terminal to perform certain actions such as
positioning the cursor in a particular location on the screen. For example, to iden-
tify the character string sent from the keyboard by the up arrow key the code might
read ku=\ E[1 and would indicate that the keyboard sends the character sequence:
ESC (octal 33) [1 whenyou presstheup arrow key.

Special Characters

The character strings for aterminal capability often use such characters as\E, "R,
or “A which represent ASCII [ESC], [CTRL]-[R], and [CTRL]-[A] respectively.
In the termcap file however, these characters are never given in their literal form
because they are generally non-printing characters. Therefore, in order to represent
them in text they have a special form.

Ascii [ESC] isrepresented with \ and E (looks like "\E").

Ascii [CTRL] characters are represented with a” followed by the character in
upper case, hence *R and "A.

Characters can also be represented by their octal (base eight) value in cases such as
the":" which isused to interpret the termcap file by separating arguments and can’t
be included directly as part of astring (it would be interpreted as the end of the
string). The octal code for a colon is\072.

The Codes

Unfortunately, there are too many terminal capability codesto list al of them here
and many programs use special sets of codes in addition to the more or less "stan-
dard" set. Therefore, you should ook in the system documentation for a thorough
list of the various termcap codes and their functions. Y ou must refer to your pro-
gram documentation to find the codes for any specia functions used by the pro-
gram. Hereisalist of some of the more common codes:

Writing Termcap Entries G-9

Fitrix Screen Technical Reference

Code Function

cm control code for cursor positioning by row and column
ku character sequence sent by the cursor up key

kd character sequence sent by the cursor down key

kr character sequence sent by the cursor right key

kl character sequence sent by the cursor |eft key

kh character sequence sent by the home key

kO-k9 character sequences sent by the function keys

ho control sequence used to position the cursor at 0,0

do control sequence used to move the cursor down arow

cr character sequence sent by the enter/return key

nd control sequence used to move the cursor back a column
up control sequence used to move the cursor up arow

bt control sequence used to back tab

bs boolean code which indicates that backspace is"H

am boolean code which indicates margins are handled automatically
co number of columns on the display

li number of lines on the display

so control sequence used to turn standout mode on

se control sequence used to turn standout mode off

sg number of characters of display required by the’so’ string

G-10 Termcaps

Fitrix Screen Technical Reference

Code Function
cl control sequence used to clear the display
ce control sequence used to clear to the end of theline

The biggest problem with terminal capabilitiesisnot how to read them but what the
various codes mean for the various programs that use them. Unfortunately, the
answer to that question often remainsin the head of the author of that program and
does not reach the users of the program nearly often enough, or in an intelligible
form. The other complication is that terminal manufacturers seldom produce read-
able reference material for their own terminal’ s characteristics.

Ideally, with a combination of knowing how the program uses termcap and how the
terminal behaves, one should always be able to fix or write atermcap entry for any
program and terminal (or discover that the program cannot run at all on the termi-
nal). The implementation of the capabilities on various terminals is anything but
standard, but the interpretation and use of the codes by a program usually follows
certain guidelines.

If aprogram does any full screen display and entry, if it highlights anything, ever,
or if it just clears the screen, then it almost certainly uses termcap to decide how to
do its various terminal-oriented tasks. other uses for the termcap entries are: to gen-
erate graphics, position the cursor on the screen, and to identify special input from
the keyboard (keys with special meaning).

Interpretation and Action

Of the three types of terminal capabilities, the most heavily used and the most com-
plicated are the string type. These, in turn, can be grouped into two classes of appli-
cations. The first class, which includes codes for cursor movement (ku, kd, kr, kI,
kh, etc.) and many special program codes, is used only to identify keystrokes from
the keyboard. For example, when you enter an "a"' from the keyboard, you pressthe
"a' key and only one character is sent to the computer; but other keys, such asthe
cursor keys often will send a sequence of charactersto the computer. In order for
programs that use special keys to correctly recognize keyboard entry, the program
needs to know how to interpret the charactersit is receiving from the keyboard.

Writing Termcap Entries G-11

Fitrix Screen Technical Reference

With the aid of the termcap file, a program can recognize complex input and
behave accordingly. The group of codes that is used for identifying input is one of
the two classes of string type terminal capability codes.

The other class of string type codesis used for directly controlling the terminal
screen. These codes include character sequences that invoke a graphics character
set, or start ablock of highlighted screen, or turn off the highlight or graphics, just
to list afew. Othersindicate the correct codes to send to the terminal, to move the
cursor about the screen, or to enable and disable the terminal’ s auxiliary port. With
a combination of these two classes of codes, a program can both interpret input
from the keyboard and perform actions with the terminal such as complex graphics

display.

Now you know why programs need termcap files and how they use them, aswell as
how to read them. The only steps | eft are testing, modifying, and writing thesefiles.
Testing atermcap is not simple because the termcap is only part of the terminal 1/0
system, any element of which can be to blame for weird or incorrect displays. How-
ever, once your terminal isworking on the most primitive level (you get alogin and
can run most system commands without any problem) then specific program mis-
behavior usually can be attributed to problems with the termcap.

Most of the time, termcap difficulties are related to only a couple of errorsin an
existing termcap entry for the terminal. It isunusual to not be able to find atermcap
entry that provides most of the features for your terminal simply by trying various
values for the variable $TERMand using the different emulation modes available
with many terminals. Even when you cannot find such atermcap entry, you can get
asubstantial head start on developing a new termcap entry by using an existing ter-
mcap entry for asimilar terminal type.

When you are testing and modifying atermcap entry, it is usually best to make a
temporary file that contains only that entry so that there is no danger of corrupting
the other termcap entries. Then, in order to direct the system to use that file you can
set the system variable STERMCAP equal to the full path name of the temporary file
and then export $TERMCAP. Once you have this specia file setup you need the
proper documentation in order to identify and correct problems within the termcap
entry.

Y ou will need the system documentation on the various termcap codes and program
documentation if the programs you will be running require any special termcap
entries. Also you must have technical documentation for the terminal and be sitting

G-12 Termcaps

Fitrix Screen Technical Reference

at the terminal ready to go. It helps to have a second terminal available which
aready has afunctioning termcap so that you can edit files without having to rely
on the terminal for which you are writing the termcap.

Finally, you must have the UNIX editor vi and/or the program od on your system
in order to read the various character codes sent by the keyboard. With these tools
(and some time) at hand you are ready to go.

Testing the Keys

The most reliable way to find what characters are being sent by the special keyson
your keyboard isto directly collect and view the output of those keys in an uninter-
preted form. vi and od both provide excellent ways to see what akey is sending
from the keyboard (vi is better if your termcap is already good enough to support

it).

To use od (od stands for octal dump) you simply typeod - bc [RETURN] at the
command line. At this point the program od iswaiting for input from the keyboard.
Now when you press akey followed by a[RETURN] and [CTRL]-[d] the character
and octal representation of the characters sent by the key will be displayed in two
rows. Thefirst row isthe character representation (if any) for each character and
the second row is the octal value for each character (ignore the first string of digits
on thefirst row).

By comparing the octal values with atable of ASCII characters, you can determine
exactly which characters are being issued by the key. (od will be waiting for your
next input followed by [RETURN] and [CTRL]-[d] but can be terminated by an
additional [CTRL]-[d].)

Tousevi instead of od, you caninvokevi without afile name, typei to get into
insert mode, then type [CTRL]-[Vv] followed by the key you want to test followed
by areturn. The characters displayed on the screen are the ASCI | representation for
the characters sent by the key - [is[ESC], "A is[CTRL]-[4a], etc. To exit vi type
[ESC] :q!.

Writing Termcap Entries G-13

Fitrix Screen Technical Reference

Action Codes

Certain terminal functions require a control code sent by the program to the termi-
nal which causes the terminal to perform the function desired. An example of this
type of function is highlighting. In order for the terminal to begin highlighting a
certain block of text, first the cursor must be positioned at the beginning of the
block and then a code needs to be sent to the terminal to begin highlighting. Then a
code needs to be sent after all the charactersto be highlighted have been sent in
order to stop highlighting. The program looks in the termcap for the string code cm
to use for positioning the cursor on the screen at a certain row and column. Then it
gets the string code so to turn highlighting (standout) on. Then it looks for the code
seto turn highlighting off. If any of these codes are incorrect, the highlighting
action will fail and may also wipe out the rest of the display.

There are many other control codes that are sent to the terminal which can disturb
the display serioudly if they are incorrect. These codes can only be found in the
technical manual for the terminal. For example, so must be set to the manual entry
for "start standout mode" and cm must be set to the manual entry for "direct cursor
addressing (cursor movement)." (for cm only, there are additional characters
explained in the system documentation that refer to the format for cursor and row
numbers required as a variable part of the cm string.)

By using the terminal manual for the control strings and the system documentation
for the termcap codes, you should be able to fix and add needed controls (not all
terminalswill have all of the possible capabilities). Often, but not always, there will
be an appendix in the technical documentation for the terminal which givesthe con-
trol codes for the available emulation modes for each terminal function. Thisis
often the only place in the documentation where the codes are explicitly givenin an
understandable form.

The Other Codes

The two classes of string type codes have been discussed so far. By comparison the
other codes are simple to understand and work with. The boolean type are either in
the termcap or not and indicate the existence of a particular terminal characteristic.
There are only two common numeric type entries, | i for number of rowsand co
for number of columns.

G-14 Termcaps

Fitrix Screen Technical Reference

Observations

Things to keep in mind when working with termcaps:

1

It takes time to eliminate all of the possible bugs from a termcap but often the
solutions are simple. The only way to effectively work with termcapsiswith a
substantial dose of patience.

Usually the best way to start solving atermcap problem is not with the termcap.
Make sure that $TERMis set to alabel in the label string and that the label is
unique.

Always double check your terminal setup and emulation mode before working
on atermcap for that terminal.

Before changing a termcap make a copy, and then use a fine tooth comb for
syntax errors. All labels should be separated by "|", all entries separated by ":",
all but thelast lineendsin "\".

A lot of work can be saved by using at least part of an existing termcap.

No termcap entry (all of the labels and codes combined) can be over 1024 char-
acters long. Usually the entries after the 1024th character will be ignored.

Writing Termcap Entries G-15

Fitrix Screen Technical Reference

G-16 Termcaps

Fitrix Screen Technical Reference

Index

Symbols

Agm
module naming convention 2-16
[CTRL]-[7] 3-14

Numerics

4gc extension
version control 16-6
AGL Compatibility field
Define the Form form 7-6
AGL compiles 14-2
4gs extension
version control 16-5

A

A function
zoom 10-60
A_ function
add-on header screen 10-36
a_specia block command 13-23
acknowledgements
establishing 5-11
act_key column 15-14
Add command 3-4
add display event 15-49
adddetl.per
demonstration form 10-41
add-on detail screen
adding cursor scrolling 18-12
calling 10-44
characteristics 10-42
creating 10-43
demonstration 10-46
description 10-40
disk writes 10-48
example 10-41
join clause 10-43

add-on header screen

.per file 10-29

creating 10-32

demonstration 10-35

description 10-28

functions 10-36

transaction processing 10-35

triggers 10-33

unique key 10-30
AF_ function

add-on header screen 10-39
after block block command 13-18, 13-24
after_change intrigger 12-39

add-on header screen 10-34
after_deletetrigger 12-46
after_field trigger 12-38

add-on header screen 10-34
after_init trigger 12-22

add-on header screen 10-34
after_input trigger 12-40
after_insert trigger 12-42
after_row trigger 12-44
Al_function

add-on header screen 10-39
al Makefilerule 14-13
application

compiling 8-5

generating 8-4
application directory

definition 2-16
application hierarchy diagram 2-18
applications

calling from other applications 18-5
arr_max

.per input section B-15
array limit

scrolling area 7-9
Array Limit field

Input Areaform 7-9
arrays

creating detail 6-12
at_eof trigger 12-23

add-on header screen 10-34

controlling how merged 2-19

using with the Featurizer 16-18
at_eof_trig variable 2-20, 13-43

definition 2-23

Index-1

Fitrix Screen Technical Reference

attribute

menu options 4-3
attribute conventions 3-24
attributes

.per defaults section B-11
ATTRIBUTES section B-5

header/detail 10-11
Auto Number field

Input Areaform 7-10
Auto Zoom field

Define Zoomsform 7-31
auto_answr variable 11-15
auto_note variable 11-15
auto_udf variable 11-15
auto_zoom logic 10-64
AutoForm feature 9-6
Autonext field

Define Fieldsform 7-17
autonum

.per input section B-15
autozoom

specifying 7-31
AutoZoom feature 3-16

description 10-64

B

b_ special block command 13-23
backwards compatibility 2-19
base.set

use with version control 16-11
base.set file 13-21

explanation 13-36
before block block command 13-18, 13-24
before_deletetrigger 12-45
before field trigger 12-37

add-on header screen 10-34
before init trigger 12-21

add-on header screen 10-33
before_input trigger 12-36

add-on header screen 10-34
before_insert trigger 12-41
before_row trigger 12-43
BF_function

add-on header screen 10-39
BLOB

creating 7-18, 15-32

Index-2

custom 4GL functions 15-34

field type 7-14

field types 15-32

sample .per form 15-35

sample application 15-34
BLOB datatypes 9-5
BLOB fields

creating in the Form Painter 7-18
blobdef

.per input section B-16
Block #, clipboard block titles 6-11
block command

a 13-23

after block 13-24

b 13-23

before block 13-24

c_ 13-23

delete block 13-25

e 13-23

EOF 13-23

function define 13-25

inblock 13-24

NUL 13-23

replace block 13-24

start file 13-24

TOF 13-23
block command logic 13-23
block command statements 13-24
block commands 13-16

special 13-23

using semicolons 13-25

using strings 13-26

using to modify code 13-17
block manipulation examples 13-48
block tags

conventions 13-31
blocks

compared with triggers 13-10

custom tags 13-31

definition 13-6

deletion 13-29

determining the end of ablock 13-27

identifying and grouping 13-27

order merged 13-40

philosophy 13-15

removing from existing .4gl files 13-37

replacing 13-29

Fitrix Screen Technical Reference

specifying files 13-21
start file command 13-21
time stamping logic 13-39
when to use 13-15
boolean type codes
termcap G-8
Bottom command
browse form 3-10
bourne shell A-11
Browse
with a browse screen 3-9
without a browse screen 3-10
Browse command 3-8
clipboard 6-7
Browse commands 10-51
Browse screen
example 3-9
browse screen
description 10-51
example 10-52
sample 10-53
browse.4gl 11-8
byte
field type 7-14
byte data type 9-5, 15-32

C

C_ function
add-on header screen 10-36
extension screen 10-23
¢_ specia block command 13-23
c liblibrary 14-13
c4gl compiler 14-2
capability codes
termcap G-8
Center menu option 6-5
centering awindow 18-4
centering text 6-5
cgdcolmr D-5
cgdtablr D-5
cgsblobr D-7
cgsdpndd D-8
cgsifidd D-9
cgsimged D-9
cgsinptr D-10
cgsscrnr D-10

cgsstypr D-10
cgstrigd D-11
cgstrigr D-11
cgszoomr D-11
cgxlkupr D-12
cgxintod D-12
cgxmathr D-12
cgxsorcd D-12
char datatype 9-5
choose display event 15-49
clipboard
commands 6-6
pages 6-5
pasting a page 6-8
storage 6-5
storing fields 6-9
using 6-5
clipboard pages
generic titling 6-11
titling 6-6
Close menu option 5-9
code
compiling 14-2
generating 8-4
code design 11-3
Code Generation
preventing B-25
Code Generator
invoking with Version Control 2-27
Code Generator tables D-5
adding with mktables A-10
code structure 11-3, 11-6
codes
termcap G-9
Column Name field
Define Fieldsform 7-14
Table Information form 9-4
columns
copying with AutoForm 9-6
commands
help 15-24
commentsin trigger files 12-5, 13-47
compatibility
maintaining backwards 2-19
compilation
application 14-21
compile

Index-3

Fitrix Screen Technical Reference

screen form 8-3
Compile 4GL menu option 8-5
Compile Form menu option 8-3
automatic save 5-8
compiled programs
invoking 14-24
compiling
short cuts 14-9
compiling code
fg.make 14-2
compiling generated code 14-2
context-sensitive help text 4-9
control key defaults E-2

Converting INFORMIX-SQL Perform Files

B-26

Copy menu option 6-11
Copying Between Input Areas 6-12
copyright text

defining 7-42
Copyright Text menu option 7-42
Created field

Table Information form 9-4
creating a demonstration database A-4
Creating Detail Arrays 6-12
cur_path display event 15-49
curs_count variable 11-15
curs_posvariable 11-15
curs_rowid variable 11-15
cursor handling 15-38
cursor handling philosophy 15-38
cursor path

defining 7-20
Cursor Path menu option 7-20
cust_key variable 16-22

running aprogram 16-21
cust_path variable 13-42, 16-7, 16-22

use with version control 16-12
cust_zm.4gl file 11-8
cust_zm.per file 10-58
custom 4GL functions

using with BLOBs 15-34
custom directories 13-7

explanation 16-10
custom files

using with version control 16-19
custom functions 12-47
custom libraries 14-18

Index-4

using 15-18
custom.org file 12-47
custom_librariestrigger 12-19, 14-14
CUSTPATH macro 14-13
CUSTPATH variable 13-42

setting in Makefile 16-14
Cut menu option 6-11

D

D function

zoom 10-61
dataflow 11-17

input and display diagram 11-21

overview 11-2

program flow 11-24

through variables 11-20
dataretrieval lookup

creating 7-25
datatypes 9-5
data validation

using lookups for B-18
data validation lookup

creating 7-26
datavariables 11-17
data_changed variable 11-13
database

cleaning A-11

creating ademonstration A-4

delete form prompt 5-7

selecting 14-25

standard must exist 2-14
Database Administration

defining help text 9-9
Database Administration Recorder 9-8
Database Administration system 9-2
database files diagram 2-9
Database menu option 9-2
database modifications

logging 9-8
Database option

using AutoForm 9-6
DATABASE Section B-3
data-entry program

example 3-2
data-entry ring menu

using 3-3

Fitrix Screen Technical Reference

date
default 7-16
date datatype 9-5
datetime data type 9-5
dbadmin.sql logfile 9-8
dbname variable 11-15
DBPATH
directory structure 2-17
DBPATH variable
definition 2-12
using with multiple $fgs 2-3
using with version control 16-19
DBTEMP variable
definition 2-13
dec_let function 10-23
decimal datatype 9-5
deep type screens 10-21
default
current date 7-16
Default field
Define Fieldsform 7-16
default mode of operation 7-2
defaulted variable 11-16
defaults
.per input section B-23
trigger file 12-5
defaults section
.per description B-10
Define
Input Areas option 7-7
pull-down menu 4-5
Define Field pop-up menu 7-41
Define Fieldsform 7-13
Define Form pop-up menu 7-42
defineinput area
novice mode 7-10
Define Lookups form 7-23
Define Math form 7-22
Define menu
Copyright Text option 7-42
Cursor Path 7-20
Field option 7-11
Form Defaults option 7-4
Lookups option 7-23
Math option 7-22
Select Commands 7-37
With Pulldowns option 7-37

Zoom option 7-30
Define the Form form 7-4
definetrigger 12-9
add-on header screen 10-34
controlling how merged 2-19
using with the Featurizer 16-18
Define Zoomsform 7-31
define_trig variable 2-20, 13-43
definition 2-23
Defining Multiple Lookups 7-27
Defining Triggers 7-33
del_flag variable 11-16
delete block block command 13-25
Delete command 3-5
clipboard 6-7
delete from database
prompt 5-7
Delete menu option 5-10
Delete Trg File menu option 7-36
Delete Trigger File menu option
recovering afile 7-37
deleted file
recovering 5-10, 7-37
Deleting aZoom 7-33
Deleting Lookups 7-27
deletion
verification prompt 18-10
delimiter
pipe 7-11
demo filesdiagram 2-10
demo script
scr_demo A-2
demonstration directories 2-10
demonstration programs 2-10
depend.RDS 14-21
Description field
Table Information form 9-4
Description name
Table Information form 9-3
design
screen forms 10-6
designing screens F-4
detall arrays
creating 6-12
Detail Display Function Option 2-23
detail line commands 3-13
detail lines

Fitrix Screen Technical Reference

maintaining order of 7-10
detail write

generic 10-48
detail .4gl file 11-8
detl_display variable

definition 2-23
different keyboards 1-15
Directory Hierarchy 2-15
directory structure

recommended 2-15
directory structure diagram 11-6
disk write

add-on detail 10-48
Display Fmt fields

Define Fieldsform 7-15
display function

lib_message 15-48
Display statements

attributes 3-24
displaying functions A-7
do_not_generate trigger 12-26
documentation

overview 1-11
documentation conventions 1-13
Down command

browse form 3-10
Downshift field

Define Fieldsform 7-17
dup_prep variable 11-16
duplicate checking code B-13
duplicate files 2-31
During Input

attributes 3-24
During Input Array

attributes 3-24

E

e_specia block command 13-23
Edit
pull-down menu 4-5
edit
undoing 6-4
Edit Form menu option 6-2
Edit menu
Center option 6-5
Copy option 6-11

Index-6

Cut option 6-11

Edit Form option 6-2

Mark option 6-9

Paste option 6-9

Undo option 6-4
editing commands 6-2
Editing Forms 6-1
editing keys

Informix 6-3
Engine Compatibility field

Define the Form form 7-6
engine compatibility table E-4
Entry field

Define Fieldsform 7-14
environment

setting yoursup 2-12
EOF special block command 13-23
errchose display event 15-49
errlog file

logging feature requests 3-21
error handling functions 15-45
error header message trandlation 17-12
error message detail

trandating 17-14
error messages

custom 15-46

trandlating 17-3
ESQL-C 14-3
EV_ function

add-on header screen 10-39
event flow 15-3
event handling logic 15-2
event tables 15-9
events

coding local 15-6

moving to other systems 15-15
exclamation mark 4-2
executable filesdiagram 2-5
executing compiled code with version control

14-27

exit_level variable 11-16
expert mode 7-2

defining fields 7-13
.ext file

overview 13-20

plug-in features 13-7

pluggable features 13-32

Fitrix Screen Technical Reference

using triggersin 12-8
ext_custom

extension screen flow type 10-22
ext_flat

extension screen flow type 10-20
ext_view

extension screen flow type 10-22
extension file 13-32
extension screen

creating 10-19

demonstration 10-25

example 10-18

flow control managers 10-20

functions 10-23

limitations 10-25

upper level library functions 10-22

using zooms 10-20
extension screens

definition 10-17

non_scr_g _elemsvariable 10-17
extensions

filenames 13-41
external event 15-2

F

F_function

extension screen 10-24
Feature Requests

User Control Library 3-20
feature sets 13-32

definition 13-8
feature_set variable 13-42
features

creating pluggable 13-32
Featurizer 13-1

Code Generator invocation 13-8

command lineinvocation 13-9

environment variables 13-42

fg.makeinvocation 13-8

folpp syntax 13-9

flow 13-38

forcing amerge 13-47

Form Painter invocation 13-9

invoking 13-8

limitations 13-44

special trigger handling 16-15

troubleshooting 13-46
Featurizer terminology 13-5
fg

multiple 2-2
fg variable 13-42

definition 2-12
fg.db script 14-27

version control 16-20
fg.dbadmin program 9-2
fg.delfrm script A-11
fg.demodb script A-4
fg.form program

syntax 2-26
fg.go script 14-27

version control 16-20
fg.make

compilation steps 14-2

compiling code 14-2

forceamerge 14-11

forceamergeonly 14-11

how it works 14-5

invoking the Featurizer 13-8

merging triggers 14-10

summary of flags 14-5

syntax 14-5
fg.mssgr

syntax 17-4
fg.mssgr script 17-3
fg.screen program

syntax 2-28
fg.setshell script A-11
fg.start data-entry form 2-30
fg.start program 2-29

syntax 2-29
fg.tools script 17-7
fg_err function 15-45
fg_funcs.4gl

using with version control 16-18
fg_username function 18-6
fgldb p-code debugger 14-4
fglgo

invoking program files 14-24

syntax 14-25
fglgo p-code runner 14-4
folibdir

variable 2-12
fglibdir variable 2-3

Index-7

Fitrix Screen Technical Reference

foglpc 14-7
fglpp

syntax 13-9
folpp.err file 13-48
folpp.opt 2-19
folpp_fatal_warn variable 13-43

definition 2-21
FGLPPDIR variable 13-42
folppflags variable 13-42
FGLPPOPTIONS variable 13-42
fgmakedir

variable 2-12
fgmakedir variable 2-3
fgStack_pop function 10-49
fgStack_push function 10-30
fgtooldir

variable 2-12
fgtooldir variable 2-3
field

defining math 7-22

resizing 7-11

shortening 7-11
field defaults

creating 7-16
field definition

editing 7-18
field delimiter B-3
field delimiters

using the pipe symbol 7-11
Field menu option 7-11
Field Type

Define Fieldsform 7-14
field type

BLOB 7-14

byte 7-14

text 7-14
Field Typefield

Define Fieldsform 7-14
fields

changing the cursor path 7-20

defining 7-11

lookup into 7-24

storing to clipboard 6-9
file

automatic save 5-8

printing 5-13
filelist.RDS 14-7

Index-8

filename extensions 13-41
files 13-42
filter 14-25
.per input section B-14
zoom 10-62
zoom entry 7-31
Filter field
Input Areaform 7-9
Find
zoom command 3-15
Find command 3-5
find display event 15-48
Find screen example 3-7
First command
Browse menu 3-10
flat type screens 10-20
fld_tab variable 11-15
float datatype 9-5
force amerge
Featurizer 13-47
force_merge variable 13-42, 13-47, 14-6
forcing amerge
fg.make 14-11
Form
command 4-4
form
closing 5-9
compiling 8-3
deleting 5-10
design 10-6
initial selection filter 7-6
maximum number of lines 10-7
opening 5-3
printing 5-13
renaming 5-7
resizing through form defaults 7-5
saving 5-6
saving an incomplete 5-8
Form Attributes field
Define the Form form 7-6
Form Defaults menu option 7-4
Form Definition 7-1
form devel opment
checklist 10-2
Form Editor 6-2
Form Editor keys 6-3
Form ID field

Fitrix Screen Technical Reference

Define the Form form 7-4
form loading 5-5
Form menu

Close option 5-9

Database option 9-2

Delete option 5-10

Delete Trg File option 7-36

Info menu option 5-11

New option 5-2

Open option 5-3

Print option 5-13

Save Asoption 5-7

Save option 5-6

Save Trg File 7-36
Form Painter

online help text 4-7

version control 8-4
form requirements 5-5
form style guide F-4
Form Typefield

Define the Form form 7-5
form types

descriptions of 10-4
formdgl 14-7
form4gl command 14-10
formonly

defining math 7-22
formonly fields B-6
formsdirectory 11-10
FORMS macro 14-13, 14-19
Formulafield

Define Math form 7-22
AGL compatibility table E-4
FOURGEN section B-2, B-8

header/detail form 10-11
from_into statement

using with lookups 7-29, B-18
func_map.RDS 14-21
function define block command 13-25
function flow

overview 11-2
function keys

disabling 18-10

trapped during input E-3
function_definetrigger 12-13
functions

displaying withing programs A-7

locating A-5

low level 11-11

midlevel 11-11

placing custom functions 12-47
upper level 11-10

G

generate

code 8-4
Generate 4GL menu option 8-4
generated directory structure diagram 11-6
generating 49l

Form Painter 8-4
get_scrlib function 11-15
get_vararg function 11-37

examples 11-39

limitations 11-39
getx_varargs function 11-38
global event 15-2

example 12-15
global events

coding 15-8
global hot key 15-16
GLOBAL macro 14-13
global variables 11-13
globals.4gl file 11-7

reserved variables F-2
Goto command

Browse menu 3-11

H

header screen
description 10-8
header.4gl file 11-8
header/detail data-entry screen 10-14
header/detail form
example 10-11
header/detail screen
description 10-10
Help
commands option 4-7
help
context sensitive 4-9
creating for your application 15-23

Index-9

Fitrix Screen Technical Reference

Form Painter 4-7

pull-down menu 4-7
help commands 4-8, 15-24
help display event 15-49
Help pull-down menu 4-7
help text

defining in Database Administration 9-9

unigue to program 18-2
HI_ function

add-on header screen 10-39
highlighting text 6-9
hot key

global use 15-16
hot key definition settings 15-16
Hot Keys Menu

User Control Library 3-23
Hot Keys menu option 8-8
hot_action function

setting scr_funct 15-4
hot_key function 15-7

mapping keysto an event 15-4
hot_local function 15-7
hotkey variable 11-13
hypertext A-5

i
input screen naming convention 2-17
I_function
add-on header screen 10-39
i_terord program
error message detail translation 17-14, 17-16
i_terorh program
error message trandation 17-12
i_tmssgr program
message trandlation 17-18
imap script A-9
in block block command 13-24
in_insert variable 11-16
Info
help command 4-8, 15-24
Info menu option 5-11
Informix
editing keys 6-3
INFORMIX-4GL Rapid Development System
14-2

Index-10

INFORMIX-4GL version 2-2
INFORMIXDIR

directory structure 2-17
INFORMIXDIR variable

definition 2-12
INFORMIX-SQL Perform Files B-26
init

.per defaults section B-11
init function 11-27
initial filter 14-25
Initial Filter field

Define the Form form 7-6
initial selection of documents 14-26
input 1

trigger file 12-5
input 2

trigger file 12-5
input area

defining 7-7

join criteria 7-8

novice mode 7-10

uniquekey 7-8
Input Areafield

Define Fieldsform 7-14
input areas

copying fields between 6-12

switching between 7-10
Input Areas menu option 7-7
input program flow diagram 11-26
input section .per form description B-12
input_num function 11-33
input_num variable 11-13
insert_prep variable 11-16
install files diagram 2-8
installation

multiple $fgs 2-2
Installation and Preparation 2-2
Installation directory structure 2-3
INSTRUCTIONS section B-6

header/detail 10-11

pointsto observe B-7
integer datatype 9-5
internal event 15-2
interval datatype 9-5
into statement

using with lookups 7-28, B-17
invoking

Fitrix Screen Technical Reference

Featurizer 13-8
invoking applications from other applications
18-5
invoking code generator with fg.screen 2-28
invoking compiled programs 14-24
invoking the code generator
fg.start 2-29
itags script A-5

J

join
.per input section B-14
add-on detail screen 10-43
join criteria 7-8
Join Criteriafield
Define Lookups form 7-24
Join field
Input Areaform 7-8
joins
creating 18-3

K

K function
zoom 10-61
K_ function
add-on header screen 10-38
extension screen 10-23
key
.per input section B-13
add-on header screen 10-30
keyboard variations 1-15
keys
control key defaults E-2
used in Form Editor 6-3

L

labels
termcap G-8

language independent programs
creating 17-3

language trandlation 17-1
steps 17-2

language variable 11-15

Last comand
Browse menu 3-10
lib.4gs
library 15-19
lib.a
custom libraries 15-19
lib_error function 15-45
lib_getkey function 11-39
lib_message function 15-48
modifying 15-50
lib_screen function 11-28
example 11-31
LIBFILES macro 14-13
modifying 14-14
modifying with blocks 14-15
libraries
classesof 14-18
compiling 14-17
custom 15-18
lib.4gs 15-19
lib.a 15-19
linking custom libraries 14-15
scr.4gs 15-19
librariestrigger 12-18, 14-14, 15-20
library
c lib 14-13
creating a custom library 15-19
creating your own 14-18
formsdirectory 11-10
stubs 14-13
library archivelist 14-13
Library Code 11-4
Library communication area 11-13
library functions
customizing 15-21
understanding 11-4
library source code
location 11-8
library source files diagram 2-6
library-level variables 11-14
limitations
screen forms 10-7
link.rds 14-4
litags script A-5
I1d_add function 11-12
I1d_p_prep function 11-12
Ild_read function 11-12

Index-11

Fitrix Screen Technical Reference

Ild_setdata function 11-33
I1d_showdata

changing 2-23
I1d_showline function 11-12
I1d_skip function 15-37
Ilh_event function

adding alocal event 15-7
Ilh_input function 11-12

adding alocal event 15-7
Ilh_setdata function 11-33
Ilh_skip function 15-37
load errors 5-5
loading form

disk vs. memory 5-4
Local Code 11-3
local event 15-2

example 12-16
local events

coding 15-6
Loca Forms Only prompt 8-4
local_scr variable 15-47
Locating Source Code A-5
location

.per defaults section B-11
lookup

.per input section B-16

creating adataretrieval 7-25

destination fields 7-24

filter attribute B-19

from_into attribute B-20

into attribute B-20

key attribute B-19

name attribute B-19

table attribute B-19
Lookup From/Into fields

Define Lookups form 7-24
Lookup Name field

Define Lookups form 7-23
Lookup Table field

Define Lookups form 7-24
lookup usage

examplesof 7-28, B-17
lookup() function 7-29
lookup_prep variable 11-16
lookups

custom error messages 15-46

datavalidation 7-26

Index-12

deleting 7-27
from_into statement 7-29
into statement 7-28

looking up and returning data 3-17

multiple 7-27
using for datavalidation B-18
verification 3-17

Lookups menu option 7-23

low level functions 11-11

Lower Right Row, Col fields
Define the Form form 7-5

m_record 11-17,11-18
m_prep function 11-18
MA_ function
add-on header screen 10-39
main browse table 7-5
main program 11-27
Main Table field
Define the Form form 7-5
Input Areas form 7-8
Main Zoom Tablefield
Define Zoom form 7-31
main.4gl file 11-7, 11-27
make_method variable 14-5
Makefile
adding custom libraries 15-19
description of 14-12

setting the CUSTPATH variable 16-14

Makefilefile 11-7
Makefile Files diagram 2-7
Mark menu option 6-9
master/detail application 10-10
math

.per input section B-15

defining 7-22
Math menu option 7-22
max_varargs function 11-37
menu

Define 4-5

Edit 4-5

Form 4-4

Help 4-7

Run 4-6
menu options

Fitrix Screen Technical Reference

attributes 4-3
menu_item variable 11-13
Menus

running programs with 16-21
merge order

triggers and blocks 13-40
merge_only variable 14-6
merging logic 13-39
merging triggers only

fg.make 14-10
Message field

Define Fieldsform 7-15
message strings

trandlating 17-3
midlevel functions 11-11
midlevel 4gl file 11-7
mkdemo script A-4
mksecuri A-10
mktables script A-10
mid_clear function 11-11
mih_cursor function 11-11
mode

default 7-2

novice and expert 7-2
module directory

definition 2-16
Module ID field

Define the Form form 7-4
module variable 11-15
money datatype 9-5
mz -i menus command 15-14

N

NAME macro 14-13
naming
clipboard pages 6-6
naming clipboard pages 6-11
naming conventions
4Agm 2-16
.per B-2
filename extensions 13-41
i 2-17
o_ 2-17
p_ 2-17
navigate
creating local events 15-14

Navigate Menu

User Control Library 3-22
Navigate menu option 8-6
navigation event

hooking to your application 8-7
New menu option 5-2
Next command

Browse menu 3-10

clipboard 6-7

dataentry form 3-11
no_merge variable 13-47, 14-6
noautozoom

.per input section B-23
non_scr_q_elemsvariable 2-21

about q_records 11-19

setting for extension screens 10-17
non_source form 7-6, 16-9, B-25
Non-Source Form field

Define the Form form 7-6
nonull

.per input section B-24
note_off display event 15-48
note_on display event 15-48
novice mode 7-2

defineinput area 7-10

defining fields 7-17
NUL specia block command 13-23
num_colsvariable 11-15
num_rows variable 11-15
num_vararg function 11-37
numeric type code

termcap G-8
nxt_fld variable 11-13

O

o
output report naming convention 2-17
O_ function
extension screen 10-24
object file 14-2, 14-4
OBJFILES macro 14-13, 14-19
ok_ functions 15-21
overview 11-11
ok_add function 11-11
ok_delete function 11-11
ok_update function 11-11

Index-13

Fitrix Screen Technical Reference

on_disk_add trigger 12-34

add-on header screen 10-34
on_disk_deletetrigger 12-33
on_disk_read trigger 12-32

add-on header screen 10-34
on_disk_record_prep trigger 12-31
on_disk_update trigger 12-35

add-on header screen 10-34
on_event trigger 12-14

add-on header screen 10-34
on_exit trigger

add-on header screen 10-34
on_screen_record_prep trigger 12-30
OnLine data types 15-32
online help

Form Painter 4-7
Open menu option 5-3
opening aform

errors 5-5
options

pull-down menu attributes 4-3
Options command

dataentry form 3-12

Table Information form 9-6
Options Files

modifying locally 2-23
options.4gl

invoking other programs 18-5
options.4gl file 11-8
order 14-26

.per defaults section B-12
order by clause 7-9
Order field

Input Areaform 7-9
.org file 13-37

Code Generator 13-37

Featurizer 13-37
os_command column 15-6
Owner field

Table Information form 9-3

P

p_

posting report naming convention 2-17
p_record 11-17,11-18
p_cur variable 11-13

Index-14

p_prep function 11-18
Paste menu option 6-9
pasting a clipboard page 6-8, 6-9
PATH variable
definition 2-12
pcdtablr D-12
p-code runner 14-3
peekx_vararg function 11-38
.per 10-7
.per file explanation B-2
.per form
add-on detail screen 10-42
deleting 5-10
maximum number of spaces 10-7
requirements 5-5
specifying translation 17-10
perform
ATTRIBUTES section B-5
DATABASE section B-3
FOURGEN section B-8
INSTRUCTIONS section B-6
SCREEN section B-3
TABLES section B-4
perform file explanation B-2
Perform Files
INFORMIX-SQL perform files B-26
perform load errors 5-5
perform naming convention B-2
permanent filter
zooms 10-62
picker list
creating 15-39
Picture field
Define Fieldsform 7-15
pipe
field delimiter B-3
pipe symbol
field delimiter 7-11
PL_ function
add-on header screen 10-39
pluggable features 13-32
plug-in features
definition 13-7
post-processors
using with the code generator 15-47
PR_ function
add-on header screen 10-40

Fitrix Screen Technical Reference

Prev command
browse command 3-10
Browse menu 3-10
clipboard 6-7
dataentry form 3-11
prev_datavariable 11-13
print
.per file 5-13
Print menu option 5-13
progid variable 11-13
program acknowledgements
User Control Library 3-19
program directory source code 11-7
program flow 11-24
Program ID field
Define the Form form 7-4
Program Information menu 3-19
Program Status
User Control Library 3-21
pseudo-code 14-3
pull-down menu
Define 4-5
displaying 4-2
Edit 4-5
Form 4-4
help 4-7
Run 4-6
pull-down menu options
attributes 4-3
put_scrlib function 11-15
put_vararg function 11-36
examples 11-39
limitations 11-39

Q

Q function
zoom 10-61
q_record 11-17,11-18
g_records
controlling how generated 2-21
Query by Example form 3-5
guery by example screen
creating 10-49
description 10-48
query patterns 3-6
Quit

help command 4-9, 15-24
zoom command 3-16
Quit command
browse form 3-10
clipboard 6-7
dataentry form 3-13
quit without saving prompt 5-6

R

R function

zoom 10-61
R_ function

add-on header screen 10-37
RDS and 4GL compilation

differences 14-3
RDS compiles 14-2
recorder

Database Administration 9-8
record-level validation logic 15-16
regenerability

definition 13-5
regeneration of source code 2-31
relational operators 3-6
renaming

form 5-7
replace block block command 13-24
Required field

Define Fieldsform 7-17
required tables 2-14, D-5
required tables for Code Generator 2-13
reserved terms F-2
reserved variable names F-2
resizing afield 7-11
resizing aform

form defaults 7-5
returning

.per defaults section B-12
Returning field

Define the Form form 7-5
ring menu

using 3-3
ring menu commands 3-3
ring menus

customizing 7-37
ring_add function 11-10
ring_delete function 11-10

Index-15

Fitrix Screen Technical Reference

ring_options function 11-10
ring_update function 11-10
Run
pull-down menu 4-6
Run 4GL Program menu option 8-6
Run menu
Compile 4GL option 8-5
Compile Form 8-3
Generate 4GL 8-4
Hot Keys option 8-8
Navigate option 8-6
Run 4GL Program option 8-6
Run pull-down menu 8-2
running the Form Painter
fg.form 2-26

S

S_function

add-on header screen 10-36
s record 11-17,11-19
s cur variable 11-13
save

automatic 5-8
Save As menu option 5-7
Save menu option 5-6
Save Trg File menu option 7-36
saving aform

not saved prompt 5-6
saving an incomplete form 5-8
saving your data 3-14
scr.4gs 11-9, 15-19
scr.a 11-9
scr.RDS 11-9
scr_bottom display event 15-49
scr_demo 5 10-35
scr_demo 7 10-25
scr_demo script A-2
scr_fld variable 11-13
scr_funct function 15-3
scr_funct variable 11-13

used in switchbox 11-33
scr_id

zoom 10-61
scr_id variable 11-13

used in switchbox function 11-28
scr_key variable 11-15

Index-16

scr_lib variables 11-14
scr_lib.4gl 11-14
scr_tab variable 11-15
scr_type variable 11-15, B-10
scratch variable 11-13
screen attributes 3-24
screen form

compiling 8-3

deleting 5-10

designing 10-6

limitations 10-7

printing 5-13

saving 5-6
screen form style guide F-4
Screen Generated Program Flow 11-24
screen library 11-4
SCREEN Section B-3
screen.opt file 2-21
screen3 demo application 10-54

screen3.4gs module directory description 11-7

scrn_tier variable 11-15
scrn_trx variable 11-15
scroll display event 15-49
scrolling area

array limit 7-9

Auto Number 7-10
SD_ function

add-on header screen 10-39
security

required tables A-10
Select command

browseform 3-10

clipboard 6-7
Select Commands menu option 7-37
select_prep variable 11-16
selection filter

initial 7-6
semicolon

trigger file 12-4
serial datatype 9-5
.set file

explanation 13-36
SH_ function

add-on header screen 10-39
shell

setting up A-11
shell escapes 15-53

Fitrix Screen Technical Reference

preventing 15-53
single_function screen type 10-15
size

screen form 10-7
SK_ function 15-38
Skip field

Define Fieldsform 7-17
skip field logic 15-37
skip function 15-37
skip keyword

.per form 15-37
smallfloat datatype 9-5
smallint datatype 9-5
socketManager 10-15
software acknowledgements 5-11
Sort

zoom command 3-15
sort display event 15-48
source .c files diagram 2-6
Source Code 11-1
source code

design levels 11-10

generating 8-4

libraries 11-8

regenerating 2-31
source code blocks

definition 13-6
source code logic overview 11-2
specification file

explanation B-2
SPOOLER variable 5-13
SQL order by clause

used with add-on header screens 10-31
sgl_filter variable 11-13
sgl_order variable 11-13
standard database 2-14
standard library 11-5
standard.4gs 11-9
standard.a 11-9
standard.RDS 11-9
start file block command 13-24
start file command 13-21
static variables 11-16
static_definetrigger 12-11

add-on header screen 10-34

controlling how merged 2-19

using with the Featurizer 16-18

sticky zoom filter
creating 10-62
stk_mnu.4gl file 11-8
stockzm.4gl file 11-8
string type code
termcap G-9
string_to_foreign function 17-11
string_to_native function 17-11
strings
using in block commands 13-26
stty command G-2
stubslibrary 14-13
stxacknd D-13
stxactnr D-13
navigation event table 15-10
stxaddld D-13
stxaddlr D-13
stxerord D-13
stxerorh D-14
stxfiler D-14
stxgropd D-14
stxgropr D-14
stxhelpd D-14
language translation 17-16
stxhotkd D-15
hot key definitions detail table 15-13
stxkeysr D-15
hot key definitions reference table 15-12
stxlangr table 17-9
stxmssgr D-15
stxmssgr table 17-4
language translation 17-18
stxnoted D-15
stxnvgtd D-15
navigation event detail table 15-11
stxpermd D-16
stxpermr D-16
stxprogr D-16
stxtodod D-16
stxtxtdd D-17
stxunigc D-17
swhox_trig variable 2-20, 13-43
definition 2-23
switchbox _items trigger
controlling how merged 2-19
switchbox function 11-28
diagram 11-30

Index-17

Fitrix Screen Technical Reference

example 11-29
switchbox_itemstrigger 12-20

using with the Featurizer 16-18
Switching Between Input Areas 7-10

T

T_ function
add-on header screen 10-36
extension screen 10-23
t_clear function 10-23
t_init function 10-22
t_read function 10-22
t_write function 10-23
Tab
zoom command 3-16
Tab command
dataentry form 3-12
tab display event 15-49
tab_pressed variable 11-16
table
.per input section B-13
Table Information form 9-3
Table Name field
Define Fieldsform 7-13
Table Information form 9-3
Table Naming Conventions F-3
tables
copying with AutoForm 9-6
demo tables A-4
required D-5
required for agenerated program 2-14
required for Code Generator 2-13
updating 9-2
used by code generator D-5
TABLES Section B-4
TABLES section
header/detail form 10-11
tag utility A-5
tagsfile 11-10
Technical Statusform 3-22
templates
clipboard 6-5
termcap
action codes G-14
boolean codes G-8
capability codes G-8

Index-18

interpretation and action G-11
labels G-8
numeric codes G-8
observations G-15
special characters G-9
string codes G-9
testing keys G-13
writing G-6
termcap entries G-6
termcap entry G-6
termcap file G-6
terminal options G-2
text
automatic centering 6-5
copying 6-11
cutting 6-11
highlighting 6-9
text datatype 9-5, 15-32
text editor 15-39
text field type 7-14
text picker 15-39, 15-40
textdefault function 15-42
textdefault() function 15-40
textedit function 15-42
textedit() function 15-40
textget function 15-43
texthelp function 15-42
texthelp() function 15-40
texthlp function 15-42
textinit function 15-41
textpick function 15-42
textpick() function 15-39
textput function 15-41
textput() function 15-39
textsel function 15-41
textsel() function 15-39
textview display event 15-49
textview function 15-44
textzoom function 15-44
this_datavariable 11-13
time-stamp comparison logic 14-11
tmp 13-42
TMPDIR variable
definition 2-12
TOF specia block command 13-23
toggle
input areas 7-10

Fitrix Screen Technical Reference

Tools Overview diagram 13-2
Top command

browse form 3-10
transaction processing

add-on header screen 10-35
transferring applications to other systems

applications

transferring C-2

translate

per form specification 17-10
Trandatefield

Define Fieldsform 7-17
translation

specifying in .per files 17-10
trigger

after_change in 12-39

after_delete 12-46

after_field 12-38

after_init 12-22

after_input 12-40

after_insert 12-42

after_row 12-44

at_eof 12-23

before_delete 12-45

before field 12-37

before init 12-21

before_input 12-36

before insert 12-41

before row 12-43

custom_libraries 12-19

define 12-9

do_not_generate 12-26

function_define 12-13

libraries 12-18, 15-20

on_disk_add 12-34

on_disk_delete 12-33

on_disk_read 12-32

on_disk_record prep 12-31

on_disk_update 12-35

on_event 12-14

on_screen_record_prep 12-30

static_define 12-11

switchbox_items 12-20
Trigger Definition form 7-35
Trigger Definition form zoom 7-36
trigger file

comments 13-47

contents 12-3
defaults section 12-5
deleting 7-36
input 1 12-5
input 2 12-5
limitations 12-8
recovering adeleted file 7-37
saving in the Form Painter 7-36
syntax 12-4
using comments 12-5
using semicolons 12-4
triggers 13-6
benefits 12-2
defining in Form Painter 7-33
deleting in Form Painter 7-36
editing in the Form Painter 7-36
in dataflow 11-22
modifying your application with 12-2
order merged 13-40
removing from existing .4gl files 13-37
special processing with the Featurizer 16-15
using in .ext files 12-8
using to disable function keys 18-10
zoom 7-36
triggersfile
sample 12-48
type
.per defaults section B-10
Typefield
Table Information form 9-4

U

Undo menu option 6-4
Unique Key field
Input Areaform 7-8
Table Information form 9-3
unresolved.RDS 14-21
Up command
browse form 3-10
Update
help command 4-9, 15-24
Update command 3-4
clipboard 6-6
update display event 15-49
updating tables 9-2
upper level flow diagram 11-27

Index-19

Fitrix Screen Technical Reference

upper level functions 11-10
UpperLeft Row,Col fields

Define the Form form 7-5
Upshift field

Define Fieldsform 7-17
user name

capturing 18-6
user.ctl.RDS 11-10
user_ctl.a 11-10
user_nul.4gs 11-9
utility menu 17-7

\'

Validate field
Define Fieldsform 7-16
validation logic
record level 15-16
vararg functions 11-35
varchar datatype 9-5
variable
at_eof 2-20
at_eof trig 2-23, 13-43
auto_answr 11-15
auto_note 11-15
auto_udf 11-15
curs_count 11-15
curs_pos 11-15
curs_rowid 11-15
cust_key 16-21
cust_path 13-42, 16-7
CUSTPATH 13-42
data_changed 11-13
dbname 11-15
DBPATH 2-12, 2-17
DBTEMP 2-13
defaulted 11-16
define_trig 2-20, 2-23, 13-43
del_flag 11-16
detl_display 2-23
dup_prep 11-16
exit_level 11-16
feature set 13-42
fg 2-12,13-42
fglibdir 2-12
folpp_fatal_warn 2-21, 13-43
FGLPPDIR 13-42

Index-20

folppflags 13-42
FGLPPOPTIONS 13-42
fgmakedir 2-12
fgtooldir 2-12

fld_tab 11-15
force_merge 13-42, 13-47, 14-6
hotkey 11-13
in_insert 11-16
INFORMIXDIR 2-12, 2-17
input_num 11-13
insert_prep 11-16
language 11-15
local_scr 15-47
lookup_prep 11-16
make_method 14-5
menu_item 11-13
merge_only 14-6
module 11-15
no_merge 13-47, 14-6
non_scr_q elems 2-21
num_cols 11-15
num_rows 11-15
nxt_fld 11-13

p_cur 11-13

PATH 2-12
prev_data 11-13
progid 11-13

s cur 11-13

scr_fld 11-13
scr_funct 11-13
scr_id 11-13

scr_key 11-15
scr_tab 11-15
scr_type 11-15
scratch 11-13
scrn_tier 11-15
scrn_trx 11-15
select_prep 11-16
SPOOLER 5-13
sgl_filter 11-13
sgl_order 11-13
swhbox_trig 2-20, 2-23, 13-43
tab_pressed 11-16
this_data 11-13
TMPDIR 2-12
version 11-15
xtra_lib 14-6

Fitrix Screen Technical Reference

variablerecords 11-17
variables
global 11-13
used by Code Generator 11-12
used with Featurizer 13-42
verification prompt
creating 18-10
Verify field
Define Fieldsform 7-17
version control 13-7
cust_path variable 16-12
discussion 16-2
examples 16-24
executing code 14-27
Form Painter 8-4
invoking the Code Generator 2-27
required directory structures 16-5
running programs 16-19
summary 16-23
the featurizer 16-10
Versionfield
Table Information form 9-4
version variable 11-15
View
help command 4-9, 15-24
view-detail screen
description 10-50
view-header screen
description 10-50
Viewing Database Table Layouts
imap A-9

W

W__function
add-on header screen 10-37
warning messages
trandlating 17-3
where clause 7-31
window
centering 18-4
Windows
attributes 3-24
With Pulldowns menu option 7-37
Without Pulldowns menu option
Define menu
Without Pulldowns option 7-37

X

xtra_lib variable 14-6
Xyz extension
version control 16-6

VA

Z function
zoom 10-61
Z_ function
add-on header screen 10-39
zoom 3-14
.per input section B-20
auto_zoom logic 10-64
autozoom 7-31
AutoZoom feature 3-16
building 7-32
defining 7-30
deleting 7-33
description 10-54
filter attribute B-21
from attribute B-22
immediate 18-12
key attribute B-21
screen attribute B-21
stepsto creating 7-32
table attribute B-21
Trigger Definition form 7-36
Zoom command
Find 3-15
zoom command
Quit 3-16
Sort 3-15
Tab 3-16
zoom display event 15-48
Zoom Entry Filter field
Define Zoom form 7-31
zoom filter 7-31
creating a permanent 10-62
zoom form 3-14
sample 10-54
Zoom From Column field
Define Zoom form 7-32
zoom interface 3-14
zoom logic 10-59

Index-21

Fitrix Screen Technical Reference

Zoom menu option 7-30
zoom screen

calling 10-55

creating 10-55

example 10-57, 10-58
Zoom Screen 1D field

Define Zoomsform 7-31
zoom_off display event 15-48
zoom_on display event 15-48

Index-22

	Title
	Introduction
	Table Of Contents
	Part One: Introduction To Fitrix Screen
	1 Introduction
	2 Getting Started
	3 The Data-Entry Interface

	Part Two: The Form Painter
	4 Form Painter Basics
	5 Managing Forms
	6 Editing Forms
	7 Form Definition
	8 The Run Menu
	9 Database Administration

	Part Three: The Code Generator
	10 Creating Screen Forms
	11 Source Code
	12 Customizing Your Base Prgram With Triggers
	13 The Featurizer and Blocks
	14 Compiling and Running Programs
	15 Advanced Features
	16 Version Control
	17 Language Translation
	18 Helpful Techniques

	Part Four: Appendixes
	A Fitrix Screen Utilities
	B The .per Specification File
	C Program Migration
	D Screen Tables
	E Control Key Defaults
	F Reserved Terms and Style Guide
	G Term Caps

	Index

