
.

FitrixTM

Screen
Technical Reference
Version 4.11

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS252.227-7013. Fourth
Generation Software Solutions, 2814 Spring Rd., Suite 300, Atlanta, GA 30039.

Copyright

Copyright (c) 1988-2002 Fourth Generation Software Solutions Corporation. All rights reserved. No part of this
publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any
language in any form by any means without the written permission of Fourth Generation Software Solutions.

Software License Notice

Your license agreement with Fourth Generation Software Solutions, which is included with the product, specifies
the permitted and prohibited uses of the product. Any unauthorized duplication or use of Fitrix, in whole or in
part, in print, or in any other storage and retrieval system is forbidden.

Licenses and Trademarks

Fitrix is a registered trademark of Fourth Generation Software Solutions Corporation.
Informix is a registered trademark of Informix Software, Inc.

UNIX is a registered trademark of AT&T.

FITRIX MANUALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, FURTHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE ENTIRE RISK AS TO THE QUAL-
ITY AND PERFORMANCE OF THE FITRIX MANUALS IS WITH YOU. SHOULD THE FITRIX MANU-
ALS PROVE DEFECTIVE, YOU (AND NOT FOURTH GENERATION SOFTWARE OR ANY
AUTHORIZED REPRESENTATIVE OF FOURTH GENERATION SOFTWARE) ASSUME THE ENTIRE
COST OF ALL NECESSARY SERVICING, REPAIR, OR CORRECTION IN NO EVENT WILL FOURTH
GENERATION BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING ANY LOST PROFITS, LOST
SAVINGS, OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE
OF OR INABILITY TO USE SUCH FITRIX MANUALS, EVEN IF FOURTH GENERATION OR AN
AUTHORIZED REPRESENTATIVE OF FOURTH GENERATION HAS BEEN ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. IN ADDITION,
FOURTH GENERATION SHALL NOT BE LIABLE FOR ANY CLAIM ARISING OUT OF THE USE OF
OR INABILITY TO USE SUCH FOURTH GENERATION SOFTWARE OR MANUALS BASED UPON
STRICT LIABILITY OR FOURTH GENERATION'S NEGLIGENCE. SOME STATES DO NOT ALLOW
THE EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION MAY NOT APPLY TO
YOU. THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS AND YOU MAY ALSO HAVE
OTHER RIGHTS, WHICH VARY FROM STATE TO STATE.

Fourth Generation Software Solutions Corporate: (770) 432-7623
2814 Spring Road, Suite 300 Fax: (770) 432-3448
Atlanta, GA 30339 E-mail: info@fitrix.com

Copyright

Copyright (c) 1988-2002 - Fourth Generation Software Solutions Corporation - All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system or translated.

Fitrix Screen Technical Reference

Welcome to the Fitrix Screen Technical Reference. This manual is
designed to be a focused step-by-step guide. We hope that you find all
of this information clear and useful.
All of the screen images in this document are show with the products
using the character user interface. While the Fitrix Rapid Application
Development (RAD) Tools operate in character mode only, the soft-
ware applications created by the RAD tools offer the option of being
viewed in a graphic based Windows (or X11) mode as well as the char-
acter mode shown. Examples of graphic based product viewing modes
are shown below in Example 1 and Example 2.

Example 1: Menu Graphical Windows Mode

Fitrix Screen Technical Reference

Here is another example:

Example 2: Data Entry Graphical Windows Mode

Displaying our products in graphic mode, as shown in Example 1 and
Example 2, is customary for many Fitrix product users. However, your
viewing mode is a user preference. Changing from character based to
graphical based is a product specific procedure, so if you wish to view
some applications in character mode, and some in graphical mode, that
can be done as well.
If you have any questions about how to view your products in graphical
mode, please consult your Installation Instructions or contact the Fitrix
helpdesk at 1(800)374-6157. You can also contact us by email:
support@fitrix.com. Please be prepared to offer your name, your com-
pany, telephone number, the product you are using, and your exact
question.
We hope you enjoy using our products and look forward to serving you
in the future.

Thank You,
Fourth Generation

Fitrix Screen Technical Reference

i

Table of Contents

Part 1: Introduction to Fitrix Screen

Chapter 1: Introduction
Technical Merits ... 1-2

Overview ... 1-3

The Form Painter ... 1-5

The Code Generator ... 1-8

The Featurizer .. 1-10

Fitrix Screen Documentation .. 1-11

Documentation Conventions Used in This Manual 1-13

Chapter 2: Getting Started
Installation and Preparation .. 2-2

Installing in Different ($fg) Directories ... 2-2

Installation Directory Structure .. 2-3

Overview of the Directory Structure ... 2-4

Executable Files ... 2-5

Library Source Files .. 2-6

Makefile Files .. 2-7

Install Files .. 2-8

Database Files .. 2-9

Demo Files ... 2-10

Setting Up Your Environment .. 2-12

Tables Required to Run the Code Generator ... 2-13

Tables Required to Run a Generated Program .. 2-14

Standard Database Must Exist in $DBPATH ... 2-14

Fitrix Screen Technical Reference

ii

Recommended Application Directory Structure ... 2-15

Directory Hierarchy ... 2-15

Directory and File Naming Conventions ... 2-16

Maintaining Backwards Compatibility—The Options Files 2-19

The Featurizer Options File (fglpp.opt) .. 2-19

The Code Generator Options File (screen.opt) 2-21

Modifying the Options Files Locally ... 2-23

Running the Form Painter ... 2-25

Invoking the Code Generator .. 2-27

Using the fg.start Startup Script .. 2-29

Regeneration of Source Code ... 2-31

Chapter 3: The Data-Entry Interface
The Basic Fitrix Screen Generated Interface .. 3-2

The Data-Entry Ring Menu ... 3-3

The Add Command .. 3-4

The Update Command ... 3-4

The Delete Command .. 3-5

The Find Command ... 3-5

The Browse Command .. 3-8

The Next Command ... 3-11

The Prev Command ... 3-11

The Tab Command .. 3-12

The Options Command .. 3-12

The Quit Command ... 3-13

Detail Line Commands ... 3-13

Saving Your Data .. 3-14

The Zoom Form .. 3-14

The Find Command (Zoom) .. 3-15

The Sort Command (Zoom) ... 3-15

The Tab Command (Zoom) ... 3-16

The Quit Command (Zoom) .. 3-16

Fitrix Screen Technical Reference

iii

The AutoZoom Feature ... 3-16

Introduction to Lookups .. 3-17

Program Information Menu .. 3-19

Viewing Program Acknowledgements .. 3-19

Entering Feature Requests ... 3-20

Program Status ... 3-21

Navigate Menu .. 3-22

Hot Keys Menu .. 3-23

Default Screen Attributes .. 3-24

Attribute Conventions .. 3-24

Part 2: The Form Painter

Chapter 4: Form Painter Basics
Form Painter Menus .. 4-2

The File Pull-Down Menu .. 4-4

The Edit Pull-Down Menu .. 4-5

The Define Pull-Down Menu ... 4-5

The Run Pull-Down Menu .. 4-6

The Help Pull-Down Menu ... 4-6

Using Form Painter Online Help .. 4-7

Form Painter Topic Help ... 4-7

Context-Sensitive Help Text ... 4-9

Chapter 5: Managing Forms
Creating a New Form .. 5-2

Opening a Form .. 5-3

Database vs. Disk Copies of a Form .. 5-4

.per Form Requirements .. 5-5

Fitrix Screen Technical Reference

iv

Troubleshooting a Non-Generated .per File .. 5-5

Saving a Form ... 5-6

Saving a Form Under a New Name ... 5-7

Automatic Save .. 5-8

Saving an Incomplete Form ... 5-8

Closing a Form .. 5-9

Deleting a Form .. 5-10

Recovering a Deleted File .. 5-10

Establishing Software Acknowledgements ... 5-11

Printing a Form ... 5-13

Chapter 6: Editing Forms
The Form Editor .. 6-2

The Form Painter Edit Commands .. 6-2

Undoing the Previous Edit .. 6-4

Centering Text on the Form .. 6-5

Working with the Clipboard ... 6-5

Using the Clipboard ... 6-5

Using the Paste Command ... 6-9

Marking Text Blocks ... 6-9

Cutting Text Blocks ... 6-11

Copying Text to the Clipboard .. 6-11

Creating Detail Arrays ... 6-12

Copying Between Input Areas ... 6-12

Chapter 7: Form Definition
Novice and Expert Modes ... 7-2

Defining Form Defaults .. 7-4

Defining the Input Area .. 7-7

Switching Between Input Areas .. 7-10

Defining the Input Area in Novice Mode .. 7-10

Defining Fields .. 7-11

Fitrix Screen Technical Reference

v

Defining Fields in Expert Mode .. 7-13

Defining Fields in Novice Mode ... 7-17

Modifying Existing Field Definitions .. 7-18

Creating BLOB Fields ... 7-18

Defining the Cursor Path .. 7-20

Defining Math for Fields .. 7-22

Defining Lookups ... 7-23

The Define Lookups Form .. 7-23

Creating a Data Retrieval Lookup ... 7-25

Creating a Data Validation Lookup ... 7-26

Deleting Lookups .. 7-27

Defining Multiple Lookups ... 7-27

Lookup Dependencies ... 7-27

Examples of Lookup Usage ... 7-28

The lookup() Function .. 7-29

Defining a Zoom ... 7-30

The Define Zoom Form ... 7-30

Creating a Zoom .. 7-32

Deleting a Zoom .. 7-33

Defining Triggers .. 7-33

Editing the Trigger ... 7-36

Saving the Trigger File .. 7-36

Deleting the Trigger File ... 7-36

Recovering a Deleted Trigger File .. 7-37

Selecting Commands for the Ring Menu .. 7-37

The Program Menu Option ... 7-40

The Ring Menu Items Option ... 7-40

Short Cuts to Define Options .. 7-41

Defining Copyright Text ... 7-42

Chapter 8: The Run Menu
Run Pull-Down Menu ... 8-2

Fitrix Screen Technical Reference

vi

Compiling the Screen Form .. 8-3

Generating 4GL Code ... 8-4

Compiling Generated Source Code ... 8-5

Running a Compiled Program ... 8-6

Navigation in the Form Painter ... 8-6

Hooking a Navigation Event to Your Application 8-7

Hot Keys ... 8-8

Chapter 9: Database Administration
Using the Database Administration System .. 9-2

Using the AutoForm Feature ... 9-6

Using the Database Administration Recorder ... 9-8

Defining Column Level Help Text ... 9-9

Part 3: The Code Generator

Chapter 10: Creating Screen Forms
Steps to an Application ... 10-2

Form Types ... 10-4

Form Design .. 10-6

Form Limitations ... 10-7

Header Screens .. 10-8

Header/Detail Screens ... 10-10

Example Header/Detail Form .. 10-11

The socketManager() Function .. 10-15

The single_function Screen Type .. 10-15

Extension Screens ... 10-17

Example Extension Screen Form ... 10-18

Creating Extension Screens ... 10-19

Fitrix Screen Technical Reference

vii

Creating Zooms from Extension Screens .. 10-20

Extension Screen Upper-Level Library Functions 10-22

Extension Screen Functions ... 10-23

Extension Screen Limitations .. 10-25

Extension Screen Demonstration ... 10-25

Add-On Header Screens ... 10-28

Sample Add-On Header Form ... 10-29

Assigning a Key Field ... 10-30

Calling the Add-on Header .. 10-30

Creating an Add-On Header Screen .. 10-32

Creating Zooms from Add-On Header Screens 10-33

Add-On Header Triggers ... 10-33

The Add-On Header Demonstration .. 10-35

Transaction Processing Using Add-On Header Screens 10-35

Add-On Header Functions ... 10-36

Add-On Detail Screens ... 10-40

Example Add-On Detail Form .. 10-41

Characteristics of an Add-On Detail .per Form 10-42

Creating an Add-On Detail Screen .. 10-43

The Add-On Detail Demonstration ... 10-46

Generic Detail Write .. 10-48

Query By Example Screens .. 10-48

Creating a Query Screen .. 10-49

View-Header Screens ... 10-50

View-Detail Screens ... 10-50

Browse Screens ... 10-51

Example Browse Form .. 10-51

Zoom Screens ... 10-54

Calling a Zoom Screen .. 10-55

Creating a Zoom Screen .. 10-55

Example Zoom Form ... 10-57

Zoom Logic ... 10-59

Fitrix Screen Technical Reference

viii

Creating a Permanent Zoom Filter ... 10-62

The AutoZoom Feature .. 10-64

Chapter 11: Source Code
Source Code Logic Overview ... 11-2

The Basic Code Design ... 11-3

Code Structure ... 11-6

Program Directory Source Code .. 11-7

Library Source Code .. 11-8

Code Design Levels ... 11-10

Code Generator Variables .. 11-12

Data Flow .. 11-17

The Data Variables .. 11-17

Data Flow Through Variables .. 11-20

Triggers in Data Flow .. 11-22

Program Flow .. 11-24

The Main Program and the init() Function .. 11-27

The switchbox() Function .. 11-28

Screen Level Switchbox .. 11-28

Function Level Switchbox ... 11-31

The Vararg Family of Functions ... 11-35

Examples of put_vararg() and get_vararg() 11-39

Chapter 12: Customizing Your Base Program With
Triggers
Using Triggers to Modify Your Application .. 12-2

The Trigger File .. 12-4

Trigger File Limitations .. 12-8

Using Triggers in .ext Files ... 12-8

The Triggers .. 12-8

define ... 12-9

static_define ... 12-11

Fitrix Screen Technical Reference

ix

function_define .. 12-13

on_event ... 12-14

libraries .. 12-18

custom_libraries ... 12-19

switchbox_items .. 12-20

before_init .. 12-21

after_init ... 12-22

at_eof ... 12-23

do_not_generate ... 12-26

on_screen_record_prep .. 12-30

on_disk_record_prep ... 12-31

on_disk_read .. 12-32

on_disk_delete ... 12-33

on_disk_add ... 12-34

on_disk_update .. 12-35

before_input ... 12-36

before_field .. 12-37

after_field ... 12-38

after_change_in ... 12-39

after_input .. 12-40

before_insert .. 12-41

after_insert ... 12-42

before_row ... 12-43

after_row .. 12-44

before_delete ... 12-45

after_delete .. 12-46

Custom .4gl/.org Files ... 12-47

Sample Triggers File ... 12-48

Chapter 13: The Featurizer and Blocks
Featurizer Overview ... 13-2

Featurizer Terminology ... 13-5

Fitrix Screen Technical Reference

x

Invoking the Featurizer ... 13-8

Invoking From the fg.make Utility .. 13-8

Invoking From the Code Generator ... 13-8

Invoking From the Form Painter ... 13-9

Executing the Featurizer Directly .. 13-9

The Difference Between Triggers and Blocks .. 13-10

When to Use Blocks .. 13-15

Block Commands Overview .. 13-16

Using Block Commands to Manipulate Code ... 13-17

Block Command Files (.ext files) .. 13-20

Specifying Which .ext Files to Merge (base.set files) 13-21

Specifying Files for Blocks to Work (start file) 13-21

Block Command Logic .. 13-23

Block Command Statements .. 13-24

Block Identification & Grouping ... 13-27

Custom Block Id (Tags) Conventions ... 13-31

Pluggable Features and Feature Sets ... 13-32

Pluggable Features (.ext Files) ... 13-32

Feature Set (base.set) Files .. 13-36

Pre-merged Generated Files (.org Files) ... 13-37

The Code Generator and .org Files .. 13-37

The Featurizer and .org Files ... 13-37

General Flow of the Featurizer ... 13-38

Filename Extensions ... 13-41

Featurizer Environment Variables .. 13-42

Featurizer Limitations ... 13-44

Featurizer Troubleshooting Tips ... 13-46

Block Manipulation Examples .. 13-48

Chapter 14: Compiling and Running Your
Programs
Compiling Generated Code ... 14-2

Fitrix Screen Technical Reference

xi

Differences Between RDS and 4GL Compilation 14-3

Using fg.make to Compile Your Program ... 14-5

Speeding Application Compiling .. 14-9

The Makefile .. 14-12

Modifying the LIBFILES Macro to Use Custom Libraries 14-14

Linking in Libraries with $cust_path .. 14-17

Compiling Libraries ... 14-18

Compiling Your Entire Application .. 14-21

Compiling a Module .. 14-22

Application and Module Compilation with $cust_path 14-23

Running Your Programs ... 14-24

Invoking Compiled Programs .. 14-24

Executing Programs When Using Version Control 14-27

Chapter 15: Advanced Features
Event Handling Logic ... 15-2

Types of Event Handling Logic ... 15-2

Event Flow ... 15-3

Coding Local Events ... 15-6

Coding Global Events .. 15-8

The Event Tables ... 15-9

Creating an Event that Calls a Program ... 15-14

Moving Events to Your Customer’s System ... 15-15

Record-level Validation ... 15-16

How to Assign Default Hot Key Settings .. 15-16

Creating and Using Custom Libraries .. 15-18

Creating a Custom Library .. 15-19

The libraries Trigger ... 15-20

Customizing Library Functions .. 15-21

Creating Application Help .. 15-23

The Fitrix Screen Online Help System .. 15-24

How to Create Help Text for Your Applications 15-27

Fitrix Screen Technical Reference

xii

Creating Help Text Through Unload files. .. 15-30

Creating BLOBs .. 15-32

Custom 4GL Functions and BLOBs .. 15-34

Sample BLOB Application .. 15-34

Creating Skip Field Logic ... 15-37

Cursor Handling Philosophy ... 15-38

Creating a Generic Text Picker/Editor .. 15-39

Error Handling Functions (fg_err and lib_error) 15-45

Using a Custom Error Message with Verification Lookups 15-46

Creating a Post-Processor ... 15-47

The lib_message Function .. 15-48

Modifying lib_message ... 15-50

Shell Escapes and UNIX Commands .. 15-53

Preventing Shell Escapes ... 15-53

Chapter 16: Version Control
Introduction to Version Control .. 16-2

Required Directory Structures .. 16-5

Version Control and the Code Generator .. 16-7

Preventing Code Generation on a Base .per Form 16-9

The Featurizer and Version Control .. 16-10

Trigger and Block Command Priority ... 16-11

Specifying Which .ext Files to Merge ... 16-11

Changing the Version Control Search Path ($cust_path) 16-12

The Makefile’s CUSTPATH Variable .. 16-14

Special Trigger Processing .. 16-15

Using Non-Generated .4gl files With Version Control (fg_funcs.4gl) 16-
18

Invoking Programs That Use Version Control ... 16-19

Modifying $DBPATH ... 16-19

Using fg.go and fg.db ... 16-20

Running Programs with Fitrix Menus ... 16-21

Fitrix Screen Technical Reference

xiii

The Relationship Between $cust_key and $cust_path 16-22

Version Control Summary ... 16-23

Practical Examples .. 16-24

Adding a New Trigger to Your Base Program .. 16-25

Customizing Your Base Program with Blocks .. 16-26

Pulling a Custom .4gl (fg_funcs.4gl) File Into a Custom Directory 16-28

How to Modify a .per in a Base Directory ... 16-30

A Complex Example Involving .trgs, .exts, custom.4gls, and .per Modifications
16-32

Using Version Control with Three Directories .. 16-35

 16-36

Advanced Example: Multiple Modifications using Multiple Directories 16-37

Chapter 17: Language Translation
About Language Translation .. 17-2

Creating Language Independent Programs ... 17-3

Utility Menu .. 17-7

Translating Values Used in Data Entry ... 17-7

Translating Values and Database Strings .. 17-12

Translating the Error Message Header .. 17-12

Translating Error Message Detail .. 17-14

Translating Help Text .. 17-16

Message Translation .. 17-18

Chapter 18: Helpful Techniques
Creating Field Level Help That is Unique to the Program 18-2

Creating Phony Joins .. 18-3

Centering a Window ... 18-4

Calling Screen Applications from a Screen Application 18-5

Capturing the User’s Name ... 18-6

Disabling the "Add a Navigation" Menu Option .. 18-6

Disabling the F1 and F2 Keys in a Screen Detail Section 18-9

Fitrix Screen Technical Reference

xiv

Using Triggers to Disable Function Keys ... 18-10

Creating a Verification Prompt for Deletions ... 18-10

Immediate Zoom Without Pressing [CTRL]-[z] ... 18-12

Adding Cursor Scrolling in Detail/Add-on Detail Screens 18-12

Part 4: Appendixes

Appendix A: Fitrix Screen Utilities
The Demo Script (scr_demo) ... A-2

Adding stores Demo Tables to a Database (mkdemo) A-4

Creating a Demonstration Database (fg.demodb) ... A-4

Locating Functions/Displaying Function Descriptions A-5

The Tag Utility .. A-5

Displaying Functions Within Programs .. A-7

Viewing Database Table Layouts (imap) ... A-9

Adding Code Generator Tables (mktables) ... A-10

Adding Tables Required by Fitrix Security (mksecuri) A-10

Adding Upper Level Library Tables (mklib) .. A-11

Setting up the Shell (fg.setshell) .. A-11

Cleaning Your Database (fg.delfrm) ... A-11

Appendix B: The .per Specification File
The .per Specification File .. B-2

DATABASE Section .. B-3

SCREEN Section .. B-3

TABLES Section ... B-4

ATTRIBUTES Section ... B-5

Formonly Fields ... B-6

INSTRUCTIONS Section ... B-6

Fitrix Screen Technical Reference

xv

INSTRUCTIONS Section—Points to Observe ... B-7

FOURGEN Section ... B-8

defaults section .. B-10

input section ... B-12

Preventing Code Generation on a .per Form .. B-25

Converting INFORMIX-SQL Perform Files .. B-26

Appendix C: Program Migration
Moving Applications to Other Systems .. C-2

Appendix D: Fitrix Screen Tables
Required Tables .. D-2

Code Generator Tables ... D-5

Appendix E: Control Key Defaults
Control Key Defaults .. E-2

Engine/4GL Compatibility ... E-4

Appendix F: Reserved Terms and Style Guide
Reserved Terms .. F-2

Table Naming Conventions .. F-3

Screen Form Style Guide .. F-4

Appendix G: Termcaps
Terminal Options .. G-2

Writing Termcap Entries .. G-6

The Termcap File ... G-6

The Termcap Entry .. G-6

The Labels ... G-8

The Capability Codes .. G-8

Special Characters ... G-9

The Codes .. G-9

Fitrix Screen Technical Reference

xvi

Interpretation and Action .. G-11

Testing the Keys ... G-13

Action Codes ... G-14

The Other Codes ... G-14

Observations ... G-15

Part One

Introduction to
Fitrix Screen

1-1

1
Introduction

This chapter introduces you to Fitrix Screen and covers the following:

n Technical merits

n Overview of the Fitrix Screen product

n Introduction to the four major components of Fitrix Screen

n Features and capacities

Fitrix Screen Technical Reference

1-2 Introduction

Technical Merits
Fitrix Screen CASE Tools provide a complete application development system.
Fitrix Screen offers significant technological advantages over any other application
development product on the market. Fitrix Screen gives you the power, speed, and
flexibility you need to create your applications.

n Program maintainability - One of the biggest costs associated with com-
puter software is maintenance. Traditional software is so expensive to
maintain because it is not designed with maintainability in mind. Only the
original programmers can truly understand all of the complexities involved
with "spaghetti code."

Fitrix Screen takes the headache out of modifying your programs. Fitrix
Screen creates highly commented and thoroughly documented code that is
logically organized into functional objects. Fitrix Screen generated pro-
grams are also 100% regenerable. You need to add a field to your program?
Simply run the Form Painter, add the field to your screen, define the field,
regenerate the screen, then recompile the program. It is that easy.

n Object-oriented design - Much of the generated code is broken up into
functional objects. These functional objects are stored in libraries and can
be used interchangeably, thus preventing the duplication of code and sim-
plifying maintenance. Since each object is designed to meet specific stan-
dards, they can be easily modified to be used as the foundation for new,
more specialized objects.

n 4GL language - 4GL languages are easier to learn and use than other lan-
guages and they are portable across platforms.

n SQL database technology - Structured Query Language (SQL) gives you
the ability to store any piece of data in your database and the flexibility to
access that data in any way necessary.

n CASE technology - Fitrix Screen employs Computer Aided Software
Engineering (CASE) and actually creates most of the 4GL code needed to
run a data-entry application, saving you months of development time.

n WYSIWYG form development - You can create your program simply by
designing the form used for data-entry. A series of menus and prompts pro-
vide you with the tools and information you need to create your application.

Fitrix Screen Technical Reference

Overview 1-3

n UNIX and open systems - More and more companies are discovering the
power and cost effectiveness of the UNIX operating system and open sys-
tems. Open systems allow you to displace work done on your expensive
mainframes to a network of smaller machines without losing performance.
You can say good-bye to those horrendous mainframe maintenance costs.

Overview
Fitrix Screen CASE Tools offer a complete solution for creating and maintaining
INFORMIX-4GL applications. With Fitrix Screen, you can create flexible and fea-
ture-rich applications in an incredibly short amount of time. Fitrix Screen generated
applications also benefit from a variety of useful built-in functions, such as Zoom
references, file access, and the ability to lookup information from another table and
return data automatically. Applications created with Fitrix Screen are not only pow-
erful, but also extremely easy to maintain.

The 4gl code generated by the Fitrix Screen Code Generator may be immediately
compiled into a functioning data-entry screen or may be modified before compila-
tion.

The following diagram gives you an idea of the process involved when creating an
application with Fitrix Screen.

Fitrix Screen Technical Reference

1-4 Introduction

.per .per.per

SCREEN CODE
GENERATOR

FORM
PAINTER

Database

Merged Source Code Specification Files

fg.form

fg.screen

.4gl.4gl .4gl

Generated Source Code

.4gl.4gl .4gl

Final Program

.trg

.ext.ext

Compiler/Linker

Trigger Files

Extension Files
FEATURIZER

USER CONTROL
LIBRARY

custom modifications

custom modifications

Fitrix Screen Technical Reference

Overview 1-5

Fitrix Screen is comprised of four basic components: the Form Painter, the Code
Generator, the Featurizer, and the CASE Tools Enhancement Toolkit.

• Form Painter - a WYSIWYG environment used to design and create the basic
data-entry interface. The Form Painter creates a .per specification file used by
the Code Generator to generate the application.

• Code Generator - uses the specification file created by the Form Painter to
create most of the code necessary to run your application.

• Featurizer - this tool merges your custom modifications into base generated
code while maintaining regenerability.

• CASE Tools Enhancement Toolkit - consists of a library of end-user features
such as Navigation, Hot Keys, and User-Definable Help Text that automati-
cally enhance any application. The Enhancement Toolkit also consists of a
number of developer tools which let you add security and a graphical menuing
environment to your applications.

The Form Painter
The Form Painter simplifies the creation of data-entry screens by providing a desk-
top environment complete with menus and pop-up windows that greatly simplify
and shorten the time required to build a data-entry form. The Form Painter serves as
an easy-to-use and effective front-end to the Code Generator, further enhancing the
automation of data-entry application development.

The Form Painter allows you to create form specification files, also known as .per
forms. The Code Generator uses these specification files to create data-entry appli-
cations. Form specification files can be built two ways: with an editor such as vi or
using the Form Painter. Creating form specification files with a standard editor is
much more difficult and time consuming than using the Form Painter. Manual cre-
ation of a form specification file involves tasks such as typing in the attributes for
each field on the form, carefully defining the screen record(s), and ensuring the cor-
rect format and placement of each section of the form. Once these tasks have been
performed, you would attempt to compile the .per (form) file into a .frm file. Usu-
ally you would have to go through various debugging stages to get the form exactly
right without any mistakes.

Fitrix Screen Technical Reference

1-6 Introduction

The Form Painter virtually eliminates mistakes by providing error checking as you
create the form. The forms you create with the Form Painter are error free.

Form Painter pull-down menus provide fast and convenient access to most of the
information needed to create .per form specification files.

Fitrix Screen Technical Reference

Overview 1-7

The Form Editor
displaying a

sample form.

menu line

The Define pull-
down menu contains
options used to de-
fine the functionality
of the fields and the
form.

The Edit pull-down
menu contains op-
tions used when cre-
ating or revising a
form.

The File pull-down
menu contains op-
tions that manage
your forms.

The Run pull-down
menu contains vari-
ous options that al-
low you to run the
Code Generator on
your form, compile,
and execute the
form.

The Help pull-down
menu contains vari-
ous help topics
which lead to refer-
ence information.

Fitrix Screen Technical Reference

1-8 Introduction

Form Painter Features
n Create error free form specification files.

n Automatically generate a form from the database.

n Specify all aspects of a form specification file.

n Create custom modifications to the generated code via triggers.

n Create, compile, and run a 4GL data-entry application in a matter of min-
utes.

n Create mathematical equations for fields.

n Create Zooms, which allow the user to view a list of possible entries for a
field.

n Define fields that automatically return data (lookups), as well as fields that
provide data validation.

The Code Generator
The Code Generator is designed to automatically write the INFORMIX-4GL pro-
gram needed to produce a sophisticated and consistent data-entry environment. The
primary advantage of the Code Generator is that it dramatically reduces the time
needed to create 4GL code, compressing several days worth of work into a few
minutes. It also produces a source code product inherently more modifiable and
maintainable than traditional manually written code. The environment created
allows you to Add, Update, Delete, Find, and Browse through documents. The
source code follows a predefined and completely documented functional flow in
which specific areas of code are designated for specific types of modification.

Fitrix Screen Technical Reference

Overview 1-9

The following is a sample header/detail type screen created by Fitrix Screen.

Code Generator Features

n Automatically creates most of the code needed to run a data-entry applica-
tion.

n Reduces application development time.

n Supports multiple languages.

n Simplifies application and program maintenance.

n Triggers let you add custom code to specific logical points in the generated
code.

n Generated code is thoroughly commented.

n Add custom code or change any basic generated code through block tags
while maintaining regenerability.

n Individual features of your program can be coded separately and easily
included or excluded from any product version.

Fitrix Screen Technical Reference

1-10 Introduction

The Featurizer
The Featurizer merges custom code modifications into the generated base code.
This allows you to keep your modifications separate from the code generated by the
Code Generator for easier maintenance and also makes all programs regenerable.
You can also separate your custom features and selectively plug and unplug any
feature into any version of your program.

Featurizer Features

n Create 100% regenerable applications.

n Localize all custom modifications.

n Maintain multiple program versions without duplicating code.

n Create individual features that can be plugged or unplugged depending on
program version.

Fitrix Screen Technical Reference

Fitrix Screen Documentation 1-11

Fitrix Screen Documentation
Fitrix Screen documentation appears in two manuals, a technical reference and a
tutorial. The Fitrix Screen Tutorial provides an introduction to the Form Painter,
the Code Generator, and the User Control Library Features.

The Fitrix Screen Technical Reference provides a source of information which can
be consulted repeatedly. This book addresses the technical aspects relating to the
specification of the data-entry screen image (.per) files, code generation based upon
those specifications, RDS issues, and more. The Fitrix Screen Technical Reference
contain sections for the Form Painter and the Code Generator.

The Fitrix CASE Tools Enhancement Toolkit Technical Reference provides docu-
mentation on the following features: User Control Library, C Library, Program
Control Library, Pull-Down Menus, and Security.

TheFitrix CASE Tools Training Course Workbook also provides an excellent
medium for learning how to use the major features of Fitrix Screen. The Fitrix
CASE Tools Training Course Workbook contains a number of exercises that teach
you how to use Fitrix Screen to create a custom application. The Fitrix CASE
Tools Training Course Workbook is available separately.

The Fitrix Screen Technical Reference is organized by section as follows:

Part I—Introduction to Fitrix Screen

Chapter 1: Introduction—an overview and a brief look at the features avail-
able in the package.

Chapter 2: Getting Started—discusses setting up your environment to run
Fitrix Screen as well as how to run the various tools.

Chapter 3: Introduction to the Data-Entry Interface—provides an introduc-
tion to the basic interface shared by programs created with the Code Generator.

Fitrix Screen Technical Reference

1-12 Introduction

Part II—The Form Painter

Chapter 4: Form Painter Basics—explains the contents of the menus, how to
use the menus, and how to move around the menu system.

Chapter 5: Managing Forms—describes form management issues such as
saving, opening, printing, closing, and deleting a form.

Chapter 6: Editing Forms—describes how to create and edit forms with the
Form Painter.

Chapter 7: Defining Fields—explains how to define fields in both novice and
expert modes and also how to change form defaults.

Chapter 8: The Run Menu—explains how to create an application from your
painted form.

Chapter 9: Database Administration—describes a program that allows you
to modify database tables.

Part III—The Code Generator

Chapter 10: Creating Screen Forms—discusses typical formats used for the
data-entry interface. Shows examples of .per forms and resulting data-entry
screens.

Chapter 11: Source Code—examines the source code produced by Fitrix
Screen Code Generator and discusses flow control and cursor handling.

Chapter 12: Customizing the Base Program with Triggers—discusses how
source code can be modified via triggers.

Chapter 13: The Featurizer and Blocks—discusses how source code can be
modified with block commands.

Chapter 14: Compiling and Running Your Programs—explains how to
compile your 4GL source code and how to run your completed programs.

Chapter 15: Advanced Features—explains event handling logic, how to cre-
ate help for your application, and a number of other features.

Chapter 16: Version Control—covers the concept of Version Control and
how you can maintain multiple versions of a program without duplicating the
base code.

Fitrix Screen Technical Reference

Fitrix Screen Documentation 1-13

Chapter 17: Language Translation—explains how to create different ver-
sions of your programs in other languages.

Chapter 18: Helpful Techniques—contains a number of common "how-to’s."

Part IV—Appendices

Appendix A: Fitrix Screen Utilities—contains a variety of information such
as how to use the Tag utility and how to create a demonstration database.

Appendix B: The .per Specification File—looks at the components of the .per
file, used to generate the application.

Appendix C: Program Migration—contains information on moving your
programs from a development machine over to a production machine.

Appendix D: Fitrix Screen Tables—contains a list of the Code Generator
tables and a list of reserved terms.

Appendix E: Control Key Defaults—contains a list of the control key
defaults, as well as a list of the Form Painter editing keys.

Appendix F: Reserved Terms and Style Guide—contains a list of 4GL
reserved terms and a screen form style guide.

Appendix G: Termcaps—describes how to write a termcap as well as setting
terminal options.

Documentation Conventions Used in
This Manual
Although many similar versions of UNIX and XENIX may run INFORMIX-4GL
and the Code Generator, the manual refers to this general category of operating sys-
tems with the single term UNIX.

Fitrix Screen Technical Reference

1-14 Introduction

Some information is difficult to convey in words, such as a series of keystrokes or a
value you supply. This manual uses several conventions to convey information that
has special meaning. These conventions use different fonts, formats, and symbols
to help you discern commands, program code, file names, and keystrokes from
other text.

Text Format Meaning Example

Courier Bold

Represents command
syntax in addition to
variable and file
definitions.

fg.screen

Courier Bold
Italic

Represents text you
should replace with the
appropriate value.

-dbname
database_name

Courier

Represents commands;
file, directory, table, and
column names; and
computer responses.

header.4gl
Makefile
stxhelpd
$fg/bin

Small Courier
Represents program code
or text in a file.

#####################
 function llh_add()
#####################
 # This function inserts

Symbol Meaning Example

[]
Represents optional
command flags and
arguments.

fg.screen [-yes]

...
Represents command
arguments that can be
repeated.

filename ...

Fitrix Screen Technical Reference

Fitrix Screen Documentation 1-15

When not part of an explicit instruction, single keyboard characters, field values,
and prompt responses are shown in uppercase. For example:

Choose Y or N.
Enter an A for ascending or D for descending.
Press Q to quit.

Named keys, such as Tab, are shown in uppercase and enclosed in brackets.

[TAB]
[CTRL]
[F1]
[ESC]
[ENTER]
[DEL]
[SPACEBAR]

When a series of keys should be entered at the same time, they are shown with a
hyphen connecting them. For example:

To close the menu, type [CTRL]-[d].

Some key names are not consistent from keyboard to keyboard. This manual makes
repeated mention of the [ENTER] and [DEL] keys, but both of these may be miss-
ing entirely from some keyboards. Different hardware manufacturers give different
names to keys that perform the same functions. In addition to the keyboards them-
selves, software-controlled settings in terminal control files may also alter the inter-
pretations of keystrokes.

The table below lists keys that are named differently on different keyboards.

KEYS COMMONLY USED VARIATIONS

ENTER RETURN, RTRN, ↵

ESC STORE

DEL BREAK, CTRL C, CTRL BREAK

Fitrix Screen Technical Reference

1-16 Introduction

2-1

2
Getting Started

This section covers information about installing Fitrix Screen, setting up your envi-
ronment, and invoking the various products.

n Setting Up Your Environment

n Required Tables

n Backwards Compatibility Issues

n Invoking the Form Painter

n Invoking the Code Generator

n Using fg.start

Fitrix Screen Technical Reference

2-2 Getting Started

Installation and Preparation
The following must be performed before running the Form Painter or Code Gener-
ator on your UNIX system:

Install INFORMIX-4GL version 4.1 or later according to the instructions included
with the media. If you are installing the C Compiler version of INFORMIX-4GL,
installation must include the C compiler/Development System and the "make" util-
ities included with the compiler.Install Fitrix Screen with fg.install as per
instructions included with the Code Generator media.

Installing in Different ($fg) Directories
Normally when you install an update of Fitrix Screen the newer version overwrites
the older version. Also, applications created with the Code Generator are typically
maintained in the same $fg that Fitrix Screen is installed in. However, you can
maintain your applications and the tools themselves (executables, libraries, etc.) in
separate base directories (i.e., in different $fg directories. This ability can also be
used to install and use the tools on a system without overwriting existing tools.
(Note however, that due to changes in the data of some tools tables, you cannot run
both sets of tools simultaneously under the OnLine engine.)

Follow the steps below to install and use the tools in a different directory:

1. Before (re)running the installation, set $fg to the full pathname of the target
directory and (export $fg).

2. To run the new tools (and applications using the new libraries and etc., reset
$fg to point to your existing applications (the old $fg directory), and set and
export the following variables to the new $fg directory:

 $fgmakedir
 $fglibdir
 $fgtooldir

3. To make programs use the library *.frm’s from the new tools, put the new
$fglibdir/lib/forms ahead of the old $fg/lib/forms in $DBPATH.

4. Add $fgtooldir/bin to your $PATH and make sure it comes before
$fg/bin.

Fitrix Screen Technical Reference

Installation Directory Structure 2-3

5. If using the INFORMIX-SE standard engine rather than the OnLine engine, set
$DBPATH to include $fgtooldir/data before $fg/codegen/data.

For example, to use tools in /usr/fourgen2 while the applications you create
and run are stored in a different directory, you could put the lines below into your
.profile file (or a script to optionally execute—don’t forget to use the . to make the
settings apply to the current shell):

 fgtooldir=/usr/fourgen2 ; export fgtooldir
 fgmakedir=$fgtooldir ; export fgmakedir
 fglibdir=$fgtooldir ; export fglibdir
 DBPATH=$fglibdir/lib/forms:$DBPATH ; export DBPATH

$fg: base directory for tools and applications.

$fgmakedir: if set, fg.make looks for make files in this directory rather than
$fg (even though local Makefiles still contain $fg).

$fglibdir: if set, fg.make looks for upper level libraries in this directory
rather than $fg.

$fgtooldir: if set, tools executables, (e.g. the 4gl program executed by calls to
the screen generator such as fg.screen), are searched for in this directory rather
than $fg.

$DBPATH: Path to *.frm files. If new $fg doesn’t precede the old $fg in
$DBPATH, when you run your program it will use the old library’s forms. (This is
not really crucial on systems where 4.10 is installed in the old $fg, since these
forms have not changed in the 4.11 upgrade.)

Installation Directory
Structure
The following diagrams illustrate the basic directory structure that is created when
you install Fitrix Screen. Installation of the Code Generator program produces the
directory structure outlined in the following pages. The diagrams provide an over-
view of the location of Code Generator files upon installation. The ellipse indicates
that a variable is used to represent part of the path.

Fitrix Screen Technical Reference

2-4 Getting Started

Overview of the Directory Structure
The following diagram represents the basic directory structure of Fitrix Screen.

These directories are the basis of the Fitrix Screen installation directory structure.
Each directory is explained in the following pages.

bin: This directory contains Fitrix Screen executables.

data: This directory contains database files used by Fitrix Screen.

demo.4gm: This directory contains demonstration programs.

install: This directory contains installation files.

forms: This directory contains form specification files for forms used by the Form
Painter.

screen.4gm: This directory contains the executables for Fitrix Screen programs.

utility.4gm: This directory contains source code for the language translation
programs.

bin codegen lib Make

$fg

bin

installdata

demo.4gm

screen.4gm

forms utility.4gm

Fitrix Screen Technical Reference

Installation Directory Structure 2-5

Executable Files

The Code Generator is invoked with the fg.screen shell script. The Code Gen-
erator demo is invoked with the scr_demo executable. Other shell scripts perform
functions related to the INFORMIX-4GL Rapid Development System (RDS),
hypertext tags, and other Code Generator-related matters. The ../codegen/bin
directory contains shell scripts for creating tables required by the Code Generator
and for running generated applications.

and other executables

program scripts

bin codegen

$fg

fg.screen RDS-linker scripts scr_demo
bin

miscellaneous

$fg

Fitrix Screen Technical Reference

2-6 Getting Started

Library Source Files

The *.4gs and forms directories contain code used by the Code Generator to
build applications.

scr.4gs: These library files are used by programs generated with the Code Gen-
erator.

standard.4gs: These library files are used by both Fitrix Screen and the Fitrix
Report Code Generator.

user_ctl.4gs: These library files contain additional features which can be used
from the Form Painter. These functions are also used by your applications if this
library exists on the run-time system.

prog_ctl.4gs: This library contains a number of advanced functions which you
can incorporate into your own applications.

stubs.4gs: This library contains stub functions for the stubs.4gs library.
This enables your applications to run if the Enhancement Toolkit has not been pur-
chased for the run-time system.

forms: This directory contains form specification files used by functions avail-
able in code generated with the Code Generator.

$fg

scr.4gs

standard.4gs

user_nul.4gs

forms

lib

stubs.4gs

prog_ctl.4gs

Fitrix Screen Technical Reference

Installation Directory Structure 2-7

Makefile Files

The Makefile files coordinate the compilation of source files into executable
program files within a 4GL application. The $fg/Make directory contains the real
make files, which use the information found in directories containing Makefile
files. Program compilation is discussed in "Compiling Generated Code" on page
14-2.

$fg

Make

make files

Fitrix Screen Technical Reference

2-8 Getting Started

Install Files

The files file provides an installation "blueprint," indicating where files are
installed on the system relative to $fg. It lets the create script know what file
names to pass on to tar and changes ownerships, groups, and permissions. The def
file contains product information. The install.sh file is the actual installation
script for the Code Generator program, and uses the setting provided by
install.rc.

$fg

codegen

install

scr_gen

files def install.sh install.rc

Fitrix Screen Technical Reference

Installation Directory Structure 2-9

Database Files

The screen.dat files provide information (in the form of table unload files) used
to run applications off of the stores sample database. The default.dat direc-
tory also contains unload data used by features found in code generated by the Code
Generator. The screen directory contains a dbmerge program which is used to
build the feature-required data into a database. The stores directory contains a
dbmerge program which is used to create the stores sample database, which is
found in stores.dbs.

codegen

data

screen.dat screen stores.dbs stores

unload files dbmerge database files dbmerge

$fg

Fitrix Screen Technical Reference

2-10 Getting Started

Demo Files

A number of demonstration directories are installed with the Code Generator. The
demo directories contain a variety of different .per forms which you may use to
generate sample applications. Each screen directory is installed with a companion
.bak directory, to ensure that the original .per demo files are not altered. The con-
tents of the .bak directory should be copied over to the corresponding screen
directory to generate and run the demo. The scr_demo script copies the files from
the .bak directory to a corresponding .4gs directory.

The screen1 directory contains a simple header-only application.

The screen2 application is header/detail, and appears with a browse but no
Zooms.

The screen3 application contains a full-featured header-detail application,
with a browse and Zooms.

codegen

demo.4gm

files

screen[1-9].bak

$fg

Fitrix Screen Technical Reference

Installation Directory Structure 2-11

The screen4 directory is the same as screen3 but is used for the Form
Painter demo.

The screen5 directory is a complex header/detail application that demon-
strates triggers.

The screen6 directories demonstrate the Featurizer. For information on this
demo refer to "The Featurizer and Blocks" on page 13-1.

The screen7 demo provides a sample program that utilizes extension
screens.

The screen8 directory contains files which allow you to build a sample add-
on detail program.

The screen9 directory contains view-header, view-detail, and query screen
type examples.

Fitrix Screen Technical Reference

2-12 Getting Started

Setting Up Your Environment
The next step is to ensure that system variables used by the Form Painter and Code
Generator are set correctly. The following variables must be set prior to invoking
the Form Painter or Code Generator:

$fg must point to the installation directory of Fitrix Screen.

$fgtooldir optional variable that can be set to point to an alternate par-
ent directory containing a codegen source directory rather
than the one in $fg.

$fgmakedir optional variable that can be set to point to an alternate par-
ent directory containing a Make utilities directory rather
than the one in $fg.

$fglibdir optional variable that can be set to point to an alternate par-
ent directory containing a lib upper-level libraries direc-
tory used by the generated code rather than the one in $fg.

$INFORMIXDIR must point to the Informix directory on the system. Typi-
cally, this is /usr/informix.

$PATH must include $fg/bin and $INFORMIXDIR/bin. If
$fgtooldir is set, you must include $fgtooldir/bin
before $fg/bin.

$DBPATH must include $fg/lib/forms and $fg/code-
gen/forms. If $fglibdir is set you must include
$fglibdir/lib/forms and $fglibdir/code-
gen/forms in your $DBPATH.

$TMPDIR is a system variable that specifies the directory that tempo-
rary files are placed into. If you run into problems where
your TMPDIR space is not large enough you may need to
specify a new temporary directory location.

$DBTEMP is the directory into which INFORMIX-4GL places its tem-
porary files. The default is the /tmp directory. If you are
using the standard engine you may need to specify a new
/tmp directory that contains sufficient space.

Fitrix Screen Technical Reference

Setting Up Your Environment 2-13

Note

The $fgtooldir, $fglibdir, and $fgmakedir variables are optional
variables that you can set to point to alternate parent directories for certain com-
ponents of Fitrix Screen. These variables allow you to have more than one ver-
sion of Fitrix Screen on your system, and give you the ability to use a particular
component from a different version. For example, you could have two versions
of Fitrix Screen on your system, version A and version B. By setting $fglib-
dir to point to the directory containing the libraries in version B, you could
then run version A of the Code Generator but use the libraries from version B.
Refer to "Installing in Different ($fg) Directories" on page 2-2.

Tables Required to Run the Code
Generator
Special Code Generator tables need to be present in any database the Code Genera-
tor is run against. All of the cg* and stx* tables need to be present in the develop-
ment database in order to generate or compile programs.

When the Code Generator is installed, these tables are automatically added to your
databases. If you run the Code Generator against a database that does not have
these tables (i.e., the database was created after the installation of the Code Genera-
tor), they are added automatically. Whenever the Code Generator adds tables to a
database, the indexes for that database get removed and recreated.

If you want to manually add the Code Generator tables to a database you can run a
script called mktables. This script adds the necessary Code Generator tables to
the database. For more information on the tables that get installed with Fitrix
Screen refer to "Code Generator Tables" on page D-5.

Fitrix Screen Technical Reference

2-14 Getting Started

Tables Required to Run a Generated
Program
When running a program generated by the Code Generator, the stx* tables need to
be present in any database the generated program is run against. The stx* tables
contain program help and error messages, as well as the User Control Library
tables. You can run mktables to add the stx* tables to your database. The mkta-
bles script also adds the cg* tables to a database. Since you may not need the cg*
tables on your production database, you can remove these tables to save space. For
more information on transferring an application to another system, refer to "Mov-
ing Applications to Other Systems" on page C-2.

Standard Database Must Exist in
$DBPATH
Even though you might be using a development database other than standard, a
database named standard must exist on your system. This is because Fitrix
Screen was compiled against a standard database. When run, Fitrix Screen tries
to open a standard database. If a standard database can’t be found, an error
occurs. You can remove everything from the standard database if you wish to
use a different development database. You just need to make sure a database named
standard exists, even if it is empty.

Fitrix Screen Technical Reference

Recommended Application Directory Structure 2-15

Recommended Application
Directory Structure
Since applications tend to grow and expand over time, we recommend the follow-
ing directory structure, which allows applications to grow in an organized fashion.
These directory structure conventions provide a consistency which make applica-
tions easier to support and maintain, particularly for those users other than the
author.

Neither the Form Painter or the Code Generator forces compliance with directory
structure conventions. However, Fitrix Fitrix Screen does perform best under the
organized environment created by the conventions explained in this section.

First, the directory hierarchy is explained, then directory naming conventions are
explained.

Directory Hierarchy
Each application should be broken down into a three tier hierarchy. At the first
level you have the directory that contains the entire application. This is called the
"root directory." Down from the application directory you have the module directo-
ries. Module directories contain groups of related programs. The program directo-
ries contain most of the code needed to run that particular program.

Fitrix Screen Technical Reference

2-16 Getting Started

The following diagram illustrates the directory structure conventions for applica-
tions generated with Fitrix Screen.

Directory and File Naming
Conventions
Application root directory—a descriptive name such as "accounting." The appli-
cation root directory name should be less than 12 characters.

It may also be helpful to create a UNIX environmental variable to represent the top-
most directory in your application hierarchy. This variable generally would repre-
sent the installation directory, for example accounting.

Module directory—module directory names must follow the following format:
module_name.4gm. The .4gm extension must be used to denote the module
directory level. module_name must be 8 characters or less.

Under the "application" directory, there are several different types of directories.
First are the "module" directories. A module is a free-standing part of the overall
application. A module directory is named for the module and the format is
module_name.4gm. For example, ac_mnt.4gm or heat_mnt.4gm in the
case of plant maintenance.

application
root directory

module.4gmmodule.4gmmodule.4gm

prog.4gs prog.4gs prog.4gsprog.4gsprog.4gsprog.4gs

Fitrix Screen Technical Reference

Recommended Application Directory Structure 2-17

Program directory—under a module directory there are the individual source
directories which not only contain the various .4gl programs but also the actual exe-
cutable itself. These source directories are named with respect to their functions.
One convention used is as follows:

 i_ - input screen

 o_ - output report

 p_ - posting report

These are immediately followed by a meaningful name, followed by ".4gs." For
example, i_time.4gs could mean "an input screen for time cards source direc-
tory."

Program names—program names take the first part of their name from the pro-
gram directory, but they have either a .4ge or a .4gi extension depending on how
they are compiled.

Note

Directory names must be no larger than 8 characters, not including the exten-
sion.

Next, under the application directory, there is the directory data. This directory
contains the database directory or directories (if multiple databases are used). The
$DBPATH environment variable should be set to point at:
application_name/data when using the Standard Informix engine. This
directory contains the .dbs directories used by Informix. The $INFORMIXDIR
variable must also be set.

The final recommended directory within an application hierarchy should be the
menu directory if Fitrix Menus is being used. This is the directory in which all the
user menus are stored.

Fitrix Screen Technical Reference

2-18 Getting Started

Application Hierarchy:

application

data menu module.4gm module.4gm

i_xxx.4gs o_xxx.4gs p_xxx.4gs
xxx.dbs menu files

i_xxx.4gi main.4gl midlevel.4gl
(or i_xxx.4ge)

Fitrix Screen Technical Reference

Maintaining Backwards Compatibility—The Options Files 2-19

Maintaining Backwards
Compatibility—The Options
Files
This applies only to users that have generated code with versions of the Code Gen-
erator previous to the May 1992 release. The Code Generator now generates q_
records differently than it has in the past, and certain triggers are handled differ-
ently. A q_ record is a data variable that parallels data elements defined in the
screen. If you are a new user of the Code Generator then this section doesn’t apply
to you.

Two special files have been created allowing you to control how the Code Genera-
tor and Featurizer handles some special circumstances. The fglpp.opt file con-
tains variables that allow you to specify how the Featurizer handles some of the
special triggers, while the screen.opt file contains a variable which allows you
to control how the Code Generator handles q_records.

The Featurizer Options File
(fglpp.opt)
This file contains options that control how the Featurizer handles special triggers
and how it handles missing blocks.

Trigger Controls
In order to maintain backward compatibility, a special options file has been added
to the Featurizer which allows you to control how the Featurizer handles the fol-
lowing special triggers:

define
static_define
at_eof
switchbox_items

Fitrix Screen Technical Reference

2-20 Getting Started

The predecessor to the Featurizer, the Trigger Merge Utility, replaced the subse-
quent occurrences of the above, mentioned triggers. In other words, if you had the
directory search path 4gc:4gs, and you had a define trigger in both directories,
the define trigger in the .4gs directory would be merged in first, and then the
define trigger in the .4gc directory would replace the existing define trigger.

The Featurizer now appends these triggers by default to prevent you from having
duplicate triggers in your directory. This sounds like a contradiction in terms, but
really it isn’t. If two identical static_define triggers are found when the
define_trig variable is set to "append," the merge will fail, giving you a dupli-
cation error. This allows you to go back and remove one of the duplicate triggers,
assuring that each of these special triggers in your application trigger files are
unique.

The Featurizer allows you to choose whether you want subsequent occurrences of
these special triggers to replace or append existing triggers.

The Code Generator creates a $fg/codegen/options/fglpp.opt file with
the following contents:

define_trig="append"; export define_trig
at_eof_trig="append"; export at_eof_trig
swbox_trig="append"; export swbox_trig

These variables allow you to specify "append" if you want the Featurizer to append
the associated triggers, or "replace" if you want the Featurizer to replace existing
triggers. The default is "append."

An fglpp.back file has been included in the $fg/codegen/options direc-
tory. This file contains settings which cause the Featurizer to work like the Trigger
Merge Utility. To make the Featurizer replace the special triggers
(static_define, define, at_eof, and switchbox_items) instead of
appending them, copy the backward compatibility option file to fglpp.opt.

fglpp.opt File Variables Triggers Affected

define_trig define
static_define

at_eof_trig at_eof

swbox_trig switchbox_items

Fitrix Screen Technical Reference

Maintaining Backwards Compatibility—The Options Files 2-21

 cd $fg/codegen/options
 cp fglpp.back fglpp.opt

To do this for just one program:

 cd /path/where/my/program/source/code/is.4gs
 cp $fg/codegen/options/fglpp.back fglpp.opt

To do this for a module:

 cd /path/where/my/module/is.4gm
 cp $fg/codegen/options/fglpp.back fglpp.opt

Missing Blocks
The Featurizer was recently changed to no longer consider missing blocks as fatal
errors. This was done to correctly support version control requirements with fglpp.
This behavior can be changed by setting the system variable
$fglpp_fatal_warn to "Y." You can do this using the fglpp options file
($fg/codegen/options/fglpp.opt or a local fglpp.opt).

The Code Generator Options File
(screen.opt)
This file contains options that allow you to control how the Code Generator gener-
ates certain attributes.

Generating q_ Records
Another options file, $fg/codegen/options/screen.opt, contains a spe-
cial option for the Code Generator. The screen.opt file contains the
non_scr_q_elems option. This option allows you to maintain backwards com-
patibility with older versions of the Code Generator. This option determines what
should be included in the header file’s q_ record, which is generated in the file
globals.4gl. It also controls what q_ record elements are assigned values in
the llh_m_prep() and llh_p_prep() functions.

The old way of creating the header q_ record is as follows:

Fitrix Screen Technical Reference

2-22 Getting Started

If you use a field that is not displayed on the screen, you need to create a define
trigger to add the field to the q_ record. You also need to use a trigger to add the q_
record to the m_prep() and p_prep() functions. The Code Generator automat-
ically generates the row_id.

You can duplicate the old behavior of the Code Generator by setting the
non_scr_q_elems variable to "exclude."

The new way of creating the header q_ record:

If the non_scr_q_elems variable is set to "include," (this is the default), then a
q_ record is generated for every column in the table not displayed on the screen.
The new way also references these additional q_ record variables into assignment
statements within the llh_p_prep() and llh_m_prep() functions.

Here is the default environmental variable settings:

non_scr_q_elems="include"; export non_scr_q_elems

Note

If you are using extension screens, the non_scr_q_elems variable must be
set to "include."

To make Fitrix Screen generate code the old way, copy the backward compatibility
option file, which resides in $fg/codegen/options/screen.back, to
screen.opt.

 cd $fg/codegen/options
 cp screen.back screen.opt

To do this for just one program:

 cd /path/where/my/program/source/code/is.4gs
 cp $fg/codegen/options/screen.back screen.opt

To do this for a module:

 cd /path/where/my/module/is.4gm
 cp $fg/codegen/options/screen.back screen.opt

Fitrix Screen Technical Reference

Maintaining Backwards Compatibility—The Options Files 2-23

Controlling the Detail Display Function
This is a backward compatibility option for the detail display function. It can be set
to "current_context" or "first_page." If set to "first_page" this will direct the Code
Generator to generate the old style lld_showdata() function (or equivalent) in
a manner to simulate past behavior which always displayed just the first page of
detail lines.

The lld_showdata() function was redesigned so that it can be called at any
time to display the current set of detail lines instead of the first page. This capability
requires that the variables p_cur and s_cur are set correctly. Usually this will be the
case. However, if p_cur and/or s_cur are used in ways that change their values to
not reflect the current detail line context then the new function will behave incor-
rectly.

By default this function is set to "current_context." To change this to simulate
"first_page" behavior you may set $detl_display="first_page."

Here are the current option settings as they appear in $fg/code-
gen/options/screen.org:

detl_display="current_context"; export detl_display

Modifying the Options Files Locally
If you want to change to the settings in the fglpp.opt or screen.opt files but
you do not want to change them for every user on your system, you can create these
files in your application or your program directories. For example, say you want to
run the Featurizer so that it "replaces," but other developers want to use the default
"append." You can’t change the system default in $fg/code-
gen/options/fglpp.opt. All you need to do is create an fglpp.opt file
in your module or program directory and include the settings you want. For exam-
ple, you might have the following:

define_trig="replace"; export define_trig
at_eof_trig="replace"; export at_eof_trig
swbox_trig="replace"; export swbox_trig

You could also put an fglpp.opt or screen.opt file in your program direc-
tory.

Fitrix Screen Technical Reference

2-24 Getting Started

When the Code Generator and the Featurizer are run, they run the option files in the
$fg/codegen/options directory first, so those variables get set. Then any
.opt file in the application directory is run. Finally, the .opt files in the program
directory are run. Each time a variable in these files is exported, it replaces the cur-
rent setting. In other words, if you had non_scr_q_elems set to "include" in the
default screen.opt file, and it is set to "exclude" in your application directory,
then it is set to "include" in the program directory, when you run the Code Genera-
tor from the program directory the non_scr_q_elems variable is "include."

Fitrix Screen Technical Reference

Running the Form Painter 2-25

Running the Form Painter
The Form Painter must be invoked from the directory you wish to develop your
program in. The CASE Tools are designed to work best in a particular directory
structure. This structure allows you to take full advantage of Version Control and
prevents you from having to duplicate code. Refer to "Recommended Application
Directory Structure" on page 2-15 for a detailed explanation of directory structure
and file naming conventions.

Once you are in the proper directory, you are ready to develop .per form specifica-
tion files and corresponding applications. The following command invokes the
Form Painter:

fg.form [-dbname database] [-o (0-5)] [-f] [-yes]
[-p perform]

-dbname The database can be pre-determined by using the
-dbname flag and specifying the name of a database.

-o (0-5) The -o flag followed by a value (0-5) determines the amount
of code that gets displayed during code generation, which sub-
sequently affects the speed of generation. The less output that
is directed to the screen, the faster the generation. Invoking the
Form Painter with "fg.form -o 0" is the fastest form of
code generation.

This flag is passed to the Code Generator when the Code Gen-
erator is invoked from the Form Painter. The default genera-
tion level is 4.

-f The -f (fast) flag is similar to the (-o 1) output level of Code
Generation. This flag is passed to the Code Generator when
invoked through the Generate 4GL option of the Form Painter.

-yes The -yes flag automatically answers all Code Generator
prompts with a yes. This flag is passed to the Code Generator
when invoked through the Generate 4GL option of the Form
Painter.

-p The -p flag allows you start up the Form Painter and
automatically load the specified .per file.

Fitrix Screen Technical Reference

2-26 Getting Started

Invoking the Code Generator
There are three ways to invoke the Code Generator: through the Form Painter, man-
ually by typing fg.screen, and automatically with a startup program. To invoke
the Code Generator manually, a number of conditions must be met prior to invoca-
tion. The startup program, fg.start, automatically sets up many of these condi-
tions for you. First, the manual method is discussed.

To invoke the Code Generator for any application, you must first change directories
to the program directory that contains the .per forms you intend to use to generate
code. You must be in the correct directory when invoking the Code Generator.

If you are using Version Control, which allows you to maintain different versions
of your applications, you must also run the Code Generator from the appropriate
directory. However, with Version Control, all .per forms do not have to be located
in the directory in which the Code Generator is run. For more information see
"Invoking Programs That Use Version Control" on page 16-20.

File names are created relating to the current directory name. The .4ge and .4gi files
are given the name of the directory they were created in.

Once you are in the proper directory, and the variables mentioned previously con-
tain the required values, you are ready to generate the application. The following
command invokes the Code Generator on the specified .per file(s):

Fitrix Screen Technical Reference

Invoking the Code Generator 2-27

fg.screen [-dbname database] [-o {0-5}] [-f] [-yes|no]
[perform file...]

If you are using Version Control do not specify the .per file names. The Code Gen-
erator automatically determines what .per files to use. Refer to "Invoking Programs
That Use Version Control" on page 16-20.

The entire generation process takes a few minutes, depending on the number of .per
files specified.

-dbname Specifies the database on which the source code will operate.
There is no need to use this flag if the $DBNAME environmen-
tal variable is properly set.

-o {0-5} Specifies the generation level. The generation level controls
the screen display of generated code as it is being created.
Level 4 is the default. Level 5 is the slowest—it is artificially
slowed for demo purposes. Level 0 displays minimal informa-
tion to the screen and produces the fastest generation level. The
output level can be changed during code generation by press-
ing [DEL].

-f Specifies a "fast" generation level. This flag works the same as
if you specify -o 1.

-yes|no Specifies interactive or non-interactive generation modes. You
can also use just -y. During normal code generation, different
prompts may appear requiring user interaction. Such is the case
if you have modified a .4gl. Upon regeneration, a prompt
appears requiring entry from a list of actions to take. If you
specify the -yes flag when invoking the Code Generator, the
codegen works silently without prompting for user input. All
user prompts are suppressed, and all are automatically
answered as if you had typed a Y. This allows for automated
batch regeneration.

perform file Specifies .per forms to generate code for.

Fitrix Screen Technical Reference

2-28 Getting Started

Note

If any problems occur during start-up, check to make sure your $DBPATH
includes $fg/lib/forms and $fg/codegen/forms.

Using the fg.start Startup
Script
The second means of executing the Form Painter or the Code Generator is with a
special startup program fg.start. The fg.start program simplify helps you
set up your environment before running the Code Generator or the Form Painter.

The fg.start program is installed in $fg/bin. It does not require any system
variables other than $TERM. However, $fg must be set to your Code Generator
installation directory. If $INFORMIXDIR is other than /usr/informix or
/u/informix then $INFORMIXDIR must be set to your INFORMIX installa-
tion directory.

Note

$fg/bin must be in your $PATH.

fg.start can be run by typing fg.start. It accepts two optional arguments,
"screen" to invoke the Code Generator instead of the Form Painter and "-dbname
database" to pre-select the database. You may also invoke it with "fg.start
help" to get a usage message. fg.start syntax:

fg.start [-dbname database] [screen]

Typing fg.start with no arguments defaults to Form Painter start-up. If you
specify "screen" then fg.start runs the Code Generator.

The program displays a full screen entry form where you can select the database,
application directory, module directory name, program directory name, and all of
the command line arguments mentioned above in the "manual" invocation discus-
sion (like *.per or -o 2).

Fitrix Screen Technical Reference

Using the fg.start Startup Script 2-29

The fg.start data-entry form:

Zoom forms are available in the Database, Module, and Program fields. The data-
base Zoom allows you to call up a list of available databases. The database Zoom is
based on $DBPATH so is not OnLine sensitive. OnLine databases are not displayed.
All *.dbs in your $DBPATH are listed. The Zooms for module and program provide
a list of *.4gms in the application directory and *.4g[sc] in the module directory.

You are prompted to create any databases that do not exist and any directories that
do not exist.

Once selection is complete and [ESC] is pressed the program changes directories to
the selected program directory and runs either fg.form or fg.screen on the
selected database with the specified command line options. $fg and $INFOR-
MIXDIR are set by the program if not already set. $fg/bin and $INFOR-
MIXDIR/bin are appended to $PATH. The directory from which fg.start was
invoked is added to $DBPATH along with $fg/lib/forms. Once you have run
fg.form or fg.screen and quit, you are returned to the fg.start screen to
select another program. You may exit this form by pressing [DEL].

"Compiling Generated Code" on page 14-2 contains a description of source code
compilation and execution of compiled files. Information under that topic includes
program invocation flags, as well as methods for specifying filters, order by
clauses, and database names.

Fitrix Screen Technical Reference

2-30 Getting Started

Regeneration of Source
Code
One of the strengths of Fitrix Screen is that it allows you to create regenerable pro-
grams. This means that you can regenerate your programs with a newer version of
the Code Generator without losing your original modifications.

If you re-run the Code Generator in a directory which already contains generated
code, the Code Generator does not assume that you wish to overwrite each source
code file in the directory. The Code Generator displays a prompt to determine how
you wish to deal with old (existing) source code files. The prompt appears for each
source code file that could be overwritten.

As an example of how the system handles duplicate files, consider a situation in
which a Makefile already exists. The system shows:

There currently exists a file called: Makefile
Would you like to:
1) Overwrite Makefile
2) Append the new Makefile to the existing Makefile
3) Move Makefile to Makefile.old
4) Write to Makefile.new
5) Don’t write Makefile at all, or
6) Exit Program

(If you wish to create Makefile.diff, type
a "d" after the selection. example 2d)

Enter Selection:

A similar menu appears for the INFORMIX-4GL source code files if they already
exist.

• Option 1 causes the old version of the file to be replaced with the new version.

• Option 2 appends the new version to the end of the existing file.

• Option 3 moves the existing file to one with the suffix .old appended to the
name, then writes the new one.

• Option 4 leaves the existing file as it is and writes the new code to a file with
.new appended to the name.

• Option 5 skips the creation of the file and goes to the next file.

Fitrix Screen Technical Reference

Regeneration of Source Code 2-31

• Option 6 exits the Fitrix Screen Code Generator process without creating any
more files.

The option you select from the Duplicate File menu depends upon the modifica-
tions, if any, that you have made to the existing file; the modifications resulting
from changes to the screen form specification files; and the relative difficulty of
replicating or merging the code of the different files. The decision obviously
requires some familiarity with the files and code generated by the Code Generator,
as does the modification of the files in the first place. If you have not changed the
code created by the previous run of the Code Generator, you should select option 1
or 3.

Fitrix Screen Technical Reference

2-32 Getting Started

3-1

3
The Data-Entry
Interface

This part of the documentation provides information on the data-entry interface
used by programs created with Fitrix Screen. This section covers:

n The standard program interface

n Ring menu commands

n Introduction to the Zoom feature

n Introduction to Lookups

n Program Information menu commands

n Default screen attributes

Fitrix Screen Technical Reference

3-2 The Data-Entry Interface

The Basic Fitrix Screen
Generated Interface
Fitrix Screen creates a consistent data-entry interface. A consistent interface not
only makes it easy for your end-users to learn and use your programs, but a consis-
tent interface also makes it easier to create your programs and to maintain them.

Example data-entry program created with Fitrix Screen:

ring menu

menu
description

Current document is the first of a selected group of sixteen

Fitrix Screen Technical Reference

The Data-Entry Ring Menu 3-3

The Data-Entry Ring Menu
The standard data-entry ring menu can be found on most programs created with
Fitrix Screen. If you have the CASE Tools Enhancement Toolkit you can specify an
optional ring-menu which consists of pull-down menus. These Pull-Down Menus
offer greater flexibility as well as more commands. For more information about the
Pull-Down Menus refer to the Fitrix CASE Tools Enhancement Toolkit Technical
Reference.

The standard ring menu consists of ten default commands. These menu commands
give you the ability to perform a variety of operations on your records (documents).

The standard data-entry ring menu:

Add: Adds a new record.

Update: Modifies an existing record.

Delete: Deletes a record.

Find: Queries for a single record or group of records.

Browse: Views a summary of all selected records.

Nxt: Pages to the next record in the current group.

Prv: Pages to the previous record in the current group.

Tab: Views detail lines in current record.

Options: Contains custom menu options.

Quit: Quits the program.

Commands are executed from the ring menu by moving the highlight over the com-
mand and pressing [ENTER], or by typing the first letter of the command name.
Case is not significant in running the commands; both lowercase and uppercase
characters work. There are additional keys for executing some commands. For
example, the Quit command may be run with X or E in addition to Q. These extra

Fitrix Screen Technical Reference

3-4 The Data-Entry Interface

keys are noted in the descriptions that follow. In addition, operating system com-
mands may be executed from the ring menu command prompt by preceding the
UNIX command with an ! (exclamation mark).

The items of the Fitrix Screen data-entry ring menu may be modified to work dif-
ferently in an application. Usually these customizations to the ring menu check
conditions of the data before allowing use of the menu item. For example, a screen
for entering customer data may not allow the user to use the Delete option if there
are orders for that customer.

The Add Command

The Add command on the data-entry ring menu is used to add new rows to the
table. When you select Add by pressing an A or [ENTER] while the command is
highlighted, the system loads an empty row and takes you to the first column on the
screen. When you have filled one column you may move to the next or previous
column with the [ENTER] and arrow keys. When you have completed column
data-entry, press the [ESC] key to store the data. If you press the [DELETE] key
before pressing [ESC] the entry is aborted and the new record is not saved.

The Update Command

The Update command is used to modify data in existing rows. Once you have
located the row you wish to modify with the Find, Next, and Prev options, you may
change the data by typing U or pressing [ENTER] while Update is highlighted on
the ring menu. The Update command moves the data-entry cursor to the first col-
umn on the screen. You may enter new column data by typing over the current con-
tents and can move the cursor to the next or previous column with the [ENTER]
and arrow keys just as in the Add command.

Fitrix Screen Technical Reference

The Data-Entry Ring Menu 3-5

When you have completed updating the row press the [ESC] key to store the data
and return to the data-entry ring menu. If you press the [DELETE] key before
[ESC] the data reverts to the form it had before the Update command was run. This
is convenient when you accidentally change the contents of a column you did not
wish to change and do not wish to retype the original data. Pressing the [DELETE]
key returns the data to what it was when the last [ESC] was pressed.

The Delete Command

The Delete command is used to remove rows from a table. It may be executed with
the highlight or by typing a D. When you select the command from the ring menu
the system prompts:

Delete: Verify document deletion
Erase this document? (Y/N)

Answering the prompt with an n or N aborts the delete and returns to the ring menu
without removing that row. Answering with a y or Y removes the row and returns
to the ring menu above the now empty screen.

The Find Command

The Find command lets you locate rows by searching for certain patterns or ranges
of data. When you select Find by moving the highlight over the command and
pressing [ENTER] or by typing F at the data-entry ring menu, the screen presents a
"Query by Example" form. This screen looks like the regular data-entry screen but
allows you to type patterns and special "operators" into columns in order to locate a
row or set of rows.

If you select the Find command and then press [ESC], all rows are selected. If you
want to select a specific document or group of documents you can enter query pat-
terns into columns. Using query patterns to locate information allows the user the
flexibility to quickly access any row or group of rows in the table.

Fitrix Screen Technical Reference

3-6 The Data-Entry Interface

Relational operators such as > and < allow you to find rows with column values
greater than or less than an entered value. The : operator lets you find a range of
column values. The | helps you to locate rows by a list of acceptable column con-
tents. Using the * and ? wildcard characters allow you to match complex patterns in
"char" type columns.

The available operators and their functions are listed in the table below.

All operators may be used for any column with the exception of the wildcard oper-
ators, which work only in "char" type columns. Query searches are made by enter-
ing an operator and a pattern into one or more columns.

For example, to find all rows with last names that follow "Smith" in the alphabet
you would type >Smith into the Last Name column.

When you have completed entering search criteria into the columns of the Find
Query by Example screen, press [ESC] to perform the search. Find searches the
entire table and displays the first row to match the criteria on the screen. The indi-
cator at the screen bottom tells you how many rows in the table match your find cri-

Operator Relationship

= Equal to

> Greater than

>= Greater than or equal

< Less than

<= Less than or equal

<> Not equal

: Range

| Or list

? Single character wildcard

* Multi-character wildcard

Fitrix Screen Technical Reference

The Data-Entry Ring Menu 3-7

teria. If you see that your query is returning more rows than expected, you can
interrupt the query by pressing the [DEL] key. All of the rows found up to the point
at which [DEL] was pressed are displayed.

Sometimes the patterns used to locate rows exceed the physical column delimiters
on the screen. When you reach the end of a column while entering find criteria on a
query screen your cursor jumps to the lower left corner of the screen allowing you
to keep entering characters and building your selection criteria.

The following example shows patterns entered into a Find screen to locate all
orders placed between September 20, 1986 and December 20, 1986
(09/20/86:12/20/86) where the customer number exceeded 109. The size of the
field places no limitation on the criteria you can specify for a Find. In such cases
the field continues at the lower left hand part of the form.

The Browse Command

The basic purpose of the Browse command is to display a summary of all selected
documents on a Browse form. The Browse form is a scrolling array which allows
you to quickly pick out the document you want to view or modify.

Entering selection
criteria that is larger
than the visible field

continues on the
 bottom left portion of

the form.

Fitrix Screen Technical Reference

3-8 The Data-Entry Interface

In order to use a Browse form with a scrolling array, a browse.per form must
exist in the program directory. The browse.per form is created much like the
main data-entry .per form. Even if you do not create a Browse form for your pro-
gram the Browse function is still available, but only one document can be displayed
at a time.

If your program does not have a browse.per, the Browse option changes the
ring menu to display the following commands:

Programs that do include a Browse screen show a slightly different list of com-
mands:

The ellipsis (…) indicate that other commands exist on the command line—they
cannot all be shown at once. The commands not shown in the graphic above are
accessed by moving the highlight to the far right, or by pressing the up or down
arrow keys. Commands not shown in the graphic above are Goto and Quit.

The next two sections describe the commands found on the browse form and the
browse commands available when a browse form is not used.

Browsing With a Browse Screen
When you first select Browse from within a program with a Browse Screen, the
system opens the browse window and displays the first n rows in the table (where n
is the number of lines on the browse screen) beginning with the current row shown
on the data-entry screen. If you have previously selected a set of rows with the Find
command, the window displays only rows from the active set.

Fitrix Screen Technical Reference

The Data-Entry Ring Menu 3-9

The sample below shows a Browse screen for the orders table of the stores
database detailed in the INFORMIX-4GL manuals:

The top row is highlighted. You can move the highlight and scroll through rows
with the browse commands. Browse commands are executed like all Fitrix Screen
ring menu commands: by moving the highlight over the command and pressing
[ENTER] or by typing the first letter of the command. After you exit the Browse
option, the current row on the data-entry screen is the one that was highlighted on
the browse screen. If you press the [DEL] key to exit you return to the original row
(the one loaded when you selected Browse) rather than going to the one highlighted
on the browse window.

You must exit Browse before you may update data.

Fitrix Screen Technical Reference

3-10 The Data-Entry Interface

Next: Moves the highlight to the next sequential row.

Prev: Moves the highlight to the previous row.

Up: Moves up through the preceding rows one "page" at a time.

Down: Moves downward through succeeding rows one page at a time.

Top: Loads the first page of the active set (all rows of the table if the Find com-
mand has not been run) into the browse window.

Bottom: Displays the last page of rows.

Select: Selects the row currently highlighted. The selected row becomes the cur-
rent document.

Goto: Access a row by typing the number of its order in the sequence of selected
records (the active set). When you run Goto, the system prompts you for the num-
ber with a message like:

After you type in a number between 1 and 24 and press [ENTER] the program dis-
plays that row highlighted in the first line on the browse form, and fills in remain-
ing browse lines with the subsequent rows.

Quit: Closes the browse screen and returns to the data-entry form without selecting
a row. The document current prior to selecting the Browse command remains cur-
rent.

Browsing Without a Browse Screen
Since programs without a Browse screen use the original data-entry screen for the
Browse option, only one row is displayed at a time. The Browse menu options also
differs slightly.

First: Loads the first row of the selected group of rows.

Last: Loads the last row of the selected group of rows.

Next: Loads the next row in the sort order sequence.

Prev: Loads the preceding row in the sequence.

Fitrix Screen Technical Reference

The Data-Entry Ring Menu 3-11

Goto: Displays specified row. Selecting this option prompts for the number of the
row to load. Enter the number of the row in the sort sequence for the table and press
[ENTER] to load the row into the screen. The row specified is displayed in the
Browse form.

The Next Command

Using the Next command loads the next sequential row into the data-entry screen.
Use the highlight or N key to select the Next command. You determine the
sequence of rows for the individual program when you run the Code Generator. If
you have used the Find command to select a set of rows, Next takes you to the next
sequential row in that active set.

When the current row is the last one in the active set, Next loads the first row in the
set.

The Prev Command

Prev is the opposite of the Next command. Selecting Prev loads the previous row of
the defined sequence. Like Next, Prev displays only those rows in the active set. If
you have run the Find command, Prev finds the previous record matching the Find
search criteria. Running Prev when the current row is the first row in the active set
loads the last row of the set.

Fitrix Screen Technical Reference

3-12 The Data-Entry Interface

The Tab Command

The Tab command is used in header/detail files to move from the header portion of
the screen to the detail portion to view detail lines. Tab may be executed from the
data-entry ring menu by highlighting the command and pressing [ENTER], typing
a T, or by typing [CTRL]-[i].

While the screen cursor is in the detail line window, special detail line commands
are available:

These commands are described in "Detail Line Commands" on page 3-13.

When the screen cursor exits the first column in the detail lines (with the [UP
ARROW] key), the rows shift downward one line. If there are no more rows pre-
ceding the top line, the [UP ARROW] key causes an error message to appear:

There are no more rows in the direction you are going.

The same message appears when you press the [DOWN ARROW] key on the line
of the last row for that header (if you are not updating data).

The Options Command

The Options command leads to a ring menu which may contain additional com-
mands. This Options ring menu is typically the place where you would integrate
new commands into the existing data-entry ring menu. In the absence of additional
commands, the display resembles the following:

Fitrix Screen Technical Reference

Detail Line Commands 3-13

The Quit Command

The Quit command of the data-entry ring menu ends the program. In addition to the
highlight, you can quit by typing an E, Q, or an X.

Detail Line Commands
You may access the detail lines from the data-entry ring menu or with the [TAB]
key while updating the screen. Tab is executed from the ring menu by highlighting
the command and pressing [ENTER], pressing the [t] key, or pressing the [TAB]
key.

When you access detail lines from the ring menu you are not allowed to update the
detail line columns. When you press [TAB] while in Add or Update mode, you are
allowed to both modify and add rows to the detail lines.

Although the detail line commands display only when you have run Tab from the
menu, they are also available when you are updating the lines. The arrow keys
move the screen cursor to the preceding or following line respectively. Typing an
[UP ARROW] while on the top line of the screen displays the previous "page" of
lines and, similarly, pressing a [DOWN ARROW] while on the last line of screen
displays the following "page" of lines.

Pressing an [UP ARROW] while on the first detail row associated with the header
row produces the error message below:

There are no more rows in the direction you are going.

If you are not updating lines, pressing [DOWN ARROW] or [ENTER] while on the
last row produces the same message.

You may also "page" detail lines with your function keys. The [F3] key displays the
next page and [F4] displays the preceding page. Paging in a direction with no more
rows produces the aforementioned error message.

Fitrix Screen Technical Reference

3-14 The Data-Entry Interface

Saving Your Data
While adding or updating a document you press [ESC] to store data or [DEL] to
abort the changes and return to the previous data. When [DEL] is pressed, the fol-
lowing prompt appears:

The prompt clarifies that the [DEL] command cancels only those changes made
since the document was last stored. If you respond with N, the changes remain and
you continue in the Add or Update mode. If you respond with Y, the changes since
the last store ([ESC]) are deleted, and you are returned to the ring menu.

The Zoom Form
You can assign a zoom form to any field in a document. The Zoom function allows
you to call up a form displaying information about the field you are currently in, or
to call up a default form from another zoom form. The Zoom function is useful in
situations when you must enter valid data that has already been defined, such as a
customer number. By Zooming into the customer number field, you can select a
valid customer number from a list.

Whenever a zoom form is available, the word (Zoom) appears on the upper right
corner of the main data-entry form. The zoom form can be accessed by pressing
[CTRL]-[z].

The zoom form:

Fitrix Screen Technical Reference

The Zoom Form 3-15

Calling up a zoom form first displays a selection criteria form which allows you to
limit the selection of data to display on the Zoom. For example you could choose to
display only customers with last names that begin with an s by typing "s*" in the
Lastname column and pressing [ESC].

Notice the commands at the top of the zoom form. Pressing [TAB] displays the fol-
lowing menu:

Each of these commands may be executed like any other ring menu command: by
highlighting it and pressing [ENTER] or by typing the first letter of the command.
For more information on the Zoom feature refer to "The Zoom Form" on page 3-14.

The Find Command (Zoom)
The Find command allows you to search for a specific piece of information. For
instance, if your zoom form displays information from your customer table and you
do not remember the customer code of the customer you want to select off the top
of your head, you could enter the first few letters of the customer code. If you enter
HAF*, then all of the customer codes that begin with HAF are displayed on your
zoom form. You can then move the highlight to the customer you want to select.

All of the find criteria available to the main data-entry form can be used to help
limit your selection of items.

The Sort Command (Zoom)
The Sort command allows you to easily specify the field by which the selections are
sorted. Typing S displays the following ring menu:

Sort: [ESC] when done, [DEL] to Cancel
Enter ANY valid data into the column to sort by.

To select the columns you want your selection sorted by, use the [TAB], [ENTER],
and arrow keys to move the highlight to the appropriate column, then type any valid
character. For example, typing an a in the First Name column causes the items to be
sorted alphabetically.

Fitrix Screen Technical Reference

3-16 The Data-Entry Interface

The Tab Command (Zoom)
When the cursor is in the zoom form’s ring menu, use the Tab command to return
to selection mode where you can continue viewing the items and make your selec-
tion.

In select mode, when the cursor is in the detail lines, use the [TAB] key to return to
the Zoom ring menu.

The Quit Command (Zoom)
The Quit command causes you to leave the zoom form without selecting anything.

The AutoZoom Feature
Another feature of the Code Generator is the AutoZoom. AutoZoom is a quick ver-
sion of the regular Zoom feature. AutoZoom allows you to bypass function keys
([CTRL]-[z]) and the normal selection criteria form. AutoZoom is automatically
enabled in all character fields in which the regular Zoom is enabled. You execute
the AutoZoom when you enter an asterisk in a character field that supports Zoom
functionality. This selects all documents that match the data in the field and dis-
plays them on a zoom form. For example, the AutoZoom enables you to call up a
list of all the customer orders whose manufacturers’ names begin with H. This
gives you very rapid access to the information you need even if you don’t remem-
ber a manufacturer’s full name. It also reduces the amount of typing you need to do.
For more information on the AutoZoom feature refer to "Creating a Permanent
Zoom Filter" on page 10-62.

Fitrix Screen Technical Reference

Introduction to Lookups 3-17

Introduction to Lookups
Lookups evaluate the data that is entered into a field and match that data against
data in any table. A lookup placed on a field serves two purposes: verification, and
to retrieve related data from a table.

1. Verification - lookups verify that a value entered in a field exists in another
table. For example, on an order entry screen, the customer field has a lookup on
it to verify that the value entered exists in a customer table. If the user entered a
value that did not exist in the customer table, the lookup would cause the fol-
lowing error message to occur:

 "Value is not in the list of valid data"

Following diagram illustrates a verification lookup.

2. Looking up data - lookups are used to pull data out of tables. When the user
enters a value into a field, a lookup can pass that value to a table and retrieve a
corresponding value into an adjacent field. For example, when the user enters a
value into a customer code field on an order entry screen, a lookup can take that
value and "lookup" the customer name in the customer table and place the cus-
tomer name into a customer name field.

cust. no. cust. name cust address cust phone

100

56

67

70

89

100

lookup

main table

lookup table

request
value is valid

Fitrix Screen Technical Reference

3-18 The Data-Entry Interface

The following diagram illustrates a data retrieval lookup.

For more information on lookups refer to "Defining Lookups" on page 7-23.

cust. no. cust. name cust address cust phone

100

Fred 201 B. St. 2033334567

56

67

70

89

100

lookup

main table

lookup tablerequest

retrieved
data

Fitrix Screen Technical Reference

Program Information Menu 3-19

Program Information Menu
All data-entry applications generated by the Code Generator include a Program
Information menu. This menu contains options which provide additional function-
ality as well as program-level information.

The Program Information menu is accessed via the default Hot Key setting
[CTRL]-[y]. Another method for displaying this menu is discussed in "Hot Keys
Menu" on page 3-22

Once selected, the Program Information menu appears on top of the current form as
follows:

Five options appear on the menu. Use the arrow keys to position the cursor over the
desired option. The [ESC] key selects the option. These options are explained next.

Viewing Program Acknowledgements
The first option on the Program Information menu is titled Acknowledgements.
This option displays the Software Acknowledgements form, which displays all
acknowledgements pertaining to the particular program.

Fitrix Screen Technical Reference

3-20 The Data-Entry Interface

The Software Acknowledgements form.

This form displays the default Code Generator comments as well as any acknowl-
edgements added to the default forms by the programmer.

The window that displays the acknowledgements varies in size depending on the
text shown.

Entering Feature Requests
The Code Generator provides applications with the ability to allow users to store
feature request ideas without significantly disrupting the flow of work.

When the Feature Request option is selected, a form appears allowing you to enter
a request.

Fitrix Screen Technical Reference

Program Information Menu 3-21

The Feature Request form is the interface through which user comments are trans-
ferred to the local errlog file established in the current directory. All comments
stored on this form are written to the errlog file as soon as the user exits the
application. The errlog file is also written to automatically by fatal errors, and
deliberately by users logging the text of an error message through the Errors form.
The system administrator or programmer can read through the local errlog file to
gather information on error messages or features requested by users.

Like all unstructured text-entry forms created with the Code Generator, this form
allows usage of the Informix edit keys.

The Zoom feature is available from the Software Feature Request form. The Zoom
leads to the Default Software Feature Request form, which provides you or the sys-
tem administrator an opportunity to specify prompts or messages for those who
enter feature requests. Information on the Default Software Feature Request form
appears on the Software Feature Request form. The user may edit, modify, or delete
the default text prior to storing the feature request.

Program Status
The Program Status option on the Program Information menu provides users with a
snapshot of current program information. When selected, this option displays a
form containing the Code Generator version number, database name, program ID,
screen ID, current field, and the current value of the status variable.

The Technical Status form resembles the following illustration:

Fitrix Screen Technical Reference

3-22 The Data-Entry Interface

The Technical Status form is view-only. This form can also be viewed (with more
specific information) from the Error Detail ring menu.

Navigate Menu
The Code Generator creates code that handles actions in the form of events, sepa-
rate from the keys used to invoke them. Due to this structure, events can be
assigned (and re-assigned) to a particular key or keystroke combination. Known
events are listed on the Navigate menu.

Navigation is a User Control topic; the Navigate menu only appears when the
Enhancement Toolkit is present on the system. If you do have the Enhancement
Toolkit, refer to the Fitrix CASE Tools Enhancement Toolkit Technical Reference.

Hot Keys Menu
The Hot Keys option on the Program Information menu provides an instant refer-
ence to the default Hot Key settings. When this option is selected, the Hot Keys
form is displayed. The Hot Keys form contains a list of events currently associated
with keys or keystroke combinations. The form appears as follows:

The user can scroll through the definitions with the arrow keys or page with the
[F3] (page down) and [F4] (page up) keys.

If the user presses [ESC] to select a hot key definition, the event (if any) associated
with that key is carried out.

Fitrix Screen Technical Reference

Program Information Menu 3-23

Applications installed with the Enhancement Toolkit allow users to redefine exist-
ing Hot Key definitions. In the absence of the Enhancement Toolkit package, users
have access to several predefined Hot Key settings that cannot be modified.

Fitrix Screen Technical Reference

3-24 The Data-Entry Interface

Default Screen Attributes
Code generated with Fitrix Screen is given default screen display attributes. These
attributes serve as display conventions, and enhance the consistency of applica-
tions.

Attribute Conventions
Windows:

• First window (border only)—blue (dim).

• All other windows (and their forms)—white (regular).

Display statements:

• Program information (Press [ENTER], etc.)—never has attributes (i.e., shares
the attribute of the current window).

• Data—display in attribute(red) (all display and display array statements have
attribute(red)). This prints as bold on non-color terminals.

During Input:

• When entering a data field—display with attribute(reverse).

• When leaving the data field—display with attribute(red).

During Input Array:

• The input array does not follow the last displayed attribute (like input) and it
changes the attribute of all data to that of the window. The convention is to
show the data in attribute(red) while not in the input array statement, and show
the data without an attribute during input array.

• Entering a data field—display with attribute(reverse) (like input).

• Leaving a data field—re-display without an attribute. (i.e., same attribute as the
current window).

• Leaving input array statement—re-display screen array in attribute(red). This
restores the screen array to the original color before the input array statement.

Part Two

The Form Painter

4-1

4
Form Painter
Basics

This section of the documentation covers:

n Pull-down menus in the Form Painter

n Active/inactive menu options

n Symbols displayed with menu options

n Using on-line help in the Form Painter

Fitrix Screen Technical Reference

4-2 Form Painter Basics

Form Painter Menus
The Fitrix Screen Form Painter interface provides pull-down menus relating to
form specification. The appearance and usage of these menus is the subject of this
section of the documentation. The purpose of the individual options on pull-down
menus is the subject of the next section in this manual.

The Form Painter contains five pull-down menus that you can access through com-
mands on the menu line. Each pull-down menu can be displayed by using the arrow
keys to highlight the appropriate command and then pressing [ENTER], or by typ-
ing the first letter of the command (e for the Edit pull-down menu). Immediately
below the menu line is the Prompt line, which displays a brief description of the
highlighted command.

The appearance of the options listed on the pull-down menus varies depending on
the current situation. The system indicates whether an option is accessible—an
option that is not accessible appears dimmed, with a preceding exclamation mark.
For instance, if no form has been made current (the editor screen is blank), a "save"
option is meaningless. The save option then appears on the pull-down as follows:

The exclamation point is added in case a terminal does not have dim/bright
attributes. In short, if an option appears bright on the terminal screen (colored red if
you have a colored terminal) without a preceding exclamation point, it is currently
accessible.

menu line

options marked with an !
are currently unavailable

Fitrix Screen Technical Reference

Form Painter Menus 4-3

Some options appear with symbols appended to them. Options followed by ellipses
(...) lead to a pop-up window requiring data-entry. An example is found on the
Form pull-down menu. The New... option leads to a pop-up window with a prompt
for you to specify the name of the form being created.

Options that display the "greater than" symbols (>>) display a pop-up window con-
taining a list of possible selections. For instance, the Open >> option opens a win-
dow and displays a list of existing form names for selection.

Open form window

Table Information form

Form pull-down menu

Options followed by a >>
display a pop-up window

that contains a list of
choices.

Options followed by a ...
display a pop-up window
that requires data entry.

Fitrix Screen Technical Reference

4-4 Form Painter Basics

The File Pull-Down Menu
The File command on the menu line is used to access options that relate to manag-
ing forms. Select the File command to view a list of options contained on the File
pull-down menu.

The File pull-down:

An option’s accessibility on the File pull-down menu depends on whether there is a
current form. That is, if there is no current form, options relating to saving or clos-
ing a form are irrelevant and cannot be accessed even though they are visible on the
menu.

Fitrix Screen Technical Reference

The Edit Pull-Down Menu 4-5

The Edit Pull-Down Menu
The Edit command leads to a pull-down containing options commonly used when
revising forms. The Edit pull-down menu also contains an option used to toggle
between Novice and Expert modes. For more information on modes, see the section
"Defining Fields and Forms."

The Edit pull-down menu:

The Define Pull-Down Menu
The Define command leads to a pull-down containing options used to define fields
and forms. Since options on this menu are form-specific, they are inaccessible until
a form is made current. The only exception is the Copyright Text option, which is
used to modify global information regarding source code control and copyright(s).

The Define pull-down menu:

Fitrix Screen Technical Reference

4-6 Form Painter Basics

The Run Pull-Down Menu
The Run command displays a pull-down containing options for compiling forms,
generating code, compiling code, and running applications.

The Run pull-down menu also contains the Navigate option. Navigation is a power-
ful feature for carrying out pre-established events on the system without losing your
current place. Navigation becomes even more useful when you assign navigation
events to Hot Keys. Both the Navigate and Hot Keys features are documented in
the Fitrix CASE Tools Enhancement Toolkit Technical Reference.

The Run pull-down menu:

The Help Pull-Down Menu
The Help command allows you to access options that provide reference information
on aspects of the Form Painter. The Help pull-down menu also includes an option
for context-sensitive help information.

The Help pull-down menu:

Fitrix Screen Technical Reference

Using Form Painter Online Help 4-7

Using Form Painter Online
Help
Online help is available to those working with the Form Painter. Help can be
accessed by topic through the Help pull-down menu. In addition, context-sensitive
help can be accessed by pressing [CTRL]-[w] from any point in the Form Painter.

Form Painter Topic Help
In order to view help text for a topic regarding the Form Painter, select the Help
command. The Help pull-down menu contains main topics under which the topic-
based help text is organized. The Help pull-down menu appears as follows:

The greater than signs (>>) following each option on the Help pull-down menu
indicate that selection leads to a picker list containing subtopics. For example, if
you select the option Defining Fields >>, you see the following picker list of help
text subtopics:

Fitrix Screen Technical Reference

4-8 Form Painter Basics

To scroll through the list of subtopics for which help text is provided, you can use
the up and down arrow keys, or page with the INFORMIX-defined [F3] and [F4]
paging keys. Use the [ESC] key to select a topic. Once you select a topic, the Help
form appears, displaying the help text defined for the selected topic.

The Help form appears as follows:

The commands on the command line of the Help form are explained below:

Info: Leads to the Program Information Menu, which contains a list of five selec-
tions. For information on the Program Information Menu refer to "Program Infor-
mation Menu" on page 3-19.

View: Used to scroll through the text displayed on the Help form. The INFOR-
MIX-defined cursor movement keys (arrow keys, [F3], and [F4]) are available
while viewing the text.

Update: Selected to enter or modify help text. To store text entered on the form,
use the [ESC] key.

Quit: Exits the Help form and returns you to your position prior to entering the
Help form.

Context-Sensitive Help Text
Context-Sensitive help text is available from any place in the Form Painter by
pressing [CTRL]-[w]. A Help form appears containing information pertinent to
your current location.

5-1

5
Managing Forms

This section covers the following:

n Creating a new form

n Opening a form

n Saving a form

n Automatic Saves

n Closing a form

n Deleting a form

n Establishing software acknowledgements

n Printing a form

Fitrix Screen Technical Reference

5-2 Managing Forms

Creating a New Form
The New option on the Form pull-down menu lets you create a new .per form.

The Form Painter has two operating modes: Expert and Novice. The operating
mode is determined by toggling the Expert/Novice option on the Edit pull-down
menu. In Novice mode, the number of choices you have for various options is lim-
ited. The operating mode in which you are currently operating has an effect on the
actions that take place following the selection of the New option. If you are operat-
ing in Expert mode, you first see a pop-up list. The list contains the types of forms
that can be created.:

If you operate in the Novice mode you do not see this list; Novice mode is used
strictly for header-only forms. More information about Expert and Novice modes
can be found in "Novice and Expert Modes" on page 7-2.

Form types are discussed in "Creating Screen Forms" on page 10-1.

After selecting the type of screen, a dialog box appears prompting for the new form
name. The form appears as follows:

You can enter a form name up to seven characters long. This length is an estab-
lished naming convention. The extension ".per" is appended to all form names
when the file is saved.

Fitrix Screen Technical Reference

Opening a Form 5-3

Note

Use the AutoForm feature to quickly create a new form using all columns in a
table. Refer to "Using the AutoForm Feature" on page 9-6.

Opening a Form
The Open option on the Form pull-down menu lets you open an existing .per form.
The "greater than" symbols next to the name of the option indicate that selection
leads to a pop-up window containing a list box of existing file names.

The list box displays forms in the current directory less their .per extension.

The cursor can scrolled with the arrow keys. You can use the INFORMIX-4GL
paging keys ([F3] and [F4]) to page through the current list of forms. If [F3] and
[F4] don’t work, you have a problem with the termcap settings for your terminal.
Please refer to "Writing Termcap Entries" on page G-6.

Database vs. Disk Copies of a Form
The Form Painter stores form file information in the database. This constitutes a
separate source of data (apart from the disk .per file) from which you can open a
.per form.

Fitrix Screen Technical Reference

5-4 Managing Forms

When you open an existing form file, the information is normally read in from the
database, not from the .per file on disk. If the information in the .per file on disk is
newer than the information in the database, a prompt appears asking whether the
disk version should be reloaded, thus updating the database copy.

A dialog box appears as follows:

Selecting YES causes the system to parse in the data from the disk version of the
form file, overwriting the database copy. Selecting NO causes the system to load in
information from memory, not from the disk .per file. Selecting CANCEL cancels
the process of opening a file.

The benefit of storing form file information in both disk and database formats is
that if the disk version of the .per somehow becomes corrupted or lost, you can
restore the form from the information stored within the database.

Fitrix Screen Technical Reference

Opening a Form 5-5

.per Form Requirements
In order for a .per form to load correctly into the Form Painter a number of condi-
tions must be met. Read this section if you want to load .per files into the Form
Painter that were not created by the Form Painter.

A .per form needs to contain the following attributes:

• It must conform to the INFORMIX-4GL form style.

• The Form Painter requires .per forms to have the following five sections:
DATABASE, SCREEN, TABLES, ATTRIBUTES, and INSTRUCTIONS.
(INFORMIX form specification files do not require an INSTRUCTIONS sec-
tion.) In addition, a FGSS section is required any time you want to use Math,
Zoom, Lookup, or Triggers.

• If the .per contains a FGSS section the word FGSS must be located at the begin-
ning of this section and the F in FGSS must appear in the first column.

• Field tags must be less than 6 characters long.

For more information on the specific attributes that compose a .per form, refer to
"The .per Specification File" on page B-1.

Troubleshooting a Non-Generated .per
File
If you are loading a .per file created with vi into the Form Painter to work with, and
you get the following error:

-4500
 A numeric conversion error has occurred due to
 incompatibility between a calling program and
 its function parameters or between a variable
 and its assigned expression.

You need to go through the .per file that is causing the problem and make sure all
field tags defined in the screen section are also all defined in the attribute section.

Fitrix Screen Technical Reference

5-6 Managing Forms

Saving a Form
Forms can be saved at any stage of development; you can save forms as incomplete
"fragments" or as complete .per files ready for compilation.

It is important to know that the Form Painter stores form file information in the
database—this constitutes a separate source of data from which a .per form can be
written. Unless you modify the .per file outside of the Form Painter program, the
database always contains the most current copy. When you exit a file, your only
decision is whether to update the disk copy (the actual .per file) with the informa-
tion from the database. That is, if the form file is incomplete, you may not want to
spend time saving it as a complete .per file. In that case, you can choose not to save
it as a .per file, and then exit without deleting the database copy.

If the .per file becomes corrupted or deleted, the database information for that file
can serve as a backup, restoring the form to the state in which it was last written to
disk.

The deliberate method of saving a form file as a .per file involves using the Save
option on the Form pull-down menu. Once you select it, the Form Painter composes
the form information into a structured .per form specification file, ready for code
generation.

A second method for saving the current form file into a .per file is provided when
you exit the current file without having saved it prior to the last edit. That is, as you
close a file, attempt to open a new file, or attempt to exit the Form Painter, a prompt
appears providing an opportunity to save the current form as a .per file.

The prompt appears as follows:

YES: Writes the completed .per file.

CANCEL: Cancels the operation and returns control to the Form pull-down menu
without saving the current file.

Fitrix Screen Technical Reference

Saving a Form 5-7

NO: Displays a new prompt providing the opportunity to retain the incomplete
file—it is not written as a .per file but is retained in the database.

This prompt appears as follows:

The Form Painter maintains a database copy of files you create with the Form
Painter. The previous prompt determines whether the file should be removed from
the database (YES) or simply retained as an incomplete file (NO).

Saving a Form Under a New Name
A separate option on the Form pull-down menu allows you to save the current file
under a new name. This option is titled Save As. After selecting this option, the
Form Painter produces a pop-up window containing a prompt for a new file name.
The window appears as follows:

When the new name is entered, the Form Painter composes and saves the file under
the new name. Once the save is completed, the cursor reappears in the Form Editor.
Although you save the information to a new file, you continue to work with the
"old" file.

Automatic Save
The Form Painter does not require that the .per file on disk be the master copy of
the form. The generator, compiler, and printer, on the other hand, require that the
.per file be the master copy of the form.

Fitrix Screen Technical Reference

5-8 Managing Forms

The current form is saved automatically and composed into a structured .per form
specification file when you select the Compile Form option on the Run pull-down
menu.

When you execute the Compile Form option, the Form Painter checks to determine
whether the file has been modified since the last save. If there have been changes
since the last save, the form file is automatically composed and saved prior to com-
pilation.

Likewise, the Generate 4GL option performs an automatic save if you have made
changes more recent than the modification date for the file.

The Print option on the Form pull-down menu also causes the database information
to be written out to the .per file, depending on whether the database information is
newer.

Saving an Incomplete Form
An incomplete form is one that has not been written as a complete .per file. There is
only one method for saving an incomplete form. You must first select one of the
following options: Close, Exit, Quit, or New. At the first prompt, choose not to save
the file as a .per file.

Next, choose not to delete the database information for the form file.

Fitrix Screen Technical Reference

Closing a Form 5-9

This way, the incomplete information in the form file remains in the database, but is
not written out to disk. At the next editing session, you can simply select the form
file by name; the system loads the form file from the database.

Closing a Form
Use the Close option on the Form pull-down menu to close the current file. Files
get closed when loading another file or exiting the Form Painter.

As long as a file is current, its name appears centered on the line below the Prompt
line.

Example:

The Close option clears out text on the Form Editor and removes the filename dis-
play. If you have modified the file since the last time you saved it, a prompt (similar
to the one displayed previously in this section) sequence appears to ask you for
storage instructions.

When the Close option appears on the Form pull-down menu preceded by an excla-
mation mark (and/or dimmed), there is no current file and, hence, no file to close.

form title

Fitrix Screen Technical Reference

5-10 Managing Forms

Deleting a Form
The Delete option on the Form pull-down menu allows you to delete existing .per
form specification files. Once the Delete option is selected, a picker list appears,
displaying each .per file in the current directory. To delete a file displayed in the
picker list, simply select that file. A verification prompt next appears, requesting
confirmation on the delete command. Answering yes deletes the selected file. The
.per file is deleted from both the disk and the database.

The Delete Form prompt:

Recovering a Deleted File
When you delete a form with the Delete Form option, the physical .per file is not
actually removed from the disk but rather it is moved from the current directory to
the /tmp directory. This means that if you accidently delete a form, you may be
able to recover it by copying the .per form from the /tmp directory back to the
original directory.

Fitrix Screen Technical Reference

Establishing Software Acknowledgements 5-11

Establishing Software
Acknowledgements
You can establish software acknowledgements for applications you create and gen-
erate with the Form Painter. While the acknowledgement text does not appear on
the .per form, it is attached to the application code during generation with the Fitrix
Screen Code Generator.

There are three stages to creating acknowledgements:

1. The Software Acknowledgements form.

This view-only form is displayed when the end-user selects the Acknowledgements
option from the Program Information Menu. This form displays the default Code
Generator comments as well as any acknowledgements added to the following two
forms.

The window that displays the acknowledgements varies in size depending on the
text shown.

Pressing [CTRL]-[z] displays the following Acknowledgements form.

Fitrix Screen Technical Reference

5-12 Managing Forms

2. The Acknowledgements form.

This form enables you as the developer to add any type of acknowledgements you
wish to your programs. Text added on this form shows up on the Software
Acknowledgements form for this particular program only.

Pressing [CTRL]-[z] displays the following defaults form.

3. The Acknowledgements (default) form.

This form allows you, as the developer, to add default acknowledgement text to
every Software Acknowledgement form in the application.

Fitrix Screen Technical Reference

Printing a Form 5-13

Printing a Form
Use the Print option on the Form pull-down menu to print an existing .per form
specification file. The Print option uses the value currently found in $SPOOLER;
the default is lp. If lp is unsuitable for your system, you need to adjust the value
of $SPOOLER.

If any changes have been made since the last time you saved the form, the Form
Painter automatically saves the form prior to printing. The Print option leads to a
window containing a picker list, which allows you to specify the file you want to
print.

Use the INFORMIX-defined [F3] and [F4] paging keys to scroll through the list.
Select a form by moving the cursor to the proper row and pressing [ESC].

Fitrix Screen Technical Reference

5-14 Managing Forms

6-1

6
Editing Forms

This section covers:

n The Form Editor

n Editing keys

n Undoing edits

n Centering text

n Using the text Clipboard

n Marking, cutting, and copying text blocks

Fitrix Screen Technical Reference

6-2 Editing Forms

The Form Editor
The bottom section of the Form Painter interface is called the Form Editor. The
Form Editor displays the image of the form. It is here where the image of a form is
created.

The Form Painter Edit
Commands
The only time the cursor appears in the Form Editor portion of the screen is when a
form file is current. When a form is current, the cursor can be toggled back and
forth between the Form Editor and the menu line by pressing the [ESC] key. You
can also switch from the menu line to the Form Editor by executing the Edit Form
option, found on the Edit pull-down menu.

menu line

The Form Editor
displaying a

sample form.

Fitrix Screen Technical Reference

The Form Painter Edit Commands 6-3

When the cursor is in the Form Editor, you have access to a number of INFOR-
MIX-defined editing keys. The Form Painter uses additional keys that enhance the
"painting" environment. The table shown in this section lists Form Editor keys and
their significance.

Keys Action

[CTRL]-[a] toggle between insert and overstrike

[CTRL]-[x] delete character

[CTRL]-[d] delete to the end of the line

[CTRL]-[u] undo an edit

[CTRL]-[v] mark/copy

[CTRL]-[t] cut

[CTRL]-[p] paste

[CTRL]-[w] context help

[F1] insert a blank line

[F2] delete a line

[ENTER] move to the beginning of the next line

[HOME] move to the top left corner of the form

[define a new field

] lengthen an existing field

[ESC] toggle between command and edit mode

[DEL] go to command mode

Fitrix Screen Technical Reference

6-4 Editing Forms

It is worth noting here that the INFORMIX termcap definitions are used. If you find
that the keys shown in the previous table do not operate as expected, the problem is
likely to be in the termcap definition used for your particular terminal. For informa-
tion regarding the specification of termcap definitions, please see "Writing Term-
cap Entries" on page G-6.

Undoing the Previous Edit
The Form Painter editor allows you to "undo" your previous edit with the Undo
option on the Edit pull-down menu. The Form Painter interprets an edit as the most
recent single change—typically the result of one command. For instance, the fol-
lowing list of edits are all considered individual, and could be reversed with the
undo command:

• deleting text to the end of a line ([CTRL]-[d]). The undo command restores all
characters deleted by this action.

• adding a single, contiguous line of text to a form. The undo command applies to
all text entered on the same line since the last time the [ESC] key was pressed.

• using [CTRL]-[x] (within a defined field) to shorten the length of a field. The
undo command returns the right delimiter (]) to its original position.

• reversing uninterrupted deletions using [CTRL]-[x]. The undo command, when
used immediately, restores contiguous characters deleted successively.

• undoing a cut replaces an entire block of text if it was marked and cut.

• undoing a paste replaces a block of text that was pasted into the form from the
Clipboard.

• undoing an "undo" reverses the effect of the undo command just executed.

The undo command only affects the latest edit. For example, assume the undo com-
mand (when first pressed) removes the last word typed. If executed again (with no
subsequent changes), undo restores the removed word.

Fitrix Screen Technical Reference

Centering Text on the Form 6-5

Centering Text on the Form
The Edit pull-down menu offers an option enabling you to center any line specified
on a form. First, place the cursor on an existing line of text. Next, select the Edit
pull-down menu, and then the Center option. The system automatically provides
the required number of spaces to the left of the text line so the line is centered on
the form.

Working with the Clipboard
The Fitrix Screen Form Painter offers a number of options for working with large,
contiguous blocks of text. This part of the documentation explains the use of the
Clipboard as well as the Mark, Cut, and Paste features.

Using the Clipboard
The Form Painter allows you to mark any current block of text on the Form Editor
and cut or copy it to the Clipboard where you can later retrieve and use it. Think of
these individual blocks of text as Clipboard "pages." The discussion first focuses on
how to use the pages on the Clipboard. Next, the focus turns to methods for adding
pages to the Clipboard.

Data stored in the Clipboard by any given user is retained in the form of pages. The
most recent 100 titled pages are preserved in a stack for later use. When you store a
new page on the Clipboard, the oldest page is "pushed off" the end of the stack. The
stack of titled clipboard pages is maintained for use in future editing sessions. In
order for a Clipboard page to remain on the stack from one Form Painter session to
the next, you must give it a title. The topic of titling pages is addressed later in this
section.

The Clipboard is most effective as a time-saver when you perform repetitive tasks.
Instead of typing several identical lines, you can type one line, copy it to the Clip-
board, then paste it several times. You can also use the Clipboard to copy sections
from existing data screens, then paste those sections into a new screen.

Fitrix Screen Technical Reference

6-6 Editing Forms

To display the Clipboard, select the Clipboard option on the Edit pull-down menu.
The clipboard page at the top of the stack is displayed in a full-sized window on the
editor form. The cursor appears on the Clipboard command line, allowing you to
select from a number of Clipboard-related commands. The following diagram illus-
trates the general format.

The Clipboard command line offers seven commands for use with the individual
pages.

Think of clipboard pages as documents in a file; they can be titled (Update), viewed
(Next, Prev, Browse), deleted (Delete), or selected for pasting into the current doc-
ument (Select). The commands are outlined below:

Update: Name or rename the current page. You must title blocks of text (pages)
you plan to use in the future. When you exit the Form Painter, all untitled Clipboard
pages are automatically removed. When you select the Update command, the
prompt line changes to the following:

 Enter title:

Enter the title you intend to give the text page currently shown in the clipboard win-
dow. Press [DEL] instead of [ESC] if you decide against storing the text page under
the title specified at the prompt. The standard INFORMIX-defined edit keys are
available. For more information on how the Form Painter Clipboard titles pages
refer to the discussion of the Cut option on page 6-11.

Delete: Delete a page in the Clipboard stack.

Browse: View a list of pages. This command draws a Browse window over the
form containing a list of pages currently stored on the clipboard. The list of items
consists of all the titled and untitled pages.

Fitrix Screen Technical Reference

Working with the Clipboard 6-7

The Browse window appears as follows:

Next: View the next page in the stack. When used at the bottom of the stack, the
Next command loops around to display the first page in the current stack.

Prev: View the previous page in the stack. This command is the opposite of the
Next command.

Selecting an item (page) in the Browse window makes that item current in the clip-
board window. In order to paste the page into the current form, select it from the
clipboard window with the Select command.

Select: Select the page for pasting into the current form. Once you select a page, it
appears on the Form Editor at the cursor position from which the Clipboard was
called up. The page text is displayed in reverse video, with the cursor located in the
upper left corner of the page.

Quit: Quit the Clipboard and return to the Form Editor. Use this command to
return to the Form Editor without pasting a page from the Clipboard.

Fitrix Screen Technical Reference

6-8 Editing Forms

The following illustration provides an indication of how a selected clipboard page
might look on the Form Editor prior to pasting.

Notice that the Clipboard command line is replaced with the Paste command line at
the top of the screen. Use the arrow keys to move the highlighted page of text into
the desired position on the form. When it appears in the proper location, press
[ENTER] or [ESC] to paste the page into the current form. Once the page has been
pasted into the form, it becomes part of the form and can be edited like any other
text. Clipboard pages can be re-used for forms that contain identical areas, such as
detail lines.

The information on the text page erases existing text and fields on the form (charac-
ters and fields), if pasted on top of existing text or fields. Unless you want to delete
existing definitions, it is not a good idea to position and paste clipboard text on top
of existing text/fields.

Note

Some fields on the Clipboard page may not transfer to new forms. Newer ver-
sions of 4GL have data types that older versions don’t recognize. When you
paste a page created in a newer 4GL version into an "older" form, a warning
pops up to tell you that you can’t paste the incompatible data types into the form.
See "Engine/4GL Compatibility" on page E-4.

Fitrix Screen Technical Reference

Working with the Clipboard 6-9

If you decide not to paste selected text from the Clipboard, simply press [DEL] to
return to the Form Editor.

Using the Paste Command
The Edit pull-down menu contains the Paste option, which is used to automatically
paste the top (newest) page of text from the clipboard.

By using the Paste option, you do not have to use the Clipboard command line. The
Paste option automatically selects the newest page of text from the Clipboard.

The Paste option is designed to be a time-saver for those occasions when a certain
block of text appears repeatedly on the screen form. By simply marking and copy-
ing the text to the Clipboard, you can re-use it quickly and easily. The default Hot
Key setting for the Paste option is [CTRL]-[p].

Note

The text pages stored on the Clipboard can consist of any block of text entered
onto a Form Editor. This includes the definitions for fields included in the text
block. When you cut or copy a block containing fields, the block retains the def-
initions specified in the original field.

Marking Text Blocks
The preceding part of the documentation explained how you can benefit by using
text pages stored on the Clipboard. This part focuses on how to store pages of text
blocks on the Clipboard. In short, there are two ways to store pages in the Clip-
board: by cutting (Cut), and by copying (Mark).

Both methods of storing text to the Clipboard rely on the Mark option, which lets
you "pin down" the ranges of the text block. Once text is "marked," it is ready to be
cut or copied to the Clipboard.

Fitrix Screen Technical Reference

6-10 Editing Forms

To mark a block:

1. Position the cursor in one of the corners of the block to be marked.

2. Select Mark from the Edit pull-down menu or press [CTRL]-[v].

3. Stretch the highlight until it covers the entire area to be cut or copied.

The Edit pull-down menu contains the Mark option. Mark can also be selected by
pressing [CTRL]-[v]. The cursor must be positioned in a corner (upper left or lower
right) of the text block before the Mark option is executed. This is important
because once the Mark option has been executed, the cursor is "anchored." That is,
the cursor cannot be moved from the anchor point; the only function of the cursor
movement keys is to stretch the highlight to cover the block intended for storage on
the Clipboard. The block can be stretched in a rectangular shape away from the
anchor point; it can range in size from a single character to an entire form.

The following diagram depicts a marked block.

In the previous example, the marked text block consisted of just one line. Prior to
marking, the cursor could have been over the "C" in Cut, or over the right field
delimiter. The text block, indicated by the highlighted area, can be expanded or
contracted prior to cutting or copying.

marked block

Fitrix Screen Technical Reference

Working with the Clipboard 6-11

Cutting Text Blocks
Once a mark has been placed on the form (anchoring the cursor), you can cut or
copy the text into the Clipboard. In order to cut text into the Clipboard, you must
execute the Cut option on the Edit pull-down menu or press [CTRL]-[t].

For example, assume you have marked an area of text you want to cut and retain in
the clipboard. The next step is to execute the Cut option. You can do this by access-
ing the Edit pull-down menu and selecting Cut. This must be done while the text is
still highlighted—if you execute the Cut option without having highlighted text on
the Form Editor, there is no effect.

Once you execute the Cut option, the highlighted text on the Form Editor is moved
from the Form Editor to the Clipboard.

Keep in mind that text pages stored in the Clipboard are titled generically until you
deliberately title them through the Clipboard Update command discussed previ-
ously under "Using the Clipboard." The generic title is Block n, with n being a
number incremented each time a new page is stored to the Clipboard. The most
recent untitled text page is automatically titled Block 1. It is strongly suggested
that a new text page be given a descriptive title as soon as it appears on the Clip-
board—a Clipboard text page is not saved from one Form Painter session to the
next unless it has been given a title. For instructions on titling Clipboard text pages,
see the discussion of the Clipboard Update command on page 6-6.

Copying Text to the Clipboard
The second method for storing text pages to the Clipboard is by copying text. To
copy text, you first have to mark the text to be copied with the Mark command
([CTRL]-[v]), then execute either the Copy or the Mark option after the block is
highlighted. The Copy hot key is the same as the Mark key, [CTRL]-[v].

The primary steps are the same as those you used to cut text to the clipboard. On a
current form, you must first use the Mark option to anchor the cursor at a corner of
the text block you want to copy to the Clipboard. Then expand the highlight to
encompass the desired text. Execute the Copy command or the Mark command a
second time. Once a text block is copied, the highlight disappears and the demar-
cated text becomes the top page of the Clipboard stack.

Fitrix Screen Technical Reference

6-12 Editing Forms

As with text pages cut to the Clipboard, copied pages should be given descriptive
titles as soon as possible.

Creating Detail Arrays
The copying and pasting features of the Form Painter make it easy to create detail
field arrays in your forms.

To create a detail array (used in the detail section of a header/detail form):

1. Make sure you are in input area 2.

2. Create the first line of detail fields.

3. Copy the detail line.

4. Paste the detail line multiple times.

Field definitions are retained.

Copying Between Input Areas
When you cut or copy a field and then paste it back to the form, the pasted field
becomes part of the current input area. All input areas must be defined before you
copy fields to them.

To copy a field from input area 1 to input area 2:

1. While in input area 1, copy the field.

2. Switch to input area 2.

3. Paste the new field where you want it.

7-1

7
Form Definition

This chapter addresses the definition of individual fields and forms. The informa-
tion in this section is based on the options found on the Define pull-down menu.
The information in this chapter covers:

n Novice and Expert Modes
n Defining Form Defaults
n Defining the Input Area
n Defining Fields
n Defining the Cursor Path
n Defining Math for Fields
n Defining Lookups
n Defining a Zoom Field
n Defining Triggers
n Selecting Commands for the Ring Menu
n Short Cuts to Define Options
n Defining Copyright Text for Applications

Fitrix Screen Technical Reference

7-2 Form Definition

Novice and Expert Modes
You enter field definitions onto data-entry forms in the Form Painter. Each field on
a definition form used to enter table name/column name information offers the
Zoom feature as well as input validation. For example, any time you need to enter a
join statement or a unique key, you can use the Zoom to select a valid entry.

The first aspect to consider when defining information is your operating mode.
Two modes are available in the Form Painter: Novice and Expert. The system
default is Expert mode.

The Edit pull-down menu offers a toggling option that switches the mode under
which you operate. The two modes, Novice and Expert, determine which type of
forms you may create as well as the amount of detail you can define for each field.

When Novice mode is in effect, a toggling option on the Edit pull-down menu
appears as follows:

This option is a toggle.
By selecting the Expert

Mode option, you will
switch to expert mode.
This also indicates that

you are currently in
novice mode

Fitrix Screen Technical Reference

Novice and Expert Modes 7-3

To change to expert mode, you need to select the Expert Mode option. When the
expert mode is active, the option is displayed differently:

If the Novice Mode option is visible, selecting that option makes the novice mode
active. Creating forms in novice mode is easier because system defaults are used,
which denies you some of the more complicated details associated with screen form
specification. It can be used only for painting header-only forms (flat files). You
cannot use the novice mode to build header/detail, zoom, or browse forms. Pop-up
windows used to define fields and forms are less detailed when running under the
Novice mode; not as many characteristics are available.

Selecting the Novice
Mode option switches

you to novice mode.
This also indicates that
you are currently in ex-

pert mode

Fitrix Screen Technical Reference

7-4 Form Definition

Defining Form Defaults
The next step in defining a data-entry application with the Form Painter is to estab-
lish form defaults. You have access to the Define the Form form through the Form
Defaults option on the Define pull-down menu. Alternatively, you can access the
form by pressing [CTRL]-[z] in the Form Editor when the cursor is anywhere but
inside a defined field. Either way, you must first be working with a current screen
form. The Define the Form form:

A number of default values appear on the form automatically. The fields Form ID,
Module ID, and Program ID are NOENTRY; they take their values from the form
name and directory structure in which you are developing the screen form.

Form ID: The Form ID is established when the current form is first created, and
contains the name of the form.

Module ID: The Module ID is derived from the parent directory name (less the
.4gm extension).

Program ID: The Program ID name comes from the name of the present working
directory (less the .4gs extension).

Main Table: The Main Table field is required if you use a browse or zoom form
with a header, header/detail, or add-on header form. You can use the Zoom feature
to display a picker list of existing table names in the default database. Validation
occurs on this field although you are not required to enter an existing value.

Fitrix Screen Technical Reference

Defining Form Defaults 7-5

Form Type: The Form Type field contains the type of form you selected after
naming the form. You may change the type of form by entering a new type in this
field.

This field offers the Zoom feature, available by pressing [CTRL]-[z]. The Zoom
feature draws a picker list of valid screen types. For more information refer to
"Form Types" on page 10-4.

Returning (zoom): This field is bypassed unless the form type is zoom. Since a
zoom form can be used to return selected data, the field name for returned data
must be listed here. The Zoom feature is available in this field to help you select a
valid entry. Validation occurs on this field although you are not required to enter an
existing value.

Upper Left Row, Col: These fields each contain two values that position the
data-entry form on the terminal screen. The field labeled Upper Left Row, Col
stores the beginning row and column number, respectively, for the screen form.
The default values 2, 3 correspond to those typically assigned to a header or
header/detail form. You will most likely change the values in these fields for
browse and zoom screens, which tend to be displayed across a portion of the main
program screen form.

Lower Right Row, Col: This field maps the lower row and ending column val-
ues. If specified, these values can "extend" the boundaries of the form beyond the
column or row (given the limits on the form size). If left blank, the size of the form
defaults to the lower row and right-most column entered onto the form. The benefit
of specifying values for the Lower Right Row, Col field is that the form can be eas-
ily resized.

When creating browse or zoom screens, the Lower Right Row, Col field really has
no effect. When you save your form, the right edge of the form defaults to the right-
most character on the form. Therefore, in order to center your columns on your
form, you may need to use a dashed line to determine the width.

Form Attributes: Default attributes can be assigned through the Form Attributes
field. The default attributes (border, white) are consistent with code generated with
the Fitrix Screen Code Generator.

Initial Filter: This field controls the initial selection of records from the database.
The default filter 1=0 evaluates to false for each record, indicating that no auto-
matic selection of records takes place. The filter 1=1 automatically selects all
records since the program always evaluates the filter statement as true. The special

Fitrix Screen Technical Reference

7-6 Form Definition

words "all" and "ALL," when you enter them into the Initial Filter field, have the
same significance as 1=1. The words "none" and "NONE" are interpreted in this
field as 1=0.

The entry in this field is checked for syntactical correctness. If irregular syntax is
detected, a warning prompt appears. The system does not, however, require that
valid syntax be specified.

Non-Source Form: The Non-Source Form field is a yes/no field that determines
whether or not the Code Generator generates source code off this form. If you
answer Y, then the flag non_source_form is written to the first line following
the copyright heading of the .per file. The non-source form statement prevents the
Code Generator from generating code for this form. This allows you to have multi-
ple main .per forms in working directories, which may be necessary when you
generate code off of one particular form but you use another form for display pur-
poses.

The last two fields allow you to choose the engine and 4GL compatibilities for the
form. These fields circumvent incompatibilities between engine and 4GL versions.
Certain data types available in the 4.10 4GLs run only on the OnLine engine.

For more information refer to "Engine/4GL Compatibility" on page E-4.

Engine Compatibility: The default engine is Standard Engine (SE). Zoom is
available.

4GL Compatibility: The default 4GL version is 4.10. Zoom is available.

Fitrix Screen Technical Reference

Defining the Input Area 7-7

Defining the Input Area
The definition of input areas becomes important when you create a complicated
screen form such as the header/detail form. When creating a header/detail applica-
tion, you must define two distinct input areas, each with its own main table, unique
key, filter, etc.

Note

You must define input areas before creating, copying, or pasting fields.

This part of the documentation explores the characteristics that you define at the
input area level. The discussion is based on the Input Areas option, found on the
Define pull-down menu and on the picker list that appears when you press [CTRL]-
[z] in the Form Editor. Since you must operate in Expert mode in order to develop a
header/detail screen form, the discussion assumes that you are in expert mode.
Later, the abbreviated Define Input Areas form used for Novice mode is discussed.

The input area is automatically determined by the main table you declare for the lat-
est field you define. That is, you enter the table name for each field you define on
your form. When the table name for the current field differs from that of the most
recent field, a new input area is established. All subsequent fields sharing the new
table name form part of a common input area. Typically, this lets you distinguish
between the header and detail portions of the form. In the .per file, input areas are
titled inputN, with N being a number.

You enter and modify some of the input area characteristics through the Define
Input Area form. When you select the Input Areas option while working with a
header/detail form, a picker list helps you determine the particular input area to
define. After you select the desired input area, the Define Input Area form appears.

Fitrix Screen Technical Reference

7-8 Form Definition

The Define Input Area form:

Entry into the fields on this form is determined by the input area chosen and by the
type of form you are developing (form type).

Main Table: This field stores an entry which defines the main table for this input
area. There can be only one main table for each input area. The Zoom feature is
available in this field to help you select a valid entry. Validation occurs on this field
although you are not required to enter an existing value.

Unique Key: The Unique Key field stores a list of fields that comprises the unique
key for the main table in the main (non-scrolling) section of the screen. The system
uses this information to key "secondary" data to the main table. This secondary data
includes Freeform Notes and User Defined Fields. If the key is not defined, you do
not have access to certain User Control Library features such as Freeform Notes or
User Defined fields.

The Unique Key field scrolls so the entry into this field can exceed the visible
length shown on this form. The Zoom feature is available in this field to help you
choose a valid entry. Validation occurs on this field although you are not required
to enter an existing value.

Join: The Join field defines the criteria for joining the scrolling input area to the
main input area. The Join field is only specified in the scrolling input area (input
area 2); therefore, this field is not specified unless the form type is header/detail.
The Zoom feature is available in this field to help you select a valid entry. Valida-
tion occurs on this field although you are not required to enter an existing value.

The following is an example:

Fitrix Screen Technical Reference

Defining the Input Area 7-9

items.order_num = orders.order_num

In this instance, the scrolling section main table (items) is joined to the main section
main table (orders).

Filter: The Filter field stores the hard-coded filter used in every query. This filter is
joined with your query by example filter and the filter that may be passed via the
command line. The Zoom feature is available in this field to help you choose a
valid entry. Validation occurs on this field although you are not required to enter an
existing value.

This field’s default is 1=1 (no hardfilter). The special words "all" and "ALL", when
entered into the Filter field, have the same significance as 1=1. If you enter the
words "none" and "NONE" in this field, they are interpreted as 1=0.

For example, if you only wanted to see customers with a customer_num greater
than 1000 in this program, you would specify in the Filter field:

customer_num > 1000

Order: The Order field stores the field names by which you wish to order the
selection of documents. Enter the desired "order by" clause in this field. The "order
by" clause can be made descending or ascending. The Zoom feature is available in
this field to help you select a valid entry. Validation occurs on this field although
you are not required to enter an existing value.

Like other variable-length fields, the Order field stretches to accommodate an entry
that exceeds the visible length of the field on the Define Input Area form.

The last two fields appearing on the Define Input Areas form are accessible only
when you define the detail input area. To enter these fields, you must define a
header/detail screen form, and you must select Detail on the input area picker list.

Array Limit: The Array Limit field stores an integer value determining the num-
ber of internal program array elements you wish to provide space for in the scroll-
ing input area. It only is used for detail and Zoom type input areas. The default
value for this field is 100.

Auto Number: The Auto Number field specifies a detail field that the system
applies unique line numbers to, for maintaining the order of detail rows. This
allows each detail line to be unique. Any detail field specified in Auto Number

Fitrix Screen Technical Reference

7-10 Form Definition

identifies an item entered on the first detail line as "item on line number 1." Then,
whenever the detail lines are re-displayed, they are displayed in the same order they
were entered.

If you want to maintain the order of your detail lines you must specify an Auto
Number field; if you do not, detail lines appear in unpredictable order. Do not list
the line number field (that contains the actual line numbers) in the form image
because it is not maintained during input. It is maintained only upon disk writes.
There is no default value.

The Zoom feature is available in this field to help you select a valid entry. Valida-
tion occurs on this field although you are not required to enter an existing value.

Switching Between Input Areas
When you work in the Form Painter you can toggle between input areas by pressing
[CTRL]-[n]. Pressing [CTRL]-[n] moves the cursor to the first field in the next
input area. The current input area appears at the top of the form next to the form
name. The title customer/1 indicates that you are working in input area one of
the current form.

Defining the Input Area in Novice Mode
You can define the input area while operating in Novice mode, although the form
used is limited to two fields: Main Table and Unique Key. While in Novice mode,
you can only create header-only screen forms, so the additional fields described
previously are not applicable.

The Novice Define Input Area form appears as follows:

Fitrix Screen Technical Reference

Defining Fields 7-11

The fields appearing on the form are discussed in "Defining the Input Area" on
page 7-7.

Defining Fields
Fields on the Form Editor are delimited by square brackets. Square brackets ([])
have special significance when entered into the Form Painter. When the left bracket
([) is pressed while the cursor is on a blank space, the Field Definition form is dis-
played. The [] keys have no effect when entered on top of existing text. The right
square bracket appears on the form automatically once a field has been defined.

You may resize any field by typing a] near an existing field delimiter. For example,
if you want to expand the width of a field by two characters, move the cursor two
characters to the right of the right bracket and type]. The old field delimiter disap-
pears and the field is lengthened by two characters.

You can also shorten a field by moving the cursor in-between the field delimiters
and pressing [CTRL]-[x]. This moves the right field delimiter one space to the left.

Sometimes you may not have enough room on your form to use square brackets as
delimiters between two adjacent fields. In this instance you can use the pipe symbol
"|" as a delimiter between fields. Say you have two 10 character fields that need to
be located next to each other but you only have one space between them to specify
a field delimiter:

Customer Name: [][]

If the above does not fit, you could use the pipe delimiter like this:

Customer Name: [|]

Adjacent brackets][can be converted to pipe "|" delimited fields by moving the
cursor to either the ending] of the first field or the starting [of the second field and
pressing the | key.

Fitrix Screen Technical Reference

7-12 Form Definition

If the pipe (|) is pressed when the cursor rests on the] of the first field, the end] of
the first field is converted to a pipe and second field is moved left with its starting [
removed.

You can also disconnect fields that use the pipe delimiter in the same way. With the
cursor on the pipe, type a right or left square bracket "]" or "[".

If there is not enough room to perform this operation an error message is displayed.

action: "|" key pressed [][]
result: [|]

cursor is here

action: "[" or "]" key pressed [|
]
result: [][]

cursor is here

Fitrix Screen Technical Reference

Defining Fields 7-13

Defining Fields in Expert Mode
Expert mode, which is required for all screen form types other than header-only,
provides you with additional control over the field definition. When the left square
bracket ([) is pressed on a blank part of the Form Editor screen in Expert mode, the
Expert Define Fields form appears.

Table Name: This field identifies the table this field accesses. Pressing [CTRL]-
[z] in the Table Name field displays a selection criteria prompt that allows you to
narrow the list of available table names. After entering criteria and pressing
[ENTER] the picker list appears as follows:

As with other picker lists used throughout the system, pressing the [ESC] key
selects the row on which the cursor appears. The [DEL] key returns control to the
Define Fields pop-up window without returning any information. The INFORMIX-
defined paging keys, [F3] (page down) and [F4] (page up), allow you to page
through long lists.

Fitrix Screen Technical Reference

7-14 Form Definition

Column Name: This field lets you specify the name of the column this field
affects. The column name should be listed as part of the table you select in Table
Name. Press [CTRL]-[z] to view a picker list of the columns found in the named
table.

The picker list appears as follows:

The Zoom on Column Name only operates if you have specified a valid table name
for this field. Validation occurs on these fields although you are not required to
enter an existing value.

Input Area: This field determines which input area the field belongs to. The input
area is defined by the main table. For more information on input areas refer to
"Defining the Input Area" on page 7-7.

Entry: This is a yes/no field that determines whether the field is to be NOENTRY.
If you restrict entry for a field, you establish it as display-only. Display-only fields
are generally used to return information by a lookup.

If you indicate that the field is NOENTRY (N), the cursor does not enter the field
on the compiled data-entry form. When Entry? is set to N, the Required? and Mes-
sage fields do not need to be specified.

Field Type: Field type is automatically displayed based on the table and column
description for the field. If Table Name is specified as formonly, you are able to
specify the field type.

There are two field types that allow you to enter text files, such as a spread sheet, or
byte files, such as graphics, sound, or video clips. These field types are called
BLOBs (Binary Large OBjects).

Fitrix Screen Technical Reference

Defining Fields 7-15

If you try to create a BLOB field and your engine or 4GL are not compatible, a
warning message appears. For more information refer to "Creating BLOB Fields"
on page 7-18.

If the field type is defined "like" an existing table.column in the current database,
the Zoom feature can be used to select a valid table.column entry. Validation occurs
on this field although you are not required to enter an existing value.

Message: This field stores a comment or description line that appears on the com-
piled program whenever the cursor enters the field being defined. When a user runs
the application created from your painted form and enters a field, message text
defined for that field appears at the bottom of the form. Also, whenever your cursor
enters a field while you are in the Form Editor, text from the Message field is dis-
played at the foot of the Form Editor. Message text must be limited to 74 charac-
ters.

Picture: This field can be used to establish a character pattern determining how
data-entry on the compiled form appears. Perhaps the most obvious usage of this
attribute is to format the input of telephone numbers. An example for area code and
phone number:

(###) ### - ####

As you enter digits in the compiled form, they appear in place of the pound signs
(#), which serve as placeholders. The pound sign is used for numeric entry; the
character A is used for alphabetic characters; the character X is used for alphanu-
meric entries. Do not "quote" your pattern in the Picture field attribute.

Display Fmt: This field serves as a hybrid attribute for the INFORMIX attributes
FORMAT and DISPLAY LIKE. These attributes are mutually exclusive; you can
use the entry in Display Fmt for either of the two INFORMIX attributes. Examples
of proper entries:

mm/dd/yy
###-##-####
like stxcntrc.company

If the display format is defined "like" an existing table.column in the current data-
base, you can use the Zoom feature to select a valid table.column entry. Validation
occurs on this field although you are not required to enter an existing value.

Fitrix Screen Technical Reference

7-16 Form Definition

Validate: This field is similar to Display Fmt in that it covers two INFORMIX
attributes that are mutually exclusive. In this case, the attributes are INCLUDE and
VALIDATE LIKE. Validate stores INCLUDE information unless the first word
specified is "like" (in which case, the field attribute behaves as if it were a VALI-
DATE LIKE entry). The following are examples of proper entries:

"Y", "N"
1 to 50, 200 to 422
like customer.fname

If the entry is defined as "like" an existing table.column in the current database, you
can use the Zoom feature to select a valid table.column entry. Validation occurs on
this field although you are not required to enter an existing value.

Default: This field enables you to enter any data that appears in a field by default
when the program is run. A user running the program could then press [ENTER] to
accept the default value or to enter new data. When specifying default data for char-
acter fields you must surround your data with quotes (" ").

Notes about Default:

1. Defaults are limited to 30 characters in length. The default line can contain
many default values for fields, with each default value having a maximum
length of 30 characters.

2. Defaulting is not performed in input area 1, the header, unless all of the
variables in the input 1 program p_record are null.

3. Defaulting is not performed for a specific row in the detail input array
unless all the program p_record variables for a given row are null.

You can easily create a field that defaults to the current date. Simply put "today" in
the default field. The "today" keyword works with date columns only.

Translate: This field lets you enter translation context. If you are using language
translation you must first set up your translation contexts by populating the stx-
langr table. Anything you enter in this field must be defined in the stxlangr
table. For more information on language translation refer to "Translating Values
Used in Data Entry" on page 17-7.

Fitrix Screen Technical Reference

Defining Fields 7-17

Autonext: This field determines whether the cursor automatically transfers to the
next field on the compiled data-entry form when the current field is full. If the entry
in Autonext? is Y, the cursor automatically jumps to the next field when the current
field is filled. This is useful for fields typically filled with a constant number of
characters, such as department codes.

Downshift: This field converts uppercase characters to lowercase upon display. A
Y (Yes) entry converts all uppercase data-entry characters into lowercase.

Upshift: This field is the opposite of Downshift?; it converts lowercase characters
into uppercase for screen display.

Verify: This field is available as a means by which data-entry accuracy can be
enhanced. If this field stores the value Y (Yes), end-users are required to make an
identical entry into the defined field twice.

Required: If the current field is enterable, you can designate whether this field is
required. When the compiled application is run, required fields must be filled with a
valid entry before the document can be saved. The Required? field stores a value of
either Y or N. Detail fields cannot be made required.

Skip: A Y in this field causes skip logic to be generated for this field. Refer to
"Creating Skip Field Logic" on page 15-36.

Defining Fields in Novice Mode
Novice mode displays an abbreviated field definition form shown in the following
illustration. Since the Novice mode can be used only to build header-only screen
forms, the required information is limited. If you operate in Expert mode, please
see the previous section "Defining Fields in Expert Mode" on page 7-13.

Fitrix Screen Technical Reference

7-18 Form Definition

In Novice mode, the Define Fields form appears as follows:

For an explanation of these fields see the previous section.

Modifying Existing Field Definitions
The preceding information explains how to define fields. You must use the left
square bracket ([) to initially define a field. To modify an existing field definition,
you must first place the cursor in the field (the entire field appears in reverse video).
Next, execute the Fields option on the Define pull-down menu, or press [CTRL]-[z]
from within the Form Editor and select Fields from the picker list.

After selecting this option, the Define Fields form appears. You can then modify
any attribute you wish. The appearance of the Define Fields form depends, of
course, on the mode in which you are operating.

Creating BLOB Fields
If you are running INFORMIX-4GL 4.10 or higher and the OnLine engine, you can
create an application that uses BLOB (Binary Large Object) technology. A BLOB
can be a text file, a graphics file, a sound file, or another application. For more
information on BLOBs refer to "Creating BLOBs" on page 15-31.

Fitrix Screen Technical Reference

Defining Fields 7-19

To create a field that uses BLOBs (Binary Large Objects), you must select a col-
umn that has been set up as a "text" or "byte" field. Once you specify a text or byte
column in the Column Name field on the Define Fields form a pop-up window
appears into which you enter the program and edit permission for the BLOB.

The following lists the default values:

For a text field:

Program: vi
Edit : Y

For a byte field:

Program: xloadimage
Edit : N

When you specify BLOBs and compile the form, the .per file lists the BLOB fields
in the attributes section. If the BLOBs are columns in a table, the input 1 section of
the .per contains one or more blobdef lines—one per BLOB. The blobdef lists the
column name, the specified program, and the edit permission.

An example: sp_sheet is the column name of a text BLOB. Wingz is the pro-
gram name and the permission to edit is set to Y. After you save the form, the blob-
def line appears as follows:

blobdef - sp_sheet, Wingz, y

When running the final application created with a form that uses a BLOB field, if
the BLOB field on the screen is blank, the field is empty. If the field on the screen
contains an asterisk, there is data in the BLOB field. Zoom on the asterisk to view
(or run) the BLOB file.

More information on creating BLOBs can be found in "Creating BLOBs" on page
15-31.

Fitrix Screen Technical Reference

7-20 Form Definition

There are several other field types in addition to BLOBs that depend on engine and
4GL compatibility. Refer to "Engine/4GL Compatibility" on page E-4 for more
information.

Defining the Cursor Path
You may choose to have the cursor proceed from field to field in an order different
from the order in which the fields on the screen form were defined. The sequence
can be modified quickly and easily with the Cursor Path option on the Define pull-
down menu. Alternatively, you can access the Cursor Path option by pressing
[CTRL]-[z] while in the Form Editor, outside a defined field.

Once you select the Cursor Path option, a picker list appears allowing you to deter-
mine the input area you wish to work with. Once you select an input area, the field
tags for the defined fields in the input area appear. The field tags are automatically
numbered according to the order in which the fields were specified. The cursor path
for the header section of a screen form might appear as follows:

These num-
bers represent

the order of
the field in the

cursor path

Fitrix Screen Technical Reference

Defining the Cursor Path 7-21

The previous example consists of a header/detail form, with the cursor path dis-
played for the header input area. The detail input area cannot be changed at the
same time; the cursor path is modified one input area at a time. For this reason, the
field tags for the detail input area fields are not displayed in the previous example.

The Cursor Path option changes the command line prompt to provide information
about updating the existing cursor path. Press U to update the cursor path for the
current screen form field. The order in which the cursor moves depends on the
order of the field tags specified for the fields in the input area. Therefore, simply
enter a new value for fields that you intend to reorder. The field tags are modified
one at a time.

Fitrix Screen Technical Reference

7-22 Form Definition

Defining Math for Fields
The Fitrix Screen Code Generator can automatically generate the logic for mathe-
matical calculations in fields. To take advantage of this capability, you must define
the calculation for the field by using the Math option on the Define pull-down
menu.

To define math for a field:

1. Define the field.

2. Move the cursor into the field on the Form Editor.

The entire field should be in reverse video.

3. Select the Math option on the Define pull-down menu (or on the picker list
appearing after you press [CTRL]-[z] while you are in a defined field).

4. Enter the math formula.

The Define Math form appears on top of the existing data-entry form as follows:

The Define Math form contains only one field, the Formula field. This field stores
the required mathematical equation. Entries can be longer than the visible length of
the Formula field; the field scrolls to accommodate longer equations.

Sample entry for the Formula field:

sum(total_price) + ship_charge

Fitrix Screen Technical Reference

Defining Lookups 7-23

Defining Lookups
Lookups evaluate the data that is entered into a field and match that data against
data in any table. A lookup placed on a field serves two purposes: verification and
data retrieval.

See "Introduction to Lookups" on page 3-17 for illustrations of the two types of
lookups.

The Define Lookups Form
The Define Lookups form lets you create lookups for fields on your .per form. The
Define Lookups form is displayed by selecting a field in the Form Editor and then
choosing Lookups from the Define pull-down menu. You can also display this form
by pressing [CTRL]-[z] in a field and then selecting Lookups from the Define
Fields picker.

The Define Lookups form appears as follows:

Lookup Name: The Lookup Name field stores the name of the lookup. Uniquely
naming lookups allows you to have multiple lookups for the same field. An entry in
the Lookup Name field is required, and must contain a unique name. Generally, the
Lookup Name contains the name of the lookup table except when multiple lookups
are performed on the same table; then you must use a unique name for each lookup.

Fitrix Screen Technical Reference

7-24 Form Definition

Lookup Table: The Lookup Table field stores the table that is being looked up.
That is, this field contains the table name storing the looked-up values. The Zoom
feature helps you select a valid table name from the current database.

Join Criteria: The Join Criteria field lets you enter the "where" clause for the join
statement used in the lookup. This field scrolls to accommodate entries larger than
the visible size of the field. The Zoom feature can be used in this field to select
valid column names; the Zoom appends selected data to the existing data in this
field. Validation occurs on this field although you are not required to enter an exist-
ing value. For example:

stock_num = $stock_num

In this instance, the where clause matches the row in the stock table where the
stock_num column value is equal to the stock_num field value on the data-
entry form. Variables appear on the right side of the equals sign.

Lookup From/Into: If you do not enter anything into these fields, then the Code
Generator automatically returns looked up data into all NO-ENTRY fields that
belong to the same table as the field that was looked up.

You must fill in the Lookup From and Into fields when either of the following items
are true:

1. The field name on the screen has a different name from the column in the
table that you are looking up.

2. There is more than one lookup to the same table.

The Lookup From column contains the name of the column in the table being
looked up, while the Lookup Into column contains the name of the field on the
form.

Use the [TAB] key to enter the Lookup From/Into section. The [TAB] key also lets
you exit this section.

The Zoom feature is available in each column of this section to help you select
valid column names based on the lookup table specified. Entries in this section
must correspond to column.table names defined on this screen form and in the
lookup table. This is a scrolling set of columns; you may enter up to 50 destination
column names.

Fitrix Screen Technical Reference

Defining Lookups 7-25

The following example demonstrates a lookup in the stock.stock_num col-
umn and returns a corresponding description into the description column on the
screen. This is how this lookup would appear in the .per file.

 lookup = name=stock_num, key=stock_num, table=stock,
 filter=stock_num = $stock_num, into=description

Creating a Data Retrieval Lookup
Data retrieval lookups are keyed from a field in the main table for this input, and
they retrieve information from another table to place into destination fields. Desti-
nation fields must be NOENTRY type (Entry? set to N). The default destination
(Lookup Into) fields are all NOENTRY fields in the input area that have a table
name matching the lookup table name.

Lookups are defined through the Lookup option found on the Define pull-down
menu (also found on the picker list appearing when you press [CTRL]-[z] from
within a defined field). The lookup is defined in the key field, not in the fields
receiving data returned by the lookup.

To define a data retrieval lookup:

1. Create the key lookup field.

The key field is the field that triggers the lookup. For example, if you specify
the Customer Code field as the key field, then whenever a value is entered here,
the lookup occurs.

2. Display the Define Lookup definition form.

3. Name the Lookup.

Lookups are generally named after the table being looked up.

4. Enter the Lookup table name.

This is the name of the table the lookup is querying.

5. Enter the where clause for the lookup key.

This is the join statement that matches the data in the lookup field to data in the
database.

Fitrix Screen Technical Reference

7-26 Form Definition

6. Enter the column to be looked up from and the field to be returned into.

You only need to complete this step if the name of the column being looked up
differs from the name of the column on the screen.

7. Save the Lookup form by pressing [ESC].

8. Create each destination field that will display lookup information, defining
each of them as NOENTRY.

Creating a Data Validation Lookup
Typical verification lookups simply check the value entered by the user and do an
SQL query on a table for it. If the value is not found, the standard error message
"Value is not in the list of valid data" appears and the user is kept in the field until a
value that is in the table is entered.

Data validation lookups differ from data retrieval lookups in that validation lookups
don’t return information into any fields. Therefore when setting up a validation
lookup, you don’t specify an Into field. If an Into field is not specified and no field
on the screen shares the same table as the lookup field, information is not returned
to any field.

The following example uses the customer entry form in Fitrix Screen demo 1
($fg/codegen/demo.4gm/screen1.4gs), a header-only screen for entry
into the customer table of the stores database. On this screen there is a field for
the state code "State:" but no field for the state description. This example adds a
verification lookup to ensure that the state code entered is a valid value in the state
table of the stores database.

To create a data validation lookup:

1. Enter the field you want to place the validation lookup on.

2. Call up the Define Lookups form.

3. Give the lookup a descriptive name, like state_lk.

The Lookup Table is the table checked for a valid value.

4. Enter the join criteria to match the column in the table with the field on
the screen.

Fitrix Screen Technical Reference

Defining Lookups 7-27

For example:

 state.code = $state

Where state.code is the column in the table and $state represents the
field on the screen. In the resulting program, the value entered by the user is
matched against the column values in the state table.

When a user runs the program and enters a state value that does not exist in the state
table, the "Value is not in the list of valid data" message appears.

Refer to "Error Handling Functions (fg_err and lib_error)" on page 15-44 for infor-
mation on creating custom error messages.

Deleting Lookups
Lookups can be deleted by calling up the lookup definition form for the unwanted
lookup and pressing [CTRL]-[d] to delete the lookup name. When you press
[ENTER], you are prompted to verify whether you want this lookup deleted.
Answering Yes deletes the lookup.

Defining Multiple Lookups
If you call up the lookup form on a field that has already had a lookup defined, the
Select a Lookup Name form appears displaying the name of all lookups defined for
that field, and an option for Add a Lookup. The Add a Lookup option allows you to
define multiple lookups per field.

Each lookup must have a unique name.

Lookup Dependencies
Lookups must appear in the .per file in the order they are needed. If a lookup
depends upon another, you need to list the lookups in the .per form in the order that
they will be performed.

Fitrix Screen Technical Reference

7-28 Form Definition

Examples of Lookup Usage
The following describes three examples of lookup usage:

1. If there is no into statement, the Code Generator searches the screen record
for definitions of the same table as the table name of table=tablename.

 screen record s_pvendr (stpvendr.vend_code, stpvendr.bus_name,
 stpvendr.terms_code, stptermr.terms_desc)
 ...
 ...
 lookup = name=term_lookup, key=terms_code,table=stptermr,
 filter= stptermr.terms_code = $terms_code

The Code Generator will find stptermr.terms_desc in the screen record
therefore defaulting the into=terms_desc.

If the Code Generator cannot find an associated table, then the lookup is
defined as a validation only lookup (a lookup that returns no data).

2. If you use the into statement, all into statement’s must be specific. You
cannot use the into statement for some fields and expect the Code Generator
to default the other ones.

The into=column must be a column in the lookup table. It does not have to
be a screen record field. If your screen record field has the same name as the
column then the lookup returns data into that field otherwise it puts that data
into a parallel record.

 screen record s_acct (stpinvce.acct_no, formonly.acct_desc)
 ...
 ...
 lookup = name=acct_lookup, key=acct_no, table=stxchrtr,
 into=acct_desc, into=incr_with_crdt,
 filter= stxchrtr.acct_no = $acct_no

The Code Generator puts the acct_desc into p_pinvce.acct_desc and
incr_with_crdt into q_pince.incr_with_crdt.

The p_ record is associated with the screen and the q_ records are parallel to
the p_ records.

3. If you want to assign a lookup where the column selected is not the same name
as the field you want to put it into, you can use the from_into syntax.

 screen record s_acct (stpinvce.acct_no, formonly.james_desc)

Fitrix Screen Technical Reference

Defining Lookups 7-29

 ...
 ...
 lookup = name=acct_lookup, key=acct_no, table=stxchrtr,
 from_into=acct_desc james_desc, from_into=incr_with_crdt
 is_it_a_credit,
 filter= stxchrtr.acct_no = $acct_no

The Code Generator puts the acct_desc into p_pinvce.james_desc
and incr_with_crdt into q_pince.is_it_a_credit.

The lookup() Function
Lookups are initiated by a change in data of a field. In llh_a_field (the func-
tion that gets called after every entry field to perform after-field logic), the function
llh_lookup is called as follows:

 # After data_changed logic
 if data_changed
 then
 case
 when scr_fld = "state"
 # Perform Lookups
 if llh_lookup("state_lk",true) = false and
 length(this_data) != 0
 then
 let nxt_fld = "state"
 return
 end if
 end case
 end if

The first argument to llh_lookup is the lookup name. The second argument is a
"must find" condition, indicating what to do if the value entered is not found.
llh_lookup behaves as follows if "true" or "false" is the second argument:

true: call the standard error message "Value is not in the list of valid data."

false: continue on with no call to an error message.

Fitrix Screen creates the second argument as "true" by default. The function
llh_lookup itself returns "false" if the value is not found. Thus we have spe-
cific logic that is performed when llh_lookup returns a "false" condition:

 if llh_lookup("state_lk",true) = false and
 length(this_data) != 0 # ^^^^^ returns false condition
 then # <------ so this logic is performed
 let nxt_fld = "state"

Fitrix Screen Technical Reference

7-30 Form Definition

By default, Fitrix Screen sets the variable nxt_fld to the current field name to
leave the user in the field until a valid value is entered.

Defining a Zoom
Zooms allow users of an application to call up a form to display a list of valid data
for a field. The user can then select an entry from the zoom form which is then
automatically returned to the original field. The Zoom function is invoked when
running the compiled application by pressing [CTRL]-[z] when in a field with
Zoom functionality.

The Define Zoom Form
If you intend to add Zoom functionality to the application, you need to specify the
relationship between the current screen form and the zoom form. The Form Painter
uses the Define Zooms form to prompt for information concerning the Zoom from a
given field. The Define Zooms form is accessed through the Define pull-down
menu (also found on the picker list appearing when you press [CTRL]-[z] from
within a defined field). The Define Zooms form:

Zoom Screen ID: This field stores the name of the zoom screen form without the
.per extension. As with all screen form names, the name should be limited to seven
characters. The Zoom feature is available to help select an existing form.

Auto Zoom: This field is a Y/N field that determines whether the Code Generator
creates AutoZoom code for this field. When running the compiled application, if
you place an asterisk anywhere in a field with AutoZoom capability, the Zoom

Fitrix Screen Technical Reference

Defining a Zoom 7-31

logic uses that data to build the matches clause, then automatically calls the zoom
screen. For example, if you enter an "s*" into an AutoZoom field, a zoom form
automatically displays listing all of the values that begin with an s.

Do not specify AutoZoom if you need to have an asterisk as a piece of data in a
Zoom key field, or if the Zoom key field is a non-char (numeric) type field that can-
not use the MATCHES clause in an SQL query.

Main Zoom Table: This field lets you specify the main table for the Zoom. It is
required only if you wish to have AutoZoom. The system requires it to build the
MATCHES clause for AutoZoom.

Zoom Entry Filter: This field stores the "where" clause used when you enter the
Zoom. By specifying a filter, you can determine what is displayed when the user
executes the Zoom function. If a Zoom filter is specified, it uses that filter instead
of placing the user into the query by example screen. The Zoom feature can be used
in this field to select valid column names for the filter; the Zoom appends selected
data to existing data (if any) in this field.

The special words "all" and "ALL," when entered into the Zoom Entry Filter field,
have the same significance as 1=1 (select all records). The words "none" and
"NONE" are interpreted in this field as 1=0 (select no records).

Validation occurs on this field although you are not required to enter an existing
value.

Note that the initial filter specified here is used only upon the initial display. Once
the user uses the Find command on the zoom, the initial filter is lost. You can set up
a permanent zoom filter that stays even when the user selects the Find command.
For information refer to "Creating a Permanent Zoom Filter" on page 10-62.

Zoom From Column: This field is required when the following items are true:

1. The table.column name being Zoomed into is different from the name of
the column on the screen.

2. The screen field you are Zooming from is a character field.

3. Auto-Zoom is enabled. Zooms with the "noautozoom" keyword or a filter
do not require the "from" keyword.

Fitrix Screen Technical Reference

7-32 Form Definition

For example, if the field on your screen is named customer_num and the field
being Zoomed into is called cus_num, you would enter cus_num into the Zoom
From Column field.

Creating a Zoom
To attach a Zoom function to a field:

1. Create the field to utilize Zoom functionality.

2. Display the Define Zooms definition form.

3. Enter the Zoom Form ID which is the name of the zoom .per form that this
Zoom function calls.

4. Specify whether the field will allow the Auto-Zoom function.

5. Enter the Main Zoom Table name.

6. Enter the selection criteria used for the initial selection in the Zoom Entry
Filter.

7. If table.column name being Zoomed into is different from the field name
on the form, specify it in Zoom From column.

8. Store this Zoom function by pressing [ESC].

9. Create the Zoom .per form with the Form Painter.

10. If data is to be returned to the field on the main form, specify the returning
column on the Define the Form form for the Zoom.

Deleting a Zoom
You can delete a Zoom by calling up the Zoom Definition form for the field you
want to delete, then blanking out the Zoom Form ID field. After removing the entry
in the Zoom Form ID field either with [CTRL]-[d] or by pressing [SPACEBAR]
until the field is erased. Pressing [ESC] displays a prompt warning you that the
Zoom will be deleted. The Zoom for this field is deleted if you answer "yes" to this
prompt.

Fitrix Screen Technical Reference

Defining Triggers 7-33

Defining Triggers
The Form Painter permits you to add triggers as you are developing your data entry
screen. Triggers allow you to localize form specific custom 4GL code modifica-
tions and additions in a single file, known as a triggers file. When you run the Code
Generator on a form, the instructions placed in the triggers file are interpreted and
incorporated into the resulting source code. Two benefits of triggers are:

1. You can make powerful and fast modifications to the resulting program without
having to be intimately familiar with the source code.

2. You can add to and re-generate programs without losing any of your changes.

To add triggers with the Form Painter, select a trigger from a list of available trig-
gers, then enter the program code for the trigger into a trigger definition form.
When you save your form, a triggers file is created with your form name plus the
.trg extension. When you run the Code Generator on your form, the triggers file is
parsed, and the resulting generated program contains all the custom modifications
you created with your triggers.

You can select the triggers feature from several different locations within the Form
Painter. When you select the Triggers function, your location determines what type
of trigger selection list will appear.

The Triggers function can be accessed by selecting the Triggers option from each
of the following places:

Selecting Triggers from
this location

Displays the following form

Define pull-down menu Choose a Trigger Class

Define Form picker Choose a Trigger Class

Define Field picker Choose a Trigger

Fitrix Screen Technical Reference

7-34 Form Definition

The Choose a Trigger Class form appears if you call up Triggers while the cursor is
in the Form Editor and not in a field or from the Define pull down.

This form allows you to select which class of triggers you want to work with.

• Default triggers handle custom modifications to main.4gl

• Input Area 1 triggers manage modifications to header.4gl.

• Input Area 2 triggers manage modifications to detail.4gl.

For more information on trigger classes, refer to "The Trigger File" on page 12-4.

After selecting a trigger class, the Choose a Trigger list appears. The Choose a
Trigger list displays all the available triggers for the selected class. You can select a
trigger by moving to the trigger and pressing [ESC] or [ENTER]. Selecting one of
these triggers displays an entry form into which you may enter the code for that
trigger.

Note

When you call the Triggers function from within a field, the Choose a Trigger
form displays only those triggers that are available from within the current input
area.

Fitrix Screen Technical Reference

Defining Triggers 7-35

A Trigger Definition form appears as follows:

Into this form you may enter 4GL code for the particular trigger. When entering
triggers through the Form Painter you do not need to type the name of the trigger.
The trigger name is automatically written to the triggers file. Also, a semicolon is
automatically appended to the end of each trigger definition when the triggers file is
created, so you do not need to put semicolons in.

A trigger can be deleted by deleting all the lines in the trigger with [CTRL]-[d].

For more information about each specific trigger refer to "The Triggers" on page
12-8.

Editing the Trigger
While you are in the Trigger Definition form, you can press [CTRL]-[z] to Zoom
into your favorite editor such as vi. The Trigger Zoom adds to the flexibility of the
Form Painter, allowing you to create triggers in the environment you are most com-
fortable with. Pressing [CTRL]-[z] in the Trigger Definition form puts you in a
temporary file containing whatever was in the Trigger Definition form. If the form
was empty when you pressed [CTRL]-[z], you will see an empty file. In the tempo-
rary file, create your trigger. When you are finished, write and quit like you would
normally quit your editor. If you are using vi then you would perform a ":wq."
Upon quitting the editor, you will return to the Trigger Definition form. Whatever
you entered into your temp file will appear in the Trigger Definition form.

Fitrix Screen Technical Reference

7-36 Form Definition

Saving the Trigger File
The Form pull-down menu provides an option to Save Trg File. This option allows
you to save your triggers to a file named after your current form with a .trg exten-
sion. The Form Painter creates two files: a .per file and a .trg file. When you save
the form with the Save Form option, a .per file is created along with a .trg file if you
have defined any triggers. The Save Trg File option is useful when you open a form
and only modify the triggers. This way you only have to save the part of the form
that has been modified.

Deleting the Trigger File
The Delete Trg File option allows you to delete any trigger file in the current direc-
tory. Deleting a trigger file is convenient when you need to heavily modify a form.
Rather than changing each individual trigger, you can delete the trigger file and
rebuild them from scratch. The Delete Trg File option displays a picker list contain-
ing all trigger files in the current directory. Select the file you wish to delete.

Recovering a Deleted Trigger File
If you use the Delete Trigger File option in the Form Painter, you may be able to
recover an accidently deleted file. Instead of removing a trigger file with the rm
command, the Delete Trigger File option copies the trigger file to the /tmp direc-
tory. If you need to recover a deleted file, all you need to do is retrieve the file from
the /tmp directory.

Selecting Commands for the
Ring Menu
The Select Commands option on the Define pull-down menu modifies the ring
menu of the application being created. The Select Commands option may only be
selected if a header or header/detail is currently open.

Fitrix Screen Technical Reference

Selecting Commands for the Ring Menu 7-37

When the Select Commands option is invoked a sub-menu appears that allows you
to choose whether the ring menu for the program you are creating will have pull-
down menus or the standard ring menu without pull-downs. If you have User Con-
trol Library installed you will get two options: With Pulldowns and Without Pull-
downs.

The scradv.a library, which is part of the User Control Library, must be used in
order to have pull-down menus. If you do not have the User Control Library, then
you cannot create ring menu items with pull-downs.

For more information on the scradv.a library and using pull-down menus refer to
the CASE Tools Enhancement Toolkit Technical Reference.

After selecting either With Pulldowns or Without Pulldowns a selection box
appears:

Inside of this selection box are the available menu items of the application ring
menu. An asterisk next to the menu item indicates that the item is enabled and will
appear on the application ring menu. A menu item without an asterisk indicates that
the menu item is disabled and will not appear on the application ring menu.

The up and down arrow keys position the cursor and the [ENTER] key toggles the
state of the menu item. The [ESC] key accepts the selection and the [DEL] key
aborts the selection.

Information is handled differently depending on whether the User Control Libraries
are present.

Options marked with a *
appear on the final pro-

gram’s ring menu

Options without a * do
not appear on the final
program’s ring menu.

Fitrix Screen Technical Reference

7-38 Form Definition

1. If using the With Pulldowns option the information is stored in either the cgm-
cmndr (if all menu items are present) or cgmmenud (if only a subset of the
menu items are present).

2. If you are using the Without Pulldowns option and you choose a subset of the
ring menu items, a local detl_menu() or head_menu() function is gener-
ated. If you define such a ring menu using the With Pulldowns option, no local
menu function is generated but scradv.a is added to the Makefile. Custom
ring menus that utilize pull-downs require scradv.a to be linked in.

If you have both With and Without Pulldown the scradv.a version is given pre-
cedence (with pull-downs) and you won't get a local menu function.

If you have defined a custom ring menu that does not utilize all of the standard ring
menu items, and then revert back to include all of the normal options, the custom
menu logic will no longer be generated locally.

If you use the Program Menu option to define a custom menu, scradv.a will be
included in the Makefile if you choose any menu but Old_ring as your "Get
Ring" value. If you choose Old_ring a local menu function will be generated for the
program you are setting up.

The With Pulldowns option indicates that the menu name is "Mainring." The With-
out Pulldowns option indicates that the menu name is "Old_ring."

It is not possible to add menu items using the With Pulldown or Without Pulldown
options. These options only enable or disable the "Mainring" or "Old_ring" menu
items. You could modify these menus to add whatever items you want.

If the scradv.a menus are used, two programs can be used to modify their
behavior. These programs are invoked from the Program Menu option and the Ring
Menu Items option on the Define menu. The Ring Menu Items option builds and
maintains the menus and the Program Menu option allows you to customize a
defined menu for a specific application.

If you really want scradv.a to manage the standard ring menu without pull-
downs you will have to use a do_not_generate trigger to suppress the genera-
tion of the local menu function and you will need to either add scradv.a to the
LIBFILES in the Makefile or compile with fg.make -L scradv.a. If you
do not have the User Control Library and try to use the scradv.a menus, it won't
work: the link phase of the compile will fail.

Fitrix Screen Technical Reference

The Program Menu Option 7-39

An Example:

In this example, the User Control Library is present. The goal is to change the
scr_demo 3 application so that the ring menu items Update and Delete do not
appear on the order form ring menu.

1. First, change directories to $fg/codegen/demo.4gm/screen3.4gs.

2. Start the Form Painter by typing fg.form.

3. Open up the order.per form.

4. Select Define.

5. Choose Select Commands.

6. Choose With Menus.

7. Select Update and Delete.

The asterisk disappears next to these items.

8. Compile the forms and then generate 4gl, compile 4gl, and run the pro-
gram.

If you run the program, the Update and Delete items do not appear on the applica-
tions ring menu. To achieve this, a detl_menu() function is generated in the
main.4gl.

The Program Menu Option
Use this option if you have the Enhancement Toolkit and you want to customize the
optional pull-down ring menu for your programs.

For an introduction to the Pull Down Menus feature, see the Fitrix CASE Tools
Enhancement Toolkit Technical Reference.

Detailed documentation on the Program Menu option can be found in the Fitrix
CASE Tools Enhancement Toolkit Technical Reference.

Fitrix Screen Technical Reference

7-40 Form Definition

The Ring Menu Items Option
Use this option if you have the Enhancement Toolkit and you want to create new
menu items for your ring menus.

For an introduction to the Pull Down Menus feature, see the Fitrix CASE Tools
Enhancement Toolkit Technical Reference.

Detailed documentation on the Program Menu option can be found in the Fitrix
CASE Tools Enhancement Toolkit Technical Reference.

Fitrix Screen Technical Reference

Short Cuts to Define Options 7-41

Short Cuts to Define Options
There are two ways you can call up the Field, Input Area, Lookup, Zoom, and Form
Defaults forms:

1. Exit the Form Editor and select the appropriate option on the Define pull-down
menu.

2. Press [CTRL]-[z] to provide definitions without exiting the Form Editor.

When you press [CTRL]-[z] in the Form Editor, a picker list appears containing a
set of relevant define options. The contents of the picker list vary depending on the
location of the cursor when [CTRL]-[z] is pressed. That is, if the cursor is currently
within a field, the picker list contains options defined at the field level. The Define
Field pop-up menu:

Use the arrow keys to move the cursor to the option you wish to define and press
[ESC] to select it. Press [DEL] to quit and return to the form editor. Selecting an
item on the picker list is equivalent to selecting the corresponding option on the
Define pull-down menu—the same data-entry appears.

Fitrix Screen Technical Reference

7-42 Form Definition

If the cursor is currently outside of a defined field in the form editor, pressing
[CTRL]-[z] will lead to a picker list containing topics defined at the form or input
level. The Define Form pop-up menu:

When you quit the selected define form, the program returns to the form editor.

Defining Copyright Text
The Form Painter provides an option that allows you to establish and maintain
copyright and SCCS (source code control system) information for any screen form
file painted. The option is titled Copyright Text, and is found on the Define pull-
down menu. Once selected, the Copyright Text form appears on the screen as fol-
lows:

Any information entered and stored on this form will appear as commented header
text in all .4gl files generated with the Code Generator.

8-1

8
The Run Menu

This section covers the options found on the Run pull-down menu in the Form
Painter. The following items are discussed:

n Compiling the Form

n Creating 4GL

n Running the 4GL Application

n Using Hot Keys

n Using Navigation

Fitrix Screen Technical Reference

8-2 The Run Menu

Run Pull-Down Menu
The topics discussed in this section all relate to options found on the Run pull-down
menu. The Run pull-down menu appears as follows:

All the options except Navigate and Hot Keys relate to compiling, generating, or
running code. Once the screen form is developed, the final steps to creating your
application are as follows:

1. Compile the form.

2. Generate the 4GL code from the form specifications.

3. Compile the generated 4GL code.

4. Run the compiled 4GL application.

This section discusses each step in addition to the Navigate and Hot Keys features.

Fitrix Screen Technical Reference

Compiling the Screen Form 8-3

Compiling the Screen Form
The Compile Form option found on the Run pull-down menu runs the screen form
through the INFORMIX form4gl compiler. The compiler checks syntax and
compiles and names error-free forms with .frm extensions. For example, a screen
form named routes.per would be compiled into a form named routes.frm.

Selection of the Compile Form option leads to a picker list, prompting the user to
specify which form(s) to compile at the present time. The picker list appears as fol-
lows:

You can choose to compile all forms, just the current form, or any individual form.
Use the [ESC] key to select the form you want to compile.

Fitrix Screen Technical Reference

8-4 The Run Menu

Generating 4GL Code
The generation of source code from .per form specification files is the job of the
Fitrix Screen Code Generator. The Form Painter provides an option that allows you
to generate source code without having to exit the program. The Generate 4GL
option on the Run pull-down menu is used to produce source code for a ready-to-
use data-entry front-end.

If you have changed the current screen form since your last save, a save is con-
ducted once you select Generate 4GL. If the screen form is not yet compiled, it is
compiled in the process of generating the 4GL source code.

Once you select the Generate 4GL option, a window containing a list of forms in
your current directory appears. As with the Compile Form option, the picker list
offers selections for generating 4GL for the current form, for all forms listed, or for
any individual listed form.

When you select All Forms, a dialog box appears asking if you want to compile
only the forms in the current directory.

If you answer NO, the Code Generator uses Version Control to determine where to
look to find .per forms not in the current directory. The variable $cust_path
determines which directories to look in. The default $cust_path is 4gc:4gs. For
more information on Version Control refer to "Version Control" on page 16-1.

As code is generated, it is displayed on the screen. When code generation is com-
plete, the cursor returns to the Run pull-down menu.

A window appears at the conclusion of code generation to display the results of the
operation.

Fitrix Screen Technical Reference

Compiling Generated Source Code 8-5

Note

You can change the speed at which the code is generated by first selecting the
Generate 4GL option, then pressing the [DEL] key. A prompt appears asking if
you wish to cancel the generation. At this prompt you can change the speed of
generation by typing the number of the generation level, from 0-5, 0 being the
fastest. The default generation level is 4.

Compiling Generated Source
Code
The next step following the generation of 4GL code is the compilation of that
source code. Generation and compilation of 4GL code are performed separately,
allowing you to modify the generated code.

A more detailed description of source code compilation is found in "Compiling
Generated Source Code" on page 8-5. The discussion here is limited to running the
Compile 4GL option, found on the Run pull-down menu.

Once selected, the Compile 4GL option uses the information from the local Make-
file to compile the .4gl files found in the local directory. No picker list appears after
this option is selected—compilation begins immediately on the source code in the
local directory.

Once the source code successfully compiles, the cursor is returned to the Run pull-
down menu on the command line.

Fitrix Screen Technical Reference

8-6 The Run Menu

Running a Compiled
Program
The compiled data-entry interface can be executed from within the Form Painter by
executing the Run 4GL Program option found on the Run pull-down menu. Once
you select this option, the compiled executable (named after the directory in which
it resides) is executed.

Upon quitting from the generated program, the cursor returns control to the Run
pull-down menu.

Navigation in the Form
Painter
The Navigate option, found on the Run pull-down menu, is a powerful enhance-
ment to the Form Painter. Navigation is the ability to move around the system and
carry out other jobs without sacrificing your current process. By selecting the navi-
gate menu from within an application, you can "jump" to an event such as reading
mail, printing a report, or loading another application.

Events can be classified as internal (internal to the current program) or external.
Internal events include accept, backtab, cancel, help, and hot keys. External events
include operating system events, or any event handled outside of the current pro-
gram. When finished with the event, you are returned to the point of departure.

The Form Painter allows you to create navigation events for your own use while
running the Form Painter. Also, if the site that will be running the application you
are creating has the User Control Library, you can create events for use with your
application.

For detailed information on the Navigation feature refer to the Fitrix CASE Tools
Enhancement Toolkit Technical Reference.

For detailed information on the concept of Navigation and events "Event Handling
Logic" on page 15-2.

Fitrix Screen Technical Reference

Navigation in the Form Painter 8-7

Hooking a Navigation Event to Your
Application
If the site runs your finished application has the User Control Library installed, you
can hook navigation events to your programs.

Once the event is specified, you need to create and hook the event into your pro-
gram. This involves creating a trigger that adds a few lines of code to the 4GL pro-
gram.

To hook your navigation event to your application:

1. Specify the event by selecting the Add a Navigation Action option from the
Navigate menu.

The navigate menu can be displayed by selecting Navigate from the Run pull-
down menu or by pressing [CTRL]-[g].

2. Add an on_event trigger to the trigger file for the specific form from
which you want the action to occur.

Make sure that you place the on_event trigger in the appropriate section of
the trigger file. If you put your trigger in the input 1 section, the event will only
be executed from the input 1 area of the program.

3. The on_event trigger requires an argument. Enter the value that you put
in the Action Code field for your event.

For example, if you created an event and put my_event in the Action Code
field, your trigger would look like the following:

input 1

on_event my_event
 display "You have just executed my_event."
 sleep 3;

This example displays the words "You have just executed my_event" on the
screen whenever this event is executed from the header section of the form.

4. Generate 4GL code.

5. Transfer navigate table information to destination database.

Fitrix Screen Technical Reference

8-8 The Run Menu

After setting up an event in this manner, it can then be executed while running the
application by selecting the event from the Navigation Menu, or it can be assigned
to a hot key.

Hot Keys
The Hot Keys option on the Run pull-down menu allows you to associate keys with
Navigation events for convenient, instant execution of events. Within the Form
Painter, you can set up hot keys for your own use while using the Form Painter.
Also, if the site that runs the application you are creating has the User Control
Library, you can create hot keys for use with your application.

The Hot Keys feature is part of the User Control Library of features. For more
information refer to the Fitrix CASE Tools Enhancement Toolkit Technical Refer-
ence.

9-1

9
Database
Administration

This section discusses the Database Administration system. The Database Admin-
istration system gives you the flexibility of modifying your database through the
front end. You can create columns and tables as you create your application.

n Using the Database Administration system

Fitrix Screen Technical Reference

9-2 Database Administration

Using the Database
Administration System
The Form Painter includes a Database Administration system. The Database option
on the Form pull-down menu leads to the Table Information form. This form allows
you to use the desktop environment of the Form Painter to modify the current data-
base. You work with the database without exiting from the Form Painter.

This option allows Form Painter users to modify the database; tables can be added,
modified, and removed. With this option, permissions are an issue to consider. You
cannot set or modify database privileges through the Database option; however,
database privileges can be set elsewhere (e.g., ISQL).

You can also invoke the Database Administration feature directly from a UNIX
prompt by typing fg.dbadmin.

Note

The Database Administration program does not communicate directly with the
dbmerge program. Changes made to a database with the database administration
program must also be made to dbmerge (if you want your changes to affect the
sample database.)

Fitrix Screen Technical Reference

Using the Database Administration System 9-3

The Table Information form appears as follows:

The fields appearing in the Main section of this form are as follows:

Table Name: This field accepts up to 18 alphanumeric characters. Table names
must be unique within a given database, and must begin with a letter. Do not use an
INFORMIX-reserved word as a table name. Once stored in the database, the Table
Name field becomes no entry; it cannot be modified on this form.

Description: This field stores a table description of up to 30 alphanumeric char-
acters. The table description can be changed at any time.

Unique Key: Enter column names that make a unique row within the table. Col-
umn names must be separated with a comma. The entry in this field can be updated
at any time. Once the unique key for a table is defined on this form, it serves as the
unique key definition for input areas that use the table as the main table.

Owner: This field is system-maintained; it cannot be manually modified. Once the
document containing the table information is stored, the table is created within the
current database. The name of the user entering the document is then listed as the
owner.

Created: This field is system-maintained; it cannot be manually modified. The
field displays the creation date of the table.

Fitrix Screen Technical Reference

9-4 Database Administration

Version: This field is system-maintained; it cannot be manually modified. When a
table is first defined through this form, it is considered version one. Each future
modification to the table causes the version number to be incremented. For
instance, a document with the value of three in the Version field has been modified
twice—the initial value of one plus two increments yields a current value of three.

The columns appearing in the detail section of this form are as follows:

Column Name: This column stores the column name for a given table field. The
field accepts an entry of up to 18 alphanumeric characters. Once stored, the entry in
this field cannot be modified.

Description: This optional column stores a description for the field name.
Descriptions may be up to 30 alphanumeric characters long, but only 18 characters
are displayed. The Zoom feature displays a form which allows you to enter the full
30 characters for the description as well as the message you wish to display when
the cursor enters the field on the working application. When selected, the zoom
form appears as follows:

Type: This field stores the field type. Field types are valid INFORMIX data types.
Field types include:

• Byte—a data object that contains any kind of binary data. It has no maxi-
mum size. Bytes are one type of BLOB (binary large object). You can use
bytes only in 4GL version 4.00 or higher and only with the OnLine engine.

Fitrix Screen Technical Reference

Using the Database Administration System 9-5

• Char—a character string up to 32,511 characters long.

• Date—a date entered as a character string.

• Datetime—a moment in time that can include year, month, day, hour,
minute, second, and fraction of a second. This data type is only available
with 4GL version 4.00 or higher.

• Decimal—a decimal floating-point number.

• Float—a floating-point number corresponding to the double C data type.

• Integer—a whole number from -2,147,483,647 to +2,147,483,647.

• Interval—a span of time that can include year, month, day, hour, minute,
second, and fraction of a second. This data type is only available with 4GL
version 4.00 or higher.

• Money—a decimal data type displayed with a leading dollar sign.

• Serial—a sequential integer assigned automatically by the database engine.

• Smallint—a whole number from -32,767 to +32,767.

• Smallfloat—a floating-point number corresponding to the floating C data
type.

• Text—a data object that contains text data. It has no maximum size. Text is
the other type of BLOB (binary large object). You can use text only in 4GL
version 4.00 or higher and only with the OnLine engine.

• Varchar—a variable-length text string of up to 255 characters. It can
include ASCII characters, tabs, and newlines. You can use varchars only in
4GL version 4.00 or higher. You also need to run the OnLine engine if you
specify varchars from a database (table and column) in your form.

Please consult "Engine/4GL Compatibility" on page E-4 and your INFORMIX-
4GL documentation for further information.

Note

Once a column is stored as not null, the not null definition cannot be
removed.

Fitrix Screen Technical Reference

9-6 Database Administration

Using the AutoForm Feature
The Database Administration system offers a feature that copies the columns of the
current table into a Clipboard page. Later the page can be used as a template for
building new data-entry forms. You can access the AutoForm feature through the
Options command on the main ring menu of the Table Information form. The Table
Information form is accessed through the Form Painter with the Database option on
the Form pull-down menu.

The Form Painter displays the data created from columns in the selected database
table. The following example is based on the orders table from the stores sample
database (installed with INFORMIX-4GL).

The text and definitions for the selected table comprise a new page on the Clip-
board, titled according to the contents of the Description field on the Table Infor-
mation form. The data on the Clipboard page can then be used as a template for
other projects involving all or part of the particular database table.

For further information on using the Clipboard, see "Working with the Clipboard"
on page 6-5.

To generate a data-entry form based columns in a table:

Fitrix Screen Technical Reference

Using the AutoForm Feature 9-7

1. From the Form Painter menu line, select New from the File pull-down
menu.

2. Select what type of form you want to create.

3. Name the form.

4. Select the Database option on the Form pull-down menu.

5. Make a particular database table current on the Table Information form.

Use the Find command to locate a table.

6. Select the Options command on the main ring menu.

7. Select the AutoForm command on the Options ring menu.

A generic form appears along with a message explaining that the form was cop-
ied to the clipboard.

8. Quit out of the Database Administration form.

9. Move down into the Form Editor.

10. Press [CTRL]-[p] to paste the automatically generated screen image.

11. Continue to modify the form as you like.

Fitrix Screen Technical Reference

9-8 Database Administration

Using the Database
Administration Recorder
The Database Administration feature also contains a "recorder" that allows you to
apply changes made to one database to other databases. It also provides a record of
all changes made to your database through the Database Administration program.

Whenever you modify a database with the Database Administration feature, a log
of all of your database modifications is created with ISQL statement formats. Then
with ISQL, you can use the recorded log to alter other databases. This means that
you can easily modify multiple databases with little effort.

Each time you perform an Add, Update, or Deletion of a table while in the Database
Administration program, the ISQL statement required to perform that task is writ-
ten to a log file named dbadmin.sql in the current directory. Each action that is
performed on a particular table is appended to the log file.

Example: You add a table called "freddy" with a column "name char(10)" to the
stores database.

The following log file would be appended to the dbadmin.sql log in your cur-
rent directory.

 { Fri Mar 27 10:57:29 PST 1992 }
database stores;
create table freddy (name char(10));

Notice that a time stamp is placed before each ISQL command in ISQL comment
format.

Remember that changes are appended to the existing dbadmin.sql file. This
means that maintenance of this file is left up to you.

Fitrix Screen Technical Reference

Defining Column Level Help Text 9-9

Defining Column Level Help
Text
With the Database Administration program you can define column level help for
your application. Information about defining column level help with the Database
Administration program can be found in "Defining Application Help Through the
Form Painter" on page 15-27.

Fitrix Screen Technical Reference

9-10 Database Administration

Part Three

The Code
Generator

10-1

10
Creating Screen
Forms

This chapter discusses in detail the different types of data-entry screens that can be
generated with the Fitrix Screen Code Generator. This chapter covers:

n Designing screen forms
n Header screens
n Header/detail screens
n Extension screens
n Add-on header screens
n Add-on detail screens
n Query screens
n View-header screens
n View-detail screens
n Browse screens
n Zoom screens

Fitrix Screen Technical Reference

10-2 Creating Screen Forms

Steps to an Application
This section is a simple step-by-step introduction to the creation of a data-entry
application using the Fitrix Screen Form Painter and Code Generator. Use this list
as an introduction to the flow of activities in Fitrix Screen as well as a checklist for
development projects.

Preparatory Steps

1. If database tables for the application do not yet exist, plan the tables you need.
Decide how the data is organized in the database.

2. Sketch the data-entry form on paper.

3. Decide on the main table for the form. The main table is the table that the
screen is referencing. If the form is a header/detail form, also decide on the
main detail table for the scrolling (detail) section.

4. Chart the columns in the database tables that the data-entry form maintains.

5. Plan for any fields on the form that requires a Zoom into a reference file to
select a valid entry.

6. Decide whether any fields perform lookups. Plan out which fields automati-
cally have values returned to them based on a lookup.

7. Select the Database option on the Form pull-down menu. If tables and columns
are not already established, add them to the database that the data-entry form
uses.

Form Painter Steps

1. If the form is not a header, make sure you are operating in Expert mode.

2. Select New Form, choose the form type you want, and name the form.

3. Define the form defaults, including the main table.

4. Define the input area for the main and scrolling sections.

5. Define the fields in the main (header) section of the form.

Fitrix Screen Technical Reference

Steps to an Application 10-3

6. Enter the fields in the scrolling (detail) section. Enter one row, then copy it onto
the clipboard. Use the clipboard to paste in copies for the rest of the screen
array.

7. Specify the join statement to link the detail section to the main table of the
main section of the form.

8. Carry out additional (optional) steps:

• Define the lookups taking place in the data-entry form.

• Define the formula for any form-only math field in the data-entry form.

• Define Zooms for any fields that have the capability of allowing the user to
select from a group of established entries. Be sure to create and name all
referenced zoom forms.

• Define a browse form for working with multiple documents. Make sure the
browse form uses the same table that the main data-entry form uses.

9. Save the data-entry form. This step actually generates the .per file used by the
Code Generator to create the 4GL source code.

10. Compile the data-entry form. To do this, select the Compile Form option on the
Run pull-down menu.

Code Generator Steps

1. If you want to make any modifications to the generated code, create triggers or
block commands. The code you write for triggers and blocks is incorporated
into the base code with the Featurizer. You can also create a post processor
script and identify it with the $local_scr variable.

2. Select the Generate 4GL option on the Run pull-down menu. This invokes the
Code Generator on the data-entry form. The 4GL source code is created by this
step.

3. Compile the generated 4GL code with the Compile 4GL option.

4. Run the 4GL application.

Fitrix Screen Technical Reference

10-4 Creating Screen Forms

Form Types
You can define ten common types of forms with Fitrix Screen: header,
header/detail, browse, zoom, extension, add-on header, add-on detail, query, view-
header, and view-detail.

When creating a new form, you can choose your form type by selecting your choice
from the Screen Type list. The form type can also be specified in the Form Type
field on the Form Definition form in the Form Painter.

The following screen types are used as main input screens.

header: This is a flat type. Header forms contain one input area and one main
table.

An example of a header screen can be found in $fg/code-
gen/demo.4gm/screen1.bak/custform.per.

header/detail: this is a flat type (header) with another scrolling (detail) section
joined to the header. Header/detail forms are suited for order forms where there is
one occurrence for customer information and multiple line items for merchandise.

An example of a header/detail form can be found in $fg/code-
gen/demo.4gm/screen3.bak/order.per.

The following auxiliary screen types are not used as stand-alone data-entry screens.
They are generally called from the "main" input program.

add-on header: this is a header screen used in conjunction with another header or
header/detail screen to provide an extra window of fields. This screen type gener-
ates disk read and write functions.

An example of an add-on header form can be found in $fg/code-
gen/demo.4gm/screen5.bak/cust.per.

add-on detail: this is a scrolling detail-only form. This form can be called from
any other form to display any detail information. This screen type generates disk
read and write functions.

An example of an add-on-detail screen can be found in $fg/code-
gen/demo.4gm/screen8.bak/adddtl.per.

Fitrix Screen Technical Reference

Form Types 10-5

extension: this is a special type of screen that enables you to include an extension
of the main header table or detail table. This screen type shares data with the main
screen.

An example of an extension screen can be found in $fg/code-
gen/demo.4gm/screen7.bak/company.per

query: this form is used only for building an SQL query. This form can replace the
mlh_construct function.

An example of a query screen can be found in $fg/code-
gen/demo.4gm/screen9.bak/custqry.per

view-detail: this is a detail-only form that allows you to view data but not alter it.

An example of a view-detail screen can be found in $fg/code-
gen/demo.4gm/screen9.bak/ordview.per

view-header: this is a flat form used to view header information.

An example of a view-header screen can be found in $fg/code-
gen/demo.4gm/screen9.bak/custvw.per

The following special screen types are unlike any other screen type. These types are
used in conjunction with the main input program and are basically used to locate
and select information.

browse: this is a scrolling type screen whose main table is the same as the header
section main table. It enables you to view one row of the header table per line rather
than one row per screen. Only one browse screen may be used per program. An
example of a browse form can be found in $fg/code-
gen/demo.4gm/screen3.bak/browse.per.

zoom: this is a special type of screen that enables you to view and/or retrieve data
from another table (or set of tables which are "joined"). An example of a zoom
form can be found in $fg/code-
gen/demo.4gm/screen3.bak/custzm.per.

Fitrix Screen Technical Reference

10-6 Creating Screen Forms

Form Design
This section discusses basic concepts in effective form design. The Appendix con-
tains a form style guide providing information on established design conventions.

The proper structure of a form is defined in your INFORMIX-4GL documentation.
The structure established by INFORMIX-4GL is followed here, though the Form
Painter appends an additional section, FGSS, to the perform to direct the operation
of the Code Generator.

This discussion points out the issues that you should bear in mind prior to invoking
the Fitrix Screen Form Painter. The following list of questions is by no means a
complete checklist of what you should decide prior to painting a form. Neverthe-
less, it does cover some basic points that expedite your use of the Form Painter.

• What is the purpose of the form? This is perhaps the most basic question
regarding the painting of forms. Decide how the screen form affects the data-
base. Determine how the form complements other forms in the same applica-
tion. Try to condense the purpose of the form into a brief statement.

• What type of form are you creating? Decide whether the data-entry form is
header(flat file) or header/detail. Is the form used as a Browse or Zoom?

• How are fields grouped on the form? Pay attention to the grouping of related
data. This concept leads to better organization in form design. Well-organized
forms are easier to understand and use. Although the cut and paste capabilities
in the Form Painter make reorganization of fields relatively simple, a drawing
done ahead of time can only expedite the process.

• Which table(s) will the form use? Know ahead of time which table(s) the
form will use.

• What database engine and 4GL version are you using? Make sure that your
engine and 4GL are compatible with each other as well as with this software.

• What type of validation is required for fields on the form? Determine which
fields require data checks and data-entry validation. This planning ensures that
the new form preserves the database’s integrity.

Fitrix Screen Technical Reference

Form Limitations 10-7

• Do any fields on this form use browse and zoom screens? If this is a primary
data-entry form (header or header/detail), do any of the fields use a reference
(zoom screen)? Is a browse form used to display current documents on individ-
ual rows?

• Do any fields require mathematical computation? Plan for any required
equations.

Form Limitations
Forms cannot be designed with a completely free hand—some limitations on struc-
ture do exist. Observe the following limitations as you plan the structure of your
form:

• The maximum number of lines in the input section of a form must not exceed
18. Additionally:

Two lines are reserved for the border.

One line is reserved for messages at the bottom of the form.

Three lines are reserved at the top for the ring menu, message line, and the
double dashed line.

Which brings the total number of lines to 24.

• The maximum number of columns in a form must not exceed 76.

• The maximum number of lines in the completed .per form specification file
may not exceed 200.

• The maximum number of .per forms in any one directory must not exceed 50.

Fitrix Screen Technical Reference

10-8 Creating Screen Forms

Header Screens
The simplest type of .per file is the header screen. Header screens are also known as
flat file applications. Such applications operate on one row of a table at a time. An
example of a header application can be found in scr_demo 1.

The standard database contains the table customer. The records for this table
can be maintained through the demo scr_demo 1 data-entry interface based on
the code generated from the custfrm.per file.

The following is a sample .per specification file that is used to create a header
application.

DATABASE standard

SCREEN
{
CUSTOMER FORM
--
Number :[f000]
Owner Name :[f001][f002]
Company :[f003]
Address :[f004]
 :[f005]
City :[f006] State:[a0] Zipcode:[f007]
Telephone :[f008]
}
TABLES
 customer

ATTRIBUTES
f000 = customer.customer_num;
f001 = customer.fname;
f002 = customer.lname;
f003 = customer.company;
f004 = customer.address1;
f005 = customer.address2;
f006 = customer.city;
a0 = customer.state, UPSHIFT;
f007 = customer.zipcode;
f008 = customer.phone, PICTURE = "###-###-#### XXXXX";

INSTRUCTIONS
SCREEN RECORD cust (customer.customer_num, customer.fname, customer.lname,
 customer.company, customer.address1, customer.address2,
customer.city,
 customer.state, customer.zipcode, customer.phone)

Fitrix Screen Technical Reference

Header Screens 10-9

Notice that the INSTRUCTIONS section includes only one SCREEN RECORD
cust. This implies that, based on this .per form specification file, the Code Gener-
ator generates code for a flat file application.

During code generation, the information in the .per form produces a number of
source code files that combine to produce a fully-operational data-entry front end.
The source code produced by the Code Generator is the focus of "Source Code" on
page 11-1.

Below is a sample header only application that was generated with the Code Gener-
ator:

Fitrix Screen Technical Reference

10-10 Creating Screen Forms

Header/Detail Screens
Often it is the case that one row of a certain table is related to a set of rows from
another table. In order to manage such one-to-many relationships you can create a
header/detail (also known as master/detail) application.

On a data-entry level, header/detail screens contain data from one row of the header
table and several detail line rows from the detail table.

The Code Generator allows you to easily create header/detail screens with a section
of the window for header information and another section to display lines of detail
data. You may toggle between header and detail lines.

The .per form specification file used to create a header/detail application is slightly
more complicated than the .per file specified for a flat file application. In short, the
following differences apply:

HEADER DETAIL

customer data invoices for that customer

categories of inventory
items

items within that category

employee data list of jobs completed by the employee

cash receipts invoices paid with that receipt

company profit centers account activity for that profit center

rental items customers renting the item

hotel rooms reservations for each room

inventory vendors parts available from each vendor

employee payroll data individual payments made to that employee

any item database notes concerning each item

Fitrix Screen Technical Reference

Header/Detail Screens 10-11

1. The TABLES section must contain more than one table name, with the table
used for the header information being listed first.

2. The field tags in the ATTRIBUTES section must be defined with the appropri-
ate table name in addition to the column name (orders.customer_num,
customer.fname, etc.). You must specify the correct table name for each
particular column.

3. The INSTRUCTIONS section must include more than one screen record. The
screen record for the detail section is in the form of an array, with the number of
rows to be displayed at one time enclosed in square brackets (for instance,
s_items[4]).

4. The FGSS section must include the join criteria for the detail table to the
header.

An example of a .per form specification file used to generate the header/detail
application is shown on the following page. The example shown is the .per file used
to generate the scr_demo 3 demo application.

The detail information appears under the columns Item Description, Man-
ufacturer, Qty., Price, and Extension. Notice that the field tags are
the same from row to row.

Example Header/Detail Form
The following is an example of a header/detail form:

DATABASE standard

SCREEN
{
------------------------------- Order Form --------------------------------
-
 Customer No.:[f000] Contact Name:[f001][f002]
 Company Name:[f003]
 Address:[f004][f005]
 City/St/Zip:[f006][a0] [f007] Telephone:[f008]

 Order Date:[f010] PO Number:[f011] Order No:[f009]

 Shipping Instructions: [f012]

-
 Item Description Manufacturer Qty. Price Extension

Fitrix Screen Technical Reference

10-12 Creating Screen Forms

[f14][f15][f16][f17] [f18][f19][f20]
[f14][f15][f16][f17] [f18][f19][f20]
[f14][f15][f16][f17] [f18][f19][f20]
[f14][f15][f16][f17] [f18][f19][f20]
 ===========
 Order weight:[f30] Freight:[f31]
 Order Total:[f32]
}

TABLES
 orders
 items
 customer
 stock
 manufact

ATTRIBUTES
f000 = orders.customer_num, comments =
 " Enter the customer code.";
f001 = customer.fname, noentry;
f002 = customer.lname, noentry;
f003 = customer.company, noentry;
f004 = customer.address1, noentry;
f005 = customer.address2, noentry;
f006 = customer.city, noentry;
a0 = customer.state, noentry;
f007 = customer.zipcode, noentry;
f008 = customer.phone, noentry;

f009 = orders.order_num, noentry;
f010 = orders.order_date, format = "mm/dd/yy", default = today, comments =
 " Enter the order date.";
f011 = orders.po_num, comments =
 " Enter the customer’s purchase order number.";
f012 = orders.ship_instruct, comments =
 " Enter any special shipping instructions to show on the invoice.";

f14 = items.stock_num, comments =
 " Enter the stock number for this line item.";
f15 = stock.description, noentry;
f16 = items.manu_code, comments =
 " Enter the manufacturers code for this stock number.";
f17 = manufact.manu_name, noentry;
f18 = items.quantity, comments =
 " Enter the number of units sold for this item.";
f19 = stock.unit_price, noentry;
f20 = items.total_price, noentry;

f30 = orders.ship_weight, comments =
 " Enter the total shipping weight for this order.";
f31 = orders.ship_charge, comments =
 " Enter the total shipping charge for this order.";
f32 = formonly.t_price type money, noentry;

Fitrix Screen Technical Reference

Header/Detail Screens 10-13

instructions
screen record s_order (orders.customer_num, customer.fname, customer.lname,
 customer.company, customer.address1, customer.address2, customer.city,
 customer.state, customer.zipcode, customer.phone, orders.order_date,
 orders.po_num, orders.order_num, orders.ship_instruct,
orders.ship_weight,
 orders.ship_charge, formonly.t_price)

screen record s_items[4](items.stock_num, stock.description,
items.manu_code,
 manufact.manu_name, items.quantity, stock.unit_price, items.total_price)

delimiters " "

{
###
FGSS
###

defaults
 type = header/detail
 init = order_num > 100

input 1
 table = orders (default = 1st table in the "tables" section)
 key = order_num
 filter = order_date > "12/31/80"
 order = order_num
 math = t_price = sum(total_price) + ship_charge
 lookup = key=customer_num, table=customer,
 filter=customer_num = $customer_num
 zoom = key=customer_num, screen=cust_zm, table=customer

input 2
 table = items
 join = items.order_num = orders.order_num
 order = item_num
 arr_max = 100
 autonum = item_num
 math = total_price = quantity * unit_price
 lookup = name=stock_num, key=stock_num, table=stock,
 filter=stock_num = $stock_num, into=description
 lookup = name=stock_manu, key=manu_code, table=stock,
 filter=stock_num = $stock_num and manu_code = $manu_code,
 into=unit_price
 lookup = key=manu_code, table=manufact, filter=manu_code = $manu_code
 zoom = key=stock_num, screen=stockzm, table=stock, noautozoom
 zoom = key=manu_code, screen=stk_mnu, table=stock,
 filter=stock.stock_num = $stock_num

}

Fitrix Screen Technical Reference

10-14 Creating Screen Forms

After running the Code Generator on the preceding .per form, the 4gl source code
can be compiled to produce a ready-to-use data-entry front end. The data-entry
screen appears as follows:

The following function is how other screen types are hooked into your main pro-
gram.

Fitrix Screen Technical Reference

The socketManager() Function 10-15

The socketManager()
Function
The socketManager() function is the main flow control manager for all screen
types other than header or header/detail screens. This function controls what func-
tions get generated for a particular type of screen. The Code Generator automati-
cally creates a flow manager for the main screen, which can be a header or
header/detail. You must add the call to the socketManager() function for all
additional screens, except for zoom screens in most cases.

socketManager("screen_name", "screen_type",
"flow_manager")

The single_function Screen Type
The single_function screen type is used to call a single function in a screen’s flow
without having to pass control to the screen’s flow control manager.

The flow manager for the single_function screen type is the function in the screen’s
switchbox you want to execute ("init", "read", and so on),

screen_name The name of the screen without the .per extension.

screen_type The type of screen. The screen type can be one of the fol-
lowing: extension, add-on header, add-on detail, zoom,
query, view header, view detail, custom, and
single_function. The single_function screen type is dis-
cussed next.

flow_manager The flow manager is usually "default." If you want to use
your own custom flow manager you can enter "custom." If
you pass custom to the socketManager() be sure to
provide a local F_scr_id() function.

For example, extension screens have four types of flow
control managers: flat_ext, deep_ext, view, custom. Refer
to "Extension Screens" on page 10-17.

Fitrix Screen Technical Reference

10-16 Creating Screen Forms

For example, you could create a header/detail screen that displays a field from a
third table. This requires you to create a .per form for the third table, generate code
for it, then make the main screen a non_source_form and add the same field name
and record from the additional screen. Then you need to add the call to the sock-
etManager("your_screen", "single_function", "display").
Most of the time you will have two calls to the socketManager() function: one
call to read the data and another call to display it.

Fitrix Screen Technical Reference

Extension Screens 10-17

Extension Screens
Extension screens are extensions of the main screen. They allow you to display
information related to your main form on separate screens that are called from the
main screen. Extension screens use the same table as the main screen.

If you have a table with many columns, you can organize the columns by subset
and display each subset on a separate form. For example, you can break up a cus-
tomer table into subsets, each containing specific types of columns (O/E info, ship-
to info, billing, etc.) You can then create extension screens off of the main screen
using the subset columns.

Extension screens are "generic" and can be stored in a library and used by other
programs. You can call an extension screen from either a header or detail section.

Extension screens support lookups, math, Zooms, free-form notes, help text, and if
used as an extension of the main header table, required field logic (nonull). Dupli-
cate check logic is handled by the main screen. The .4gl file that is generated is sim-
ilar in style to an add-on header .4gl file.

When using extension screens you must set the environment variable called
non_scr_q_elems equal to "include" and export it. This variable is associated
with the Featurizer and can be set in a screen.opt file. For more information
refer to "The Code Generator Options File (screen.opt)" on page 2-21.

Fitrix Screen Technical Reference

10-18 Creating Screen Forms

Example Extension Screen Form
The following is an example extension screen .per form:

{###
Copyright (C) 1992 Fitrix, Atlanta, Georgia.
All rights reserved.
Use, modification, duplication, and/or distribution of this
software is limited by the software license agreement.
Sccsid: @(#) .../demo.4gm/screen7.bak/company.per 1.3 Delta: 4/23/92
##
Screen Generator version: 4.11.UC1 }

DATABASE standard

SCREEN
{

------------------------- Company Information -----------------------

 Company Name : [A1]
 Address : [A2] [A3]
 City : [A4]
 State : [A5]
 Zip Code : [A6]
 Phone Number : [A7]

}

TABLES
 customer

ATTRIBUTES
A1 = customer.company, comments = "Enter the Company Name";
A2 = customer.address1, comments = "Enter the Address";
A3 = customer.address2, comments = "";
A4 = customer.city, comments = "Enter the City";
A5 = customer.state, upshift, comments = "Enter the State Code";
A6 = customer.zipcode, comments = "Enter the Zip Code";
A7 = customer.phone, picture = "###-###-#### XXXXX",
 comments = "Enter the Phone Number";

INSTRUCTIONS
screen record s_company (customer.company, customer.address1,
 customer.address2, customer.city, customer.state, customer.zipcode,
 customer.phone)

delimiters " "

Fitrix Screen Technical Reference

Extension Screens 10-19

{
##
FGSS
##

defaults
 module = demo
 type = extension
 init = 1=0
 attributes = border, blue
 location = 2, 3

input 1
 table = customer
 key = customer_num
 filter = 1=1
}

Creating Extension Screens
The following steps create an extension screen:

1. Create the extension screen with the Form Painter.

The extension screen is created in the same way as a header or add-on header
type screen. The extension .per file contains a single screen record, and the
FGSS section contains a defaults and input 1 section.

2. Create a switchbox_items trigger.

In order for your extension screens to get hooked into your program, you need
to create a switchbox_items trigger and put it in the trigger file for the
main screen. The switchbox_items trigger is needed for the main screen to
recognize the extension screen.

All triggers used are either of type defaults or input 1.

Example:

 defaults

 switchbox_items
 morord S_morord
 company S_company;

Fitrix Screen Technical Reference

10-20 Creating Screen Forms

3. Create a hook to call the socketManager() function.

Next, you need to create some kind of hook to call the socketManager()
function. This can be an after_field trigger or some other method such as
a navigation event.

Example:

 after_field company
 call socketManager("company", "extension", "flat_ext");

For an explanation of the socketManager() function, refer to "The sock-
etManager() Function" on page 10-15.

Creating Zooms from Extension
Screens
You can create Zooms on extension screens. However, if the zoom field on the
extension screen does not appear on the main screen, then you need to create a
switchbox_items trigger for that Zoom. If the Zoom field on the extension
screen does appear on the main screen, then the Code Generator automatically cre-
ates a switchbox_items trigger for that Zoom.

Types of Extension Screen Flow Control Managers
You can specify four types of flow control managers for extension screens:
flat_ext, deep_ext, view, custom. These types are explained next.

flat_ext: This is the flow control manager for flat type screens. The data in each
flat type screen is independent of any other extension screen, except if the flat
screen is called from a deep type screen. The t_clear function only clears the
data for that flat screen upon an interrupt.

Fitrix Screen Technical Reference

Extension Screens 10-21

Any number of flat extension screens can be called from other flat extension
screens. You can also string together calls to flat extension screens like this:

You can call a flat extension screen from a deep extension screen, but if you do, the
data in the flat extension screen depends on the deep screen. If the data in the deep
screen is stored by pressing [ESC], the data in the flat screen is also saved. If [DEL]
is pressed from the deep screen, then the data is also lost from the flat screen.

deep_ext: This is the flow control manager for deep type screens. Screens called
from a deep type screen are dependent upon the deep screen. If [DEL] is pressed
while in the deep screen, all data entered into any screen called from the deep
screen is not saved.

Main EXT #1 EXT #2

EXT #3

FlatFlat

Screen

Flat

Fitrix Screen Technical Reference

10-22 Creating Screen Forms

Anytime the user presses [DEL] from the EXT #1 screen (deep), all changes
entered into EXT #2 and #3 screens (both flat), are lost. Each individual flat exten-
sion screen is independent from the other.

view: This is the flow control manager for view type screens. This type of flow
model allows the user to view the data in an extension screen. An example of it's
use is to create a menu command in the main screen Option’s ring menu that
invokes the screens with a flow type of view.

custom: Calls the local F_() function.

Extension Screen Upper-Level Library
Functions
Several Upper-Level Library functions facilitate the use of extension screens. The
calls to these functions are automatically generated when you use extension
screens.

t_init(): Initializes the temporary data table used to communicate between
screens and sets up the read, write, and delete cursors for this temporary table.

t_read(): Reads from the temporary data table. A function called PR_header
or PR_detail is also generated in the local code for reading the data from the
temporary table into the main screen.

Main EXT #1 EXT #2

EXT #3

Deep Flat

Flat

Screen

Fitrix Screen Technical Reference

Extension Screens 10-23

t_write(row_num, name, data): Writes to the temporary data table. A
function called PW_header or PW_detail is also generated in the local code for
writing the data to the temporary table from the main screen.

t_clear(scr_id): This function deletes rows from the temporary table based
on the screen id passed to it. If the screen id is blank it deletes all rows.

dec_let(d): This function is used to preserve the precision of values contained
in decimal & money fields since data transfer is by character fields.

Extension Screen Functions
There are five functions generated that are not called automatically. They are the
C_ (clear), T_ (touch), K_ (key), F_ (flow), and OP_ (options) functions.

C_scr_id(): This is the clear function. This function initializes both the p_ and
q_ records to null.

T_scr_id(): This is the touch function. It’s purpose is to identify this screen to
the object manager.

K_scr_id(): This function puts into scratch, via the put_vararg() func-
tion, the name of the main input table, followed by pairs of put_vararg() calls
for each key field which makes up the key. The first half of the pair is a call to
put_vararg() sending the column name of the key field. The second half of the
pair, which is a call to put_vararg() sends the q_ record element which holds
the actual value of the key field. In the case of a key specified as
"customer_num. lname," and with the main input named "customer," the
calls to put_vararg() would be as follows:

call put_vararg("customer")
call put_vararg("customer_num")
call put_vararg(q_stomer.customer_num)
call put_vararg("fname")
call put_vararg(q_stomer.fname)

For more information on varargs see "The Vararg Family of Functions" on page 11-
35.

OP_scr_id(): The options function can be used when you create a "view" type
flow model. A view type screen allows you to view data without adding or updating
the form.

Fitrix Screen Technical Reference

10-24 Creating Screen Forms

F_scr_id(): The flow function can be used to create a custom flow control
manager. For certain applications, you may want to create a custom screen that
behaves differently from the standard extension screen flow model. To do this you
need to build a custom data flow manager, then create a call to socketMan-
ager("screen_name", "extension", "custom"). This instructs the
program to use the custom F_ () function as its flow manager.

For example you may want to call custom library functions that are not provided in
the standard flow model. The following F_ function provides the basic flow control
for a header extension screen.

Example (cuscr is the name of the screen):

function F_cuscr()
 call PW_header()
 call lib_message(menu_item)
 call PR_cuscr()
 call I_cuscr()
 call PW_cuscr()
 call PR_header()
end function
F_cuscr()

Here are the block commands necessary:

start file "cuscr.4gl"

 after block F_cuscr flow
 call PW_header()
 call lib_message(menu_item)
 call menu_line()
 call PR_cuscr()
 call I_cuscr()
 call PW_cuscr()
 call PR_header();

Fitrix Screen Technical Reference

Extension Screens 10-25

You also need the following block commands to finish the application:

start file "header.4gl"

 after_field field3
 call socketManager("cuscr", "extension", "custom");

start file "main.4gl"

 switchbox_items
 cuscr S_cuscr

Extension Screen Limitations
• Currently, the extension screen types do not support the BLOB datatypes.

• There are problems with formonly table fields, especially if the datatypes are
money or decimal. What you see is that if the fields are part of a math state-
ment, the updated values are not displayed until after the user presses [ESC]
and re-enters the screen.

Extension Screen Demonstration
For an example of what an input program looks like using this screen type, a screen
demo has been provided. This demo contains an extension screen from both the
header and detail portions of the main screen. It is invoked by typing scr_demo
7. This places you into a new shell in $fg/code-
gen/demo.4gm/screen7.4gs.

Screen demo 7 is a header/detail form that uses two extension screens to display
detailed customer information on one, and shipping information on the other.

Fitrix Screen Technical Reference

10-26 Creating Screen Forms

The main header/detail form (screen.per):

The customer information extension screen (company.per):

The company screen is accessed with after field logic placed in the company field
on the main screen. Pressing [ENTER] while in the Company field automatically
displays the company extension screen.

Fitrix Screen Technical Reference

Extension Screens 10-27

The orders extension screen (morord.per):

Like the company screen, the orders screen is called up with after field logic. Press-
ing [ENTER] while in the Shipping Instructions field calls up the orders extension
screen.

A few simple blocks are needed to connect these extension screens to the main
form. The blocks used are in the screen.ext file. You can see how these exten-
sion screens are hooked in to the main form by looking at this file. The
screen.ext file:

start file "main.4gl"

 switchbox_items
 morord S_morord
 company S_company;

start file "header.4gl"

 after_field company
 call socketManager("company", "extension", "flat_ext");

start file "detail.4gl"

 after_field ship_instruct
 call socketManager("morord", "extension", "flat_ext");

Screen demo 7 also provides an example of how to access an extension screen
through the Options command on the main ring menu. Look in options.ext to
see the block command that accomplishes this.

start file "options.4gl"

before block ring_options command_key

 command key (v) "View" "View the Company Screen"
 call socketManager("company", "extension", "view")

Fitrix Screen Technical Reference

10-28 Creating Screen Forms

The block displayed above changes the Options command on the ring menu to dis-
play this:

Add-On Header Screens
Add-on header screens are additional data entry screens to the main screen which
can be incorporated into your input programs. These screens access tables other
than the header or header/detail tables used by the main screen. Add-on header
screens generate disk read and write functions.

Add-on header screens, unlike zoom screens, can be called up from anywhere in a
program. For example, you can have an add-on screen appear after the user enters a
certain value into a field, after the user is finished inputting a record, before the user
starts inputting a record, when an additional ring menu option is selected under
"Options," or as an event.

Add-on header screens can be used to add or update information. To update infor-
mation on an add-on header you need to create a navigation event to call the add-on
screen from the main screen. Navigation events allow your user to switch back and
forth from the main screen to the add-on header screen.

For an example of how to call an add-on header, see the order.trg file in
scr_demo 5.

Note

The name of the add-on header .per file (not including the .per extension) can be
no more than 7 characters. The same requirement applies for all .per files.

Sample Add-On Header Form
The following is an example of a simple add-on header .per file:

DATABASE standard

Fitrix Screen Technical Reference

Add-On Header Screens 10-29

SCREEN {
 CUSTOMER FORM

Number :[f000]
Owner Name:[f001][f002]
Company:[f003]
Address:[f004]
:[f005]
City:[f006] State:[a0] Zipcode:[f007]
Telephone:[f008]

}
TABLES
 customer

ATTRIBUTES

f000 = customer.customer_num;
f001 = customer.fname;
f002 = customer.lname;
f003 = customer.company;
f004 = customer.address1;
f005 = customer.address2;
f006 = customer.city;
a0 = customer.state, UPSHIFT;
f007 = customer.zipcode;
f008 = customer.phone, PICTURE = "###-###-#### XXXXX";

INSTRUCTIONS
SCREEN RECORD cust (customer.customer_num, customer.fname,

customer.lname, customer.company, customer.address1,
customer.address2, customer.city, customer.state,
customer.zipcode, customer.phone)

{

FGSS
###
defaults

type = add-on
input 1

table = customer
key = customer_num
math = t_price = sum(total_price) + ship_charge

}

Fitrix Screen Technical Reference

10-30 Creating Screen Forms

Assigning a Key Field
The .per file for an add-on header resembles a header form. When you create an
add-on header, you must specify a key in the .per form specification file. The key is
needed in order to attach certain User Control Library functions such as User
Defined Notes to the add-on header screen. For example, an add-on header screen
for adding/updating customers might have the following key in the .per file:

input 1
key = customer_num

Specify this key in the input 1 section of the add-on header .per file.

Calling the Add-on Header
You must pass three arguments on to the add-on header functions: entry mode,
entry filter, and an order by. These arguments are sent via a function called
fgStack_push().

Fitrix Screen Technical Reference

Add-On Header Screens 10-31

The arguments to send the fgStack_push() function follow:

The following example shows how to send the arguments above before calling an
add-on header screen:

Creating an Add-On Header Screen
To create an add-on header screen do the following steps:

entry mode Either an "A" to add a record, or a "U" to update a record.

call fgStack_push("U")

entry filter In Add mode for the add-on header, the filter is null (""). In the
case of Update mode for the add-on header, the SQL filter
needs to be able to select the row you are going to update.

You should put this filter together into a string, and pass the
string name as the argument:

let sqlstr = "orders.customer_num = ", get_num
call fgStack_push(sqlstr)

If the filter returns more than one row, the first row retrieved is
the one put into an update session.

order by If more than one row is returned by the select statement, this
order by is used to order the rows. With the current release, you
can only work on one row within the add-on header.

call fgStack_push("")

However, if there is a scenario where you want to update the
first row of a particular group of rows, specifying an order by
allows you to do that.

on_event update_cust
 let scratch = "orders.customer_num = ",
 orders.customer_num
 call fgStack_push("U")
 call fgStack_push(scratch)
 call fgStack_push("")
 call socketManager("cust", "add-on header", "default");

entry filter

entry mode

order by

Fitrix Screen Technical Reference

10-32 Creating Screen Forms

1. Create the add-on header screen with the Form Painter.

Add-on headers are created much like regular header screens.

2. Define a key field.

Add-on headers must have a key field in the input 1 section.

3. In the trigger file for the add-on header, create a switchbox_items
trigger.

In the base program trigger file, you must create a switchbox_items trig-
ger for the add-on header in order for the main screen to recognize the add-on
header screen.

The first part of the trigger is the name of the add-on header and the second part
being the name of the add-on header prefixed by an "S_." In the case of an add-
on header named cust (cust.per), put the following switchbox_items
trigger in your base program trigger file:

 default
 switchbox_items
 cust S_cust;

4. Create the logic used to call the add-on header.

This can be either a trigger or a block command. The most common ways to
call an add-on header is to use either an after_field trigger or a navigation
event.

One way to use an add-on header in after_field logic is based on a certain
condition. In the case of scr_demo 5, one of the hooks is in after_field
customer_num, where if p_orders.customer_num has the value of
zero, then call socketManager() to add a customer.

Another way to use an add-on header is to define a navigation event called
update_cust. Then map the navigation event to an available hot key.

When in an Update session of an order, pressing [CTRL]-[u] would put you in
Update mode in an add-on header for that particular customer record.

After setting up a hot key, go into your base program trigger file and put in a
trigger like this in the input 1 section, and re-generate the base program:

 on_event update_cust

Fitrix Screen Technical Reference

Add-On Header Screens 10-33

 let scratch = "orders.customer_num = ",
 orders.customer_num clipped
 call fgStack_push("U")
 call fgStack_push(scratch)
 call fgStack_push("")
 call socketManager("cust", "add-on header", "default");

You may also call the socketManager() function from within
options.4gl.

Creating Zooms from Add-On Header
Screens
You can create Zooms on add-on screens. However, if the zoom field on the add-on
screen does not appear on the main screen, then you need to create a
switchbox_items trigger for that Zoom. If the zoom field on the add-on
screen does appear on the main screen, then the Code Generator automatically cre-
ates a switchbox_items trigger for that Zoom.

Add-On Header Triggers
Not all triggers can be used when working with an add-on header. You do not, how-
ever, get an error when you use a trigger not supported by a code generation of an
add-on header. What follows is a list of triggers, and where they are inserted into
the add-on header code:

defaults section
before_init: This trigger inserts code in the function A_scr_id(), right
after the call to put_scrlib(), and before the call to window_pos().

after_init: This trigger inserts code in the function A_scr_id(), right after
opening the add-on header window.

input 1 section
define: This trigger puts all its elements into the q_ record. For more informa-
tion on the q_ record, see the section on the q_ record.

Fitrix Screen Technical Reference

10-34 Creating Screen Forms

static_define: This trigger inserts variables static to the source at the top of
the .4gl file under define.

on_event: This trigger code is inserted into the function EV_scr_id().

before_field fieldname: This trigger is used to insert before field
logic for the fieldname specified. The logic is put into function BF_scr_id().

after_field fieldname: This trigger is used to insert after field logic for the
fieldname specified. The logic is put into function AF_scr_id().

after_change_in fieldname: This trigger is used to insert after field
logic for the field name specified. The logic is put into the AF_scr_id(). This
after change in field logic executes after leaving the field specified only
if the data for this field has changed.

on_disk_read: This trigger is used to insert code in the function R_scr_id()
after the fetch and rowid assignment.

on_disk_update: This trigger is used to insert code in the function
W_scr_id() before the update statement.

on_disk_add: This trigger is used to insert code in the function W_scr_id()
before the insert statement.

before_input: This trigger is used to insert code in the function I_scr_id()
before the input command.

on_exit: This trigger is used to insert code in the function Z_scr_id() after
the "let scratch = null" statement. It is here that you can use
put_vararg() to return information back to your base program.

at_eof: This trigger is used to add code to the end of the add-on header .4gl
source file.

The Add-On Header Demonstration
Screen demo 5 has an example of an add-on header. The base program is used to
add customer orders, and the add-on header is used to add or update customers. The
demo can be executed by running scr_demo 5. This puts you into a new shell,
and into the directory $fg/codegen/demo.4gm/screen5.4gs. This direc-
tory contains several .per files. The order.per is the base program perform file,

Fitrix Screen Technical Reference

Add-On Header Screens 10-35

and the cust.per is the add-on header perform file. Once in this directory, you
need to run the Code Generator on all the perform files. The program is designed to
work in the following manner:

1. If you type in a zero in the customer number field, it calls the add-on header,
putting you into Add mode. Saving this newly added customer puts you back
into the base program screen, bringing the new customer number with it.

2. If you press [CTRL]-[u] from within an Update session, you are put into the
add-on header Update session of the particular customer. You need to set up a
navigational event named update_cust specifying nothing for the O/S com-
mand, then map this navigational event to the [CTRL]-[u] key.

Transaction Processing Using Add-On
Header Screens
When running transaction processing on a Fitrix Screen data entry program, a
begin work is executed when entering a document via an Add or Update on the
main screen. When you press [ESC] a commit work is issued. When you press
[DEL] (for cancel) a rollback work is issued. The main tables are added to or
updated based when [ESC] is pressed. If [DEL] is pressed, the tables are not added
or updated and a rollback work is issued. All work done while in Add or Update
mode is rolled back if [DEL] is pressed. The default is to roll back.

If you want to handle transaction processing so a commit work is issued when
[DEL] is pressed instead of the default rollback work, you need to put the following
lines into the trigger file of the main entry screen for the appropriate programs:

after_init
 call put_scrlib("scrn_trx", "commit");

Transaction processing notes:

1. No transaction processing takes place when entering or leaving an add-on
header, except if the add-on header is called from the Options menu.

2. If you use rollback as your default, all work is rolled back including all add-on
work and User Control work such as Notes or Hot Keys when you press [DEL]
from the main entry screen.

Fitrix Screen Technical Reference

10-36 Creating Screen Forms

Add-On Header Functions
What follows is the list of functions created in the add-on header source code.

The scr_id would be substituted for the basename of the add-on header .per file.
If this file is named cust.per, then the scr_id would be substituted for the
string "cust," like in the function name S_cust().

S_scr_id(): This function contains this particular add-on header switchbox
mechanism. It works basically the same way as the switchbox mechanism you
are used to seeing in Zoom source code. It calls the appropriate add-on header func-
tion based on the value of the variable scr_funct. This function must be speci-
fied in a switchbox_items trigger in the base program trigger file.

T_scr_id(): This is the touch function. It’s purpose is to identify this screen to
the object manager.

A_scr_id(): This function is called to open and initialize the screen. This is one
of the first functions called when an add-on header is invoked.

C_scr_id(): This is the clear function. This function initializes both the p_ and
q_ records to null.

R_scr_id(): This function reads the data from the disk into the program vari-
ables. It is called only if all the key fields contain data when the add-on header is
invoked. The first thing this function does is retrieve the rowid of the record that
is to be updated. If the key is not complete when the add-on header is invoked, this
function is never called, and the rowid referenced in the add-on header source
code is null. This rowid variable is used in a conditional within the W_scr_id()
to determine whether or not to insert or update the row in the table.

W_scr_id(): This function writes the program variables to disk. The function
decides whether to perform an INSERT or an UPDATE based on the contents of
the rowid variable. Both the INSERT and the UPDATE statements use column
lists. The column lists are created in the following order: first, all the p_ record
variables that exist in the main input table, and second, all the q_ record variables
that exist in the main table. The same rule applies in the creation of the values list.
The creation of the INSERT/UPDATE statements in any add-on header follow the
same rule mentioned above.

Fitrix Screen Technical Reference

Add-On Header Screens 10-37

When a serial field for the main table exists in p_ and/or q_ record(s), the insert
statement generated specifies this table column last in the column list, and it puts
the value "0" (zero) as the last value in the values list. In the case of an update state-
ment, the serial field is not specified if it exists in the p_ and/or q_ record(s).

Based on the add-on header .per example above, and an input 1 define trig-
ger of:

define
state like customer.state,
jkl like customer.customer_num;

the following SQL INSERT and UPDATE statements are generated. In this partic-
ular example, the column customer_num is a serial field.

Insert the new row
insert into customer (fname, lname, company, address1, address2, city,
zipcode, phone, state, fname, customer_num) values (p_custfor.fname,
p_custfor.lname, p_custfor.company, p_custfor.address1, p_custfor.address2,
p_custfor.city, p_custfor.zipcode, p_custfor.phone, q_stomer.state,
q_stomer.fname, 0)

Note

The serial field customer_num is referenced last in both the column list, and
the values list.

Also in the column list is the duplicate references of the column "fname." This is
because it is a field actually on the screen (in the p_ record), as well as in the
input 1 define trigger (which is then eventually put in the q_ record). When
this particular INSERT is executed, the fname column contains the value from the
variable q_stomer.fname in the values list, since it is hooked up to the last ref-
erence of the column "fname."

Update the existing row
update customer set (fname, lname, company, address1, address2, city,
zipcode, phone, state, fname) = (p_custfor.fname, p_custfor.lname,
p_custfor.company, p_custfor.address1, p_custfor.address2, p_custfor.city,
p_custfor.zipcode, p_custfor.phone, q_stomer.state, q_stomer.fname) where
rowid = q_stomer.row_id

Fitrix Screen Technical Reference

10-38 Creating Screen Forms

Note

The serial field customer_num is not referenced.

K_scr_id(): This function uses the put_vararg() function to pass the
name of the main input table, followed by pairs of put_vararg() calls for each
key field which makes up the key. The first half of the pair is a call to
put_vararg() sending the column name of the key field, and is followed by the
second half of the pair, which is a call to put_vararg() sending it the q_ record
element which holds the actual value of the key field. In the case of a key specified
as "customer_num. lname," and with the main input named "customer,"
the calls to put_vararg() are as follows:

call put_vararg("customer")
call put_vararg("customer_num")
call put_vararg(q_stomer.customer_num)
call put_vararg("fname")
call put_vararg(q_stomer.fname)

For more information on varargs see "The Vararg Family of Functions" on page 11-
35.

I_scr_id(): This function contains the input statement for the add-on header. It
is identical to the llh_input() function found in header.4gl on any header
program.

BF_scr_id(): This function is the before field function for an add-on
header. It is similar to the llh_b_field() function found in header.4gl on
any header program.

AF_scr_id(): This function is the after field function for an add-on
header. It is similar to the llh_a_field() function found in header.4gl on
any header program.

AI_scr_id(): This function is the after input function for an add-on header. It is
similar to the llh_a_input() function found in header.4gl on any header
program.

EV_scr_id(): This function is the on event function for an add-on header. It
is similar to the llh_event() function found in header.4gl on any
header program.

Fitrix Screen Technical Reference

Add-On Detail Screens 10-39

SD_scr_id(): This function is the set data function for an add-on header. It
is similar to the llh_setdata() function found in header.4gl on any header
program.

HI_scr_id(): This function is the highlight function for an add-on header.
It is similar to the llh_high() function found in header.4gl on any header
program.

SH_scr_id(): This function is the show data function for an add-on header.
It is similar to the llh_display() function found in header.4gl on any
header program.

Z_scr_id(): This function is called upon the end of an add-on header session. It
closes the add-on header window, and initializes scratch back to null.

PL_scr_id(): This function contains the lookup logic for the add-on header.
This function is not present if there are no lookups.

MA_scr_id(): This function contains the math logic for the add-on header. This
function is not present if there is no math specified.

PR_scr_id(): This function loads the p_ and q_ records from the temporary
table.

PW_scr_id(): This function writes the p_ and q_ records to the temporary
table.

Add-On Detail Screens
Add-on detail screens are designed to provide auxiliary detail input to your entry
programs. The tables used by these screens are other than the tables used in your
header/detail program.

Add-on detail screens can be hooked to the following type of screens: header,
header/detail (either the header or detail portion), add-on header, extension, and
other add-on detail screens.

An add-on detail screen can utilize the following logic: Zooms, lookups, order, fil-
ter, autonum, or math.

Fitrix Screen Technical Reference

10-40 Creating Screen Forms

Add-on detail screens aren’t restricted to only being called by a particular entry
screen, and can be plugged in to several different calling screens, as long as each
calling screen sends it the same number of values.

All Zooms used in an add-on detail screen must have switchbox_items trig-
gers defined for them in the entry screen’s trigger file. For more explanation, refer
to "The Add-On Detail Demonstration" on page 10-46.

Fields involved in a math equation all must be referenced within the add-on detail
screen.

Fitrix Screen Technical Reference

Add-On Detail Screens 10-41

Example Add-On Detail Form
The following is the adddetl.per form from scr_demo 8.

DATABASE standard

 SCREEN
 {

 --

 Item Description Manufacturer Qty. Price Extension
 [f14][f15][f16][f17] [f18][f19][f20]

 [f14][f15][f16][f17] [f18][f19][f20]

 [f14][f15][f16][f17] [f18][f19][f20]
 [f14][f15][f16][f17] [f18][f19][f20]

 [f14][f15][f16][f17] [f18][f19][f20]

 [f14][f15][f16][f17] [f18][f19][f20]
 [f14][f15][f16][f17] [f18][f19][f20]

 [f14][f15][f16][f17] [f18][f19][f20]

 [f14][f15][f16][f17] [f18][f19][f20]
 [f14][f15][f16][f17] [f18][f19][f20]

 [f14][f15][f16][f17] [f18][f19][f20]

 --
 }

 TABLES
 items

 stock

 manufact

 ATTRIBUTES

 f14 = items.stock_num, comments =
 " Enter the stock number for this line item.";

 f15 = stock.description, noentry;

 f16 = items.manu_code, comments =
 " Enter the manufacturers code for this stock number.";

 f17 = manufact.manu_name, noentry;

 f18 = items.quantity, comments =
 " Enter the number of units sold for this item.";

 f19 = stock.unit_price, noentry;

 f20 = items.total_price, noentry;

 instructions

 screen record s_items[11](items.stock_num, stock.description, items.manu_code,

 manufact.manu_name, items.quantity, stock.unit_price, items.total_price)

 delimiters " "

 {
 ###

 FGSS

 ###

 defaults

 module = demo
 type = add-on

 attributes = white, border

Fitrix Screen Technical Reference

10-42 Creating Screen Forms

 location = 9, 2

 input 1
 table = items

 join = items.order_num = orders.order_num

 order = item_num
 arr_max = 100

 autonum = item_num

 math = total_price = quantity * unit_price
 lookup = name=stock_num, key=stock_num, table=stock,

 filter=stock_num = $stock_num, into=description

 lookup = name=stock_manu, key=manu_code, table=stock,
 filter=stock_num = $stock_num and manu_code = $manu_code,

 into=unit_price

 lookup = key=manu_code, table=manufact, filter=manu_code = $manu_code
 zoom = key=stock_num, screen=stockzm, table=stock, noautozoom

 zoom = key=manu_code, screen=stk_mnu, table=stock,

 filter=stock.stock_num = $stock_num

 }

Note

Also notice that form type in the add-on detail is add-on. The Code Generator
determines if the form is an add-on header or add-on detail type form by the
screen record. If the screen record is an array, then the form is a detail form. If it
is not, then the form is a header form.

Characteristics of an Add-On Detail
.per Form
The following are the characteristics of an add-on detail screen:

• The SCREEN section contains only a detail layout.

• The INSTRUCTIONS section of the perform file only has the screen record
array defined.

• The FGSS section only has default and input 1 sections, just like an add-on
header screen, but the input 1 section in an add-on detail screen contains info
regarding the detail. In other words, in the traditional header/detail screen, the
information found under the input 2 section would be the same type of informa-
tion found under an add-on detail screen’s input 1 section.

• The join clause contains elements that get passed to the screen being called.

Fitrix Screen Technical Reference

Add-On Detail Screens 10-43

Creating an Add-On Detail Screen
The following are the steps creating an add-on detail screen:

1. Create the add-on detail .per form.

The add-on detail looks much like the detail section of a normal header/detail
screen.

• Specify "add-on" for the form type.

• Create the detail array.

2. Create a join clause in the .per to join the add-on detail form to the main
form.

The join clause in your add-on detail .per form is used to tell the add-on detail
select statement how to join itself with the data from the screen that invokes
this add-on detail. This join is defined in the same way for an add-on detail
screen as it is defined in any other header/detail screen. The syntax for the
join clause is:

 join = detail_tbl.detail_column = other_tbl.other_column

In this example, detail_tbl is the name of the detail table that this add-on
detail maintains, and detail_column is a column of the detail_tbl
table used in the join. The other_tbl table is used by the screen that calls
the add-on detail screen, and other_column is a column from the
other_tbl table used in the join. Multiple joins can be specified if
required, such as:

 join = detail_tbl.detail_column1 = other_tbl.other_column1 and
 detail_tbl.detail_column2 = other_tbl.other_column2

The other_tbl.other_column references are translated into "?"’s in the
add-on detail screen’s select statement. These join elements are referenced only
as a way to provide the Screen Code Generator the number of host variables to
be supplied by the screen calling this add-on detail screen, as well as letting the
add-on detail screen know how many passed data values it should expect to
receive.

In other words, just because the table named other_tbl was used in the join
does not mean that the calling screen has to be tied to the other_tbl table.

Fitrix Screen Technical Reference

10-44 Creating Screen Forms

To clarify this, let’s look at the join from the screen demo 8 demonstration
for add-on detail screens:

 join = items.order_num = orders.order_num

The add-on detail screen is joined to the table named items. The calling
screen is a header which is hooked to the table named orders. Hence the
join above. The following shows what is generated in the add-on detail select
clause:

 select stuff from items
 where items.order_num = ?

When the add-on detail screen is called in this example, the calling screen sends
an order number value, which the add-on detail screen retrieves and uses in it’s
open cursor statement. The add-on detail screen doesn't care whether the
data value sent was from orders.order_num or inven-
tory.order_num or stock.order_num. All it knows is that it expects a
value, one value (as specified), and that the value represents an order number.

3. Create a call to the add-on detail screen.

Add-on detail screens are displayed by placing a call in the code for the screen
from which the add-on is called from. This call is made up of three possible ele-
ments:

1. an additional filter - used in conjunction with the hard filter specified in
the add-on detail .per file. Sending an additional filter is optional, and uses
a keyword (filter) to specify that it is used as a filter.

2. an order by - to replace the order by specified in the add-on detail .per file.
Sending an order by is optional, and uses a keyword (order by) to specify
that it is to be used as a filter. If no order by is sent, then the one specified in
the add-on detail perform file is used if it exists.

3. the data values - these are the join elements. The join_elems key-
word is used to specify that these data values are used in the join criteria of
the add-on detail select statement. The join_elems keyword is required,
followed by the proper number of elements.

The put_vararg() function in the calling screen sends these pieces of data
to the add-on detail screen. The add-on detail screen uses get_vararg() to
retrieve the sent data. The following is an example of what a calling screen does
to send a filter, order by, and three data values:

Fitrix Screen Technical Reference

Add-On Detail Screens 10-45

 a) call put_vararg("filter")
 b) call put_vararg("items.order_num > 1000")

 c) call put_vararg("order")
 d) call put_vararg("order_num")

 e) call put_vararg("join_elems")
 f) call put_vararg(p_record.data_value1)
 g) call put_vararg(p_record.data_value2)
 h) call put_vararg(p_record.data_value3)

 i) call socketManager("adddetl", "add-on detail", "default")

a) passes the keyword "filter." When the add-on detail screen starts retrieving
this data, it first gets the keyword "filter." Because of this keyword, it
knows that the next piece of data is the actual filter that it is supposed to
use.

b) passes the actual filter to be used.

c) sends the keyword "order."

d) the actual order by elements you wish to use. When the add-on detail reads
in the keyword "order," it knows its next read returns the order by that it is
supposed to use.

Again, passing additional filters or a substitute order by is optional. Passing
data values is required.

e) sends the keyword "join_elems."

f) sends the first actual data value.

g) sends the second actual data value

h) sends the third actual data value.

Since the add-on detail screen in this example expects three data values sent
to it, the calling screen must send three data values. If it doesn't, then the
add-on detail screen does not display. When the add-on detail reads in the
keyword "join_elems," it knows that the rest of the passed pieces of data
are in fact actual data values it needs to use in satisfying its join. It keeps
count of how many it reads, and it must match what it expects.

Fitrix Screen Technical Reference

10-46 Creating Screen Forms

i) is the last line of code for the call for add-on detail screens. It is the function
that brings up the add-on detail screen. It is only after the socketMan-
ager() function is called that data passed to it is read. You send the name
of your add-on detail screen as an argument to this function. This function
call of course is required.

That’s it for the hook code required in the calling screens logic. The screen
demo 8 demonstration program is explained below, and it is highly recom-
mended you run through this demo and study it before launching into the cre-
ation of your own add-on detail screens.

The Add-On Detail Demonstration
Screen demo 8 illustrates the use of an add-on detail screen. The add-on detail
screen is invoked in this demo with after field logic from the main header screen,
but any event can be used to trigger an add-on detail screen. In this example, the
add-on detail screen is named adddetl.per. There are Zooms, lookups, and
math defined in the .per file.

Similar to add-on headers, a switchbox_items trigger exists for this add-on
detail screen, as well as switchbox_items trigger entries for any other auxil-
iary screens called from within this add-on detail screen, such as zooms, add-on
headers, or add-on details. For example, the entry header is named order.per,
and the Zooms called from the add-on detail are named stockzm and stk_mnu.
In order for the add-on detail Zooms to work, you need to create the file
order.trg, with the following entry:

default
 switchbox_items
 adddetl S_adddetl
 stockzm stockzm
 stk_mnu stk_mnu;

The first switchbox_items entry is the actual add-on detail screen itself. The
S_ preceding the screen name represents the name of the add-on detail’s switch-
box() function. The second and third switchbox_items entries are for the
two Zooms, which can be invoked from within the adddetl add-on detail screen.

The rest of the order.trg trigger file consists of this:

input 1
 after_field ship_instruct

Fitrix Screen Technical Reference

Add-On Detail Screens 10-47

 call put_vararg("join_elems")
 call put_vararg(p_orders.order_num)
 call socketManager("adddetl", "add-on detail", "default");

Once again, this add-on detail is invoked with after_field logic, namely
after_field logic for the entry header field named ship_instruct. After
this field add the following:

call put_vararg("join_elems")

This statement puts the keyword "join_elems" into the variable arguments, which
the add-on detail screen logic reads once it gets control. Once the add-on detail
screen finds this keyword "join_elems," it knows that subsequent calls to
get_vararg() return the data values it needs to use in the open cursor
statement. These retrieved values are used to substitute the host variables of the
join clause within the select statement.

call put_vararg(p_orders.order_num)

Here you need to put into the variable argument pool the actual data to be used by
the open cursor statement in the add-on detail logic. This particular add-on
detail only needs one data element to fill its join clause, so you only send one. If
the join required three external data values, then you would have three separate
calls to put_vararg() here, one for each of the three data values expected.

call socketManager("adddetl", "add-on detail", "default")

This is the controlling function that activates the add-on detail screen. Notice that
this function is sent the name of the add-on detail screen; in this case adddetl.

Generic Detail Write
The write functionality implemented within add-on detail screens works differently
from the way disk update is handled in the traditional header/detail screens.

In header/detail screens, pressing [ESC] to save the record first deletes all of the
initially selected detail lines and then inserts the current detail lines back into the
detail table. There has never been an "update" function for detail lines. This way of
handling disk updates for detail rows has never been a real problem until you have
an instance where a serial column is a part of your detail row, and you depend on its
value being consistent once established. Deletion and re-insertion in this scenario
results in a desired static serial number becoming very dynamic. This problem has
been resolved for add-on detail disk updates in the new add-on detail logic.

Fitrix Screen Technical Reference

10-48 Creating Screen Forms

Add-on detail screens handle updates differently from other screen types. When it
comes time to update the disk, each detail row is determined to be either updated,
inserted, or deleted. Furthermore, no action is taken on those rows that have not had
any data changed within them, resulting in performance benefits proportionate to
the amount of detail activity a particular interface has.

Note

As stated, this new detail disk update functionality is present only in your add-on
detail code and not in your traditional detail.4gl code.

Query By Example Screens
The query screen type provides a form into which a user can enter queries to find
information. The Code Generator automatically uses the main input screen as a
query screen when the Find command is used. You may create your own query
screen if you don’t want to query using the main form.

Creating a Query Screen
The following is required to create the query screen.

1. Create the query screen with the Form Painter

Be sure to define the screen type as "query."

2. Create the call to the query screen and place them in an .ext file. Example:

start file "midlevel.4gl"

replace block mlh_construct define_var
 define
 m smallint,
 n smallint;

delete block mlh_construct end_construct

replace block mlh_construct construct
 call socketManager("custqry", "query", "default")
 let scratch = null

Fitrix Screen Technical Reference

View-Header Screens 10-49

 let n = fgStack_pop()
 if n = 0
 then
 let int_flag = true
 else
 for m = 1 to n
 let scratch = scratch clipped, fgStack_pop()
 end for
 end if;

3. Create a switchbox_items trigger.

This trigger can be placed either in the trigger file for the main form or, as in
this example, in an .ext file with a start file command.

start file "main.4gl"

switchbox_items
 custqry S_custqry;

View-Header Screens
This screen type is used to display header information only. This screen type only
generates a read, showdata, and view function.

To use a view-header screen you must do the following:

1. Call the view-header screen.

 # first pass the the rowid to put_vararg
 let p_cur = arr_curr()
 select rowid into scratch from customer
 where customer_num = q_ordview[p_cur].customer_num
 call put_vararg(scratch)
 call socketManager("custvw", "view header", "default")

2. Create switchbox_items trigger for screen.

 switchbox_items
 custvw S_custvw;

Fitrix Screen Technical Reference

10-50 Creating Screen Forms

View-Detail Screens
This screen type is used only to display detail information. View-detail screens
only generate a read, showdata, and view function.

To use a view-detail screen you must do the following:

1. Call the view-detail screen.

on_event tab
 call put_vararg("order")
 call put_vararg("order_date desc")
 call put_vararg("join_elems")
 call put_vararg(p_stomer.customer_num)
 call socketManager("ordview", "view detail", "default");

2. Create switchbox_items trigger for screen.

 switchbox_items
 ordview S_ordview;

Browse Screens
Ring menu code produced automatically by the Code Generator provides a Browse
command. The Browse command facilitates your work with batches of documents.
Often, a user needs to update a number of documents. The Browse command is
used to page through a number of current documents.

In programs without a browse.per form specification file, the Browse option
displays the following commands at the top of the screen:

 Browse: First Last Next Prev Goto Exit
 Move to first selected document

These Browse commands allow for movement among the selected or current set of
documents. Only one document can be viewed at a time.

The Browse option can be further enhanced by condensing current documents to
one line of information for array-style display on a browse screen. The browse
screen provides summary information of the selected set of documents. The user

Fitrix Screen Technical Reference

Browse Screens 10-51

points to the desired row (representing a unique current document) and selects it.
This feature can be added to your applications by creating a browse.per file in
the application directory.

Example Browse Form
The .per form specification file for the Browse resembles the detail array portion of
a header/detail form specification file. That is, the structure of the field tags from
row to row underscore the fact that data displayed in a browse form appears as an
array. The example of a browse.per file shown below is taken from the
scr_demo 3 application.

Fitrix Screen Technical Reference

10-52 Creating Screen Forms

The browse.per file:

database standard

screen
{
 Order No. Company PO No. Order Date
--
 [fp_1] [fp_2] [fp_3] [fp_4]
 [fp_1] [fp_2] [fp_3] [fp_4]
 [fp_1] [fp_2] [fp_3] [fp_4]
 [fp_1] [fp_2] [fp_3] [fp_4]
 [fp_1] [fp_2] [fp_3] [fp_4]
 [fp_1] [fp_2] [fp_3] [fp_4]
 [fp_1] [fp_2] [fp_3] [fp_4]
 [fp_1] [fp_2] [fp_3] [fp_4]
 [fp_1] [fp_2] [fp_3] [fp_4]
 [fp_1] [fp_2] [fp_3] [fp_4]
}
tables
 orders
 customer

attributes
fp_1 = orders.order_num;
fp_2 = customer.company;
fp_3 = orders.po_num;
fp_4 = orders.order_date;

instructions
screen record b_ordr[10] (orders.order_num, customer.company,
 orders.po_num, orders.order_date)

delimiters " "

{

FGSS
###
defaults
 type = browse
 location = 5,10
}

The columns in the form access data in the customer and orders tables in the
standard database. The number of rows specified in the screen section as well as
the number indicated in the screen record (b_ordr[10]), indicate that the browse
screen displays up to ten rows at a time.

Fitrix Screen Technical Reference

Browse Screens 10-53

The following graphic shows how a browse screen appears within a data-entry
application:

The browse screen displays one-line summaries of current documents. The user
selects the desired document by scrolling the cursor to the desired row and selecting
the document.

By convention, browse and zoom forms should begin on row 5.

Fitrix Screen Technical Reference

10-54 Creating Screen Forms

Zoom Screens
Zoom is a feature that permits users to view a screen of valid column entries, select
a value from a list, and paste the selected value (and other dependent values) into
the current data-entry form. Zooms can help reduce the likelihood of data-entry
errors and free data-entry personnel from having to memorize codes.

In code generated by the Code Generator, the Zoom feature is handled as an event.
The default access to the Zoom feature is through [CTRL]-[z], although Zoom can
be assigned to other keys as well.

In order to have Zoom logic generated automatically by the Code Generator, you
must create a .per form for each Zoom. The zoom .per file needs to be in the style of
a detail form, with records displayed one to a row.

For example, the screen demo 3 has been generated with a Zoom in the header sec-
tion of the screen. The Zoom is setup to be used while the cursor is in the Cus-
tomer No. field. When the user activates the Zoom feature by pressing [CTRL]-
[z], a new screen opens up, displaying an array of rows listing codes currently
defined in the customer table of the standard database. When the user selects
a row (displaying the customer number desired), the selected entry automatically
appears in the customer_num field.

Sample Zoom form:

Fitrix Screen Technical Reference

Zoom Screens 10-55

Calling a Zoom Screen
If your zoom screens are created and attached using the Form Painter then the 4gl
code talked about in this section is generated automatically. This section discusses
the 4gl code that calls the zoom screens.

A zoom screen is called with the socketManager() function just like all other
additional screens. You must send an entry filter to the zoom functions with the
fgStack_push() function before the call to the socketManager() func-
tion. The entry filter is the initial filter that is used when the Zoom is activated. If
this is null (""), then the user goes into the query by example form. The entry filter
is sent to the zoom functions via the fgStack_push() function. The following
is an example zoom screen call:

 #_zoom_stock_num
 when scr_funct = "zoom" and infield(stock_num)
 call fgStack_push("")
 call socketManager("stockzm","zoom", "default")

When control returns back to the main program from the zoom screen several lines
of code are needed to assign the value returned from the zoom to the current p_
variable.

 let tmp_str = fgStack_pop()
 if tmp_str is not null
 then
 let p_items[p_cur].stock_num = tmp_str
 let nxt_fld = "stock_num"
 end if

The fgStack_pop() function returns the value selected by the user from the
zoom functions. This value is assigned to the current p_ variable and nxt_fld is
set.

Creating a Zoom Screen
The first step to adding a zoom screen to an application is to create the zoom .per
form. The zoom .per form contains the basic instructions for the zoom window, and
is set up like your regular .per file. When naming zoom forms it is a good idea to
follow a naming convention so you can recognize zoom .per forms at a glance. For

Fitrix Screen Technical Reference

10-56 Creating Screen Forms

example, the name cust_zm.per, uses zm to identify the Zooms. Zoom .per
files, like all .per files, must be named with a maximum of seven characters not
including the .per extension.

By convention, zoom screens should be located on row five. Zooms should also be
centered. Refer to "Centering a Window" on page 18-4 for an easy way to deter-
mine the coordinates for a centered window.

The next step is to add the required Zoom information to the main input screen .per
file that the Zoom keys from.

Special steps to adding a Zoom to your program:

1. Create the main input form your Zoom is attached to.

2. Specify Zoom logic on the field you want Zoom functionality.

From the field you want to initiate the Zoom from display the Define Zooms
form. Enter the name of the zoom form along with the main table used by the
zoom form. If you want to be able to AutoZoom on the field then enter a Y in
the Auto Zoom field. If you want to specify a filter for the Zoom, do so in the
Zoom Entry Filter field. The Zoom From Column field is required when the
following are true:

1. The table.column name being Zoomed in is different from the name of the
column on the screen that the Zoom is attached to.

2. The screen field you are Zooming from is a character field.

3. AutoZoom is enabled. Zooms with AutoZoom set to N or a filter, do not
require the "from" keyword.

Fitrix Screen Technical Reference

Zoom Screens 10-57

For example, if the field on your screen is named customer_num and the
column being Zoomed into is called cus_num, you would enter cus_num in
the Zoom From Column field. For more information on the Define Zooms form
refer to "Defining a Zoom" on page 7-30.

3. Create the zoom form.

4. On the Define the Form form, specify the main table for the Zoom.

5. On the Define the Form form, specify a returning field if you wish to
return data from the zoom form to the main screen.

If you want the Zoom to return data to your main form, specify the name of the
field on the main form in the Returning (zoom) field. The returning key-
word identifies the name of the field on the zoom that is to return information to
the calling function. Only one field per zoom screen can be specified to return
information. You can, however, return information into more than one field
with a little bit of code manipulation. Refer to the discussion of vararg func-
tions for a real example of returning more than one value with a Zoom. See
page "Examples of put_vararg() and get_vararg()" on page 11-39. This
returning keyword is required for zoom screens and has no default.

Example Zoom Form
Three zoom .per files have been included as part of the screen demo 3 application.
The cust_zm file is shown here as an example of the format shared by all three
Zoom form specification files.

Fitrix Screen Technical Reference

10-58 Creating Screen Forms

The cust_zm.per file:

DATABASE standard

SCREEN
{
CustNum FirstName LastName Company

[f01] [f02][f03][f04]
[f01] [f02][f03][f04]
[f01] [f02][f03][f04]
[f01] [f02][f03][f04]
[f01] [f02][f03][f04]
[f01] [f02][f03][f04]
}

TABLES
customer

ATTRIBUTES
f01 = customer.customer_num;
f02 = customer.fname;
f03 = customer.lname;
f04 = customer.company;

INSTRUCTIONS
screen record s_custz[6](customer.customer_num, customer.fname,

customer.lname, customer.company)

DELIMITERS " "

{

FGSS
###

defaults
module = ar
scr_id = cust_zm
type = zoom
location = 10,4
attributes = border,red
returning = customer_num

input 1
arr_max = 100
order = company
key = customer_num

}

Fitrix Screen Technical Reference

Zoom Screens 10-59

Zoom Logic
The following diagram represents the basic flow describing what happens when a
Zoom is called. The arrows indicate function calls.

socketManager() socketZoom()

calling screen .4gl zoom screen .4gl

LOCAL CODE

LIBRARY CODE

sktInit

sktFlow

sktClose

init flow close

Fitrix Screen Technical Reference

10-60 Creating Screen Forms

The following diagram displays a bit more detail about the order that the zoom
events occur.

The following are the local zoom screen functions:

Ascr_id(): (Init) Initializes variables and pulls up the zoom screen.

Kscr_id(): (Key) Returns name of main table and fields that build a unique key.

socketManager() socketZoom()

Calling Screen Zoom Screen

¼save environment
set new context

³call socketZoom_sktInit() socketZoom_sktInit()

init

½call socketZoom_sktFlow() socketZoom_sktFlow()

ªinit

ºflow

¾close

socketZoom_sktClose()

A_ init

Z_close

set sticky

ºzoom functions

ºdefault flow
 various flow functionsærestore prev environment

øcall socketZoom_sktClose()

zoom selected

¹filter pushed onto stack

²call socketManager()

LOCAL CODE

LIBRARY CODE

Fitrix Screen Technical Reference

Zoom Screens 10-61

Qscr_id(): (Query) Obtains selection criteria using the INFORMIX-4GL CON-
STRUCT statement.

Rscr_id(): (Read) Builds and executes the SQL statement and fills the
p_record array for the Zoom.

Dscr_id(): (Display) Displays p_record array for user and waits for user to
select. Handles logic for pressing [ESC], [DEL], [TAB], or event processing.

Zscr_id(): (Close) Closes screen, assigns resulting field value to respective
p_record field. It does not display this value.

Refer to "Diagram of the switchbox() function:" on page 11-30 to see how each of
these single-task functions interacts with the sole tailored function that calls them.
Notice that just like switchbox and lib_screen, switchbox and the tai-
lored function act merely as "routers" of requests from libraries to perform each
individual task that makes up a Zoom. The Switchbox diagram also shows the
scr_functs that are passed via switchbox to initiate these single-task func-
tions.

Each Zoom has its own scr_id and tailored function. When a Zoom is initiated,
switchbox routes the requests not to the "default" data entry screen but to the
zoom screen (based on the value of scr_id). The tailored function is then called
and again routes the requests. Requests are routed by calling the single task func-
tion based on the value of scr_funct.

A tailored function is very similar to lib_screen; a chief difference is that
lib_screen is a library function and a tailored function is generated in local
code.

Zooms are usually initiated as part of a case statement in
llh_event/lld_event (within an input statement). Several library functions
are called from the function Zoom and control works its way down to lowlevels via
switchbox.

Note

If you want to be able to use the Freeform Notes feature ([CTRL]-[n] for notes)
on each line of your Zoom, then you must display all key fields for that table on
the zoom screen. The key fields must be defined in the following sections of
your zoom.per form: SCREEN, ATTRIBUTES, and INSTRUCTIONS. If all

Fitrix Screen Technical Reference

10-62 Creating Screen Forms

key fields are not displayed on the screen, then you must manually change the
Kscreen_id() function to return the correct key field for that table based on
the line that the user is on.

Creating a Permanent Zoom Filter
You can attach an initial filter to a zoom statement to define the complete set of
rows selected when the zoom is first executed. If no zoom filter is provided, the
user first sees a "Find" (query-by-example) version of the form, which allows the
user to enter search criteria to limit the rows selected. However, if the zoom has an
initial zoom filter, that filter is disregarded if the user pressed [TAB] to re-sort and
re-select zoom rows.

You can define a permanent zoom filter, often refered to as a sticky filter, which
defines a subset of data that can be accessed through the zoom, even when the user
enters search criteria. That is, when the user enters patterns with the Find command
of a zoom form, the zoom selects data that matches the entered criteria AND the
criteria of the permanent zoom filter.

To demonstrate the permanent zoom, you can use the Screen Demo applications as
an example. Type scr_demo 3 to place yourself in the screen3.4gs program
directory with sample *.per files which contain zooms. Run the Code Generator
with the command fg.screen -o1 -yes. When the code has been generated,
locate the function llh_zoom_filter() in the header.4gl file (e.g. with
the vi editor). The code should look like the following:

##
function llh_zoom_filter()

This function puts the persistent filter on fgStack
#
 #_define_var - define local variables
 define
 tmp_filter char(512) # Temporary string for building the filter

 #_filter - Set the filter based on the current field
 case
 #_when_false - Just to satisfy 4GL syntax
 when false
 #_false - Code placed here will never execute
 #_otherwise - No condition satisfied so execute this logic
 otherwise

Fitrix Screen Technical Reference

Zoom Screens 10-63

 #_no_filter - No persistent filter for zoom being called
 let tmp_filter = null
 end case

 #_push_filter - Push the sticky filter onto fgStack
 call fgStack_push(tmp_filter)

end function
llh_zoom_filter()

Note that there is already a local variable that can be used for building the filter that
you will send. Note also that the filter will be sent through the fgStack_push()
function. In this example, the selection for the customer zoom is limited to cus-
tomer numbers less than 110. In order to do this you need to build an .ext file with
block commands for inserting your code.

Create and edit a header.ext file (e.g. vi header.ext). Enter the code
below, then quit and save this file.

start file "header.4gl"

before block llh_zoom_filter otherwise
 #_when_in_customer_num - Are we in the customer_num field?
 when infield(customer_num)
 #_customer_num_filter - Set the sticky filter
 let tmp_filter = "customer.customer_num < 110"
 ;

After creating the header.ext, create a base.set file that contains the name
of the .ext file.

Next, merge and compile the new code with the fg.make command, then run it
(e.g. with fglgo *4gi). Select the Update or Add option and press [CTRL]-[z]
in the Customer No. field. When the zoom Find screen appears, press [ESC]. Note
that the zoom form contains only those customers for which customer_num is
less than 110. (To verify that more rows are in the customer table, you may use
SQL query utilities or scr_demo 1.)

The AutoZoom Feature
Zoom logic generated by the Code Generator for character fields automatically
includes a useful short-cut for selecting values. The AutoZoom feature is an accel-
erated version of the regular Zoom feature. It allows users to quickly narrow the
selection of records that appear on the standard zoom form.

Fitrix Screen Technical Reference

10-64 Creating Screen Forms

The AutoZoom takes effect when an asterisk (*) is entered into a character field
that supports Zoom functionality. The Zoom feature is automatically invoked to
display all rows that match the criteria specified in the field. For example, if you
enter "sta*" into a field with AutoZoom, all rows that begin with sta are instantly
displayed on the standard zoom form.

Note

The field you are auto-zooming from must have the same column name as the
one you are Zooming into.

In the case where the column that you are Zooming from isn’t the name of the col-
umn in the table you are Zooming to, you must put noautozoom in the zoom def-
inition of the .per file. If you want an AutoZoom on a field that has a different
column name than the column being Zoomed into, you must put it in the "after
field <myfield>" logic.

autoZoom is considered after field logic, thus an autoZoom is initiated in
llh_a_field/lld_a_field (within an input statement). The function
autoZoom is called to start the AutoZoom.

From here the same single task functions are called by the Zoom tailored function.
The only single task function that is never called is Qcust_zm, because there is no
need to query the user since the user provides filtering criteria at data entry time.
Even if the user enters nothing or the value is not in the list of valid data, the Auto-
Zoom is still performed and pulls up all valid values.

The autoZoom function builds the SQL statement by putting the user’s input into
SQL format and adding a matches clause. A default SQL statement is always
appended to this SQL statement in case the user enters nothing or invalid data so at
least the SQL statement is executable; all valid values are returned if this happens.
Additional filtering criteria can be added by assigning the variable scratch to an
SQL statement before calling autoZoom in the input statement. When the auto-
Zoom function has assembled the entire SQL statement and placed it all in
scratch, autoZoom calls the zoom library function to perform the rest of the
Zoom, based on the SQL statement held in scratch.

11-1

11
Source Code

This section of the Fitrix Screen Technical Reference covers the source code cre-
ated by running the Code Generator on .per form specification files. Topics covered
in this section include:

n Basic code design

n Variables used by the Code Generator

n Data flow

n Screen generated program flow

n Ring detail processing

n Switchboxes

n Varargs

Fitrix Screen Technical Reference

11-2 Source Code

Source Code Logic Overview
Application source code has both a physical and logical structure. The physical
design describes where and what the source code is. The logical design describes
what it does. The following elements of source code are discussed in this chapter:

Code Design: This section covers the basic design of code generated with the
Code Generator. You learn how Fitrix Screen generated programs utilize libraries
to reuse generic functions.

Code Structure: Examination of the source code for the created application
begins by looking at the physical nature of the source code: where it is stored and in
what files. This part of the source code is simple and straight forward involving
directory structure and file naming conventions.

Data Flow: More complicated is the logical nature of the code. The first part of
this section looks at how information moves through the application. This discus-
sion first goes through the variables that are used to hold the application's data as
that data moves through the various stages of processing. This section looks at how
those variables are named and how their values change as information comes from
the data entry forms. The main functions in which these data variables are stored
and the trigger points at which you can manipulate the data are identified.

Function Flow: After looking at data flow, the functional program flow is dis-
cussed. This section steps through the various functions that go together to make up
the application. This process analyzes how library and generated functions work
together to create the application the user sees on the screen. In moving through
these functions, you learn what the application is doing where and how the triggers
fit into this process.

Switchbox Function: The local switchbox() joins local screens together by
transferring calls from the global libraries to other screen forms that are connected
to the main screen. The global code only knows about the main data entry screen
and all of the ring menu commands work directly through it (global code also
knows about the browse screen, which is really a different version of the main
screen). All other screen forms are tied to the main screen in one way or another.
While the global libraries make calls that affect these secondary screen forms, these
calls are generic requests to read, display and so on that are routed to the appropri-
ate screen form and the data on it through the switchbox().

Fitrix Screen Technical Reference

The Basic Code Design 11-3

Vararg Functions: The vararg functions allow you to pass a variable number of
arguments between functions. The last section in this chapter covers the vararg
family of functions and how they are used throughout the generated code.

The Basic Code Design
The unmodified generated application handles information input and output in a
standardized way, offering a consistent user interface. Screen forms developed
using the Fitrix Screen Form Painter are used to take input from the user and to
store and view the data in the database. When using generated applications, you can
access a ring menu of commands that allows you to add, update, find, delete, or
move through the various documents displayed on data entry screens. The ring
menu commands available on the data entry screen are designed to directly access
the information on the main header/detail type screen forms. Other types of
screens: browse, zoom, extension, and add-on screens created by the Form Painter,
plus any other kind of custom screen you might add, are all tied to the information
displayed on that main screen in one way or another.

The source code that makes up the final application consists of two parts:

Local Code: The most visible part is the code generated from the forms created
with the Form Painter. These forms are stored in your local directory. This local
code is built automatically after defining the application characteristics with the
Form Painter, and it contains all the specific references to the data entry forms,
database tables, and the program.

The local, generated functions themselves are designed as a "white box" so that you
can understand how they work so that you can modify them. However, the pro-
grams are designed so that most (and hopefully all) modifications need not be made
directly in the generated source code. Since this generated source code contains all
types of references to the screen forms and data tables you are using, that generated
code must be able to change when your data tables and screen forms are changed.
Since applications evolve over time, we have made generated applications regener-
able so that, as the screen forms and database tables change, the tool can make the
changes to the code for you.

To accommodate your need to make enhancements to local code and to simulta-
neously preserve regenerability, we have built triggers into both the Form Painter
and the Code Generator. Triggers are predefined areas in the code to which you can

Fitrix Screen Technical Reference

11-4 Source Code

make additions. The Code Generator then merges your custom triggers into the
code at the appropriate points as it is regenerated. This allows you to create, for
example, after field processing for a specific data entry field on your screen and, if
your screen changes, preserve that processing in the regenerated code. For more
information on triggers refer to the next chapter "Customizing Your Base Program
With Triggers" on page 12-1.

Since you can make almost any type of modification through the use of triggers,
you don't actually have to modify any source code, either generated or library code,
to modify your applications. However, you will find a more complete understand-
ing of the code design almost invaluable in modifying the application. While you
can add code at triggers without understanding the overall structure of the source
code that drives the application, it is a little bit like trying to make a meal blind-
folded: it is unnecessarily difficult. A good understanding of the design and flow of
the source code makes writing successful triggers much easier and more immedi-
ately rewarding.

Library Code: The other less visible part of the source code resides in various
libraries that are linked to the local code to create the application the user sees at
runtime. The functions in the libraries are designed to be used unaltered by the gen-
erated application. Since the focus is on reusing as much code as possible, Fitrix
Screen design moves as much work as possible from the generated files in the local
directory to the generic functions in the libraries.

The library code itself is also divided into two parts:

Screen: The code in the screen library ($fg/lib/scr.4gs) contains the basic
templates for document maintenance commands (add, update, delete and so on) that
the users access from a ring menu. This code controls much of the program flow as
the users access these various commands, calling the local, generated, I/O type
commands as needed.

Standard: There is also code in the standard library ($fg/lib/stan-
dard.4gs), which contains utility commands that do a variety of tasks, such as
passing variables. These functions are called both by the screen library functions
and the locally generated application specific functions.

When understanding the basic design of Fitrix Screen code, it is unnecessary, for
the most part, to know exactly how the library functions work. It is best to think
about them as "black boxes" that are called upon to produce a certain result. Later,

Fitrix Screen Technical Reference

Code Structure 11-5

this chapter describes the program flow through these black boxes, but only
because you should think of these various functions as resources you can draw
upon in making enhancements or additions to the generated application.

For example, if you want the screen to redraw itself at a certain point, all you need
to do is call the ring_refresh() function passing it the current rowid. You
need not know how this redraw is accomplished.

At no time should you consider modifying the library functions themselves to pro-
duce a specific result. The code is designed so that everything a programmer might
normally want to control in the source code can be controlled from the application
specific code in the local library. Except for certain well-defined situations, you
should not need to alter any global functions to get the applications to behave as
you desire. When you need a global function to behave differently within a specific
application, the code is designed so that you can make a copy of the library function
in your local directory and, if you use the same function name, the local version of
that function is linked in instead of the global one.

Though this is rarely done with most library functions, there is a class of library
functions that developers are expected to commonly replace with local functions of
the same name. For these types of functions, there are stub functions (functions that
are called and exist at the library level, but which do very little if anything) at the
library level, but they exist just to allow you a level of control over the way the
library behaves.

For example, the ok functions such as ok_add() and ok_delete() are used to
allow or disallow the addition or deletion of documents from the ring menu under
specific conditions. In this case, these functions are called before a document is
added or deleted. Because they exist on the library level always allowing document
additions or deletions, these functions are not generated. If you wish to control this
upper level file maintenance command, you simply add these functions to your
local code, putting whatever tests you desire to take place before the Add or Delete
command.

Code Structure
Apart from the Makefile (see the section "The Makefile" on page 14-12), all files
created by the Code Generator contain uncompiled INFORMIX-4GL code.

Fitrix Screen Technical Reference

11-6 Source Code

Data-entry applications must use the following directory structure.

Fitrix Screen creates only the code appearing within the .4gs program directories,
although the application utilizes executables and pre-compiled libraries installed
with Fitrix Screen.

The library source code is covered after the discussion on program directory source
code.

Program Directory Source Code
As mentioned previously, the Code Generator creates source code files within the
module directory that contains the .per form specification files. An example of the
type and purpose of source code files created can be found after running the Code
Generator in the screen3.4gs demo application directory.

The following .per files provide all of the instructions necessary to create a basic
data entry program for customer orders. The screen3 application directory con-
tains the following .per files:

• order.per: contains instructions passed to the Code Generator for the main
header/detail form.

• browse.per: adds a document browse screen to the application.

$fg
module directory (*.4gm)

lib*.4gs

.4gl/.org *.per Makefile standard.4gs scr.4gs stubs.4gs

*.4gs *.4gs

Fitrix Screen Technical Reference

Code Structure 11-7

• custzm.per, stk_mnu.per, and stockzm.per: add Zoom features to
particular fields on the main screen.

Refer to "Creating Screen Forms" on page 10-1 for information on screen forms.

After invoking the Code Generator on the .per files listed above, the following
source code files are created in the screen3.4gs program directory:

• Makefile: This file is created to facilitate the compilation of source code. It
determines variables for the real make, stored in $fg/Make. This local Make-
file is used to compile source code that has been modified since the last compi-
lation. Source code compilation is discussed in "After Code is Generated."

• globals.4gl: This file defines all global variables. A change to this file
causes make to compile all .4gl source files.

• main.4gl: This code initializes variables and windows before calling one of
the following library functions. The ringMenu_start(1) function is called
if the data-entry screen is a flat file, or ringMenu_start(2) if the screen is
header/detail.

• midlevel.4gl: This file contains all middle-level source code. Cursor con-
trol logic and some data validation occurs at this level.

• header.4gl: This source file stores low-level code used to handle the data in
the header portion of the data-entry form. This code is present in both flat file
and header-detail applications.

• detail.4gl: This file contains low-level code for handling detail lines in
header/detail application screens. When no detail section is specified in the .per
form specification file (flat file—header only applications), no detail.4gl
file is created by the Code Generator.

• options.4gl: This source code is used to add further functions to the ring
menu of commands that appear at the top of the data-entry form.

• browse.4gl: This source code file is only created when the browse.per
file is specified prior to code generation. Code in browse.4gl controls the
opening of the browse window and the display of data within the window.

• cust_zm.4gl: This file is created as a result of specifying the
cust_zm.per file prior to code generation. It contains logic used to control
the Zoom window, and the data appearing within the window.

Fitrix Screen Technical Reference

11-8 Source Code

• stk_mnu.4gl: This file is created as a result of specifying the
stk_mnu.per file prior to code generation. It contains source code required
for the manufacturer code Zoom function in the orders example.

• stockzm.4gl: This file is created as a result of specifying the
stockzm.per file prior to code generation. It contains logic used to control
the item code Zoom function in the orders example.

Library Source Code
Fitrix Screen differs from other application creating tools in its use of 4GL librar-
ies. Libraries, as used by Fitrix Screen generated code, consist of functions that are
pre-compiled and grouped together under a directory with other similar functions.
A library function should be created when a generic data-independent task can be
used by more than one program module.

The Code Generator libraries produce two desirable conditions: they allow many
programs to share common code, and they serve as the foundation for any CASE-
generated system. Libraries save time for both initial development and mainte-
nance.

The Code Generator uses the following libraries located in $fg/lib:

• scr.4gs: This directory contains the uncompiled source for library functions
for Fitrix Screen only. The source code in this directory is used by programs
generated with the Code Generator.

• scr.a: This is the pre-compiled collection of screen library functions for
systems that run INFORMIX-4GL and not RDS.

• scr.RDS: This is the pre-compiled collection of screen library functions for
systems that run RDS rather than INFORMIX-4GL

• standard.4gs: This directory contains the uncompiled source for library
functions. The source code in this directory is used by Fitrix Screen and Fitrix
Report, and can also be used by other programs.

• standard.a: This is the pre-compiled collection of standard library func-
tions for systems that run INFORMIX-4GL and not RDS.

Fitrix Screen Technical Reference

Code Structure 11-9

• standard.RDS: This is the pre-compiled collection of standard library
functions for systems that run RDS rather than INFORMIX-4GL.

• stubs4gs: This library contains the source code for systems that do not
have the Enhancement Toolkit installed. The stub functions are installed if the
Enhancement Toolkit has not been purchased. The functions are then compiled
into the user_ctl directory (discussed next). When the Enhancement Toolkit
is purchased, it replaces the compiled null functions in the user_ctl direc-
tory.

• stubs.a: This is the pre-compiled collection of user control library functions
for systems that run INFORMIX-4GL and not RDS.

• stubs.RDS: This is the pre-compiled collection of user control library func-
tions for systems that run RDS rather than INFORMIX-4GL.

• user_ctl.a: This directory contains the pre-compiled User Control Librar-
ies if they have been purchased. Otherwise, it contains the pre-compiled null
functions. This directory is found on systems running INFORMIX-4GL and not
RDS.

• user.ctl.RDS: This directory contains the pre-compiled User Control
Libraries if they have been purchased. Otherwise, it contains the pre-compiled
null functions. This directory is found on systems running RDS rather than
INFORMIX-4GL.

• forms: This directory stores the .per forms and compiled .frm files used by
library functions.

• tags: This file stores the list of function call dependencies. This list is used
by the hypertext feature made part of Fitrix Screen-generated code upon compi-
lation. This file is read as you move through the source code function-by-func-
tion using the tags feature. For more information refer to "The Tag Utility" on
page A-5.

Code Design Levels
Source code generated with the Code Generator can be categorized into three lev-
els: upper level, midlevel, or low level. The classification of code depends on the
function it performs. This method of organization helps make the code easier to
understand and modify.

Fitrix Screen Technical Reference

11-10 Source Code

Upper Level Functions: Upper level code includes library functions, menuing
logic, and flow control logic. Upper level code contains no local logic and does not
reference specific databases, tables, or columns. It can be considered generic.
Upper level code calls on midlevel code and low level code, leaving the specifics to
these other two classes of source code. The following are some of the upper level
functions.

Midlevel Functions: Midlevel code interacts with the upper level code to control
the function of command line or ring menu commands. This class of source code
includes functions that make reference to the database (but are not usually modi-
fied), and local code not found in the library functions. Generally speaking,
midlevel functions give program specific information to control database access for
the program. Midlevel code is identified by the first part of the function name:
mlh_ for header functions, mld_ for detail functions, and ok_ for functions that
control upper level code.

The ok_ functions allow for control over pre-compiled functions of the data-entry
ring menu options. These functions can be defined within the midlevel.4gl file
in the local source directory for any of the ring menu commands, such as add,
update, and delete. When defined in midlevel.4gl, the function returns a value
of true or false, which determines whether the ring menu command is executed.

Function Purpose

ring_options() controls the options ring menu option

ring_add() controls the add ring menu option

ring_update() controls the update ring menu option

ring_delete() controls the delete ring menu option

Function Purpose

mld_clear() clears the program variables

mlh_cursor() cursor handling for header screen

ok_add() controls upper level add

ok_delete() controls upper level delete

ok_update() controls upper level update

Fitrix Screen Technical Reference

Code Structure 11-11

Low Level Functions: Lowlevel code passes data between screen record and
database. Data validation occurs in low level logic as well. Functions in this class
act as a pipeline between input to the screen (by way of the screen array(s) specified
on the .per form specification file) and information stored in database tables.

Lowlevel code is found in the local source directory, and is commonly modified.
Low level code can be identified by name, since functions containing this code
begin with the characters llh_ (for header) or lld_ (for detail).

Code Generator Variables
Certain variables are created in the Code Generator libraries and the glo-
bals.4gl source code file by the Code Generator. These variables are relied
upon by a number of functions generated as part of the application.

This section of the documentation provides a list of such variables as well as a brief
explanation of the purpose they serve.

There are several categories of variables that are used extensively throughout the
Code Generator: global variables used by the program only, global variables used
at the library-level, static variables, and local variables.

Some of the most useful global and static variables are discussed next.

Function Purpose

llh_input() Input logic for header part of screen.

lld_showline() Displays screen record variables onto screen line.

lld_p_prep() Creates screen record array.

lld_read() Reads in array elements from disk.

lld_add() Inserts data into detail table.

Fitrix Screen Technical Reference

11-12 Source Code

Global Variables Used by the Program
Global variables can be used anywhere within a program. The following generated
variables are put at the very end of the globals.4gl file in the Library commu-
nication area. They are used for communication within libraries and between local
code and libraries. These variables must be located at the very end of the globals
section.

Global Variables Used at the Library-Level
Another category of variables is library-level variables. These are status variables
that hold data about the program and activity happening at the moment. These vari-
ables answer questions such as:

Variable Type Purpose

progid char(17) Stores identification of the current program.

scr_id char(7) Stores the current screen identification.

scr_funct char(20 Stores name of current screen function being
run.

sql_filter char(512) Stores filter portion of an SQL statement.

sql_order char(100) Stores order portion of an SQL statement.

menu_item char(10) Current ring menu option being performed.

input_num smallint Stores current input section within screen.

p_cur smallint Stores current input array element.

s_cur smallint Stores current screen array element.

scr_fld char(40) Stores name of current screen field
("table.column" format).

nxt_fld char(40) Stores name of programmatic next field.

prev_data char(80) Stores the data in the field prior to entry.

this_data char(80) The data currently entered into field.

data_changed smallint Indicates whether the field data changed.

hotkey smallint Identifies hot key pressed.

scratch char(2047) Provides "scratch pad" for communication
between functions.

Fitrix Screen Technical Reference

Code Structure 11-13

• What version is running?

• Can the user update user definable fields?

• What is the current rowid?

• How many element were retrieved in a Find, etc.?

Library-level variables are located in the file $fg/lib/stan-
dard.4gs/scr_lib.4gl. These static variables are local to the screen library
functions, yet they can be accessed from anywhere in the application. The
scr_lib family of functions, located in the same file, maintains these variables.
The library function put_scrlib loads these variables and get_scrlib
returns the values of these variables. All scr_lib variables are defined as
char(80). Here are the library-level variables used with the scrlib functions:

Fitrix Screen Technical Reference

11-14 Source Code

The functions put_scrlib() and get_scrlib() are used to maintain static
variables that are used by the library functions. They are intended for use by the
library functions, but they can be accessed from anywhere in the application to
check on the status of the library functions.

Variable Purpose

dbname Stores the name of the current database.

version Stores current version of the generated code.

module Stores the name of the module.

language Stores current language being used.

scr_type Stores the current type of screen.

curs_pos Tracks the current "Find group" position.

curs_count Stores number of elements in "Find group."

curs_rowid Stores rowid of the current document.

num_rows Stores number of rows in the current window (1-24).

num_cols Stores number of columns in the current window(1-80).

scr_tab Stores the name of the main screen table.

fld_tab Stores the name of the current screen field’s table.

scr_key Stores the unique key for the screen.

auto_udf Determines whether user automatically updates user-defined
fields (y/n). Part of user control package.

auto_note Determines whether user automatically updates freeform notes
form (Y/N). Part of user control packages.

auto_answr Automatically answer Y/N to all prompts.

scrn_tier Level of screen tier.

scrn_trx Determines whether to commit or rollback when [DEL] is
pressed.

Fitrix Screen Technical Reference

Code Structure 11-15

The syntax of the put_scrlib() and get_scrlib() functions:

put_scrlib("variable","value") —— inserts "value" into the library variable
passed as "variable."

get_scrlib("variable") — returns the current value stored in that
"variable."

Example:

call put_scrlib("version","4.1")
let version_num = get_scrlib()

In this example, a call to put_scrlib("version", "4.1") is made from
within the main() function. This identifies the version of the Code Generator that
generated the local code.

It is the responsibility of each library function to maintain backward compatibility
with older versions of generated code.

Static Variables for Header/Detail Forms
The following static (module) variables are used by header.4gl and
detail.4gl. These variables maintain their values only within the .4gl file they
are defined in.

Variable Type Purpose
header.4gl or
detail.4gl

lookup_prep char(1) Have the lookups been prepared? both

select_prep char(1) Has the select statement been prepared?both

dup_prep char(1) Has the duplicate check been prepared?header.4gl

defaulted char(1) Has the defaulting been done? header.4gl

exit_level smallint 0=input, 1=field both

tab_pressed smallint (boolean) was the tab key pressed? both

insert_prep char(1) Has the insert statement been prepared?detail.4gl

del_flag char(1) Is this an insert after a delete? detail.4gl

in_insert smallint (boolean) true if we’re in insert row detail.4gl

Fitrix Screen Technical Reference

11-16 Source Code

Data Flow
The key to understanding a Fitrix Screen generated program is to understand how
information flows from disk to screen and from screen to disk. This flow was
designed to simplify modification of generated program.

The Data Variables
To understand how information moves within the data entry applications, you first
have to know a little about the data variable structure within which the generated
code stores data variables. There are different sets of these variable records for both
the header and detail sections, which are initially defined in globals.4gl. These
records create a pipeline for moving records back and forth between tables and
screen. These records are manipulated by midlevel and lowlevel code.

These variable records (variables defined to parallel screen and database records)
are called the m_ (map), p_ (picture), q_, and s_ (screen) records because of the
naming convention they follow. If the name of the database table is yyyxxxxzz
and its fields are yyyxxxxzz.field1 and yyyxxxxzz.field2, then the
name of the m_ record would be m_xxxxzz and the name of the p_ record would
be p_xxxxzz. The last six characters of the table name are used.

The most important variables are the screen and disk variable records.

p_ record: The p_ (picture) record parallels the data elements defined on the
screen. The p_ record only contains those fields displayed on your data entry
screen.

s_
p_

q_
m_

Fitrix Screen Technical Reference

Data Flow 11-17

m_ record: The m_ (map of data table) record parallels the information in the data
tables. The m_ record contains all of the same columns as the database table. The
m_ record is sometimes referred to as the disk record.

Note

INFORMIX-4GL has a table naming convention that requires the first eight
characters to be unique. The Code Generator requires that the last six characters
of those first eight characters also be unique.

Any input data from the screen is first validated and stored in a corresponding p_
record. From the p_ records the data is formatted to fit the tables by moving the
data into m_ records. The m_ records look like the tables.

These p_ and m_ records contain data from either screen to database or from data-
base to screen and are found in only two .4gl files, header.4gl or
detail.4gl.

The m_prep() function transfers the data from the p_ records into records that
look like the tables. These records are named with m_ and the last six characters of
the table. Since the rows of the detail line table are transferred one-by-one, there is
only one m_ record for detail lines instead of an array.

Similarly, the p_prep() function transfers data in the opposite direction, filling
the screen-like p_ records with the contents of the table-like m_ records whenever
data is read from storage and displayed on the screen.

For detail rows, the m_ record is a single record, mapped to the row in the data-
base, but the p_ record is an array with as many elements as you have defined to
allow in the rows of your documents. This is usually a hundred or more. It isn't lim-
ited to the number of lines on the screen itself.

q_ record: The q_ record contains all columns for the table not displayed on the
screen. The q_ record follows the same naming convention (q_xxxxzz).

 A special file exists in $fg/codegen/options/screen.opt that allows
you to control how the q_ record gets generated in the header.

If the non_scr_q_elems variable is set to "exclude," then you must add the q_
records you want with triggers.

Fitrix Screen Technical Reference

11-18 Source Code

If the non_scr_q_elems variable is set to "include," then q_ records automati-
cally get created for all columns not defined on the screen.

For more information on the non_scr_q_elems variable see "The Code Gener-
ator Options File (screen.opt)" on page 2-21.

The q_ record for the detail rows is also an array containing all the rows you have
defined as part of the detail section of the document.

Other data variables: A number of variables are used to track the detail rows on
the screen. For displaying the detail section of the screen, the system also keeps the
variable scr1_max, which tells the program how many lines are displayed in the
detail section of the screen. This variable is used, for example, in function
lld_display(), to display all the lines of detail to the screen. The variable
rec1_max is used to keep the total number of records in the detail section stored
on the disk, so that when a read is done, it checks this variable to make sure that
there is a record there. The variable rec1_cnt is used to keep track of the last of
those disk records stored in the display array. The variable p_cur, is the array
number of the "current" detail line.

s_ record: There is another set of screen variable arrays that are not defined any-
where in the program but in the .per file itself. This screen record is named for the
screen itself. If the screen's name was "screen," the name of the screen record for
the header would be s_screen and the name for the screen record for the detail
section would be s_dscreen. The only time these variables are mentioned in the
program is when information is being displayed or input from the screen. These s_
records always interact directly with the p_ records.

MEMORY TRICK: If you find yourself getting confused about the meaning of
the m_ p_ q_ and s_ records, try this:

m_ means "Map of data table."

p_ means "Picture" - as in what is on the screen.

q_ means "data not seen on screen." This is the complement of p_.

s_ means "Screen."

Fitrix Screen Technical Reference

Data Flow 11-19

Data Flow Through Variables
Most of the flow between these various variables that carry the data takes place in
very few places. It works like this:

Low Level
Header

Detail Functions

From Disk to Screen

From disk to m_ variables llh_read() lld_read()

From m_ variables to p_ variables llh_p_prep() lld_p_prep()

From p_ variables to s_ variables llh_display() lld_display()

From Data Entry to Disk

From s_ variables to p_ variables llh_input() lld_input()

From p_ variables to m_ variables llh_m_prep() lld_m_prep ()

From m_ variables to Disk

To create a new row llh_add() (new) lld_add()

To update a row llh_update () (none: deleted & added)

To delete a row llh_delete() lld_delete()

Fitrix Screen Technical Reference

11-20 Source Code

The flow of data input and display and associated lowlevel functions may be repre-
sented by the diagram below:

In the following section concerning the program flow, you see how these various
functions fit into the entire flow of the program, but here they are always "low-
level" functions: called by other functions simply to move data. This is done at var-
ious times in different ways depending upon what the user and the programmer are
trying to accomplish. Using the standard Add, Find, Update, Delete and other com-
mands, the flow follows the basic to disk and from disk patterns. The Add com-
mand documents flow is from screen to disk. The Find, Tab, Next, Prev, Browse
and Tab (view detail lines) commands all have information flow from disk to
screen. The Update command uses both from disk to screen and from screen to
disk. You have to first Find a document before you update it. The Delete command
is a special case since it removes information, but information here basically flows
from the user (if not the data entry screen) to the disk.

display

p_prep

read

p_

p_[]

m_

m_prep

delete
add

update

input

validate

screen
arrays

table
data

llh_display
lld_display

llh_p_prep
lld_p_prep
llh_lookup
lld_lookup
lld_math

llh_read
lld_read

lld_input

llh_m_prep

llh_add
lld_add
llh_update
llh_delete
lld_delete

llh_input

lld_m_prep

Fitrix Screen Technical Reference

Data Flow 11-21

The point of having all these different variables is so that, at any time in the appli-
cation, you can use both disk data and screen data independent of each other and so
that you can work in between the various data transformation processes. Triggers
allow you to deal with the data flow without changing the generated programs.
They give you specific points in the program where you can manipulate data flow
between variables.

Triggers in Data Flow
To change the information that comes in off of the screen to affect its display, you
have pass through these triggers. There are actually two sets of each of these trig-
gers: one for the "header" information and one for the "detail" information, but
since they all basically work the same, except that detail information has to be put
into a larger array, each one is listed only once:

From Disk to Screen Triggers

Header section:

Detail section:

The flow here is more complicated, largely because during user input, you have lots
of different points at which things can be controlled. In many ways this is the most
complicated part of the program, but this discussion should help to simplify it. The
asterisk indicates flows where the before or after situation is sure to happen, but in

Trigger In Function Happens After Happens Before
on_disk_read llh_read() from "s" to "m"

movement
llh_p_prep()

on_screen_record_
prep

llh_m_prep() from "m" to "p"
movement

llh_display()

Trigger In Function Happens After Happens Before
on_disk_read lld_read() from "s" to "m"

movement
lld_p_prep()

on_screen_record_
prep

lld_m_prep() from "m" to "p"
movement

lld_display()

Fitrix Screen Technical Reference

11-22 Source Code

which the situation may not have happened immediately before or after. For exam-
ple, after_field will always eventually be followed by after_input, but
an after_change_in or another before_field, may intervene.

From Screen to Disk Triggers

Header Section:

Trigger In Function Happens After
Happens
Before

on_event llh_event() user presses key anything

before_input llh_input() lld_default() from "s" to "m"

before_field llh_b_field() before_input * after_field

after_field llh_a_field() before_field after_input *

after_change_in llh_a_field() after_field after_input *

after_input llh_input() after_field * llh_m_prep

on_disk_record_prep llh_m_prep()

after_input()

on_disk_add

llh_add llh_m_prep() on_disk_update llh_update()

llh_m_prep on_disk_delete() llh_delete() delete verifica-
tion

Fitrix Screen Technical Reference

Program Flow 11-23

Detail section:

These triggers are involved every place at which you can test for conditions and
alter field values. When you use these regenerable triggers, you do not need to
replace entire sections of the code or use the do_not_generate trigger to pre-
serve those changes during regeneration.

Program Flow
As a developer or programmer, it is important to understand the flow control of
source code. This section focuses on the flow of logic in code generated by the
Code Generator. The diagrams found in this section are designed to provide addi-
tional perspective on how the logic proceeds within an application.

Trigger In Function Happens After
Happens
Before

on_event lld_event() user presses key anything

before_input lld_input() lld_default() from "s" to "m"

before_row lld_b_row() before_input * before_field

before_insert lld_b_insert() before_input * before_field

before_delete lld_b_delete() before_row after_delete

before_field lld_b_field() before_row * after_field

after_field lld_a_field() before_field after_row *

after_change_in lld_a_field() after_field

after_row lld_a_row() after_field * after_input *

after_insert lld_a_insert() after_change_in after_input

after_delete lld_a_delete() before_delete after_input

after_input lld_input() after_field * lld_m_prep()

on_disk_record_prep lld_m_prep() after_input

on_disk_add lld_add() lld_m_prep()

on_disk_update lld_update() lld_m_prep()

on_disk_delete lld_delete() user delete verifi-
cation

Fitrix Screen Technical Reference

11-24 Source Code

Note

A couple of utilities are provided which help you locate source code. These util-
ities are especially useful when learning Fitrix Screen programs. The tags feature
allows you to quickly access and display functions simply by typing their name.
Another utility allows you to print the comments for specified functions. For
more information on these useful utilities see "The Tag Utility" on page A-5

The Code Generator offers a vast improvement in efficiency over manual coding of
data-entry applications. It also provides the groundwork for consistency across ver-
tical applications that might (in the absence of the Code Generator) otherwise not
be found. This consistency in data-entry applications is clearly identified through
the use of generic upper level (ring menu) functions. The prior section on "Code
Design Levels" mentioned the fact that these upper level ring menu functions pro-
vide a control loop, which in turn controls access to midlevel and low level func-
tions.

Fitrix Screen Technical Reference

Program Flow 11-25

The following diagram illustrates the basic flow of an input program.

The following diagram depicts the initial flow upon invocation. The local
main.4gl file passes control to the ringMenu_start(2) function. The
ringMenu_start(2) function performs initialization tasks and enters an action
menu loop. The loop contains logic for the ring commands shown at the bottom of
the diagram.

main

ringMenu_start(2)

FIND ADD UPDATE DELETE ...

ring_find ring_add ring_update ring_delete

llh_read llh_input llh_update llh_delete

triggers

LOCAL

LIBRARY

LOCAL
(Tool Generated)

(Tool Generated)

General Input Program Flow

Fitrix Screen Technical Reference

11-26 Source Code

Upper Level Flow:

The Main Program and the init()
Function
The main program starts on the local level with the file main.4gl. This is local,
generated code. In general, main() first opens the database and the form, and
then calls the upper level ring menu functions.

More specifically, main() clears the screen, calls the Informix function startlog to
start an error log, then stores variables telling the system what version of the pro-
gram is running and what database the user is accessing using the function
put_scrlib(). It then opens a window and calls the init() function. After
calling init(), main() opens the main screen form and calls the
ringMenu_start(2) function. At this point, the main program flow is trans-
ferred to the ringMenu_start(2) function in the screen library.

MAIN

housekeeping
logic

ring_detail

initialization

“Menu” Loop

Add Updt Del Find Brws Next Prev Tab Optn Quit

Fitrix Screen Technical Reference

The switchbox() Function 11-27

The switchbox() Function
Object oriented programs are written to execute objects, not functions. Objects are
tangible things such as a screen, a menu, or a dialog box. When programming with
objects, you cannot always know the specific name for the function that the object
represents. The switchbox() determines where to go when you want to execute
a function for an object such as a read. More specifically, the switchbox() joins
local screens together by transferring calls from the global libraries to the other
screen forms that are connected to the main screen. Since the ring menu global code
works directly through the main data-entry screen, all local screens must be tied to
the main screen. The switchbox() routes generic library requests to the appro-
priate local or secondary screen forms.

There are two levels of switching: screen(object) level and function level. These are
discussed next.

Screen Level Switchbox
The screen level switchbox() resides in main.4gl in a function called
switchbox() and accepts requests from data independent library functions. This
function’s main responsibility is to direct program flow to the appropriate screen.
Switchbox() directs control to the appropriate screen handling function based
on the value of scr_id. If the current screen being worked on is the header/detail
screen (the main data entry screen), scr_id is set to default, and the library func-
tion lib_screen() is called. The lib_screen function includes a case state-
ment for matching the value of the scr_id variable and calling subsequent
functions based on the particular match. Since Zooms have screens, a call to a
Zoom passes through the function switchbox(). The switchbox()function
directs control down to the zoom handling functions based on the zoom’s scr_id.
The global variable scr_id is examined to see what screen is to be handled.

Fitrix Screen Technical Reference

11-28 Source Code

Following is an example of the function switchbox().

##
function switchbox(funct)
##
This is the switchbox function for version 4.11.UB1 screens.
It is used to pass flow control to the appropriate screen functions.
#
 #_define_var - define local variables
 define
 #_local_var - local variables
 funct char(20) # Function to pass on to the screen

 #_post_scr_funct - Post the current function
 let scr_funct = funct

 #_switchbox - Pass flow control to appropriate screen
 case
 when scr_id = "cust_zm" call cust_zm()
 when scr_id = "stockzm" call stockzm()
 when scr_id = "default" call lib_screen()
 #_otherwise - otherwise clause
 otherwise let scratch = "no screen"
 end case

 #_scr_funct - Reset scr_funct upon return
 let scr_funct = ""

end function
switchbox()

Fitrix Screen Technical Reference

The switchbox() Function 11-29

Diagram of the switchbox() function:

a library
request occurs

test on scr_id

test on

test on

default

cust_zm
stock_zm

set this_data

build key

highlight

showdata

init

construct

read

display array

close

switchbox *

scr_funct

lib_scr

cust_zm
stock_zm

llh_setdata

llh_display
lld_showline

llh_high

mlh_key

Acust_zm Rcust_zm

Zcust_zm

Dcust_zm

Qcust_zm

lld_setdata

scr_funct

scr_funct

* switchbox is in local code (main.4gl)

LIBRARY

LOCAL CODE

F
L
O
W

O
U
T

O
F

F
L
O
W

I
N
T
O

Fitrix Screen Technical Reference

11-30 Source Code

Function Level Switchbox
Once the program flow has been directed to the appropriate screen, the second level
of switchbox() is run. This second level is the function level switchbox().
Its main job is to direct program flow to a particular local code function. It does this
based on the value of the global variable scr_funct, which is set above by the
library function that called the function switchbox(). If the current screen
being worked on is the header/detail screen (i.e., the scr_id is "default") the
library function lib_screen acts as the function level switchbox() and
passes control as follows:

##
function lib_screen()
##
This function is the hardcoded switchbox for the default header or
header/detail screen.
#
 define
 input_type integer,
 ring_rowid integer,
 ring_cursor integer,
 ring_total integer

 # Trap fatal errors
 whenever error call error_handler

 #_get_cursor_info - Get information about the cursor if needed
 if scr_funct = "add" or scr_funct = "update" or
 scr_funct = "delete" or scr_funct = "construct" or
 scr_funct = "browse" or scr_funct = "view"
 then
 let ring_rowid = get_scrlib("curs_rowid")
 let ring_cursor = get_scrlib("curs_pos")
 let ring_total = get_scrlib("curs_count")
 end if

 case
 # New functionality
 when scr_funct = "add"
 #_get_scr_type - Determine if this is header or header/detail
 if get_scrlib("scr_type") = "header/detail"
 then let input_type = 2
 else let input_type = 1
 end if
 call ring_add(input_type, ring_rowid, ring_cursor, ring_total)
 returning ring_rowid, ring_cursor, ring_total
 call ring_border(ring_rowid, ring_cursor, ring_total)
 when scr_funct = "update"
 let ring_rowid = ring_refresh(ring_rowid)

Fitrix Screen Technical Reference

The switchbox() Function 11-31

 #_get_scr_type - Determine if this is header or header/detail
 if get_scrlib("scr_type") = "header/detail"
 then let input_type = 2
 else let input_type = 1
 end if
 call ring_update(input_type, ring_rowid)
 call ring_border(ring_rowid, ring_cursor, ring_total)
 when scr_funct = "delete"
 let ring_rowid = ring_delete(ring_rowid)
 if ring_rowid = -1 and ring_total > 0
 then
 let ring_rowid = 0
 call put_scrlib("curs_rowid", 0)
 end if
 call ring_border(ring_rowid, ring_cursor, ring_total)
 when scr_funct = "construct"
 call ring_find(ring_rowid, ring_cursor, ring_total)
 returning ring_rowid, ring_cursor, ring_total
 call ring_border(ring_rowid, ring_cursor, ring_total)
 when scr_funct = "browse"
 call ring_browse(ring_rowid,ring_cursor,ring_total)
 returning ring_rowid, ring_cursor, ring_total
 call ring_border(ring_rowid, ring_cursor, ring_total)
 when scr_funct = "view"
 call lib_message("scroll")
 call mld_scroll()
 let int_flag = 0
 call ring_border(ring_rowid, ring_cursor, ring_total)
 when scr_funct = "set sticky"
 if input_num = 2
 then call lld_zoom_filter()
 else call llh_zoom_filter()
 end if
 when scr_funct = "set this_data"
 if input_num = 2
 then call lld_setdata()
 else call llh_setdata()
 end if
 when scr_funct = "touch"
 # Identify the screen type
 call put_vararg("type")
 call put_vararg("old header/detail")
 # Identify the cursor table, hard filter, and default order
 call put_vararg("cursor")
 call mlh_cursor()
 when scr_funct = "highlight"
 if input_num = 2
 then call lld_high()
 else call llh_high()
 end if
 when scr_funct = "pwrite"
 if input_num = 2
 then call PW_detail()

Fitrix Screen Technical Reference

11-32 Source Code

 else call PW_header()
 end if
 when scr_funct = "pread"
 if input_num = 2
 then call PR_detail()
 else call PR_header()
 end if
 when scr_funct = "after_query"
 call mlh_aquery()
 when scr_funct = "math"
 call llh_math()
 when scr_funct = "clear"
 call mlh_clear()
 call mld_clear()
 when scr_funct = "showdata"
 if input_num = 2
 then call lld_showline()
 else call llh_display()
 end if
 when scr_funct = "showarray"
 call lld_display()
 when scr_funct = "build key"
 call mlh_key()
 end case

end function
lib_screen()

Note that control is directed to the appropriate function in local code based on the
value of the variable scr_funct (for example, if scr_funct is set to set
this_data then the local code functions llh_setdata() or
lld_setdata() are called). The global variable input_num indicates whether
the header portion of the screen is being worked on or the detail portion of the
screen is being worked on.

Like lib_screen(), each non-default screen such as zoom screens, has its own
tailored function that acts as a function level switchbox(). This tailored func-
tion has the same name as the .per file. One such tailored function may look like
this:

##
function cust_zm()
##
This is a screen function switching mechanism.
It’s job is to route requests from the screen manager
to the appropriate local function.
#
 #_define_var - define local variables
 define
 no_function smallint # true if scr_funct not in case statement

Fitrix Screen Technical Reference

The switchbox() Function 11-33

 #_err - Trap fatal errors
 whenever error call error_handler

 #_flow_init - initialize flags
 let no_function = false

 #_switchbox - Screen switchbox function
 case
 #_case - case statement
 #_init - init function
 when scr_funct = "init" call Acust_zm()
 #_read - disk read function
 when scr_funct = "read" call Rcust_zm()
 #_key - build unique key function
 when scr_funct = "build key" call Kcust_zm()
 #_close - close function
 when scr_funct = "close" call Zcust_zm()
 #_dsp_arr - display array function
 when scr_funct = "display array" call Dcust_zm()
 #_construct - construct function
 when scr_funct = "construct" call Qcust_zm()
 #_after_query - ’after construct’ function
 when scr_funct = "after_query" call AQcust_zm()
 #_get_filter - Get the persistent filter
 when scr_funct = "get sticky" call GFcust_zm()
 #_set_filter - Set the persistent filter
 when scr_funct = "set sticky" call SFcust_zm()
 #_otherwise - otherwise clause
 otherwise let no_function = true
 end case

 #_flow_close - check no_function status
 case
 #_no_function - no function found
 when no_function
 let scratch = "no function"
 #_reset - function was found, reset scratch
 when scratch = "no function"
 let scratch = null
 #_flow_close_otherwise - otherwise clause
 end case

end function
cust_zm()

Notice that just like lib_screen(), control is directed to the appropriate func-
tion in local code based on the value of the variable scr_funct (for example, if
scr_funct is set to "read" then the local code function Rcust_zm() is called).

Fitrix Screen Technical Reference

11-34 Source Code

The chief difference between lib_screen() and these tailored functions is that
lib_screen() is a library function and the tailored functions are generated in
local code.

In summary, the switchboxes act as a conduit between libraries and functions in the
lowlevel code. Data is passed back and forth between libraries and mid and low-
level functions. The function switchbox() acts very much like a generic library
function, but because specific scr_id’s and their respective functions must be
hardcoded into it, it is generated in local code as part of main.4gl.

The Vararg Family of
Functions
Sometimes a variable number of arguments have to be passed to the same function.
Since functions normally can be passed only a predefined number of arguments, a
set of functions have been created that allow you to deal with situations where you
don’t know the exact number of data elements being passed between functions.
This family is called the vararg family of functions.

The vararg family of functions includes the following:

put_vararg()
get_vararg()
num_vararg()
max_vararg()
getx_vararg()
peekx_vararg()

The vararg functions are needed in a variety of situations. A good example of this is
a request for switchbox() to build a key. A library function requests switch-
box() to record the key(s) of the current table (by passing switchbox() the
scr_funct "build key"). The library function is data independent and knows
nothing about a table and what its key(s) is. In many instances, a table uniquely
defines a row by more than one column, thus concatenated keys are used. If a
key(s) is to be passed to a function as an argument, the capability of passing a vari-
able number of arguments must be allowed. For instance, you can call a function
and pass one key, two keys, three keys, etc. The vararg family of library functions
takes care of this for you.

put_vararg(argument)

Fitrix Screen Technical Reference

The Vararg Family of Functions 11-35

This function initiates the use of vararg and must be used immediately before
any of the other functions. Its purpose is to temporarily store a string of charac-
ters as a single argument. This function is normally called several times in a
row, each time passing a new argument. These arguments are stored in an array
from which they can be again retrieved by the get_vararg() function.
Once a get_vararg() or similar function is called, no new arguments can
be added. The next calling of put_vararg() starts a new variable list and
erases the old.

Here are some examples of calls to put_vararg(), what the variable list and
the array values would look like, and the number of arguments passed (key
names and their values are being passed):

calls: call put_vararg("customer_num")
 call put_vararg(p_orders.customer_num)

variable list: list = "customer_num", 104

number of arguments: 2

calls: call put_vararg("stock_num")
 call put_vararg(p_items.stock_num)
 call put_vararg("manu_code")
 call put_vararg(p_items.manu_code)

variable list: list = "stock_num", 6, "manu_code", SMT

number of arguments: 4

calls: call put_vararg("order_num")
 call put_vararg(p_items.order_num)
 call put_vararg("stock_num")
 call put_vararg(p_items.stock_num)
 call put_vararg("manu_code")
 call put_vararg(p_items.manu_code)

variable list: list = "order_num", 1005, "stock_num", 1, "manu_code",
HRO

number of arguments: 6

Notice that there is a single call to put_vararg() (passing a single argument
each time) for every argument strung together in arg_list. The arg_list
variable is the variable list that gets passed around to the vararg functions.

get_vararg()

Fitrix Screen Technical Reference

11-36 Source Code

This function retrieves the arguments from the arg_list in the order that
they were stored. Each time it is called, the next variable in the string is
returned. When get_vararg() or the related getx_vararg() is called,
the next call of put_vararg() starts a new variable list.

Here is an example of the get_vararg() and how it retrieves values from
the variable list:

variable list: list = "customer_num", 104
calls: let string = get_vararg()
 let number = get_vararg()
values: string = "customer_num"
 number = 104

num_vararg()

This function returns a count of the total number of arguments in the
arg_list.

max_vararg()

This function returns the length of the longest string being held in arg_list.

Example:

let biggest_string = max_vararg()

Fitrix Screen Technical Reference

The Vararg Family of Functions 11-37

getx_vararg(argument_number)

This function is just like get_vararg() except that it returns a specific argu-
ment from arg_list, not just the next one in sequence. getx_vararg()
receives as its argument the number of the argument in arg_list(). Exam-
ple:

If there were the following calls to put_vararg:

call put_vararg("order_num")
call put_vararg(p_items.order_num)
call put_vararg("stock_num")
call put_vararg(p_items.stock_num)
call put_vararg("manu_code")
call put_vararg(p_items.manu_code)

Like get_vararg(), getx_vararg() pulls out both the values of vari-
ables along with the variable names.

let order_num = getx_vararg(2) # returns the value "1005"
let stock_num = getx_vararg(4) # returns the value "1"
let manu_code = getx_vararg(6) # returns the value "HRO"

peekx_vararg(argument_number)

This function is just like getx_vararg() except that it does not remove the
variables in the array. peekx_vararg() allows you to return an exact value
stored by put_vararg(), without removing the string from the arg_list.

Note

Since put_vararg() and get_vararg() re-initialize each other, be care-
ful not to use retrieving functions until you are finished storing arguments.

Fitrix Screen Technical Reference

11-38 Source Code

There are some limitations to the use of put_vararg() and get_vararg():

• An argument cannot exceed 512 characters in length.

• You can use no more than 100 arguments.

• The total string size of all arguments cannot exceed 2048 characters.

Examples of put_vararg() and
get_vararg()
The vararg family works nicely within a "while" loop. Often the key of a table is
needed in Screen source code. A library function called lib_getkey() performs
this task. However library functions are data independent and know nothing about
the database. In many instances, a table uniquely defines a row by more than one
column, thus concatenated keys are used. The function lib_getkey() uses the
vararg family to handle getting one key, two keys, three keys, etc.

lib_getkey() first calls switchbox() passing it the scr_funct "build
key." Control trickles down to mlh_key(), which is local code and calls
put_vararg() to load arg_list with the keys, however many there are.
When control passes back up, lib_getkey ()uses a while loop to evaluate what
is in scratch. This time it uses get_vararg() and num_vararg(), which
returns the number of arguments in arg_list. Here are the lines of code in
lib_getkey() that accomplish this:

##
function lib_getkey()
##
This function is called to define the key to the screen.
It’s main purpose is to set the scr_tab and scr_key variables.
#
 define
 tabname char(18), # main table for this screen
 tabkey char(30), # the key to the table
 c char(1), # temporary char variable
 n smallint # generic number

 # Trap fatal errors
 whenever error call error_handler

 if (menu_item = "find" and scr_funct != "zoom") or
 menu_item = "browse"
 then

Fitrix Screen Technical Reference

The Vararg Family of Functions 11-39

 call mlh_key()
 else
 call switchbox("build key")
 end if

 if scratch = "no function" then return end if
 let tabname = get_vararg()

 let tabkey = ""
 let n = num_vararg() - 1
 whenever error continue
 while n > 0
 let c = get_vararg() # don’t need the column name
 let status = 0
 let tabkey = tabkey clipped, get_vararg()
 # check for too long of a key
 if status = -4401
 then
 call lib_error("standard","lib_key",1,"")
 let tabkey = ""
 exit while
 end if
 let n = n - 2
 end while
 whenever error call error_handler
 call put_scrlib("scr_tab",tabname)
 call put_scrlib("scr_key",tabkey)
end function
lib_getkey()

Fitrix Screen Technical Reference

11-40 Source Code

12-1

12
Customizing Your
Base Program With
Triggers

This section explains how to customize your applications while maintaining regen-
erability. All modifications to the base code are stored in separate files. Your cus-
tom code automatically merges into the base code at specific points called triggers.

n How to modify your application with triggers

n Explanation of the triggers

n Custom .4gl/.org files

Fitrix Screen Technical Reference

12-2 Customizing Your Base Program With Triggers

Using Triggers to Modify
Your Application
There are two major concepts that you need to understand to fully utilize Fitrix
Screen: triggers and blocks. The basic concept going on here is that all of your cus-
tom modifications are placed in separate files from the base code generated by the
Code Generator. Then when you compile your program, your modifications auto-
matically get placed into the base code.

By keeping your modifications separate from the base code, your programs can be
completely regenerable, meaning that with each new upgrade of Fitrix Screen, all
you need to do is to regenerate your application to take advantage of the newest fea-
tures built in to Fitrix Screen. Also, triggers actually simplify the modification pro-
cess because you don’t even have to know where to place your modification in the
source code.

Triggers: Triggers are specific locations, "trigger points," in the generated code
where your modifications get inserted. Specifying the name of a trigger before a
piece of custom code places your code into the generated code at the point where
the trigger occurs.

Blocks: Blocks on the other hand are a bit more complicated. Block commands
allow you to replace any piece of generated code or insert any code anywhere in
any 4gl file. Blocks are the subject of the next chapter.

Featurizer: The Featurizer is the program that merges triggers and blocks into the
source code. The Featurizer is discussed in the next chapter along with blocks.

Trigger File (.trg): Like the .per file, the trigger file also serves as a source of
input to the Code Generator. Each trigger file contains modifications to a particular
screen. One trigger file may exist for every .per file. While the .per file instructs the
Code Generator what kind of code to generate, the .trg file contains additional code
that you want to add to the base code.

Some of the main benefits of a trigger file:

• Simplifies the structure of Fitrix Screen code, making it easier to use and mod-
ify—instead of looking throughout source code to find modifications, specific
modifications are kept in a single file.

Fitrix Screen Technical Reference

Using Triggers to Modify Your Application 12-3

• Optimizes placement of modifications—instead of having to learn the structure
well enough to ideally place your modifications, triggers are automatically
inserted into the 4GL code by the Featurizer.

• Reduces development time in creating complex input screens—a trigger file
contains quick and easy rules for fast modification.

• Separates your modifications from the code generated by the Fitrix Screen—
you can keep a custom trigger file with your own modifications so you can dis-
tinguish your code from the Code Generator’s.

• Allows regenerability—modifications can all be kept in a single file and code
can be repeatedly generated based on the specifications in this file.

• Provides backwards compatibility—modifications made through triggers are
assured proper placement in the .4gl code with future releases of the Code
Generator.

Trigger files only work with source code. Modifications specified in a trigger file
are placed in the appropriate place in the code by the Featurizer. Modifications
specified in the trigger file are not guaranteed to compile. The Featurizer does not
check the syntax of your custom modifications specified in a trigger file. This is the
job of the compiler.

Thus when encountering errors during compiling, you should look first to resolve
the errors in the trigger file and not in the source code itself.

Although much of the work required in customizing code can be done through a
trigger file, there are circumstances when you need to make modifications outside
of known trigger points. You can use a variety of special "block commands" to
selectively modify virtually any piece of code in any .4gl file. For more information
on block commands, refer to "Using Block Commands to Manipulate Code" on
page 13-17.

The following items could be put into a trigger file to get added to the generated
code:

• Global or static variables.

• Any libraries that are used with a particular program, especially custom librar-
ies.

• Before initialization or after initialization logic.

• Additional I/O logic.

• Before field or after field logic.

Fitrix Screen Technical Reference

12-4 Customizing Your Base Program With Triggers

• Before input or after input logic.

• Event handling logic.

• Custom functions can replace Fitrix Screen generated functions.

The Trigger File
A trigger file contains all of the triggers that modify one particular screen. Trigger
files have the same name as the screen that they are modifying with a .trg extension
instead of .per. For example, if the name of the .per is order.per, then the name
of the trigger file modifying it is order.trg. Trigger files can accompany any
.per file, including zoom and browse .per files.

A trigger file can contain up to three separate sections depending on the type of
screen being modified: defaults, input 1 and input 2. These sections determine what
.4gl source code files are effected by a particular trigger. For example, a
static_define trigger can be placed in any one of the three sections with the
following effects:

defaults: inserts code into the main.4gl file

input 1: inserts code into the header.4gl file

input 2: inserts code into the detail.4gl file

In each section of the trigger file, you list the name of the trigger and the custom
code you want to insert into the source code. The following is the format for a trig-
ger:

trigger_name
 custom code
 more custom code
 ;

Each trigger must be separated by a semicolon (;).

Fitrix Screen Technical Reference

The Trigger File 12-5

Note

If you need to use a semicolon as a formatting type characteristic in a trigger or a
block command, you must put a backslash before it (\;). The backslash is
removed during processing.

Comments ("#") placed before a trigger and its associated text causes that trigger
and text to be ignored.

Do not place comments after the ending semicolon.

The following describes the parts of a trigger file.

defaults:

The defaults section manages custom entries in the main.4gl and glo-
bals.4gl files. Also, custom characteristics about the program are handled
in this section (what libraries to use, what functions not to generate). Extra ini-
tialization and disk access logic can also be specified in the defaults sec-
tion.

input 1:

The input 1 section handles modifications in header.4gl. This section
contains before/after field logic, before/after input logic, and event handling
logic for the header portion of the screen.

This section is also used to place variables in q_ parallel header records. Static
variable definitions can also be created in header.4gl.

input 2:

The input 2 section places modifications in detail.4gl. This section
contains the same types of logic as an input 1 section, except the detail por-
tion of the screen arrays are often involved. Thus custom before/after row,
before/after insert, and before/after delete logic is specified in the input 2
section.

The input 2 section also allows you to place variables in q_ parallel detail
records. Static variable definitions can also be created in detail.4gl.

Fitrix Screen Technical Reference

12-6 Customizing Your Base Program With Triggers

The section of the trigger file you place your triggers into determines which .4gl
file the code is merged into. The type of .per form also determines which section of
the trigger file to place your triggers into.

The input 1 section is used to place code into the header.4gl file of a header
or header/detail form.

The input 2 section is only used to place code into the detail.4gl file of a
header/detail type form.

The defaults section is used with all screen types with a variety of effects.

Triggers placed in input 2 on anything besides a header/detail form are ignored.

The following table shows what .4gl files are effected by placing triggers in certain
areas of the trigger file for a particular form type.

The following sample trigger (.trg) file gives you an idea of what these look like:

Form Type .trg Section
.4gl File
Affected

header
header/detail

defaults main.4gl or
globals.4gl

header
header/detail

input 1 header.4gl

header/detail input 2 detail.4gl

add-on
zoom
extension

defaults
input1

scr_id.4gl

browse defaults browse.4gl

Fitrix Screen Technical Reference

The Trigger File 12-7

defaults
 define
 m_gcntrc record like stgcntrc.*, # record holding GL control info
 m_xcntrc record like stxcntrc.*, # record holding control info
 m_xperdr record like stxperdr.*, # record holding period info
 l_prepared smallint,
 n smallint, # temporary counter
 prev_fld char(40), # global version of prv_fld
 str array[10] of char(80) # language independent array;

 libraries
 ../../all.4gm/lib.a;

 do_not_generate
 lld_read;

 after_init
 call gcontrol() returning m_gcntrc.*
 call xcontrol() returning m_xcntrc.*
 call str_init();

input 1

 before_input
 let prev_data = null
 let prev_fld = null ;

 before_field acct_no
 # set global prev_fld to prv_fld for after field skip logic
 let prev_fld = prv_fld ;

 before_field incr_with_crdt
 # set global prev_fld to prv_fld for after field skip logic
 let prev_fld = prv_fld ;

 after_change_in acct_no
 #_ck_dup - check for duplicate key if field is not null
 if this_data is not null
 then
 #llh_dupchk returns false if duplicate exists(err condition)
 if not llh_dupchk()
 then
 call scr_error("dupchk", "acct_no")
 let p_xchrtr.acct_no = prev_data
 let this_data = prev_data
 let data_changed = false
 let nxt_fld = "acct_no"
 return
 end if
 end if

For a more detailed example refer to "Sample Triggers File" on page 12-48.

Fitrix Screen Technical Reference

12-8 Customizing Your Base Program With Triggers

Trigger File Limitations
A trigger file cannot exceed 699 lines.

If you create a trigger file that is bigger than 699 lines, you can remove large pieces
of code, like custom functions, from the trigger file and move them into a separate
.4gl/.org file. We recommend you name this file custom.org to ensure that your
name does not conflict with file names in future upgrades of our applications. For
more information on custom.org files refer to "Custom .4gl/.org Files" on page
12-47.

Using Triggers in .ext Files
Triggers can be used in .ext (extension) files. These .ext files are similar to .trg files
but they contain block commands and triggers necessary to drive a particular fea-
ture. This allows you to selectively plug and unplug certain features for different
versions of your program. For more information on using triggers in .ext files refer
to "Pluggable Features (.ext Files)" on page 13-32.

The Triggers
Following is a discussion of each trigger. A complete sample trigger file can be
found in Appendix D, "Sample Trigger File." Triggers associated with Add-On
Headers are discussed under "Add-On Header Triggers."

Fitrix Screen Technical Reference

The Triggers 12-9

define
This trigger lets you add global variables to the define statement in glo-
bals.4gl.

Trigger File Placement
• defaults
• input 1
• input 2

Defaults Section
A define trigger specified in the defaults section puts variables directly into the
beginning of the globals (globals.4gl) file. A define trigger in the defaults sec-
tion is used for individual variables not associated with any records. A comma must
be included after the last variable.

Example
defaults

define
myvar4 smallint,
myvar5 smallint,
myvar6 smallint,
;

Input 1 and Input 2 Sections
A q_ record(s) (record parallel to the header or detail record) is always created
when generating with the Code Generator.

The define trigger specified in the input 1 section or input 2 section places
variables into the q_ record parallel to the header or the q_ record parallel to the
detail, respectively. Leave comma out on last variable.

Fitrix Screen Technical Reference

12-10 Customizing Your Base Program With Triggers

Example
input 1

define
myvar7 smallint,
myvar8 smallint,
myvar9 smallint
;

Notes
The define trigger isn't allowed in .ext files. Use function_define,
static_define, or in_block commands for these files.

When using multiple directory search paths, the Featurizer either replaces or
appends define trigger definitions processed previously. The action that the Fea-
turizer takes depends on the current setting in the fglpp.opt file. For more infor-
mation, refer to "Maintaining Backwards Compatibility—The Options Files" on
page 2-19.

Fitrix Screen Technical Reference

The Triggers 12-11

static_define
The static_define trigger inserts static (local) variables into the define state-
ment for particular .4gl files. The static_define trigger is the same as the
define trigger except that variables are not placed in globals.4gl. Static
variables are variables that are available only within a particular 4gl file.

Leave comma out on last variable.

Trigger File Placement
• defaults
• input 1
• input 2

Example
static_define

myvar10 smallint,
myvar11 smallint,
myvar12 smallint
;

Notes
The static_define trigger, placed in different sections of the .trg file, yields
different results. In the following table, a static_define placed in a section
specified in the first column results in a placement of variables at the top of a .4gl
file specified in the second column.

Fitrix Screen Technical Reference

12-12 Customizing Your Base Program With Triggers

For zoom and add-on screens, it makes the variable static to the
{screen_id}.4gl file, and for browse screens, it is static to the browse.4gl
file.

When using multiple directory search paths, the Featurizer either replaces or
appends static_define trigger definitions processed previously. The action
that the Featurizer takes depends on the current setting in the fglpp.opt file.
Refer to "The Featurizer Options File (fglpp.opt)" on page 2-19 for more informa-
tion.

Form Type .trg Section
.4gl File
Affected

header(/detail) defaults main.4gl

header(/detail) input 1 header.4gl

header/detail) input 2 detail.4gl

add-on
zoom
extension

defaults scr_id.4gl

browse defaults browse.4gl

Fitrix Screen Technical Reference

The Triggers 12-13

function_define
This trigger defines the specified variables as local to the specified function.

Trigger File Placement
• defaults
• input 1
• input 2

Example
function_define my_function

myvar23 smallint,
myvar24 smallint
;

Notes
The file that this trigger tries to find the function in depends on where the trigger is
located within the .trg or .ext file.

If the function_define trigger is in a "start file" section, the function must
reside in that specified file.

Form Type .trg Section
.4gl File
Affected

header

header/detail

defaults main.4gl

header

header/detail

input 1 header.4gl

header/detail input 2 detail.4gl

add-on

zoom

extension

defaults scr_id.4gl

browse defaults browse.4gl

Fitrix Screen Technical Reference

12-14 Customizing Your Base Program With Triggers

on_event
The on_event trigger allows you to automatically add event handling logic.

Note

You must re-run the Code Generator after adding an on_event trigger. This is
the only trigger that does not get merged into your code with the Featurizer.

Trigger File Placement
• defaults
• input 1
• input 2

Example
on_event noworry

let scratch = "Don’t worry, be happy"
call lib_message("scr_bottom")
sleep 3
;

Notes
Additions to code required to handle global and local events can all be added auto-
matically by using the on_event trigger. However, since an event must be
invoked by a keystroke or by selecting it from the Navigation Menu, additional
steps must be taken in order to add the event to the navigation and hot key tables.
The event can be added to the navigation tables through the Navigation and Hot
Key features available with the User Control Library.

The location of the on_event trigger in the trigger file determines where the
event is placed in the code and where it can be used.

For a global event, specifying on_event in the defaults section results in
global_events() being added to main.4gl. This function handles the logic
for all global events in the program.

Fitrix Screen Technical Reference

The Triggers 12-15

Specifying on_event in the input 1 section causes the event to be executed
only from input area 1 (header section).

Specifying on_event in the input 2 section causes the event to be executed
only from input area 2 (detail section).

The following table summarizes the results of the on_event trigger:

For more information, refer to "Event Handling Logic" on page 15-2.

See also "The Navigate Feature" and "Hot Keys" in the Fitrix CASE Tools
Enhancement Toolkit Technical Reference.

More Examples
The following examples show where the on_event trigger inserts the event into
the code.

Specifying a global event noworry in the defaults section of the trigger file:

on_event noworry
let scratch = "Don’t worry, be happy"
call lib_message("scr_bottom")
sleep 3
;

section .4gl file:input function .4gl:event handling function

defaults none main.4gl:global_events

input 1 header.4gl:llh_input header.4gl:llh_event

input 2 detail.4gl:lld_input detail.4gl:lld_event

Fitrix Screen Technical Reference

12-16 Customizing Your Base Program With Triggers

results in main.4gl:

 ##
 function global_events(act_key, p_funct)
 # returning true if it runs the event, otherwise false
 ##
 # This function’s job is to run all events that need to be run
 # on a global (program wide) basis. If you have defined an event
 # that needs to be run at the menu level in addition to the local
 # input level, the event must be listed here.
 # If you wish to know the function name that called hot_key, it
 # is passed as p_funct.
 #
 define
 act_key char(15), # Action to process
 p_funct char(15) # Current function name

 # Process the events based on act_key
 case
 when act_key = "noworry"
 let scratch = "Don’t worry, be happy"
 call lib_message("scr_bottom")
 sleep 3

 otherwise return false
 end case

 return true
 end function
 # global_events()

This global event would not be accessible in a program until you add the global
event via the Navigation feature.

Local events are specified in a similar manner. For local events, specifying
on_event in the input 1 or input 2 sections will yield two entries. In the
input statement, local event processing, a call to hot_local is placed in the code
calling the event specified. Also, the event handling code specified is placed in the
llh_event()/lld_event() function as an additional when clause to the
case statement. Example:

Fitrix Screen Technical Reference

The Triggers 12-17

In the trigger file, specifying the following in input 1 section:

 on_event zoom
 and infield(order_date)
 if zoom("date_zm")
 then
 let p_orders.order_date = scratch
 let nxt_fld = "order_date"
 end if
 ;

results in header.4gl:llh_input:

 # Local event processing
 label event:
 call hot_local("date_zm")
 . . .
 call llh_event()

and in header.4gl:llh_event:

 case
 when . . .

 when scr_funct = "zoom"
 and infield(order_date)
 if zoom("date_zm","")
 then
 let p_orders.order_date = scratch
 let nxt_fld = "order_date"
 end if

 when . . .
 end case

Fitrix Screen Technical Reference

12-18 Customizing Your Base Program With Triggers

libraries
If you have built a library of custom functions and wish to use this custom library
with the current application, you can specify the libraries trigger in a trigger
file. Any libraries specified here are automatically placed into the LIBFILES sec-
tion of the local Makefile.

Trigger File Placement
• defaults section

Example
libraries

$(fg)/lib/mylib.a
;

Notes
Any library specified through a libraries trigger is placed after the ../lib.a
line but before the rest of the Fitrix Screen libraries. If there are any functions that
have the same name across libraries, the functions found in the earlier LIBFILES
entry is executed.

Fitrix Screen Technical Reference

The Triggers 12-19

custom_libraries
If you have built a library of custom functions and wish to use them before the
../lib.a library with the current application, you can do so by specifying the
custom_libraries trigger in a trigger file. Any libraries specified here are
automatically placed into the LIBFILES section of the local Makefile before
../lib.a.

Trigger File Placement
• defaults section

Example
custom_libraries

$(fg)/lib/newlib.a
;

Fitrix Screen Technical Reference

12-20 Customizing Your Base Program With Triggers

switchbox_items
The switchbox_items trigger adds an additional when clause to the case
statement in the function switchbox(). Use this trigger to add additional
screens to the flow controller.

Trigger File Placement
• defaults section

Example
switchbox_items

screen2 screen2
;

Notes
The switchbox() function resides in main.4gl.

You can also specify function arguments in your switchbox_items trigger
code:

switchbox_items
fredA fredA(arg1, arg2, arg3)
;

When using multiple directory search paths, the Featurizer either replaces or
appends switchbox_items trigger definitions previously processed. The action
that the Featurizer takes depends on the current setting in the fglpp.opt file.
Refer to "The Featurizer Options File (fglpp.opt)" on page 2-19.

Fitrix Screen Technical Reference

The Triggers 12-21

before_init
The before_init trigger let’s you insert logic before the program initialization
occurs in the init() function.

Trigger File Placement
• defaults section

Example
before_init

initialize myvar1 to null
initialize myvar2 to null
initialize myvar3 to null
;

Notes
The main.4gl file performs initialization. It does this by calling the function
init(). Custom initialization logic can be placed before or after this call to
init() by using the before_init or after_init trigger, respectively.

Fitrix Screen Technical Reference

12-22 Customizing Your Base Program With Triggers

after_init
The after_init trigger is similar to before_init, but the after_init
trigger places code after the open form statement in main.4gl (after the call to
init()).

Trigger File Placement
• defaults section

Example
after_init

open window w_cust_zm at 4,5 with form "cust_zm"
attribute (white, border)

;

Fitrix Screen Technical Reference

The Triggers 12-23

at_eof
The at_eof trigger is useful for placing custom functions at the end of a .4gl file.
This trigger is often used in conjunction with the do_not_generate trigger.

Note

Block commands allow you to duplicate the function of the
do_not_generate and at_eof triggers but in a much cleaner way. Using
block commands is preferred. Refer to "Block Command Statements" on page
13-24.

Trigger File Placement
• defaults section
• input 1
• input 2

Example
defaults
at_eof #placed at end of main.4gl

function please_wait()

Trap fatal errors
 whenever error call error_handler

 instead of this
 message " Please wait..."

 let’s say this
 message " Have a happy day ..."

end function
please_wait()
;

Fitrix Screen Technical Reference

12-24 Customizing Your Base Program With Triggers

Notes
The placement of the at_eof trigger in the trigger file yields different results.

When using multiple directory search paths, the Featurizer either replaces or
appends at_eof trigger definitions processed previously. The action that the Fea-
turizer takes depends on the current setting in the fglpp.opt file. Refer to "The
Featurizer Options File (fglpp.opt)" on page 2-19.

In the example above, the library function please_wait was copied into local
code, modified, and placed after the at_eof trigger defaults section.

There are three ways that functions can be customized using at_eof:

1. A custom function can be coded from scratch and given a unique name. This
function may also be called from the trigger file.

2. A library function can be copied into your local code and customized using the
at_eof trigger. This function retains the same name as the library function
and the call (wherever it is) is left the same. But when the function is called, the
local function is used instead of the library function because during compilation
the linker looks first to local code and then to the libraries when resolving func-
tion calls.

Form Type .trg Section
.4gl File
Affected

header
header/detail

defaults main.4gl

header
header/detail

input 1 header.4gl

header/detail input 2 detail.4gl

add-on
zoom
extension

defaults scr_id.4gl

browse defaults browse.4gl

Fitrix Screen Technical Reference

The Triggers 12-25

During regeneration, Screen placed this code at the end of main.4gl. When
compiling, the linker looked locally first and found this function and linked it
in. When running the program, this custom function was called instead of the
library function.

3. A local function normally generated with Screen can be modified and used in
place of the generated function. However a do_not_generate trigger must
also be used to prevent the original function from being generated or else two
local functions will exist in the local code resulting in a compile or run-time
error. The do_not_generate trigger is discussed next.

Fitrix Screen Technical Reference

12-26 Customizing Your Base Program With Triggers

do_not_generate
The do_not_generate trigger can prevent any function in local code from
being generated. This is ideal for when you take a function generated with Fitrix
Screen and modify it so that when the call is made, the modified function is used in
place of the original function.

Note

Block commands allow you to duplicate the function of the
do_not_generate and at_eof triggers but in a much cleaner way. Using
block commands make this trigger unnecessary and is preferred. Refer to "Block
Command Statements" on page 13-24.

Trigger File Placement
• defaults section
• input 1
• input 2

Example
 defaults
 ...
 ...
 do_not_generate
 mlh_clear
 ;

Notes
The modified function must replace the function generated by Fitrix Screen. You
can use the at_eof trigger to specify the modified function and
do_not_generate to prevent the original function from generating.

As for calls to functions, do_not_generate has no effect on calls to functions
that are specified under do_not_generate. Fitrix Screen generates calls to
functions whether the function is there or not.

Fitrix Screen Technical Reference

The Triggers 12-27

The do_not_generate trigger acts as a "delete block" block command. The
trigger can be in any section of the .trg or .ext file. If there is a file context (it's not
in a "defaults" section), then the context is determined by the current file context
(within a "start file" or "input n" section).

If it is in a defaults section of a .trg file (there is no such section in an .ext file), then
the following rules are applied to determine which .4gl file to assign the command
to.

If the screen type is zoom or add-on, it uses the .4gl file associated with this .trg
file.

If the screen type is browse, it uses browse.4gl.

If the screen type is header or header/detail, then it uses the following logic to
determine the .4gl file:

If the first 2 characters of the function are "ml", then it uses midlevel.4gl.

If the first 3 characters of the function are "llh", then it uses header.4gl.

If the first 3 characters of the function are "lld", then it uses detail.4gl.

Otherwise, it uses main.4gl.

Fitrix Screen Technical Reference

12-28 Customizing Your Base Program With Triggers

More Examples
This example explains how a local function can be modified using the at_eof and
do_not_generate triggers.

You can take this local function generated with Fitrix Screen:

 ##
 function mlh_clear()
 ##
 #
 initialize p_stomer.* to null
 initialize q_stomer.* to null
 initialize m_stomer.* to null
 end function
 # mlh_clear

and modify it and place it within the at_eof trigger of the trigger file:

 defaults
 ...
 ...

Form Type .trg Section
Function Not
Generated

.4gl File
Affected

header

header/detail

defaults ml*

llh*

lld*

other

midlevel.4gl

header.4gl

detail.4gl

main.4gl

header

header/detail

input 1 header.4gl

header/detail input 2 detail.4gl

add-on

zoom

extension

defaults scr_id.4gl

browse defaults browse.4gl

Fitrix Screen Technical Reference

The Triggers 12-29

 at_eof

 ##
 function mlh_clear()
 ##
 #
 initialize p_stomer.* to null
 initialize q_stomer.* to null
 initialize m_stomer.* to null
 a-> initialize myvar1 to null
 a-> initialize myvar2 to null
 a-> initialize myvar3 to null
 end function
 # mlh_clear

If you were to regenerate at this point, the modified function would be placed at the
end of main.4gl. However, Fitrix Screen would also regenerate the original
mlh_clear(), yielding two functions of the same name in the local program
directory. To avoid this from happening, you would add the do_not_generate
trigger to tell the Code Generator to not generate the original mlh_clear():

 defaults
 ...
 ...
 do_not_generate
 mlh_clear
 ;

Thus the original mlh_clear() is not generated and the one modified
mlh_clear() is placed into the source code. When running the program, the call
to mlh_clear() uses the modified mlh_clear().

Fitrix Screen Technical Reference

12-30 Customizing Your Base Program With Triggers

on_screen_record_prep
Code specified in this trigger is placed at the bottom of the p_prep() function.

Trigger File Placement
• input 1
• input 2

Example
on_screen_record_prep

display "p_prep successful"
sleep 3
;

Notes
The p_ records are filled automatically from data found in m_ records and from
lookups. If additional code is needed to fill p_ records or code is needed to load q_
records, this is the trigger to do it.

This trigger can be used in either input 1 or input 2 to affect llh or lld respec-
tively.

Fitrix Screen Technical Reference

The Triggers 12-31

on_disk_record_prep
Code specified in this trigger is placed at the bottom of the m_prep() function.

Trigger File Placement
• input 1
• input 2

Example
on_disk_record_prep

display "p_prep successful"
sleep 3
;

Notes
m_ records are filled automatically from data found in p_ records (and sometimes
q_ records) before a disk write. If additional code is needed for writing to table col-
umns not specified in the p_ or q_ records, this is the trigger to do it.

This trigger can be used in either input 1 or input 2 to affect llh or lld respec-
tively.

Fitrix Screen Technical Reference

12-32 Customizing Your Base Program With Triggers

on_disk_read
This trigger is placed in llh_read()/lld_read ()after the disk read is per-
formed and before the call to llh_p_prep()/lld_p_prep(). This trigger is
executed only if the read is successful.

Trigger File Placement
• input 1
• input 2

Example
on_disk_read

display "read successful"
sleep 3
;

Notes
This trigger can be used in either input 1 or input 2 to affect llh or lld respec-
tively.

Fitrix Screen Technical Reference

The Triggers 12-33

on_disk_delete
This trigger is added after a disk record has been successfully deleted. This is usu-
ally at the end of the delete function, llh_delete()/lld_delete(). Data is
deleted based on rowid.

Trigger File Placement
• input 1
• input 2

Example
on_disk_delete

display "delete successful"
sleep 3
;

Notes
This trigger can be used in either input 1 or input 2 to affect llh or lld respec-
tively.

Fitrix Screen Technical Reference

12-34 Customizing Your Base Program With Triggers

on_disk_add
In input 1, this trigger is inserted after the row is successfully added to the table.
This is placed in llh_add.

In input 2, because the insert cursor is used for speed, the on_disk_add is
executed after each row of detail is put into the cursor. The cursor does not get writ-
ten to the table until it is closed.

Trigger File Placement
• input 1
• input 2

Example
on_disk_add

display "add successful"
sleep 3
;

Notes
This trigger is used in either input 1 or input 2 to affect llh or lld respec-
tively.

Fitrix Screen Technical Reference

The Triggers 12-35

on_disk_update
This trigger is inserted after the update statement successfully occurs in
llh_update().

Trigger File Placement
• input 1 only

Example
on_disk_update

display "update successful"
sleep 3
;

Fitrix Screen Technical Reference

12-36 Customizing Your Base Program With Triggers

before_input
This trigger inserts your code directly before the input statement in
llh_input()/lld_input(). Data checks before an input can be done here.

Trigger File Placement
• input 1
• input 2

Example
before_input

display "start inputting"
sleep 3
;

Notes
This trigger can be used in either input 1 or input 2 to affect llh or lld respec-
tively.

Fitrix Screen Technical Reference

The Triggers 12-37

before_field
This trigger inserts logic that occurs just before a field is entered.

Trigger File Placement
• input 1
• input 2

Example
before_field ship_instruct

if menu_item = "add "
then

let p_orders.ship_instruct = "will call"
let nxt_fld = "ship_charge"

end if
;

Notes
This field-specific before field logic is placed in
llh_b_field()/lld_b_field() as an additional when clause of a case
statement. This case statement handles any specific before field work before
lib_before is called. Library function lib_before() handles the generic
before field logic.

Fitrix Screen Technical Reference

12-38 Customizing Your Base Program With Triggers

after_field
This trigger inserts logic that occurs just after leaving a field.

Trigger File Placement
• input 1
• input 2

Example
after_field ship_charge

if menu_item = "add "
then

let p_orders.ship_charge = "10.00"
end if
;

Notes
This field-specific after field logic is placed in
llh_a_field()/lld_a_field() as an additional when clause of a case
statement. This case statement handles any specific after field work before
lib_after() is called. The library function lib_after() handles the generic
after field logic.

Fitrix Screen Technical Reference

The Triggers 12-39

after_change_in
This trigger allows you to place logic to be executed when data changes in a partic-
ular field.

Trigger File Placement
• input 1

Example
after_change_in order_date

if p_orders.order_date < "01/01/80"
then

error "Invalid date"
let nxt_fld = "order_date"

end if
;

Notes
This trigger is an ideal place to put field-level data validation logic. Logic is put in
the if data_changed statement in llh_a_field().

If you create validation on a field that restores the original value if the data is
changed, you need to manually set the data_changed variable to false.

Here is an example: Say you have a field that the user can enter into but you don’t
want the user to be able to change the value so you use a let next_field=current field
statement and then you restore the original value.

When the user enters a field for the first time the data changed variable is set to
false. If the user changes a value, the data_changed variable is set to true,
which initiates any validation logic. This puts the user in a loop until a valid value
is specified. However, if your validation logic restores the data to its original value,
the data_changed variable is still set to true, even though the data hasn’t
changed. The user would never be able to get out of the field. The solution is to
manually set the data_changed variable to false.

Fitrix Screen Technical Reference

12-40 Customizing Your Base Program With Triggers

after_input
This trigger is placed in llh_a_input() or lld_a_input() which is called
just before the exit input statement in llh_input()/lld_input(). This
is an ideal place to put record-level data validation.

Trigger File Placement
• input 1
• input 2

Example
after_input

if p_orders.ship_charge < 5.00
then

error "ship charge too low"
let nxt_fld = "ship_charge"

end if

Notes
The nxt_fld variable can be set to re-enter the input statement.

Fitrix Screen Technical Reference

The Triggers 12-41

before_insert
The before_insert trigger places code at the bottom of the
lld_b_insert() function. This code is executed before a row is inserted.

Trigger File Placement
• input 2 only

Example
before_insert

display "done before insert"
sleep 3
;

Notes
The lld_b_insert() function is called within an input array statement.

Fitrix Screen Technical Reference

12-42 Customizing Your Base Program With Triggers

after_insert
The after_insert trigger places code at the bottom of the lld_a_insert()
function. This code is executed after a row is inserted.

Trigger File Placement
• input 2 only

Example
after_insert

display "done after insert"
sleep 3
;

Notes
The lld_a_insert() function is called within an input array statement.

Fitrix Screen Technical Reference

The Triggers 12-43

before_row
The before_row trigger places code in the lld_b_row() function. This code
is executed before a row is entered.

Trigger File Placement
• input 2 only

Example
before_row

display "done before row"
sleep 3
;

Notes
The lld_b_row() function is called within an input array statement.

Fitrix Screen Technical Reference

12-44 Customizing Your Base Program With Triggers

after_row
The after_row trigger places code in the lld_a_row() function. This code is
executed when leaving a row.

Trigger File Placement
• input 2 only

Example
after_row

display "done after row"
sleep 3
;

Notes
The lld_a_row() function is called within an input array statement.

Fitrix Screen Technical Reference

The Triggers 12-45

before_delete
The before_delete trigger places code in the lld_b_delete() function.
This code is executed before a row is deleted.

Trigger File Placement
• input 2 only

Example
before_delete

display "done before delete"
sleep 3
;

Notes
This code is performed when the user presses [F2] to delete the row and before the
actual array elements have shifted. lld_b_delete() is called within an input
array statement.

Fitrix Screen Technical Reference

12-46 Customizing Your Base Program With Triggers

after_delete
The after_delete trigger places code in the lld_a_delete() function.
This code is executed after a row is deleted.

Trigger File Placement
• input 2 only

Example
after_delete

display "done after delete"
sleep 3
;

Notes
This code is performed when the user presses [F2] to delete the row and after the
actual array elements have shifted. lld_a_delete() is called within an input
array statement.

Fitrix Screen Technical Reference

Custom .4gl/.org Files 12-47

Custom .4gl/.org Files
The custom.org file is the place where you can put any custom functions that
are called from your trigger file. This file must have a name of eight characters or
less and a .org extension. The Fitrix Screen Code Generator uses the information in
your trigger files along with information in your .per files to create the 4GL code.
Anything within a custom.org file is not touched by the Code Generator. Since
syntax checking is performed on the custom.org file, it is a good place to start
when debugging your applications.

Note

If you have any custom.org files and you are using version control, then you
need to be sure to add a start file "custom.org" line to your .ext file
in any directory that does not contain the .org file. This ensures that the Featur-
izer sees your .org file and compiles it properly in your local directory. For more
information on version control and .org files refer to "Using Non-Generated .4gl
files With Version Control (fg_funcs.4gl)" on page 16-19.

The "whenever error call error_handler" line of code should be
placed in the first function of every .4gl file. Sections of code should be wrapped
with the "whenever error continue" ... "whenever error call
error_handler" only when specific errors are expected. If this wrap is used,
then the expected errors should be tested for immediately following.

If your custom.org file grows too large, you may need to create more than one
.org file. Note that the name before the .org extension must be a maximum of 8
characters.

Fitrix Screen Technical Reference

12-48 Customizing Your Base Program With Triggers

Sample Triggers File
defaults

define
myvar1 smallint, # placed in globals
myvar2 smallint, # include comma on last variable
myvar3 smallint,
;

static_define
myvar10 smallint, # placed at top of main.4gl
myvar11 smallint, # leave comma out on last variable
myvar12 smallint
;

on_event noworry # placed in main.4gl:global_events
let scratch = "Don’t worry, be happy"
call lib_message("scr_bottom")
sleep 3
;

libraries # placed in local Makefile:LIBFILES
$(fg)/lib/mylib.a

;
do_not_generate # does not generate this function

mlh_clear
;

switchbox_items
new_zm new_zm # placed in switchbox
;

before_init # placed before main’s call to init
initialize myvar1 to null
initialize myvar2 to null
initialize myvar3 to null
;

after_init # placed after main "open form"
open window w_cust_zm at 4,5 with form "cust_zm"
attribute (white, border)
;

at_eof # placed at end of main.4gl

function please_wait()

Trap fatal errors
whenever error call error_handler
instead of this
message " Please wait..."
let’s say this
message " Have a happy day ..."

end function
please_wait()

;
input 1

define

Fitrix Screen Technical Reference

Sample Triggers File 12-49

myvar4 smallint, # placed in globals.4gl:q_ record
myvar5 smallint, # leave comma out on last variable
myvar6 smallint
;

static_define
myvar13 smallint, # placed at top of header.4gl
myvar14 smallint, # leave comma out on last variable
myvar15 smallint
;

on_event date_zm # placed in llh_input and llh_event
and infield(order_date)

if zoom("date_zm","")
then
let p_orders.order_date = scratch
let nxt_fld = "order_date"
end if
;

on_screen_record_prep # placed in llh_p_prep
display "p_prep successful"
sleep 3
;

on_disk_record_prep # placed in llh_m_prep
display "p_prep successful"
sleep 3
;

on_disk_read # placed in llh_read
display "read successful"
sleep 3
;

on_disk_delete # placed in llh_delete
display "delete successful"
sleep 3
;

on_disk_add # placed in llh_add
display "add successful"
sleep 3
;

on_disk_update # placed in llh_update
display "update successful"
sleep 3
;

before_input # placed before "input" in
display "start inputing" # llh_input
sleep 3
;

before_field ship_instruct # placed before a field
if menu_item = "add " # llh_b_field
then

let p_orders.ship_instruct = "will call "
let nxt_fld = "ship_charge"

end if
;

after_field ship_charge # placed after a field

Fitrix Screen Technical Reference

12-50 Customizing Your Base Program With Triggers

if menu_item = "add " # llh_a_field
then

let p_orders.ship_charge = "10.00"
end if
;

after_change_in order_date # placed after a field
if p_orders.order_date < "01/01/80" # llh_a_field
then

error "Invalid date"
let nxt_fld = "order_date"

end if
;

after_input # placed in llh_a_input
if p_orders.ship_charge < 5.00
then

error "ship charge too low"
let nxt_fld = "ship_charge"

end if
;

at_eof # placed at end of header.4gl
Put lots of lovely text here.

;
input 2

define
myvar7 smallint, # placed in globals.4gl:q_[] record
myvar8 smallint, # leave comma out on last variable
myvar9 smallint
;

static_define
myvar16 smallint, # placed at top of detail.4gl
myvar17 smallint, # leave comma out on last variable
myvar18 smallint
;

on_event prce_zm # placed in lld_input and lld_event
and infield(unit_price)

if zoom("prce_zm","")
then

let p_items.unit_price = scratch
let nxt_fld = "unit_price"

end if
;

on_screen_record_prep # placed in lld_p_prep
display "p_prep successful"
sleep 3
;

on_disk_record_prep # placed in lld_m_prep
display "p_prep successful"
sleep 3
;

on_disk_read # placed in lld_read
display "this row read"
sleep 3
;

Fitrix Screen Technical Reference

Sample Triggers File 12-51

on_disk_delete # placed in lld_delete
display "this row deleted"
sleep 3
;

on_disk_add # placed in lld_add
display "this row added"
sleep 3
;

on_disk_update # placed in lld_update
display "update successful"
sleep 3
;

before_input # placed before "input" in
display "start inputing" # lld_input
sleep 3
;

before_insert # placed in lld_b_insert
display "done before insert"
sleep 3
;

after_insert # placed in lld_a_insert
display "done after insert"
sleep 3
;

before_row # placed in lld_b_row
display "done before row"
sleep 3
;

after_row # placed in lld_a_row
display "done after row"
sleep 3
;

before_delete # placed in lld_b_delete
display "done before delete"
sleep 3
;

after_delete # placed in lld_a_delete
display "done after delete"
sleep 3
;

after_input # placed in lld_a_input
if p_items.unit_price < 1.00
then

error "unit price too low"
let nxt_fld = "unit price"

end if
;

at_eof # placed at end of detail.4gl
Put lots of lovely text here.

;
This triggers file cannot be more than 699 lines.

Fitrix Screen Technical Reference

12-52 Customizing Your Base Program With Triggers

13-1

13
The Featurizer and
Blocks
This section explains how to customize your applications while maintaining regen-
erability. Special files store all of your modifications in separate pieces known as
"triggers" and "blocks." How these triggers and blocks get merged into the source
code with the Featurizer is also discussed. This section covers:

n Merging custom code into generated code with the Featurizer

n Customizing generated code with block commands

n Making your programs regenerable

Fitrix Screen Technical Reference

13-2 The Featurizer and Blocks

Featurizer Overview
The Featurizer merges custom modifications into 4gl source code produced by the
Code Generator. The Featurizer "pre-processes" the source code (.4gl files created
by the Code Generator) just before it is compiled (converted into object code). The
Featurizer performs these four tasks:

1. Trigger merging

2. Block merging

3. Feature set merging

4. Version control

Before reading this section, you should familiarize yourself first with triggers. See
the previous section for information on triggers.

Note

There are some compatibility issues to be aware of between the Trigger Merge
Utility and the Featurizer. Please read "Maintaining Backwards Compatibility—
The Options Files" on page 2-19.

The following is the Tools Overview diagram modified to include the Featurizer.
New files and utilities on the diagram are explained after the diagram.

Fitrix Screen Technical Reference

Featurizer Overview 13-3

Fitrix Screen Technical Reference

13-4 The Featurizer and Blocks

.per .per.per

SCREEN CODE
GENERATOR

FORM
PAINTER

Database

Merged Source Code Specification Files

fg.form

fg.screen

.4gl.4gl .4gl

Generated Source Code

.4gl.4gl .4gl

Final Program

.trg

.ext.ext

Compiler/Linker

Trigger Files

Extension Files
FEATURIZER

.org

.org

Fitrix Screen Technical Reference

Featurizer Overview 13-5

The flow of the preceding diagram is as follows. First you create your input pro-
gram with the Form Painter. The input program is saved as a .per file. While in the
Form Painter you can also define custom modifications to your input program
through triggers. Triggers are saved in a .trg file. You can also place source code
for custom features in .ext files. .ext files contain triggers and block commands
which instruct the Featurizer where and how to modify the generated code. These
.ext files must be coded manually with your own text editor.

The next step is to generate code for your program. This is done by invoking the
Code Generator on your .per files created with the Form Painter. The Code Genera-
tor creates the basic 4GL source code to run your program. This generated code is
stored in .4gl and/or .org files. A .org file is generated if the Code Generator finds a
.org file with the same name that it is trying to generate anywhere in the directory
path.

Next, the Featurizer is run, which searches for the custom code you put into triggers
as well as custom code stored in .ext files. The Featurizer merges the code in your
.trg and .ext files and places it into the appropriate areas in the source code. This
creates merged .4gl files for all of the code needed to run your application. An .org
file is also created for each file that has triggers or blocks merged into it. These .org
files contain the original code that was generated by the Code Generator and are
used by the Featurizer during subsequent merges. Next, you link and compile the
.4gls. This creates your completed, ready-to-run program.

Featurizer Terminology
The following is an introduction to key concepts talked about in this chapter.

Regenerability
Regenerability is the ability of a code generation tool to re-create the base source
code while maintaining custom modifications. For the application to be regenera-
ble, any modifications done to the source code after initial generation must be
applied to the new source code that has been re-generated. The Featurizer gives you
true regenerability.

Fitrix Screen Technical Reference

13-6 The Featurizer and Blocks

Triggers
Triggers should be thought of as custom 4GL code that is executed from known
places in the application. Triggers are used when you want to customize the origi-
nal functionality provided by the Code Generator. Examples would be "upon disk
update" and "after a screen field has changed."

Triggers allow the generated code to be regenerable. Instead of modifying the phys-
ical source code generated by the Code Generator, certain kinds of modifications
are placed in .trg files in trigger format. These triggers are then merged into the
generated program. This allows the program to be re-generated without losing the
custom modifications.

Triggers denote logical locations in the source code.

Source Code Blocks
By following programming conventions, source code can be divided into small
chunks or "blocks." A block is the definition of specific lines within a source code
file. Blocks are denoted by block tags.

The reason for the definition of source code blocks is that there is not a trigger for
every place in the code that may need to be modified. For truly regenerable source
code, you may describe changes as alterations to known blocks of source code.

Fitrix Screen provides a set of block commands that allow the insertion of new
blocks, deletion of blocks, replacement of blocks, and alterations of lines within a
block.

Note

By convention, blocks are defined as the physical lines of code that perform a
logical function. Logical functions include initializing variables, checking vali-
dations, updating the disk, or any logical group of source code lines. Blocks
should be separated by white space (blank lines), and they should be relatively
small. The more blocks within a source code file the better.

Fitrix Screen Technical Reference

Featurizer Overview 13-7

Custom Directories (Version Control)
Base 4gl programs should be stored in separate directories with the filename exten-
sion of .4gs. In order to maintain different versions of the same application on a
system, a custom directory is created, and the differences in source code are stored
in the custom directory. A generic custom directory extension is .4gc.

You may choose any three character extension for custom directories. At runtime,
setting your $cust_key environment variable to a custom extension runs the pro-
grams stored in that directory.

At pre-processing time, a custom directory search path is specified that merges
source code and extensions from other directories. This allows you to store only the
differences in a custom directory (vs. a copy of the original). When the original is
changed, a re-compile in the custom directory brings forward changes from the
other directories in the search path. Custom directories and version control are dis-
cussed in "Version Control" on page 16-1.

Plug-in Features
Logically, features are things that can be plugged in or unplugged based on the
need for that feature. Physically, features are groups of source code "extension"
(.ext) files throughout the application.

If a feature is installed (plugged in), that source code is applied to the application. If
it is not installed (un-plugged), the source code for that feature is not merged into
the final source code.

Organizing source code into features has several advantages. It allows for plug
in/out functionality, it allows the application to have multiple versions, and it
allows for the organization of source code for a particular unit of work into one
area. This makes it very easy to identify the effect of a feature on the application.

Plug-in features can be used in different ways. In addition to the plug in/out func-
tionality, they can be used to maintain different upgrade versions of the application,
different customer requirements, product testing, etc.

Fitrix Screen Technical Reference

13-8 The Featurizer and Blocks

Feature Sets
Feature sets are simply groups of plug-in features. Since some features may be
incompatible with other features, you may wish to group features into different
"sets" that are known to work together. When compiling an application, you can
specify which feature set to apply.

Feature set files (base.set) include a list of features in the order that they are
applied to the source code.

Invoking the Featurizer
The Featurizer can be invoked four ways:

1. From fg.make.

2. During code generation.

3. From the Form Painter.

4. Directly from the command line.

Invoking From the fg.make Utility
The most common way of running the Featurizer is through the fg.make compi-
lation script. Each time you run fg.make to compile your programs, the Featur-
izer is automatically invoked and merges any necessary files into your program.
Flags are available with fg.make to control whether you want to merge or not to
merge triggers and blocks when calling fg.make. Refer to "Compiling Generated
Code" on page 14-2 for more information on fg.make.

Invoking From the Code Generator
The Code Generator automatically creates the trigger tags and block tags in the
generated code. After the code is generated, the Code Generator automatically
invokes the Featurizer, which searches for and merges .trg and .ext files into the
generated code.

Fitrix Screen Technical Reference

Invoking the Featurizer 13-9

Invoking From the Form Painter
The Compile option of the Form Painter invokes fg.make with the -mf flags. The
-mf flags are explained below. Keep in mind that this forces a merge of all related
triggers every time the Compile option is selected.

Executing the Featurizer Directly
You can also run the Featurizer directly at the UNIX command line. The following
lists the syntax for the fglpp command.

fglpp [-dbname database] [-C] [-force] [-set set] [-yes]
[-trace] [filename...]

-dbname Specify a database name to use. Overrides $DBNAME or
"standard" if $DBNAME doesn't exist.

-C Inserts comments into merged .4gl code noting origin of
triggers and/or blocks. However, comments are not placed
in Makefiles.

-force Forces merge of all triggers and blocks regardless of file
time stamps.

-set Specify the *.set file to use (to define feature set).

-yes Automatically overwrite files without write permission
set.

-trace Displays Featurizer activity.

filename The file(s) to pre-process. If omitted, a list is built of the
files that need pre-processing.

Fitrix Screen Technical Reference

13-10 The Featurizer and Blocks

The Difference Between
Triggers and Blocks
Triggers are tagged locations in the generated source code for inserting requested
modifications. Various locations have been identified in the generated code where
custom modifications are commonly made. The Code Generator inserts special tags
at these locations. The Featurizer takes your logic within a trigger and inserts it into
the code at these locations.

When using triggers, you are limited to specific locations in the source code. It is
likely that you will have a need to insert custom logic outside of these known loca-
tions.

The Code Generator places special markers throughout the generated code which
identify "blocks" of source code. Using special block commands, you can perform
custom modifications to any part of the code.

The following section explains the three ways in which you could modify a piece of
source code for which a trigger does not exist.

The example:

There might be an occasion when you must add custom logic to the llh_add
function in header.4gl.

To assign the current date to an m_record variable called "entry_date", include
one line of code just before the Informix insert command, as follows:

This simple modification assigns the current date to the m_ record variable
entry_date Before modifying this program, an entry_date column has been
added to the orders table. Right after today’s date is assigned to the

 # Set the serial field
 let m_orders.order_num = 0

 let m_orders.entry_date = today

 #_insert - Insert the data
 insert into orders values(m_orders.*)
 let new_rowid = sqlca.sqlerrd[6]

Fitrix Screen Technical Reference

The Difference Between Triggers and Blocks 13-11

m_orders.entry_date variable, the insert takes all values in the m_ record
and writes them into the orders table, including the value of the entry_date
variable.

There is no trigger that allows you to do this. There is the on_disk_add trigger
that adds code to the llh_add function, but as you can see from the
on_disk_add trigger tag above (#_on_disk_add), any on_disk_add trig-
ger logic is added after the insert command is executed. You must insert custom
code before the insert command. This location is not identified by triggers.

If no trigger location exists for your modification, you have three options, listed in
order of least desirable to most desirable:

1. You can modify the llh_add function directly. This would require that you
manually maintain this .org file whenever further modifications are placed in
code. You would have to re-insert this line of code each time the Code Genera-
tor was run. This type of modification is not regenerable.

2. You could copy the entire function into the trigger file under the at_eof
trigger and then modify it there. The at_eof trigger is for placing whatever
is under it at the bottom of a .4gl source code file. It is commonly used for plac-
ing customized functions into source code. Your trigger file would look like
this:

input 1

 at_eof

 ##
 function llh_add()
 ##
 # This function inserts data into the header table.
 #
 #_define_var - define local variables
 define
 #_local_var - local variables
 new_rowid integer # Rowid after insert

 # Set the serial field
 let m_orders.order_num = 0

 let m_orders.entry_date = today

 #_insert - Insert the data
 insert into orders values(m_orders.*)
 let new_rowid = sqlca.sqlerrd[6]

Fitrix Screen Technical Reference

13-12 The Featurizer and Blocks

 #_serial - Bring back the serial field & display it
 let m_orders.order_num = sqlca.sqlerrd[2]
 let p_orders.order_num = sqlca.sqlerrd[2]
 call llh_display()

 #_on_disk_add
 #_end

 #_rowid - Reset rowid
 let sqlca.sqlerrd[6] = new_rowid

 end function
 # llh_add()
 ;

The Featurizer would read the at_eof trigger and place the modified function
into the source code. Since you are modifying a locally created function and the
original llh_add function is still in local code, at_eof is frequently used
with the do_not_generate trigger, which removes the original llh_add
function from source code. This prevents two functions with the same name
from existing in local code. If two functions with the same name exist in local
code, then the program will not compile. Your do_not_generate trigger
would appear as follows:

 defaults

 do_not_generate
 llh_add ;

This is a viable solution, but not ideal. If you have to insert one line of code into
a very large function, you must maintain the entire function in your trigger file
just for that one line of code. For example, in llh_add above, you must main-
tain 10 lines of source code for that 1 custom line of code. Lookup functions
(llh_lookup and lld_lookup) are large, line-intensive functions and fre-
quently must be handled this way because one or two lines of code must be
added to make it function a preferred way.

3. You could use blocks. Blocks allow you to go into a function and just modify
one part of that function. Blocks are pieces of source code within a function that
perform a specific task. They could be considered "sub-functions", i.e., modu-
lar "functions" within a function.

Consider the unmodified llh_add again:

 ##
 function llh_add()
 ##

Fitrix Screen Technical Reference

The Difference Between Triggers and Blocks 13-13

 # This function inserts data into the header table.
 #
 #_define_var - define local variables
 define
 #_local_var - local variables
 new_rowid integer # Rowid after insert

 # Set the serial field
 let m_orders.order_num = 0

 #_insert - Insert the data
 insert into orders values(m_orders.*)
 let new_rowid = sqlca.sqlerrd[6]

 #_serial - Bring back the serial field & display it
 let m_orders.order_num = sqlca.sqlerrd[2]
 let p_orders.order_num = sqlca.sqlerrd[2]
 call llh_display()

 #_on_disk_add
 #_end

 #_rowid - Reset rowid
 let sqlca.sqlerrd[6] = new_rowid

 end function
 # llh_add()

There are four main tasks being performed within the llh_add function:

1. variables are defined;

2. the insert command is executed;

3. the serial number assigned to the record is displayed;

4. the rowid is re-set.

The source code that performs these tasks is grouped together in blocks. Blocks are
groupings of code within a function that perform one task. Blocks in the source
code are identified with block tags. Block tags are identified as:

#_{block_name}

The #_ identifies a block tag, much like a #_ identifies a trigger tag in source code.
The following block tag that is seen at the top of llh_add:

#_define_var

Fitrix Screen Technical Reference

13-14 The Featurizer and Blocks

identifies the group of source code that defines variables for llh_add. The Code
Generator automatically places block tags into the generated source code.

This block tag seen in llh_add:

#_insert

identifies the source code that inserts the record.

This block tag:

#_serial

identifies the group of code that displays the assigned serial number.

Finally, this block tag:

#_rowid

identifies the group of code that re-sets the rowid.

Anything after the space following the block tag is considered a comment and not
read by the Featurizer. Thus for the following block tag:

#_define_var - define local variables

the "- define local variables" is a comment and not read by the Featurizer.

The #_on_disk_add that you see in llh_add is not a block tag. It is a trigger
tag, and it is for you to insert custom INFORMIX logic via a trigger (in this case,
the on_disk_add trigger).

Observe in llh_add above the #_define_var and #_local_var block tags.
There can be blocks within blocks. Blocks are delimited by indentation. For
instance, the #_insert block ends when it encounters the next block at the same
level of indentation:

 #_insert - Insert the data
 insert into orders values(m_orders.*)
 let new_rowid = sqlca.sqlerrd[6]

 #_serial - Bring back the serial field & display it

Here, the #_insert block is terminated with the appearance of the #_serial
block.

Fitrix Screen Technical Reference

The Difference Between Triggers and Blocks 13-15

The #_define_var block ends at the #_insert block, not the
#_local_var block, because the entire #_local_var block is indented within
the #_define_var block:

 #_define_var - define local variables
 define
 #_local_var - local variables
 new_rowid integer # Rowid after insert

 # Set the serial field
 let m_orders.order_num = 0

 #_insert - Insert the data

The #_local_var block is terminated with the # Set the serial field
commented line, because # Set the serial field out-indents the
#_local_var block. The #_define_var block is terminated with the
#_insert block.

The Code Generator automatically places block tags into the source code that it
generates. All lines of source code created by the Code Generator are within blocks.
So not only do you have known locations to place logical modifications in source
code (through triggers), but you also have control over every line of source code
and can make physical modifications (through blocks) to the code.

If blocking conventions aren't followed, the entire source code file is regarded as
one block. If block conventions are followed, a source code file may be divided into
as many blocks as you desire.

When to Use Blocks
It is important that you gain an understanding of when to use triggers and when to
use blocks. This requires an understanding of the difference between "logical" areas
of code, and "physical" areas of code.

Logical areas of code can be defined as anywhere in the program that a certain
event takes place (such as leaving a field, entering a field, writing to disk, etc.).
These logical points in the code are defined as "triggers."

Physical areas of code can be defined simply as the address of certain lines of code
in the .4gl file. There is a big difference between a physical location and a logical
location. Fitrix Screen can change quite substantially and still offer the same logical
locations (disk write, after field, etc.). Not so for physical locations.

Fitrix Screen Technical Reference

13-16 The Featurizer and Blocks

If you write your modifications in triggers (as opposed to block commands), the
likelihood that your modification will work in future versions is much greater than
if you write your modifications using block commands. We will strive for 100 per-
cent forward compatibility for trigger code. Bottom line: use triggers whenever you
can. Only use block commands if there’s no trigger for what you’re doing.

Also keep in mind the physical/logical difference when defining your blocks. Try
to describe them in logical terms (what you’re doing) vs. physical terms (how
you’re doing it). Block tags are fairly reliable reference points in the generated code
and they should not change with future releases. However when you use strings in
block commands to locate and delineate blocks, you gamble that those specific
strings won’t change during future releases. Since most code is enhanced over time,
block commands utilizing strings can not be guaranteed to always be compatible
with future releases.

Note

Triggers and blocks can both be put in .ext files, while only triggers can be
placed into .trg files.

Block Commands Overview
To modify source code within a block, there are a set of block commands to indi-
cate what you wish to do to that block. Unlike, triggers, which are placed in .trg
files, block commands go into files with a .ext extension. The Featurizer reads the
block commands in the .ext file and act on the specified block in the source code.

Fitrix Screen Technical Reference

The Difference Between Triggers and Blocks 13-17

Here are some examples of simple block commands:

• before block llh_add insert

• after block llh_add serial

• replace block llh_lookup not_found

• delete block llh_lookup must_find

A block command takes two arguments:

1. The function name that contains the block.

2. The name of the block (called the "block name" or "block ID").

Using Block Commands to Manipulate
Code
The following are some block command examples to help give you an idea of what
block commands are and how they work. For more examples refer to "Block
Manipulation Examples" on page 13-48. Using the llh_add example from the
previous section, say you want to place one extra line before the "insert" command:

let m_orders.entry_date = today

Again, here is the unmodified llh_add function:

 ##
 function llh_add()
 ##
 # This function inserts data into the header table.
 #
 #_define_var - define local variables
 define
 #_local_var - local variables
 new_rowid integer # Rowid after insert

 # Set the serial field
 let m_orders.order_num = 0

 #_insert - Insert the data
 insert into orders values(m_orders.*)
 let new_rowid = sqlca.sqlerrd[6]

 #_serial - Bring back the serial field & display it

Fitrix Screen Technical Reference

13-18 The Featurizer and Blocks

 let m_orders.order_num = sqlca.sqlerrd[2]
 let p_orders.order_num = sqlca.sqlerrd[2]
 call llh_display()

 #_on_disk_add
 #_end

 #_rowid - Reset rowid
 let sqlca.sqlerrd[6] = new_rowid

 end function
 # llh_add()

You would use the before block command to add this one extra line before the
"insert" block. Thus in the .ext file, you would place the following block command
and source code:

 start file "header.4gl"

 before block llh_add insert
 let m_orders.entry_date = today ;

This block command would go into the .ext file under the line start file
header.4gl because you are modifying the source code in header.4gl.

The .ext file is read by the Featurizer, and the Featurizer pre-processes the appropri-
ate .4gl file to include the extra line of code. After pre-processing, this is the result
in the llh_add function (in header.4gl):

If you wanted to insert the custom logic after the "insert" block, then you would use
the after block block command in the .ext file as follows:

after block llh_add insert
 let m_orders.entry_date = today ;

 # Set the serial field
 let m_orders.order_num = 0

 let m_orders.entry_date = today

 #_insert - Insert the data
 insert into orders values(m_orders.*)
 let new_rowid = sqlca.sqlerrd[6]

Fitrix Screen Technical Reference

The Difference Between Triggers and Blocks 13-19

The result in the function llh_add would be:

Note that all block commands in .ext files are delimited by semicolons, just like
triggers are delimited by semicolons.

You can even replace blocks. Let’s say you wanted to add your custom logic
between the "insert into" and the "let new_rowid" lines of code. You
could replace the entire block with the replace block command:

 replace block llh_add insert
 insert into orders values(m_orders.*)
 let m_orders.entry_date = today
 let new_rowid = sqlca.sqlerrd[6] ;

This would result as follows in llh_add:

You can even search for strings in blocks and place code before or after a string of
code within a block.

You can delete blocks with the following command:

 delete block llh_add insert ;

 #_insert - Insert the data
 insert into orders values(m_orders.*)
 let new_rowid = sqlca.sqlerrd[6]

 let m_orders.entry_date = today

 #_serial - Bring back the serial field & display it
 let m_orders.order_num = sqlca.sqlerrd[2]
 let p_orders.order_num = sqlca.sqlerrd[2]
 call llh_display()

 # Set the serial field
 let m_orders.order_num = 0

 #_insert - Insert the data
 insert into orders values(m_orders.*)
 let m_orders.entry_date = today
 let new_rowid = sqlca.sqlerrd[6]

 #_serial - Bring back the serial field & display it
 let m_orders.order_num = sqlca.sqlerrd[2]
 let p_orders.order_num = sqlca.sqlerrd[2]
 call llh_display()

Fitrix Screen Technical Reference

13-20 The Featurizer and Blocks

The effect on llh_add is:

In addition to manipulating code within blocks, you can add code to the top or bot-
tom of a .4gl file. You use block commands with various reserved words as argu-
ments to the commands. In lieu of the function name argument in a block
command, you could specify TOF for Top Of File or EOF for End of File. If you
used these reserved words as the function name argument to the block command,
the block name argument would be NUL/NULL for null, since there is no block at
the top or bottom of a .4gl file.

Here is a block command that places extra code at the bottom of a header.4gl
file:

 start file "header.4gl"

 after block EOF NUL
 display "this code is at the end of header.4gl"
 sleep 3 ;

Notice how "after block EOF NUL" acts exactly as the at_eof trigger acts—it
puts text at the end of files. "TOF", "EOF", and "NUL" must all be uppercase.

See "Block Command Statements" on page 13-23 for a full list of all block com-
mands, their syntax, and examples.

Block Command Files (.ext files)
As mentioned earlier, block commands are placed in .ext files much like triggers
are placed into a .trg file. There is some philosophy behind .ext files that makes
them a little bit more complicated than .trg files. Basically .ext files serve two pur-
poses: the first is to provide a means of plugging and unplugging features; while the
second is to simply hold block commands which always need to be merged into the
basic program.

Also, .ext files can contain triggers. This allows you to create independent features.

 # Set the serial field
 let m_orders.order_num = 0

 #_serial - Bring back the serial field & display it
 let m_orders.order_num = sqlca.sqlerrd[2]
 let p_orders.order_num = sqlca.sqlerrd[2]
 call llh_display()

Fitrix Screen Technical Reference

The Difference Between Triggers and Blocks 13-21

Note

An .ext file can be named with any combination of letters, numbers and under-
scores. You cannot use hyphens or any other symbol in an .ext’s name.

For more information on the concept of pluggable features, refer to the separate
section "Pluggable Features and Feature Sets" on page 13-32.

Specifying Which .ext Files to Merge
(base.set files)
Unlike .trg files which get merged automatically, you must specify all .ext files you
want to be merged by listing them in a file named base.set.

A more detailed description of base.set files is available in"Pluggable Features
and Feature Sets" on page 13-32.

Specifying Files for Blocks to Work
(start file)
The start file command allows you to specify which .4gl files you want your
block commands to work on. The start file command, along with the blocks that
correspond to it, are placed in .ext files. The syntax of the start file command
is:

start file "filename"

Example:

 start file "midlevel.4gl"

 after block mlh_clear init
 initialize my_record.* to null ;

The following is an example of how you can use an .ext file, a start file com-
mand, and a block command to make a customization to a section of .4gl code.

Fitrix Screen Technical Reference

13-22 The Featurizer and Blocks

Suppose that you wish to modify the function mlh_clear in midlevel.4gl.
There are no triggers that allow you to add custom logic to functions classified as
midlevel, but you can do it with blocks. Here is an example of mlh_clear in
midlevel.4gl:

 ##
 function mlh_clear()
 ##
 #
 #_define_var - define local variables

 #_init - Initialize
 initialize p_orders.* to null
 initialize q_orders.* to null
 initialize m_orders.* to null

 end function
 # mlh_clear

You see the define_var and init blocks in mlh_clear. You wish to apply
the following block command and code to the init block:

 after block mlh_clear init
 initialize my_record.* to null ;

First you need to create a .ext file to put your block command in. Since this modifi-
cation does not relate to a specific "pluggable feature," you would create a
base.ext file to put it in.

Next, you would add the start file line to specify which file you want to
apply the block to.

Here is how you would apply the above "after block" block command to
midlevel.4gl:

 start file "midlevel.4gl"

 after block mlh_clear init
 initialize my_record.* to null ;

The result of the above block command would be in midlevel.4gl as follows:

 ##
 function mlh_clear()
 ##
 #
 #_define_var - define local variables

 #_init - Initialize

Fitrix Screen Technical Reference

The Difference Between Triggers and Blocks 13-23

 initialize p_orders.* to null
 initialize q_orders.* to null
 initialize m_orders.* to null
 initialize my_record.* to null

 end function
 # mlh_clear

Block Command Logic
The function name and block ID can also be viewed as "scopes", or "starting
points." The Featurizer first searches for the function name. Once it locates the
function name it searches for the block ID within that function name. Once this is
found, code manipulation takes place. Function name and block ID really stand for
"major known section of the file" and "minor known section of the file," respec-
tively. The block ID is the block tag without the #_.

The use of "from", "after", "to", "thru", or "through" can further define the block ID
starting location. The keywords "thru" and "through" are synonymous.

The following function names and block IDs have special meaning when used in
Block Command Statements:

• The TOF function name specifies the top of the file.

• The EOF function name specifies the end of the file.

• The NUL (or NULL) block ID means that there is no associated block tag for
this command.

• a_<field_name> can be used to target "#_after_field <field>."

• b_<field_name> can be used to target "#_before_field <field>."

• c_<field_name> can be used to target "#_after_change_in <field>."

• e_<event_name> can be used to target "#_on_event <event>."

Block Command Statements
This section lists the syntax of each Block Command Statement and it’s definition.

start file "filename"

Fitrix Screen Technical Reference

13-24 The Featurizer and Blocks

This command specifies that the commands below this line are working on the
specified filename. The filename must be in quotes. It is required as the first
block command in the .ext file, and may appear throughout the file to change
the file associated with the block commands that follow this. An example of
filename could be fg_funcs.4gl. For more information refer to "Specifying
Files for Blocks to Work (start file)" on page 13-21.

before block <function name> <block ID>

This inserts the text directly above the first line of the block. The special func-
tion name of TOF inserts the text at the top of the file.

in block <function name> <block ID> {before | after}
"string"

This inserts the text either before or after the line that begins with the specified
string. "before" or "after" is required. The line identification string can be 50
characters max. The special function name of EOF is not allowed in this com-
mand.

after block <function name> <block ID>

This inserts the text after the last line of the block. The special function name of
EOF inserts the text at the end of the file.

replace block <function name> <block ID> [{from | after}
"string"] [{to | thru} "string"]

This replaces the specified block (or portion of a block) with the given text.
You may specify "through" instead of "thru." The line identification strings can
be 50 characters max. If the entire block is specified (with no from/after or
to/thru strings) only the text portion of the block is replaced. The #_ block tag
line and the #_end line (if present) are preserved. The special function name
of EOF is not allowed in this command.

delete block <function name> <block ID> [{from | after}
"string"] [{to | thru} "string"]

This deletes the specified block (or portion of a block). The line identification
strings can be 50 characters max. The special function name of EOF is not
allowed in this command.

Fitrix Screen Technical Reference

The Difference Between Triggers and Blocks 13-25

One special delete block command can be used to delete the entire contents of a
file. It is delete block TOF NUL thru "string", where "string" is
the last line in the file.

Note

Caution should be exercised when using the delete block command since it
deletes all existing block tags within the specified block, thus making it difficult
to maintain regenerability.

function define <function name>

Like the define trigger, this command only allows you to define new or addi-
tional local variables used in a specific function. If you need to add some local
variables to a specific function, use this command. If the function specified by
function name does not have the "define" keyword in it (there are no local vari-
ables previously defined in this function), the Featurizer puts the "define" key-
word in, before adding the trigger variables.

Note

Semicolons: All block commands except "delete block" require additional text
(trigger code) following the command. This additional text must be terminated
with a semicolon. In the case of the "delete block" command, you do not need a
semicolon, because there is no trigger code associated with the block command.

Using Strings in Block Commands
Using strings in block commands should be avoided if possible. The reason being
the generated code may change in future releases causing the Featurizer to be
unable to locate your strings.

Since triggers and block tags will not change in future releases you can be sure your
code will remain compatible if you rely on these points in the code. However, if
you use a string to locate a block, the generated code may change over time with
enhancements which may break your string searches.

A string can consist of up to 50 characters.

Fitrix Screen Technical Reference

13-26 The Featurizer and Blocks

Note

Very important: When using "string", you must include the text from the begin-
ning of the line through the "string" that you are trying to target. In other words,
you cannot specify a "string" that begins in the middle of a line of text. If you try
this, it results in a Featurizer error. See the following example.

Example:

 let abc = xyz.

If you use "string" equal to "abc", the Featurizer errors out. If you use "string" equal
to "let abc" (again, including text up to the beginning of the 4GL line you are trying
to target), the Featurizer finds the line.

Illustrated above in the "replace" and "delete" block commands, is the use of strings
such as "after", "from", "to", and "thru/through." When deciding which one to use
you must decide whether or not you want to include the line of code that matches
the "string" pattern in the effect of the change. In other words, using "from "abc""
in a delete block causes the line of code containing the string "abc" to be deleted as
well. Consider the following to help your decision:

• after "string" - line matching "string" is un-affected
• from "string" - line matching "string" is affected
• to "string" - line matching "string" is un-affected
• thru "string" - line matching "string" is affected
• through "string" - line matching "string" is affected

Note

You may use double quotes in a string block command as long as you backslash
it.

The following example DOES NOT work:

"when scr_fld = "stock_num""

Backslashing the double quotes works.

"when scr_fld = \"stock_num\""

Fitrix Screen Technical Reference

The Difference Between Triggers and Blocks 13-27

Block Identification & Grouping
The start of a block is always a line that begins with a #_ as the first non-blank
character of the line.

The end of a block is determined by the following rules:

A - The next block at the same indentation level, or

B - Any text to the left of the block identification line, or

C - An "end function" statement as the first words of the line, or

D - An explicit #_end block marker

Given these rules for ending blocks, any block indented to the right of another
block is considered contained in the first block.

This works well for programming constructs that have control processing (like
if/end if, case/end case, foreach/end foreach, etc.)

Fitrix Screen Technical Reference

13-28 The Featurizer and Blocks

Consider the following program segment:

If you wish to group a number of blocks that have no control loop structure, you
may indent the blocks within the group.

If a block is indented due to logical grouping, by convention there should be an
#_end block blockname marker. This is not required by the Featurizer, but it
is a convention that should be practiced.

Block Start line End Line Rule

prc_rows 1 21 A

sleep 4 9 A

col_level 11 19 B

1 #_prc_rows - Process the rows in the cursor
2 foreach abc_cursor into my_rec.*
3
4 #_sleep - Had much sleep lately?
5 if my_rec.recent_sleep = "Y"
6 then
7 display "Need more sleep..."
8 let my_rec.need_sleep = "Y"
9 end if
10
11 #_col_level - Need a cholesterol level checkup?
12 if my_rec.eats_fats = "Y"
13 then
14 if my_rec.num_hamburgers > 20
15 then
16 display "Checkup is due..."
17 let my_rec.need_checkup = "Y"
18 end if
19 end if
20
21 end foreach
22
23 #_nxt_blk - Next block..

prc_rows

sleep

col_level

Fitrix Screen Technical Reference

The Difference Between Triggers and Blocks 13-29

Example: (notice line #19)

 1 #_bldcmd - Build the shell command to run that gets a list of
 2 # all .trg and .ext files in the current directory and in the
 3 # custom directory paths.
 4
 5 #_stfind - Start the find command & add current directory
 6 let scratch = "cd ..; find ",
 7 dir_name clipped, ".", dir_ext clipped
 8
 9 #_addcus - Add custom directories
 10 for cur_path = 1 to num_paths
 11 let scratch = scratch clipped, " ", dir_name clipped,
 12 ".", cust_path[cur_path]
 13 end for
 14
 15 #_finfind - Complete the find command
 16 let scratch = scratch clipped, "’(’ -name ’?*.trg’ -o ",
 17 "-name ’?*.ext’ ’)’ -print 2>/dev/null"
 18
 19 #_end block bldcmd
 20
 21 #_prcfiles - Process
 22 while true
 23 call c_command(scratch)
 24 returning stat_flag, stat_exit, sql_filter
 25
 26 #_noelem - No more elements to read
 27 if stat_flag < 1 then exit while end if
 28
 29 end while

Note that the "prcfiles" block would have ended the bldcmd and finfind blocks
implicitly, but the explicit #_end block line should be used.

Note on Block Replace and Block Delete
If a replace or delete block command is passed a string that causes the deletion to
span a block start or end line, the block ID for the spanned block is deleted (for
example, it cannot be used in a later block ID).

Example: If the following command is specified:

delete block TOF stfind from "dir_name" thru "for cur_path"

on the following file:

Fitrix Screen Technical Reference

13-30 The Featurizer and Blocks

Given the file above, lines 7 through 10 would be deleted. Since the command
spanned over the top of the addcus block, the addcus block ID cannot be used
any longer. The deletion also spanned past the end of the stfind block, and the
stfind block ID cannot be used any longer. The larger bldcmd block ID is left
intact because the deletion was completely within it.

Spanning blocks for deletion is not suggested because it disturbs the logical group-
ing of blocks. In the above example, it would have been better to delete both the
stfind and addcus blocks, then insert any new logic above the finfind
block.

Note

If the text of a command inserts or replaces block labels, the text of the insertion
is scanned for any new block IDs. The block scan is limited to the end of the
insertion.

 1 #_bldcmd - Build the shell command to run that gets a list of
 2 # all .trg and .ext files in the current directory and in the
 3 # custom directory paths.
 4
 5 #_stfind - Start the find command & add current directory
 6 let scratch = "cd ..; find ",
 7 dir_name clipped, ".", dir_ext clipped
 8
 9 #_addcus - Add custom directories
 10 for cur_path = 1 to num_paths
 11 let scratch = scratch clipped, " ", dir_name clipped,
 12 ".", cust_path[cur_path]
 13 end for
 14
 15 #_finfind - Complete the find command
 16 let scratch = scratch clipped, "’(’ -name ’?*.trg’ -o ",
 17 "-name ’?*.ext’ ’)’ -print 2>/dev/null"
 18
 19 #_end block bldcmd
 20
 21 #_prcfiles - Process
 22 while true
 23 call c_command(scratch)
 24 returning stat_flag, stat_exit, sql_filter
 25
 26 #_noelem - No more elements to read
 27 if stat_flag < 1 then exit while end if
 28
 29 end while

deleted

unusable
blocks

Fitrix Screen Technical Reference

The Difference Between Triggers and Blocks 13-31

When inserting blocks, there is no way to have any new block label span past the
end of the insertion.

Custom Block Id (Tags) Conventions
• Block markers contain no white space.

• Block markers must be unique to 20 characters.

• Block markers should be long enough to uniquely identify the block within the
function and still be somewhat readable (i.e., no #_zz and no
#_real_wordy_block_identifiers, even if they are unique to 20 chars).

• Block markers must consist of only the following characters: [0-9], [a-z], [A-
Z], or _(underscore).

• By convention, block markers are lowercase letters followed by a space-dash-
space, followed by a verbal block description starting in an uppercase letter.

Examples:

#_init - Initialize
#_verify_credit - Verify the credit limit
#_ln_calc - Calculate the order line amount

The block identifier for a block should never change. The description can change,
the code in the block can change, but not the identifier. Others may key off this
identifier.

Fitrix Screen Technical Reference

13-32 The Featurizer and Blocks

Pluggable Features and
Feature Sets
Pluggable Features: are individual features that are stored in source code exten-
sion (.ext) files. The filename specifies the feature that it contains. For example, a
file containing source code for the "balance forward" feature might be called
balfwd.ext.

Feature Sets: contain a list of features to apply to the application. Feature set
files are named base.set. Each feature contained in a base.set file is stored
in an .ext file. .ext files are specified one to a line, and are listed in their order of
merging.

Once you have a feature self-contained in a .ext file, you have the ability to "plug"
the feature into the program. To "plug in" a feature means that you instruct the Fea-
turizer to merge the code just for that feature into the .4gl source code files. The
Featurizer takes the feature-driving code from the .ext file and merge it into the rest
of the source code.

Pluggable Features (.ext Files)
An .ext file contains all of the source code necessary to drive one feature. Source
code is either in the form of blocks or triggers. See the previous section for a dis-
cussion of block commands. You determine which .4gl file to perform work on by
using the start file block command. A start file command must precede any block
commands or triggers. You can specify multiple start file commands in an .ext file
to perform modifications to multiple files.

Note

In order for the source code in your .ext files to be merged, you must list the
name of each .ext file in a feature set (base.set) file.

Extension (.ext) files are very similar to .trg files, except they contain code that
drives one specific feature. Trigger files mainly contain modifications made to a
specific screen, while .ext files contain code that may effect many screens.

Fitrix Screen Technical Reference

Pluggable Features and Feature Sets 13-33

Extension files are not tied to screens like .trg files. The trigger concept requires
that .trg files correspond with the .per files they work on. Thus .trg files have the
same prefix as .per files.

The prefix of an .ext file describes the feature for which it contains code. For exam-
ple, in "approval.ext", you might find code within triggers and block commands
that drives an "approval entry" feature. For "secur.ext", you could find code in trig-
gers and block commands that institutes security on a program.

Note

Extension file names must consist of only the following characters: [0-9], [a-z],
[A-Z], and _(underscore).

As an example, we use the order.trg file from the $fg/code-
gen/demo.4gm/screen5.4gs program directory. This program contains the
order form program, which enters data into the stores database. The following is
added trigger logic that drives an "approval" feature that requires entry of an
approval code on all orders over $500.00. Here is the conventional way the feature
is coded into a .trg file (see the after_input and at_eof trigger):

defaults
 switchbox_items
 cust S_cust;

 input 1
 static_define
 upd_cust_filter char(40);

 on_event add_cust
 call add_on("cust", "A", "", "");

 on_event update_cust
 if menu_item = "update"
 then
 let upd_cust_filter = "customer.customer_num = ",
 p_orders.customer_num clipped
 call add_on("cust", "U", upd_cust_filter, "")
 let p_orders.customer_num = get_vararg()
 if llh_lookup("customer",false) then end if
 call llh_display()

 after_input
 if p_orders.t_price >= 500.00
 then
 call need_approval()
 end if ;

Fitrix Screen Technical Reference

13-34 The Featurizer and Blocks

 end if;

 after_field customer_num
 if p_orders.customer_num = 0
 then
 call add_on("cust", "A", "", "")
 let p_orders.customer_num = get_vararg()
 end if;

 at_eof

Notice how the "approval" feature is interspersed with the other features and
embellishments that you see in the trigger file: invoking the add-on screen to add a
customer, invoking the add-on screen to update a customer, etc.

Now, with .ext files, the specific logic that drives the "approval" feature can be
taken out of the trigger file and placed into an .ext file. This way you can easily
"plug in" or "unplug" this feature from your different applications. Here is the
"approval" feature coded entirely in the "approval.ext" file:

start file "header.4gl"

 after_input
 if p_orders.t_price >= 500.00

 ###
 function need_approval()
 ###
 #
 # this function prompts the user for an approval code. the user
 # is kept within the input command until the proper approval code
 # is entered.
 #

 define
 code_entered char(6)

 prompt "Order is over $500. Enter the approval code: " for code_entered

 if code_entered != "denver"
 then

error "You entered the wrong approval code. Press [ESC] to try again."
 let nxt_fld = "customer_num"

 end if

 end function
 # need_approval()
 ;

Fitrix Screen Technical Reference

Pluggable Features and Feature Sets 13-35

 then
 call need_approval()
 end if ;

 at_eof

 ###
 function need_approval()
 ###
 #
 # this function prompts the user for an approval code. the user
 # is kept within the input command until the proper approval code
 # is entered.
 #

 define
 code_entered char(6)

prompt "Order is over $500. Enter the approval code: " for code_entered

 if code_entered != "denver"
 then
 error "You entered the wrong approval code. Press [ESC] to try
again."
 let nxt_fld = "customer_num"

 end if

 end function
 # need_approval()
 ;

Unlike a .trg file, an .ext file has no sections (defaults, input 1, or input 2). There-
fore, a "start file" command is always issued in an .ext file to indicate which file to
insert the code.

Note

When merging code, the Featurizer always merges the .trg files first, and then
the .ext files. This is important because you may have code in your .trg file that
conflicts with your .ext file code.

Fitrix Screen Technical Reference

13-36 The Featurizer and Blocks

Feature Set (base.set) Files
You instruct the Featurizer which features to plug in through a base.set file. A
base.set file holds the user-specified "settings" for that program. The
base.set file is the user’s feature list.

You specify features in the base.set file as the names of the .ext files without
the .ext extensions. In a base.set file, anything placed one space after the fea-
ture is not read by the Featurizer. You can use the rest of the line for comments. The
following example of base.set merges the code for the "approval" and
"instvals" features into the .4gl files:

approval - prompts for approval for orders of $500
instvals - pulls up list of valid values for shipping instructions

When you invoke the Featurizer, the features in the base.set it are merged in the
order listed. Each feature listed in the base.set file must have an associated .ext
file of the same name.

Note

Since the Featurizer looks for only one base.set file, you must be sure that
the base.set file in your current directory contains all of the features you
want to incorporate into your program. In other words, if you have a common
function specified in the base.set directory at your application level and you
want to include those functions in a specific program, you must either specify
that application level base.set file, or specify each individual .ext file listed
in that application base.set in a new base.set file located in the program
directory. If you want to add new features to your program with .ext files, you
must be sure to add those features to the base.set file.

Fitrix Screen Technical Reference

Pre-merged Generated Files (.org Files) 13-37

Pre-merged Generated Files
(.org Files)
The Code Generator and the Featurizer both create .org files. Whenever a trigger or
block is merged into a 4gl file, a .org file is created which is a copy of the .4gl file
before anything gets merged into it. The .org file contains source code in its gener-
ated but pre-merged form.

The Code Generator and .org Files
When the Code Generator is run, it searches to see if any .org files are present in the
current directory, or in the custom directory path. If it does find a .org file, the Code
Generator creates a new .org file with the same filename prefix. If a .org file is not
found, a .4gl file is created instead.

The Featurizer and .org Files
Whenever the Featurizer merges a block or a trigger into a .4gl file that does not
have an associated .org file, a .org file is created by copying the .4gl to a .org. If a
.org file does not exist for a specific .4gl, such as header.4gl, the Featurizer
assumes that this particular .4gl does not have any triggers or blocks in it. The Fea-
turizer then copies that header.4gl file to a header.org file. Once a .org file
exists, the Featurizer loads the .org, merges the triggers and blocks into it, then cre-
ates a new .4gl file that contains the merged code. Every time a merge takes place,
the merge is performed on the .org file to create a new .4gl.

The Featurizer creates an .org file in the current directory for every file specified
with a start file command.

Removing Triggers and Blocks from Existing .4gl
Files
The following logic only applies to the situation where you used to have triggers or
blocks merged into a file and decide that you no longer want anything merged into
that file.

Fitrix Screen Technical Reference

13-38 The Featurizer and Blocks

Say you once had a screen.trg file with an after_field trigger that has
already been merged into header.4gl and you decide you no longer want it. All
you have to do is remove that trigger file and then run the Featurizer.

Special logic has been added to the Featurizer to automatically handle this situa-
tion. The Featurizer copies the header.org, which must exist if the
header.4gl has been merged before, over to header.4gl, thus restoring
header.4gl to it’s original generated state. The Featurizer does the same if you
once had a block or trigger specified in a .ext file, and then decided to remove it.

General Flow of the
Featurizer
The following describes the operational flow of the Featurizer.

1. Load triggers and feature sets into the database.

All .trg and .ext files for the specified feature set are located in the current
directory and the custom directory search path. If any of these files have been
modified since the last compile, they are marked as modified, and loaded into
the database.

2. Build a list of files to process.

This step is either very simple or fairly complex. If a file or list of files is passed
onto the command line, the Featurizer merges only those files. The -force
option is assumed if files are specified on the command line.

If no files are specified on the command line, the Featurizer must build the list.
It does this in two phases.

First, it builds the initial list as all files that have been referenced in all .trg and
.ext files in the current directory and the custom directory search path.

If the -force option is specified on the command line, this initial list is used,
and step #2 is complete.

Fitrix Screen Technical Reference

General Flow of the Featurizer 13-39

Second, the Featurizer checks each .trg and .ext file in the list to see if they have
been modified since the last merge. If a file has not been modified (the modifi-
cation date of the file is the same as the .4gl file), the file is ignored. If the file
has been modified since the last merge, then the Featurizer re-merges that file.

3. From the list of files to process, each file is Pre-processed as follows:

A. Determine the original (.org) source file to work from, and load it into
memory.

The .org file is usually in the current directory, but if it doesn't exist here,
the custom directory search path is searched to find the .org file to work
from.

The name of the .org file is built by appending ".org" to the destination file-
name, or by replacing any 3 character file extension with "org." It then
loads this .org file into memory for processing.

If no .org file is found (meeting this naming criteria) in the search, a UNIX
cp command is run on the .4gl file to create a .org in the current directory.
The name of this .org file is the same as the destination filename with any 3
character extension replaced by ".org." If the destination filename does not
have a 3 character extension, then .org is appended to the filename to deter-
mine the .org filename (up to 14 characters).

B. Build a list of commands (CMDs) to apply to this file.

Commands (CMDs) are triggers and block commands stored in the .trg and
.ext files for this feature set.

The sequence that CMDs are merged into the code is significant. The order
is determined by the file they are located in, and their relative position
within that file. The ordering rules follow:

• CMDs stored in lower level directory search paths are applied before
CMDs in the current directory. The default order is .4gs, then .4gc, then the
current directory. This order may be overridden with the CUSTPATH set-
ting. For more information on the order CMDs get merged refer to "Version
Control" on page 16-1.

• All CMDs in one directory are processed before any CMDs in another
directory in the search path.

Fitrix Screen Technical Reference

13-40 The Featurizer and Blocks

• Within any directory, CMDs located in .trg files are merged before CMDs
located in .ext files. In other words, triggers are merged before blocks.

• The order of .ext files is determined by the order that the features are speci-
fied in the base.set file for this feature set.

• CMDs are then merged in their order within the .trg and .ext files.

Note

Triggers are physically implemented as "replace block" commands. Any trigger
that was inserted in a prior CMD is replaced if that same trigger is defined in a
later CMD.

C. Execute that list of commands in their proper sequence.

After the list of CMDs has been built, each CMD is individually processed.
If the block within the .org file isn't found, an error is displayed unless the
CMD originated from a higher directory in the search path.

D. Create .tmp files and/or .4gl files.

The Featurizer outputs to a .tmp file. It then compares the .tmp file with the
existing .4gl file, if there is one. If there is no difference, the original .4gl
file is untouched, thus preserving the time stamp of that .4gl file. If no
.4gl’s are present, the Featurizer copies the .tmp files into .4gl files.

Do not use .tmp extensions for your own files. If you do, your files will be
removed.

Fitrix Screen Technical Reference

Filename Extensions 13-41

Filename Extensions
Extension File Explanation

.4gm Application module directory (A/R).

.4gs 4GL source code directory.

.4gc General custom 4GL source code directory.

.abc Example used for specific (non .4gc) custom source code directo-
ries.

.4gl 4GL source code file.

.4go RDS compiled 4GL object code file.

.o C Compiled 4GL object code file.

.4ge Executable program (run directly from the O/S).

.4gi Executable program (run from the fglgo or fgldb runners).

.per Source code for a data entry screen.

.frm Compiled representation of the .per file.

.trg Trigger file associated with a screen.

.ext Source code extension file associated with a plug in feature.

.set File that contains the list of features in a feature set.

.opt File that defines the functionality of certain triggers.

.tmp Reserved for use by the Featurizer and Code Generator.

.org File that contains the original generated code before the Featur-
izer merge.

Fitrix Screen Technical Reference

13-42 The Featurizer and Blocks

Note

Do not use .tmp extensions for your files. The .tmp extension is used by the Fea-
turizer as well as the Code Generator. If you use a .tmp extension the file will be
removed.

Featurizer Environment
Variables
$fg: Path to the Fitrix Screen install directory (used to find executables so you do
not have to be within $fg while running the Featurizer).

$cust_path: If this variable is set before code generation and no CUSTPATH
variable exists in an existing Makefile, then the value of $cust_path is written
into the new Makefile. If CUSTPATH is already set in a Makefile, the
$cust_path variable is ignored. This variable provides a path that the Featurizer
searches for .trg and .ext files to merge. For more information refer to "Version
Control and the Code Generator" on page 16-8.

$feature_set: This optional variable contains the name of a *.set file to use.

$force_merge: If set to Y, fglpp re-merges all triggers and blocks regardless
of time stamps.

$FGLPPDIR: Directory containing the fglpp executable program.

$FGLPPOPTIONS: Directory containing global options file (fglpp.org and
fglpp.opt) with default variable settings. This is used to set arguments such as -
C for running fglpp from fg.make.

$fglppflags: Contains extra flags to pass to the fglpp program (whether
called with fglpp, fg.make, etc.) such as -C.

The following backwards compatibility flags are discussed in detail in "Maintain-
ing Backwards Compatibility—The Options Files" on page 2-19.

$define_trig: If set to "replace," define and static_define triggers
are replaced by subsequent triggers in the $cust_path.

Fitrix Screen Technical Reference

Featurizer Environment Variables 13-43

$at_eof_trig: If set to "replace," at_eof triggers are replaced by subsequent
triggers in the $cust_path.

$swbox_trig: If set to "replace," swbox_trig triggers are replaced by subse-
quent triggers in the $cust_path.

$fglpp_fatal_warn: If set to Y, fglpp gives a fatal error if a missing block
is found.

Fitrix Screen Technical Reference

13-44 The Featurizer and Blocks

Featurizer Limitations
Limitations Number Notes

files it can pre-process in one directory 50 A

custom directories to search in CUSTPATH 10 A

features in a feature set 100 A

characters in custom directory extensions 3 B

#_ block definitions in one file 1000 A

lines in the (.org + .trg + all .ext’s) 7500 A,C

triggers and block CMD’s for an .org file unlimited D

characters in one line unlimited E

block nesting levels 10 A

Fitrix Screen Technical Reference

Featurizer Limitations 13-45

A This number represents an internal program array limit. It can be expanded in
future versions if the number is found inadequate.

B By convention

C This limit represents the total number of lines (excluding blank lines) in the
.org file plus the number of lines of code from all .trg .ext files that reference
this .org.

D Any number of triggers and block commands may be applied to an .org file—
as long as the total number of lines doesn’t exceed the limit specified in (C)
above.

This represents the number of characters to the right of the indentation level. If
this number exceed 70 characters, the lines are (internally) split into as many
70 character lines as necessary. The only effect is that each split internally con-
sumes a new line (of which there are a limited number—see (C) above). By
convention, we try to keep our right margin at 70 characters or below for aes-
thetic purposes. We use the row of 70 pound signs (#) surrounding function
declarations as a margin guide.

Fitrix Screen Technical Reference

13-46 The Featurizer and Blocks

Featurizer Troubleshooting
Tips
Question: Where is the Featurizer located?

Answer: The utility, fglpp.4ge, is located in the $fg/code-
gen/screen.4gm/fglpp.4gs directory.

Question: The Featurizer keeps displaying a message stating that my 4GL source
is newer than my trigger file and skipping my trigger. Why is this happening and
what should I do?

Answer: The Featurizer is designed to behave in a similar fashion to the make
and fg.make utilities. It knows if a trigger file has changed since the associated
source was last changed and will not merge a trigger that is older than its associated
source code. This was done to prevent slowdowns during compilation and linking
due to merging of triggers.

If fg.make is run with the -mf it causes the trigger and 4gl time stamping logic to
be bypassed.

If the utility is run directly, it can be invoked with the -force option. This causes
a forced merge to occur.

Specific triggers can be forced to merge by either writing them in vi or using the
touch utility. Use of the touch utility on a file which does not exist creates a zero
length trigger file. This causes the utility to remove triggers from your 4GL source.

When the Featurizer is invoked from the Code Generator, a forced merge is used
because the newer 4GL code is triggerless and needs to be merged to be brought up
to date. The time stamps on the files immediately following code generation do not
reflect the current stamp of the 4GL source files relative to the trigger files.

Fitrix Screen Technical Reference

Featurizer Troubleshooting Tips 13-47

Question: What changes to my program require regeneration of my program vs.
simply merging my files with fg.make?

Answer:

1. Addition of new fields to a screen.

2. Deletion of fields from a screen.

3. Addition or deletion of lookups and zooms.

4. Addition of a global event.

5. Addition of a local event.

6. Changes to your table schemas.

Question: Are comments acceptable in my triggers files?

Answer: Comments are acceptable in most cases.

Question: How do I cause the Featurizer to never be run from fg.make, the
painter or the generator until I decide I want to turn it back on?

Answer: Set the environmental variable no_merge=Y and export it to your envi-
ronment.

Example:

no_merge=Y; export no_merge

Question: How do I force a merge of my trigger files if I just want the merge to
always be run when I run fg.make?

Answer: Set the environmental variable force_merge=Y and export it to your
environment.

Example:

force_merge=Y; export force_merge

Fitrix Screen Technical Reference

13-48 The Featurizer and Blocks

Question: Where do I look for error messages explaining why the Featurizer is
aborting?

Answer: These can be found in the file fglpp.err. This file resides in the pro-
gram directory in which you are currently working.

Block Manipulation
Examples
The following are some examples of block manipulation commands. These exam-
ples use the following function. This function would typically be found in an .org
file.

 ##
 function llh_dupchk()
 ##
 #
 define
 dup_rowid integer

 #_dup_sql_stmt - the sql used to check for duplicate rows
 if dup_prep is null
 then
 #_prepare_sql - the preparation of the sql
 let dup_prep = "Y"
 let scratch = "select rowid from customer "
 end if

 end function
 # llh_dupchk()

In the above example, the function-id is llh_dupchk, and there are two block-ids
specified, named dup_sql_stmt and prepare_sql. What follows are exam-
ples of some block commands, the impact on the above code, along with any Expla-
nation:.

Fitrix Screen Technical Reference

Block Manipulation Examples 13-49

1. after block <function name> <block ID>

The .ext file:

 after block llh_dupchk dup_sql_stmt
 display "CODE IS PLACED HERE";

Resulting code

 ##
 function llh_dupchk()
 ##
 #
 define
 dup_rowid integer

 #_dup_sql_stmt - the sql used to check for duplicate rows
 if dup_prep is null
 then
 #_prepare_sql - the preparation of the sql
 let dup_prep = "Y"
 let scratch = "select rowid from customer "
 end if
 display "CODE IS PLACED HERE"

 end function
 # llh_dupchk()

Explanation:

Based on the definition of what signifies a block, the block dup_sql_stmt is
terminated by the "lesser" indentation of the line "end function." Hence, any
code that is placed after the block dup_sql_stmt is placed after the end if
line.

Fitrix Screen Technical Reference

13-50 The Featurizer and Blocks

2. before block <function name> <block ID>

The .ext file:

 before block llh_dupchk dup_sql_stmt
 display "CODE IS PLACED HERE";

Resulting code:

 ##
 function llh_dupchk()
 ##
 #
 define
 dup_rowid integer

 display "CODE IS PLACED HERE"
 #_dup_sql_stmt - the sql used to check for duplicate rows
 if dup_prep is null
 then
 #_prepare_sql - the preparation of the sql
 let dup_prep = "Y"
 let scratch = "select rowid from customer "
 end if

 end function
 # llh_dupchk()

Explanation:

Block code comes before the specified block tag.

Fitrix Screen Technical Reference

Block Manipulation Examples 13-51

3. before block <function name> <block ID>

The .ext file:

 before block llh_dupchk prepare_sql
 display "CODE IS PLACED HERE";

Resulting code:

 ##
 function llh_dupchk()
 ##
 #
 define
 dup_rowid integer

 #_dup_sql_stmt - the sql used to check for duplicate rows
 if dup_prep is null
 then
 display "CODE IS PLACED HERE"
 #_prepare_sql - the preparation of the sql
 let dup_prep = "Y"
 let scratch = "select rowid from customer "
 end if

 end function
 # llh_dupchk()

Explanation:

The custom code is put before the block tag prepare_sql.

Fitrix Screen Technical Reference

13-52 The Featurizer and Blocks

4. after block <function name> <block ID>

The .ext file:

 after block llh_dupchk prepare_sql
 display "CODE IS PLACED HERE";

Resulting code:

 ##
 function llh_dupchk()
 ##
 #
 define
 dup_rowid integer

 #_dup_sql_stmt - the sql used to check for duplicate rows
 if dup_prep is null
 then
 #_prepare_sql - the preparation of the sql
 let dup_prep = "Y"
 let scratch = "select rowid from customer "
 display "CODE IS PLACED HERE"
 end if

 end function
 # llh_dupchk()

Explanation:

The end of the block named prepare_sql is the let scratch = line,
based on the "lesser" indentation of "end if" line which follows it. Hence the
code is put after the let scratch = line.

Fitrix Screen Technical Reference

Block Manipulation Examples 13-53

5. in block <function name> <block ID> before "string"

The .ext file:

 in block llh_dupchk prepare_sql before "let dup_prep"
 display "CODE IS PLACED HERE";

Resulting code:

 ##
 function llh_dupchk()
 ##
 #
 define
 dup_rowid integer

 #_dup_sql_stmt - the sql used to check for duplicate rows
 if dup_prep is null
 then
 #_prepare_sql - the preparation of the sql
 display "CODE IS PLACED HERE"
 let dup_prep = "Y"
 let scratch = "select rowid from customer "
 end if

 end function
 # llh_dupchk()

Explanation:

From the block tag specified, a pattern/string is searched for. The block com-
mand keyword of "before" specifies the .ext code to be inserted before the pat-
tern/string specified. If the pattern/string could not be found, an error is
generated. If there is more than one occurrence of the string found, the 4GL
Pre-processor uses the first occurrence. In other words, if the string specified
had been "let" instead of let dup_prep, the above results would have been
the same.

Fitrix Screen Technical Reference

13-54 The Featurizer and Blocks

6. in block <function name> <block ID> after "string"

The .ext file:

 in block llh_dupchk prepare_sql after "let"
 display "CODE IS PLACED HERE";

Resulting code:

 ##
 function llh_dupchk()
 ##
 #
 define
 dup_rowid integer

 #_dup_sql_stmt - the sql used to check for duplicate rows
 if dup_prep is null
 then
 #_prepare_sql - the preparation of the sql
 let dup_prep = "Y"
 display "CODE IS PLACED HERE"
 let scratch = "select rowid from customer "
 end if

 end function
 # llh_dupchk()

Explanation:

From the block tag specified, a pattern/string is searched for. The block com-
mand keyword of "after" specifies the .ext code to be inserted after the pat-
tern/string specified. If the pattern/string could not be found, an error is
generated. If there is more than one occurrence of the string found, the 4GL
Pre-processor uses the first occurrence. In other words, if the string specified
had been "let" instead of let dup_prep, the above results would have been
the same.

Fitrix Screen Technical Reference

Block Manipulation Examples 13-55

7. replace block <function name> <block ID>

The .ext file:

 replace block llh_dupchk prepare_sql
 display "CODE IS PLACED HERE";

Resulting code:

 ##
 function llh_dupchk()
 ##
 #
 define
 dup_rowid integer

 #_dup_sql_stmt - the sql used to check for duplicate rows
 if dup_prep is null
 then
 #_prepare_sql - the preparation of the sql
 display "CODE IS PLACED HERE"
 end if

 end function
 # llh_dupchk()

Explanation:

The whole block named prepare_sql is replaced. Notice that the original
block tag is left intact.

Fitrix Screen Technical Reference

13-56 The Featurizer and Blocks

8. replace block <function name> <block ID>

The .ext file:

 replace block llh_dupchk dup_sql_stmt
 display "CODE IS PLACED HERE";

Resulting code:

 ##
 function llh_dupchk()
 ##
 #
 define
 dup_rowid integer

 #_dup_sql_stmt - the sql used to check for duplicate rows
 display "CODE IS PLACED HERE"

 end function
 # llh_dupchk()

Explanation:

The whole block named dup_sql_stmt is replaced. Notice that the original
block tag is left intact.

Fitrix Screen Technical Reference

Block Manipulation Examples 13-57

9. replace block <function name> <block ID> after
"string"

The .ext file:

 replace block llh_dupchk dup_sql_stmt after "if dup_prep"
 display "CODE IS PLACED HERE";

Resulting code:

 ##
 function llh_dupchk()
 ##
 #
 define
 dup_rowid integer

 #_dup_sql_stmt - the sql used to check for duplicate rows
 if dup_prep is null
 display "CODE IS PLACED HERE"

 end function
 # llh_dupchk()

Explanation:

Notice this block goes to a certain point in a block, that point denoted by a
match in the supplied pattern/string, and then replaces from that point on, the
existing block with what was supplied as block text. This is similar to the in
block command, except it does replacement as opposed to insertion.

Fitrix Screen Technical Reference

13-58 The Featurizer and Blocks

10.replace block <function name> <block
ID> from "string"

The .ext file:

 replace block llh_dupchk dup_sql_stmt from "if dup_prep"
 display "CODE IS PLACED HERE";

Resulting code:

 ##
 function llh_dupchk()
 ##
 #
 define
 dup_rowid integer

 #_dup_sql_stmt - the sql used to check for duplicate rows
 display "CODE IS PLACED HERE"

 end function
 # llh_dupchk()

Explanation:

Same as example #9, except using the from "string" causes the line con-
taining the matching string to be replaced as well. In example #9, the use of
after "string" causes the line containing the matching string to be pre-
served, and not be a part of the replacement.

Fitrix Screen Technical Reference

Block Manipulation Examples 13-59

11.replace block <function name> <block ID> from
"string" to "string"

The .ext file:

 replace block llh_dupchk dup_sql_stmt
 from "if dup_prep" to "let scratch"
 display "CODE IS PLACED HERE";

Resulting code:

 ##
 function llh_dupchk()
 ##
 #
 define
 dup_rowid integer

 #_dup_sql_stmt - the sql used to check for duplicate rows
 display "CODE IS PLACED HERE"
 let scratch = "select rowid from customer "
 end if

 end function
 # llh_dupchk()

Explanation:

Notice code is replaced for the line containing the matching from string,
up to, but not including, the line containing the to string.

Fitrix Screen Technical Reference

13-60 The Featurizer and Blocks

12.replace block <function name> <block ID> from
"string" thru "string"

The .ext file:

 replace block llh_dupchk dup_sql_stmt
 from "if dup_prep" thru "let scratch"
 display "CODE IS PLACED HERE";

Resulting code:

 ##
 function llh_dupchk()
 ##
 #
 define
 dup_rowid integer

 #_dup_sql_stmt - the sql used to check for duplicate rows
 display "CODE IS PLACED HERE"
 end if

 end function
 # llh_dupchk()

Explanation:

Notice code is replaced for the line containing the matching from string,
up to, and including, the line containing the thru string. Also notice that
the replace block command above is split onto two different lines. You are
allowed to do this, as long as a keyword like "after", "from", "to", or "thru" start
this new line, as it does in the above example (the keyword "from").

Fitrix Screen Technical Reference

Block Manipulation Examples 13-61

13.replace block <function name> <block ID> thru
"string"

The .ext file:

 replace block llh_dupchk dup_sql_stmt thru "let scratch"
 display "CODE IS PLACED HERE";

Resulting code:

 ##
 function llh_dupchk()
 ##
 #
 define
 dup_rowid integer
 display "CODE IS PLACED HERE"
 end if

 end function
 # llh_dupchk()

Explanation:

Code is replaced from block starting point thru/through "string."

Fitrix Screen Technical Reference

13-62 The Featurizer and Blocks

14.delete block <function name> <block ID>

The .ext file:

 delete block llh_dupchk dup_sql_stmt;

Resulting code:

 ##
 function llh_dupchk()
 ##
 #
 define
 dup_rowid integer

 end function
 # llh_dupchk()

Explanation:

The block is deleted. Notice that the block-id tags are removed as well.

15.delete block <function name> NUL

The .ext file:

 delete block llh_dupchk NUL;

Resulting code:

nothing

Explanation:

The function is deleted. Notice that the block-id tags are removed as well.

Fitrix Screen Technical Reference

Block Manipulation Examples 13-63

16.delete block <function name> <block ID> from "string"
to "string"

The .ext file:

 delete block llh_dupchk dup_sql_stmt
 from "#_prepare_sql" to "let scratch";

Resulting code:

 ##
 function llh_dupchk()
 ##
 #
 define
 dup_rowid integer

 #_dup_sql_stmt - the sql used to check for duplicate rows
 if dup_prep is null
 then
 let scratch = "select rowid from customer "
 end if

 end function
 # llh_dupchk()

Explanation:

The block is deleted from target string to target string.

Fitrix Screen Technical Reference

13-64 The Featurizer and Blocks

17.delete block <function name> <block ID> after
"string" through "string"

The .ext file:

 delete block llh_dupchk dup_sql_stmt
 after "#_prepare_sql" through "let scratch";

Resulting code:

 ##
 function llh_dupchk()
 ##
 #
 define
 dup_rowid integer

 #_dup_sql_stmt - the sql used to check for duplicate rows
 if dup_prep is null
 then
 #_prepare_sql - the preparation of the sql
 end if

 end function
 # llh_dupchk();

Explanation:

The block is deleted, preserving the after "string", but removing the
through "string".

18.before block TOF NUL

The .ext file:

 before block TOF NUL
 display "CODE PUT HERE";

Explanation:

Using the function name value of TOF (top of file) allows you to put code at the
very top of any file. In this case, since this is an "input 1" section, the file mod-
ified is header.4gl. Since there isn’t a valid function name to search for, you
must specify the keyword NUL for the function name.

Fitrix Screen Technical Reference

Block Manipulation Examples 13-65

19.before block NUL <function name>

The .ext file:

 before block NUL prepare_sql
 display "CODE PUT HERE";

Explanation:

Since the block ID is NUL, the search for function name (which is
"prepare_sql") starts from the top of the file, and "acts" on the first block tag
that matches the function name.

20.after block EOF NUL

The .ext file:

 after block EOF NUL
 display "CODE PUT HERE";

Explanation:

Block code is put at end of file. This is the command that is issued when you
use an at_eof block as well. This is to accomplish an at_eof block in an
.ext feature set file.

21.function_define <function name>

The .ext file:

 function_define main
 new_var smallint;

Explanation:

The result is the variable new_var added to the list of local variables defined
in the function named main. If no local variables exist before merge, and con-
sequently no define keyword in the function main, then the define key-
word is added, along with the block variables specified.

Fitrix Screen Technical Reference

13-66 The Featurizer and Blocks

22.before block <function name> b_<block ID>

The .ext file:

before block llh_b_field b_customer_num
 display "Hello world";

Explanation:

The b_ special block marker allows you to target the #_before_field
block tag.

23.before block <function name> a_<block ID>

The .ext file:

before block llh_a_field a_customer_num
 display "Hello world";

Explanation:

The a_ special block marker allows you to target the #_after_field block
tag.

24.before block <function name> c_<block ID>

The .ext file:

before block llh_a_field c_customer_num
 display "Hello world";

Explanation:

The c_ special block marker allows you to target the #_after_change_in
block tag.

14-1

14
Compiling and
Running Your
Programs

This chapter covers the following:

n Compiling your programs

n Using the fg.make script

n Compiling and linking libraries

n Compiling your entire application

n Executing the final program

Fitrix Screen Technical Reference

14-2 Compiling and Running Your Programs

Compiling Generated Code
"Compiling code" means turning Informix forms, 4gl source code, and triggers into
a working program. Fitrix Screen provides the facilities to do this for a single pro-
gram or for an entire set of programs.

The script for compiling your generated code is fg.make. It has the capability to
compile individual programs, all the programs in a module, or even an entire appli-
cation. The fg.make script is capable of compiling programs into pseudo-code
(commonly called p-code) object files, if you have the INFORMIX-4GL Rapid
Development System, as well as compiling using the Informix c4gl compiler.

If you have both Informix products on your system (4GL and RDS), fg.make
assumes that you want to compile using the RDS p-code compiler. If you wish to
override this behavior, use the -F flag (e.g., fg.make -F) to force fg.make to
use the c4gl compiler.

In general, the steps fg.make goes through are:

1. If run at the application level, it compiles each module listed in the application
Makefile.

2. If run at the module level, it compiles each library and program listed in the
module Makefile.

3. In a library, fg.make:

a. converts form source (.per) files to form (.frm) files;

b. converts 4GL source (.4gl) files to object (.4go or .o) files;

c. loads object files into the archive (.a file or .RDS directory);

d. removes the object files produced in step b.

4. In a program directory, fg.make:

a. merges trigger logic from .trg and .ext files with .org files to produce .4gl
files.

b. converts form source (.per) files to form (.frm) files;

c. converts 4GL source (.4gl) files to object (.4go or .o) files;

Fitrix Screen Technical Reference

Compiling Generated Code 14-3

d. links the object files together with objects from library archives listed in the
program Makefile to produce the program (.4gi or .4ge) file.

Note

The fg.make script requires that the standard UNIX make utility be present on
every machine it runs in order to determine whether a file needs to be compiled
or not. If your machine does not have a C Development System, then you need
to copy the /bin/make (or equivalent) script from a machine that contains the
C Development System to the machine where you are running your applications.

Differences Between RDS and 4GL
Compilation
INFORMIX-4GL can be compiled into two different forms: a binary executable
(machine specific) program, or a pseudo-code file that is interpreted by a "p-code
runner" program. The process to produce the first, is called a "4GL compile," while
the process used to produce the second is called an "RDS compile."

During the 4GL compile, the 4GL source code files (extension .4gl) go through
several transformations. The .4gl file is first transformed by an Informix program
called fglc to an Informix ESQL-C file (.ec). The file is then transformed into a
pure C code file (.c). At this point, compilation is turned over to cc, the UNIX C
compiler on your system. It produces an object file (.o). Finally, cc runs ld, the
UNIX linker which links .o files with each other and with objects stored in a library
archive file. This process produces a binary file (.4ge) that is directly executable on
your computer.

The 4GL compilation process:

.per .frm

.4gl .ec .c .o

Compile phase

Link phase
.o libraries (.a) .4ge

Fitrix Screen Technical Reference

14-4 Compiling and Running Your Programs

The INFORMIX-4GL Rapid Development System (RDS) goes through a some-
what different process. An Informix program called fglpc transforms the .4gl file
into a p-code object file (.4go). These p-code object files need only be concatenated
using the UNIX cat command. However, there is no Informix program to find p-
code objects located in libraries. Instead, a shell script called linkrds.sh is
used. It emulates the behavior of ld and searches the library archives specified in
the program Makefile to locate .4go files needed to complete the compile.

This process produces a p-code file (.4gi) that is interpreted by an Informix pro-
gram called fglgo. (Note that Informix also provides a p-code debugger program
called fgldb that can interpret the .4gi file).

The RDS compilation process:

By the way, as a developer’s tool, RDS is wonderful. It has a first class debugger, it
compiles quickly, and the p-code it produces is completely portable between
machines. RDS generally works very well for your end user, as well. It is an excel-
lent idea to have RDS and the RDS Debugger on your users’ or customers’ sys-
tems.

Using fg.make to Compile Your
Program
The fg.make shell script assumes that a file called Makefile exists in your cur-
rent directory. In the program directory, this Makefile is one of the generated
files. The Makefile is discussed on page 14-11.

In itself, fg.make is not a terribly complicated script. It has two purposes: it
accepts command line flags and uses them to set up some environment variables,
and it runs the appropriate program to do the actual compiling. The programs that

.per .frm

.4gl .4go

Compile phase

Link phase
.4go libraries (.RDS) .4gi

Fitrix Screen Technical Reference

Compiling Generated Code 14-5

do the compiling use the environment variables to determine some of their actions.
That means you can change the default behavior of fg.make by setting those vari-
ables in your own environment.

Here’s an example: As mentioned earlier, if you have both RDS and 4GL on your
system, fg.make assumes you wish to compile using RDS unless you use the -F
flag. The underlying environment variable is called make_method. If you set this
variable to "4GL", then fg.make defaults to the 4GL compile. Then, to do an
RDS compile, you use the -R flag (e.g. fg.make -R).

Here is a brief summary of all the flags available with fg.make. Each of these
flags can be set to the default option by setting a variable in your environment.

Usage:

fg.make [-h] [-F | -R] [-L library] [-M makefile]
[-T type] [-m {n|o|f|of}] [-o execname] [-l] [-f] [-D]
[-r] [-u] [-a] [-i] [-c] [args]

-h Prints a help message.

-F (4gl compile): This flag tells fg.make to override the
default and perform a 4gl compile. Environment variable
equivalent: make_method=4gl.

-R (rds compile): This flag tells fg.make to perform an RDS
compile. Environment variable equivalent:
make_method=4gl.

-L library The -L flag allows you to specify the names of any addi-
tional libraries you want to link in. These libraries will
appear in your Makefile above the upper level libraries.
Environment variable equivalent: xtra_lib=library.

-M makefile This flag allows you to specify a name other than "Makefile"
for the Makefile. This is useful when testing.

-T type This flag lets you specify which type of makefile to create.
You can create the following types of Makefiles: applica-
tion, module, library, program, shell, and make.

Fitrix Screen Technical Reference

14-6 Compiling and Running Your Programs

-m{n|o|f|fo} (merge): The -m flags allow control over how the Featurizer
is run.

-mn (no merge): The -mn flag prevents fg.make from perform-
ing a merge. The Featurizer will not be called. Environment
variable equivalent: no_merge=y.

-mo (merge only): This runs the Featurizer without a subsequent
compilation. Environment variable equivalent:
merge_only=y.

-mf (force merge): This flag overrides the time stamp compari-
son logic and forces a merge. Environment variable equiva-
lent: force_merge=y.

-mfo (force merge only): This flag is used to force a merge and
override the time stamp comparison logic without compiling
or linking.

-o execname In library compiles, this specifies the name of the target
archive (outname.a or outname.RDS). In program compiles,
this specifies the program name (outfile.4ge or out-
file.4gi). It strips off any extensions you might add to it.
This is useful for testing.

Fitrix Screen Technical Reference

Compiling Generated Code 14-7

-l (link only): RDS only. When compiling under RDS, the -l
flag instructs the program to link the object files together
into a .4gi file, with no checking for modification between
.4gl and corresponding .4go files. Environment variable
equivalent: link_only=y.

The -l flag is used when a local .4gl source file has been
modified and compiled (with fglpc) into a .4go object
file, with the remainder of the application source code held
constant.

This flag causes fg.make to skip the fglpc and
form4gl parts (i.e., compilation of 4gl files and form files
is skipped) and run only the link part of the fg.make suite
of shell scripts. fg.make run in link_only mode always
rebuilds the filelist.RDS in the local program direc-
tory. When compiling a library, link_only means to just
rebuild the library archive catalogs.

-f (fast link): RDS only. Much of the work done by the
fg.make script need not be done each time it is run for a
program. The linkrds.sh part of the compile creates a
list of files that must be concatenated with the local .4go files
to create the .4gi file (under RDS). That list is saved in the
local directory under the name filelist.RDS. As long as
no new calls to library functions have been added to the pro-
gram being compiled, this list need not be recreated the next
time fg.make is run. The Featurizer is still run when the
fast_link option is used. Environment variable equiva-
lent: fast_link=y.

-D RDS only. This flag creates a dependency list (filelist.RDS).
The -D flag lets you rebuild your filelist.RDS without
having to rebuild the .4gi. This works with RDS only.

Fitrix Screen Technical Reference

14-8 Compiling and Running Your Programs

Many of these flags work together. Some are mutually exclusive. fg.make -mof
(or -mfo), for example skips all compilation except the Featurizer trigger
merge, and passes the force merge flag to the Featurizer. Likewise, fg.make -fl
(or -lf) skips the compile phase and goes right to the linkage (-l) and uses the
list of library files (filelist.RDS) produced by the last link rather than producing a
new list (-f).

On the other hand, specifying -l implies -mn and overrides the -mo and/or the -mf
flags. Likewise, if -R and -F are specified, the last one on the command line takes
effect.

-r (recursive link): RDS only. The -r flag causes
linkrds.sh to make multiple passes through the library
list when making a program. If functions were not found on
the first pass, they may be found on subsequent passes. This
should never be necessary. It can be useful for debugging
library problems. Also note that this could allow you to write
non-portable code. This flag has no meaning if fast_link
has been specified. Environment variable equivalent:
recursive_link=y.

-u (list unresolved): RDS only. The -u flag causes
linkrds.sh to warn the user of any function calls it was
unable to resolve. This flag has no meaning if fast_link
has been specified. Environment variable equivalent:
list_unresolved=y.

-a This flag causes all files to be recompiled regardless of
dependencies. Environment variable equivalent:
no_use_make=y.

-c When this flag is used in a program directory, fg.make
stops after compiling the source code. The linking phase is
skipped and no program is produced.

When this flag is used in a library directory, fg.make stops
after it compiles the source code. The archive is not loaded
(either the .a file or the .RDS directory).

args Objects to be compiled. The default is the list in the Makefile

Fitrix Screen Technical Reference

Compiling Generated Code 14-9

Just as an aside, the single character flags can be listed together and so can the -m
flags if they are last in the crowd. This, for example, is legal: fg.make -iur-
flmof where mof is equivalent to -mo and -mf. The three character flags must
stand alone.

Speeding Application Compiling
When you are working with programs, you can speed up the compilation process
by using only the parts of the process that relate to the changes you are making.
You can make four different types of changes that might shorten the compilation
time so that you don’t have to run a complete fg.make. The assumption here is
that you are using RDS because the main issue is time. If you are not using RDS,
compiles are going to take a lot of time and these strategies do not save much of it.
The four types of changes are:

1. A change to only certain source files, not all of them.

2. A "cosmetic" change to a screen form that doesn’t change any of the data
on it.

3. A change to the trigger files that require a re-merge of triggers.

4. A change to the Makefile that requires new libraries to be compiled into
the code.

When you make these types of changes, you can control fg.make through the use
of different flags, to only do the steps you need done, and/or use the programs that
make calls. In doing so, you can dramatically cut the time it takes to test programs
if computer speed is an issue.

Changing Only One Source File
This is the most frequent type of change. The fg.make utility only compiles
source files that need it, but it checks them all and this can take time. It also builds a
new list of library files needed in the compile. Here, it is assumed you are adding no
calls to new library functions. Since you know what source files you have changed,
you can specify these files as arguments.

fg.make -f name (.4gl is optional)

Fitrix Screen Technical Reference

14-10 Compiling and Running Your Programs

The -f is the fast link flag. This puts together the compiled local programs and all
the library functions. It assumes you have run a complete fg.make at some time
in the past on this program to create the list of library files (filelist.RDS) needed,
that you haven’t changed the Makefile to require a different set of libraries, and
that the libraries haven’t changed.

At this point you can run the program.

Cosmetic Form Changes
Cosmetic form changes, are those that adjust the position of information on the
screen but doesn’t change that information in any way. For these changes, you type
the form4gl command with the name of the form file changed.

form4gl form

The above line creates a new compiled screen form or .frm file.

A Change to a Trigger File

Note

See the section on the "The Featurizer and Blocks" on page 13-1 for more infor-
mation about merging triggers.

After a trigger file is made, it must be merged with the .org files that are generated
from the generator. There are several flags on the fg.make command that merge
triggers and then do various other steps in the compilation process depending on
what your intention is.

When you just want to merge the .4gl file, you run the following:

fg.make -mo

The -mo flag means merge only and it just merges triggers and blocks and does
nothing else.

Normally, fg.make checks to make sure that the .trg file is newer than the .4gl
before it does a merge. In other words, it can see if a particular merge is necessary
or not.

Fitrix Screen Technical Reference

Compiling Generated Code 14-11

The following examples show how the time-stamp comparison logic works:

Example 1:

-rw-rw-rw 1 gordona informix 3777 Aug 6 11:18 order.4gl
-rw-rw-rw- 1 gordona informix 596 Aug 6 11:05 order.trg

A merge of browse.trg into browse.4gl is not performed because
browse.4gl is more current than browse.trg.

Example 2:

-rw-rw-rw 1 gordona informix 3777 Aug 6 11:18 order.4gl
-rw-rw-rw- 1 gordona informix 596 Aug 6 11:25 order.trg

A merge of browse.trg into browse.4gl is performed because
browse.trg is more current than browse.4gl.

When you want to force a merge, no matter what the file dates, use:

fg.make -mfo

The -mfo means merge forced only and it means that the fg.make utility per-
forms only the merge and forces it even if dates on .4gls are newer than the triggers.

When you want to force a merge, but do all of the other compilation as well, use:

fg.make -mf

The -mf flag indicates a forced merge, but it doesn’t only do a merge. It does the
following steps during compilation—creating object files, linking, and so on.

The Makefile
The fg.make script reads a description file that contains the information it needs
to produce a program. By default the name of this file is Makefile.

Here is an example of a generated program Makefile.

Screen Generator version: 4.11.UA1

Makefile for an Informix-4GL program

#_type - Makefile type
TYPE = program

Fitrix Screen Technical Reference

14-12 Compiling and Running Your Programs

#_name - program name
NAME = davidh.4ge

#_objfiles - program files
OBJFILES = globals.o browse.o cust_zm.o detail.o header.o \
 main.o midlevel.o options.o stk_mnu.o stockzm.o

#_forms - perform files
FORMS = browse.frm cust_zm.frm order.frm \
 stk_mnu.frm stockzm.frm

#_custpath - version control path
CUSTPATH = djh:4gc:4gs

#_libfiles - library list
LIBFILES = ../lib.a \
 $(fg)/lib/scr.a \
 $(fg)/lib/scr.a \
 $(fg)/lib/user_ctl.a \
 $(fg)/lib/standard.a

#_globals - globals file
GLOBAL = globals.4gl

#---

#_all_rule - program compile rule
all:
 @echo "make: Cannot use make. Use fg.make -F for 4GL compile."

The following variables are contained in a Makefile.

TYPE: The type of the Makefile. There are six types of Makefiles: program,
library, application, module, shell, and make.

NAME: The name of the compiled executable. For an RDS compile, fg.make
converts the extension to .4gi.

OBJFILES: The list of local object files to be linked together to produce the exe-
cutable.

FORMS: The list of .frm files used by the executable.

CUSTPATH: The version control path used to create this executable. This macro
does not appear in your Makefile if the $cust_path environment variable is not
set before the generation.

LIBFILES: The names of the library archives to search to resolve function calls.
For an RDS compile, fg.make converts the extensions to .RDS.

Fitrix Screen Technical Reference

Compiling Generated Code 14-13

Note

When doing an RDS compile, fg.make produces a list of the object files that it
has resolved from the libraries. This list, filelist.RDS, can be reused in
later compiles by specifying the -f flag with fg.make. This can only be done
when there have been no new function calls added but it does result in a faster
compile.

The fg.make script automatically appends c_lib.a and stubs.a to the end of
the list of library archives. If any library in the list does not exist, it is silently
ignored.

GLOBAL: An entry for the globals.4gl. All local object files depend on this
file.

all: This is a make rule. It is listed here to inform you not to use the UNIX make
utility.

Fitrix Screen Technical Reference

14-14 Compiling and Running Your Programs

Modifying the LIBFILES Macro to Use
Custom Libraries
You can modify the LIBFILES macro in your Makefile to use your own cus-
tom libraries by using triggers. Here are three examples:

The libraries Trigger
The libraries trigger places your library after the ../lib.a line. For exam-
ple, this trigger:

defaults

libraries
 ../../all.4gm/lib.a;

produces this LIBFILES macro:

LIBFILES = ../lib.a \
 ../../all.4gm/lib.a \
 $(fg)/lib/scr.a \
 $(fg)/lib/user_ctl.a \
 $(fg)/lib/standard.a

The custom_libraries Trigger
The custom_libraries trigger places your library before the ../lib.a line.
For example, this trigger:

defaults

custom_libraries
 ../libadv.a;

produces this LIBFILES macro:

LIBFILES = ../libadv.a \
 ../lib.a \
 $(fg)/lib/scr.a \
 $(fg)/lib/user_ctl.a \
 $(fg)/lib/standard.a

Fitrix Screen Technical Reference

Compiling Generated Code 14-15

Changing the LIBFILES Macro with Block Commands
You can also use block commands to alter the LIBFILES macro. In an extension
(.ext) file, these lines use the brute force method. For example:

start file "Makefile"
##
 replace_block TOF NUL from "LIBFILES" thru "$(fg)/lib/standard"
 LIBFILES = ../libadv.a \
 ../lib.a \
 ../../all.4gm/libadv.a \
 $(fg)/lib/scr.a \
 $(fg)/lib/user_ctl.a \
 $(fg)/lib/standard.a
 ;

Using the -L Flag to Link Custom Libraries
All three of the methods described above result in a physical change to the Make-
file. The fg.make script provides a method for specifying additional libraries
without actually changing the Makefile. This facility can be very useful if you
wish to try out new features in a library but do not wish to make the change perma-
nent.

For example, suppose you have written some useful functions that you would like
to put in a $fg/lib/standard.cus library directory (see LIBRARIES
below). You can physically change your Makefiles using the methods shown
above to change your Makefiles for all your programs, or you can use the -L
flag with fg.make to avoid this:

fg.make -L standard.cus

This effectively acts as if you had changed the LIBFILES macro to look like this:

LIBFILES = ../lib.a \
 $(fg)/lib/scr.a \
 $(fg)/lib/user_ctl.a \
 $(fg)/lib/standardcus.a \
 $(fg)/lib/standard.a

You can use more than one -L flag, for example:

fg.make -L standard.cus -L scr.adv

The previous example produces the same effect as changing LIBFILES to look
like this:

Fitrix Screen Technical Reference

14-16 Compiling and Running Your Programs

LIBFILES = ../lib.a \
 $(fg)/lib/scradv.a \
 $(fg)/lib/scr.a \
 $(fg)/lib/user_ctl.a \
 $(fg)/lib/standardcus.a \
 $(fg)/lib/standard.a

It is possible to modify the path name:

fg.make -L /usr/our_work/lib/standard.cus

The previous example produces the same effect as changing LIBFILES to look
like this:

LIBFILES = ../lib.a \
 $(fg)/lib/scr.a \
 /usr/our_work/lib/standardcus.a \
 $(fg)/lib/user_ctl.a \
 $(fg)/lib/standard.a

You can add new libraries to the end. If you do, don’t use the period:

fg.make -L newguy

The previous example produces the same effect as changing LIBFILES to look
like this:

LIBFILES = ../lib.a \
 $(fg)/lib/scr.a \
 $(fg)/lib/user_ctl.a \
 $(fg)/lib/standard.a \
 newguy.a

If your LIBFILES macro is already customized to look like this:

LIBFILES = ../lib.a \
 ../../all.4gm/lib.a \
 $(fg)/lib/scr.a \
 $(fg)/lib/user_ctl.a \
 $(fg)/lib/standard.a

and you needed to insert something in front of the second occurrence of lib.a,
include more than the word "lib" in your prefix. The question mark can be used
instead of the slash so fg.make does not interpret the slash to mean pathname.

fg.make -L all.4gm?lib.adv

The above line would produce the same effect as changing LIBFILES to look like
this:

Fitrix Screen Technical Reference

Compiling Generated Code 14-17

LIBFILES = ../lib.a \
 ../../all.4gm/libadv.a \
 ../../all.4gm/lib.a \
 $(fg)/lib/scr.a \
 $(fg)/lib/user_ctl.a \
 $(fg)/lib/standard.a

Here are the -L rules:

• The argument prefix is used to find where to insert the library.

• The argument suffix is used as part of the library name.

• A slash in the argument causes the argument to be treated as a path name. This
doesn’t affect where the name is inserted.

• The question mark can replace the slash if the slash is needed as part of the
insertion criteria.

• If there is no match, the library is put at the end with no change.

Note

Wildcards can be used in the -L argument.

Linking in Libraries with $cust_path
The fg.make script automatically inserts libraries that correspond with entries in
$cust_path. For example if $cust_path contains djh:4gc:4gs and there
exists a ../lib.djh library directory and its archive ../libdjh.a, it will be
inserted before ../lib.a. Thus custom libraries need not be inserted specifically
into the Makefile when using Version Control.

Fitrix Screen Technical Reference

14-18 Compiling and Running Your Programs

Compiling Libraries
Much of the RDS program compile parallels the 4GL compile. The form .per files
transform into .frm files, the source .4gl files transform into object files (.4go or .o),
and non-local function calls are resolved by searching the library archives listed in
the LIBFILES macro. But it’s this last process that is, in fact, the most different
between the RDS and 4GL compiles.

With regard to Fitrix Screen, there are two classes of libraries. One class consists of
the scr, standard, and user_ctl libraries, which provide the flow of control
of generated programs and a number of specialized functions that provide the fea-
tures of these programs.

Briefly, scr contains the flow control type functions. These are where the ring
menus and the functions for adding, finding, updating and deleting documents are
located. The standard library contains many common functions, many of which
you might want to call yourself for various purposes. The user_ctl library of
functions is used to extend the functionality of your programs in many ways. This
is the only library where the source code is not provided. There is another library
called stubs that supplies stub functions if the user_ctl library is not installed.

The other class of libraries are those that you maintain yourself for common func-
tions that are used by more than one of your programs, or for modifying the behav-
ior of functions provided with Fitrix Screen.

fg.make is used to maintain both classes the same way, but it is not advisable to
make changes to the supplied functions. Your changes are lost when you install the
next release of Fitrix Screen. It is possible to add or change these functions by cre-
ating your own libraries.

To create your own library, there are two things you must consider: where it should
be physically located, and what sequence it should be linked into your program.

Consider a library of functions that are common to a family of programs. You
would have a program source directory for each program. Create a directory called
lib.4gs along with your program directories. If you review the example Make-
file above, you should note that the first entry in the LIBFILES list is
../lib.a. This lib.4gs contains the source for this archive.

Fitrix Screen Technical Reference

Compiling Generated Code 14-19

Creating the Library Archive
A library archive contains the compiled objects and catalogs used for linking your
programs. A 4GL archive is a file with an extension of .a. An RDS archive is a
directory with an extension of .RDS. A 4GL archive is created with the UNIX ar
utility and its catalogs are stored internally. The RDS archive is created by
fg.make directly and its catalogs are stored as files in the archive.

To create a library archive you must have a Makefile in your library. Here’s an
example of a library Makefile.

Makefile for an Informix function library
##
TYPE = library

LIBFILES = \
 $(LIB)(fn_name1.o)\
 $(LIB)(fn_name2.o)\
 $(LIB)(fn_name3.o)\
 $(LIB)(fn_name4.o)

FORMS = fn1_frm.frm fn2_frm.frm fn3_frm.frm \
 fn4_frm.frm

LIB = ../lib.a

#--- #

all:
 @echo "make: Cannot use make. Use fg.make to compile."

TYPE: The type of the Makefile. There are six types of Makefiles: program,
library, application, module, shell, and make.

LIBFILES: The list of object files to be put into the library archive.

FORMS: The list of .frm files used by the library functions.

LIB: The name of the library archive. It does not have to match the name of the
library source directory. For example, if you wish to create a library to hold cus-
tomized functions from the $fg/lib/scr.4gs directory, there is a convention
for doing so: You create your library source directory as $fg/lib/scr.cus,
and you make the LIB macro in your Makefile look like this:

LIB = ../scrcus.a

Fitrix Screen Technical Reference

14-20 Compiling and Running Your Programs

This strategy allows you to use the -L feature when compiling programs with
fg.make. The command fg.make -L scr.cus automatically links your cus-
tom library just before the scr library.

It is also possible to use the same name in the LIB macro for different libraries. In
this example, your Makefile could contain LIB = ../scr.4gs. This would
cause your objects to be loaded into the same archive as the code generated objects.
Just remember you must recompile your library after a new installation.

For an RDS compile, fg.make converts the extension to .RDS.

To create the library archive, run fg.make in lib.4gs.

If you have any forms, they are converted into .frm files, which remain in
lib.4gs. The open form statement in your function should probably say
../lib.4gs/fm_name so any programs calling the functions are able to find
the forms. Two other choices are to use the full path name, or to just use the form
name, but include the library directory in $DBPATH when you run your program.

When fg.make performs a 4GL compile, it creates .o files for the files listed in
the LIBFILES macro from the corresponding .4gl files and loads them into the
lib.a archive file in the directory above. It creates the archive if it doesn’t exist.

When fg.make does an RDS compile, it creates .4go files rather than .o files.
These are then moved over to an archive directory, lib.RDS. This directory is
created if it does not exist. In addition, the .4gl files are copied to the archive direc-
tory.

There are two reasons for keeping the .4gl files in both lib.4gs and lib.RDS.
First, the .4gl source file is needed in the archive for creating the RDS catalogs.
Second, it is convenient when using the debugger. Even if you have changed 4gl
files in the library source directory, the 4gl files in the archive match the function
objects that are linked into your program. In the debugger, this keeps the source
consistent with the objects.

In addition to the .4gl and .4go files in lib.RDS, there are four catalog files. These
are func_map.RDS, depend.RDS, unresolved.RDS, and
resolved.RDS.

Fitrix Screen Technical Reference

Compiling Generated Code 14-21

• The func_map.RDS file is a list of all the files in this directory and their
functions. During the linking phase of a program RDS compile, linkrds.sh
refers to this list to find the names of the files containing the "unresolved" func-
tions it is searching for.

• The depend.RDS file is a list of all the files any file depends on. Once
linkrds.sh has found the names of the files that will resolve functions for
it, it must then find the names of any other files that the "found" ones also
depend on.

• The unresolved.RDS file is a list of all the functions that were called by
functions in lib.RDS but were not resolved there. linkrds.sh refers to
this to find out what new function names it has to add to its list of unresolved
functions before it goes on to the next library.

• The resolved.RDS file is a list of all the files and function calls that were
resolved in this library.

These files should be rebuilt every time fg.make does an RDS compile in the
library.

If you have modified a .4gl file in lib.4gs, but your modification does not
include changes to function names, nor added, deleted, or changed function calls, it
is not necessary to rebuild the catalogs in the .RDS directory.

There is a shortcut. When the -f (fast_link) flag is used with fg.make to compile a
library, fg.make skips the catalog creation step. You can specify the specific files
you wish compiled.

fg.make -f func1 func2 (.4gl extension optional)

Compiling Your Entire Application
Consider organizing your programs in a hierarchy. The top level would be the
application, the second level a module of that application, and the third would be
the programs themselves. As an example of applications, here are two: accounting
and codegen. Examples of modules in the accounting application include general
ledger, accounts receivable, payroll and quite a few more. The following explains
how to set up your hierarchy.

Fitrix Screen Technical Reference

14-22 Compiling and Running Your Programs

Create a directory for your entire application. It’s recommended that you do this in
the $fg directory, though that is by no means a requirement. The name for this
directory isn’t set by convention, so make the name something meaningful.

In your application directory, create directories for each of the modules in your
application. The names for your module directories should have 4gm as an exten-
sion, but the prefix can be anything that you consider meaningful. Examples might
be sales.4gm, rcvbls.4gm, inventory.4gm. Also, put the application
Makefile in this directory.

Use this as a model for the example $fg/myapplication/Makefile:

Makefile for an Informix Application
##
TYPE = application
APPL = myapplication
MODULES = sales rcvbls inventory
#---
all:
 @echo "make: Cannot use make. Use fg.make to compile."

To compile your entire application, type fg.make in the application directory. To
compile only specific modules, give the module names as arguments (for example
fg.make sales rcvbls).

Compiling a Module
Put your program directories in the module directories. The names of these pro-
gram directories would normally have an extension of 4gs. Examples in
sales.4gm might be entry.4gs, invoice.4gs, and post.4gs. Also, put
the module Makefile in the module directory.

To compile your entire module, type fg.make in the module directory. Here is an
example $fg/myapplication/sales.4gm/Makefile which you can use
as a model:

Fitrix Screen Technical Reference

Compiling Generated Code 14-23

Makefile for an Informix module
##
TYPE = module

MODULE = sales.4gm

LIBS = lib

PROGS = entry invoice post prog4 \
 prog5 prog6 prog7 and_so_on
#--- #
all:
 @echo "make: Cannot use make. Use fg.make to compile."

Application and Module Compilation
with $cust_path
When compiling at the module level, all program directories with an extension
found in the $cust_path are compiled.

For example, if invoice is listed in the module Makefile and $cust_path =
djh:4gc:4gs, then invoice.4gs, invoice.4gc, and invoice.djh are com-
piled if they exist. (They are compiled in reverse sequence of $cust_path).

Fitrix Screen Technical Reference

14-24 Compiling and Running Your Programs

Running Your Programs
As soon as source code has been compiled, it can be executed. There are a number
of command line arguments that can be specified upon invocation. This section will
address these arguments, and explain the invocation of programs compiled with
4GL and RDS. Later, the usage of the run UNIX shell script is explained.

Invoking Compiled Programs
The method of executing a program depends on whether INFORMIX-4GL or
INFORMIX-RDS is used to compile the source.

The INFORMIX-4GL system compiles source (.4gl) files down to object (.o) files,
which are then linked together into an executable (.4ge) file. This executable file
can be invoked by simply typing its filename at a UNIX prompt. The following is
an example of the required syntax:

screen3.4ge [args]

INFORMIX-RDS compiles source into pseudo-code, which is stored in object code
files (.o). The object files are linked together into a non-executable program file
(.4gi). The following provides an example of the required syntax:

fglgo <program_name.4gi> [args]

A number of command line arguments can be used when invoking a program gen-
erated by Fitrix Screen.

Fitrix Screen Technical Reference

Running Your Programs 14-25

fglgo program_name.4gi [-dbname database] [order
order_by_clause] [filter filter_clause] [-a] [A] [-u] [-
U] [f]

The database can be selected on the command line. Use the following argument to
name the database in which the program will run:

-dbname database

Example:

fglgo screen3.4gi -dbname stores

The name of the database must follow the -dbname argument.

Other command line arguments allow the user to pass a filter clause and order by
clause to the program. This controls the selection and order of documents appearing
on the data-entry form upon invocation. The filter argument only selects items in
the main table for the header portion of the form.

You can define the initial filter for the selection of documents by specifying the fil-
ter on the command line. Use the following syntax:

filter "filter clause"

Example:

fglgo screen3.4gi filter "customer_num >100"

-dbname Specifies the database to run against.

order Specifies the order of initial selection.

filter Limits the initial selection.

-a Enters directly into the Add mode.

-A Same as above only exit after adding.

-u Enter directly into the Update mode.

-U Same as above only exit after updating.

-f Enters directly into Find mode.

Fitrix Screen Technical Reference

14-26 Compiling and Running Your Programs

Note

The example above only works for an integer type field. If you want to select
a string, you must quote the string like the following example:

 fglgo screen3.4gi filter "po_num=’100’"

If the filter is "1=0", no rows are initially gathered. You may wish to pass the filter
"1=0" if you are using the -a (Add mode) argument.

You can also specify a command line argument to sort the initial selection of docu-
ments. You may sort by any data entry column, though the columns must be in the
main table. The syntax follows:

order "order by column(s)"

Example:

fglgo screen3.4gi order "po_num"

Nulls come before any other data so rows that have a null value for the "order by"
column appear first. The column will be sorted according to ASCII conventions.

The following set of command line arguments control the mode in which the user
enters upon start-up of the program, (-a, -A, -u, -U, -f). For example:

fglgo screen3.4i -a

puts the user directly into Add mode.

You can use these arguments to create new navigation events. For instance, you can
define a navigation event as Add a customer. That event could be called from
invoice entry, or any other part of the application. The order that arguments appear
on the command line is insignificant.

Fitrix Screen Technical Reference

Running Your Programs 14-27

Arguments must be separated by spaces.

Incorrect:

-Ud stores
-dstores

Correct:

-dbname stores
-A -dbname stores

Executing Programs When Using
Version Control
When using Version Control, the following startup scripts should be used instead
of fglgo or fgldb when executing your compiled code. Both of these scripts
automatically set your $DBPATH variable so that the programs can correctly locate
the necessary .frm files used with Version Control.

fg.go: runs the program created using Version Control. This script determines if
the program is a .4gi or a .4ge and runs it accordingly.

fg.db: runs the program under the INFORMIX-4GL Interactive Debugger.

For more information refer to "Invoking Programs That Use Version Control" on
page 16-20.

Fitrix Screen Technical Reference

14-28 Compiling and Running Your Programs

15-1

15
Advanced Features

This section explains how to perform a variety of modifications to your programs
including:

n Event handling logic

n Creating custom libraries

n Creating application help text

n Creating BLOB field types

n Using skip field logic

n Cursor handling philosophy

n Generic text picker/editor

n The fg_err and lib_error functions

n Creating a post-processor

n Example of ok_delete

n Modifying lib_message

Fitrix Screen Technical Reference

15-2 Advanced Features

Event Handling Logic
Events are actions that can occur while a program is running, such as shelling out to
the operating system, running another program, and displaying help text. An event
describes the start or end of a particular activity. This section describes how event
logic is handled by code generated with the Code Generator, and how you can add
your own events to your programs.

Types of Event Handling Logic
There are two main types of events that can be performed within Fitrix Screen
code:

1. External events: External events occur outside of the program. They are typ-
ically operating system commands such as viewing mail and checking disk
space. The instructions for external events are UNIX operating system com-
mands.

2. Internal events: Internal events are accessed within the program only. Exam-
ples of internal events include Zooms, Notes and User Definable Fields.
Instructions for internal events are created with INFORMIX-4GL code.

There are two types of internal events:

1. Local events: Local events only occur at a particular point in a running
application. Typically these internal events occur within an input statement.
For instance, an event performed only when inputting on a detail record is
considered a local event. This local event (and the hot key mapped to it)
cannot be executed at any other point in the program.

2. Global events: Global events are internal events that can occur at any
point in the running application. Global events can occur:

• when inputting onto the header record.

• when inputting onto the detail record.

• at the ring menu.

• when executing a Zoom.

• when selecting a navigation item.

Fitrix Screen Technical Reference

Event Handling Logic 15-3

• when performing any User Control feature, etc.

Event Flow
When hot_local() and hot_key() are called from local code, a plethora of
activity occurs within these functions.

Note

The hot_local() function is only called if you use an on_event trigger.

Some of the key event handling functions and their flow are mentioned here (all of
the event handling functions are located in the file
$fg/lib/user_ctl.4gs/l_event.4gl. The following explains how
scr_funct is set for a local event and how the navigate and hot key tables are
used during event processing.

Flow for events:

1. Within the input screen (header or detail section), an event (any event) is exe-
cuted for the first time. The hot_local() function is called.

2. hot_local(): If this is the first time hot_local() is called,
hot_local() calls the event handling function event_init(), which:

• Prepares and declares SQL statements for all of the above tables. SQL
statements are not executed at this time, except for the SQL statement for
the Hot Key Definitions Detail Table (stxhotkd); this statement is exe-
cuted to fill an array (called key_map) telling what key is mapped to what
event.

• Loads the local event array (called local_evnt) with hardcoded local
events. These events are tab, btab, cancel, accept, zoom, null

Fitrix Screen Technical Reference

15-4 Advanced Features

Note

Zoom is a hardcoded local event. Thus when generating code there is never a
call to hot_local() for a Zoom. Once event_init() loads the event
array with local events, hot_local() proceeds to add its event (passed to it as
an argument) to this array. After all calls to hot_local() are through, the
local event array contains all local events for the entire program. After all calls
to hot_local(), hot_key() is called.

3. hot_key(): Its job is to map the key to the event.

Back in local code before the calls to hot_local(), the global variable
hotkey is set to the number of the key upon pressing that key:

 # Event trapping logic
 on key (control-b) let hotkey = 2 goto event
 on key (control-e) let hotkey = 5 goto event
 on key (control-f) let hotkey = 6 goto event
 on key (control-g) let hotkey = 7 goto event
 on key (control-i) let hotkey = 9 goto event
 on key (control-n) let hotkey = 14 goto event
 on key (control-o) let hotkey = 15 goto event
 on key (control-p) let hotkey = 16 goto event
 on key (control-t) let hotkey = 20 goto event
 on key (control-u) let hotkey = 21 goto event
 on key (control-v) let hotkey = 22 goto event
 on key (control-w) let hotkey = 23 goto event
 on key (control-y) let hotkey = 25 goto event
 on key (control-z) let hotkey = 26 goto event
 on key (f5) let hotkey = 105 goto event
 on key (f6) let hotkey = 106 goto event
 on key (f7) let hotkey = 107 goto event
 on key (f8) let hotkey = 108 goto event
 on key (f9) let hotkey = 109 goto event
 . . .

The function hot_key() examines the hotkey global variable and retrieves
its respective event name out of the key_map array (remember the key_map
array is filled with values from the Hot Key Definitions Detail table (stx-
hotkd)). Then hot_action() is called.

4. hot_action(): Its job is simply to set the global variable scr_funct. It
sets scr_funct based on answers to the following questions, in the following
sequence:

Fitrix Screen Technical Reference

Event Handling Logic 15-5

• Is it in the local event array with a hot key mapped to it? The local event
array includes the events passed as arguments to hot_local().

If YES, scr_funct is set to the event name specified in the Hot Key Def-
inition Detail table (stxhotkd) (via the array key_map). The event is
then processed locally in the local event function llh_event(),
lld_event(), or EV_scrid.

If NO,

• Is the event disabled?

If YES, don’t process it. If NO,

• Is it a global event?

If YES, process it as a global event using the global_events() func-
tion in main.4gl.

If NO,

• Is it an Enhancement Toolkit function?

Here are the event names of the User Control features. These are all pro-
cessed with separate functions:

• navigate (Navigation)

• help (User-updatable Help Text)

• hot (User-definable Hot Keys)

• info (Program Information)

• notes (Freeform Notes)

• ack (Software Acknowledgement System)

• status (Program Status Monitor)

• feature (Feature Request System)

• bang (Operating System Exit)

• errbrws (User-updatable Error Text)

Fitrix Screen Technical Reference

15-6 Advanced Features

• todo (Personal To-Do List)

• funct_edit (Edit Current 4GL Function)

If NO,

• Is the os_command column in the Navigation Event Reference table
(stxactnr) for this event null?

An SQL query is done on this table for this event. If YES (the event is null),
scr_funct is set to the event name in the column act_key of the Nav-
igation Event Reference table. The event is processed locally (in
llh_event, lld_event(), or EV_scrid).

If NO, the event is an external event. The event is processed externally
using the INFORMIX-4GL run statement.

Coding Local Events
Event handling logic is not performed by standard INFORMIX-4GL branching
logic (if-then, case statements, etc.). Fitrix Screen generates special labels in the
code to handle events. There are places in the code that are labeled "events" and
code branches to them via a "goto" statement, for example:

Local event processing
label event: # this event is labelled "event"

after input # this event is labelled "end_input"
 label end_input:

Lowlevel functions called llh_event()/lld_event()/EV_scrid take
care of event handling logic.

To create a local event, you need to create an on_event trigger. The on_event
trigger allows you to place custom INFORMIX-4GL logic for an internal event into
your program, for example:

on_event show_message
 display "Logic from my internal event is executing now."
 sleep 3;

For more information on the on_event trigger refer to "on_event" on page 12-14.

Fitrix Screen Technical Reference

Event Handling Logic 15-7

Before coding a local event trigger, the event should be added to the Fitrix Screen
tables with the navigation feature or by using ISQL.

To incorporate the local event into the program, some lines of source code should
be added. These lines of code can be added automatically by specifying a trigger in
a triggers file (see "on_event" on page 12-14):

• Call hot_local("event"), where event is the value in the act_key col-
umn of the two tables, if the event was added via ISQL or 4GL. This function
should be called just before the call to function hot_key(). A call to
hot_local() tells hot_key() that there is custom logic coded just for this
event and perform this custom logic instead of the logic that is usually per-
formed. This custom logic is added to the function
llh_event()/lld_event()/EV_scrid, and this function is called
right after calls to hot_local() and hot_key(). Any usual logic can be
overridden by a call to hot_local(), even logic for an event that occurs in
the upper level functions.

• The call to hot_key() simply maps the key pressed to the function being
called, performs the usual logic if a call to hot_local() is not specified, sets
scr_funct, and returns. The scr_funct variable is set to the event name,
or act_key column value.

• Custom logic for handling the local event is coded in the function
llh_event()/lld_event()/EV_scrid. An additional "when" clause
of the CASE statement is added.

Example of source code added to handle a local event:

In llh_input():

Local event processing
label event:

 a-> call hot_local("date_zm") # Look to llh_event for custom logic
call hot_key("llh_input") # Map the key to the event
call llh_event()

In llh_event():

case
when scr_funct = "zoom" and infield(customer_num)

if zoom("cust_zm","")
then

let p_orders.customer_num = scratch
let nxt_fld = "customer_num"

Fitrix Screen Technical Reference

15-8 Advanced Features

end if
a-> when scr_funct = "date_zm" and infield(order_date)
a-> if zoom("date_zm","")
a-> then
a-> let p_orders.order_date = scratch
a-> let nxt_fld = "order_date"
a-> end if

when scr_funct = "accept"
let nxt_fld = "exit input"

when scr_funct = "tab" or scr_funct = "btab"
let tab_pressed = true
let nxt_fld = "exit input"

when scr_funct = "cancel"
let int_flag = true
let nxt_fld = "exit input"

end case

** a-> = lines that were added

When running the application, you can choose the event from the navigation menu.
This event only runs at the point specified in the running program. The event does
not work anywhere else. For instance, the above lines of code are executed only
during inputting on the header. If this event is chosen anywhere else besides during
inputting on the header, it does nothing.

Coding Global Events
Global events can occur at any point in a running application.

Global events are located in a function called global_events() at the end of
main.4gl.

There are two ways to add a global event:

1. Add the event via the Navigation Event feature. Then go into ISQL and null out
the nav_user column. This allows the event to be accessible by all users.

2. The second way is to add rows to the two navigation tables as specified in add-
ing local event code above. This can be done through ISQL or 4GL.

Either way, in main.4gl, you need to add to the global_events() function
an additional "when" clause to the case statement. If there is no
global_events() function, copy the example below or use the on_event
trigger in the defaults section of a triggers file (explained below) to create one
automatically.

Fitrix Screen Technical Reference

Event Handling Logic 15-9

Example:

 ##
 function global_events(act_key, p_funct)
 # returning true if it runs the event, otherwise false
 ##
 # This function’s job is to run all events that need to be run
 # on a global (program wide) basis. If you have defined an event
 # that needs to be run at the menu level in addition to the local
 # input level, the event must be listed here.
 # If you wish to know the function name that called hot_key, it
 # is passed as p_funct.
 #
 define
 act_key char(15), # Action to process
 p_funct char(15) # Current function name

 # Trap fatal errors
 whenever error call error_handler

 # Process the events based on act_key
 case
 # There must be at least 1 statement listed.
 when act_key = "info" call fg_info()
 otherwise return false
 end case
 return true
 function
 # global_events()

The Event Tables
The following describes the four tables you need to become familiar with in order
to understand event handling and navigation.

1. Navigation Event Reference Table - stxactnr

This table contains all events that are displayed on the navigation menu. This
table is the "header" table for navigation events. When the user adds a naviga-
tion event while running the program, a row is added to this table for that event.
The event name is stored in the act_key column.

There may be events in the program that do not appear in this table.

Fitrix Screen Technical Reference

15-10 Advanced Features

Here is a sample row from this table:

The "shipto" event in the previous example can be identified as a local event
because the os_command column is blank.

The following is an example of an external event. Event cust_info might
have a row in stxactnr that contains the following information. External
events have something in the os_command column.

column data
 language ENG

 act_key shipto

 description update shipping addresses

 os_command

 press_enter N

column data
 language ENG

 act_key cust_info

 description Customer Information

 os_command cd ../../ar.4gm/i_custr.4gs; fglgo *i -c $company

 press_enter Y

Fitrix Screen Technical Reference

Event Handling Logic 15-11

2. Navigation Event Detail Table - stxnvgtd

This table is the "detail" table for navigation events. It holds the program, mod-
ule, and user for the event. The line_no column may be manipulated to alter
the order that items appear on the navigation menu. The nav_user column
may be filled in with a user to allow only that user to execute that event.

The contents of the table stxnvgtd determine the scope of the event.
Remember that the definition of an event as global or user global does not auto-
matically make it available to an individual program. The logic necessary to
invoke the event must still be added to each program that uses the event.

An event can be:

• user/program specific

A specific user can use this event in a specific program.

• user global

A specific user can use this event in all programs.

• program specific

This event can only be used with a specific program.

• global

This event can be used with all programs and by all users.

The following table shows example entries in the stxnvgtd table:

If line_no is blank for an event, this event shows up above any events that
are numbered.

Type of event act_key line_no nav_user nav_program nav_module

user/program specific cust_info null gordona screen1 demo

user global cust_info null gordona null null

program specific cust_info null null screen1 demo

global cust_info null null null null

Fitrix Screen Technical Reference

15-12 Advanced Features

3. Hot Key Definitions Reference Table - stxkeysr

This table assigns a unique number to a key on the keyboard. It assigns num-
bers for control keys, function keys, the tab key, and delete key. The number
assigned to control keys corresponds with the numeric sequence of the alphabet
([CTRL]-[a] is 1, [CTRL]-[b] is 2, [CTRL]-[c] is 3, etc.). Function keys start
with the number 100. Here is a sample from this table:

4. Hot Key Definitions Detail Table - stxhotkd

 key_code key_desc
 2 [CTRL]-[b]

 5 [CTRL]-[e]

 6 [CTRL]-[f]

 7 [CTRL]-[g]

 9 [TAB]

 14 [CTRL]-[n]

 15 [CTRL]-[o]

 16 [CTRL]-[p]

 20 [CTRL]-[t]

 21 [CTRL]-[u]

 22 [CTRL]-[v]

 23 [CTRL]-[w]

 25 [CTRL]-[y]

 26 [CTRL]-[z]

 101 [F1]

 102 [F2]

 103 [F3]

 104 [F4]

 105 [F5]

 106 [F6]

 107 [F7]

 108 [F8]

 109 [F9]

 110 [F10]

 111 [F11]

 112 [F12]

Fitrix Screen Technical Reference

Event Handling Logic 15-13

This table stores each event and its respective hot key number for the hot key
that initiates that event. Re-assigning hot keys merely changes this number. The
module, program, and user is also stored so there can be duplicate numbers.
Here is a sample from stxhotkd table:

hot_key act_key hot_module hot_program hot_user

2 btab

5 hot

6 udf

7 navigate

9 tab

14 notes

15 bang

16 null

20 todo

21 null

21 payto a p_vendr

21 add_info ar i_invce

22 null

22 acctg_info ar i_invce

23 help

25 info

26 zoom

101 insert

102 delete

103 page_down

104 page_up

105 mail

106 payto ap i_vendr

106 add_info ar i_invce

107 acctg_info ar i_invce

134 btab

135 accept

136 cancel

Fitrix Screen Technical Reference

15-14 Advanced Features

There are two ways to add an event to Fitrix Screen tables: via the navigate feature
or ISQL.

1. The navigate feature: When running the application, you can add a local event
by executing the Navigate feature of the User Control Library. For more infor-
mation on using the navigate feature refer to the Fitrix CASE Tools Enhance-
ment Toolkit Technical Reference.

2. ISQL: ISQL or 4GL can be used to add rows to the two navigate tables, stx-
actnr and stxnvgtd.

The act_key column in stxactnr uniquely identifies the event in stxactnr
and stxnvgtd.

Creating an Event that Calls a Program
The best way to create a navigation event that calls another program is to use the
Fitrix Menus mz -i command. If you use the mz -i command you do not have to
cd to the program directory and then run it, and you do not have to determine if the
program is a .4gi or a .4ge. The mz -i command does that automatically. Another
benefit you get when using the mz -i command is that $cust_key and other
environmental variables are maintained.

The mz -i command can only be used if you have Fitrix Menus and the program
you want to run appears on a menu somewhere. The reason the program has to
appear on a menu is because the mz -i command utilizes a Menu Item Instruction
file.

For example, you could set up a navigation event to run the Error Message Transla-
tion program, $fg/codegen/util-
ity.4gm/i_terorh.4gs/i_terorh.4gi. The following line would appear
on the Operating system command line on the Navigation Commands form.

Operating system command:
mz=$fg/codegen/utility.4gm;export mz;mz -i a menus transmenu

Note that when you use the mz -i command, you must first set the $mz variable
to point to the directory above the project directory. Then you need to specify the
project directory and the menu the item appears on.

For more information on the mz -i command and Item Instruction files refer to
your Fitrix Menus documentation.

Fitrix Screen Technical Reference

Event Handling Logic 15-15

Moving Events to Your Customer’s
System
You must have entries in all three of the following tables in order for an event to be
called by a hot key.

stxactnr - this table stores the navigation event

stxnvgtd - this table stores which programs can use the event

stxhotkd - this table stores which keys call the event

Because the stxactnr table does not have a way to specify module.program,
you need to transfer the whole table to your customer’s site. If your customer’s site
has custom events that differ from your development platform, then there is a prob-
lem, because you would wipe out all of their custom events.

Currently there is no easy way to handle this. What you need to do is unload your
customers’s stxactnr table, unload your stxactnr table, then do a sort -u
on the act_key. You would redirect this to an output file and then would end up
with an unload file that contained all events.

Record-level Validation
Record-level validation logic is considered event logic. The very last activity to
take place in an input statement is after the "after input" statement is executed. This
is an appropriate place to put record-level validation logic. When the user presses
[ESC], control passes to the event end_input, which is part of the after input
statement. Within end_input there is a call to
llh_a_input()/lld_a_input(). Within this function, validation logic can
be inserted to be performed on all input fields (as a whole). After this, control exits
input, the variable scr_funct is set to null and the input function terminates.

Control can return back into the input statement in
llh_a_input()/lld_a_input() by manipulating the value of the variable
nxt_fld. You can set nxt_fld to a field within the input statement to move
control to that field.

Fitrix Screen Technical Reference

15-16 Advanced Features

How to Assign Default Hot Key
Settings
When a user assigns a hot key definition, the system automatically inserts the user
id into stxhotkd. This restricts that definition to be used by that user alone.

In order to set up a global hot key that can be used by all users of a particular pro-
gram, a null value needs to be placed into the hot_user column. Modifying the
hot key definition in this way should be done via ISQL, since the system automati-
cally assigns the user id.

To map a global hot key go into ISQL and add your definition to the stxhotkd
table with a null value in the hot_user column. The stxhotkd table contains
the following columns:

hot_key
act_key
hot_module
hot_program
hot_user

By nulling out the hot_module, hot_program, and hot_user columns,
you can define a hot key that can be used by any user within any application.

Fitrix Screen Technical Reference

Creating and Using Custom Libraries 15-17

To map a default hot key:

1. Create a file containing your hot key definition.

Example 1:

 107|summ|oe|i_invce||

This example allows all users of the Order Entry i_invoice program to
access this hot key definition.

Example 2:

 107|summ||||

Example 2 allows any users running any application to use this hot key defini-
tion.

2. Run ISQL and load the contents of your unload file into stxhotkd.

Example:

 load from "filename" insert into stxhotkd

Creating and Using Custom
Libraries
Creating a library to store generic functions rather than maintaining them at the
local level simplifies and streamlines the source code.

There is no functional need to segregate functions—the same result can be achieved
independent of the organization of the code. Yet the benefits gained by establishing
and building a custom library are clear: reduction in the total number of lines of
code within an application, greater modularity of source code, and facility of subse-
quent modification.

When functions shared by more than one module are moved to a custom applica-
tion library, the number of lines of source code specific to that program is reduced.

Modularity is a desirable goal in source code development. Much of the power and
ease of modification found in applications generated with the Code Generator is
rooted in modular organization. Resulting source code is more compact and more

Fitrix Screen Technical Reference

15-18 Advanced Features

understandable to those other than the author. When modifying library source, it is
easier to isolate the effects of code changes—you can more easily trace program
flow. Applications can be "grown" in a more orderly, concise manner. Rather than
"reinventing the wheel," you can take advantage of existing functions to fulfill sim-
ilar objectives within an application.

Global modifications are made by changing the code in one place, rather than in all
the local places the code appears.

Creating a Custom Library
Custom libraries created at the module level are found in a directory named
../mylib.4gs (relative to the .4gs source code directory).

To create a custom library, you must follow these steps:

1. Create the mylib.4gs directory at the module level.

2. Place the library function(s) into mylib.4gs.

3. Copy a Makefile into mylib.4gs. The Makefile can be created from
scratch, but it is far easier to copy an existing Makefile. The best type of
Makefile to use for this purpose is found in $fg/lib/scr.4gs.

For more information on compiling libraries refer to "Linking in Libraries with
$cust_path" on page 14-17.

4. Modify the Makefile copied into the ../mylib.4gs directory. Edit the
LIBFILES section to include your function filenames. Make sure the last
$(LIB) entry does not end in a backslash (\). Next, change the
LIB=../scr.a line to the following:

LIB=../mylib.a

5. After the Makefile file has been modified, run fg.make in the custom
library directory to compile your function(s).

6. Run fg.make on your local program to link your library functions into your
program.

Fitrix Screen Technical Reference

Creating and Using Custom Libraries 15-19

After completing these simple steps, you can use those functions in your local pro-
gram directories as if they resided there. The fg.make linker finds them and
makes them a part of the executable program.

The libraries trigger lets you append your custom directory after the
../mylib.a line but before the rest of the Fitrix Screen libraries. For more infor-
mation on this trigger refer to "libraries" on page 12-18.

The custom_library trigger allows you to place any custom library before the
../mylib.a library. For more information on this trigger refer to
"custom_libraries" on page 12-19.

The hypertext functionality provided for all applications generated by the Code
Generator also extends to custom libraries. For more information on hypertext
functionality, see the section "Locating Source Code."

The libraries Trigger
If you have built a library of custom functions and wish to use this custom library
with the current application, you can do so by specifying the libraries trigger
in a triggers file. Any libraries specified here are automatically placed into the
LIBFILES section of the local Makefile. Example:

Specifying the libraries trigger like so:

defaults
. . .

libraries
$(fg)/lib/mylib.a

;
. . .

input 1
. . .
. . .

input 2
. . .
. . .

results in the local Makefile looking like this:

Makefile for an Informix-4GL program
NAME = . . .

OBJFILES = . . .

Fitrix Screen Technical Reference

15-20 Advanced Features

FORMS = . . .

LIBFILES = ../lib.a \\
$(fg)/lib/mylib.a \\
$(fg)/lib/scr.a \\
$(fg)/lib/standard.a \\
$(fg)/lib/user_ctl.a

GLOBAL = . . .
 . . .

Note that any library specified through a triggers file places that library before the
Fitrix Screen libraries, so that if there are any functions that have the same name
across libraries, the functions found in the earlier LIBFILES entry are executed.

The libraries trigger must always be placed in the defaults section of the
triggers file. The libraries trigger is the only trigger that does not affect a .4gl
source code file.

Customizing Library
Functions
A highly useful example of customizing library functions in local code is disabling
ring menu options (Add, Update, Delete, etc.). This is done by using library func-
tions called ok_ functions. These ok_ functions are:

• ok_add

• ok_update

• ok_delete

• ok_find

• ok_browse

• ok_next

• ok_prev

• ok_tab

• ok_options

Fitrix Screen Technical Reference

Customizing Library Functions 15-21

• ok_exit

• ok_bang (for shelling out)

Before a ring menu option is executed, there is a call to its respective ok_ function.
If there are no restrictions on performing that ring menu option, the library ok_
function is called and it returns a value of true, which means it is OK to perform
that ring menu option.

However, if you wish to place restrictions upon a ring menu option (for example,
disabling the Delete option), the ok_ function handling that ring menu option may
be copied out of the library into local code and modified. A ring menu option may
be completely disabled if this local ok_ function returns a value of false. During
compilation, the linker finds the local ok_ function first and uses it instead of the
library ok_ function.

Here is an example of an ok_ function that has been modified. When the user is
trying to delete a customer with the Delete ring menu option, a warning comes up
and then the user is asked to verify deletion of the record:

 ##
 function ok_delete()
 # returning true or false based upon ok to delete
 ##
 #
 #
 define
 prompt_response char(1)

 open window delete_rec at 14,16 with 9 rows, 51 columns
 attribute (border, blue, prompt line last)
 display " W A R N I N G ! " at 1,1
 attribute (reverse)
 display "===" at 2,1
 display " Deletion of this record will also delete all " at 3,1
 display " orders and their items associated with this " at 4,1
 display " customer. " at 5,1
 display "===" at 8,1

 let prompt_response = null
 while prompt_response matches "[^yYnN]" or
 prompt_response is null
 prompt " Continue? " for prompt_response
 end while
 if upshift(prompt_response) = "N"
 then

Fitrix Screen Technical Reference

15-22 Advanced Features

 close window delete_rec
 return false
 end if

 close window delete_rec
 return true

 end function
 # ok_delete()

Notice how the user’s response to verification is interpreted. If the response is "N",
a "false" value is returned and the delete is not performed.

The ok_ functions are classified as midlevel functions.

Creating Application Help
Fitrix Screen generated applications have multiple levels of context sensitive online
help. You can define unique help at virtually any point in your application, whether
it be at the menu level, the ring menu level, or the field level. This section focuses
on creating ring menu and field level help.

When an application is run, help can be displayed by pressing [CTRL]-[w]. This
displays a screen containing help text relating to your current position. The follow-
ing is an example help screen:

The commands on the command line of the Help form are explained below:

Fitrix Screen Technical Reference

Creating Application Help 15-23

Info: This option leads to the Program Information Menu, which contains a list of
five selections. The Program Information Menu and its selections are documented
in the "Program Information Menu" on page 3-19.

View: This option scrolls through the text displayed on the Help form. The
INFORMIX-defined cursor movement keys (arrow keys, [F3], [F4]) are available
while viewing the text.

Update: This option is selected to enter or modify help text. To store text entered
on the form, use the [ESC] key.

Quit: This option exits the Help form and returns the cursor to the original position
prior to entering the Help form.

The Fitrix Screen Online Help System
This section describes how the help system works. The text that is displayed on
help screens is stored in the database. The logic that links the data in the database to
the particular blocks of text differs slightly depending on where help is called from.

The stxhelpd table contains all of the help information for the application. This
table contains both the actual help text itself, but also special keys that link the
strings of help text to various locations in the program. The stxhelpd table con-
tains the following columns:

stxhelpd:
 language char(3),
 userdef char(1),
 hlp_module char(18),
 hlp_program char(18),
 hlp_number smallint,
 line_no smallint,
 hlp_text char(60)

The hlp_module, hlp_program, hlp_number, and line_no col-
umns make up the unique key for the text. The data in these columns link the text
to the correct locations in the program.

The following describes the four ways help text is linked to various parts of the pro-
gram.

Fitrix Screen Technical Reference

15-24 Advanced Features

1. Ring menu help

If you’re at the ring menu, help text is keyed from the module and progid (this
was the initial intent of the help system - hence the hlp_module and
hlp_program column names in stxhelpd):

At the main ring menu:

This way, you can have help text that relates to the main screen in the program.

The whole idea behind hlp_number was that if a programmer wanted to shift
contexts within the screen (say, a different help in the options menu, or in find
mode, or something), they could programmatically call help with another num-
ber, and still keep the context to the module and program. The hlp_number
is usually 1.

2. Special screen types

Since the advent of add-on screens, you can have many screens in one applica-
tion. When add-on’s were conceived, a decision was made to tie screen level
help to the scr_id for these types of screens.

A screen is identified as an add-on type if the scr_id is not default. If the
scr_id is not default, it’s of the add-on family (including extensions and
zooms), so the scr_id is used for the hlp_program instead of the
program_name.

The zoom screen is the only type of additional screen that has a ring menu. So
for all practical purposes, zoom screens are the only additional screens that
have screen level help.

hlp_module hlp_program hlp_number

logic program_module program_name 1

example all i_alias 1

hlp_module hlp_program hlp_number

logic program_module scr_id 1

example all acct_zm 1

Fitrix Screen Technical Reference

Creating Application Help 15-25

3. Field level help

The most common type of help is field level help. Field level help is when you
are updating a form, and you press [CTRL]-[w] on a field. In this scenario, your
help is keyed as follows:

4. Formonly field help

The fourth level is a little bit more abstract. This is where a screen field isn’t
attached to a database column. These screen fields are of formonly type.

If you press [CTRL]-[w] on a formonly type screen field, help text is keyed to
the screen, not the database (for obvious reasons). Here’s the logic:

Notice the hlp_number is keyed to the input area number (in this case, the
detail section - area 2). This is because you can have the same field_name in
both input areas, meaning two different things, so you have to uniquely key
them.

Like the add-on example above, if the screen isn’t the main screen in the appli-
cation, the hlp_module is keyed to the screen vs. the program:

hlp_module hlp_program hlp_number

logic table_name column_name 1

example stxalisr gl_alias 1

hlp_module hlp_program hlp_number

logic moldule.program field_name input_area

example all.i_cashe gl_p1 2

hlp_module hlp_program hlp_number

logic moldule.scr_id field_name input_area

example all.inc_exc gl_p1 2

Fitrix Screen Technical Reference

15-26 Advanced Features

Note

There is a way to create field-level help that is unique to a program. Refer to
"Creating Field Level Help That is Unique to the Program" on page 18-2.

How to Create Help Text for Your
Applications
There are several ways to create help text for your applications. One way is to use
the Table Information form from the Database Administration option that is avail-
able in the Form Painter. This program allows you do define help and attach it to
your database columns. Another way is to create unload files with your own editor
such as vi and then load them into your database. Defining application help through
the form painter is discussed first.

You can also create help text by copying pre-defined help from another module or
program. For more information on copying help text refer to the Fitrix CASE Tools
Enhancement Toolkit Technical Reference.

Defining Application Help Through the Form Painter
The ability to define help for an application is part of the form painting process as a
matter of convenience; application help text can be modified at any time, even after
the 4GL code has been compiled.

Field level help text can be defined at the column level through the Database
Administration feature. Once help text has been defined for a particular column,
any field on any data-entry form that references that column accesses the help text
defined for the column.

The first step in defining application help is to select the Database option from the
Form pull-down menu. Before you can define help text for columns, you must
make a table current on the Table Information form. Use the Find command on the
ring menu to help make a table current.

Fitrix Screen Technical Reference

Creating Application Help 15-27

The following example shows the manufact table from the stores sample
database:

In the example above, help text defined for columns in the manufact table can be
accessed later from application data-entry form fields referencing columns in the
manufact table.

To define help text for columns you must update the record for the table containing
the columns. Records shown on the Table Information form contain two sections:
header and detail. The detail section, on the lower portion of the form, contains
information about columns comprising the table. With the cursor on a row in the
detail section, press [CTRL]-[n] to create, view, or modify help text for the particu-
lar column listed on that row.

Fitrix Screen Technical Reference

15-28 Advanced Features

Pressing [CTRL]-[n] while on a column in the detail section of the Table Informa-
tion form displays the following form:

The Help form shown here is the form used to define help text for database columns
and, thereby, for applications. Enter help text for data-entry fields that reference
this database column.

Creating Help Text Through Unload
files.
The other way to create help text for your programs consists of creating unload
files. Unload files are ASCII files that contain database information. The informa-
tion in an unload file is loaded into a database using SQL. Unload files are used to
add information to existing databases.

Online help text exists in an unload file called stxhelpd. This file contains all of
your original help text and is loaded into your customers database. The stxhelpd
unload files do not contain any user defined help. A typical stxhelpd file looks
like this:

ENG||colm_def|coldesc|1|1|The Column Name field contains a descriptive name
for the|
ENG||colm_def|coldesc|1|2|database column. You may enter a name that
better|
ENG||colm_def|coldesc|1|3|describes the database column.|
ENG||colm_def|collabl|1|1|This field contains the name of the column that
will appear|
ENG||colm_def|collabl|1|2|on the report. Enter the column name the way you
want it|
ENG||colm_def|collabl|1|3|to appear on the report.|

Fitrix Screen Technical Reference

Creating Application Help 15-29

ENG||dgrp_def|data_desc|1|1|This field contains the name of the Data Group.
Data|
ENG||dgrp_def|data_desc|1|2|Groups allow you to find the main table for the
report and|
ENG||dgrp_def|data_desc|1|3|restricts the SQL relationships to a manageable
set. By|
ENG||dgrp_def|data_desc|1|4|choosing a Data Group, all related tables are
automatically|
ENG||dgrp_def|data_desc|1|5|retrieved. Enter a descriptive name for the
Data Group.|

The first six columns in this unload file make up the "key" to the help text. This key
is what matches the help text to a particular point in a program. The first word,
ENG, represents the language tag. This tag allows you to display help text in other
languages.

Next you see a "|" (pipe). The pipe is a field separator in an unload file. Pipes sepa-
rate different columns in the database. In this example, you see two pipes next to
each other indicating that the second "field" is null.

This second slot is reserved for "User Defined." If you were to unload your stx-
helpd table from your database and a user had modified some field description, a
Y would appear here indicating that help is User Defined. When help is marked as
User Defined, future upgrades of the software do not overwrite the help definition.

The third column contains the database table name identifying the particular field.
Each field on a form is identified by a table and a column.

The fourth column contains the column identifying the field.

The fifth column usually contains the number 1.

The sixth column contains the line number of the help text. Each line of help text
for a field is numbered sequentially.

Fitrix Screen Technical Reference

15-30 Advanced Features

Creating BLOBs
The Code Generator and Form Painter both can utilize byte and text OnLine
engine data types. However, these data types can only be used when running the
OnLine engine.

If you are using the OnLine engine, you can create an application that uses BLOB
(Binary Large OBject) technology. A BLOB is a text file, graphics file, sound file,
or another application. The Code Generator provides most of the work for BLOB
functions, but it is up to the programmer to specify the program needed to invoke
the BLOB, whether it calls a read file, displays a graphic, plays a sound, or runs
another application.

For example, you may want to create an application that accesses a Wingz spread-
sheet. What you do is create a field in your application that is defined in the data-
base as type byte, choose the method for invoking the spreadsheet, and finally
determine if the spreadsheet can be modified.

When the generated application is run, an asterisk appears in the BLOB field when
data is available for that field. To display the data in the field, or in this case to run
the program to invoke Wingz, enter the field and press [CTRL]-[z]. The Wingz
spreadsheet appears on the screen. To return to the original application, perform a
regular exit for the BLOB application.

To use a BLOB, create a field with text or byte as the field type. You must then
enter the program and edit permission. Program and edit permission is entered
using the Form Painter. For more information on creating BLOBs with the Form
Painter refer to "Creating BLOB Fields" on page 7-18.

The following example shows the format required in the FGSS section of the .per
form.

Fitrix Screen Technical Reference

Creating BLOBs 15-31

blobdef = blobbyte, Wingz, Y

A typical program for a text BLOB might be vi or your standard editor. A typical
program for a byte BLOB might be xloadimage.

NOTES:

1. Field types of byte and text are only supported in the input 1(header) region of
header and header/detail forms.

2. BLOBs cannot be part of a detail table.

3. Full maintenance of byte and text BLOB fields is only generated for BLOB
fields which are in the main table for the form.

4. Full maintenance of byte and text BLOB fields is not provided for formonly
BLOB fields. You must provide additional code for maintenance of these for-
monly fields.

5. You cannot have a table with only a serial field and a BLOB field. Another
field type such as char or integer must be present when using a serial field and
BLOB field together in a table.

The Code Generator creates a temporary O/S file that contains the BLOB, and
passes the name of this file as the first argument to the program. When the BLOB is
exited, the temporary file is automatically removed.

If a BLOB is edited, it is updated in the table when [ESC] is pressed. If the [DEL]
key is pressed, any changes to the BLOB are not recorded.

blobdef is the keyword.

blobbyte identifies the BLOB as a byte type.

Wingz specifies the name of the program to call.

Y is the edit permission flag.

Fitrix Screen Technical Reference

15-32 Advanced Features

Custom 4GL Functions and BLOBs
If you want to run a custom 4GL function rather than a UNIX program you need to
specify the name of the function and any arguments in parentheses. The following
is an example:

my_funct("blobfield", 22, "Y")

In the above example, when [CTRL]-[z] is pressed in the field containing the
BLOB, my_funct() is called with the three parameters: "blobfield", 22, "Y".
Parameters are optional, but you must provide the parentheses to inform the Code
Generator that this is a custom 4GL function and not a program name. You must
also provide the function in the at_eof section of a trigger file.

Your custom 4GL function communicates with the generated code via the
scratch variable. Set scratch to one of the following before returning from
your function:

1. null: A null scratch specifies that no edit was performed. Your 4GL func-
tion must take care of the removal of the temporary file (if any).

2. "(delete)": If scratch contains "(delete)", then that specifies a delete request
to the generated code. The BLOB is deleted from the current row.

3. O/S filename: If anything else is specified in scratch, it is assumed to be a
UNIX filename where the BLOB resides.

An example 4GL function that handles BLOBs is found in $fg/lib/stan-
dard.4gs/run_blob.4gl and is named run_blob().

Sample BLOB Application
The following example explains how to add a byte BLOB field to an application
that calls up an Informix Wingz spreadsheet. This example shows what is contained
in the .per specification file. For more information on creating BLOBs with the
Form Painter refer to "Creating BLOB Fields" on page 7-18.

1. Define a byte field in the input 1(header) region of your .per form.

For example, specify something like the following in the SCREEN section of
the .per:

Fitrix Screen Technical Reference

Creating BLOBs 15-33

 byte column :[A]

Then specify the following in the ATTRIBUTES section:

 A = <table>.blobbyte, comments = "Wingz field";

2. Add the following line to the FGSS section of the .per form:

 blobdef = blobbyte, Wingz, Y

The Code Generator creates the necessary code to maintain the byte field and
invoke Informix Wingz with [CTRL]-[z] when the user is in the byte field.

In the current implementation of the Code Generator, Informix Wingz is invoked
with a temporary file name that does not have a ".wks" extension. Because of this,
the first time Wingz is run with a file the "Save as" option must be used to remove
the ".wks" extension that Wingz attempts to append to the filename with which it
was invoked.

Example of a .per form using byte and text fields:

{

Copyright (C) 1991
Fitrix, Atlanta, Georgia
Use, modification, duplication, and/or distribution of this
software is limited to the terms of the software agreement.
Sccsid: %Z% %M% %I% Delta: %G%

Screen Generator version: 4.11.UC1
}
DATABASE gordona

SCREEN
{

-------------------------- blob test table ---------------------------

non-blob column:[A1]
byte column :[A]
text column :[B]
}

TABLES
gordo

ATTRIBUTES
A1 = gordo.nonblob, comments = "Non-blob test field";
A = gordo.blobbyte, comments = "Wingz field";

Fitrix Screen Technical Reference

15-34 Advanced Features

B = gordo.blobtext, comments = "Vi text field";

INSTRUCTIONS
screen record s_daren (gordo.nonblob, gordo.blobbyte, gordo.blobtext)

delimiters " "
{

FGSS

defaults
module = demo
type = header
init = 1=0
attributes = border, white
location = 2, 3

input 1
table = gordo
filter = 1=1
blobdef = blobbyte, Wingz, Y
blobdef = blobtext, vi, Y
}

Fitrix Screen Technical Reference

Creating Skip Field Logic 15-35

Creating Skip Field Logic
The Skip Function allows you to skip a specified field on your form during data
entry when a specified condition is met. In other words, you can use conditional
logic in conjunction with the SK_ skip function to cause an enterable field to be
skipped during data entry. For example, say you have written skip logic for the
Address field on your order form that instructs the program to skip the Address
field if the Customer Name field is null. If you add a new order and leave the Cus-
tomer Name field blank, the program skips over the Address field and places you in
the next enterable field.

To create skip logic for a field:

1. Identify the fields that use skip field logic.

You can mark a field as a skip field on the Define Fields form in the Form Painter.
Marking skip fields in the Form Painter creates the following skip instruction in the
.per file:

skip = col1, col2, col3, col4

Fields requiring skip logic need to be specified in the .per file to cut down on the
size of the generated function. By specifying which fields use skip logic, code is
generated only for those fields, rather than for every field.

2. Write the skip logic for each field and put it in a .trg file.

To call the skip function you must specify the condition that causes the field to be
skipped and place the following code into your .trg file:

before_field {column name}
if {condition}
then
 call llh_skip(prv_fld)
end if

The location of the field determines the exact syntax of your skip statement. For
example, if you need to skip a field in the input 2 section of your form, then use the
following:

before_field {column name}
if {condition}
then
 call lld_skip(prv_fld)
end if

Fitrix Screen Technical Reference

15-36 Advanced Features

If you want to call the skip function from a form type other than header or
header/detail forms, then use:

call SK_scr_id(prv_fld)

Cursor Handling Philosophy
Code generated with Fitrix Screen uses cursors as temporary tables to assist with
the manipulation of data within the data-entry application.

The cursor philosophy has many advantages:

• You can use database transactions and the OnLine engine. (The library code
handles the begin/commit/rollback work statements.)

• Cursors can be programmed easily—all of the work is done in the user interface
libraries.

• You can use the ring_sort() routine from the options menu to have the
user define the sort criteria for the browser.

• You can watch the computer gather the documents (in increments of 100).

• You can press [DEL] during the document gathering process without canceling
the cursor. The cursor retains the documents gathered before [DEL].

• You can pass a filter clause on the command line.

• You can pass an order clause on the command line.

Fitrix Screen Technical Reference

Creating a Generic Text Picker/Editor 15-37

Creating a Generic Text
Picker/Editor
A text picker is a list box that displays a list of items to the user. Once the user
selects the data from the picker, the data is returned into scratch, and then
scratch can be set to the field into which the data is returned. Before a picker is
run, picker items must be put into a system-maintained array. Picker items can be
hard coded into the array with the textput() function:

call textput("Harpo")
call textput("Groucho")
call textput("Chico")
call textput("Zeppo")
call textput("Karl")

textput() can also accept the argument of "(see scratch)" to pull a picker item
out of scratch . The textpick() function is called to pull up the picker with the
values loaded. The argument of textpick() is the heading of the picker. For
example:

if textpick("Pick a Marx Brother") > 0
 then let p_orders.marx_brother = scratch
end if

textpick() automatically determines what window size is needed based on the
widest picker item or header. The picker scrolls if there are more than 6 items.
textpick also returns the number of items it found, so in the example, if there
are no items that come up the picker does not come up.

textsel() is like textput except that it expects scratch to contain a valid
SQL statement, and it loads the picker array with the result of that SQL statement.
textsel returns the number of rows that have been selected.

Here is an example of how textsel() and textpick() called before the zip-
code field is entered on a customer input screen. textsel interprets the city and
state entered for the customer and textpick() pulls up a picker with zipcodes
for that city and state. In the trigger file, simply add the following:

Fitrix Screen Technical Reference

15-38 Advanced Features

input 1
static_define
 quote char(1)
 ;
before_field zipcode
 let quote = " ""
 let scratch =
 "select distinct zipcode from customer where customer.city = ",
 quote, p_stomer.city, quote, "and customer.state = ",
 quote, p_stomer.state, quote, "order by zipcode"
 if textsel() > 0 then
 if textpick("Select a Zipcode") then
 let p_stomer.zipcode = scratch
 end if
 end if
 ;

The Text Editor: The text editor is a generic set of routines that display data in a
window where it can be edited and then retrieved.

The size of the text editor window is determined when the textedit() function
is called. Text edit windows can be opened in increments of 20, 30, 40, 50, 60, or
74 characters.

The Text Picker: The text picker is a generic set of routines that display a win-
dow and allow a user to scroll through a list of data and retrieve a line.

The text picker determines the size of the window to open based on the longest line
of data in the array.

If there is only one item in the menu, that item is picked automatically and the
menu is not displayed.

The flow for these windows is as follows:

1. Fill the array with data set (via textput() or textsel())

• call texthelp() if you want to define help text

• call textdefault() if you want default data for the editor (not for picker)

2. Call the editor or picker

3. Return the edited or picked data

The following functions, which can be found in $fg/lib/stan-
dard.4gs/lib_text.4gl, are included in the picker/editor group:

Fitrix Screen Technical Reference

Creating a Generic Text Picker/Editor 15-39

textinit()— call to reset the text array

This function rarely needs called. If no initial data is loaded into the editor, or if
you are looping through textput()’s and the loop may not execute once,
then this function is called before any other text* calls to initialize the text
arrays. This function is called by textput() and textsel(). If you are
using these functions, you do not need to call textinit().

textput("text") — place "text" into next available slot

This function puts text into the next available array element. After the
picker/editor is called, it cleans out the array for future textput() calls. If
the value of text = "(see scratch)", then the value to place into the array element
is in the scratch variable.

Example:

 call textput("Apples")
 call textput("Oranges")
 let scratch = "Peaches"
 call textput("(see scratch)")

textsel() — provide text via an SQL select statement

This function expects the scratch variable to contain a valid SQL statement. It
executes that SQL statement and loads the array with the database values. It
then returns the number of rows that have been selected. If the number of rows
returned from the SQL statement is greater than the number of elements in the
array, textsel() returns -1. If the SQL statement fails for any reason,
lib_error() is called, and 0 is returned.

Example:

 let scratch = "select tabname from systables order by tabname"
 if textsel() > 0
 then

 if textpick("System Tables") > 0
 then let tabname = scratch

 end if
 end if

Fitrix Screen Technical Reference

15-40 Advanced Features

textdefault("default key") — define default text for the editor

This function defines the unique key to use to place default text into the editor.
The default text is placed into the editor if there are 0 lines of text to be edited
upon entry into the editor. If there is a default key, the (Zoom) message
appears. If Zoom is pressed during text entry, the default text can be edited.

texthelp("module","program",number) — define help text used

This function defines for the picker/editor the module/program/number of help
text to use instead of the generic help text.

texthlp(number) — define help text used (shortcut - uses progid)

Same as texthelp(), only it gets module/program from progid.

textedit("heading",width) — enter the text editor

This function invokes the text editor on the array. It places the heading at the
top of the window. The length defines the length of the variables in the array.
You may pass any length, though windows are limited to the following lengths:
20, 30, 40, 50, 60, and 74. If the length of the variables exceed the length of the
window, then data may be truncated. Upon return, the scratch variable con-
tains the data in the array element selected by the user (by pressing [ESC]). If
[DEL] is pressed, the function returns false. It returns true if [ESC] is pressed.

textpick("heading") — enter the text picker

This function invokes the text picker. It places the heading at the top of the win-
dow. The window size is determined by the longest value in the array, or the
heading size (whichever is longest). A window is opened displaying the data in
the array. If the user presses [ESC] to pick an item, scratch is filled with
data from that array element, and the function returns true. If [DEL] is pressed,
scratch is nulled, and the function returns false. If [CTRL]-[z] is pressed, the
function returns false (nothing picked) but places the string zoom in
scratch[1,4] and the text of the line the cursor was on (when [CTRL]-[z])
in scratch[5,80].

Fitrix Screen Technical Reference

Creating a Generic Text Picker/Editor 15-41

Example:

 if textpick("Pick a Fruit") > 0
 then let fruit = scratch

 end if

This example opens a window with "Pick a Fruit" at the top. It then waits for
the user to respond. If the user picks an item, the variable fruit contains the
selection.

If there is only one item in the menu, that item is picked automatically and the
menu is not displayed.

textget() — get the next line of the text array

This function is called after textedit (or textpick) to get the data in the
array elements. textget() is the opposite of textput(). A call to text-
get() returns the "next" item from the picker. The "next" item is always item
#1 the first time textget() is called for a given picker and is incremented
for each call after that. This function is useful when you use the function
textsel() to load the picker instead of a series of calls to textput().
textsel() automatically loads the picker for you using the SQL query given
as an argument. Later, if you need the results of the query for some reason, it is
faster to collect the items from the picker instead of performing the query again.
When you call textget() the "next" item in the picker is copied into
scratch and textget() returns true. Once there are no more items to
return, textget() returns false.

Example:

 let line = 1
 while textget()

 let my_array[line].text = scratch
 let line = line + 1

 end while

This example loads the array my_array with the contents of the picker.

Fitrix Screen Technical Reference

15-42 Advanced Features

textview() — view form of textpick

This function behaves in the same manner as the textpick() function
except for the message displayed on the form. The textview() message
appears as follows:

 View: [ESC] or
 [DEL] to Quit

textzoom() — insert the (Zoom) message

This function tells the text picker to present the (Zoom) message.

A few examples:

Pick from a list
call textput("Apples")
call textput("Oranges")
call textput("Peaches")
call textput("Bananas")
call textput("This is a long fruit name that requires a wider window")
if textpick("Choose a Fruit") > 0
then let fruit = scratch
end if

- or -

while textpick("Choose a Fruit") = 0
error "You need to pick a fruit"

end while
let fruit = scratch

Pick a table from systables
let scratch = "select tabname from systables order by tabname"
if textsel() > 0
then

if textpick("Database Tables") > 0
then

let tabname = scratch
end if

end if

Edit a known set of data
let scratch = "select text, line_no from custnotes
 where cust_key = ", cust_num, " order by line_no"
if textsel() < 0
then

error "Too many lines to edit."
else

call texthelp("ar","customer",4) # Define the help text
call textdefault("table: custnotes") # Define a unique key for default text

Fitrix Screen Technical Reference

Error Handling Functions (fg_err and lib_error) 15-43

if textedit("Customer Notes",50) = true
then

delete from custnotes where cust_key = cust_num
let line_no = 1
while textget()

insert into custnotes values(cust_num, scratch, line_no)
let line_no = line_no + 1

end while
end if

end if

Error Handling Functions
(fg_err and lib_error)
There are two error functions commonly used when coding data validation logic:
fg_err() and lib_error(). Which one is used depends on whether or not
you want to duplicate the "common" error you have defined in multiple programs.

Example:

call fg_err(3)

The fg_err(#) (where # is the actual error number) function is used when you
want to have a specific call to an error unique to the application you are running. It
assumes the module name and the program-id from the variables loaded at run
time. Only the error number you want to use is passed to fg_err(). fg_err()
looks to the variables for module and progid.

The lib_error("module","program-id",#,"") function is called to
access any error message in the system.

Example:

call lib_error("gl","i_genjrn","2","")

The extra "" are for storing a technical message that is displayed optionally when
errors occur during execution of the program.

The lib_error() and fg_err() functions are in the Enhancement Toolkit,
and since there is no source code available for Enhancement Toolkit, you cannot
modify the way they work.

Fitrix Screen Technical Reference

15-44 Advanced Features

Using a Custom Error Message with
Verification Lookups
If you want to incorporate a more specific message when a value is not found, you
must "hand-code" the lookup into .ext files. There are two steps to creating a
lookup with a custom error message:

1. Change the second argument of the call to llh_lookup to "false" to have
it continue without calling the standard error message.

2. Create specific logic to handle the "value not found" condition.

This example uses the library function fg_err() to call the error message. This
error message number is "1." Here is an example:

 # After data_changed logic
 if data_changed
 then
 case
 when scr_fld = "state"
 # Perform Lookups
 #_customer_state_lookup
 if llh_lookup("state_lk",false) = false and # do nothing
 length(this_data) != 0 # upon error
 then
 call fg_err(1) #No State Code for what you entered
 let nxt_fld = "state"
 return
 end if
 end case
 end if

This modification is made with block commands. First you need to create an .ext
file and create a block command to replace the generated lookup with your custom
version.

Fitrix Screen Technical Reference

Creating a Post-Processor 15-45

Create a replace block command:

start file "header.4gl"

replace block llh_a_field customer_state_lookup

 if llh_lookup("state",false) = false and # change second
 length(this_data) != 0 # argument to "false"
 then
 call fg_err(1) # No State Code for what you entered
 let nxt_fld = "state"
 return
 end if
 ;

Creating a Post-Processor
The Code Generator allows you to customize generated code by running a post-pro-
cessor on the code after generation. This type of customization is useful for global
changes that affect many programs.

The fg.screen program runs a post-processor on the local application if the
environment variable $local_scr is set. Use this variable to point to the name of
the program you wish to run on the generated 4GL code.

For example, assume you have written a more relevant initialization routine (say,
chg_init()) than the generic init() function that is created by the Code Gen-
erator. You want main.org to call chg_init() rather than the init() func-
tion. You can set up a post-processor to change the initialization call in main.org
to chg_init(). The steps in setting up this type of post-processor program are as
follows:

1. Write a program (chg_init for example). It might be a shell script that runs
"sed" on main.org as follows:

#chg_init
sed "s, call init, call chg_init," < main.org > main.tmp
mv main.tmp main.org

Fitrix Screen Technical Reference

15-46 Advanced Features

2. Set your $local_scr environment variable to the name of the post-processor
script (you might want to do this in your .profile file):

Bourne Shell
local_scr=chg_init; export local_scr

C Shell
setenv local_scr chg_init

Once the Code Generator completes the generation of the application, the local
main.org file contains the function call chg_init() rather than init().

Note

Post-processors must operate on the .org files. If you try to change something in
a .4gl file, those changes are lost because the Featurizer copies the contents of
the .org file into the .4gl file before merging the .ext and .trg files.

The lib_message Function
The message function lib_message() displays certain messages at fixed loca-
tions on a screen. Here is a list of events that can be passed (as arguments) to
lib_message and their results:

zoom_off displays "======" at line 3

zoom_on displays "(Zoom)" at line 3

note_off displays "=======" at line 3

note_on displays "(Notes)" at line 3

sort displays "Sort: [ESC] when..." message at line 1

find displays "Find: [ESC] to Find..." message at line 1

zoom displays "Zoom: [ESC] to Select..." message at line 1

update displays "Update: [ESC] to Store..." message at line 1

add displays "Add: [ESC] to Store..." message at line 1

Fitrix Screen Technical Reference

The lib_message Function 15-47

tab displays ", [TAB] Next Window" at line 1

scroll displays "Scroll: [TAB], [DEL],..." message at line 1

scr_bottom displays the value in scratch at calculated screen bottom

textview displays "View[ESC] or" message at line 1

choose displays "Choose: [ESC] to Select," message at line 1

errchose displays "Errors: [CTRL]-[z] to..." message at line 1

cur_path displays "Cursor Path: [ESC] to ..." message at line l

help displays "Help: " at line 1

For some of these events, the variable scratch can be set to a message just before
the call to lib_message. The result would be the message being displayed at the
fixed location on the screen. As always, care should be taken when manipulating
the value of scratch.

Here is an example of how lib_message appears on a running application:

Just below the ring menu options on the right side of the menu line, ("=======") is
the result of lib_message. The argument note_on and zoom_on are passed
to lib_message causing (Notes) and (Zoom) to appear on the right side of the
menu line.

Fitrix Screen Technical Reference

15-48 Advanced Features

Modifying lib_message
All of the messages that are accessible through lib_message are held in the
Fitrix Screen message table, stxmssgr. Messages such as (Zoom), (Notes),
Update: [ESC] to Select, Errors: [CTRL]-[Z] to ... are stored in this table. If you
have messages that you want to appear on the screen, you can add your messages to
the message table and call your message with lib_message. Say you have a
simple message called "Gee, I’m happy today" to display to the screen. Using
lib_message involves a three-step process:

1. Add the message to the stxmssgr table.

2. Modify the library function lib_message.

3. Call lib_message to make your custom message appear.

Step 1 - Adding the message to stxmssgr.

All messages used in Fitrix Screen generated programs are held in the table
stxmssgr, a schema of which looks like this:

language char(3),
mssg_module char(8),
mssg_program char(8),
mssg_number smallint,
message char(132)

Notice how messages are uniquely defined by module, program and number, just
like error text, help text, navigation items, and hot key definitions. You can specify
any module or program you wish. If your message is throughout several input pro-
grams, you may wish to use the generic Fitrix Screen module and program and
make the mssg_module and mssg_program "lib_scr" and "message"
respectively. You can add your row to stxmssgr as follows (in unload file for-
mat):

ENG|lib_scr|message|39|Gee, I’m happy today|

Notice how a unique mssg_number of 39 is assigned. There is a static array for
lib_message that holds each message with mssg_module of "lib_scr" and
mssg_program of "message." This array size is currently at 38, so in this
example number 39 was assigned to this message.

Fitrix Screen Technical Reference

The lib_message Function 15-49

Step 2 - Modifying lib_message.

The library function lib_message needs to be modified to access your new mes-
sage. Since it is a library function, make a custom library adjacent to scr.4gs
and copy in message.4gl (the .4gl file that contains lib_message). Make
your modifications there. Building and compiling custom libraries is documented
in "Creating and Using Custom Libraries" on page 15-17.

As an overview of the function lib_message, two things occur:

1. Upon the first call to lib_message, lib_message’s static array is filled
with all of Fitrix Screen’s generic messages (mssg_module of "standard"
and mssg_program of "message").

2. The message is displayed to the screen at the location specified. The location is
indicated by the argument passed to lib_message . Within lib_message,
this argument is called "funct."

So, to modify lib_message to accommodate your new message ("Gee, I’m
happy today"), you add code to message.4gl as follows:

1. At the very top is the static array that holds all the messages. Bump this up
from "38" to "39" to make room for our new message:

arr_mesgs array[38] of record # old Message text
 arr_mesgs array[39] of record # Message text
 mssg_text char(132)
 end record,

2. An "if" statement loads this static array the first time lib_message is
called ("if mssg_prep is null..."). In lib_message, the function
fg_message() is called passing mssg_module, mssg_program,
and mssg_number (just like lib_error). fg_message does the
select on stxmssgr and returns the result. At the very end of this "if"
statement, add the call to fg_message to access your message #39. Make
sure and add the comment so you know what message is in element number
39 of the array:

 let arr_mesgs[39].mssg_text = fg_message("lib_scr","message",39)
 #39: "Gee, I’m happy today."
 let mssg_prep = "Y"
 end if

Fitrix Screen Technical Reference

15-50 Advanced Features

3. A CASE statement that evaluates the argument passed to lib_message
("funct"). Each WHEN clause evaluates "funct" and displays the message
at the hard-coded location. For this example just display the message to the
screen. The default location of the lower left hand corner is used:

 when funct = "gee"
 display arr_mesgs[39].mssg_text clipped

The WHEN clause is placed anywhere in the CASE statement.

When specifying a location, there are some helpful library-level variables
that can be used, such as num_rows and num_cols . num_rows stores
the number of rows in the current window (1-24). num_cols stores the
number of columns in the current window (1-80). The library function
ring_clear simply clears the menu lines on the very top.

The preceding are all the modifications necessary to lib_message. After com-
piling, this modified library function is ready to be called from your local program
directory.

Step 3 - Calling lib_message from the program directory

The call is made entirely with triggers. Place the call anywhere you want it to
appear in the input program. For this example, it is put in after-field logic:

 after_field po_num
 call lib_message("gee")
 ;

Notice how the argument "gee" is passed to invoke our "Gee, I’m happy today"
message. If you have put the modified message.4gl file in a custom library,
don’t forget to include the custom library in the list of libraries to link in (LIB-
FILES in the Makefile). Use the libraries or custom_libraries trigger to
do this. Regenerate, recompile, and test.

Fitrix Screen Technical Reference

Shell Escapes and UNIX Commands 15-51

Shell Escapes and UNIX
Commands
When running a generated program in the standard UNIX Bourne shell you can
"drop out" to the operating system by typing an [!] and then the command sh.

When the [!] is pressed, the menu prompt changes to:

System: Enter command or [DEL] to quit
:

Typing a command at this prompt is equivalent to typing the same command before
entering the Fitrix Screen program.

Fitrix Screen has implemented this as an event that can be used with Navigation, or
assigned to a hot key. The default hot key definition for this event is [CTRL]-[o].

Screen output from operating system commands appear at the bottom of the screen
and force the Fitrix Screen form to scroll upward (unless the command redraws the
screen. When the command is completed, the program prompts:

Press [ENTER] to continue.

Pressing any key causes the program to redraw the form and return to the Fitrix
Screen program.

Preventing Shell Escapes
You may prevent users from access to the shell by setting the $SHELL variable to
false. To prevent your users from shelling out of your Fitrix Screen generated pro-
gram set the following variable:

SHELL=false; export SHELL

This variable should be set in the $fg/bin/fg.startup script. If you use
Fitrix Menus to run your program, the $SHELL variable is automatically set to
/bin/sh in fg.startup. Therefore you need to put the SHELL=false; export
SHELL command just before the mz command in fg.startup.

Fitrix Screen Technical Reference

15-52 Advanced Features

16-1

16
Version Control

This chapter discusses version control; a concept that allows you to easily maintain
different versions of your application programs without duplicating code. This
chapter explains:

n What files are affected by version control

n How to organize your applications to take advantage of version control

n What special triggers are affected by version control

n How the featurizer works with version control

n How to run programs when using version control

n How Fitrix Menus works with version control

Fitrix Screen Technical Reference

16-2 Version Control

Introduction to Version
Control
Version Control is a key to designing applications that grow with the users needs
rather than becoming outdated as technology advances and user needs and desires
change.

Version control is useful whenever it is helpful to distinguish two or more versions
of the same program(s). These situations include:

• When the programs are to be used by two or more sets of users, who may have
different desires regarding functionality.

• "Co-development" arrangements in which two or more groups of programmers
are contributing features and fixes to the code.

• When a base product is to be modified by others.

• When an application or module is to be offered in various "suites," usually
varying with the size of the company or corporation.

• When different sets of features are selected by different groups of users, as in
different business units and offices of a corporation.

• When a module in live use by customers is being upgraded. New versions can
be "turned on and off" during testing and review.

The multi-version features of Fitrix Screen improve management of these situations
and reduce duplication of code and work in creating and maintaining multiple ver-
sions of programs.

Fitrix Screen allows you to easily maintain different versions of your application
programs without duplicating code. Version control allows you to share common
files such as .per forms, .trg, and .ext files. What this means is that you do not have
to copy these files to every program directory if you are creating multiple versions
of your programs. Without version control, you would need to have all .per, .trg,
and .ext files present in every program directory. Duplicating code consumes space
and becomes a nightmare to maintain.

Fitrix Screen Technical Reference

Introduction to Version Control 16-3

In order to take full advantage of version control, be sure you read everything in
this chapter. You must learn what files are used and when, and which triggers or
blocks are used to build your program.

There are several facets to version control.

1. Directory structure.

2. The directory search path - $cust_path.

• changing the default $cust_path

• which .per forms to generate code for

• which .trg files are merged

• trigger precedence

• which .ext files are merged

• block precedence

3. Using non-generated .4gl files.

4. Running programs when using version control.

5. Fitrix Menus and version control.

The following diagram gives a simple scenario of how version control works. In
this example, the base program exists in the i_order.4gs directory. In order to
customize this program by adding new triggers, an i_order.4gc directory is
created. All changes to the .4gs program are added to a new trigger file in the .4gc
directory. The new value added program is created by running the Code Generator

Fitrix Screen Technical Reference

16-4 Version Control

and then compiling the program, which invokes the Featurizer. The Code Generator
and Featurizer use code found in the base directory along with the new triggers to
create the new version of the program.

screen.per

screen.trg

merged.4gl merged.4gl

screen.trg

Code
Generator

Featurizer

i_order.4gs i_order.4gc

generated.orggenerated.org

new triggers

Fitrix Screen Technical Reference

Required Directory Structures 16-5

Required Directory
Structures
The discussion of version control begins first with how it works with .per files only.
This serves to introduce you to the concept of version control. Once you understand
the basic concept you learn how version control works with triggers, blocks, and
the Featurizer.

The program directory extension, known as the cust_key, is stored in the data-
base along with the module basename, the program basename, and the screen base-
name. The directory extension is the key piece of information used by version
control to determine where it is and where it needs to go. Think of directory exten-
sions as road signs. Both the Code Generator and the Featurizer identify where
.pers, .trgs, and .exts are located by the extension of the current directory.

In order to use version control effectively, you must follow the module-program
directory structure illustrated below. In this example, the module is General Led-
ger, and the programs are different versions of an i_chart program. Listed under
the directory name are perform file names.

Version control requires extensions on your program directories. We recommend
the following conventions:

4gs extension -The program directory that contains the base version of the pro-
gram. In the example above, the base product contains screen1.per,
zoom.per, and browse.per.

gl.4gm

i_chart.abc i_chart.xyz i_chart.4gc i_chart.4gs
screen1.per

zoom.per
browse.per

screen1.perzoom.perscreen1.per
browse.per

module level

program level

Fitrix Screen Technical Reference

16-6 Version Control

4gc extension - The program directory for the “value-added” directory. This
contains additional changes on top of your base package that you want to apply
to all your customers. In the example above, you may have decided to modify
the base screen2.per. Perhaps you added an extra field. You would want
this changed screen2.per to apply to all your clients, so you place it in the
.4gc directory.

Any other extensions are considered to be client-specific program directories, cre-
ated to further specialize programs for specific client needs:

xyz extension - The special program directory for your “xyz” client. For exam-
ple, this client may want both a different browse screen, and additional fields to
the screen2.per that the value-added screen2.per does not have. Both
custom perform files exist in this .xyz directory.

abc extension - The special program directory for your “abc” client. For exam-
ple, this client may want a field removed in screen1.per.

Fitrix Screen Technical Reference

Version Control and the Code Generator 16-7

Version Control and the
Code Generator
When using version control, the Code Generator automatically locates all of the
.per files needed to generate the program, even if they are not contained within the
current directory. In order for the Code Generator to automatically find the correct
.per files, you need to invoke it as follows:

fg.screen -dbname database

Notice that no perform files are specified. When invoked in this manner, the Code
Generator makes a list of the perform files in the current directory, and then looks
in the next directory down in the hierarchy. The default hierarchy of directories is
as follows, from highest to lowest:

client-specific - in the example above, “abc” and “xyz”
value-added - in the example above, “4gc”
base - in the example above, “4gs”

The directories are always scanned (when $cust_path is not set) from the bot-
tom of the hierarchy up to the current location.

If you run the Code Generator in the base (.4gs) directory, which is the lowest, it
does not look in the value-added (4gc) directory for perform files.

If you run the Code Generator in the .4gc directory, the .pers in the .4gs directory
are found first, and then the .pers in the .4gs directory. If any .pers exist in the .4gc
directory that have the same name as a .per found in the .4gs directory, the .per in
the current .4gc directory is used instead.

You can change the search path the Code Generator uses to find .per files by setting
an environment variable called $cust_path. For more information on the
$cust_path variable refer to "Changing the Version Control Search Path
($cust_path)" on page 16-11.

Fitrix Screen Technical Reference

16-8 Version Control

By running the Code Generator without specifying the .per files and without setting
the $cust_path variable, the following files are processed:

When the Code Generator is run from i_chart.4gs, it uses only the .per files
contained there.

i_chart.4gs: The files used would be:
../i_chart.4gs/screen1.per
../i_chart.4gs/zoom.per
../i_chart.4gs/browse.per

When the Code Generator is run from the i_chart.4gc directory, the
zoom.per in the .4gc directory takes precedence over the zoom.per in the
i_chart.4gs directory and it is used to create the application.

i_chart.4gc: The files used would be
../i_chart.4gc/zoom.per
../i_chart.4gs/screen1.per
../i_chart.4gs/browse.per

When the Code Generator is run from the i_chart.xyz directory, the
zoom.per and the browse.per contained there take precedence over the
zoom.per and the browse.per contained in the value-added (.4gc) and the
base (.4gs) directories.

i_chart.xyz: The files used would be
../i_chart.xyz/zoom.per
../i_chart.xyz/browse.per
../i_chart.4gs/screen1.per

When the Code Generator is run in the i_chart.abc directory, it uses the local
(.abc) screen1.per, the zoom.per in the value-added (.4gc) directory, and
the browse.per from the base (.4gs) directory.

gl.4gm

i_chart.abc i_chart.xyz i_chart.4gc i_chart.4gs
screen1.per

zoom.per
browse.per

screen1.perzoom.perscreen1.per
browse.per

module level

program level

Fitrix Screen Technical Reference

Version Control and the Code Generator 16-9

i_chart.abc: The files used would be
../i_chart.abc/screen1.per
../i_chart.4gc/zoom.per
../i_chart.4gs/browse.per

The ../directory/screen_name format is used in the creation of the
Makefile FORMS=... line. The correct perform files are then compiled with
fg.make.

If the Code Generator is invoked with perform files specified on the command line,
the Code Generator does not search other directories in the hierarchy as described
above. The Code Generator creates the FORMS=... line in the Makefile with
only those perform files found in the current directory.

Preventing Code Generation on a Base
.per Form
There may also be cases where you want to disable a particular screen for a client.
To do this you need to copy that screen into that client’s directory, and edit the form
by adding the line non_source_form, so that code is not generated from it. You
need to copy the form into the clients directory, because if you don’t, the Code
Generator finds the real perform file further down the hierarchy.

The non_source_form statement is placed in the .per immediately following
the copyright statement within the first set of braces {}.

{###
Copyright (C) 1993
Your Company Name
Use, modification, duplication, and/or distribution of this
software is limited to the terms of the software agreement.
Sccsid: %Z% %M% %I% Delta: %G%
##

non_source_form}

Fitrix Screen Technical Reference

16-10 Version Control

The Featurizer and Version
Control
The Featurizer merges triggers and blocks into generated source code and supports
version control. The Featurizer allows you to merge triggers and blocks found in
different directories into source code in your current program directory. If you are
developing in multiple directories, you do not need to recopy trigger files or .ext
files into your current directory. This avoids keeping duplicate code in multiple
versions of the same program, which saves disk space and simplifies maintenance.

When using version control, the goal is to keep only the differences of a version in
a program directory. For instance, for user ABC Company’s version of the
i_invce program, the .trg and .ext files in the i_invce.abc directory would
contain only the custom triggers and features needed to create ABC Company’s
custom version. All of the .trg and .ext files that are part of the base product remain
in the .4gc and .4gs directories.

The Featurizer looks at the $cust_path variable to determine where to look for
files to merge. If you run the Featurizer in a custom directory such as .abc without
setting the $cust_path variable, files are processed from program directories in
this order:

1. .4gs

2. .4gc

3. any other 3 character extension (for example, .abc)

When you invoke the Featurizer from an ".abc" directory, the Featurizer immedi-
ately looks for a .4gs directory with the same prefix (i_invce in the above exam-
ple) and then loads all code from the .trg file and all code from any specified .ext
files. Remember the feature must be plugged in via a base.set file for the Fea-
turizer to load the .ext file for that feature.

Next, the Featurizer looks for a .4gc program directory with the same prefix
(i_invce in the above example). Again, it loads .trg logic and .ext logic as
instructed. If the .4gc directory does not exist, then it skips this step.

Finally, the Featurizer returns to the user-specific directory from which it was
invoked and loads in any remaining .trg and .ext logic from this directory.

Fitrix Screen Technical Reference

The Featurizer and Version Control 16-11

The end result of pre-processing is a suite of .4gl source code files containing
plugged in features from .4gc or .4gs program directories, plus any trigger or fea-
ture logic specific to that user only.

Trigger and Block Command Priority
The order that a trigger or block command is merged determines its priority. Like
.per files in the current directory take precedence over all .per files found elsewhere
in the directory path, block commands and most triggers replace identical com-
mands. However there are some special triggers that can be specified to either
replace or append subsequent triggers. These special triggers are described on page
16-15.

Specifying Which .ext Files to Merge
When using version control and .ext files, you must remember to place a
base.set file in every directory you generate or compile in in order to merge
selected .ext files. With version control, .ext files are not automatically merged
from parallel directories like triggers. You must specify every .ext file that you
want to merge into your local program. This means that you have to list every .ext
file in every directory in the search path.

The best technique for making sure the necessary .ext’s are merged is to copy the
base.set file from the previous directory in the search path into the local direc-
tory. After copying the base.set file, you then add to the list of .ext’s contained
within it any local .ext’s.

Changing the Version Control Search
Path ($cust_path)
You can set a UNIX environment variable called $cust_path to inform the
Code Generator and Featurizer which order and which directories to search for .per,
.trg, and .ext files. The default $cust_path is 4gc:4gs. The $cust_path
variable accepts three character extensions separated by semi-colons.

Fitrix Screen Technical Reference

16-12 Version Control

For example, if you set $cust_path to 4gc:abc:4gs, and you generate or
compile from the .4gc directory, the tools first search the 4gs directory, then the abc
directory, and finally the .4gc directory for .per, .trg, and .ext files to process.

If you generate in a directory not specified in the $cust_path, the generator
looks at the last directory in the $cust_path first and then continues up the
$cust_path until it finally reaches the current directory.

For instance, you could instruct the Featurizer to read .trg and .ext files in this
order:

1. .4gs

2. .abc

3. .4gc

or perhaps:

1. .abc

2. .4gc

3. .4gs

4. .xyz

The $cust_path variable also determines the order .trg files and .ext files are
merged into the .org code. Although the current directory is the top of the hierarchy
and the triggers found there take precedence over all similar triggers in the
$cust_path, it is the last one processed. The Featurizer processes the triggers in
the last directory in $cust_path first, then works its way up to the current direc-
tory.

Note

The order directories are searched in the $cust_path is from the last exten-
sion listed to the first. This gives the first extension in the path precedence.

Fitrix Screen Technical Reference

The Featurizer and Version Control 16-13

An example of trigger hierarchy follows:

If you have your $cust_path set to 4gc:abc:4gs, and you run the Featurizer
from the .4gc directory (the .4gc directory is current), then the Featurizer first
searches the .4gs directory for any .trg and .ext files and merges them into the .4gl
files in the current directory, then it searches the .abc directory and merges those
.trg files into the .4gl files in the current directory, and finally the .trg files in the
current directory are merged into the current .4gc directory.

The hierarchy depends on what directory you are in when you invoke the Featur-
izer. Triggers in the current directory take precedence over all triggers from there
on down the CUSTPATH hierarchy.

The Makefile’s CUSTPATH Variable
Setting the $cust_path environment variable before code generation causes the
contents of the variable to be written to the CUSTPATH variable in the resulting
Makefile. If a CUSTPATH setting already exists in a Makefile, re-generation
does not cause the current setting of CUSTPATH to be overwritten. The new
Makefile keeps the CUSTPATH setting in the old Makefile. For more infor-
mation on the $cust_path variable refer to page 16-11.

Another way to specify CUSTPATH is by setting it in the Makefile, as follows:

Makefile for an Informix-4GL program

.4gc

.abc

.4gs

directory)
(current

processed

order
files are

$cust_path=4gc:abc:4gs

Fitrix Screen Technical Reference

16-14 Version Control

NAME = davidh.4ge

OBJFILES = globals.o browse.o cust.o cust_zm.o \
 detail.o header.o main.o midlevel.o \
 stk_mnu.o stockzm.o

FORMS = ../davidh.4gs/browse.frm

CUSTPATH = 4gc:abc:4gs

LIBFILES = ../lib.a \
 $(fg)/lib/scr.a \
 $(fg)/lib/standard.a \
 $(fg)/lib/user_ctl.a

GLOBAL = globals.4gl

#---

all:
 @make -f $(fg)/Make/program NAME="$(NAME)" \
 LIBFILES="$(LIBFILES)" OBJFILES="$(OBJFILES)" \
 FORMS="$(FORMS)" GLOBAL="$(GLOBAL)" $(NAME)

clean:
 @make -f $(fg)/Make/program NAME="$(NAME)" \
 LIBFILES="$(LIBFILES)" OBJFILES="$(OBJFILES)" \
 FORMS="$(FORMS)" GLOBAL="$(GLOBAL)"clean

This CUSTPATH variable is set in your program, module, or application directory
Makefile. If a CUSTPATH does not appear in the Makefile of the current pro-
gram directory, then the Featurizer looks at the Makefile in the Program direc-
tory for a CUSTPATH. If it can’t find it there, then it looks in the Makefile for
the application. The Featurizer, when invoked, searches for CUSTPATH values in
the following order:

1. CUSTPATH setting in program directory Makefile

2. CUSTPATH setting in module level directory’s Makefile.org

3. CUSTPATH setting in application level directory’s Makefile

4. $cust_path UNIX environmental variable

Fitrix Screen Technical Reference

The Featurizer and Version Control 16-15

Special Trigger Processing
If the same trigger is specified in a custom directory that exists in a .4gs or another
lower custom directory in the CUSTPATH, the trigger in the custom directory
replaces all similar triggers found before it. The CUSTPATH determines which trig-
gers are applied first. If a trigger is applied to a section of code where a trigger has
already been placed, it acts as a replace_block command, and replaces the
previous trigger with the more "local" trigger.

An example would be if your CUSTPATH is 4gc:4gs and you are in
i_chart.abc. If you specify a "before field" trigger and that same trigger is
specified in i_chart.4gc and i_chart.4gs, the Featurizer first inserts the
trigger from the .4gs directory, then replaces it with the trigger in the .4gc directory,
then replaces that with the trigger in the local .abc directory.

Triggers react differently when using version control.

1. Most triggers replace identical triggers.

2. There are some special triggers, however, which you can specify to either
append or replace their counterparts.

3. There are other special triggers that do not replace their original counterpart if
specified in custom directories and always append.

Here are some examples:

• The switchbox_items trigger either replaces or appends to other
switchbox_items triggers in higher order directories.

• The define, static_define and function_define triggers either
replace or append to like triggers in higher order directories.

• The do_not_generate trigger acts as a "delete block" command, and once
deleted, they can't be un-deleted in other custom directories.

• The at_eof trigger either replaces or appends to other at_eof triggers in
higher order directories.

You can determine how these special triggers function in order to preserve back-
ward compatibility with older generated code. For information on selecting the
append/replace mode refer to "The Featurizer Options File (fglpp.opt)" on page 2-
19.

Fitrix Screen Technical Reference

16-16 Version Control

The following diagram illustrates how the Featurizer works with $cust_path
and how the define trigger is treated.

Note

The $define_trig variable is specified in the fglpp.org file in
$fg/codegen/options. This variable controls how the Featurizer handles
the special define trigger when encountered using version control. For more
information on the $define_trig refer to "The Featurizer Options File
(fglpp.opt)" on page 2-19.

test.4gc test.abc test.4gs

$cust_path = 4gc:abc:4gs
current directory = test.4gc

order.trg order.trg order.trg

define
 fred smallint

define
 fred char(20)

define
 fred char(10)

 directory:

trigger file:

trigger:

Run fg.screen or fg.make.

If $define_trig = "append" you see this in your globals.4gl:

define

fred smallint,

fred char(10)

If $define_trig = "replace" you see this in your globals.4gl:

define

fred char(20),

fred smallint

Fitrix Screen Technical Reference

The Featurizer and Version Control 16-17

This diagram is similar to the previous diagram, only a different CUSTPATH is
used.

The define Trigger
When using multiple directory search paths, the Featurizer either replaces or
appends define trigger definitions processed previously. The action that the Fea-
turizer takes depends on the current setting in the fglpp.opt file. For more infor-
mation refer to "Maintaining Backwards Compatibility—The Options Files" on
page 2-19.

test.abc test.4gc test.4gs

cust_path = abc:4gc:4gs
current directory = test.abc

order.trg order.trg order.trg

define
 fred smallint
define

 fred char(20)
define
 fred char(10)

 directory:

trigger file:

trigger:

Run fg.screen or fg.make.

If $define_trig = "append" you see this in your globals.4gl:

define

fred smallint,
fred char(10)

If $define_trig = "replace" you see this in your globals.4gl:

define
 fred char(20),

 fred char(20)

Fitrix Screen Technical Reference

16-18 Version Control

The static_define Trigger
When using multiple directory search paths, the Featurizer either replaces or
appends static_define trigger definitions processed previously. The action
that the Featurizer takes depends on the current setting in the fglpp.opt file.
Refer to page 2-19 for more information.

The at_eof Trigger
When using multiple directory search paths, the Featurizer either replaces or
appends at_eof trigger definitions processed previously. The action that the Fea-
turizer takes depends on the current setting in the fglpp.opt file. Refer to
"Maintaining Backwards Compatibility—The Options Files" on page 2-19.

The switchbox_items Trigger
When using multiple directory search paths, the Featurizer either replaces or
appends switchbox_items trigger definitions previously processed. The action
that the Featurizer takes depends on the current setting in the fglpp.opt file.
Refer to "Maintaining Backwards Compatibility—The Options Files" on page 2-
19.

Using Non-Generated .4gl files With
Version Control (fg_funcs.4gl)
When using version control, the Code Generator and the Featurizer automatically
handle the copying of generated .4gl files from your base directory to your custom
directory. However, if you have custom .4gl files such as an fg_funcs.4gl in
your base directories, you have to take a special step in order for that custom .4gl
file to get used in your local directory.

You can simply copy your custom files into the local directory by hand but this
would mean duplicating code and would require double maintenance. Every time
you needed to modify your base custom .4gl file you would need to re-copy that file
to each custom directory that needs it.

Fitrix Screen Technical Reference

Invoking Programs That Use Version Control 16-19

Version control can automatically copy these custom.4gl files provided you
place a start file "fg_funcs.4gl" command in an .ext file in your cus-
tom directories. This causes the Featurizer to automatically copy the file into the
directory that needs it.

Thus when you make a change in the base directory and subsequently regenerate
code in the custom directory, the change in the base directory is automatically prop-
agated to your custom directory.

Invoking Programs That Use
Version Control
When a program is run it needs to be able to locate compiled .frm files for each .per
file that makes up the program. When using version control, not all the perform
files used in code generation are in the local directory; the program must be told
where these non-local perform files exist. There are two ways you can inform the
program where to find non-local perform files:

1. modify $DBPATH to include all directories that contain a source form or,

2. use the fg.go/fg.db script to run the program.

Modifying $DBPATH
By modifying the environment variable $DBPATH to include the directories where
these perform files exist, your program is able to open these perform files at runt-
ime.

Using the previous example, if you go into i_chart.abc and run the program
there, your $DBPATH would have to include both the i_chart.4gc and
i_chart.4gs directories, so that the program could open screen2.frm and
browse.frm. The $DBPATH variable would look like this:

DBPATH=../i_chart.4gc:../i_chart.4gs:$DBPATH

Fitrix Screen Technical Reference

16-20 Version Control

Using fg.go and fg.db
When running a finished program from the command line, there are two shell
scripts you can use that set up your $DBPATH variable for you, so you do not have
to pre-set it as described above. These scripts automatically prepend the path to the
.4gc and .4gs directories to the $DBPATH. So if you run fg.go from the .abc
directory, the program looks first for the presence of all .frm files in the local direc-
tory, and if any .frm file is not found, then the .4gc directory is searched, and then
the .4gs.

fg.go: modifies $DBPATH and runs the program. This shell script detects if the
program is an RDS program and runs it with fglgo or as an executable.

Examples:

fg.go program.4gi -dbname database
fg.go program.4ge -dbname database

fg.db: runs the finished program under the RDS Debugger, if the finished pro-
gram is an RDS program.

Example:

fg.db program.4gi -dbname database

Again, the use of these two shell scripts is required when running the finished pro-
gram from the command line. As mentioned before, these scripts adjust your
$DBPATH setting properly, and then restore $DBPATH to its original setting upon
exit of the program.

Fitrix Screen Technical Reference

Running Programs with Fitrix Menus 16-21

Running Programs with
Fitrix Menus
Fitrix Menus can take advantage of version control by allowing you to pick and
choose which particular version of a program you want to run. You can do this by
setting an environment variable called $cust_key to the directory extension the
program resides in. For example, you could set $cust_key to "abc" to inform
Fitrix Menus to run the program in a i_chart.abc directory.

Fitrix Menus runs the program contained within the directory matching the
$cust_key variable. If a particular version of the program doesn’t exist for the
$cust_key, Fitrix Menus searches the program directories for the program to run
in the same hierarchical fashion as used by version control in the Code Generator.

Take the following example:

Above is a general ledger module (gl.4gm), with different program directories
underneath. Multiple versions of some of the programs exist. The following dia-
gram depicts which executable would be selected based on the $cust_key.

gl.4gm

i_chart.abc

i_chart.4gc
i_chart.4gs

o_income.4gc

o_income.4gs

p_genled.xyz

p_genled.4gs

i_genjrn.4gs

Fitrix Screen Technical Reference

16-22 Version Control

cust_key=4gs
i_chart.4gs
o_income.4gs
p_genled.4gs
i_genjrn.4gs

cust_key=4gc
i_chart.4gc
o_income.4gc
p_genled.4gs - since there is no p_genled.4gc
i_genjrn.4gs - since there is no i_genjrn.4gc

cust_key=xyz
i_chart.4gc - since there is no i_genjrn.xyz
o_income.4gc - since there is no i_genjrn.xyz
p_genled.xyz
i_genjrn.4gs - since there is no i_genjrn.xyz or i_genjrn.4gc

cust_key=abc
i_chart.abc
o_income.4gc - since there is no o_income.abc
p_genled.4gs - since there is no p_genled.abc or p_genled.4gc
i_genjrn.4gs - since there is no i_genjrn.abc or i_genjrn.4gc

So at any time, you can set the $cust_key variable, run Fitrix Menus , and see
what the product looks like for any particular customer.

The Relationship Between $cust_key
and $cust_path
The previous examples all demonstrate what happens when $cust_key is set and
the default $cust_path of 4gc:4gs is used. It is also important to understand
how the $cust_key variable relates to $cust_path.

If $cust_key is not set, Fitrix Menus looks at the $cust_path variable to
determine where to look for the program. If both $cust_key and $cust_path
are not set, then the default path of 4gc:4gs is used.

If the $cust_key is in the $cust_path, then Menus looks in the $cust_key
directory first, and if a program is not found there, it continues down the
$cust_path until a program is found.

Fitrix Screen Technical Reference

Running Programs with Fitrix Menus 16-23

For example, if $cust_path is set to .abc:4gc:4gs, and $cust_key is set
to .abc, then Menus searches for a program first in the .abc directory, then the 4gc
directory, and finally the 4gs directory.

If $cust_path is set to .4gc:abc:4gs, and $cust_key is set to .abc, Menus
searches for a program first in the .abc directory, then the 4gs directory. The .4gc
directory is not searched.

Version Control Summary
Pre-Processing: During pre-processing the Featurizer takes the following steps:

1. If the current directory extension is in the search path, then the files there
take precedence. The Featurizer then looks for .trg and .ext files in the last
directory in the CUSTPATH first, then it continues on to the previous direc-
tory in the CUSTPATH, until the current directory is reached.

For example:

 CUSTPATH = 4gc:abc:4gs

If your CUSTPATH is set as above, and your current directory is .abc, then
the files in the .4gs and the .abc directory are used. The Featurizer does not
look in the .4gc directory.

2. If the current directory is not in the search path, the Featurizer begins pro-
cessing the files in the last directory and then searches each of the directo-
ries in the search path for .trg and .ext files, which are each merged into the
.4gl files. The files in the current directory are merged last.

Code Generation: When generating code, the Screen Code Generator does the fol-
lowing before it creates the Makefile:

Fitrix Screen Technical Reference

16-24 Version Control

1. The Screen Code Generator checks to see if a CUSTPATH entry exists in a
pre-existing Makefile, as in the case of running the Screen Code Genera-
tor a second time on a particular program. It uses the grep command to
check for this CUSTPATH. If it finds it, it retains the current CUSTPATH
setting.

2. If it doesn't find a CUSTPATH setting in a Makefile, it checks the envi-
ronment variable $cust_path to see if it is set. If so, it uses the value in
$cust_path when creating this new Makefile. The logic explained
above retains a possible CUSTPATH setting, and does not overwrite it when
the Screen Code Generator creates a new Makefile.

At Runtime: When a program is run, Fitrix Menus performs the following:

1. Fitrix Menus tries to find a program in a directory that matches the exten-
sion set in $cust_key. If $cust_key is not set, Menus looks for a
default 4gc:4gs directory.

2. Fitrix Menus also searches the $cust_path setting for a program to exe-
cute. If $cust_path is not set, Fitrix Menus uses the default path of
4gc:4gs. If the $cust_key is not in the $cust_path, Menus prepends
$cust_key to $cust_path. The order that directories are searched
depends on the $cust_path.

For example, if $cust_key is abc and $cust_path is xyz:abc:4gs,
Menus looks for the program to run by looking first in a directory with a
.abc suffix. If a program is not found there, a directory with the .4gs exten-
sion is searched. The .xyz directory would not be searched in this case
because it comes before the $cust_key setting in the $cust_path.

Practical Examples
The following pages contain graphical examples of version control.

Fitrix Screen Technical Reference

Practical Examples 16-25

Adding a New Trigger to Your Base
Program
This example shows you how you can customize your base program by adding a
new trigger to a trigger file while utilizing the .per forms and .trg files from the base
directory to generate your custom program.

1. Create a custom directory (.4gc).

2. Create a new screen.trg file in the .4gc directory.

3. Add only the new trigger to screen.trg in .4gc. Leave the triggers in the
base .trg file alone.

screen.per

screen.trg

merged.4gl merged.4gl

screen.trg

Code
Generator

Featurizer

.4gs .4gc

generated.orggenerated.org

Fitrix Screen Technical Reference

16-26 Version Control

Customizing Your Base Program with
Blocks
This example shows what you need to do to perform a few block operations to cus-
tomize your base program without having to duplicate the original code.

1. Create a new custom directory (.4gc).

2. Create a new .ext file that has a different name from any .ext in the base
directory.

3. Put the new block command in the .ext in the .4gc directory.

4. Copy the base.set file from the .4gs directory into the .4gc directory.

5. Add the name of the new .ext file to the base.set file in the .4gc direc-
tory.

6. Generate your custom program.

Fitrix Screen Technical Reference

Practical Examples 16-27

screen.per

base.ext cust.ext

Code
Generator

Featurizer

.4gs .4gc

generated.orggenerated.org

merged.4gl merged.4gl

base.set base.set
base cust

Fitrix Screen Technical Reference

16-28 Version Control

Pulling a Custom .4gl (fg_funcs.4gl)
File Into a Custom Directory
If you use version control with a program that utilizes custom 4gl files, (4gl files
that are not created by the Code Generator), a special technique is required in order
for them to be copied into a custom directory. This tells the Featurizer to automati-
cally copy the .org file associated with the custom file into the custom directory.

1. Create a custom directory (.4gc).

2. Create an .ext file in the .4gc directory.

3. Create a start_file "fg.funcs.4gl" command in the .ext.

4. Create a base.set file and list the names of all .ext’s to be merged.

Fitrix Screen Technical Reference

Practical Examples 16-29

screen.per

base.ext cust.ext

Code
Generator

Featurizer

.4gs .4gc

generated.orggenerated.org

fg.funcs.org

fg.funcs.4gl

merged.4gl merged.4gl

fg.funcs.org

fg.funcs.4gl

base.set base.set
base cust

Fitrix Screen Technical Reference

16-30 Version Control

How to Modify a .per in a Base
Directory
Whenever you need to customize a .per form you need to copy it to a custom direc-
tory and perform the modifications there. Any .per forms found in the local direc-
tory are used in place of any similarly named .per in any other directory found in
the $cust_path.

1. Create a custom directory.

2. Copy the .per you want to modify from the .4gs directory to your custom
directory.

3. Modify the .per form in the custom directory.

4. Run the Code Generator.

Fitrix Screen Technical Reference

Practical Examples 16-31

screen.per Code
Generator

Featurizer

.4gs .4gc

generated.orggenerated.org

merged.4gl merged.4gl

screen.per

zoom.per

Fitrix Screen Technical Reference

16-32 Version Control

A Complex Example Involving .trgs,
.exts, custom.4gls, and .per
Modifications
This example illustrates what happens when using version control with a heavily
customized program. This example illustrates exactly what files are used to build
the custom program.

Scenario: A field is added to a copy of the main screen. An after_field trigger
is added to the screen.trg file. A replace block command is added to the cust.ext
file. A start file "fg_funcs.4gl" command is added to the cust.ext file.

1. Create a custom directory.

2. Copy the .per forms you want to modify.

3. Modify the .per forms.

4. Run the Code Generator.

5. Create any new triggers and put them in a .trg file in the custom directory.

6. Create any new block commands and put them in a .ext file in the custom
directory.

7. Create a base.set file in the custom directory and include the name of
all .ext files you want to merge.

8. Create a start file"fg_funcs.4gl" block command in an .ext file
to pull over any custom .4gl files from the .4gs directory.

Fitrix Screen Technical Reference

16-34 Version Control

screen.per

base.ext cust.ext

Code
Generator

Featurizer

.4gs .4gc

generated.orggenerated.org

fg_funcs.org

fg_funcs.4gl

merged.4gl merged.4gl

fg_funcs.org

fg_funcs.4gl

base.set base.set
base cuts

screen.per

screen.trg screen.trg

Fitrix Screen Technical Reference

Practical Examples 16-35

Using Version Control with Three
Directories
This example shows how you can use version control from three or more directo-
ries. The most common application of this type of structure occurs when a value-
added program needs to be customized for a particular customer.

In this example, the value-added product consists only of a new trigger file. To
build a version controlled custom program, various parts are used from both the
.4gs and the .4gc directory. These are combined with the contents of the .abc direc-
tory to create a custom program.

1. For this example assume that you have already completed your base (.4gs)
and value-added(.4gc) programs.

2. Create a new custom directory to hold the customer specific version (.abc).

3. Create a new screen.trg file and add your new triggers.

4. Run the Code Generator and create the custom program.

Fitrix Screen Technical Reference

Practical Examples 16-37

sc
re

en
.p

er

sc
re

en
.tr

g

m
er

ge
d.

4g
l

m
er

ge
d.

4g
l

sc
re

en
.tr

g

.4
gs

.4
gc

ge
ne

ra
te

d.
or

g
ge

ne
ra

te
d.

or
g

m
er

ge
d.

4g
l

sc
re

en
.tr

g

C
od

e
G

en
er

at
or

Fe
at

ur
iz

er

.a
b

c

ge
ne

ra
te

d.
or

g

Fitrix Screen Technical Reference

16-38 Version Control

Advanced Example: Multiple
Modifications using Multiple
Directories
This example demonstrates how version control works with more than two directo-
ries. For this example, the order.per form was modified, new triggers were added
for the main screen, and a new .ext file was created to hold some new block com-
mands. Also the base.set file was copied over to the .abc directory and the new
ord.ext file was added to the file.

1. For this example assume that you have already completed your base (.4gs)
and value-added(.4gc) programs.

2. Create a new custom directory to hold the customer specific version (.abc).

3. Copy the order.per form from the .4gs directory and modify it.

4. Create a new screen.trg and add your new triggers.

5. Create a ord.ext and add your new block commands.

6. Copy the base.set file from the .4gc directory and make sure that it con-
tains the name of every .ext file you want to merge in your custom version
of the program.

Fitrix Screen Technical Reference

Practical Examples 16-39

sc
re

en
.p

er

sc
re

en
.tr

g

m
er

ge
d.

4g
l

m
er

ge
d.

4g
l

sc
re

en
.tr

g

.4
gs

.4
gc

ge
ne

ra
te

d.
or

g
ge

ne
ra

te
d.

or
g

m
er

ge
d.

4g
l

sc
re

en
.tr

g

C
od

e
G

en
er

at
or

Fe
at

ur
iz

er

.a
bc

ge
ne

ra
te

d.
or

g

or
de

r.
pe

r
or

de
r.

pe
r

ba
se

.e
xt

cu
st

.e
xt

or
d.

ex
t

ba
se

.s
et

ba
se

.s
et

ba
se

.s
et

ba
se

cu
st

or

d

Fitrix Screen Technical Reference

16-40 Version Control

17-1

17
Language
Translation

This chapter covers:

n Creating language independent programs

n Translating .per forms

n Translating values used in data entry

n Translating database strings

Fitrix Screen Technical Reference

17-2 Language Translation

About Language Translation
Because of their modifiable nature, Fitrix Screen generated applications are easy to
translate into other languages. Application translation takes place in four basic
areas:

1. Create Language Independent Programs

In order to make translation as easy as possible, all of your programs should refer-
ence strings in the database. Do not hard code messages or any type of displayed
text. You should keep all displayed text as language independent as possible. The
fg.mssgr program helps you create language independent programs.

2. Translate .per forms.

The only thing that needs to be translated in your .per forms are the field labels and
comments. Once you have your translated .per forms you need to create a subdirec-
tory in your program directory to hold the translated .per forms. This subdirectory
should be named after the language the forms are translated into. For example an
SPA subdirectory could contain .per forms translated into Spanish.

3. Translate values used in data entry.

Another step involved with language translation is translating the actual data that a
user sees and/or enter. Since the underlying code is written in English and uses cer-
tain characters and words such as Y/N, it may become necessary at times to display
these values to the user in whatever language they are using. For example, if some-
one is running a French version of an application, they might want to see O/N
instead of Y/N. This allows them to enter O which is really stored as Y so the pro-
gram can understand it.

4. Translate database strings.

Database strings include all of the textual messages that display to the screen, such
as error messages and help text. Several programs have been created to allow easy
translation of these strings.

Fitrix Screen Technical Reference

Creating Language Independent Programs 17-3

Creating Language
Independent Programs
All application message strings, error messages, and warning messages should be
stored in your database. This makes your programs very modifiable, and easy to
switch from one language to another.

The fg.mssgr tool should be used when you are creating custom code. Instead of
using a constant string to display messages to your users, use variables so your code
can remain easily modifiable and language independent.

The fg.mssgr tool lets you use language independent programming techniques,
yet not have to take time out to do the steps involved in setting up a string variable
and value. The fg.mssgr tool does these steps:

1. Creates an element in a global record to hold the string value.

2. Adds a call to an initialization function to initialize the string.

3. Inserts the new string into the database.

4. Adds an entry to an unload file to allow for maintenance of the message string.

The fg.mssgr tool is intended to run as you are programming. You can call this
program from "vi" or from the Form Painter with [CTRL]-[O] as you are creating a
trigger or block that uses some new message string. For example, if you are writing
a trigger that loads a picker and you need a "title" string for the picker, you can
issue the command:

fg.mssgr "Choose an Item"

or

fg.mssgr -q -r chs_item "Choose an Item"

To use a string in your code, run fg.mssgr and give it the character string to use.
You also have optional arguments for finer control.

You then automatically have a str.{string} record variable that you can use in the
code immediately. This method is almost as easy as using a constant string.

Fitrix Screen Technical Reference

17-4 Language Translation

The fg.mssgr script adds the message to the stxmssgr table, and creates a
local stxmssgr.unl message unload file. It also makes a . set, and .ext file to
build the global and init logic.

The syntax for fg.mssgr is as follows:

fg.mssgr [-q] [-b] [-dbname database] [-l language]
[-m module_key] [-p program_key] [-n number_key]
[-r record_name] [-x max_length] "message string"

-q Suppresses output (quiet mode). Defaults to not quiet.

-b Causes block extension code not to be created. The -
b flag is used to prepare unload data only. This may
be useful in programs where all strings are consoli-
dated in globals.4gl.

-dbname database Specifies the database name to use. Defaults to
standard.

-l language Specifies the three character language key. Defaults to
ENG.

-m module_key Specifies the module name. Defaults to the basename
of the parent directory minus the suffix.

-p program_key Specifies the program name. Defaults to the basename
of the current directory minus the suffix.

-n number_key If not given, the number key is taken as one more than
the last number key of messages with common lan-
guage, module, and program keys in the local
stxmssgr.unl unload file. If there is no
stxmssgr.unl file or no messages with a common key,
then the number is started at 1. Default is taken from
local stxmssgr.unl file.

-r record_name Names the str record variable to use for the message.

-x max_length Sets the maximum length of the string. Default is
determined by doubling the string length up to a max-
imum of 80 characters.

Fitrix Screen Technical Reference

Creating Language Independent Programs 17-5

Note

$message_module and $message_program can be used to override the
module and program defaults.

Keep in mind that the record element name can be accidentally duplicated in block
extension code. The message keys determine if the message is already defined. This
approach prevents accidental replacement of valid strings in the str record and
forces the record to reflect the strings in the database. This sort of error is detected
immediately upon compilation and is much easier to detect and correct than an
error of accidental omission.

Typing the following command:

fg.mssgr -dbname standard -l ENG -m screen -p painter -r scren "This is the
new string."

produces this SQL statement:

database standard;
delete from stxmssgr where language="ENG" and
mssg_module="screen" and mssg_program="painter" and
mssg_number=1;
insert into stxmssgr values("ENG","screen","painter", 1, "This is the new
string");

Is this okay (y)?

Press Y to accept, then you’ll see:

Database selected.

0 row(s) deleted.

1 row(s) inserted

The base.set file looks like this:

str

The str.ext file looks like this:

 "message string" This is the string being created. The string should be
quoted. This argument is required.

Fitrix Screen Technical Reference

17-6 Language Translation

##
Copyright (C) 1992 Your Company Name
All rights reserved.
Use, modification, duplication, and/or distribution of this
software is limited by the software license agreement.
Sccsid: %Z% %M% %I% Delta: %G%
##

##
start file "globals.4gl"

in block TOF NUL after "define"

#_strings_record - Record of constant strings
str record
 scren char(10) # 1 This is the new string
end record,;

##
start file "main.4gl"

before block main after_init

#_str_init - Call the string initialization function
call str_init()
;

at_eof_main

##
function str_init()
##
This function initializes all of the static strings
#
 #_init_strings - Get the static strings from the database
 call fg_message("screen", "painter", 1) returning str.scren
 #_end_init_strings

end function
str_init();

Fitrix Screen Technical Reference

Utility Menu 17-7

Utility Menu
The fg.tools program calls a menus interface which provides options for trans-
lating database strings into multiple languages. You need Fitrix Menus installed on
your system in order to use fg.tools. If you do not have Fitrix Menus installed,
then you need to go to the program directory for the various programs and run them
individually. The following is the String Translation menu on the Utility menu.

Translating Values Used in Data Entry
Several functions allow for language translation. Although the field labels on .per
forms still need to be translated individually and used independently from each
other, you can now use and store data in your native language regardless of the lan-
guage the program is running under. For example, you can have a French version of
a perform, which is basically the same as the English version of the .per form, with
different field labels and comments. By specifying certain fields as translate fields,
and making corresponding entries into the stxlangr table for those fields, your
users can view and enter data into the translated fields in whichever language is
specified when running the program. If the user specifies French, then data is dis-
played in French. These translation functions are nice because English equivalent

Fitrix Screen Technical Reference

17-8 Language Translation

(or whatever you use as your native language) gets stored in the database. Say the
French user adds a new order in French. Another user on the same system can eas-
ily pull up the exact same order and read the translated fields IN ENGLISH.

Although any field can be translated, normally you only translate fields like Y/N,
debit/credit and other simple fields like these that display only specific values.

To use language translation, you first need to enter the foreign equivalents to the
native language into the stxlangr table. This can be done using the Data Trans-
lation option on the String Translation Menu. If you do not have Fitrix Menus
installed, you can invoke this program by running $fg/codegen/util-
ity.4gm/i_tlangr.4gs/i_tlangr.4g[i|e]. You can also use ISQL to
load the stxlangr table.

The Data Translation program:

The next step in translating data is to modify your perform files and specify which
fields you want to translate.

Translating the Native Language

For each translated field there must be an entry in the table stxlangr. This is a
table that holds the native string and the corresponding foreign string. Below is the
schema of the stxlangr table and a sample row in unload format.

Fitrix Screen Technical Reference

Utility Menu 17-9

Table schema: stxlangr

Sample unload file:

GRM|strcustr.gross_entry|ALL|Y|J|

The tr_context column contains the context that determines where this particu-
lar translated value should be displayed. Context allows you to create multiple
translations for the same native word, then specify which translation you want to
display in any particular field.

For example, say you have two different screens where the English word "debit" is
displayed, General Ledger and Order Entry. In your foreign language you might
have two different words (and meanings) for the English word debit. On one form
you want to display "fred," and on the other form you want to display "larry." What
you would do is create the following entries in your stxlangr table:

GRM|strcblah.debit_credit|ALL|debit|fred|
GRM|strcblah.debit_credit|oe|debit|larry|

Your .per forms would contain the following translated fields.

Order Entry .per form:

translate= debit_credit oe

General Ledger .per form:

translate= debit_credit ALL

The context column can contain any value, uppercase or lowercase. Specify "ALL"
if the foreign value displays the same string in all occurrences of the native value.

language char(3) foreign language

tr_tab_col char(37) table.column of the screen field

tr_context char(10) context (default is ALL)

native char(50) native language equivalent

non_native char(50) foreign language equivalent

Fitrix Screen Technical Reference

17-10 Language Translation

Specifying Translation in the .per File

Once all of the values have been translated in the stxlangr table, you can modify
your .per forms. The Screen Code Generator generates translation logic only for
those fields on your .per forms you have defined as translate fields.

Translate fields can be defined in the Form Painter via the Define Field form.

All that is required is to list the names of the columns you want to translate. Note
that the "context" is usually ALL. Logic is generated so that when the program is
run with a specific language, those fields defined as translate fields display values
in the language specified.

The following line shows how to define translated fields in the .per file:

translate = col1 context, col2 context, col3 context

Creating Directories for Translated .per Forms
To properly take advantage of Fitrix Screen’s language handling techniques, you
need to locate all of your .per forms in subdirectories named after the language key.
For example, if you have translated the i_custr program into both French and
Spanish, then under i_custr.4gs you should create a FRN directory to contain
the French .per forms, an SPA directory to contain your Spanish forms, and a ENG
directory to store your original English forms. When using translation, no forms
should appear in the program directory itself, or those forms will always be used
regardless of what the $language variable is set to.

When invoking the program, Fitrix Menus knows to find the proper forms based on
the $language global variable. The subdirectory matching the contents of the
$language variable is added to the $DBPATH.

Alternate forms can also be displayed by invoking the program and passing a -l
language on the command line. However, you must manually add the correct
forms subdirectory to your $DBPATH if the program is run from the command line.

Modified Functions
Several functions allow for language translation. All of the display functions con-
tain calls to two functions, string_to_foreign() and
string_to_native(), for each translated field. These functions display the
data in the foreign language while retaining the data in the program variables in the

Fitrix Screen Technical Reference

Utility Menu 17-11

native language. For instance when running a program in German, with the native
language as English, a J might appear on the screen representing Yes, but the pro-
gram variable still contains the English equivalent Y. In other words, what you see
is not what you get. This allows the program to continue to make logic decisions
based on native language strings such as Y and N.

If there are translated fields on the screen, a section that transforms the construct
statement is generated below the normal construct statement. The function that
transforms the constructed statement is string_construct(). Following is an
example of the code.

#_translate - Change construct for language independence if needed
 if get_scrlib("language") != "ENG"
 then
 #_num_trans - Send the number of fields to be translated
 call put_vararg(3)

 #_send_construct - Send the constructed string
 call put_vararg(scratch[1,512])

 #_like_type - Send translated field and it’s context
 call put_vararg("stootypr.like_type")
 call put_vararg("ALL")
 #_master_order - Send translated field and it’s context
 call put_vararg("stootypr.master_order")
 call put_vararg("ALL")

 #_trans_construct - Rebuild construct for language independence
 call string_construct()
 let scratch = get_vararg()
 let num_trans = get_vararg()
 if num_trans > 0
 then let is_translated = "translated"
 else let is_translated = null
 end if
 end if

The translation functions are found in $fg/lib/stan-
dard.4gs/l_trans.4gl.

Fitrix Screen Technical Reference

17-12 Language Translation

Translating Values and Database
Strings
The successful creation of language independent programs relies on storing strings
of text in the database. You can then create translations of each string and tell the
program to use the strings defined for a particular language.

Error messages can now be easily translated into different languages. Two utility
interfaces allow you to display the error message to be translated in your native lan-
guage, while allowing you to enter the translated text. Both of these programs are
options on a utility menu discussed next. This utility menu is displayed by typing
fg.tools. See "Utility Menu" on page 17-7.

The first program, Error Message Header (i_terorh), is used to translate the one
line error messages that appear when an error is first encountered. The second pro-
gram, Error Message Detail (i_terord), is used to translate the error message
detail text. Error message detail text is separated into both problem text and solu-
tion text.

Remember when using any of these translation programs, data is put directly into
your database. If you need to move the translated information to other databases
then you need to create unload files to dump the data created with these programs.

Translating the Error Message Header
The Error Message Header is the one line message that appears when an error is
encountered. To translate the error header message into different languages run
fg.tools and select the Error Message Header option on the String Translation
menu. If you do not have Fitrix Menus, run the i_terorh program in
$fg/codegen/utility.4gm.

Find the message you want to translate in whatever native language you choose.
The native language is usually English. Specify the language you want to translate
into, then enter the translated text.

Fitrix Screen Technical Reference

Utility Menu 17-13

The Error Message Header translation program.

The following steps describe how to create error header messages.

1. Find the native error message.

The first step is to find the native message you want to translate. Execute the
Find command on the ring menu and then enter the key information that identi-
fies the particular message you want to translate. All of the fields on the top part
of the screen make up the key for error message headers (language, module,
program, user defined, and error number.)

2. Select the Update command.

3. Enter the foreign language to translate into.

After selecting Update, the cursor is put into the translated language field. In
this field enter the language you want to translate the message into. If you want
to create a Spanish translation, enter SPA.

After entering a value into the translated language field for the first time, a glo-
bal variable is set so that when you update the next message the value that you
entered before automatically appears. This is so you do not have to keep enter-
ing the same information over and over if you are sitting down and trying to
translate all of the messages at once. Once a language value appears in this
field, press [ENTER] to get to the message line. You can change this value at
any time by entering a new language. This is a 3 character field.

Fitrix Screen Technical Reference

17-14 Language Translation

4. Enter the translated text.

The Error Message field is a 40 character field that contains the translated error
message. If text exists for the translated language and key, it is automatically
displayed here. Text can be modified by typing over it.

5. Save the new record.

Translating Error Message Detail
If you have Fitrix Menus, running fg.tools and selecting the Error Message
Detail option on the String Translation menu allows you to translate the problem
and solution detail text of an error message. If you do not have Fitrix Menus you
can run the executable in $fg/codegen/util-
ity.4gm/i_terord.4gs/i_terord.4g[i|e]. Error message detail is the
text that is displayed when you press [CTRL]-[z] to get more information about an
error after it appears.

The functionality of the i_terord program is slightly different from the error
message header program. This program consists of two forms. The first form (the
main screen) allows you to find the native error text you want to translate and dis-
plays the text on the bottom of the screen.

Main screen:

Fitrix Screen Technical Reference

Utility Menu 17-15

Like the other error message programs, once you locate the native message you
want to translate, you Update the form. Updating the document puts you in the
Translated Language field. In this field you enter the language to translate into.
Pressing [ESC] calls up the detail form, which displays the native and the translated
error text together.

Detail screen:

You can move between the two detail sections by pressing [TAB]. This allows you
to use the arrow keys to scroll the native text. The bottom section contains the
translated text. Pressing [ESC] saves the translated error text.

You should be aware that error messages in the stxerord (the table this program
modifies) and stxerorh tables are related to each other. This means that if you
translate detail errors, then you need to make sure to translate the header errors as
well. A special check has been put into the Error Message Detail program. If you
translate an error message detail that does not have an existing entry in the stxer-
orh table for the same key, a warning box appears notifying you of this. You can
then type in the corresponding header message into a field in the box if you wish.
Or you can simply press [ENTER] and then define the header portion later.

Fitrix Screen Technical Reference

17-16 Language Translation

Translating Help Text
If you have Fitrix Menus, running fg.tools and selecting the Help Text option
on the String Translation menu allows you to translate on-line help text for your
programs. If you do not have Fitrix Menus you can run the executable in
$fg/codegen/utility.4gm/i_thelpd.4gs/i_thelpd.4g[i|e].
On-line help text is displayed when you press [CTRL]-[z] to get more information
about a field in a program.

The i_thelpd program consists of two forms. The first form (the main screen)
allows you to find the native help text you want to translate and displays the text on
the bottom of the screen.

Main screen:

Like the other error message programs, once you locate the native message you
want to translate, you Update the form. Updating the document puts you in the
Translated Language field. In this field you enter the language to translate into.
Pressing [ESC] calls up the detail form, which displays the native and the translated
help text together.

Fitrix Screen Technical Reference

Utility Menu 17-17

Detail screen:

You can move between the two detail sections by pressing [TAB]. This allows you
to use the arrow keys to scroll the native text. The bottom section contains the
translated text. Pressing [ESC] saves the translated help text.

Message Translation
The stxmssgr table contains various strings of text that get displayed to the
screen. To translate a message into different languages run the fg.tools pro-
gram if you have Fitrix Menus, and select the Message option on the String Trans-
lation menu. If you do not have Fitrix Menus then you can run
$fg/codegen/utility.4gm/i_tmssgr.4gs/i_tmssgr.4g[i|e].
Find the message you want to translate in whatever native language you choose. If

Fitrix Screen Technical Reference

17-18 Language Translation

the native language is English, then enter "ENG." After the string has been found,
Update the form. Specify the language you want to translate into, then enter the
translated text.

The following steps describe how to translate messages.

1. Find the native message.

The first step is to find the message you want to translate. Execute the Find
command on the ring menu and then enter the key information that identifies
the particular message you want to translate. All of the fields on the top part of
the screen make up the key for messages (language, module, program, and mes-
sage number.)

2. Select Update.

3. Enter the foreign language to translate into.

After selecting Update, the cursor is put into the Translated Language field. In
this field enter the language you want to translate into. If you want to create a
Spanish translation, enter SPA.

After entering a value into the translated language field for the first time, a glo-
bal variable is set so that when you update the next message the value that you
entered before automatically appears. This is so you do not have to keep enter-
ing the same information over and over if you are sitting down and trying to

Fitrix Screen Technical Reference

Utility Menu 17-19

translate all of the messages at once. Once a language value appears in this
field, press [ENTER] to get to the message line. You can change this value at
any time by entering a new language. This is a 3 character field.

4. Enter the translated text.

The Message field is a 132 character field that contains the translated message.
If text exists for the translated language and key, it is automatically displayed
here. Text can be modified by typing over it.

5. Save the new record.

Fitrix Screen Technical Reference

17-20 Language Translation

18-1

18
Helpful Techniques

This section explains how to perform a variety of modifications to your programs
including:

n Creating field-level help unique to a program

n Creating phony joins

n Centering a window

n Calling screen applications from a screen application

n Capturing the user’s name

n Disabling the "Add a Navigation" menu option

n Disabling the F1 and F2 keys in a screen detail section

n Enabling hot keys in scroll mode of a detail section

n Immediate Zoom without pressing [CTRL]-[z]

n Disabling Function Keys

Fitrix Screen Technical Reference

18-2 Helpful Techniques

Creating Field Level Help
That is Unique to the
Program
Field level help is unique to the table and column. This means that once you define
help for a field, the same help appears in every program that uses the same
table.column.

Here is one way to create field help unique to the program. Basically you need to
add your custom help to the stxhelpd table with ISQL using the normal table
and column key and also a new hlp_number other than one. The help number is
what makes your custom help unique to a program.

You then need to add some calls to put_vararg to pass the unique values to the
help function.

Here is a sample trigger that goes in the trigger file for your main form:

-------begin screen.trg----------
input 1 (if the field you want is in the header section of the form)
on_event help
 call put_vararg("hlp_number")
 call put_vararg("2") # this is the unique hlp_number for this form
 call scr_help()
 ;
on_event help
 if scr_fld = "customer_num"
 then
 call put_vararg("hlp_number")
 call put_vararg("2") # this is the unique hlp_number for this form
 call scr_help()
 else
 call scr_help()
 end if
 ;
-------end screen.trg----------

You then need to create your own help text using the following keys to tie the text
to the field on the screen: table, column, and hlp_number. Changing the
hlp_number to something other than one makes it unique to this particular pro-
gram because you are calling it explicitly.

Fitrix Screen Technical Reference

Creating Phony Joins 18-3

This maintains all of the regular methods of help, including the built in field level
help.

For more information on creating help refer to "Creating Application Help" on page
15-22.

Creating Phony Joins
A problem occurs when you want to display information from two tables on the
screen that have no real header/detail relationship. For example, the Company
Information form common to all Fitrix accounting applications displays company
information in the top portion of the screen and department codes in the lower half
of the screen. The problem is that there is no real join between the company infor-
mation and department codes tables.

The solution is to set up a phony join between two columns then to modify a few
lines in the code. For the example mentioned above this involves setting up the fol-
lowing join line in input 2 of the .per’s FOURGEN section:

join = stxinfor.src_key = stxcntrc.co_name

After the code is generated, three places in the logic need to be modified in
detail.4gl: lld_m_prep(), lld_read(), and lld_delete(). The
changes involve simply searching for the where clause that match the join line
and replacing the second half of the clause. However, to maintain regenerability,
the following steps need to be taken. First, the modified functions are copied into
the at_eof section of the input 2 section of the trigger file. Next, the
do_not_generate trigger is added for the three above mentioned functions to
the default section. The following is an example of a trigger file used to get around
this.

Fitrix Screen Technical Reference

18-4 Helpful Techniques

##
Copyright (C) 1991
Your Company Name
Use, modification, duplication, and/or distribution of this
software is limited to the terms of the software agreement.
Sccsid: @(#) .../all.4gm/i_contrl.4gs/screen1.trg 1.12 Delta: 10/11/91
##
Screen Generator version: 4.00.UC1

defaults

do_not_generate
lld_delete
lld_m_prep
lld_read;

...
##
function lld_m_prep(n)
##

...
 let m_xinfor.src_type = "D"

...
 ##
 function lld_read()
 ##
...
 "where stxinfor.src_type = ’D’"
...
 ##
 function lld_delete()
 ##
...
 where stxinfor.src_type = "D"
...

Centering a Window
The following section explains an easy way to determine the starting location for a
window in order to center it.

This method can be used for any windows other than full screen windows (main
entry screen).

Starting screen coordinates in Fitrix Screen are given in y, x format, where y=row
and x=column. The convention for all windows is to have a "fixed" y (row) at posi-
tion 5. This way, all windows open up just below the menu line of the ring menu.
The x (column) should usually be centered. Here’s a good formula to use to estab-
lish the starting location:

Fitrix Screen Technical Reference

Calling Screen Applications from a Screen Application 18-5

let x = ((80 - x1) / 2) + 1

x is the total column length of the window to be centered. For example, if you have
a browse window that has 14 rows and 60 columns. The y is 5 (following conven-
tion). To find the conventional starting location for x:

let x = ((80 - 60) / 2) + 1 # the result of which is 11

Therefore, the proper starting location is 5, 11.

Calling Screen Applications
from a Screen Application
This is one way you can modify options.4gl to run other programs from the
Options ring-menu in your program. Remember, options.4gl does get regen-
erated, so your changes should be placed in a .ext file. The code is added after the
menu command similar to what is shown below.

 menu "Options"
 command
 "Customer" "Reference the Customer database file"
 run "runcust"
 exit menu

runcust syntax: (runcust located in the program directory)
don’t forget to make the edit file executable (ex: chmod 770 runcust)
you can of course pass in filters to the fglgo command.
#
cd ../i_custr.4gs
fglgo i_custr.4gi

Another way to perform this task is to define a char variable in options.4gl, set
the variable to the command you want to run, then run that variable as in the exam-
ple below:

xx char(40) # must be large enough to accept the string
let xx = "cd ../i_custr.4gs; fglgo i_custr.4gi"
 menu "Options"
 command "Customer" "Reference the Customer database file"
 run xx
 exit menu

Fitrix Screen Technical Reference

18-6 Helpful Techniques

Capturing the User’s Name
The function fg_username returns the user’s name. It is located in the
$fg/lib/standard.4gs library directory. You can call it like this:

let usr_name = fg_username()

The fg_username function uses systables to obtain the user’s name. If no
name is found, the value "UNKNOWN" is returned.

Disabling the "Add a
Navigation" Menu Option
You can disable the "Add a Navigation Action" menu selection to disallow users
from adding an event.

To make this work, you need to copy $fg/lib/stan-
dard.4gs/lib_text.4gl into your local directory. Make the modifications
outlined below to lib_text.4gl, remove the .4go’s and recompile your pro-
gram. Run the program, press [CTRL]-[g], and notice that neither an accept key,
[ENTER] or [CTRL]-[z] allows you to add a navigation action. All you see is a
series of asterisks.

This is $fg/lib/standard.4gs/lib_text.4gl
###
function textput(_text)
###
This function puts the passed text into the next element of the
txt array.
#
 define
 _text char(74), # passed text
 n smallint # generic number

 # Don’t allow recursion
 if is_open = "Y" then return end if

 # Initialize the array
 if reset_cnt = 123
 then else
 call textinit()
 end if

Fitrix Screen Technical Reference

Disabling the "Add a Navigation" Menu Option 18-7

 # Substitute the string to be blocked with a known string
 # to test for in textpick()

 # Circumvent select navigation event events
a->> if _text = "Add a navigation action"
a->> then
a->> let _text = "***********************"
a->> end if

 let arr_cnt = arr_cnt + 1
 let arr_cur = arr_cnt
 if arr_cnt > 150
 then
 call lib_error("lib_scr","textzm",1,"")
 return
 end if

 # Set text if passed in scratch
 if _text = "(see scratch)" then let _text = scratch end if

 # Bump up max_col if necessary
 let n = length(_text)
 if n > max_col then let max_col = n end if
 # Set text into array
 let txt[arr_cur]._text = _text

end function
textput()

###
function textpick(head)
returning the line number of the picked element or 0 if [DEL] pressed.
also returning picked data in scratch if selected.
returns 0 and scratch[1,4]="zoom" and scratch[5,74] zoom line text
(if you need the line # for zoom, call arr_curr())
###
This function places the user into display array on the txt[] array.
It is designed as a ‘picker’ to select from a list.
#
 define
a->> j smallint, # arr_curr()
 head char(80) # screen heading (passed)

 # Don’t allow recursion
 if is_open = "Y"
 then
 call lib_error("lib_scr","recursiv",1,
 "Window: Generic text picker/editor")
 return false
 end if

 # Assign the static ‘heading’ variable

Fitrix Screen Technical Reference

18-8 Helpful Techniques

 let heading = head

 # Bump up max_col if heading is bigger than max_col
 if max_col < length(heading)
 then let max_col = length(heading)
 end if
 # Call textshow (no update - view only)
 if textshow(false) = false
 then return 0
 else
 # Test for known string and return 0 indicating nothing
 # was selected if a disabled item was selected
a->> let j = arr_curr()
a->> if txt[j]._text[1,4] = "****"
a->> then
a->> return 0
 a->> end if
 return arr_curr()
 end if

end function
textpick()

This modification must be made to disable the ability of a user to Zoom from "Add
a Navigation Action" on the Navigate picker and put this map to a hot key. About
line 408 in lib_text.4gl:

Send the zoom down to the picker’s calling function
let arr_cur = arr_curr()
a-->if txt[arr_cur]._text[1,4] = "****"
a-->then
a--> let scratch = txt[arr_cur]._text
a-->else
 let scratch = "zoom", txt[arr_cur]._text
a-->end if
return false

Fitrix Screen Technical Reference

Disabling the F1 and F2 Keys in a Screen Detail Section 18-9

Disabling the F1 and F2 Keys
in a Screen Detail Section
You can disable the F1 and F2 keys in the detail section of a Screen Generated
application by using the Informix options command to re-map these two keys.
Refer to the INFORMIX-4GL Reference Manuals for specific information on the
options command. Place the options commands in a before_input trigger in
the input 2 section of your .trg file.

Example:

before_input
 options insert key F36
 options delete key F36
 ;

Notice that in this example, insert and delete are re-mapped to the same function
key, F36, which is not even accessible from most keyboards.

If you have problems re-mapping a key to F36, another safe alternative is to re-map
insert and delete to "control-s". For example:

before_input
 options insert key control-s
 options delete key control-s
 ;

Fitrix Screen Technical Reference

18-10 Helpful Techniques

Using Triggers to Disable
Function Keys
Function keys can be easily disabled using triggers. For example, you may have an
input screen that you want to disable the [TAB] and [DELETE] keys for. All you
have to do is create a .trg file with the same name as the .per file, such as:
screen1.trg if the .per is named screen1.per.

Then add the following lines to the input 1 section of the .trg file:

input 1
 on_event tab
 exit case
 ;

The final step is to regenerate your code.

You can also easily disable the [F1] and [F2] function keys by re-mapping them to
something that is unlikely to be defined, such as F36. That is, most termcap entries
do not have a definition for F36, so reassigning insert and delete to F36 (yes, both!)
in after_init puts the disabling logic in main, and effectively disallows usage
on a program level.

Example:

after_init
 options insert key f36
 options delete key f36;

Creating a Verification
Prompt for Deletions
Here is an example of how to create a prompt for verification before executing the
"Delete" ring menu option.

Let’s say that an ok_delete function is placed into the source code for a cus-
tomer input screen. When the user tries to delete a customer with the "Delete" ring
menu option, ok_delete pulls up a warning and asks the user to verify deletion
of the record:

Fitrix Screen Technical Reference

Creating a Verification Prompt for Deletions 18-11

 ##
 function ok_delete()
 # returning true or false based upon ok to delete
 ##
 #
 define
 prompt_response char(1)

 open window delete_rec at 14,16 with 9 rows, 51 columns
 attribute (border, blue, prompt line last)

 display STR.delete1 at 1,1 attribute (reverse)
 display "===" at 2,1
 display STR.delete2 at 3,1
 display STR.delete3 at 4,1
 display STR.delete4 at 5,1
 display "===" at 8,1

 let prompt_response = null
 while prompt_response matches STR.not_yes_no or
 prompt_response is null
 prompt STR.ok_continue for prompt_response
 end while
 if upshift(prompt_response) = STR.n_response
 then
 close window delete_rec
 return false
 end if

 close window delete_rec
 return true

 end function
 # ok_delete()

Fitrix Screen Technical Reference

18-12 Helpful Techniques

Immediate Zoom Without
Pressing [CTRL]-[z]
It is possible for a user to Zoom immediately upon entering a particular field. This
arrangement might be appropriate if, for example, the shipping address for a spe-
cific order must be selected from among several possible ship-to addresses.

Add a trigger similar to the following before the field with a zoom.

input 1
 before_field customer_num
 if p_orders.customer_num is null
 then
 call fgStack_push("")
 call socketManager("cust_zm","zoom", "default")
 let p_orders.customer_num = fgStack_pop()
 if p_orders.customer_num is null
 then let nxt_fld = "customer_num" end if
 end if
 ;

Adding Cursor Scrolling in
Detail/Add-on Detail Screens
The following is an .ext you can plug into your detail or add-on detail screens to
allow you to control your cursor scrolling.

##
Copyright (C) 1992 Your Company Name.
All rights reserved.
Use, modification, duplication, and/or distribution of this
software is limited by the software license agreement.
Sccsid: %Z% %M% %I% Delta: %G%
##

The following logic will allow you to programmatically control
field and row positioning within the standard detail array, and
should also work for your add-on detail as well.
#
What is required is that you have a ’hidden’ no-entry field as the
-last- field in the detail line. While some see this need for a
dummy field as a disadvantage, others would need this input array

Fitrix Screen Technical Reference

Adding Cursor Scrolling in Detail/Add-on Detail Screens 18-13

control will make the dummy field. However, if the current last
field happens to already be a no-entry field, than you will not
need to add the dummy field. The bottom is that the last field
needs to be a no-entry field. Replace the name of this existing/
new no-entry field with the "no_entry_field" string found below in
the before_row block code. Then, all you need to add is the
field/row validation that you need, setting goto_row and goto_fld
to where you want the cursor to be placed:
#
let goto_row = 5
let goto_fld = "field_name"

Remember to change the filename name in the ’start file’ command.
##

start file "detail.4gl"

 static_define
 #_scroll_variables - are assigned the destination to scroll to
 goto_row smallint, # The array row to go to
 goto_fld char(18) # Field to go to on goto_row;

 before_input
 #_init - initialize variables
 let goto_row = null
 let goto_fld = null;

 before_row
 #_scroll_control - scrolling logic management
 if goto_row is not null
 then
 case
 when p_cur < goto_row # Go to the next row
 let nxt_fld = "no_entry_fld"
 return
 when p_cur > goto_row # Go to the top
 let nxt_fld = "goto top"
 return
 when p_cur = goto_row # We’ve made it.
 let nxt_fld = goto_fld
 let goto_row = null
 let goto_fld = null
 end case
 end if;

 before block lld_a_row after_row
 #_scroll_fall_through - don’t validate row data if in ’scroll’ mode
 if goto_row is not null
 then
 let nxt_fld = null
 return
 end if;

Fitrix Screen Technical Reference

18-14 Helpful Techniques

Part Four

Appendixes

A-1

A
Fitrix Screen
Utilities

This appendix discusses several useful utilities included with Fitrix Screen along
with other miscellaneous information such as:

n The scr_demo script

n The tags utility

n A script that lists all functions (with descriptions) in a program

n Adding stores demo tables to a database (mkdemo)

n Creating a demonstration database (fg.demodb)

n Viewing database table descriptions

n Using imap

n Adding Code Generator tables with mktables

n Using fg.setshell

Fitrix Screen Technical Reference

A-2 Fitrix Screen Utilities

The Demo Script (scr_demo)
A number of screen demo applications are included with the Code Generator. The
screen demos are essential to learning Fitrix Screen. The screen demos:

• provide real working examples illustrating various capabilities of Fitrix Screen.

• show how browse forms, Zooms, and lookups work.

• show how an add-on header is hooked into your main form.

• show how triggers are automatically merged into your .4gl files and how any
line of code can be modified via block commands.

Each demo application has a corresponding .bak directory, which contains the orig-
inal .per form specification files.

There are two ways to run a screen demo.

1. You can use the scr_demo script. This script automatically sets up your envi-
ronment and prepares a fresh directory with new .per forms.

2. Or you can do the work of the scr_demo script by hand. After your environ-
ment is set correctly ($fg, $PATH, $DBPATH, and $INFORMIXDIR),
create a .4gs directory. Next, copy the files from the $fg/code-
gen/demo.4gm/screen*.bak directory to your .4gs directory (where * is
the number of the demo you wish to run). Then generate, compile, and run the
demo.

In order to use the scr_demo script, invoke it from a UNIX prompt as follows:

scr_demo {1|2|3|5|6|7|8|9}

The script must be invoked with one argument, to specify the particular demo to
run. The following demos are available:

1. Header only screen demo.

2. Header/detail screen demo.

3. Header/detail demo with Zoom, lookup, math, etc.

4. Same as 3 but this directory is used with the Form Painter.

Fitrix Screen Technical Reference

The Demo Script (scr_demo) A-3

5. Header/detail complex demo with triggers.

6. Header/detail that demonstrates triggers and Version Control.

7. Extension screen demo.

8. Add-on detail demo.

9. View-only, view-detail, and query screen demo.

Once the scr_demo script carries out the preparatory steps, it displays the present
working directory and opens a shell for the purpose of running the demo.

Note

Each time the scr_demo script is run, it removes everything in the
$fg/codegen/demo.4gm/screen*.4gs directory, then copies the .per
files from the parallel .bak directory. This action means that every time you run
scr_demo, you wipe out all previous work. If you wish to leave a demo and
then return to it later, simply cd directly into the screen*.4gs directory and
continue your work. Do not run the scr_demo script if you want to continue a
previous demo.

Note

The stores demo tables need to be present in any database you run the screen
demos against. You can add these tables by running the mkdemo script dis-
cussed next.

Fitrix Screen Technical Reference

A-4 Fitrix Screen Utilities

Adding stores Demo Tables
to a Database (mkdemo)
The screen demos require tables from Informix’s stores demo database.
Although installing the Code Generator adds these tables to the standard data-
base, you can add the stores demo tables to any database by running the
mkdemo script.

Syntax:

mkdemo -dbname database

Creating a Demonstration
Database (fg.demodb)
The fg.demodb script allows you to create another stores database for demon-
stration purposes. You can create another stores database anywhere you want.
To create a demo database first change directories to the location you want to create
the stores database. Type:

$fg/bin/fg.demodb

You are prompted for a name for the database.

If you are running the OnLine engine, you are prompted for the dbspace to create
the database in. For more information on dbspace refer to your INFORMIX-
OnLine documentation.

If you are running the Standard engine, dbmerge is run and the database is created
in your current directory.

Fitrix Screen Technical Reference

Locating Functions/Displaying Function Descriptions A-5

Locating
Functions/Displaying
Function Descriptions
This section describes some utilities included with Fitrix Screen that help you
quickly locate and display library functions.

The Tag Utility
During compilation of source code, a database of function calls is created and
stored in files named tags. The files are found in the local module directory and at
the $fg/lib level. These tags files constitute the paths for all local and library
functions called by the executable program. These tags are created by two shell
scripts:

• $fg/bin/itags creates an INFORMIX-4GL tags file in the local source
directory.

• $fg/bin/litags creates a tags file for 4GL libraries and merges it into
../tags

Tags files allow you to benefit from hypertext-style mobility. If you use vi as your
text editor, you can set up your system to edit a function simply by pressing one
pre-defined key. For example, if the cursor is currently positioned on a word that is
a function call, your pre-designated hypertext key takes you to the file that defines
the function. A separate key can be set up to take you back to the departure point.
The tags feature helps you to examine the source code in a step-by-step fashion.

To benefit from the tags feature, make a few additions to your $HOME/.exrc file.
Set tags as follows:

set tags=tags\ ../tags\ ($fg expanded)/all.4gm/tags\
($fg expanded)/lib/tags

The $fg/lib/tags points to the tags file in the directory containing the
archived library functions. With the above line in your $HOME/.exrc file, you
can take advantage of the power of hypertext-style mobility with source code.

Fitrix Screen Technical Reference

A-6 Fitrix Screen Utilities

To automate the process further, to map keys in your $HOME/.exrc file.

map] ^]
map [^^

Note

The characters ^] represent [CTRL]-[]]. The characters ^^ represent [CTRL]-
[^]. When mapping these keystroke combinations, press [CTRL]-[v] prior to
typing in the "action" characters.

Thereafter, pressing] with the cursor positioned on the name of the desired func-
tion displays that function, wherever it happens to be defined within the current
application. Likewise, the [key returns you to the file from which you began.

Note

Some versions of vi do not recognize the [CTRL]-[]] shortcut.

It is not necessary to map keys in your $HOME/.exrc file to take advantage of the
tags feature. You can use the tag command within vi to instantly edit or view any
function defined in the program source code. For example, while using vi to edit a
source code file (*.4gl), the command:

:tag func_name

loads the source code file containing function func_name(), with the cursor
positioned on the first line of code defining func_name(). To return to the file
from which the last tag command was given, type:

:e#

The tags utility can also be used to start vi from the command line. The command
is:

vi -t func_name

In such cases, map the] keystroke as follows:

map] :tag

Fitrix Screen Technical Reference

Locating Functions/Displaying Function Descriptions A-7

Upon editing a file with vi, the] key begins the command:

:tag func_name

Simply complete the command with the name of the function you wish to edit,
press [ENTER], and the tags feature loads the file containing the appropriate source
code.

Sometimes tagging to a function might not give you the function you want. The
$fg/tags file is built using a binary sort. If you try to tag on a function that
appears in more than one library, you are placed into the function and library that
appears first in the tags file. This means that the tags utility always takes you to the
function that appears first alphabetically. For example, if you tag on the init()
function while examining screen code generated programs, you are placed into the
$fg/lib/report.4gs/init.4gl file. This obviously is not the init()
you want to see.

The following lines are from the $fg/lib/tags file and illustrate how the first
init.4gl is tagged to rather than the second:

init $fg/lib/report.4gs/init.4gl /^function init
init $fg/lib/scr.4gs/init.4gl /^function init

Displaying Functions Within Programs
The following shell script displays a list of all the function names and comments
found within those functions in a specified program. Thus by running this script
and specifying the name of a program, you can view a description of every function
found within that program.

 ##
 :
 # awk script to display function name and comments. specify filename(s)
 # on command line.You can use wildcards and also redirect the output to
 # a file.

 awk ’
 BEGIN {
 TRUE=1
 FALSE=0
 inflag=FALSE
 }

 {
 if (inflag == TRUE && $0 ~ /^#/) {

Fitrix Screen Technical Reference

A-8 Fitrix Screen Utilities

 # substitute space for pound sign(s)
 gsub(/#/, " ", $0)
 print $0
 }
 else
 inflag = FALSE
 }

 /^function/ {
 gsub(/^function */, "", $0)
 inflag=TRUE
 printf ("\n%s\n", $0)
 }’ $@

 ##

Here is sample output.

lld_input()

returning -1 if tab pressed (next window), 0 otherwise

lld_b_field(field_name)

This function is called from the input function before every field. The
’prv_fld’ variable contains the field we came from. The ’scr_fld’ variable
contains the field we’re going into. Set ’nxt_fld’ if you want to skip this
field or exit input.

lld_a_field()

This function is called after every field.

lld_a_input()

This function is called whenever the input statement exits (except due to an
interrupt). If you don’t want the input session to end, set the nxt_fld
variable to contain the field to be placed back into.

lld_event()

This function is called whenever the user presses an event key. The event is
mapped to the ’scr_funct’ variable and processed here.

This script is extremely useful when trying to learn new programs. By running this
script in a particular library, you can produce a listing of all functions and their
descriptions in that library.

Fitrix Screen Technical Reference

Viewing Database Table Layouts (imap) A-9

Viewing Database Table
Layouts (imap)
Fitrix Screen includes the script imap, which can be used to provide information
on individual database tables in a specified database. The script can also be used to
provide a listing of all tables in a particular database.

The syntax for the imap script is as follows:

imap [-dbname database] [tablename]

If you pass a -dbname database argument, the imap script uses that data-
base. Otherwise, imap searches for the value of the $DBNAME system variable (if
it has been specified). If $DBNAME is not set, imap defaults to the standard
database.

If you pass a table name, then the imap script returns the schema of that table. If no
table name is specified, imap produces a list of tables in the database.

Invocation examples:

imap -dbname stores customer
imap -dbname stores
imap items
imap

Fitrix Screen Technical Reference

A-10 Fitrix Screen Utilities

Adding Code Generator
Tables (mktables)
The UNIX script mktables adds tables to your database that are needed by gen-
erated programs and may also be used to create new databases in $fg/code-
gen/data. The mktables script also builds all of the tables required by any
program using the scr.a, user_ctl.a, or standard.a libraries.

The syntax for the mktables script follows:

$fg/bin/mktables -dbname database

This script adds a number of cg* and stx* tables to your database. If space is a con-
cern, you may remove the cg* tables from your application database. Only the stx*
tables need to be present to run a program that was generated with the Screen Code
Generator. For a complete list of tables refer to "Code Generator Tables" on page
D-5.

Adding Tables Required by
Fitrix Security (mksecuri)
In order for your generated applications to useFitrix Security, you need to add the
security tables to your database. The following script adds the tables needed by
Fitrix Security.

$fg/bin/mksecuri -dbname database

Fitrix Screen Technical Reference

Adding Upper Level Library Tables (mklib) A-11

Adding Upper Level Library
Tables (mklib)
Applications created with Fitrix Screen require a number of tables to be present in
any database they are run against. The mklib script adds these tables.

$fg/bin/mklib -dbname database

Setting up the Shell
(fg.setshell)
The fg.setshell script forces a program to be run in the bourne shell. The pur-
pose of this shell script is to re-boot the current program using a shell that’s known
to work on this platform. Most platforms pass the QA suite using the regular bourne
shell located in /bin/sh, but some platforms have shells that work better than the
/bin/sh shell.

This program is usually called from within other shell scripts using the following
format:

. fg.setshell

The fg.setshell script is located in $fg/bin.

Cleaning Your Database
(fg.delfrm)
At times you may need to clean up old screen information from your database. For
instance, if you delete a directory, the form images in that directory are still retained
in the database.

Fitrix Screen Technical Reference

A-12 Fitrix Screen Utilities

Sometimes when a form is parsed, corrupt data may get into your database. The
Code Generator usually cleans itself out when parsing a form but if bad data gets in,
the Code Generator may be unable to clean itself out. If you run into strange errors
when generating code you should try running this script and specify your problem
directory and forms.

To run this script $fg/bin must be in your $PATH.

Syntax:

fg.delfrm { [-m module]|[-p program]|[-s scr_id]|
[-k cust_key] } [-dbname dbname] [-c] [u]

-m module one module or a list of modules.

-p program program.

-s scr_id the name of the screen.

-k cust_key specify cust_key if using version control.

-dbname dbname database name. default standard.

-c cron mode. no display output. default no cron mode.

-u update statistics. default no update.

B-1

B
The .per
Specification File
This appendix explains the .per specification file, which serves as input to the Code
Generator. Although the Form Painter automatically creates these .per specification
files, understanding the make up of the .per file gives you a better comprehension
of the overall code generation process. This section covers:

n The .per specification file

n preventing code generation on a .per form

n converting INFORMIX-SQL perform files

Fitrix Screen Technical Reference

B-2 The .per Specification File

The .per Specification File
The code generated by the Code Generator is based on information supplied by the
.per file(s) present in the application directory. That is, the resulting code depends
on the prior specification of the .per file(s). Even Zoom (lookup) logic can be auto-
matically generated by the Code Generator provided there is a zoom .per form
present prior to generating the application. The .per file(s) in any given directory
can be created with any text editor or with the Fitrix Screen Form Painter.

The .per form specification file contains six basic sections: DATABASE, SCREEN,
TABLES, ATTRIBUTES, and INSTRUCTIONS. An optional section titled FOUR-
GEN is specified below the INSTRUCTIONS section. The sections of the .per file
must appear in this order.

The FOURGEN section provides an additional source of information for the Code
Generator. Since it is enclosed in braces "{}", this section is ignored by form4gl,
the 4gl form preprocessor. Code can be generated without having a FOURGEN sec-
tion specified in the .per file for header screens only. All other screen types must
have a FOURGEN section to work with the Code Generator.

Note

All .per files must be less than 200 lines.

Note

.per file naming convention: .per file names must be seven characters or less
not including the ".per" extension in order to be read into the Form Painter. For
example: invoice.per is the maximum length of a .per name.

Fitrix Screen Technical Reference

DATABASE Section B-3

DATABASE Section
The DATABASE section specifies the database on which the form is based. The
example below indicates that the stores database is the basis for the display
fields on this form.

An example:

DATABASE stores

SCREEN Section
The SCREEN section of the .per file defines the image of the data-entry screen.
Although 4GL accepts screens that are up to 600 rows by 600 columns, 4GL Forms
limits the size of the SCREEN section to 74 characters in width by 18 lines in length
(to allow for the border around the form). The section begins with the SCREEN
keyword, and continues with the screen image enclosed by curly braces. Fields in
the SCREEN section must also be defined in the ATTRIBUTES section. Field tags
must be limited to six characters in order to work properly with the Form Painter.

Note

A { must precede the screen image and be on a line by itself.

Fields are generally delineated by square brackets. Sometimes you may need to
locate two fields next to each other, and you only have one space for a delimiter so
two square brackets do not work (][). When this occurs, you can use the pipe (|)
to delineate between two fields.

An example:

Contact Name: [f001 |f002]

Fitrix Screen Technical Reference

B-4 The .per Specification File

An example SCREEN section:

SCREEN
{
----------------------------- Order Form ------------------------------
 Customer No.:[f000] Contact Name:[f001][f002]
 Company Name:[f003]
 Address:[f004][f005]
 City/St/Zip:[f006][a0] [f007] Telephone:[f008]

 Order Date:[f010] PO Number:[f011] Order No:[f009]

 Shipping Instructions: [f012]

Item Description Manufacturer Qty. Price Extension
[f14][f15][f16][f17] [f18][f19][f20]
[f14][f15][f16][f17] [f18][f19][f20]
[f14][f15][f16][f17] [f18][f19][f20]
[f14][f15][f16][f17] [f18][f19][f20]
 ===========
 Order weight:[f30] Freight:[f31]
 Order Total:[f32]
}

TABLES Section
The TABLES section of the .per file lists the tables containing the columns speci-
fied in the ATTRIBUTES section. All tables listed must be part of the database in
the DATABASE section. The first table listed in the TABLES section is the default
main table for the program.

An example:

Tables
 orders
 items
 customer
 stock
 manufact

Fitrix Screen Technical Reference

ATTRIBUTES Section B-5

ATTRIBUTES Section
The ATTRIBUTES section found in the .per file coordinates the fields defined in
the SCREEN section and optionally provides other attributes on a field-by-field
basis. Field tags must be limited to six characters to work properly with the Form
Painter.

An example:

ATTRIBUTES
f000 = orders.customer_num, comments =
 " Enter the customer code.";
f001 = customer.fname, noentry;
f002 = customer.lname, noentry;
f003 = customer.company, noentry;
f004 = customer.address1, noentry;
f005 = customer.address2, noentry;
f006 = customer.city, noentry;
a0 = customer.state, noentry;
f007 = customer.zipcode, noentry;
f008 = customer.phone, noentry;
f009 = orders.order_num, noentry;
f010 = orders.order_date, default = today, comments =
 " Enter the order date.";
f011 = orders.po_num, comments =
 " Enter the customer’s purchase order number.";
f012 = orders.ship_instruct, comments =
 " Enter any special shipping instructions to show on the invoice.";
f14 = items.stock_num, comments =
 " Enter the stock number for this line item.";
f15 = stock.description, noentry;
f16 = items.manu_code, comments =
 " Enter the manufacturers code for this stock number.", UPSHIFT;
f17 = manufact.manu_name, noentry;
f18 = items.quantity, comments =
 " Enter the number of units sold for this item.";
f19 = stock.unit_price, noentry;
f20 = items.total_price, noentry;
f30 = orders.ship_weight, comments =
 " Enter the total shipping weight for this order.";
f31 = orders.ship_charge, comments =
 " Enter the total shipping charge for this order.";
f32 = formonly.t_price type money, noentry;

Fitrix Screen Technical Reference

B-6 The .per Specification File

Note

It is recommended that you do not use the include statement for data valida-
tion for the following reason: If bad data is entered into a field causing an error
message, that data can be saved if the [TAB] key is pressed to move out of that
field followed by an [ESC].

Formonly Fields
Formonly fields are used to display values of variables that are not associated with
columns of the database. For more information on formonly fields refer to your
Informix documentation.

INSTRUCTIONS Section
The INSTRUCTIONS section establishes the screen records used with the display
columns on the data-entry form. Screen records can include some or all of the dis-
play fields established in the ATTRIBUTES section. When defining screen records,
you must provide the full name of each display field to be included. With the Code
Generator, you cannot use formats like field1 THRU field13, or
stores.*.

The INSTRUCTIONS section should also contain the following delimiters
statement changing the default display field delimiter to blanks (to accommodate
the new field highlighting characteristics).

An example:

INSTRUCTIONS

screen record abc (table1.column, table2.column, ...)
screen record def[4] (table3.column, table4.column, ..)

delimiters " "

Fitrix Screen Technical Reference

INSTRUCTIONS Section B-7

INSTRUCTIONS Section—Points to
Observe
The following is a list of points to follow when building the INSTRUCTIONS sec-
tion of the .per file.

• The first screen record listed in a header screen is the main record.

• The first screen record listed in a header/detail screen is the record for the
header.

• The second screen record listed in a header/detail screen must be an array type
and is the record for the detail lines. The number of elements of the array corre-
sponds to the number of lines on the screen, not the number of program ele-
ments in the internal program array.

• The first table listed in the TABLES section of the screen determines the
DEFAULT main table name for the header.

• The first ELEMENT of the detail screen record (table3.column in defaults
above) determines the main table name for the detail lines.

• The table = tabname in the FOURGEN section (below) overrides the above
defaults (and is the preferred method of determination).

• All fields in the .per file must appear in the screen record.

• If the table name of an element in the screen record is the same as the main
table for that screen record (defined above), then the Code Generator provides
data input/output for that column. The following example uses "customer" as
the main table:

screen record s_cust (customer.fname, customer.lname, orders.ord_num)

• If the table name of an element in the screen record is not the same as the main
table for that screen record, then the field must either be a destination field of a
lookup, or a math field. Otherwise the Code Generator doesn’t generate code
for that field.

Fitrix Screen Technical Reference

B-8 The .per Specification File

• If the table name isn’t the main tablename for the screen record, and it’s not a
lookup destination or math result column, the programmer must fill that field in
the appropriate p_prep() function (llh_ for header, lld_ for detail) man-
ually.

• It is recommended to have the following delimiters statement in the instructions
area of the file (with two spaces between the quotes) because the new cursor
highlights the entire data field.

delimiters " "

• If you do not have the delimiters statement (like above), then the field high-
lights and displays the specified [] delimiters (most users do not like both
highlighting and the [] delimiters).

FOURGEN Section
The FOURGEN section of the .per form specification file provides a wealth of spe-
cific information used by the Code Generator to generate the program. While it is
not required for other types of perform files, it is the method by which you control
characteristics of the code generated by Fitrix Screen . If the FOURGEN section is
not specified prior to code generation, default values are used.

The FOURGEN section is required when a header-detail screen has an input 2
join line or when you want to use math, zoom, lookup,
 or any other Code Generator function. The keyword FOURGEN must appear in the
.per file for the above mentioned functions to work or when any FOURGEN specifi-
cations are used.

The following is a list of points to keep in mind when building the FOURGEN sec-
tion of the .per form specification file.

• The entire FOURGEN section must be surrounded by braces { } (form4gl
treats this as a comment section).

• There is no case sensitivity in this section (FOURGEN doesn’t need to be capi-
talized).

• The lines of #### above and below the word FOURGEN are not required.

Sample FOURGEN section:

Fitrix Screen Technical Reference

FOURGEN Section B-9

{
###
FOURGEN
###

defaults
 type = header/detail
 init = order_num > 1000
 attributes = border, blue
 location = 2, 3

input 1
 table = orders
 key = order_num
 filter = order_date > "12/31/80"
 order = order_num
 math = t_price = sum(total_price) + ship_charge
 lookup = key=customer_num, table=customer,
 filter=customer_num = $customer_num
 zoom = key=customer_num, screen=cust_zm, table=customer

input 2
 table = items
 key = order_num, item_num
 join = items.order_num = orders.order_num
 order = item_num
 arr_max = 100
 autonum = item_num
 math = total_price = quantity * unit_price
 lookup = name=stock_num, key=stock_num, table=stock,
 filter=stock_num = $stock_num, into=description
 lookup = name=stock_manu, key=manu_code, table=stock,
 filter=stock_num = $stock_num and manu_code = $manu_code,
 into=unit_pric
 lookup = key=manu_code, table=manufact, filter=manu_code = $manu_code
 zoom = key=stock_num, screen=stockzm, table=stock, noautozoom
 zoom = key=manu_code, screen=stk_mnu, table=stock,
 filter=stock.stock_num = $stock_num

The FOURGEN section can contain 3 sections: defaults, input 1, and input
2. An explanation of the attributes in the FOURGEN section follows.

Fitrix Screen Technical Reference

B-10 The .per Specification File

defaults section
The FOURGEN section of the .per form specification file contains a defaults
section that defines the characteristics of the generated code. It is not mandatory
that this information be provided as part of the .per file. Code Generator defaults
are used in the absence of defaults section. The following section provides an
overview of the components of this section.

type
(up to 15 chars)

type = zoom

The scr_type can be only one of the following:

• header—this is a header only form or flat type. It contains one input area and
one main table.

• header/detail—this is a header with another scrolling (detail) section joined to
the header.

• add-on header—this is a flat type like a header form, only it is used in conjunc-
tion with a header/detail form to provide multiple screens.

• add-on detail—this is an addition scrolling detail form that can be attached and
used with the main screen.

• extension—this is an additional screen that serves as an extension of the main
screen.

• view-header—this is a view-only header form that can be attached to a main
screen.

• view-detail—this is a view-only detail form that can be attached to a main
screen.

• query—this is a form that can be used to build SQL query.

• browse—this is a scrolling type screen whose main table is the same as the
header section main table. It allows you to view one row of the header table per
line rather than one row per screen.

Fitrix Screen Technical Reference

FOURGEN Section B-11

• zoom—this is a special type of screen that allows you to scroll through data
from another table (or set of tables joined).

Default: If there is only one input area (and that input area is not an array type) then
the screen type is assumed to be header only. If there are two input areas (a non-
array type followed by an array type) then the screen type is assumed to be
header/detail. If there is only one input area, and it is a scrolling type, then the
screen type is assumed to be zoom unless the filename is browse.per. In that
case, the default screen type is browse.

init
(up to 200 chars)

init = customer_num is not null and customer_type = "A"

This is the initial filter that is used when the application is first run. You can over-
ride it by invoking the program with a filter = "filter clause" on the
command line.

Default: 1=0 (select no rows upon program load). You may also specify 1=1 to
select all rows, or [as above] you may specify an SQL filter.

attributes
 (up to 30 chars)

attributes = blue, border

This overrides the default window attributes. To retain consistency throughout your
applications, we recommend not using the attributes keyword.

Default: white, border

location
(two integers separated by a comma)

location = 5,20

This specifies the y (row), x (column) location to place the window.

Default: 2, 3 (minimum upper left coordinates)

Fitrix Screen Technical Reference

B-12 The .per Specification File

returning
(field name)

returning = customer_num

This keyword is for zoom screens only. It identifies the name of the field in this
screen that you wish to return to the function that called the zoom. You may only
specify one field to return to the calling function. This keyword is not required for
zoom screens. If it is omitted, however, no data can be returned to functions calling
this zoom screen.

input section
The FOURGEN section of the .per form specification file continues with the input
section(s), which define(s) the characteristics of the generated code. The input des-
ignator must be followed by a number designating which input area (sequentially)
you are defining. The only screen type that has more than one input area is
header/detail. input 1 corresponds to header sections while input 2 corre-
sponds to detail sections. The following section provides an overview of the com-
ponents of this section, and serves as an example of how it can be used.

order
(up to 100 chars)

order = company, lname

This determines the order of each Find. You may specify desc after any column to
impose a descending sort on that column. The order defaults to ascending order.

In .per terms desc is the string following the order = within the FOURGEN sec-
tion of a .per file. When you have an order by in the select statement, the col-
umns you are ordering by must also be in the select clause of the select
statement. If these are not present, you get a syntax error. Basically, if there is no
order by requested in the .per file, the only thing you have in your select
clause is "rowid". If an order = is specified in the .per file, then the order by
requested is put into a char variable called sql_order. At the time of the SQL
statement creation, the contents of the sql_order variable need to be checked.

Fitrix Screen Technical Reference

FOURGEN Section B-13

table
(default main table is specified in TABLES section)

table = customer

This defines the main table for this input area. There can be only one main table for
an input area.

key
(unlimited list of fields)

key = customer_num

This defines the list of fields that build the unique key for the main table. The sys-
tem uses this information to key secondary data to the main table. This secondary
data includes Freeform Notes and User Defined Fields. If the key is not defined,
you do not get Freeform Notes or User Defined Fields. The fields in the key must
not exceed 30 characters in length, and the total combined key length may not
exceed 80 characters.

Duplicate checking code is automatically generated on the fields listed on the key
line of the input 1 header region in the FOURGEN section. Duplicate checking
logic is only generated if at least one of the fields in the key is enterable. A dupli-
cate error message is displayed after a row is accepted and the user is placed back in
the first enterable field in the key.

Notes:

1. Duplicate checking is not performed on detail rows.

2. Duplicate checking is only performed if all the fields in the key are non-null.

3. All entry fields in the key should be made required fields using the nonull
keyword.

4. Duplicate checking is performed in the llh_a_input() function. The actual
test for a duplicate value is done in llh_dupchk().

5. If a duplicate has been created, the message, "This value already exists" appears
in a box at the bottom of the screen when the user presses the accept [ESC] key.
The user is placed back in the first enterable field in the key.

6. If you do not want to utilize the default duplicate checking logic:

Fitrix Screen Technical Reference

B-14 The .per Specification File

• create a trigger that has a do_not_generate llh_dupchk.

• create your own llh_dupchk that always returns true.

join
(up to 200 chars)

join = customer.customer_num = orders.customer_num

This defines the join criteria for detail lines joined to the header input area and also
defines the join criteria for zoom screens (if there is more than one table listed in
the TABLES section, this defines the join for those tables).

filter
(up to 200 chars)

filter = items.item_num is not null (for detail)

This is the hardcoded filter that is used in every query. This filter is combined using
AND with the user’s query by example filter, and the filter passed via the command
line. You can also use the matches, not matches, like, and not like
operators in the filter.

Default: 1=1 (no hardfilter) Example: If you only wanted to see customers with a
customer_num greater than 1000 in this program, you would specify:

filter = customer_num > 1000

Fitrix Screen Technical Reference

FOURGEN Section B-15

arr_max
(integer)

arr_max = 200

This is the number of internal program array elements you wish to provide space
for in the scrolling input area. It only is used for detail and zoom type input areas.

Default: 100

autonum
(auto sequencing of detail lines)

autonum = line_no

This is for detail input areas only. It sequences the detail lines by specifying a
unique line number field that the system maintains. Autonum maintains the order
that detail lines are entered. If you do not specify autonumber for your detail lines,
the detail lines are not displayed in the order that they were originally entered. This
line number field is not recommended to be listed in the form image because it is
not maintained during input. It is maintained only upon disk writes.

math
(math statement)

math = t_price = sum(total_price) + ship_charge

This statement tells the Code Generator how to perform math on the screen. The
system knows about addition, subtraction, multiplication, division, modulus, and
summation of detail fields. The first element must be the destination field, followed
by an equal sign and the mathematical formula required to fill the destination field.

Fitrix Screen Technical Reference

B-16 The .per Specification File

blobdef
(blob definition)

blobdef = blobtext, vi, y
blobdef = blobbyte, Wingz, y

The blobdef statement allows you to link Informix BLOBs (Binary Large
Objects) to fields in your form. BLOBs may be of type byte or text. BLOB field
types are only supported in the input 1 (header) section of header and
header/detail forms. For more information on blobs refer to "Creating BLOB
Fields" on page 7-18 and "Creating BLOBs" on page 15-31.

blobdef = column_type program {y|n}

The blobdef is the keyword. The column_type is the datatype. The pro-
gram is the program that invokes the blob. The y/n flag determines whether the
blob can be edited.

lookup
lookup = name=stock_manu, key=manu_code, table=stock,
 filter=stock_num = $stock_num and manu_code = $manu_code,
 into=unit_price

This statement defines a system lookup. Lookups are keyed from a field in the main
table for this input, and they look up information from another table to place into
destination fields. The destination fields should be noentry type.

The Code Generator attempts to find a column in the table by the name of the into
field. In the example above, code is generated to select the unit_price column
from the stock table; so it is important that the field names you select in the
screen.per match the actual names of columns in tables. If the field on the
screen has a different name than the column in the table being looked up then you
must use the from_into statement.

The into statement is needed when there is more than one lookup to the same
table. Otherwise the default destination is all fields in the input area that share the
same table name.

Fitrix Screen Technical Reference

FOURGEN Section B-17

Note

Lookups must appear in the .per file in the order they are needed. If a lookup
depends upon another, you need to list the lookups in the .per form in the order
that they are performed.

The following describes three examples of lookup usage:

1. If there is no into statement, the generator searches the screen record for defi-
nitions of the same table as the table name of table=tablename.

 screen record s_pvendr (stpvendr.vend_code, stpvendr.bus_name,
 stpvendr.terms_code, stptermr.terms_desc)
 ...
 ...
 lookup = name=term_lookup,key=terms_code,table=stptermr,
 filter= stptermr.terms_code = $terms_code

The generator finds stptermr.terms_desc in the screen record therefore
defaulting the into=terms_desc. If the generator cannot find an associated
table, then the lookup is defined as a validation only lookup (a lookup that
returns no data).

2. If you use the into statement, all into’s must be specific. You cannot use
the into statement for some fields and expect the generator to default the
other ones.

The into=column must be a column in the lookup table. It does not have to
be a screen record field. If your screen record field has the same name as the
column then the lookup returns data into that field otherwise it puts that data
into a parallel record.

 screen record s_acct (stpinvce.acct_no, formonly.acct_desc)
 ...
 ...
 lookup = name=acct_lookup, key=acct_no, table=stxchrtr,
 into=acct_desc, into=incr_with_crdt,
 filter= stxchrtr.acct_no = $acct_no

The generator puts the acct_desc into p_pinvce.acct_desc and
incr_with_crdt into q_pince.incr_with_crdt.

The p_ record is associated with the screen and the q_ records are parallel to
the p_ records.

Fitrix Screen Technical Reference

B-18 The .per Specification File

3. If you want to assign a lookup where the column selected is not the same name
as the field you want to put it into, you can use the from_into syntax.

 screen record s_acct (stpinvce.acct_no, formonly.james_desc)
 ...
 ...
 lookup = name=acct_lookup, key=acct_no, table=stxchrtr,
 from_into=acct_desc james_desc, from_into=incr_with_crdt
 is_it_a_credit,
 filter= stxchrtr.acct_no = $acct_no

The generator puts the acct_desc into p_pinvce.james_desc and
incr_with_crdt into q_pince.is_it_a_credit.

4. You can specify a lookup that does not return information to a field for data
validation purposes by not using the into statement. Information is returned
in this case as long as your screen record does not contain any fields that refer-
ence the table that the lookup is made into.

A lookup can also be used for data validation as in the following example (that
appears in header.4gl):

 if llh_lookup("cust_lk",true) = false

In this example, when the function is passed a value of true, then the field must
be filled with a valid code and the lookup takes place. If the function is passed a
value of false, the lookup occurs, but data validation does not. However, it is up
to the programmer to take care of the situation where the field is left blank. See
the following example:

 after field cust_code
 if auto_zoom("custz","strcustr","")
 then let p_rshipr.cust_code = scratch end if
 call lib_after()
 if data_changed
 then
 # Perform lookups
 if llh_lookup("cust_lk",true) = false
 then next field cust_code end if
 end if

The lookup statement looks for the following elements separated by commas:
name, key, table, filter, into, from_into.

lookup - name
(unique lookup name - up to 18 chars)

Fitrix Screen Technical Reference

FOURGEN Section B-19

 name = custlkup2

This defines a unique name for the lookup. The default name is the name of the
table. You would only need to define a name if you have more than one lookup in
an input area that looks up from the same table.

lookup - key
(fieldname)

key = customer_num

This defines the field that the lookup is triggered on. In this case, when you change
the data in the customer_num field a new lookup is performed. The key attribute
is required.

lookup - table
(tablename)

table = customer

This defines the table to be looked into. There can only be one table per lookup.
This is required information.

lookup - filter
(SQL filter)

filter = customer.customer_num = $customer_num

This is the where clause that is built when the lookup is performed. If you have a $
preceding a field, that tells the system to use the data in program variables as that
part of the filter. The filter clause must be expressed in one line. The above example
places the current customer_num (say, 104) into the following where clause:

where customer.customer_num = 104

The filter statement is required.

lookup - into
(screen field in this input area)

into=fname, into=lname, into = company...

Fitrix Screen Technical Reference

B-20 The .per Specification File

This tells the lookup which field to place the data into. You may have any number
of into statements, but you may only specify one field per into. Normally, you
do not need to specifically tell the system which fields to input into. The default
into list is determined by all fields defined in the screen record that have a table-
name that matches the table for this lookup. You may want to override that default
list if you do not wish to have all elements from that table filled on this lookup, or if
you wish to lookup into columns of the main table for the input area.

lookup - from_into
(screen field in this input area)

from_into=acct_desc james_desc

The from_into statement allows you to place information that is retrieved from
one column into a field with a different column name. In the preceding example,
whatever is found in the acct_desc column is placed into the james_desc
field on this form. The column must be a column in the lookup table and the into
field must be a field on the screen.

zoom
(definition)

zoom=key=manu_code, screen=stk_mnu, table=stock,
 filter=stock.stock_num = $stock_num

This statement defines the relationship between this screen and a zoom screen. It
has multiple sections like the lookup statement described previously.

Fitrix Screen Technical Reference

FOURGEN Section B-21

zoom - key
(field to zoom from)

key = customer_num

This defines the field you wish to zoom from, and the field that the zoom screen
returns data into.

zoom - screen
(zoom screen name - up to 7 chars)

screen = stk_mnu

This specifies the name of the zoom screen to call when the user gives the zoom
command in the key field.

zoom - table
(tablename)

table = stock

This defines the main table for the zoom. It is required only if you wish to have
AutoZoom functionality. The system needs it to build the matches clause for auto-
zoom.

where {tablename}.{key} matches {data typed into key field}

When running the application, if you are in an AutoZoom type field and an asterisk
is entered anywhere in the field, any data in that field is used to build the matches
clause, and the zoom screen is automatically called.

zoom - filter
(SQL filter)

filter=stock.stock_num = $stock_num

This is the where clause that is built when the Zoom is performed. If you have a $
preceding a field, it tells the system to use the data in the system as that part of the
filter. In the above example, the current stock_num (say, 4) is placed into the fol-
lowing where clause:

Fitrix Screen Technical Reference

B-22 The .per Specification File

where stock_num = 4

If a zoom filter is specified, it uses that filter instead of placing the user into the
query by example screen. If no documents are selected based on this filter, the user
is put into the query by example screen. In either case, if the user executes Find
from this query by example screen, the filter is not used in the subsequent select.

For example, if you use the following filter:

filter=1=1

then the query screen is not called when the zoom screen is first displayed.

zoom - from
(column name differs from screen field)

from=column_name

This statement lets you specify the name of the column being zoomed into if it dif-
fers from the name of the column on the screen. For example, if the field on your
screen is named customer_num and the field being zoomed into is called
cus_num, you would specify from=cus_num.

The from keyword is required for a zoom definition in the FOURGEN section if all
of the following are true:

1. The screen field which is the key to your zoom has a different name than the
corresponding column name in the table you are perusing with your zoom.

2. The screen field you are zooming from is a character field.

3. The zoom has autozoom enabled. Zooms with the noautozoom keyword or a
filter do not require the from keyword.

zoom= key=state, screen=stat_zm, table=state, from=code

Fitrix Screen Technical Reference

FOURGEN Section B-23

noautozoom
(do not generate autozoom logic)

zoom = key=trd_ds_code, screen=discz, noautozoom,
 table=stxinfor,filter=stxinfor.src_type = "I"

This keyword requires no arguments. It tells the Code Generator not to generate
autozoom code for this field.

Specifying noautozoom eliminates the following two lines for the specific field
(in this case, trd_ds_code).

if auto_zoom("discz","stxinfor","(see scratch)")
 then let p_rcustr.trd_ds_code = scratch end if

You would specify noautozoom if you needed to have an asterisk as a piece of
data in a zoom key field, or if the zoom key field is a numeric type field that cannot
use the matches clause in an SQL query.

defaults
default = customer_num = 105, address1 = "805 Westham
 PKWY",order_date = today, po_num = "3K5100"

Use the default keyword in either input 1 or input 2 of the FOURGEN sec-
tion of the perform screen to place default values in fields on the screen.

Numeric fields:

default = field-name1 = numeric-value, field-name2 = numeric-value

Character fields:

default = field-name1 ="char. string", field-name2 = "char. string"

Variable defaults:

default = field-name1 = variable-name, field-name2 = variable-name

Explanation:

• default is the required keyword.

Fitrix Screen Technical Reference

B-24 The .per Specification File

• field-name is the name of a column in the screen record without the table
name prefix.

 Correct: customer_num
 Incorrect: orders.customer_num

• numeric value is an integer or other numeric constant.

• char. string is a character string enclosed in quotes with a length less then
or equal to 30 characters.

Notes:

1. If any defaults are present in the ATTRIBUTES section, the Code Generator
creates a default entry with the default keyword in the appropriate input area
of the FOURGEN section.

2. Defaults are limited to 30 characters in length. The default line can contain
many default values for fields with each default value having a maximum
length of 30 characters.

3. Defaulting is not performed in input 1, header, unless all of the variables in
the input 1 program, p_ record are null.

4. Defaulting is not performed for a specific row in the detail input array unless all
the program, p_ record variables for a given row are null.

nonull

(entry required)

nonull = po_num, customer_num, ship_charge

The nonull keyword is used to require entry in fields even when data is changed
or a field is entered multiple times.

Notes:

1. The nonull keyword is only available for the header input 1 region.

2. If the REQUIRED keyword is found in the ATTRIBUTES section for a field in
the input 1 area the Code Generator and the Form Painter remove it and create a
nonull entry in the FOURGEN section.

Fitrix Screen Technical Reference

Preventing Code Generation on a .per Form B-25

3. The REQUIRED keyword may be used in the attribute section for fields in the
input 2, detail, region. It is not stripped by the tools. However, this technique
should not be used.

4. Nonull logic is written in llh_a_input().

5. When the accept key is pressed with nonull fields left null an error message, "A
required field is null," appears in a box at the bottom of the screen. The user is
placed back in the first null nonull field based upon cursor path.

Preventing Code Generation
on a .per Form
Each input screen in your application can only have one source form. A source
form is a .per form used to generate code. If you have two similar header or
header/detail .per forms in one directory, and you try to generate code, the Code
Generator generates code for the first form, then for the second form. The code gen-
erated off of the second form overwrites the code for the first form.

Sometimes you might have a situation where you want to generate code from one
form, but then you want to physically display a different form. In this instance you
would specify the display only form as a non_source_form. This statement
tells the Code Generator to skip this form and not generate off of it.

If you have a .per in a local directory that is not to be used for generating code, the
first line following the copyright information of the .per should contain the state-
ment non_source_form. An example:

{
###
Sccsid: %Z% %M% %I% Delta: %G%
##

non_source_form
}

The non_source_form statement should appear following copyright informa-
tion within the braces. Anything contained within braces is ignored by form4gl.

Fitrix Screen Technical Reference

B-26 The .per Specification File

When you run the Code Generator on all forms in a local directory, it does not gen-
erate code for those .pers that contain this line. The non_source_form state-
ment allows you to have multiple screens in the local program directory and
eliminates any chance of running the Code Generator on the wrong screen.

Converting INFORMIX-SQL
Perform Files
Perform applications written in INFORMIX-SQL may be easily converted to
INFORMIX-4GL by running the Code Generator on the perform screens. The code
created by Fitrix Screen effectively replaces the perform screen interface with the
Code Generator ring menu interface. Many Perform commands are not recognized
by INFORMIX-4GL, however, if you have defined many additional instructions in
the perform form, you have to add functions to the Code Generator code to achieve
the same effects.

• All statements of the INSTRUCTIONS section of a perform screen, with the
exception of the delimiters command, are ignored.

• 4GL does not accept form definitions containing more than one screen. If your
perform file contains multiple screen definitions these must be removed.

• Joins defined in the screen form are ignored.

• The LOOKUP, NOUPDATE, QUERYCLEAR, RIGHT, and ZEROFILL
attributes of perform screens have no meaning in 4GL.

C-1

C
Program Migration

This section discusses moving your generated applications onto production plat-
forms.

n Program migration

Fitrix Screen Technical Reference

C-2 Program Migration

Moving Applications to Other
Systems
To successfully run programs generated with Fitrix Screen on systems other than
the development system, a few steps must be taken. These steps will ensure that the
tables, data, and forms your program needs to operate exist on the system to which
you are transferring the program, and that your program knows where to find them.

The following steps are required to add the necessary tables to the application data-
base:

1. Create the following directories on the target system:

• $fg/Make

• $fg/bin

• $fg/lib/data/library.dat

• $fg/lib/data/library

2. Copy the files in the following three directories from the development system,
to the directories you created on the target system:

• $fg/bin

• $fg/lib/data/library.dat

• $fg/lib/data/library

3. Change your PATH on the target system to include the $fg/bin directory.

4. Be sure that each database to be converted is in the $DBPATH.

5. Run mklib -d database on each database that needs to be converted.

The mklib script adds a number of tables required by Fitrix generated appli-
cations.

6. If you are also installing Fitrix Screen at the customers site then you need to run
mktables -d database, which adds a number of cg* and stx* tables to
your database.

Fitrix Screen Technical Reference

Moving Applications to Other Systems C-3

7. If your customerwill be using Fitrix Security, which is included with the
Enhancement Toolkit, you need to run mksecuri -d database to add
security tables.

These steps are required to make the appropriate forms available to the application:

8. Create a $fg/lib/forms directory on the target system.

9. Copy the files in the $fg/lib/forms directory on the development system
into the $fg/lib/forms directory on the target system.

10. Add $fg/lib/forms to your $DBPATH on the target system.

The following is a list of the minimum files required to move your application from
one system to another.

• .4gi and .frm files

• $fg/lib/data/library.dat/*

• $fg/lib/data/library/dbmerge.4gi

• $fg/lib/forms/*.frm

• $fg/bin/mklib

• $fg/Make/*

• Your startup scripts and/or custom runners

** $fg/bin needs to be in the $PATH

** $fg/lib/forms needs to be in the $DBPATH

Fitrix Screen Technical Reference

C-4 Program Migration

D-1

D
Screen Tables

This appendix covers the database tables used by Screen.

n Adding Code Generator tables with mktables

n A list of the Code Generator tables

Fitrix Screen Technical Reference

D-2 Screen Tables

Required Tables
The following table lists the database tables required for Screen to run, as well as
what tables are needed to run the generated application.

Table Description Screen
Generated
Applications

cgdcolmr data dictionary for database columns X X

cgdtablr data dictionary for database tables X X

cgmcmdd menu item definition detail X X

cgmcmndr menu item definition header X X

cgmmenud program menu definition X X

cgmmposr menu position X X

cgrrimgd line image for reports X X

cgsblobr contains blob information X

cgsclipr clipboard detail X

cgscmdsd featurizer detail table X

cgscmdsr featurizer header table X

cgsdpndd field dependency list X

cgsifldd input field definition X

cgsimged storage for screen image X

cgsinptr input area definitions X

cgsscrnr main screen definitions for a .per X X

cgsstypr screen defaults X

Fitrix Screen Technical Reference

Required Tables D-3

cgstrigd stores triggers code X

cgstrigr available triggers X

cgszoomr zooms (from fields) X

cgxfnamr screen type local function name X

cgxfsetd functions generated for screen type X

cgxlkupr lookups X

cgxlntod lookup from/into detail X

cgxmathr math X

cgxsorcd pathname of perform and triggers
files

X X

pcdtablr contains list of module tables X X

stxacknd software acknowledgement detail X X

stxactnr navigation event reference X X

stxaddld user defined fields detail X X

stxaddlr user defined fields header X X

stxcompr list of valid companies for mz X X

stxerord base files error text detail X X

stxerorh base files error text header X X

stxfiler operating system information X X

stxfiltr scheduling for reports X X

Table Description Screen
Generated
Applications

Fitrix Screen Technical Reference

D-4 Screen Tables

stxfuncr security events X X

stxgropd group permission security detail X X

stxgropr group permission security header X X

stxhelpd base files error text header X X

stxhotkd hot key definitions detail X X

stxkeysr hot key definitions reference X X

stxlangr language translation table X X

stxmssgr stores program comments X X

stxnoted freeform notes detail X X

stxnvgtd navigation events detail X X

stxparmd parameter detail X X

stxparmh parameter header X X

stxprogr list of programs X X

stxsecud security permissions detail X X

stxsecur security permissions header X X

stxtodod todo list detail X X

stxtxtdd default text X X

stxuniqc unique serial control X X

Table Description Screen
Generated
Applications

Fitrix Screen Technical Reference

Code Generator Tables D-5

Note

If you have Report Writer, the cgdtablr, cgdcolmr, and pcdtablr tables
must be present.

Code Generator Tables
Screen automatically builds in a wide range of features to expand the power and
versatility of your data-entry interface. In order to accommodate these features, the
generated code must be able to rely on the existence of specialized tables to main-
tain the information these features support.

As an application is being generated, the Code Generator searches the specified
database (named in the .per file) for these tables. If they do not exist, they are cre-
ated. This section lists the tables referenced by features of generated code (in alpha-
betic order).

cgdcolmr—the data dictionary for columns

tabname char(18),
colname char(18),
language char(3),
description char(30),
col_label char(30),
mssg_line char(74)

cgdtablr—the data dictionary for tables

tabname char(18),
language char(3),
description char(30),
uniq_list char(60),
tab_order char(60)

cgmcmndd—menu item definition detail

m_name char(8),
m_order smallint,
m_lang char(3),
m_label char(20),
m_help char(50)

Fitrix Screen Technical Reference

D-6 Screen Tables

cgmcmndr—menu item definition header

m_name char(8),
m_desc char(20),
m_order smallint,
m_type char(1),
m_event char(8),
m_class char(12),
m_style char(1),
m_rowon char(1),
m_curon char(1),
m_toton char(1),
m_deton char(1),
m_enter char(1)

cgmmenud—program menu definition

module char(8),
prog char(8),
scrid char(8),
m_local smallint,
m_name char(8),
m_desc char(20),
m_order smallint,
m_type char(1),
m_event char(8),
m_class char(12),
m_style char(1),
m_rowon char(1),
m_curon char(1),
m_toton char(1),
m_deton char(1),
m_enter char(1)

cgmmposr—menu position

m_name char(8),
m_type char(1),
x_pos smallint,
y_pos smallint,
width smallint,
hold char(1)

Fitrix Screen Technical Reference

Code Generator Tables D-7

cgsblobr—the blob description table

module char(8),
prog char(8),
scrid char(7),
cust_key char(12),
input_num smallint,
fldname char(18),
runprog char(60),
progedit char(1)

cgsclipr—the clipboard detail table

username char(12),
clipname char(8),
clip_title char(30),
seqno serial not null,
srow smallint,
erow smallint,
scol smallint,
ecol smallint,
clip_status char(1)

cgscmdsd—featurizer detail table

cmd_id integer,
line_no smallint,
txt char(70),
indent smallint,
cont_line char(1),
whitespace smallint

cgscmdsr—featurizer header table

cmd_id serial not null,
cmd_type char(1),
cmd_order smallint,
trig_code smallint,
module char(14),
prog char(14),
cust_key char(3),
filename char(14),
load_time integer,
src_file char(14),
funct_id char(18),
block_id char(20),
from_after char(1),
from_str char(50),
to_thru char(1),
to_str char(50)

Fitrix Screen Technical Reference

D-8 Screen Tables

cgsdpndd—the field dependency list table

module char(8),
prog char(8),
scrid char(7),
cust_key char(12),
src_type smallint,
src_field char(18),
dpnd_field char(18)

cgsifldd—the input field definitions table

module char(8),
prog char(8),
scrid char(7),
cust_key char(12),
input_num smallint,
seqno smallint,
field_tag char(6),
tabname char(18),
fldname char(18),
fldtype char(42),
f_autonext char(1),
f_comments char(74),
f_default char(30),
f_display_like char(42),
f_downshift char(1),
f_format char(50),
f_include char(50),
f_picture char(50),
f_noentry char(1),
f_required char(1),
f_upshift char(1),
f_valid_like char(42),
f_verify char(1)

cgsimged—the screen image storage table

module char(8),
prog char(8),
scrid char(7),
cust_key char(12),
line_no smallint,
image_data char(132)

Fitrix Screen Technical Reference

Code Generator Tables D-9

cgsinptr—the input area definitions table

module char(8),
prog char(8),
scrid char(7),
cust_key char(12),
input_num smallint,
scr_rec char(12),
maintab char(18),
sel_join char(200),
sel_filter char(200),
sel_order char(100),
unique_key char(80),
ok_delete char(1),
auto_number char(18),
scr_siz smallint,
arr_max smallint

cgsscrnr—the main screen definitions table

module char(8),
prog char(8),
scrid char(7),
cust_key char(12),
scr_type char(15),
maintab char(18),
init_filter char(200),
win_x smallint,
win_y smallint,
delimiters char(2),
_returning char(18),
scr_attr char(30),
load_time integer,
trig_time integer,
non_src_frm char(1),
eng_ver char(10),
fgl_ver char(10)

cgsstypr—the default screen type table

set_key char(20),
dflt_arr_max integer,
userdef char(1)

Fitrix Screen Technical Reference

D-10 Screen Tables

cgstrigd—the trigger code table

module char(8),
prog char(8),
scrid char(7),
cust_key char(12),
input_num smallint,
trig_code smallint,
arg_one char(18),
trig_order smallint,
trig_text char(74)

cgstrigr—the triggers table

trig_def char(30),
trig_code smallint

cgszoomr—the zoom table

module char(8),
prog char(8),
scrid char(7),
cust_key char(12),
input_num smallint,
key_field char(18),
zoom_scrid char(7),
zoom_table char(18),
noautozoom char(1),
sel_filter char(200),
zoom_from char(18)

cgxfnamr—screen type local function name

set_key char(20),
func_key char(10),
func_name char(18)

cgxfsetd—functions generated for screen type

set_key char(20),
func_key char(10),
userdef char(1)

Fitrix Screen Technical Reference

Code Generator Tables D-11

cgxlkupr—the lookups table

module char(8),
prog char(8),
scrid char(7),
cust_key char(12),
input_num smallint,
lkup_name char(18),
key_field char(18),
lkup_table char(18),
sel_filter char(200)

cgxlntod—the lookup from/into detail table

module char(8),
prog char(8),
scrid char(7),
cust_key char(12),
manual char(1),
lkup_name char(18),
lkup_into char(18),
lkup_from char(18)

cgxmathr—the math table

module char(8),
prog char(8),
scrid char(7),
cust_key char(12),
input_num smallint,
key_field char(18),
math_text char(100)

cgxsorcd—stores the pathname of perform and trigger files

module char(8),
prog char(8),
scrid char(7),
cust_key char(12),
src_code char(3),
src_name char(200)

pcdtablr—the list of modules table

prodid char(8),
line_no smallint,
tabname char(18)

Fitrix Screen Technical Reference

D-12 Screen Tables

stxacknd—the software acknowledgement detail table

ack_module char(8),
ack_program char(8),
line_no smallint,
ack_text char(60)

stxactnr—the navigation event reference table

language char(3),
act_key char(15),
description char(30),
os_command char(74),
press_enter char(1)

stxaddld—the user-defined fields detail table

filename char(18) not null,
record_key char(30),
line_no smallint,
data char(30)

stxaddlr—the user-defined fields header table

filename char(18) not null,
line_no smallint,
field_label char(20)

stxcompr—list of valid companies for use with mz

comp_id char(8),
db_name char(14),
logfile char(150),
line_no smallint,
consolidate smallint

stxerord—the base files error text detail table

language char(3),
userdef char(1),
err_module char(8),
err_program char(8),
err_number smallint,
a_b char(1),
line_no smallint,
err_text char(60)

Fitrix Screen Technical Reference

Code Generator Tables D-13

stxerorh—the base files error text header table

language char(3),
userdef char(1),
err_module char(8),
err_program char(8),
err_number smallint,
err_line char(40)

stxfiler—the operating system information table

uniq_num integer,
line_no serial not null,
line_text char(248)

stxfiltr—schedule for reports

unique_id char(15),
seq_no smallint,

stxfuncr—security events

module char(8),
progname char(8),
funcname char(20),
description char(30),
allow_flag char(1),
userdef char(1)

stxgropd—the group permissions detail table

group_id char(8),
user_id char(8)

stxgropr—the group permissions header table

group_id char(8),
description char(30)

stxhelpd—the base files help text detail table

language char(3),
userdef char(1),
hlp_module char(8),
hlp_program char(8),
hlp_number smallint,
line_no smallint,
hlp_text char(60)

Fitrix Screen Technical Reference

D-14 Screen Tables

stxhotkd—the hot key definitions detail table

hot_key smallint,
act_key char(15),
hot_module char(8),
hot_program char(8),
hot_user char(10)

stxkeysr—the hot key definitions reference table

key_code smallint,
key_desc char(15)

stxlangr—language translation table

language char(3),
tr_tab_col char(37),
tr_context char(10),
native char(50),
non_native char(50)

stxmssgr—stores program comments

language char(3),
mssg_module char(8),
mssg_program char(8),
mssg_number smallint,
message char(132)

stxnoted—the freeform notes detail table

filename char(18) not null,
record_key char(30),
line_no smallint,
data char(60)

stxnvgtd—the navigation events detail table

act_key char(15),
line_no smallint,
nav_module char(8),
nav_program char(8),
nav_user char(10)

Fitrix Screen Technical Reference

Code Generator Tables D-15

stxparmd—the user permissions table

language char(3),
module char(8),
user_id char(8),
access_key char(30),
line_no integer,
userdef char(1),
sbd_flag char(1),
parm_desc char(30),
is_rule char(1),
is_fatal char(1),
help_num smallint,
val_table char(30),
val_column char(60),
val_filter char(60),
val_join char(60),
val_switchbox char(8),
val_description char(18),
zoom_filter char(60),
zoom_switchbox char(8),
parm_value char(32)

stxparmh—the program permissions table

language char(3),
module char(8),
heading char(76)

stxprogr—the list of programs table

module char(8),
progname char(8),
description char(30),
use_trx smallint,
userdef char(1)

stxsecud—security permissions detail

user_id char(8),
module char(8),
progname char(8),
funcname char(20),
allow_flag char(1)

Fitrix Screen Technical Reference

D-16 Screen Tables

stxsecur—security permissions header

user_id char(8),
lname char(20),
fname char(20),
minitial char(1),
company char(30),
dept char(15),
responsibility char(30),
phone char(15)

stxtodod—the to do list detail table

todo_user char(10),
line_no smallint,
todo_text char(60)

stxtxtdd—the default text table

txt_key char(30),
line_no smallint,
dflt_text char(74)

stxuniqc—the unique serial control table

uniq serial not null

E-1

E
Control Key
Defaults

This appendix provides a list of control key defaults and a cross reference for
engine compatibility:

n Control key defaults

n Engine compatibility

Fitrix Screen Technical Reference

E-2 Control Key Defaults

Control Key Defaults

Control Key Defaults
Trapped
During
Input

^a Toggle between insert and overstrike modes (Infor-
mix edit key)

^b Back Tab yes

^c Operating system key (on DOS systems)

^d Delete to end of line (Informix edit key)

^e Edit hot keys yes

^f yes

^g Navigate (go) yes

^h Same as left arrow (Informix edit key)

^i Tab yes

^j Same as down arrow (Informix edit key)

^k Same as up arrow (Informix edit key)

^l Same as right arrow (Informix edit key)

^m Enter

^n Toggle input areas yes

^o Operating system exit yes

^p Paste yes

^q Reserved for O/S (continue screen output)

^r Redraw the screen

^s Reserved for O/S (stop screen output)

Fitrix Screen Technical Reference

Control Key Defaults E-3

^t yes

^u Undo yes

^v Mark/Copy yes

^w Help yes

^x Delete character (Informix edit key)

^y Display Program Information menu yes

^z Zoom yes

Function Keys Trapped During Input

F1-F4 At menu level: User-definable menu hot keys

F1-F4 During input: Informix movement keys
F1=Insert line, F2=Delete line, F3=Page down, F4=Page up (dur-
ing input of a non-scrolling section, F1-F4 aren’t used)

F5-F16 User definable hot keys

F17-
F30

User definable hot keys (must add logic to trap)

F34 Hardmapped to "^B" (Back Tab"

F35 Hardmapped to "ESC" (accept)

F36 Hardmapped to "DEL" (cancel)

Control Key Defaults
Trapped
During
Input

Fitrix Screen Technical Reference

E-4 Control Key Defaults

Engine/4GL Compatibility
The following table lists 4gl data types and the engines on which they run.

*Binary Large OBject

Data Type 4GL Engine Comments

byte
(BLOB)*

>=4.10 Online header forms only

char all all

date all all

datetime >=4.10 all

decimal all all

float all all

integer all all

interval >=4.10 all

money all all

serial all all

smallint all all

smallfloat all all

text
(BLOB)*

>=4.10 Online

varchar >=4.10 Online and formonly on SE

F-1

F
Reserved Terms
and Style Guide

This appendix contains the following information:

n A list of reserved terms

n Table naming conventions

n Screen form style guide

Fitrix Screen Technical Reference

F-2 Reserved Terms and Style Guide

Reserved Terms
There are a number of terms that can be considered reserved, for their inadvertent
use may cause unexpected problems with code generated by Fitrix Screen. When
modifying code created by the Code Generator, it is helpful to check against this
list to ensure that duplication of names does not occur.

Many terms have special significance with Informix products, and cannot be used
when modifying generated code. Please check the INFORMIX-4GL User Guide for
the list of INFORMIX-4GL reserved words.

The list of reserved variable names is restricted to the variables found in the glo-
bals.4gl file. The list is reprinted here for convenience.

scr1_max rec1_max rec1_cnt progid
scr_id menu_item scr_funct sql_filter
sql_order input_num p_cur s_cur
scr_fld prev_data this_data data_changed
hotkey scratch nxt_fld

The list of reserved function names can be easily identified with the help of the tags
feature. For information on the Tags feature refer to "The Tag Utility" on page A-5.
The tags file, which is re-created every time the relevant source code is recompiled,
contains a list of function names and locations called by the application.

The list provided in this manual is based on the demo application (orders), and the
library source generated as part of the application.

cust_zm stk_mnu stockzm brw_close
brw_display brw_hook brw_open lld_add
lld_delete lld_display lld_high lld_input
lld_lookup lld_m_prep lld_math lld_p_prep
lld_read lld_setdata lld_showline llh_add
llh_delete llh_display llh_high llh_input
lh_lookup llh_m_prep llh_math llh_p_prep
llh_read llh_setdata llh_update mld_arr_count
mld_clear mld_scroll mlh_clear llh_construct
mlh_cursor mlh_init mlh_key ring_options
switchbox

Fitrix Screen Technical Reference

Table Naming Conventions F-3

Table Naming Conventions
The Code Generator imposes an additional restriction on table names. In addition to
the database engine restriction that the first 8 characters of the table name be
unique, the Code Generator requires that the last 6 characters be unique. When
naming internal program record arrays and records the Code Generator uses the last
6 of the unique name to coin the internal program record and arrays. For example:

strinvce becomes p_rinvce and m_rinvce records in globals.

The trouble starts when you have table names like "herinvce" and "derinvce" as a
header and a detail table. The generator generates two records one that is not an
array and one that is an array for the header and detail tables respectively with the
same name.

A program generated with a header and detail record with the same name does not
compile. This would create an array defined in globals for m_rinvce for the detail
and also a m_rinvce record for the header.

Fitrix Screen Technical Reference

F-4 Reserved Terms and Style Guide

Screen Form Style Guide
The following conventions have evolved from the development of standardized
applications. Use this guide as a source of information for consistent and organized
display of fields and sections on a screen form.

• The Screen or Form title should appear in the center of the first line of the
screen. It should start with a capital letter, but should not be all capital letters.

• The title should not contain the word Screen or Form.

• The title should be a noun describing the document or the contents of the file.

• The title should not contain a verb unless the menu item that calls the screen
only allows one possible action and other menu items allow different actions on
the same file.

• Screens and menu items are named for the contents of the file or table they
access, not a report or the file itself. For example, the screen should say, "Led-
ger Accounts" rather than "Chart of Accounts."

• When a file contains documents, they should be called by their most common
name. For example: invoices, orders, checks, etc.

• Do not use the term "Document" as part of the name of a document. For exam-
ple: use "Tax Definitions" or "Tax Codes," not "Tax Documents".

• If there is one document in a file, the file’s title should be singular. If there are
more than one, it should be plural. For example, title multiple document files
"Company Information," "Account Groups," and "Customers," not "Customer."

• If the file contains multiple items, but a description of its contents cannot be
made plural, add the word, Items. For example: "Inventory Items," not "Inven-
tory" or "Inventories."

• If the screen contains rows of detail, the detail should appear in the lower por-
tion of the screen, separated from the "header" information by a line.

• If the screen contains totals from the detail, that information should appear
below the detail in a special footer section separated by a line.

Fitrix Screen Technical Reference

Screen Form Style Guide F-5

• Headings at the top of a screen form should be centered within a line of dashes
which extends to the ends of the form, for example:

 not

• Sub-headings should be within a line that extends to three spaces from either
side, for example:

• Detail line areas should always have headings within such a line, for example.

• Detail heading lines should extend to one character from the form edge.

• Detail line sections should end with a solid line of dashes that extends to within
one character space of the form’s edge.

• Subsection lines should never extend beyond the heading line, and should have
a space under the first and last dash of the heading line.

------------------------------- Heading Here ---------------------------------

 Heading Here
--

---------------------------- Sub Heading --------------------------------

- Column - Column -------- Column Head ------ Column Head ----------------

Fitrix Screen Technical Reference

F-6 Reserved Terms and Style Guide

 For example, format this way:

-------------------------- Subsection -----------------------
 Cash Account Number: [] Expense Account Number []

However, avoid this:

------------------------ Subsection -----------------------
 Cash Account Number: [] Expense Account Number []

• If a form has no detail section and has room for another line, there should be a
solid line of dashes from left to right just above the comment line at the bottom
of the form.

• Whenever possible, fields on a document header should appear one to a screen
row.

• Fields read in from a detail table should appear in rows and columns.

• Use a "field descriptor" to indicate the contents of a field whenever possible.
Descriptors for fields in a heading should appear before the field. Descriptors
for fields arranged in columns and rows should appear at the top of the column.

• Descriptors should begin with a capital letter, but not appear in all capital let-
ters.

• Descriptors for data entry fields in which the field follows to the right of the
descriptor should be followed by a colon.

• Descriptors and headings should not be abbreviated unless this is required for
spacing. Abbreviations should be followed by a period.

• Do not use # to indicate numbers if No. fits. Do not use No. if Number fits.

• Data entry fields should be stacked, each starting in the same column. Their
headings should be placed so that their ending colon is one character to the left
of the beginning of the field.

• Display-only fields should not start in the same column as data entry fields.
Display-only fields should form their own column, preferably to the right of the
data entry fields.

Fitrix Screen Technical Reference

Screen Form Style Guide F-7

• Row descriptors start, if the area is large enough, over the first character of the
value in a text field. In a numeric column, they end over last character of data
(right justified). If the column is narrower than the heading, the heading is cen-
tered. They are not followed by colons or other punctuation.

• Screens should not include technical information or terms of no interest to the
users, such as the technical name of the program or of any files.

Fitrix Screen Technical Reference

F-8 Reserved Terms and Style Guide

G-1

G
Termcaps

This section covers:

n Terminal options

n Termcaps

n Suggestions for debugging termcap problems

Fitrix Screen Technical Reference

G-2 Termcaps

Terminal Options
Programs created with Fitrix Screen use key combinations which may conflict with
the terminal options currently set on your system. These options can be remapped
to other key combinations with the Unix stty command.

The most common terminal options that must be remapped are:

These options are remapped by the startup shell scripts for Fitrix Screen. They also
may need to be remapped for programs created by the Fitrix Screen.

These terminal options can be remapped on most systems with the following com-
mand:

stty susp <SOME KEY> dsusp <SOME KEY>

In the first shell script shown below, the susp and dsusp terminal options are both
remapped to [CTRL] - [-] or control "-" with the command:

stty susp "^-" dsusp "^-"

The two shell scripts shown below are examples of how you might want to boot-
strap your programs in a manner which will avoid stty terminal option conflicts.

Terminal Option Typical Default Key Combination

susp [CTRL-Z]

dsusp [CTRL-Y]

Fitrix Screen Technical Reference

Terminal Options G-3

Shell script example 1:

:
##
Copyright (C) 1992 Your Company Name
All rights reserved.
Use, modification, duplication, and/or distribution of this
software is limited by the software license agreement.
Sccsid: @(#) /u/fourgen/bin/run 1.5 Delta: 4/16/92
##

Usage: run dirname [args]

. fg.setshell

Check for an argument
if test "$1" = ""
then
 echo "Syntax: run dirname [args]"
 exit 1
fi

cd $1
shift

progname=‘sed -n "s/^NAME *= *//p" Makefile‘

Run executable.
if test -x $progname
then
 exec ./$progname "$@"
fi

Run 4gi (RDS) if existing.
progname=‘echo $progname | sed -e s’,Ž4ge,Ž4gi,‘
if test -f $progname
then
 exec fglgo $progname "$@"
fi

Can’t find the program to run
echo "Cannot find the program: $progname"
sleep 2
exit 100

Fitrix Screen Technical Reference

G-4 Termcaps

Shell script example 2:

:
##
Copyright (C) 1991
Use, modification, duplication, and/or distribution of this
software is limited to the terms of the software agreement.
Sccsid: @(#) /usr/fourgen/work/bin/fg.setshell 1.14 Delta: 4/10/92
##

The purpose of this shell script is to re-bootstrap the current
program using a shell that’s known to work on this platform.
Most platforms pass the QA suite using the regular bourne shell
located in /bin/sh, but some platforms have shells that work
better than the /bin/sh shell.

This program is usually called from within other shell scripts using
the following format:
#
Make sure we’re using the correct shell
. fg.setshell
#

if test "$fg_shell" = ""
then
 # Get the unix version information
 unix_version=‘uname -a‘ 2>/dev/null

 # Some platforms require special shells
 case $unix_version in
 HP-UX) fg_shell=/bin/ksh
 {
 stty susp ""
 stty dsusp ""
 }>/dev/null 2>/dev/null;;
 ULTRIX) fg_shell=/bin/sh5
 stty old;;
 AIX) fg_shell=/bin/sh
 stty susp ""
 stty dsusp ""
 stty quit "";;
 Sun) fg_shell=/bin/sh
 {
 stty susp ""
 stty dsusp ""
 stty lnext ""
 stty rprnt ""
 stty werase ""
 stty flush ""
 } 2>/dev/null;;
 *) fg_shell=/bin/sh
 {
 stty susp ""

Fitrix Screen Technical Reference

Terminal Options G-5

 stty dsusp ""
 }>/dev/null 2>/dev/null;;
 esac
 SHELL=$fg_shell
 export SHELL fg_shell

 # this followng line is here ONLY for 4.1 executable core-dump prob
 test "$TERM" || TERM=vt100;export TERM

 # this followng code is here ONLY for 4.1 executable core-dump prob
 if test "$TERMCAP" = ""
 then
 if test -f /etc/termcap
 then
 TERMCAP=/etc/termcap;export TERMCAP
 else
 TERMCAP=$INFORMIXDIR/etc/termcap;export TERMCAP
 fi
 fi

 # Re-boot ourselves in a shell that’s known to work
 thisprog=‘type $0 |
 sed -e ’s,[()],,g’ -e ’s,Ž$,,’ -e ’s,..* /,/,’ -e ’s, .*,,’‘
 if test ! -f "$thisprog" -o "$thisprog" = ""
 then
 echo "ERROR in fg.setshell"
 exit 1
 fi
 exec $fg_shell $thisprog "$@"
else
 fg_shell=""
fi

Fitrix Screen Technical Reference

G-6 Termcaps

Writing Termcap Entries
This section will help you decipher your termcap files and can help you debug your
own termcaps. Should you need more information on termcaps and terminfo, refer
to the appendix of your INFORMIX-4GL Reference Manual.

Termcap is short for "terminal capabilities," which are descriptions of the various
features of a terminal, and instructions on how to use these features, all written in a
rather cryptic language in a termcap file. The language which describes the termi-
nal capabilities is interpreted by programs that use terminal I/O in order for the pro-
gram to correctly control the terminal and interpret input from the keyboard.

The Termcap File
The termcap file, /etc/termcap, usually consists of several termcap entries,
each one corresponding to a particular terminal or to a particular emulation mode
on some terminal, or to a terminal being used in some special fashion. The rest of
the termcap file, about 20%, consists of lines beginning with a #. These are com-
ment lines and are generally less intelligible than the rest of the termcap file. These
lines are to be mostly ignored. One termcap entry can be separated from another
once you understand what an entry itself looks like.

The Termcap Entry
Each entry has the form label[|label][:capability]:. This means there
are a string of labels by which the entry can be referred to, each separated from the
next by a "|" symbol followed by a string of terminal capability codes each sepa-
rated from the next by a ":". If the termcap entry is longer than a single line (almost
all of the time it is) then the symbol "\" is used on the end of a line to indicate that
the entry continues to the next line. An easy example of what two termcap entries
might look like follows (easy because whoever edited them tried to make them easy
to distinguish as entries):

Fitrix Screen Technical Reference

Writing Termcap Entries G-7

n2|7901|NCR 7901:co#80:li#24:bs:am:cl=^L:\
 ti=\E0P^X^L:\te=^O^X\E0@:cm=\EY%+%+:ce=\
 EK:cd=\Ek:kh=^A:kl=^U:bc=^U:kr=^F:nd=^F:\
 ku=^Z:up=^Z:\kd=^J:do=^J:kb=^H:kc=^M:so=^N:\
 se=^O:sg#0:ul:us=\E0‘^N:ue=\E0@^O:ug#0:\
 NM=^O^X\E0@:NB=\E0B^N:NR=\E0P^N:\
 NS=\E0R^N:AL=\E0A^N:AB=\E0C^N:\
 AR=\E0Q^N:

n3|vwpt|viewpoint|ADDS Viewpoint:co#80:li#24:\
 bs:am:cl=^L:ti=\E0P^X^L:\te=^O^X\E0@:\
 cm=\EY%+ %:ce=\EK:cd=\Ek:kh=^A:kl=^U:\
 bc=^U:kr=^F:nd=^F:\ku=^Z:up=^Z:kd=^J:do=^J:\
 kb=^H:kc=^M:so=^N:se=^O:sg#0:ul:us=\E0‘^N:\
 ue=\E0@^O:ug#0:NM=^O^X\E0@:NB=\E0B^N:\
 NR=\E0P^N:NS=\E0R^N:AL=\E0A^N:\
 NR=\E0P^N:NS=\E0R^N:AL=\E0A^N:\
 AB=\E0C^N:AR=\E0Q^N:AS=\E0S^N:OV#0:\
 k1=\E1:k2=\E2:k3=\E3:k4=\E4:k5=\E5:\
 k6=\E6:k7=\E7:k8=\E8:k9=\E9:MP=\E0P^X^L:\
 MR=\E0@^X:NU=^N:EN=^V:CN=^X:CF=^W:

Not all termcap entries appear like the examples above. Sometimes they might look
like the following:

n2|7901|NCR 7901:co#80:li#24:bs:am:cl=^L:ti=\
 E0P^X^L:te=^O^X\E0@:\cm=\EY%+ %+:ce=\
 EK:cd=\Ek:kh=^A:kl=^U:bc=^U:kr=^F:nd=^F:\
 ku=^Z:up=^Z:\kd=^J:do=^J:kb=^H:kc=^M:so=^N:\
 se=^O:sg#0:ul:us=\E0‘^N:ue=\E0@^O:ug#0:\
 NM=^O^X\E0@:NB=\E0B^N:NR=\E0P^N:NS=\
 E0R^N:AL=\E0A^N:AB=\E0C^N:AR=\E0Q^N:
n3|vwpt|viewpoint|ADDS Viewpoint:co#80:li#24:\
 bs:am:cl=^L:ti=\E0P^X^L:\ te=^O^X\E0@:cm=\
 EY%+ %+ :ce=\EK:cd=\Ek:kh=^A:kl=^U:bc=^U:\
 kr=^F:nd=^F:\ku=^Z:up=^Z:kd=^J:do=^J:kb=^H:\
 kc=^M:so=^N:se=^O:sg#0:ul:us=\E0‘^N:\ue=\
 E0@^O:ug#0:NM=^O^X\E0@:NB=\E0B^N:NR=\
 E0P^N:NS=\E0R^N:AL=\E0A^N:\AB=\E0C^N:\
 AR=\E0Q^N:AS=\E0S^N:OV#0:k1=\E1:k2=\E2:\
 k3=\E3:k4=\E4:k5=\E5:\k6=\E6:k7=\E7:k8=\E8:\
 k9=\E9:MP=\E0P^X^L:MR=\E0@^X:NU=^N:\
 EN=^V:CN=^X:CF=^W:

Obviously, it is harder to distinguish one entry from the next in the second example
especially when you consider that there may be hundreds of entries formatted
together like this.

Fitrix Screen Technical Reference

G-8 Termcaps

Notice that the last line of the entry for n2 does not end with a "\" but that every
other line of the entry does end with "\". If the last line of the entry ended in "\" like
the others then the entry for n2 would continue into the entry for n3. Correct inter-
pretation of the termcap entries relies heavily upon these very important "\" charac-
ters.

The Labels
The label part of the termcap entry is the mechanism by which a program can find
the entry in the termcap file. Usually it consists of a two letter code, a short name or
two, and a brief description of the terminal. The termcap entry can be identified by
any of the labels in the label section of the entry and the identification is usually
based upon the value of the system variable $TERM (use echo $TERM to see its
current value). It is highly advisable to use one of the short names rather than the
two character code for the value of $TERM since the two character code may not be
unique and programs find the first occurrence of the label whether or not there is
another—yours—further down in the file.

The Capability Codes
The terminal capabilities directly follow the labels in each termcap entry and each
code is separated from the next by a ":" and has a two letter "name." There are three
different sorts of codes used to identify a capability; a boolean type either the code
is there or not with no specific value associated with it; a numeric type an integer
value is assigned to the code; a string type a string of characters is assigned to the
code.

The boolean type codes are used to identify the existence or lack of a certain termi-
nal characteristic such as whether the cursor automatically wraps around the mar-
gins of the terminal. In the termcap entry they can be identified because they
consist solely of the capability name (am for automatic margins).

The numeric type code is used to identify countable parameters associated with the
terminal such as number of columns and number of rows on the screen. These
codes have the form codename#value (i.e. number of columns would be
co#80 for an eighty column screen).

Fitrix Screen Technical Reference

Writing Termcap Entries G-9

The string type is used to identify strings of characters sent by certain keys on the
keyboard and strings needed by the terminal to perform certain actions such as
positioning the cursor in a particular location on the screen. For example, to iden-
tify the character string sent from the keyboard by the up arrow key the code might
read ku=\E[1 and would indicate that the keyboard sends the character sequence:
ESC (octal 33) [1 when you press the up arrow key.

Special Characters
The character strings for a terminal capability often use such characters as \E, ^R,
or ^A which represent ASCII [ESC], [CTRL]-[R], and [CTRL]-[A] respectively.
In the termcap file however, these characters are never given in their literal form
because they are generally non-printing characters. Therefore, in order to represent
them in text they have a special form.

Ascii [ESC] is represented with \ and E (looks like "\E").

Ascii [CTRL] characters are represented with a ^ followed by the character in
upper case, hence ^R and ^A.

Characters can also be represented by their octal (base eight) value in cases such as
the ":" which is used to interpret the termcap file by separating arguments and can’t
be included directly as part of a string (it would be interpreted as the end of the
string). The octal code for a colon is \072.

The Codes
Unfortunately, there are too many terminal capability codes to list all of them here
and many programs use special sets of codes in addition to the more or less "stan-
dard" set. Therefore, you should look in the system documentation for a thorough
list of the various termcap codes and their functions. You must refer to your pro-
gram documentation to find the codes for any special functions used by the pro-
gram. Here is a list of some of the more common codes:

Fitrix Screen Technical Reference

G-10 Termcaps

Code Function

cm control code for cursor positioning by row and column

ku character sequence sent by the cursor up key

kd character sequence sent by the cursor down key

kr character sequence sent by the cursor right key

kl character sequence sent by the cursor left key

kh character sequence sent by the home key

k0-k9 character sequences sent by the function keys

ho control sequence used to position the cursor at 0,0

do control sequence used to move the cursor down a row

cr character sequence sent by the enter/return key

nd control sequence used to move the cursor back a column

up control sequence used to move the cursor up a row

bt control sequence used to back tab

bs boolean code which indicates that backspace is ^H

am boolean code which indicates margins are handled automatically

co number of columns on the display

li number of lines on the display

so control sequence used to turn standout mode on

se control sequence used to turn standout mode off

sg number of characters of display required by the ’so’ string

Fitrix Screen Technical Reference

Writing Termcap Entries G-11

The biggest problem with terminal capabilities is not how to read them but what the
various codes mean for the various programs that use them. Unfortunately, the
answer to that question often remains in the head of the author of that program and
does not reach the users of the program nearly often enough, or in an intelligible
form. The other complication is that terminal manufacturers seldom produce read-
able reference material for their own terminal’s characteristics.

Ideally, with a combination of knowing how the program uses termcap and how the
terminal behaves, one should always be able to fix or write a termcap entry for any
program and terminal (or discover that the program cannot run at all on the termi-
nal). The implementation of the capabilities on various terminals is anything but
standard, but the interpretation and use of the codes by a program usually follows
certain guidelines.

If a program does any full screen display and entry, if it highlights anything, ever,
or if it just clears the screen, then it almost certainly uses termcap to decide how to
do its various terminal-oriented tasks. other uses for the termcap entries are: to gen-
erate graphics, position the cursor on the screen, and to identify special input from
the keyboard (keys with special meaning).

Interpretation and Action
Of the three types of terminal capabilities, the most heavily used and the most com-
plicated are the string type. These, in turn, can be grouped into two classes of appli-
cations. The first class, which includes codes for cursor movement (ku, kd, kr, kl,
kh, etc.) and many special program codes, is used only to identify keystrokes from
the keyboard. For example, when you enter an "a" from the keyboard, you press the
"a" key and only one character is sent to the computer; but other keys, such as the
cursor keys often will send a sequence of characters to the computer. In order for
programs that use special keys to correctly recognize keyboard entry, the program
needs to know how to interpret the characters it is receiving from the keyboard.

cl control sequence used to clear the display

ce control sequence used to clear to the end of the line

Code Function

Fitrix Screen Technical Reference

G-12 Termcaps

With the aid of the termcap file, a program can recognize complex input and
behave accordingly. The group of codes that is used for identifying input is one of
the two classes of string type terminal capability codes.

The other class of string type codes is used for directly controlling the terminal
screen. These codes include character sequences that invoke a graphics character
set, or start a block of highlighted screen, or turn off the highlight or graphics, just
to list a few. Others indicate the correct codes to send to the terminal, to move the
cursor about the screen, or to enable and disable the terminal’s auxiliary port. With
a combination of these two classes of codes, a program can both interpret input
from the keyboard and perform actions with the terminal such as complex graphics
display.

Now you know why programs need termcap files and how they use them, as well as
how to read them. The only steps left are testing, modifying, and writing these files.
Testing a termcap is not simple because the termcap is only part of the terminal I/O
system, any element of which can be to blame for weird or incorrect displays. How-
ever, once your terminal is working on the most primitive level (you get a login and
can run most system commands without any problem) then specific program mis-
behavior usually can be attributed to problems with the termcap.

Most of the time, termcap difficulties are related to only a couple of errors in an
existing termcap entry for the terminal. It is unusual to not be able to find a termcap
entry that provides most of the features for your terminal simply by trying various
values for the variable $TERM and using the different emulation modes available
with many terminals. Even when you cannot find such a termcap entry, you can get
a substantial head start on developing a new termcap entry by using an existing ter-
mcap entry for a similar terminal type.

When you are testing and modifying a termcap entry, it is usually best to make a
temporary file that contains only that entry so that there is no danger of corrupting
the other termcap entries. Then, in order to direct the system to use that file you can
set the system variable $TERMCAP equal to the full path name of the temporary file
and then export $TERMCAP. Once you have this special file setup you need the
proper documentation in order to identify and correct problems within the termcap
entry.

You will need the system documentation on the various termcap codes and program
documentation if the programs you will be running require any special termcap
entries. Also you must have technical documentation for the terminal and be sitting

Fitrix Screen Technical Reference

Writing Termcap Entries G-13

at the terminal ready to go. It helps to have a second terminal available which
already has a functioning termcap so that you can edit files without having to rely
on the terminal for which you are writing the termcap.

Finally, you must have the UNIX editor vi and/or the program od on your system
in order to read the various character codes sent by the keyboard. With these tools
(and some time) at hand you are ready to go.

Testing the Keys
The most reliable way to find what characters are being sent by the special keys on
your keyboard is to directly collect and view the output of those keys in an uninter-
preted form. vi and od both provide excellent ways to see what a key is sending
from the keyboard (vi is better if your termcap is already good enough to support
it).

To use od (od stands for octal dump) you simply type od -bc [RETURN] at the
command line. At this point the program od is waiting for input from the keyboard.
Now when you press a key followed by a [RETURN] and [CTRL]-[d] the character
and octal representation of the characters sent by the key will be displayed in two
rows. The first row is the character representation (if any) for each character and
the second row is the octal value for each character (ignore the first string of digits
on the first row).

By comparing the octal values with a table of ASCII characters, you can determine
exactly which characters are being issued by the key. (od will be waiting for your
next input followed by [RETURN] and [CTRL]-[d] but can be terminated by an
additional [CTRL]-[d].)

To use vi instead of od, you can invoke vi without a file name, type i to get into
insert mode, then type [CTRL]-[v] followed by the key you want to test followed
by a return. The characters displayed on the screen are the ASCII representation for
the characters sent by the key - ^[is [ESC], ^A is [CTRL]-[a], etc. To exit vi type
[ESC] :q!.

Fitrix Screen Technical Reference

G-14 Termcaps

Action Codes
Certain terminal functions require a control code sent by the program to the termi-
nal which causes the terminal to perform the function desired. An example of this
type of function is highlighting. In order for the terminal to begin highlighting a
certain block of text, first the cursor must be positioned at the beginning of the
block and then a code needs to be sent to the terminal to begin highlighting. Then a
code needs to be sent after all the characters to be highlighted have been sent in
order to stop highlighting. The program looks in the termcap for the string code cm
to use for positioning the cursor on the screen at a certain row and column. Then it
gets the string code so to turn highlighting (standout) on. Then it looks for the code
se to turn highlighting off. If any of these codes are incorrect, the highlighting
action will fail and may also wipe out the rest of the display.

There are many other control codes that are sent to the terminal which can disturb
the display seriously if they are incorrect. These codes can only be found in the
technical manual for the terminal. For example, so must be set to the manual entry
for "start standout mode" and cm must be set to the manual entry for "direct cursor
addressing (cursor movement)." (for cm only, there are additional characters
explained in the system documentation that refer to the format for cursor and row
numbers required as a variable part of the cm string.)

By using the terminal manual for the control strings and the system documentation
for the termcap codes, you should be able to fix and add needed controls (not all
terminals will have all of the possible capabilities). Often, but not always, there will
be an appendix in the technical documentation for the terminal which gives the con-
trol codes for the available emulation modes for each terminal function. This is
often the only place in the documentation where the codes are explicitly given in an
understandable form.

The Other Codes
The two classes of string type codes have been discussed so far. By comparison the
other codes are simple to understand and work with. The boolean type are either in
the termcap or not and indicate the existence of a particular terminal characteristic.
There are only two common numeric type entries, li for number of rows and co
for number of columns.

Fitrix Screen Technical Reference

Writing Termcap Entries G-15

Observations
Things to keep in mind when working with termcaps:

1. It takes time to eliminate all of the possible bugs from a termcap but often the
solutions are simple. The only way to effectively work with termcaps is with a
substantial dose of patience.

2. Usually the best way to start solving a termcap problem is not with the termcap.
Make sure that $TERM is set to a label in the label string and that the label is
unique.

3. Always double check your terminal setup and emulation mode before working
on a termcap for that terminal.

4. Before changing a termcap make a copy, and then use a fine tooth comb for
syntax errors. All labels should be separated by "|", all entries separated by ":",
all but the last line ends in "\".

5. A lot of work can be saved by using at least part of an existing termcap.

6. No termcap entry (all of the labels and codes combined) can be over 1024 char-
acters long. Usually the entries after the 1024th character will be ignored.

Fitrix Screen Technical Reference

G-16 Termcaps

12/29/95Index-1

Fitrix Screen Technical Reference

Index
Symbols
.4gm

module naming convention 2-16
[CTRL]-[z] 3-14

Numerics
4gc extension

version control 16-6
4GL Compatibility field

Define the Form form 7-6
4GL compiles 14-2
4gs extension

version control 16-5

A
A function

zoom 10-60
A_ function

add-on header screen 10-36
a_ special block command 13-23
acknowledgements

establishing 5-11
act_key column 15-14
Add command 3-4
add display event 15-49
adddetl.per

demonstration form 10-41
add-on detail screen

adding cursor scrolling 18-12
calling 10-44
characteristics 10-42
creating 10-43
demonstration 10-46
description 10-40
disk writes 10-48
example 10-41
join clause 10-43

add-on header screen
.per file 10-29
creating 10-32
demonstration 10-35
description 10-28
functions 10-36
transaction processing 10-35
triggers 10-33
unique key 10-30

AF_ function
add-on header screen 10-39

after block block command 13-18, 13-24
after_change_in trigger 12-39

add-on header screen 10-34
after_delete trigger 12-46
after_field trigger 12-38

add-on header screen 10-34
after_init trigger 12-22

add-on header screen 10-34
after_input trigger 12-40
after_insert trigger 12-42
after_row trigger 12-44
AI_ function

add-on header screen 10-39
all Makefile rule 14-13
application

compiling 8-5
generating 8-4

application directory
definition 2-16

application hierarchy diagram 2-18
applications

calling from other applications 18-5
arr_max

.per input section B-15
array limit

scrolling area 7-9
Array Limit field

Input Area form 7-9
arrays

creating detail 6-12
at_eof trigger 12-23

add-on header screen 10-34
controlling how merged 2-19
using with the Featurizer 16-18

at_eof_trig variable 2-20, 13-43
definition 2-23

Index-2

Fitrix Screen Technical Reference

attribute
menu options 4-3

attribute conventions 3-24
attributes

.per defaults section B-11
ATTRIBUTES section B-5

header/detail 10-11
Auto Number field

Input Area form 7-10
Auto Zoom field

Define Zooms form 7-31
auto_answr variable 11-15
auto_note variable 11-15
auto_udf variable 11-15
auto_zoom logic 10-64
AutoForm feature 9-6
Autonext field

Define Fields form 7-17
autonum

.per input section B-15
autozoom

specifying 7-31
AutoZoom feature 3-16

description 10-64

B
b_ special block command 13-23
backwards compatibility 2-19
base.set

use with version control 16-11
base.set file 13-21

explanation 13-36
before block block command 13-18, 13-24
before_delete trigger 12-45
before_field trigger 12-37

add-on header screen 10-34
before_init trigger 12-21

add-on header screen 10-33
before_input trigger 12-36

add-on header screen 10-34
before_insert trigger 12-41
before_row trigger 12-43
BF_ function

add-on header screen 10-39
BLOB

creating 7-18, 15-32

custom 4GL functions 15-34
field type 7-14
field types 15-32
sample .per form 15-35
sample application 15-34

BLOB data types 9-5
BLOB fields

creating in the Form Painter 7-18
blobdef

.per input section B-16
Block #, clipboard block titles 6-11
block command

a_ 13-23
after block 13-24
b_ 13-23
before block 13-24
c_ 13-23
delete block 13-25
e_ 13-23
EOF 13-23
function define 13-25
in block 13-24
NUL 13-23
replace block 13-24
start file 13-24
TOF 13-23

block command logic 13-23
block command statements 13-24
block commands 13-16

special 13-23
using semicolons 13-25
using strings 13-26
using to modify code 13-17

block manipulation examples 13-48
block tags

conventions 13-31
blocks

compared with triggers 13-10
custom tags 13-31
definition 13-6
deletion 13-29
determining the end of a block 13-27
identifying and grouping 13-27
order merged 13-40
philosophy 13-15
removing from existing .4gl files 13-37
replacing 13-29

12/29/95Index-3

Fitrix Screen Technical Reference

specifying files 13-21
start file command 13-21
time stamping logic 13-39
when to use 13-15

boolean type codes
termcap G-8

Bottom command
browse form 3-10

bourne shell A-11
Browse

with a browse screen 3-9
without a browse screen 3-10

Browse command 3-8
clipboard 6-7

Browse commands 10-51
Browse screen

example 3-9
browse screen

description 10-51
example 10-52
sample 10-53

browse.4gl 11-8
byte

field type 7-14
byte data type 9-5, 15-32

C
C_ function

add-on header screen 10-36
extension screen 10-23

c_ special block command 13-23
c_lib library 14-13
c4gl compiler 14-2
capability codes

termcap G-8
Center menu option 6-5
centering a window 18-4
centering text 6-5
cgdcolmr D-5
cgdtablr D-5
cgsblobr D-7
cgsdpndd D-8
cgsifldd D-9
cgsimged D-9
cgsinptr D-10
cgsscrnr D-10

cgsstypr D-10
cgstrigd D-11
cgstrigr D-11
cgszoomr D-11
cgxlkupr D-12
cgxlntod D-12
cgxmathr D-12
cgxsorcd D-12
char data type 9-5
choose display event 15-49
clipboard

commands 6-6
pages 6-5
pasting a page 6-8
storage 6-5
storing fields 6-9
using 6-5

clipboard pages
generic titling 6-11
titling 6-6

Close menu option 5-9
code

compiling 14-2
generating 8-4

code design 11-3
Code Generation

preventing B-25
Code Generator

invoking with Version Control 2-27
Code Generator tables D-5

adding with mktables A-10
code structure 11-3, 11-6
codes

termcap G-9
Column Name field

Define Fields form 7-14
Table Information form 9-4

columns
copying with AutoForm 9-6

commands
help 15-24

comments in trigger files 12-5, 13-47
compatibility

maintaining backwards 2-19
compilation

application 14-21
compile

Index-4

Fitrix Screen Technical Reference

screen form 8-3
Compile 4GL menu option 8-5
Compile Form menu option 8-3

automatic save 5-8
compiled programs

invoking 14-24
compiling

short cuts 14-9
compiling code

fg.make 14-2
compiling generated code 14-2
context-sensitive help text 4-9
control key defaults E-2
Converting INFORMIX-SQL Perform Files

B-26
Copy menu option 6-11
Copying Between Input Areas 6-12
copyright text

defining 7-42
Copyright Text menu option 7-42
Created field

Table Information form 9-4
creating a demonstration database A-4
Creating Detail Arrays 6-12
cur_path display event 15-49
curs_count variable 11-15
curs_pos variable 11-15
curs_rowid variable 11-15
cursor handling 15-38
cursor handling philosophy 15-38
cursor path

defining 7-20
Cursor Path menu option 7-20
cust_key variable 16-22

running a program 16-21
cust_path variable 13-42, 16-7, 16-22

use with version control 16-12
cust_zm.4gl file 11-8
cust_zm.per file 10-58
custom 4GL functions

using with BLOBs 15-34
custom directories 13-7

explanation 16-10
custom files

using with version control 16-19
custom functions 12-47
custom libraries 14-18

using 15-18
custom.org file 12-47
custom_libraries trigger 12-19, 14-14
CUSTPATH macro 14-13
CUSTPATH variable 13-42

setting in Makefile 16-14
Cut menu option 6-11

D
D function

zoom 10-61
data flow 11-17

input and display diagram 11-21
overview 11-2
program flow 11-24
through variables 11-20

data retrieval lookup
creating 7-25

data types 9-5
data validation

using lookups for B-18
data validation lookup

creating 7-26
data variables 11-17
data_changed variable 11-13
database

cleaning A-11
creating a demonstration A-4
delete form prompt 5-7
selecting 14-25
standard must exist 2-14

Database Administration
defining help text 9-9

Database Administration Recorder 9-8
Database Administration system 9-2
database files diagram 2-9
Database menu option 9-2
database modifications

logging 9-8
Database option

using AutoForm 9-6
DATABASE Section B-3
data-entry program

example 3-2
data-entry ring menu

using 3-3

12/29/95Index-5

Fitrix Screen Technical Reference

date
default 7-16

date data type 9-5
datetime data type 9-5
dbadmin.sql logfile 9-8
dbname variable 11-15
DBPATH

directory structure 2-17
DBPATH variable

definition 2-12
using with multiple $fgs 2-3
using with version control 16-19

DBTEMP variable
definition 2-13

dec_let function 10-23
decimal data type 9-5
deep type screens 10-21
default

current date 7-16
Default field

Define Fields form 7-16
default mode of operation 7-2
defaulted variable 11-16
defaults

.per input section B-23
trigger file 12-5

defaults section
.per description B-10

Define
Input Areas option 7-7
pull-down menu 4-5

Define Field pop-up menu 7-41
Define Fields form 7-13
Define Form pop-up menu 7-42
define input area

novice mode 7-10
Define Lookups form 7-23
Define Math form 7-22
Define menu

Copyright Text option 7-42
Cursor Path 7-20
Field option 7-11
Form Defaults option 7-4
Lookups option 7-23
Math option 7-22
Select Commands 7-37
With Pulldowns option 7-37

Zoom option 7-30
Define the Form form 7-4
define trigger 12-9

add-on header screen 10-34
controlling how merged 2-19
using with the Featurizer 16-18

Define Zooms form 7-31
define_trig variable 2-20, 13-43

definition 2-23
Defining Multiple Lookups 7-27
Defining Triggers 7-33
del_flag variable 11-16
delete block block command 13-25
Delete command 3-5

clipboard 6-7
delete from database

prompt 5-7
Delete menu option 5-10
Delete Trg File menu option 7-36
Delete Trigger File menu option

recovering a file 7-37
deleted file

recovering 5-10, 7-37
Deleting a Zoom 7-33
Deleting Lookups 7-27
deletion

verification prompt 18-10
delimiter

pipe 7-11
demo files diagram 2-10
demo script

scr_demo A-2
demonstration directories 2-10
demonstration programs 2-10
depend.RDS 14-21
Description field

Table Information form 9-4
Description name

Table Information form 9-3
design

screen forms 10-6
designing screens F-4
detail arrays

creating 6-12
Detail Display Function Option 2-23
detail line commands 3-13
detail lines

Index-6

Fitrix Screen Technical Reference

maintaining order of 7-10
detail write

generic 10-48
detail.4gl file 11-8
detl_display variable

definition 2-23
different keyboards 1-15
Directory Hierarchy 2-15
directory structure

recommended 2-15
directory structure diagram 11-6
disk write

add-on detail 10-48
Display Fmt fields

Define Fields form 7-15
display function

lib_message 15-48
Display statements

attributes 3-24
displaying functions A-7
do_not_generate trigger 12-26
documentation

overview 1-11
documentation conventions 1-13
Down command

browse form 3-10
Downshift field

Define Fields form 7-17
dup_prep variable 11-16
duplicate checking code B-13
duplicate files 2-31
During Input

attributes 3-24
During Input Array

attributes 3-24

E
e_ special block command 13-23
Edit

pull-down menu 4-5
edit

undoing 6-4
Edit Form menu option 6-2
Edit menu

Center option 6-5
Copy option 6-11

Cut option 6-11
Edit Form option 6-2
Mark option 6-9
Paste option 6-9
Undo option 6-4

editing commands 6-2
Editing Forms 6-1
editing keys

Informix 6-3
Engine Compatibility field

Define the Form form 7-6
engine compatibility table E-4
Entry field

Define Fields form 7-14
environment

setting yours up 2-12
EOF special block command 13-23
errchose display event 15-49
errlog file

logging feature requests 3-21
error handling functions 15-45
error header message translation 17-12
error message detail

translating 17-14
error messages

custom 15-46
translating 17-3

ESQL-C 14-3
EV_ function

add-on header screen 10-39
event flow 15-3
event handling logic 15-2
event tables 15-9
events

coding local 15-6
moving to other systems 15-15

exclamation mark 4-2
executable files diagram 2-5
executing compiled code with version control

14-27
exit_level variable 11-16
expert mode 7-2

defining fields 7-13
.ext file

overview 13-20
plug-in features 13-7
pluggable features 13-32

12/29/95Index-7

Fitrix Screen Technical Reference

using triggers in 12-8
ext_custom

extension screen flow type 10-22
ext_flat

extension screen flow type 10-20
ext_view

extension screen flow type 10-22
extension file 13-32
extension screen

creating 10-19
demonstration 10-25
example 10-18
flow control managers 10-20
functions 10-23
limitations 10-25
upper level library functions 10-22
using zooms 10-20

extension screens
definition 10-17
non_scr_q_elems variable 10-17

extensions
filenames 13-41

external event 15-2

F
F_ function

extension screen 10-24
Feature Requests

User Control Library 3-20
feature sets 13-32

definition 13-8
feature_set variable 13-42
features

creating pluggable 13-32
Featurizer 13-1

Code Generator invocation 13-8
command line invocation 13-9
environment variables 13-42
fg.make invocation 13-8
fglpp syntax 13-9
flow 13-38
forcing a merge 13-47
Form Painter invocation 13-9
invoking 13-8
limitations 13-44
special trigger handling 16-15

troubleshooting 13-46
Featurizer terminology 13-5
fg

multiple 2-2
fg variable 13-42

definition 2-12
fg.db script 14-27

version control 16-20
fg.dbadmin program 9-2
fg.delfrm script A-11
fg.demodb script A-4
fg.form program

syntax 2-26
fg.go script 14-27

version control 16-20
fg.make

compilation steps 14-2
compiling code 14-2
force a merge 14-11
force a merge only 14-11
how it works 14-5
invoking the Featurizer 13-8
merging triggers 14-10
summary of flags 14-5
syntax 14-5

fg.mssgr
syntax 17-4

fg.mssgr script 17-3
fg.screen program

syntax 2-28
fg.setshell script A-11
fg.start data-entry form 2-30
fg.start program 2-29

syntax 2-29
fg.tools script 17-7
fg_err function 15-45
fg_funcs.4gl

using with version control 16-18
fg_username function 18-6
fgldb p-code debugger 14-4
fglgo

invoking program files 14-24
syntax 14-25

fglgo p-code runner 14-4
fglibdir

variable 2-12
fglibdir variable 2-3

Index-8

Fitrix Screen Technical Reference

fglpc 14-7
fglpp

syntax 13-9
fglpp.err file 13-48
fglpp.opt 2-19
fglpp_fatal_warn variable 13-43

definition 2-21
FGLPPDIR variable 13-42
fglppflags variable 13-42
FGLPPOPTIONS variable 13-42
fgmakedir

variable 2-12
fgmakedir variable 2-3
fgStack_pop function 10-49
fgStack_push function 10-30
fgtooldir

variable 2-12
fgtooldir variable 2-3
field

defining math 7-22
resizing 7-11
shortening 7-11

field defaults
creating 7-16

field definition
editing 7-18

field delimiter B-3
field delimiters

using the pipe symbol 7-11
Field menu option 7-11
Field Type

Define Fields form 7-14
field type

BLOB 7-14
byte 7-14
text 7-14

Field Type field
Define Fields form 7-14

fields
changing the cursor path 7-20
defining 7-11
lookup into 7-24
storing to clipboard 6-9

file
automatic save 5-8
printing 5-13

filelist.RDS 14-7

filename extensions 13-41
files 13-42
filter 14-25

.per input section B-14
zoom 10-62
zoom entry 7-31

Filter field
Input Area form 7-9

Find
zoom command 3-15

Find command 3-5
find display event 15-48
Find screen example 3-7
First command

Browse menu 3-10
flat type screens 10-20
fld_tab variable 11-15
float data type 9-5
force a merge

Featurizer 13-47
force_merge variable 13-42, 13-47, 14-6
forcing a merge

fg.make 14-11
Form

command 4-4
form

closing 5-9
compiling 8-3
deleting 5-10
design 10-6
initial selection filter 7-6
maximum number of lines 10-7
opening 5-3
printing 5-13
renaming 5-7
resizing through form defaults 7-5
saving 5-6
saving an incomplete 5-8

Form Attributes field
Define the Form form 7-6

Form Defaults menu option 7-4
Form Definition 7-1
form development

checklist 10-2
Form Editor 6-2
Form Editor keys 6-3
Form ID field

12/29/95Index-9

Fitrix Screen Technical Reference

Define the Form form 7-4
form loading 5-5
Form menu

Close option 5-9
Database option 9-2
Delete option 5-10
Delete Trg File option 7-36
Info menu option 5-11
New option 5-2
Open option 5-3
Print option 5-13
Save As option 5-7
Save option 5-6
Save Trg File 7-36

Form Painter
online help text 4-7
version control 8-4

form requirements 5-5
form style guide F-4
Form Type field

Define the Form form 7-5
form types

descriptions of 10-4
form4gl 14-7
form4gl command 14-10
formonly

defining math 7-22
formonly fields B-6
forms directory 11-10
FORMS macro 14-13, 14-19
Formula field

Define Math form 7-22
4GL compatibility table E-4
FOURGEN section B-2, B-8

header/detail form 10-11
from_into statement

using with lookups 7-29, B-18
func_map.RDS 14-21
function define block command 13-25
function flow

overview 11-2
function keys

disabling 18-10
trapped during input E-3

function_define trigger 12-13
functions

displaying withing programs A-7

locating A-5
low level 11-11
midlevel 11-11
placing custom functions 12-47
upper level 11-10

G
generate

code 8-4
Generate 4GL menu option 8-4
generated directory structure diagram 11-6
generating 4gl

Form Painter 8-4
get_scrlib function 11-15
get_vararg function 11-37

examples 11-39
limitations 11-39

getx_varargs function 11-38
global event 15-2

example 12-15
global events

coding 15-8
global hot key 15-16
GLOBAL macro 14-13
global variables 11-13
globals.4gl file 11-7

reserved variables F-2
Goto command

Browse menu 3-11

H
header screen

description 10-8
header.4gl file 11-8
header/detail data-entry screen 10-14
header/detail form

example 10-11
header/detail screen

description 10-10
Help

commands option 4-7
help

context sensitive 4-9
creating for your application 15-23

Index-10

Fitrix Screen Technical Reference

Form Painter 4-7
pull-down menu 4-7

help commands 4-8, 15-24
help display event 15-49
Help pull-down menu 4-7
help text

defining in Database Administration 9-9
unique to program 18-2

HI_ function
add-on header screen 10-39

highlighting text 6-9
hot key

global use 15-16
hot key definition settings 15-16
Hot Keys Menu

User Control Library 3-23
Hot Keys menu option 8-8
hot_action function

setting scr_funct 15-4
hot_key function 15-7

mapping keys to an event 15-4
hot_local function 15-7
hotkey variable 11-13
hypertext A-5

I
i_

input screen naming convention 2-17
I_ function

add-on header screen 10-39
i_terord program

error message detail translation 17-14, 17-16
i_terorh program

error message translation 17-12
i_tmssgr program

message translation 17-18
imap script A-9
in block block command 13-24
in_insert variable 11-16
Info

help command 4-8, 15-24
Info menu option 5-11
Informix

editing keys 6-3
INFORMIX-4GL Rapid Development System

14-2

INFORMIX-4GL version 2-2
INFORMIXDIR

directory structure 2-17
INFORMIXDIR variable

definition 2-12
INFORMIX-SQL Perform Files B-26
init

.per defaults section B-11
init function 11-27
initial filter 14-25
Initial Filter field

Define the Form form 7-6
initial selection of documents 14-26
input 1

trigger file 12-5
input 2

trigger file 12-5
input area

defining 7-7
join criteria 7-8
novice mode 7-10
unique key 7-8

Input Area field
Define Fields form 7-14

input areas
copying fields between 6-12
switching between 7-10

Input Areas menu option 7-7
input program flow diagram 11-26
input section .per form description B-12
input_num function 11-33
input_num variable 11-13
insert_prep variable 11-16
install files diagram 2-8
installation

multiple $fgs 2-2
Installation and Preparation 2-2
Installation directory structure 2-3
INSTRUCTIONS section B-6

header/detail 10-11
points to observe B-7

integer data type 9-5
internal event 15-2
interval data type 9-5
into statement

using with lookups 7-28, B-17
invoking

12/29/95Index-11

Fitrix Screen Technical Reference

Featurizer 13-8
invoking applications from other applications

18-5
invoking code generator with fg.screen 2-28
invoking compiled programs 14-24
invoking the code generator

fg.start 2-29
itags script A-5

J
join

.per input section B-14
add-on detail screen 10-43

join criteria 7-8
Join Criteria field

Define Lookups form 7-24
Join field

Input Area form 7-8
joins

creating 18-3

K
K function

zoom 10-61
K_ function

add-on header screen 10-38
extension screen 10-23

key
.per input section B-13
add-on header screen 10-30

keyboard variations 1-15
keys

control key defaults E-2
used in Form Editor 6-3

L
labels

termcap G-8
language independent programs

creating 17-3
language translation 17-1

steps 17-2
language variable 11-15

Last comand
Browse menu 3-10

lib.4gs
library 15-19

lib.a
custom libraries 15-19

lib_error function 15-45
lib_getkey function 11-39
lib_message function 15-48

modifying 15-50
lib_screen function 11-28

example 11-31
LIBFILES macro 14-13

modifying 14-14
modifying with blocks 14-15

libraries
classes of 14-18
compiling 14-17
custom 15-18
lib.4gs 15-19
lib.a 15-19
linking custom libraries 14-15
scr.4gs 15-19

libraries trigger 12-18, 14-14, 15-20
library

c_lib 14-13
creating a custom library 15-19
creating your own 14-18
forms directory 11-10
stubs 14-13

library archive list 14-13
Library Code 11-4
Library communication area 11-13
library functions

customizing 15-21
understanding 11-4

library source code
location 11-8

library source files diagram 2-6
library-level variables 11-14
limitations

screen forms 10-7
link.rds 14-4
litags script A-5
lld_add function 11-12
lld_p_prep function 11-12
lld_read function 11-12

Index-12

Fitrix Screen Technical Reference

lld_setdata function 11-33
lld_showdata

changing 2-23
lld_showline function 11-12
lld_skip function 15-37
llh_event function

adding a local event 15-7
llh_input function 11-12

adding a local event 15-7
llh_setdata function 11-33
llh_skip function 15-37
load errors 5-5
loading form

disk vs. memory 5-4
Local Code 11-3
local event 15-2

example 12-16
local events

coding 15-6
Local Forms Only prompt 8-4
local_scr variable 15-47
Locating Source Code A-5
location

.per defaults section B-11
lookup

.per input section B-16
creating a data retrieval 7-25
destination fields 7-24
filter attribute B-19
from_into attribute B-20
into attribute B-20
key attribute B-19
name attribute B-19
table attribute B-19

Lookup From/Into fields
Define Lookups form 7-24

Lookup Name field
Define Lookups form 7-23

Lookup Table field
Define Lookups form 7-24

lookup usage
examples of 7-28, B-17

lookup() function 7-29
lookup_prep variable 11-16
lookups

custom error messages 15-46
data validation 7-26

deleting 7-27
from_into statement 7-29
into statement 7-28
looking up and returning data 3-17
multiple 7-27
using for data validation B-18
verification 3-17

Lookups menu option 7-23
low level functions 11-11
Lower Right Row, Col fields

Define the Form form 7-5

M
m_ record 11-17, 11-18
m_prep function 11-18
MA_ function

add-on header screen 10-39
main browse table 7-5
main program 11-27
Main Table field

Define the Form form 7-5
Input Areas form 7-8

Main Zoom Table field
Define Zoom form 7-31

main.4gl file 11-7, 11-27
make_method variable 14-5
Makefile

adding custom libraries 15-19
description of 14-12
setting the CUSTPATH variable 16-14

Makefile file 11-7
Makefile Files diagram 2-7
Mark menu option 6-9
master/detail application 10-10
math

.per input section B-15
defining 7-22

Math menu option 7-22
max_varargs function 11-37
menu

Define 4-5
Edit 4-5
Form 4-4
Help 4-7
Run 4-6

menu options

12/29/95Index-13

Fitrix Screen Technical Reference

attributes 4-3
menu_item variable 11-13
Menus

running programs with 16-21
merge order

triggers and blocks 13-40
merge_only variable 14-6
merging logic 13-39
merging triggers only

fg.make 14-10
Message field

Define Fields form 7-15
message strings

translating 17-3
midlevel functions 11-11
midlevel.4gl file 11-7
mkdemo script A-4
mksecuri A-10
mktables script A-10
mld_clear function 11-11
mlh_cursor function 11-11
mode

default 7-2
novice and expert 7-2

module directory
definition 2-16

Module ID field
Define the Form form 7-4

module variable 11-15
money data type 9-5
mz -i menus command 15-14

N
NAME macro 14-13
naming

clipboard pages 6-6
naming clipboard pages 6-11
naming conventions

.4gm 2-16

.per B-2
filename extensions 13-41
i_ 2-17
o_ 2-17
p_ 2-17

navigate
creating local events 15-14

Navigate Menu
User Control Library 3-22

Navigate menu option 8-6
navigation event

hooking to your application 8-7
New menu option 5-2
Next command

Browse menu 3-10
clipboard 6-7
data entry form 3-11

no_merge variable 13-47, 14-6
noautozoom

.per input section B-23
non_scr_q_elems variable 2-21

about q_ records 11-19
setting for extension screens 10-17

non_source_form 7-6, 16-9, B-25
Non-Source Form field

Define the Form form 7-6
nonull

.per input section B-24
note_off display event 15-48
note_on display event 15-48
novice mode 7-2

define input area 7-10
defining fields 7-17

NUL special block command 13-23
num_cols variable 11-15
num_rows variable 11-15
num_vararg function 11-37
numeric type code

termcap G-8
nxt_fld variable 11-13

O
o_

output report naming convention 2-17
O_ function

extension screen 10-24
object file 14-2, 14-4
OBJFILES macro 14-13, 14-19
ok_ functions 15-21

overview 11-11
ok_add function 11-11
ok_delete function 11-11
ok_update function 11-11

Index-14

Fitrix Screen Technical Reference

on_disk_add trigger 12-34
add-on header screen 10-34

on_disk_delete trigger 12-33
on_disk_read trigger 12-32

add-on header screen 10-34
on_disk_record_prep trigger 12-31
on_disk_update trigger 12-35

add-on header screen 10-34
on_event trigger 12-14

add-on header screen 10-34
on_exit trigger

add-on header screen 10-34
on_screen_record_prep trigger 12-30
OnLine data types 15-32
online help

Form Painter 4-7
Open menu option 5-3
opening a form

errors 5-5
options

pull-down menu attributes 4-3
Options command

data entry form 3-12
Table Information form 9-6

Options Files
modifying locally 2-23

options.4gl
invoking other programs 18-5

options.4gl file 11-8
order 14-26

.per defaults section B-12
order by clause 7-9
Order field

Input Area form 7-9
.org file 13-37

Code Generator 13-37
Featurizer 13-37

os_command column 15-6
Owner field

Table Information form 9-3

P
p_

posting report naming convention 2-17
p_ record 11-17, 11-18
p_cur variable 11-13

p_prep function 11-18
Paste menu option 6-9
pasting a clipboard page 6-8, 6-9
PATH variable

definition 2-12
pcdtablr D-12
p-code runner 14-3
peekx_vararg function 11-38
.per 10-7
.per file explanation B-2
.per form

add-on detail screen 10-42
deleting 5-10
maximum number of spaces 10-7
requirements 5-5
specifying translation 17-10

perform
ATTRIBUTES section B-5
DATABASE section B-3
FOURGEN section B-8
INSTRUCTIONS section B-6
SCREEN section B-3
TABLES section B-4

perform file explanation B-2
Perform Files

INFORMIX-SQL perform files B-26
perform load errors 5-5
perform naming convention B-2
permanent filter

zooms 10-62
picker list

creating 15-39
Picture field

Define Fields form 7-15
pipe

field delimiter B-3
pipe symbol

field delimiter 7-11
PL_ function

add-on header screen 10-39
pluggable features 13-32
plug-in features

definition 13-7
post-processors

using with the code generator 15-47
PR_ function

add-on header screen 10-40

12/29/95Index-15

Fitrix Screen Technical Reference

Prev command
browse command 3-10
Browse menu 3-10
clipboard 6-7
data entry form 3-11

prev_data variable 11-13
print

.per file 5-13
Print menu option 5-13
progid variable 11-13
program acknowledgements

User Control Library 3-19
program directory source code 11-7
program flow 11-24
Program ID field

Define the Form form 7-4
Program Information menu 3-19
Program Status

User Control Library 3-21
pseudo-code 14-3
pull-down menu

Define 4-5
displaying 4-2
Edit 4-5
Form 4-4
help 4-7
Run 4-6

pull-down menu options
attributes 4-3

put_scrlib function 11-15
put_vararg function 11-36

examples 11-39
limitations 11-39

Q
Q function

zoom 10-61
q_ record 11-17, 11-18
q_records

controlling how generated 2-21
Query by Example form 3-5
query by example screen

creating 10-49
description 10-48

query patterns 3-6
Quit

help command 4-9, 15-24
zoom command 3-16

Quit command
browse form 3-10
clipboard 6-7
data entry form 3-13

quit without saving prompt 5-6

R
R function

zoom 10-61
R_ function

add-on header screen 10-37
RDS and 4GL compilation

differences 14-3
RDS compiles 14-2
recorder

Database Administration 9-8
record-level validation logic 15-16
regenerability

definition 13-5
regeneration of source code 2-31
relational operators 3-6
renaming

form 5-7
replace block block command 13-24
Required field

Define Fields form 7-17
required tables 2-14, D-5
required tables for Code Generator 2-13
reserved terms F-2
reserved variable names F-2
resizing a field 7-11
resizing a form

form defaults 7-5
returning

.per defaults section B-12
Returning field

Define the Form form 7-5
ring menu

using 3-3
ring menu commands 3-3
ring menus

customizing 7-37
ring_add function 11-10
ring_delete function 11-10

Index-16

Fitrix Screen Technical Reference

ring_options function 11-10
ring_update function 11-10
Run

pull-down menu 4-6
Run 4GL Program menu option 8-6
Run menu

Compile 4GL option 8-5
Compile Form 8-3
Generate 4GL 8-4
Hot Keys option 8-8
Navigate option 8-6
Run 4GL Program option 8-6

Run pull-down menu 8-2
running the Form Painter

fg.form 2-26

S
S_ function

add-on header screen 10-36
s_ record 11-17, 11-19
s_cur variable 11-13
save

automatic 5-8
Save As menu option 5-7
Save menu option 5-6
Save Trg File menu option 7-36
saving a form

not saved prompt 5-6
saving an incomplete form 5-8
saving your data 3-14
scr.4gs 11-9, 15-19
scr.a 11-9
scr.RDS 11-9
scr_bottom display event 15-49
scr_demo 5 10-35
scr_demo 7 10-25
scr_demo script A-2
scr_fld variable 11-13
scr_funct function 15-3
scr_funct variable 11-13

used in switchbox 11-33
scr_id

zoom 10-61
scr_id variable 11-13

used in switchbox function 11-28
scr_key variable 11-15

scr_lib variables 11-14
scr_lib.4gl 11-14
scr_tab variable 11-15
scr_type variable 11-15, B-10
scratch variable 11-13
screen attributes 3-24
screen form

compiling 8-3
deleting 5-10
designing 10-6
limitations 10-7
printing 5-13
saving 5-6

screen form style guide F-4
Screen Generated Program Flow 11-24
screen library 11-4
SCREEN Section B-3
screen.opt file 2-21
screen3 demo application 10-54
screen3.4gs module directory description 11-7
scrn_tier variable 11-15
scrn_trx variable 11-15
scroll display event 15-49
scrolling area

array limit 7-9
Auto Number 7-10

SD_ function
add-on header screen 10-39

security
required tables A-10

Select command
browse form 3-10
clipboard 6-7

Select Commands menu option 7-37
select_prep variable 11-16
selection filter

initial 7-6
semicolon

trigger file 12-4
serial data type 9-5
.set file

explanation 13-36
SH_ function

add-on header screen 10-39
shell

setting up A-11
shell escapes 15-53

12/29/95Index-17

Fitrix Screen Technical Reference

preventing 15-53
single_function screen type 10-15
size

screen form 10-7
SK_ function 15-38
Skip field

Define Fields form 7-17
skip field logic 15-37
skip function 15-37
skip keyword

.per form 15-37
smallfloat data type 9-5
smallint data type 9-5
socketManager 10-15
software acknowledgements 5-11
Sort

zoom command 3-15
sort display event 15-48
source .c files diagram 2-6
Source Code 11-1
source code

design levels 11-10
generating 8-4
libraries 11-8
regenerating 2-31

source code blocks
definition 13-6

source code logic overview 11-2
specification file

explanation B-2
SPOOLER variable 5-13
SQL order by clause

used with add-on header screens 10-31
sql_filter variable 11-13
sql_order variable 11-13
standard database 2-14
standard library 11-5
standard.4gs 11-9
standard.a 11-9
standard.RDS 11-9
start file block command 13-24
start file command 13-21
static variables 11-16
static_define trigger 12-11

add-on header screen 10-34
controlling how merged 2-19
using with the Featurizer 16-18

sticky zoom filter
creating 10-62

stk_mnu.4gl file 11-8
stockzm.4gl file 11-8
string type code

termcap G-9
string_to_foreign function 17-11
string_to_native function 17-11
strings

using in block commands 13-26
stty command G-2
stubs library 14-13
stxacknd D-13
stxactnr D-13

navigation event table 15-10
stxaddld D-13
stxaddlr D-13
stxerord D-13
stxerorh D-14
stxfiler D-14
stxgropd D-14
stxgropr D-14
stxhelpd D-14

language translation 17-16
stxhotkd D-15

hot key definitions detail table 15-13
stxkeysr D-15

hot key definitions reference table 15-12
stxlangr table 17-9
stxmssgr D-15
stxmssgr table 17-4

language translation 17-18
stxnoted D-15
stxnvgtd D-15

navigation event detail table 15-11
stxpermd D-16
stxpermr D-16
stxprogr D-16
stxtodod D-16
stxtxtdd D-17
stxuniqc D-17
swbox_trig variable 2-20, 13-43

definition 2-23
switchbox _items trigger

controlling how merged 2-19
switchbox function 11-28

diagram 11-30

Index-18

Fitrix Screen Technical Reference

example 11-29
switchbox_items trigger 12-20

using with the Featurizer 16-18
Switching Between Input Areas 7-10

T
T_ function

add-on header screen 10-36
extension screen 10-23

t_clear function 10-23
t_init function 10-22
t_read function 10-22
t_write function 10-23
Tab

zoom command 3-16
Tab command

data entry form 3-12
tab display event 15-49
tab_pressed variable 11-16
table

.per input section B-13
Table Information form 9-3
Table Name field

Define Fields form 7-13
Table Information form 9-3

Table Naming Conventions F-3
tables

copying with AutoForm 9-6
demo tables A-4
required D-5
required for a generated program 2-14
required for Code Generator 2-13
updating 9-2
used by code generator D-5

TABLES Section B-4
TABLES section

header/detail form 10-11
tag utility A-5
tags file 11-10
Technical Status form 3-22
templates

clipboard 6-5
termcap

action codes G-14
boolean codes G-8
capability codes G-8

interpretation and action G-11
labels G-8
numeric codes G-8
observations G-15
special characters G-9
string codes G-9
testing keys G-13
writing G-6

termcap entries G-6
termcap entry G-6
termcap file G-6
terminal options G-2
text

automatic centering 6-5
copying 6-11
cutting 6-11
highlighting 6-9

text data type 9-5, 15-32
text editor 15-39
text field type 7-14
text picker 15-39, 15-40
textdefault function 15-42
textdefault() function 15-40
textedit function 15-42
textedit() function 15-40
textget function 15-43
texthelp function 15-42
texthelp() function 15-40
texthlp function 15-42
textinit function 15-41
textpick function 15-42
textpick() function 15-39
textput function 15-41
textput() function 15-39
textsel function 15-41
textsel() function 15-39
textview display event 15-49
textview function 15-44
textzoom function 15-44
this_data variable 11-13
time-stamp comparison logic 14-11
.tmp 13-42
TMPDIR variable

definition 2-12
TOF special block command 13-23
toggle

input areas 7-10

12/29/95Index-19

Fitrix Screen Technical Reference

Tools Overview diagram 13-2
Top command

browse form 3-10
transaction processing

add-on header screen 10-35
transferring applications to other systems

applications
transferring C-2

translate
per form specification 17-10

Translate field
Define Fields form 7-17

translation
specifying in .per files 17-10

trigger
after_change_in 12-39
after_delete 12-46
after_field 12-38
after_init 12-22
after_input 12-40
after_insert 12-42
after_row 12-44
at_eof 12-23
before_delete 12-45
before_field 12-37
before_init 12-21
before_input 12-36
before_insert 12-41
before_row 12-43
custom_libraries 12-19
define 12-9
do_not_generate 12-26
function_define 12-13
libraries 12-18, 15-20
on_disk_add 12-34
on_disk_delete 12-33
on_disk_read 12-32
on_disk_record_prep 12-31
on_disk_update 12-35
on_event 12-14
on_screen_record_prep 12-30
static_define 12-11
switchbox_items 12-20

Trigger Definition form 7-35
Trigger Definition form zoom 7-36
trigger file

comments 13-47

contents 12-3
defaults section 12-5
deleting 7-36
input 1 12-5
input 2 12-5
limitations 12-8
recovering a deleted file 7-37
saving in the Form Painter 7-36
syntax 12-4
using comments 12-5
using semicolons 12-4

triggers 13-6
benefits 12-2
defining in Form Painter 7-33
deleting in Form Painter 7-36
editing in the Form Painter 7-36
in data flow 11-22
modifying your application with 12-2
order merged 13-40
removing from existing .4gl files 13-37
special processing with the Featurizer 16-15
using in .ext files 12-8
using to disable function keys 18-10
zoom 7-36

triggers file
sample 12-48

type
.per defaults section B-10

Type field
Table Information form 9-4

U
Undo menu option 6-4
Unique Key field

Input Area form 7-8
Table Information form 9-3

unresolved.RDS 14-21
Up command

browse form 3-10
Update

help command 4-9, 15-24
Update command 3-4

clipboard 6-6
update display event 15-49
updating tables 9-2
upper level flow diagram 11-27

Index-20

Fitrix Screen Technical Reference

upper level functions 11-10
UpperLeft Row,Col fields

Define the Form form 7-5
Upshift field

Define Fields form 7-17
user name

capturing 18-6
user.ctl.RDS 11-10
user_ctl.a 11-10
user_nul.4gs 11-9
utility menu 17-7

V
Validate field

Define Fields form 7-16
validation logic

record level 15-16
vararg functions 11-35
varchar data type 9-5
variable

at_eof 2-20
at_eof_trig 2-23, 13-43
auto_answr 11-15
auto_note 11-15
auto_udf 11-15
curs_count 11-15
curs_pos 11-15
curs_rowid 11-15
cust_key 16-21
cust_path 13-42, 16-7
CUSTPATH 13-42
data_changed 11-13
dbname 11-15
DBPATH 2-12, 2-17
DBTEMP 2-13
defaulted 11-16
define_trig 2-20, 2-23, 13-43
del_flag 11-16
detl_display 2-23
dup_prep 11-16
exit_level 11-16
feature_set 13-42
fg 2-12, 13-42
fglibdir 2-12
fglpp_fatal_warn 2-21, 13-43
FGLPPDIR 13-42

fglppflags 13-42
FGLPPOPTIONS 13-42
fgmakedir 2-12
fgtooldir 2-12
fld_tab 11-15
force_merge 13-42, 13-47, 14-6
hotkey 11-13
in_insert 11-16
INFORMIXDIR 2-12, 2-17
input_num 11-13
insert_prep 11-16
language 11-15
local_scr 15-47
lookup_prep 11-16
make_method 14-5
menu_item 11-13
merge_only 14-6
module 11-15
no_merge 13-47, 14-6
non_scr_q_elems 2-21
num_cols 11-15
num_rows 11-15
nxt_fld 11-13
p_cur 11-13
PATH 2-12
prev_data 11-13
progid 11-13
s_cur 11-13
scr_fld 11-13
scr_funct 11-13
scr_id 11-13
scr_key 11-15
scr_tab 11-15
scr_type 11-15
scratch 11-13
scrn_tier 11-15
scrn_trx 11-15
select_prep 11-16
SPOOLER 5-13
sql_filter 11-13
sql_order 11-13
swbox_trig 2-20, 2-23, 13-43
tab_pressed 11-16
this_data 11-13
TMPDIR 2-12
version 11-15
xtra_lib 14-6

12/29/95Index-21

Fitrix Screen Technical Reference

variable records 11-17
variables

global 11-13
used by Code Generator 11-12
used with Featurizer 13-42

verification prompt
creating 18-10

Verify field
Define Fields form 7-17

version control 13-7
cust_path variable 16-12
discussion 16-2
examples 16-24
executing code 14-27
Form Painter 8-4
invoking the Code Generator 2-27
required directory structures 16-5
running programs 16-19
summary 16-23
the featurizer 16-10

Version field
Table Information form 9-4

version variable 11-15
View

help command 4-9, 15-24
view-detail screen

description 10-50
view-header screen

description 10-50
Viewing Database Table Layouts

imap A-9

W
W_ function

add-on header screen 10-37
warning messages

translating 17-3
where clause 7-31
window

centering 18-4
Windows

attributes 3-24
With Pulldowns menu option 7-37
Without Pulldowns menu option

Define menu
Without Pulldowns option 7-37

X
xtra_lib variable 14-6
xyz extension

version control 16-6

Z
Z function

zoom 10-61
Z_ function

add-on header screen 10-39
zoom 3-14

.per input section B-20
auto_zoom logic 10-64
autozoom 7-31
AutoZoom feature 3-16
building 7-32
defining 7-30
deleting 7-33
description 10-54
filter attribute B-21
from attribute B-22
immediate 18-12
key attribute B-21
screen attribute B-21
steps to creating 7-32
table attribute B-21
Trigger Definition form 7-36

Zoom command
Find 3-15

zoom command
Quit 3-16
Sort 3-15
Tab 3-16

zoom display event 15-48
Zoom Entry Filter field

Define Zoom form 7-31
zoom filter 7-31

creating a permanent 10-62
zoom form 3-14

sample 10-54
Zoom From Column field

Define Zoom form 7-32
zoom interface 3-14
zoom logic 10-59

Index-22

Fitrix Screen Technical Reference

Zoom menu option 7-30
zoom screen

calling 10-55
creating 10-55
example 10-57, 10-58

Zoom Screen ID field
Define Zooms form 7-31

zoom_off display event 15-48
zoom_on display event 15-48

	Title
	Introduction
	Table Of Contents
	Part One: Introduction To Fitrix Screen
	1 Introduction
	2 Getting Started
	3 The Data-Entry Interface

	Part Two: The Form Painter
	4 Form Painter Basics
	5 Managing Forms
	6 Editing Forms
	7 Form Definition
	8 The Run Menu
	9 Database Administration

	Part Three: The Code Generator
	10 Creating Screen Forms
	11 Source Code
	12 Customizing Your Base Prgram With Triggers
	13 The Featurizer and Blocks
	14 Compiling and Running Programs
	15 Advanced Features
	16 Version Control
	17 Language Translation
	18 Helpful Techniques

	Part Four: Appendixes
	A Fitrix Screen Utilities
	B The .per Specification File
	C Program Migration
	D Screen Tables
	E Control Key Defaults
	F Reserved Terms and Style Guide
	G Term Caps

	Index

